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Abstract 

No density can be larger than the Planck density. The time evolution of the actual light horizon 

should be traced back until the Planck length is reached. However there arises a problem, as in the 

framework of general relativity theory, GRT, that length is only reached at the density much larger 

than the Planck density. We investigate the Planck scale, the evolution of space according to the 

Friedmann Lemaitre equation and the resulting density limit by using EXCEL in a graphic man-

ner. So, we achieve a comprehensive understanding based on our own activity. Additionally, we 

outline a possible solution of that problem. 

 

1. Introduction 

Since the Big Bang the universe expands (Einstein 

1917, Wirtz 1922, Hubble 1929, Friedmann 1922, 

Lemaître 1927, Planck 2018). Usually that expan-

sion is modeled in the framework of general relativi-

ty theory, GRT (Einstein 1915). In the early uni-

verse, the density was very high. So quantum phys-

ics is essential. In particular, there is an upper limit 

of the density, the Planck density ρP = 5,155∙10
96 

kg/m
3
 and the corresponding length scale of the 

Planck length LP = 1,616∙10
-35 

m. 

However, in the model in the framework of the 

GRT, the density exceeds the Planck density at a 

relatively large length scale of 0.04 mm, and so it 

doesn´t achieve the Planck length.  

1.1. Students  

We elaborate the occurrence of this problem in more 

detail. This problem is solved in a parallel reports by 

Schöneberg and Carmesin as well as by Carmesin. 

Moreover, the solution has been elaborated with 

other scientific tools in (Carmesin 2017, Carmesin 

2018a-d, Carmesin 2019a-b, Carmesin 2020a-b).  

The present project has been worked out in a re-

search club with students ranging from classes 9 to 

In the project, the students develop many process 

related competences such as modeling, epistemolo-

gy, computer experiments, mathematics, numerical 

computations and communication (Niedersächsisch-

es Kultusministerium 2017). Additionally, the stu-

dents use their present competences in order to de-

rive additional insights and competences. This pro-

vides a high efficiency of learning (Hattie 2009). 

Furthermore, the students develop insights in an 

elementary manner on their own. Such learning is 

efficient in science education (Kircher 2001). More-

over the students presented their results at a public 

astronomy evening in the Aula of their school, full 

of interested visitors. Thereby the trained their 

communication skills in a very challenging manner. 

In summary, the students achieve a comprehensive 

understanding based on their own activity. 

2. Derivation of the dynamics based on the GRT 

2.1 Used variables 

We use various variables in the derivation of a suita-

ble formula:  

x = describes the light horizon we want to calculate 

and study more closely. 

t = means the time.  

1 = is defined as the largest possible value of x here 

and describes the present time. The smaller t be-

comes, the further back in time it is. 

For the space expansion we use the variable a. Inter-

esting is the relation between space expansion a and 

time t. 

The last variable is ρ. We also look at this in relation 

to time to determine by what density the space has 

changed over time. 

2.2 Used physical quantities 

The density of the universe is composed of the den-

sity of dark energy, the density of matter and the 

density of radiation. The density parameter ΩΛ de-

scribes the proportion of dark energy in the universe 

which is 68.47% of the total energy density in the 

universe. Ωm describes the proportion of energy 

density in matter, which amounts to 31.53% in our 

universe, and Ωr represents the portion of radiation, 

which amounts to 0.009265% (Planck 2018, Carme-

sin 2019a). ρcr,t0 means the critical density at time 0, 

today. The constant G describes the gravitational 

constant, which is 6.67384∙10
-11 

m
3
/kg∙s

2
. It de-

scribes the strength of the gravitation. In the second 

39

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhyDid - Physik und Didaktik in Schule und Hochschule (E-Journal, FU Berlin)

https://core.ac.uk/display/352932809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Hans-Otto.Carmesin@athenetz.de


Heeren et al. 

part of the calculation, we also include the scaling 

radius a, which is 4.15∙10
26

 m, it describes today's 

visible range including the mass 2.593∙10
54

 kg. 

