Forage yield of some legumes in monoculture and mixtures under irrigation in central Sudan

Nasreldein A. Sid Ahmed, A.S. Gangi, A.E.S. Ibrahim and I. E. Mohamed

Faculty of Agricultural Sciences, University of Gezira, Wad Medani, Sudan

ABSTRACT

The study was conducted during summer, autumn and winter seasons of 2014/15 and 2015/16 at the experimental farm of the Faculty of Agricultural Sciences, University of Gezira, Wad Medani, Sudan, to investigate the effect of mixing on forage yield of selected three legumes namely: cowpea (CP), black-eyed bean (BB) and lablab bean (LB) and their mixtures with three selected grasses, Sudan grass (SG), maize (MZ) and forage sorghum (Abu70). Legumes were grown in pure stand and mixed with grasses in 1:1 and 1:2 ratios. Treatment combinations were arranged in a randomized complete block design (RCBD) with four replications. The results showed that mixing significantly increased plant fresh weight, LAI, and fresh forage yield during most seasons and decreased number of branches per plant during different seasons. Land equivalent ratio mostly was greater than one. Based on the results of this study to obtain high forage yield, it was recommended to use seed combinations of 30 kg seeds/ha LB + 30 kg seed/ha MZ during autumn and winter and 30 kg seeds/ha BB + 30 kg seed/ha SG during summer season.

INTRODUCTION

Major forage legumes in the Sudan include alfalfa (*Medicago sativa* L.), kordofan pea (*Clitoria ternatea* L.), lablab bean (*Lablab purpureus* (L.) Sweet). and philipesara (*Vigna trilobata* Verd.). Forage legumes have better quality than forage grasses, since they are rich in proteins, vitamins and minerals (Giller, 2001). In the Sudan, forage legumes especially alfalfa are grown mainly under irrigation in large schemes and around cities.

Mixed cropping system provide a forage of higher yield and nutritive value than in monocrops because the legumes reduce the danger of grass tetany and give better nutrient balance. Moreover, the deep-rooted legume species provide more production during the drought period of the year (Lithourgidis and Dordas, 2010). Legumes utilize different soil strata that enable them to benefit from water and nutrients at different soil depths.

Hussain (2000) reported that mixed cowpea, lablab bean and phlipisara in a 1:1 ratio with Abusabeen (*Sorghum bicolor* L) and two hybrids of sorghum had no significant effects on plant height of legume crops and number of branches per plant as a result of mixing. Plant dry weight was higher for sole legumes. The highest yielding mixture in winter (8.30 t/ha) was that of Speed Feed + lablab bean, whereas in autumn Pioneer 988+ lablab bean (6.72 t/ha) was the best producing mixture. He concluded that lablab bean was the best legume for mixing.

Ibrahim *et al.* (2006) working with legume-maize mixtures concluded that, plant height of maize was affected significantly by legume species for example Sesbania grown in mixture with maize had a depressing effect on plant height of maize while cowpea and cluster bean had beneficial effects. Differences in plant height of maize sown with legumes might be due to the different growth behavior of the companion legumes. Alhaj (1995) studied the growth and yield of intercropped cowpea and maize as influenced by intercropping pattern, reported that cowpea plant height, plant dry weight, leaf area per plant, leaf area index and dry matter production were decreased as a result of intercropping. Elobaid (2001) working with lablab and forage sorghum Abu70 mixtures concluded that mixing significantly decreased number of branches per plant, plant fresh weight and fresh forage yield of the lablab bean. He recorded highest fresh forage yield by the combination of 40 kg seeds/ha of Abu70 + 40 kg seeds/ha of lablab. Osman (1995) working with selected cultivars of sorghum under mixing with lablab bean at Gezira University Farm concluded that taller cultivars of sorghum compete quite well with lablab bean for growth factors and reduced its yield and yield components through shading.

In the Sudan, research dealing with forage production is of special importance due to the large number of animals and limited natural pasture especially during winter season. This fact necessitates more efforts and research to solve the problem of forage shortage.

The general objective of this study was to evaluate forage yield potential of pure cowpea, black eyed bean and lablab bean and their mixtures with Sudan grass, maize, forage sorghum Abu70, under irrigation. The specific objective was to identify the most suitable combination of the mixtures forage yield during autumn, summer and winter seasons.

MATERIALS AND METHODS

The experiment was executed for six seasons during, summer (March), autumn (July) and winter (November) seasons of 2014/2015 and 2015/2016 at the experimental farm of the Faculty of Agricultural Sciences, University of Gezira, Wad Medani, Sudan (latitude 14° 6' N, longitude 33° 38' E and altitude 407 masl). The monthly selected meteorological data recorded during March 2014 to February 2016 at Agricultural Research Corporation, Wad Medani, Sudan are shown in Table 1.

