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 Surface Mechanomyography (MMG) is the recording of mechanical activity 

of muscle tissue. MMG measures the mechanical signal (vibration of muscle) 

that generated from the muscles during contraction or relaxation action. It is 

widely used in various fields such as medical diagnosis, rehabilitation 

purpose and engineering applications. The main purpose of this research is to 

identify the hand gesture movement via VMG sensor (TSD250A) and 

classify them using Linear Discriminant Analysis (LDA). There are four 

channels MMG signal placed into adjacent muscles which PL-FCU and  

ED-ECU. The features used to feed the classifier to determine accuracy are 

mean absolute value, standard deviation, variance and root mean square. 

Most of subjects gave similar range of MMG signal of extraction values 

because of the adjacent muscle. The average accuracy of LDA is 

approximately 87.50% for the eight subjects. The finding of the result shows, 

MMG signal of adjacent muscle can affect the classification accuracy of  

the classifier. 
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1. INTRODUCTION 

Human consists of many muscles interact each other to perform various activities in daily life. When 

muscles of the body contracted and relaxed continually, the force produced by muscles based on two 

mechanisms: the firing frequency and the recruitment of the motor units (MU) [1, 2]. Increasing either the 

firing frequency or the number of recruited MUs contributes to increasing the muscle force [3]. Contraction 

of muscle generates signal for many application. The investigation of forearm and finger movement 

contributes opportunity for many application such as prosthetic control and rehabilitation system [4, 5]. 

Forearm consist of many muscles interact each other when performing activities such as load lifting,  

workout etc. 

Mechanomyography (MMG) are non-invasive tools that have been used to study muscle activity  

[6, 7]. MMG is a technique for recording and interpreting mechanical activity (vibration) in contracting 

muscle [8] at the surface of skins. The signal generated by the low frequency lateral oscillations of active 

skeletal muscle fibers. According to researchers [9-11], it can be concluded that the frequency range of the 

signal is normally measured between 3Hz to 100Hz bandwidth. MMG signal can be detected by several types 

of transducers located on the surface of the skin. According to the literatures, most preferred sensors used for 

MMG signal are accelerometer [12-15], microphone [16-19], piezoelectric contact sensor [20, 21], laser 

distance sensor [22, 23]. 
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Linear Discriminant Analysis (LDA) is a well-known classifier used in statistics, pattern recognition 

analysis and machine learning. LDA is widely used in applications such as speech recognition, muscle 

activity recognition, etc. It is a method to find a linear combination of features that characterizes or separates 

two or more classes of objects or events. LDA is easily executed, much faster to train and well-understood 

representatives of statistical classifiers. 

Xie et al. [9] investigated and classified the hand motion using MMG signals for multifunctional 

prosthetic control. Hand motions performed lead to the noise problem. Therefore, researchers proposed a new 

scheme to extract robust MMG features by the integration of the wavelet packet transform (WPT), singular 

value decomposition (SVD) and a feature selection technique based on distance evaluation criteria for the 

classification of hand motions. The authors illustrated the classification performance (LDA) by compared the 

method with three other time–frequency decomposition which is short-time Fourier transform (STFT), 

stationary wavelet transform (SWT) and S-transform (ST). The present result gave the highest average 

classification accuracy up to 89.7%. The performance of the proposed method for MMG classification was 

evaluated in the context of a LDA classifier.  

Alves and Chau conducted so many researches’ using LDA as a classifier. The article [24] was 

studied to examine if multisite MMG signals exhibit distinctive patterns of forearm muscle activity. There are 

six forearm muscles: Pronator Teres (PT); Flexor Carpi Radialis and Palmaris Longus (FCR/PL); Flexor 

Carpi Ulnaris (FCU); Extensor Digitorum Communis (EDC); Extensor Carpi Radialis Longus (ECR); and 