2.3 Integration of the differential equation, DEQ 

We want to calculate the dynamics of the light hori-

zon. For this we need the following basic formulas: 

The density consists of three components: 

𝜌𝑟 + 𝜌𝑚 + 𝜌𝑣 = 𝜌𝑐𝑟,𝑡0
∙ 𝑥−4 ∙ (ΩΛ ∙ 𝑥4 + Ω𝑚 ∙ 𝑥 +

Ω𝑟)                {1} 

The critical density is: 

𝜌𝑐𝑟,𝑡0
=

3∙𝐻0
2

8𝜋∙𝐺
    {2} 

The DEQ is the Friedmann Lemaître equation: 
�̇�2

𝑎2 =
8𝜋∙𝐺

3
∙ (𝜌𝑟 + 𝜌𝑚 + 𝜌𝑣)  {3} 

Using the Leibniz calculus, 

ȧ =  
𝑑𝑎

𝑑𝑡
  

we get: 

(
𝑑𝑎

𝑑𝑡
)

2

𝑎2 =
8𝜋∙𝐺

3
∙ (𝜌𝑟 + 𝜌𝑚 + 𝜌𝑣) {4} 

Extension of the fracture with 1/a0: 

(
𝑑𝑎/𝑎0

𝑑𝑡
)

2

𝑎2/𝑎0
=

8𝜋∙𝐺

3
∙ (𝜌𝑟 + 𝜌𝑚 + 𝜌𝑣) {5} 

Application of the definition x = a/a0: 

(
𝑑𝑥

𝑑𝑡
)

2

𝑥2 =
8𝜋∙𝐺

3
∙ (𝜌𝑟 + 𝜌𝑚 + 𝜌𝑣) {6} 

 Application of the equation {2}: 

(
𝑑𝑥

𝑑𝑡
)

2

𝑥2 =
8𝜋∙𝐺

3
∙ 𝜌𝑐𝑟,𝑡0

∙ 𝑥−4 ∙ (ΩΛ ∙ 𝑥4 + Ω𝑚 ∙ 𝑥 + Ω𝑟)

      {7} 
Application of the equation {3}: 

(
𝑑𝑥

𝑑𝑡
)

2

𝑥2 = 𝐻0
2 ∙ 𝑥−4 ∙ (ΩΛ ∙ 𝑥4 + Ω𝑚 ∙ 𝑥 + Ω𝑟) 

     {8} 
 

Multiplying on both sides of the equation by  

x
2
 ∙ dt

2
: 

𝑑𝑥2 = 𝑑𝑡2 ∙ 𝐻0
2 ∙ 𝑥−2 ∙ (ΩΛ ∙ 𝑥4 + Ω𝑚 ∙ 𝑥 + Ω𝑟) 

     {9} 

taking the root: 

𝑑𝑥 = 𝑑𝑡 ∙ 𝐻0 ∙ 𝑥−1 ∙ √(ΩΛ ∙ 𝑥4 + Ω𝑚 ∙ 𝑥 + Ω𝑟) 

     {10} 

Application of : dt ∙ H0 = dτ: 

𝑑𝑥 = 𝑑𝜏 ∙ 𝑥−1 ∙ √(ΩΛ ∙ 𝑥4 + Ω𝑚 ∙ 𝑥 + Ω𝑟) 

     {11} 

Now we bring all terms with x on one side, in order 

to separate the variables and then form an integral ∫ 

dx. 
𝑥

√(ΩΛ∙𝑥4+Ω𝑚∙𝑥+Ω𝑟)
𝑑𝑥 = 𝑑𝜏  {12} 

We integrate: 

∫
𝑥

√(ΩΛ∙𝑥4+Ω𝑚∙𝑥+Ω𝑟)
𝑑𝑥

𝑥

0
= ∫ 𝑑𝜏

𝜏

0
 {13} 

 

2.4 Spreadsheet 

The equation {13} can now be used to create a table 

steering calculation. For ΩΛ we use 0.6847, for Ωm 

0.3153 and for Ωr 0.00009265.  