The soil was a typical central clay plain soil (58% clay), which is characterized by its deep cracking, heavy alkaline clay (pH 8.0), low in organic matter (0.02 %) and nitrogen (0.03 %). However, its available phosphorus (6 mg/kg soil) and potassium (3.0 %) values were considered adequate for normal plant growth (Soil Survey Staff, 1999).

The experimental material consisted of three legumes, cowpea (CP) (*Vigna sinensis*), black-eyed bean (BB) (*Vigna unguiculata* subsp *unguiculata*. (L.) Walp) and lablab bean(LB) (*Lablab purpureus* (L.) Sweet) and three grasses, namely: Sudan grass (SG) (*Sorghum sudanense* (Piper) Stapf.), maize (MZ) (*Zea mays* L.) and forage sorghum Abu70 (*Sorghum bicolor* (L) Moench). Legume crops were grown in pure stand and mixed in 1: 1 and 1:2 ratios with grasses, which made a total of 21 treatments. Seed rate of 60 kg/ha was used for the pure stand of cowpea, black eyed bean and lablab bean and as follows for mixtures.

30 kg seeds/ ha SG + 30 kg/ha CP, 40 kg seeds/ ha SG + 20 kg/ha CP, 30 kg seeds/ ha SG + 30 kg/ha BB, 40 kg seeds/ ha SG + 20 kg/ha BB, 30 kg seeds/ ha SG + 30 kg/ha LB, 40 kg seeds/ ha SG + 20 kg/ha LB, 30 kg seeds/ ha MZ + 30 kg/ha CP, 40 kg seeds/ ha MZ + 20 kg/ha CP, 30 kg seeds/ ha MZ + 30 kg/ha BB, 40 kg seeds/ ha MZ + 20 kg/ha BB, 30 kg seeds/ ha MZ + 30 kg/ha CP, 30 kg seeds/ ha MZ + 30 kg/ha BB, 40 kg seeds/ ha MZ + 20 kg/ha BB, 30 kg seeds/ ha MZ + 30 kg/ha CP, 40 kg seeds/ ha MZ + 30 kg/ha BB, 40 kg seeds/ ha MZ + 30 kg/ha BB, 30 kg seeds/ ha MZ + 20 kg/ha CP, 40 kg seeds/ ha MZ + 20 kg/ha BB, 30 kg seeds/ ha Abu70 + 30 kg/ha CP, 40 kg seeds/ ha Abu70 + 20 kg/ha CP, 30 kg seeds/ ha Abu70 + 30 kg/ha BB, 40 kg seeds/ ha Abu70 + 20 kg/ha CP, 30 kg seeds/ ha Abu70 + 20 kg/ha BB, 30 kg seeds/ ha Abu70 + 20 kg/ha BB, 30 kg seeds/ ha Abu70 + 20 kg/ha BB, 30 kg seeds/ ha Abu70 + 20 kg/ha BB, 30 kg seeds/ ha Abu70 + 20 kg/ha BB, 30 kg seeds/ ha Abu70 + 20 kg/ha BB, 30 kg seeds/ ha Abu70 + 20 kg/ha LB.

Seeds were obtained from the local market. The experimental site was disc plowed, harrowed, leveled and ridged into 80 cm apart after broadcasting of the seeds on flat land. The experiments were sown on the second week of March, July and November in the two seasons. The experiments were irrigated immediately after sowing, then every 7-10 days intervals according to the crop needs. Treatment combinations were arranged in a randomized complete block design (RCBD) with four replications. The plot size was 20m².

Data for number of branches per plant and plant fresh weight (g) were taken and leaf area index (LAI) was determined as follows:

$$LAI = \frac{Area of leaves/plant in (m2)}{Area of ground (m2)}$$

In addition to fresh forage yield (t/ha), relative yield (RY) and land equivalent ratio (LER) were determined according to the following equations

$RY = \frac{\text{Yield of the crop in the mixture}}{\text{Yield of the sole crop}}$

of the sole crop

LER = RY1 + RY2

where RY1 and RY2 are relative yields of crop1 and crop2, respectively.

Data were subjected to the standard analysis of variance procedure. Means were separated using Duncan's Multiple Range Test (DMRT).

RESULTS AND DISCUSSION

Plant growth parameters and forage yield of legume crops Number of branches per plant

The effect of mixing on number of branches per plant of legumes is shown in Table 2. Results showed significant differences among treatments for number of branches per plant. The highest number of branches per plant was obtained by the sole black eyed bean during all seasons, whereas the lowest number of branches per plant was recorded by lablab bean when mixed in 40 Abu70 + 20 LB, 40 SG + 20 LB and 40 SG + 20 CP during autumn, summer and winter seasons, respectively.