Extensor Carpi Ulnaris (ECU) were located with accelerometer sensors to collect MMG signals. MMG 

patterns are specified with 7±1 hand movements of accuracy with 90±4%. 14 features were selected by 

genetic algorithm before classified using LDA. Other than that, same authors investigated the 

discriminability of multiple hand motions using multichannel forearm MMG [25]. Six MMG sensors were 

manufactured according to the method of [26], were placed to the dominant forearm over extrinsic hand 

muscles. Same forearm muscles were used in previous research [24] with 15 features selected by a genetic 

algorithm and classified by LDA. MMG signals from six sites was differentiated corresponding to eight hand 

motions (hand open, hand close, wrist flexion, wrist extension, pronation, supination, adduction, and 

abduction) of forearm muscle activity with a mean accuracy of 93±9%.  

On the other hand, Alves et al. [13] studied the effect of accelerometer location on the classification 

of single-site forearm mechanomyograms. MMG signal is collected from FCR muscle with three classes of 

muscle activity: wrist flexion, wrist extension and semi-pronation. Same experiment protocols were 

conducted compute the average classification accuracy with 91±3% (3 classes, continuous classification). 

Again, [27] determined whether MMG signal features retained enough discriminatory information allowed 

reliable continuous classification and determined whether there is a decline in classification accuracy over 

short time periods. Two accelerometers were placed to the FCR and ECR muscles performed three classes of 

forearm muscle activity. The average classification accuracy of LDA was 89±2%. The present result 

indicates, MMG signals recorded at the forearm retained enough discriminatory information to allow 

continuous recognition of hand motion. 

 

 

2. METHODOLOGY 

2.1. DAQ system 

The MP160 System is upgraded data acquisition system, which equipped with hardware and 

software for the acquisition and various analysis for the signal recorded. It was made with an internal 

microprocessor to interface with computer. The MP160 System used for data acquisition, analysis, storage, 

and retrieval. MP160 system interface with AcqKnowledge 5.0 software to display signal recorded.  

VMG sensor (TSD250A) used in this research. The TSD250A VMG Transducer is a sensitive 

accelerometer (32.64 mm diameter) for use with BIOPAC Vibromyography Systems. TSD250A used for 

measuring signal from targeted muscle groups such as forearm and leg muscles. It used in advanced signal 

analysis algorithms to monitor the small muscle vibrations that occur when a muscle activated or contracted 

and optimized for assessing voluntary muscle effort. 

 

2.2. MMG signal recording 

Subject evaluation was conducted on 8 healthy male volunteered subjects. The MMG signals were 

recorded on the dominant hand of the subject in order to reduce variability on the motor unit firing rate due to 

the hand domination [28]. In order to make sure that the MMG signal recorded during data collection, 

criteria’s for volunteered subject selection have been made. Those who selected for being subjects for this 

research must have good physical condition with no previous or ongoing history of neuromuscular or 

musculoskeletal disorder specific to the elbow, wrist and/or finger joints. These criteria’s will determine 

result of research for the cross-talk signal collected. 
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2.3. Muscle contraction protocol 

Subject requires to seat at ease on a chair with forearm adjusted comfortably using arm support 

attached to the chair. Subject is requires to execute five muscle contraction with three trials of each hand 

exercise gesture using egg-shaped exercise ball. There are 5 minutes of rest between each set of contraction 

and trials before execute to next hand exercise gesture as shown in Figure 1. The hand exercise gestures 

according to the list below: 

a. Grip strength supinated (5 times in 25s, rest 120s) 

b. Flexion fingers (5 times in 25s, rest 120s) 

c. Pinch grip (5 times in 25s, rest 120s) 

 

 

   
   

(a) (b) (c) 

   

Figure 1. Exercise gestures, (a) Grip streng supinated, (b) Finger flexion, (c) Pinch grip 

 

 

2.4.  Forearm muscle and sensor attachment 

Figure 2 shows details view of the VMG sensor locations over the Palmaris Longus (PL), Flexor 