With the help of Wolfram Alpha, we now calculate 

the individual integrals. Fig. 1 shows the procedure 

using three different integration limits. 

 

Fig.1: Solving the integral using Wolfram Alpha. 

We record all the results in a table, which we expand 

to include the space expansion a and density ρ later. 

To be able to calculate a and ρ now, we use the fol-

lowing formulas, see above: 

𝑎 = 𝑥 ∙ 4,15 ∙ 1026𝑚 

𝜌 =
2.593 ∙ 1054

4 ∙
𝜋
3

∙ 𝑎3
∙ (0.6847 +

0.3153

𝑥3

+
0.00009265

𝑥4
) 

So, for the calculation of the density, we use the 

different density fractions in the universe again, as 

this makes the calculations more precise. 

 

Fig.2: Formulas for calculating a and ρ. 

In Fig. 2, the formulae for calculating the light hori-
zon a and the density ρ are shown in the table.  With 
the help of these, we completed the table and finally 
received a finished spreadsheet (Fig. 3) 
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3. Time evolution of radius and density 

From the x and t values, we make two diagrams in 

order to better illustrate the radius per time. We 

recognize these two x(t) diagrams in Figs. 4 and 5, 

Fig. 4 being linear and Fig. 5 logarithmic.  

 

 

 

Fig.3: Results in the spreadsheet. 

 

Fig.4: Time evolution of the light horizon.  

The densities as a function of the time and the radius 

are investigated with a spreadsheet (Fig. 6), thereby 

the table in Fig. 3 is continued. We see (Fig. 6) that 

the Planck density is reached at a size of 

0.000014524 m of the light horizon (green). At 

smaller values of the light horizon, the density 

would exceed the Planck density (red). However, 

this is not possible (see for instance Carmesin 

2019a). So we conclude that the dynamics of the 

GRT is not complete, as the density would increase 

 

Fig.5: Time evolution of  light horizon: Logarithmic scale  

the Planck density in the early universe. So there is a 

density limit, at which the dynamics of the GRT is 

not applicable.  

 

Fig.6: Density (right column) as a function of the time in 

Hubble times (first column) and of the light horizon in m 

(third column). 
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4. Discussion  

We investigated then time evolution of the light 

horizon and of the density of the universe in the 

framework of the GRT and with the corresponding 

DEQ. As a result, we see that the DEQ describes the 

dynamics in the range from the actual density to the 

Planck density. Thereby the lengths are calculated in 

the range from the actual light horizon 4.15 ∙ 10
26

 m 

to 0.000014 m. The DEQ fails to model the lengths 

in the range from 0.000014 m to the Planck length 

1.616 ∙ 10
-35

 m. So the following factor is not ex-

plained by the GRT: q = 0.000014/1.616∙10
-35

. This 

factor amounts to q = 8.71.616 ∙ 10
29

. This missing 

dynamical factor has been estimated by Guth (1981). 

This factor can be explained by the folding of the 

space to higher dimensions (see Schöneberg and 

Carmesin in a parallel report and Carmesin 2017, 

Carmesin 2018a-d, Carmesin 2019a-b, Carmesin 

2020a-b). Note that higher dimensions have already 

observed experimentally (Lohse 2018, Zilberberg 

2018). 

The project shows how students in a research club in 

classes ranging from 9 to 12 can derive significant 

results by themselves. Thereby they use and improve 

their competences efficiently (Hattie 2009) in a 

constructive manner (Kircher 2001). So such pro-

jects are very useful in science education.    

5. Literature 

Carmesin, Hans-Otto (2017): Vom Big Bang bis 

heute mit Gravitation – Model for the Dynam-

ics of Space. Berlin: Verlag Dr. Köster. 

Carmesin, Hans-Otto (May 2018a): Entstehung 

dunkler Materie durch Gravitation - Model for 

the Dynamics of Space and the Emergence of 

Dark Matter. Berlin: Verlag Dr. Köster. 