The increase in number of branches per plant of the sole black eyed bean during all seasons can be attributed to the less competition for nutrients and light and because of the physiological branching habit of the crop especially in monoculture. Results were in agreement with the findings of Ofori and Stern (1987) working with cereal-legume intercropping systems who reported that growth parameters of the legume were higher in monoculture and decline normally with mixing by about 52% of the sole crop. Elobaid (2001) working with lablab-sorghum mixture found that mixing significantly decreased number of branches per plant of lablab bean.

Vaar	Month	Tempera	ature (C ⁰)	Doinfall (ml)
rear	Month	Max	Min.	— Kainiali (mi)
2014	March	39.32	22.59	Nil
2014	April	41.42	25.70	Nil
2014	May	41.68	25.20	21.8
2014	June	40.99	25.62	24.4
2014	July	36.87	23.48	87.0
2014	August	32.78	22.67	97.8
2014	September	34.18	22.69	40.68
2014	October	37.62	22.02	12.9
2014	November	37.21	19.55	Nil
2014	December	35.57	17.23	Nil
2015	January	33.25	13.70	Nil
2015	February	38.39	17.65	Nil
2015	March	39.63	21.65	Nil
2015	April	40.56	20.92	Nil
2015	May	42.93	25.78	8.8
2015	June	40.94	25.99	12.6
2015	July	39.81	24.93	9.6
2015	August	37.45	23.17	33.2
2015	September	37.45	23.17	27.0
2015	October	39.08	23.67	2.0
2015	November	40.94	25.93	Nil
2015	December	31.98	13.24	Nil
2016	January	31.78	12.76	Nil
2016	February	35.45	14.23	Nil

Table 1. Monthly selected meteorological data recorded during March 2014 to February 2016 at Agricultural Research Corporation, Wad Medani, Sudan.

Plant fresh weight

Significant differences among treatments on plant fresh weight of legumes as affected by mixing were observed (Table 3). The highest plant fresh weight of (173 and 135.8 g.) and (156.3 and 145.5 g.) during autumn and winter seasons of 2014/15 and 2015/16, respectively, were obtained by 30 LB + 30 MZ, whereas plant fresh weight of 120 and 139.2 g during summer seasons of the first and second years, respectively, were obtained by 30 LB + 30 SG.

As affected by cropping system, the increase in plant fresh weight with mixing can be attributed to the effect of favorable growth conditions on lablab bean during autumn and winter (Table 1). These results corroborate with the findings of Ibrahim (1994) working with Sudan grass-lablab mixtures who stated that mixing significantly increased plant fresh weight of lablab bean. Albakri *et al.* (2003) stated that mixing significantly increased plant fresh weight of cowpea. Results were in disagreement with the finding of Osman (1995), working with selected cultivars of sorghum under mixing with lablab bean at Gezira University Farm, who concluded that taller cultivars of

sorghum compete quite well with lablab for growth factors and reduced its yield and yield components through shading.

Table 2. Effect of mixing on number of branches per plant of cowpea (CP), black eyed bean (BB) and lablab bean (LB) grown in monoculture and in mixture with Sudan grass (SG), maize (MZ) and Abu70 during autumn, summer and winter seasons of 2014/2015 and 2015/2016.