Carpi Ulnaris (FCU), Extensor Digitorum (ED) and Extensor Carpi Ulnaris (ECU) muscles. The position of 

each muscle studied determined according to the anatomical guide for the electromyographer by Perotto and 

Delagi [29] as follows: 

a. PL-Located at the flexor side, the PL muscle determined start in the middle of the palm and straight back 

b. FCU-Located at the flexor side, two fingerbreadths from the pinky border on one third of the distance 

between the medial epicondyle of humerus and distal head of ulna 

c. ED-Located at the extensor side, one third of the distance from proximal end of a line from lateral 

epicondyle of humerus to distal head of ulna  

d. ECU-Located at the extensor side, just lateral to ulnar border on the half way of the distance between the 

lateral epicondyle of humerus and distal head of ulna 
 

 

 
 

Figure 2. Sensor placement on forearm muscles 
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2.5.  MMG signal processing 

The VMG sensor and software algorithm is advance technology provided by BIOPAC System to 

optimize assessing voluntary muscle effort. VMG sensors located over the muscle belly to record the signal 

or small vibrations of activated muscle.The sensor was made completely with band-pass filter that can 

eliminate artifacts motion. In addition, the software used also automated with VMG analysis to simplify the 

process and generate filtering signal that correlate with the contraction muscle studied. The VMG calculation 

channels display a flat line during data collection and automatically perform the VMG filter calculation and 

analysis when the recording stops.  

In this study, five contraction muscle were extracted per participant. This study included 3 trials of 3 

hand gesture exercise (GSS, FF and PG) for 4 muscles (PL, FCU, ED and ECU) that resulted in 36 (3×3×4) 

number of samples or features per participant. Since 8 volunteers participated in this study, thus the feature 

vector size extracted were=288 (8 participants×3 trials×3 hand gesture×4 muscles). 

 

2.6. Feature extraction 

There are four types of feature extraction used in this study which Mean Absolute Value (MAV), 

Standard Deviation (STD), Variance (VAR) and Root Mean Square (RMS). Root Mean Square (RMS) is the 

value of the continuous voltage that results the same power disposal as the time averaged power disposal of 

the voltage. The definition is similar for the RMS value of the current. Variance defined as calculated by 

taking the differences between each number in the set and the mean, squaring the differences and dividing the 

sum of squares by the number of values in the set. All these time domain features extracted from the filtered 

MMG signal so that it can be classify during classification method accordingly. The equation of feature 

extraction used in this research shown below: 
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where: N=Total number of data 

i=Length of MMG signal 

  =MMG signal in a segment 

 

2.7. Classification 

The goal of classifier is to utilize the decision function (parameters got with the training data and 

sample labels) to classify the new data. The quality of a classifier can be evaluated by criterions such as 

classification error, computational complexity, robustness, et al. In this research, Linear Discriminant 

Analysis (LDA) is chose due to its functionality and computational efficiency, used as a method used in 

pattern recognition and machine learning. Classification accuracy for pattern recognition will generate using 

Minitab 18. 

 

 

3. RESULTS AND ANALYSIS  

The MMG signals recorded from eight subjects using MP160 BIOPAC System VMG integrated 

with VMG sensor (TSD250A) that includes band-pass filtering to eliminate most motion artifacts including 

physiologic tremor. The signal recorded for 30 seconds for five contraction muscles. The sampling rate of the 

signal is set to 1 kHz. Thus, each muscle channel consist approximately 30000 sample data per 30 seconds. 

Figure 3 shows the sample of raw and filtered signal recorded in this research. 

Four features assigned to extract the recorded signal, which are MAV, STD, VAR and RMS. 

Therefore, recorded signal from 8 subjects were extracted for the classification process in order to determine 

the percentage accuracy. Table 1 to Table 3 show the sample of extracted features for different hand motion.  
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Linear Discriminant Analysis (LDA) used as a type of classifier to determine the accuracy. Table 4 

shows the summary of classification for MAV generated with Minitab 18.1 version. The average 

classification accuracy across all participant and all test session for MAV, STD, VAR and RMS are 87.5%, 

66.70%, 58.30% and 70.8%. Table 5 shows the summary of accuracy for all feature extraction used in this 

research. It can be conclude that, MAV is a suitable type of feature extraction to feed the LDA classifier to 

determine accuracy compared to other features because it gives high percentage accuracy. 