Carmesin, Hans-Otto (July 2018b): Entstehung 

dunkler Energie durch Quantengravitation - 

Universal Model for the Dynamics of Space, 

Dark Matter and Dark Energy. Berlin: Verlag 

Dr. Köster. 

Carmesin, Hans-Otto (November 2018c): Entste-

hung der Raumzeit durch Quantengravitation – 

Theory for the Emergence of Space, Dark Mat-

ter, Dark Energy and Space-Time. Berlin: Ver-

lag Dr. Köster. 

Carmesin, Hans-Otto (2018d): A Model for the 

Dynamics of Space - Expedition to the Early 

Universe. PhyDid B Internet Journal, pp. = 1-9. 

Carmesin, Hans-Otto (July 2019a): Die Grund-

schwingungen des Universums - The Cosmic 

Unification. Berlin: Verlag Dr. Köster. 

Carmesin, Hans-Otto (Dec 2019b): A Novel Equiva-

lence Principle for Quantum Gravity. PhyDid 

B, pp. 17-25. 

Carmesin, Hans-Otto (Mar 2020a): Wir entdecken 

die Geschichte des Universums mit eigenen Fo-

tos und Experimenten. Berlin: Verlag Dr. 

Köster. 

Carmesin, Hans-Otto (Sep 2020b): The Universe 

Developing from Zero-Point Energy: Discov-

ered by Making Photos, Experiments and Cal-

culations. Berlin: Verlag Dr. Köster. 

Clapeyron, Emile (1834): Memoire sur la puissance 

mortice de la chaleur. J. de l Polytechnique, 14, 

pp. 153-190. 

Einstein, Albert (1915): Die Feldgleichungen der 

Gravitation. Sitzungsberichte der Preuss. Aka-

demie der Wissenschaften, pp. 844-847. 

Friedmann, Alexander (1922): Über die Krümmung 

des Raumes. Z. f. Physik, 10, 377-386. 

Guth, Alan (1981): Inflationary Universe: A possible 

to the horizon and flatness problem. Phys. Rev. 

D 23, 347-356. 

Hattie, John (2009): Visible Learning. London: 

Routledge. 

Hubble, Edwin (1929): A relation between distance 

and radial velocity among extra-galactic nebu-

lae. Proc. of National Acad. of Sciences, 15, pp. 

168-173. 

Kircher, Ernst and Girwidz, Raimund and Häußler, 

Peter (2001): Physikdidaktik. Berlin: Springer. 

2. Auflage. 

Kultusministerium, Niedersächsisches (2017): 

Kerncurriculum für das Gymnasium - gymnasi-

ale Oberstufe, die Gesamtschule - gymnasiale 

Oberstufe, das Fachgymnasium, das Abend-

gymnasium, das Kolleg, Chemie, Niedersach-

sen. Hannover: Niedersächsisches Kultusminis-

terium. 

Lemaitre, Georges (1927): Un Univers homogene de 

masse constante et de rayon croissant rendant 

compte de la vitesse radiale des nebuleuses ext-

ra-galactiques. Annales de la Societe Scien-

tifique de Bruxelles. A47, 49-59. 

Lohse, Michael et al. (2018): Exploring 4D Quan-

tum Hall Physics with a 2D Topological Charge 

Pump. Nature, 553, pp. 55-58. 

Planck Collaboration (2018): Planck 2018 Results: 

Cosmological Parameters. Astronomy and As-

trophysics, pp. 1-71. 

Zilberberg, Oded et al. (2018): Photonic topological 

pumping through the edges of a dynamical 

four-dimensional quantum Hall system. Nature, 

553, pp. 59-63. 

Wirtz, Carl (1922): Radialbewegung der Gasnebel. 

        Astronomische Nachrichten, 215, pp. 281-286. 

 

Acknowledgement 

We are grateful to the continuous support of the 

research club by our school. 

 

 

  

 

42