Treatments			2	2014/1			20	15/16				
	Au	tumn	Sur	nmer	Wi	inter	Autu	mn	S	umn	ner	
									Winte	r		
	Mean		Rank M	ean	Rank	Mean	Rank	Mean	Ran	k I	Mean [–]	Rank
	Mean	Ran	k									
CP mono	9.60	0	8.50	8	5.0	16	9.5	8	8.0 e	8	4.7	16
	f	0	de		lm		de				lm	
BB mono	13.8 a	1	110 -	1	10.5	1	12.4	1		1	9.9	1
		1	11.0 a		a		а		10.5a		a	
LB mono	6.90	15	5 20 ::	15	8.0	8	7.5	13	5.5	15	7.3	8
	jkl	15	5.20 ij		fg		gh		ijk		fg	
1CP:1SG	8.43	11	9 00 af	9	4.5	18	9.0	9	7.5 ef	10	4.0	18
	ghi	11	8.00 ei		mno		ef				no	
1CP: 2 SG	7.90	10	5 50 ;;	14	3.5	21	8.0	12	6.0	14	3.0	21
	hij	12	5.50 IJ		р		fg		hij		р	
1BB : 1	12.4 cd	4	0.0 .	2	10.0	2	12.0	2	10.2a	2	9.5	2
SG		4	0.9 a		ab		а				ab	
1BB : 2	11.5 de	6	0.0 aba	4	9.8	3	10.5	6	9.0	6	9.0	3
SG		0	.0.0 abc		abc		bc		cd		bc	
1LB : 1	6.20	17	4 50 :1-1	17	7.6	9	5.0	18	4.4	18	7.0	9
SG	lm	1/	4.30 JKI		gh		kl		lm		fg	
1LB : 2	6.50	16	2 50 1	21	6.8	12	4.4	19	3.3 n	21	6.0	12
SG	klm	10	5.50 1		hij		lm				ij	
1CP : 1	9.35	0	$7.50 f_{\alpha}$	10	5.7	15	8.6	10	7.0	11	5.0	15
MZ	fg	9	7.30 Ig		kl		ef		fg		kl	
1CP : 2	7.53	12	6 70 ah	12	4.8	17	6.9	14	6.5	12	4.5	17
MZ	ijk	15	0.70 gn		mn		hi		gh		mn	
1 BB : 1	12.6	2	$0.5 \mathrm{sh}$	3	9.0	5	11.5	3	9.8	4	8.4	5
MZ	bc	3	0.5 ab		cde		ab		abc		cd	
1BB : 2	11.8	5	0.40 ad	6	9.5	4	10.8	5	9.3	5	8.7	4
MZ	cde	5	9.40 Cu		bcd		bc		bcd		c	
1LB : 1	5.50	10	1 00 1-1	18	7.3	10	6.0	16	5.0	17	6.7	10
MZ	mno	19	4.00 KI		gh		ij		kl		gh	
1LB: 2	5.00	20	2 70 1	20	6.4	13	4.0	20	4.0	19	5.5	13
MZ	no	20	5.70 1		ijk		m		mn		jk	
1CP :	8.80	10	7 00 a	11	4.0	19	8.3	11	7.8	9	3.6	19
1Abu70	fgh	10	7.00 g		nop		fg		ef		op	
1CP : 2	7.00	14	6.00 hi	13	3.7	20	6.4	15		13	3.3	20
Abu70	jkl	14	0.00 111		op		ij		6.2ghi		р	
1BB :	13.5	า	0.70 ha	5	8.8	6	11.0	4	10.0ab	3	8.0	6
1Abu70	ab	L	9.70 DC		def		bc				de	

	Gezira j. of agric. Sci 15 (2((2017)														
1BB 2Abu70	:	11.0 e	7	9.00 cd	7	8.5 ef	7	10.0 cd	7	8.8 d	7	7.6 ef	7		
1LB:		6.00	18	4 90 ik	16	7.0	11	5.5	17	5.2	16	6.3	11		
1Abu70		lmn	10	ч .70 јк		hi		jk		jkl		hi			
1LB	:	4.50	01	2 00 1-1	19	6.0	14	3.0	21	3.7	20	5.3	14		
2Abu70		0	21	3.90 KI		jk		n		mn		kl			
C.V. %		7.87				8.1		8.2		7.69					
				9.41								7.2			

Means followed by the same letter (s) are not significantly different at P = 0.05 according to Duncan's Multiple Range Test (DMRT).

Table 3. Effect of mixing on plant fresh weight (g.) of cowpea (CP), black eyed bean (BB) and lablab bean (LB) grown in monoculture and in mixture with Sudan grass (SG), maize (MZ) and Abu70 during autumn, summer and winter seasons of 2014/2015 and 2015/2016

Treatments	S				2014/1	5					2	015/16		
		Autum	n	Sun	nmer	Wi	nter	Aι	<u>itu</u> mn	Sun	nmer	•	Wir	nter
	Mea	n 1	Rank	Mean	Rank	Mea	n Ra	nk	Mean	Rank	ĸ	Mean		Ranl
	Лean	Ran	k											
CP mono	91.7	b 8	72.6 fgh	12	65.8 ghi	15	81.4	c	8	80.9 ghij	14	67.4	ef	14
BB mono	82.1 t	oc 10	79.6	ef 9	84.5 d	8	76.6	cd	9	91.0 efg	10	87.9	d	8
LB mono	166.7	a 3	115	^{ab} 2	131.6 ab	2	151.1	ab	3	132 ab	3	141.6	ab	2
1CP : 1SG	76.20 bcd	13	78.0 efg	10	58.2 ij	18	73.4	cd	10	92.5 e	f 9	55.8 f	gł	18
1CP : 2SG	65.4 c	d 20	46.7	^k 21	41.9 k	21	54.7	ef	20	59.9	1 21	44.0	h	21
1BB : 1SG	72.3 c	d 16	85.1	e 8	77.4 def	11	67.8 0	cdef	14	98.9	e 8	80.1	de	10
1BB : 2SG	63.1	d 21	70.3 ghi	13	67.6 fgh	14	53.9	f	21	80.1 hij	15	66.6	ef	15
1LB : 1SG	169.9	a 2	120	a 1	123.9 bc	5	153.2	ab	2	139.2	a 1	137.5 a	abo	3
1LB : 2SG	161 a	6	100	d 7	118.4 c	7	142.2	ab	6	117.3	d 7	124.2	c	7
1CP :1MZ	83.0	bc 9	70.2 ghi	14	62.5 hij	16	71.3 c	cdef	12	86.0 fgh	12	62.0	fg	16
1CP :2MZ	69.9 c	d 17	54.6	jk ₁₉	52.0 jk	20	62.0 c	def	18	67.3 k	1 20	48.9	gh	20
1BB :1MZ	75.4 b	cd 14	67.4	^{hi} 16	74.3 def	12	66.1 0	cdef	15	86.6 fgh	11	78.6	de	11
1BB :2MZ	69.1 c	d 18	63.0	^{ij} 17	71.8 efg	13	59.7 o	def	19	- 76.9 hijk	17	69.7	ef	13
1LB :1MZ	173	a 1	113.3	ab 3	135.8 a	1	156.3	a	1	134.9 ab	2	145.5	a	1