 

 

 
 

Figure 3. Raw and filtered signal 

 

 

Table 1. The Value of MAV for grip strength supinated 
No of subject PL FCU ED ECU 

1 4.474204 7.192291 6.367886 5.093908 

2 4.237892 6.654973 6.669146 3.853415 

3 4.297067 7.294806 7.229205 4.37714 
4 5.314596 7.451518 6.724006 5.458795 

5 5.389766 8.022732 8.260413 7.104242 

6 5.609553 6.576809 6.369818 5.015977 
7 7.880922 11.65724 8.544292 8.882246 

8 7.253859 11.28344 7.159505 7.842413 

 

 

Table 2. The value of MAV for finger flexion 
No of subject PL FCU ED ECU 

1 7.584724 12.25349 8.54998 7.635234 

2 5.664509 8.264346 7.232361 1.644206 

3 6.58752 10.17895 13.19895 2.990501 

4 6.034186 7.132029 7.233987 2.115165 

5 5.449422 8.875302 10.4099 5.734949 

6 4.873937 6.567246 8.464613 3.728056 
7 8.301196 12.01424 11.82964 9.586717 

8 7.432737 13.31492 12.59372 8.52413 

 

 

Table 3. The value of MAV for pinch grip 
No of subject PL FCU ED ECU 

1 5.866773 9.681647 7.337535 5.799286 

2 3.637239 5.511408 4.231339 2.583357 

3 4.998462 7.91393 7.691287 4.002384 
4 3.283647 6.754001 3.557011 2.503242 

5 3.046358 6.324395 7.264932 4.235655 

6 4.555272 7.891798 3.319327 3.691704 
7 5.85815 9.705409 7.479138 6.297772 

8 4.653041 8.821394 5.075026 5.020524 

 

 

The average classification accuracy show that the dissimilarity and repeatability of MMG signal 

which is enough to allow recognition of multiple muscle activation states with highest accuracies. Moreover, 
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the finding result support the previous research [30] where researchers discloses that MMG signal is effective 

in classifying more than two hand-motion patterns even with only one channel signal.  

In terms of classification accuracy, the result proves the previous research [27] when the researchers 

conclude that that two-channel of MMG signal is enough to identify and classify the hand-motion patterns 

recognition. In this research, there are four channels MMG signal placed into adjacent muscles which  

PL-FCU and ED-ECU. Most of subjects gives similar range of MMG signal for the adjacent muscle for 

feature extraction values. In addition, the number of accuracy might affected by the nature of the forearm 

muscle structures itself due to adjacent muscle reacted each other. 

 

 

Table 4. Summary of classification using LDA for MAV 
Put into Group FF GSS PG 

FF 7 0 0 

GSS 1 7 1 

PG 0 1 7 

Total N 8 8 8 

N correct 7 7 7 

Proportion 0.875 0.875 0.875 

 

 

Table 5. Summary of accuracy for all feature extraction 
Classification MAV STD VAR RMS 

LDA 87.50% 66.70% 58.30% 70.8% 

 

 

4. CONCLUSION  

In this research, a study that monitor muscle activities for the purpose of hand gesture recognition is 

completed. MAV is the selected feature from the MMG signal to feed to the LDA classifier because it gives 

highest classification accuracy, which is 87.50% compared to other features. For further research, more study 

focus on MMG signals can be explore in any other fields especially medical field, where it can use for 

clinical diagnostic tool to identify neuromuscular diseases and rehabilitation process. Besides that, the MMG 

signal can be recorded with different force for every hand motion. Thus, the result might be used for 

rehabilitation study in determine recovery period and suitable exercise which focus on forearm muscles. 
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