Gezira j. of agric. Sci 15 (2((2017)													
1LB:2M Z	162.4 a	5 108.5 bcd	5	126.2 abc	4	145.0 ab	5	128.8 bc	4	134.4 ab	4		
1CP:1Ab u70	79.3 bcd	11 67.9	^{hi} 15	60.2 ij	17	68.1 cdef	13	79.2 hij	16	59.0 fg	17		
1CP : 2Abu70	72.4 cd	15 61.0	^{ij} 18	56.1 ij	19	64.8 cdef	16	72.0 ijk	18	52.1 gh	19		
1BB : 1Abu70	79.2 bcd	12 73.9 fgh	11	81.6 de	9	72.4 cde	11	82.5 fghi	13	84.8 d	9		
1BB : 2Abu70	66.9 cd	19 51.2	^k 20	79.0 de	10	62.9 def	17	71.3 jk	19	76.4 de	12		
1LB : 1Abu70	165.1 a	4 111.6 abc	4	129.4 abc	3	148.2 ab	4	125.0 bcd	5	131.6 abı	5		
1LB :2Abu7	157 a	7 103.0	cd 6	120.3 c	6	138.2 b	7	121.0 cd	6	128.5 bc	6		
0 C.V. %	10.4	7.	10	8.31		1.4		6.85		.21			

Means followed by the same letter (s) are not significantly different at P = 0.05 according to Duncan's Multiple Range

Leaf area index (LAI)

Leaf area index (LAI) for legumes as affected by mixing is shown in Table 4. The highest leaf area index was obtained by 30 MZ + 30 LB during autumn seasons of both years. However the highest LAI was obtained by 30 SG + 30 CP and by 30 SG + 30 LB during summer seasons of the first and second years, respectively, and by mono LB during winter seasons of both years. The increase in LAI was due to the increase in plant fresh weight. Autumn and summer results were in agreement with the finding of Iqbal *et al.* (2012) working with cowpea- maize mixture, who reported higher LAI for cowpea sown in alternate rows with forage maize.

Fresh forage yield of legume crops

Significant differences among treatments for fresh forage yield of legumes as affected by mixing were found (Table 5). The highest fresh forage yield during autumn and winter seasons of both years were achieved by 30 LB + 30 MZ, whereas the highest fresh forage yield during summer seasons of the first and second years were attained by 30 CP + 30 SG.

The increase in fresh forage yield can be attributed mainly to the increase in plant fresh weight as a result of mixing and favorable growth condition for lablab during autumn and winter seasons and for cowpea during summer season. These results concur with the findings of Elobaid (2001) working with sorghum-lablab mixtures who reported that mixing significantly increased fresh forage yield of lablab bean. However, the results disagreed with Singh (1981) working with sorghumcowpea mixtures and Ofori and Stern (1987) working with cereal-legume intercropping systems who reported that yield of the legume was higher in the monoculture than in mixtures.

Relative yield (RY) of legumes

Table 6 shows the relative yield (RY) of legumes during the different seasons. The highest relative yield during autumn and winter seasons were achieved by the mixtures of lablab bean and maize when grown in 30 LB + 30 MZ (1:1 ratio), whereas the best RY during summer seasons were attained by the mixture of 30 BB and 30 SG (1:1 ratio).

Relative yield during the different seasons ranged between 1.13 to 0.57 and mostly less than one, which indicated that the mixtures yield was lower than the monocultures yield. The decrease in RY of most legumes was mainly due to the reduction in mixtures forage yield due to shading by forage grasses , whereas the increase in RY of lablab could be explained by the increase in forage yield of lablab in the mixture over the sole crop, which indicated the suitability of lablab bean for mixing. These results agreed with those of Hussain (2000) who worked with some grass and legume mixtures and found that mixtures out-yielded the sole crops in dry matter yield and concluded that lablab was the best legume crop for mixing.

Land equivalent ratio (LER)

Table 7 shows the land equivalent ratio of the mixtures during different growing seasons. The highest LER during autumn seasons of the first and second years were obtained by 20 LB + 40 MZ, whereas the highest LER during summer seasons were obtained by 20 CP + 40 SG, whereas the highest land equivalent ratio during winter seasons were obtained by 20 LB + 40 SG.

Treatmen	ts				2	2014/	15					2015/1	6		
	A	utun	nn	Sı	ummer	W	<i>v</i> inter	Auti	umn	Su	mmer			Wir	nter
	Mean	I	Rank	Mean	Rank	Mea	n Rank	Mea	in	Rank	Mear	$\frac{1}{1}$ R	lank		Mean
	Rank														_
		6	5.1	4	4.8 d	5	7.9	6	4.3	s efg	8	4.5	d	5	
CP mono	6.0b		cd				cd								
	с	15	2.0	1	1 0:1-1	. 1	2.5	1	26	1-	15	171	_	15	
BB mono	2.5	15	2.0	1	1.8jkim	1 1 5	2.5 1/1	1 5	2.6	K	15	1./ Imr	1	15	
	hi		J	5		5	m	5							
LB mono		3	5.0	5	7.8 a	1	9.0	3	5.7	/ b	3	6.8 a		1	
	9.8a	5	cd	0	7.0 u	1	ab	5	0.1	U	5	0.0 u		1	
							С								
1CP : 1SG	4.5	9	6.3	1	2.8	1	5.5	9	5.5	5 bc	4	2.8 hij		11	
	def		а		hi	1	fg					· ·			
1CP : 2SG	3.2 m	14	2.8	i 1	2.0	1	3.0	1	3.2	j	14	2.0 kln	1	14	
	5.2 gii			4	jkl	4	jkl	4							
1BB : 1SG		17	1.3	1	1.5kl	1	1.8	1	2.0	lm	18	1.3 nor)	17	
	1.8 ij		kl	8	mn	7	lm	7							
100 000		0.1	0.04		0.0	•	n	2	1.0		21	0.0		0.1	
IBB : 28G	1.0 j	21	0.94	+ 2 1	0.9	2	0.95	2	1.2	n	21	0.8 p		21	
11 P • 18C		\mathbf{r}	1	1	II 6 7	1	0.2	1	6.5	0	1	55 0		4	
1LD . 150	10.0a	2	0.0 ah	2	0.7	4	9.5 ah	Z	0.5	a	1	5.5 C		4	
$1LB \cdot 2SG$		7	4 0		ς 3 6fg	8	7 0	7	37	hii	11	35 efg		8	
120.200	5.3 cd	,	ef	8	5.015	0	de	,	5.7	iiij	11	5.5 015		0	
1CP :1MZ		11	4.5	-	3.2	9	4.5	1	5.0	cd	5	3.3 fgh		9	
	3.9 efg		de	7	gh		fg	1				U			
	U				U		h								
1CP :2MZ	3.5 fah	13		1	2.3	1	3 5 jik	1	3.6	ij	12	2.2 jkl		13	
	5.5 Ign		3.2gh	i 2	ijk	3	5.5 IJK	3							
1BB :1MZ		16	1.5	1	1.6kl	1	2.0	1	2.1	kl	17	1.5 mr	10	16	
	2.0 ij		jk	7	mn	6	lm	6							
100 0007		20	0.07		0.07	•	n	2	1 -		20	0.0		20	
IBB :2MZ	1.2 j	20	0.97	2	0.95	2	1.0 n	2	1.5	mn	20	0.9 op)	20	
11 D ·1M7	-	1	1	2	11 7 5	0		0	60	ah	2	65 ak		C	
ILD.INIZ	10.5a	1	$\frac{5.5}{bc}$	3	7.5 ah	2	9.7 a	1	0.0	aD	2	0.5 at	,	Z	
$1LB \cdot 2MZ$		5	UC	1	4 5	6		5	4 2	føh	9	40 de		6	
	6.6 b	5	3.7fs	g ()	de	0	8.2 bc	5	1.4	. 1911	,	1.0 ut	•	0	
1CP:1Abu	4.0	10	3.9		3.0	1	5.0	1	4.8	de de	6	3.0 ghi		10	
70	4.0		ef	9	ghi	0	fg	0	-			U			
	erg				-		ĥ								

Table 4. Effect of mixing on leaf area index (LAI) of cowpea (CP), black eyed bean (BB) and lablab bean (LB) grown
in monoculture and in mixture with Sudan grass (SG), maize (MZ) and Abu70 during autumn, summer and winter
seasons of 2014/2015 and 2015/2016

Gezira j. of agric. Sci 15 (2((2017)

	Gezira j. of agric. Sci 15 (2((2017)													
1CP : 2Abu70	3.7 fg	12	3.5 fgh	1 1	2.5 hij	1 2	4.0 hij	1 2	3.9 ghi	10	2.5 ijk	12		
1BB : 1Abu70	1.4 ij	18	1.6 jk	1 6	1.31 mn	1 8	1.5 m n	1 8	2.1 kl	16	1.2 nop	18		
1BB : 2Abu70	1.3 j	19	1.1kl	1 9	1.0 mn	1 9	1.3 m n	1 9	1.8 lm	19	1.0 op	19		
1LB : 1Abu70	9.5a	4	4.9 cd	6	7.0 bc	3	8.6 ab c	4	4.5 def	7	6.0 bc	3		
1LB : 2Abu70 C.V.%	5.0 cde 16.4	8	3.0 hi 12.9	1 3	4.0 ef	7	6.0 ef	8	3.4 ij 10.5	13	3.7 ef	7		
					15.3		16.2	2			14.18			

Means followed by the same letter (s) are not significantly different at P = 0.05 according to Duncan's Multiple Range Test (DMRT).

Treatments			2014	4/15								2015/1	6	
	Aı	ıtur	nn	Su	ummer		1	Wint	er 5	umme	r		W	inter
	Autu	mn							2	ombin	ed			
	Mean		Rank	Mean	Rank	Mean	R	ank	Mean	Rank	Mean	Rank	K Mean	Rank
	an R	anl	K											
CP mono	50.8	5	48.2	2	34.6	5	45.1	5		2	37.5			
	b		а		b		bc		55.1		с	5	45.21	5
									а				с	
BB mono	31.7	1	30.2	1	24.6	1	26.9	1	34.3	1	26.3	1		12
	d	3	cd	5	cdef	2	g	4	cd	5	gh	2	29.0 h	
LB mono	60.9	3	38.3	7	40.4 a	2	49.8	3	43.3	8	44.7	2	46.23	3
	a		b				а		b		b	2	b	
1CP:1SG	47.3	7	48.6	5 1	33.6 b	8	40.0	7	56.0	1	33.7	0	43.20	7
	b		а				d		а		de	8	de	
1CP: 2 SG	29.5	1	30.3	3 1	21.3	1	24.8	1	35.4	1	21.7	1	27.17	18
	d	5	cd	4	gf	8	g	5	cd	4	i	8	k	
1 BB : 1	28.7	1	31.4	4 1	23.3	1	24.1	1	36.6	1	23.6	1	27.95	15
SG	d	7	с	1	ef	4	g	7	с	1	hi	5	i	
1BB : 2	18.4	2	19.9	2	15.0 h	2	15.4	2	23.3	2	15.0	2	17.83	21
SG	e	1	f	0		1	h	1	f	0	i	1	m	
1LB : 1 SG	62.1	2	39.0)	42.0 a	4	50.7	2	45.4	5	42.1	4	46.88	2
	a		b	5			а		b		b	4	b	
1LB : 2 SG	40.9	1	25.2	2 1	28.0	1	33.4	1	28.5	1	30.2	1	31.03	10
	с	0	e	8	cd	0	e	0	e	8	f	0	g	
1CP:1MZ	46.9	8	47.4	4 3	34.5 b	6	39.0	8	54.8	3	34.9	6	42.92	8
	b		а				d		а		cd		e	
1CP: 2 MZ	30.2	1	31.6	5 1	21.5	1	28.0	1	36.7	1	22.4	1	28.40	14
	d	4	с	0	fg	7	fg	2	с	0	i	7	i	
1BB : 1	28.3	1		1	24.0	1	23.8	1	35.6	1	23.8	1		17
MZ	d	8	30.5	2	def	3	g	8	cd	2	hi	4	27.67	
			cd				U						i	
1BB : 2	19.2	2	20.0) 1	15.0 h	2	16.1	2	23.4	1	15.6	2	18.22	20
MZ	e	0	f	9		0	h	0	f	9	i	0	m	
1LB : 1	62.7	1	38.9	9 6	45.8 a	. 1	51.1	1	45.2	6	48.5	1	48.70	1
MZ	а		b				а		b		а		а	
1LB: 2 MZ	41.3	9	27.4	1	29.0 c	9	33.8	9	31.8	1	30.8	9	32.35	9
	с		de	6			e		de	6	ef		f	
1CP : 1	47.4	6	47.0	4	34.0 b	7	44.5	6	52.1	4	34.8	7	43.30	6
Abu70	b		a		-		с		а		cd		d	
1CP : 2	32.3	1	31.9	9	22.0	1	27.2	1	37.1	9	22.7	1	28.87	13
Abu70	d	2	с		fg	6	g	3	с		hi	6	h	

Table 5. Effect of mixing on fresh forage yield (t/ha) of cowpea (CP), black eyed bean (BB) and lablab bean (LB) grown in monoculture and in mixture with Sudan grass (SG), maize (MZ) and Abu70during autumn, summer and winter seasons of 2014/2015 and 2015/2016.

Gezira j. of agric. Sci 15 (2((2017)

	Gezira j. of agric. Sci 15 (2((2017)														
1BB 1Abu70	:	29.1 d	1 6	30.4 cd	1 3	23.0 f	1 5	24.4 g	1 6	35.5 cd	1 3	24.3 hi	1 3	27.78 i	16
1BB Abu70	:2	19.6 e	1 9	19.4 f	2 1	18.0 gh	1 9	16.5 h	1 9	22.6 f	2 1	16.2j	1 9	18.72 1	19
1LB: Abu70	1	60.3 а	4	38.1 b	8	44.0 a	3	49.1 ab	4	44.3 b	7	44.1 b	3	46.65 b	4
1LB: 2Abu70 C.V.	%	40.0 c	1 1	25.5 e	1 7	27.6 cde 10.05	1 1	32.2 ef 9.06	1 1	29.7 e 7.13	1 7	29.5 fg 7.91	1 1	30.75 g 8.29	11
		8.8 2		6.43											

Means followed by the same letter (s) are not significantly different at P = 0.05 according to Duncan's Multiple Range Test (DMRT).

Treatments				20	14/15						,	2015/1	5	_
	Aut	umn	Sur	nmer		Wint	ter	Autu	ımn	Sumr	ner		Winter	
										veral	l			
	Mean	Rank	Mean	Rank	Mean	R	ank	Mean	Rank	Mean	Rank	Mean	Rank	
	Mean	Rank												
1CP: 1SG	0.92	5	1.00	4	0.97	7	0.90) 6	1.00) 7	0.90	7	0.93	7
1CP: 2SG	0.58	17	0.60	17	0.62	16	0.56	5 18	0.62	2 18	0.58	17	0.59	18
1BB : 1SG	0.89	8	1.04	1	0.95	8	0.89) 7	1.07	/ 1	0.88	9	0.94	6
1BB : 2SG	0.57	18	0.64	13	0.60	18	0.57	7 17	0.67	/ 13	0.57	18	0.60	17
1LB : 1SG	1.02	2	1.02	2	1.04	3	1.02	2 2	1.05	5 2	0.94	3	1.02	2
1LB : 2SG	0.67	11	0.63	14	0.69	12	0.67	7 11	0.64	16	0.68	11	0.67	11
1CP:1MZ	0.91	6	0.96	8	1.00	4	0.88	8 8	0.99) 8	0.93	4	0.95	5
1CP : 2MZ	0.59	16	0.65	12	0.63	15	0.63	3 13	0.65	5 15	0.60	15	0.63	15
1BB :1MZ	0.90	7	0.99	5	0.98	6	0.87	79	1.03	8 4	0.89	8	0.94	8
1BB :2MZ	0.61	15	0.62	15	0.61	17	0.60) 16	0.68	8 12	0.59	16	0.62	16
1LB :1MZ	1.03	1	1.01	3	1.13	1	1.03	3 1	1.04	3	1.09	1	1.06	1
1LB :2MZ	0.68	10	0.72	10	0.72	11	0.68	3 10	0.73	8 10	0.69	10	0.70	10
1CP:1Abu70	0.93	4	0.95	9	0.99	5	1.01	l 3	0.95	59	0.92	5	0.96	4
1CP:2Abu70	0.64	13	0.66	11	0.64	14	0.62	2 14	0.66	5 14	0.61	14	0.65	13
1BB:1Abu70	0.88	9	0.98	6	0.93	9	0.91	l 5	1.01	6	0.91	6	0.93	9
1BB:2Abu70	0.62	14	0.61	16	0.73	10	0.61	l 15	0.63	8 17	0.62	13	0.64	14
1LB:1Abu70	0.99	3	0.97	7	1.09	2	0.99	9 4	1.02	2 5	0.99	2	1.00	3
1LB:2Abu70	0.66	12	0.59	18	0.68	13	0.65	5 12	0.69) 11	0.66	12	0.66	12

Table 6. Relative yield of cowpea (CP), black eyed bean (BB) and lablab bean(LB) grown in mixture with Sudan grass (SG), maize (MZ) and Abu70 during autumn, summer and winter seasons of 2014/2015 and 2015/2016.

Treatments				,	2014/1	5		2	2015/16	5		
	Autu	umn _	Sumr	ner _	V	Vinter		Au	ıtumn	S	ummer	
	Winter											
	Mean	Rank	Mean	Rar	nk N	Aean	Rank	Me	ean	Rank	Mean	
	Rank	Mean	Ran	k								
1CP : 1 SG	1.94	16	2.13	4	1.94	17	1.95	15	2.10	6	1.92	16
1CP : 2 SG	1.95	15	2.21	1	2.03	10	1.96	14	2.28	1	2.01	9
1BB : 1SG	1.90	18	2.06	7	1.97	15	1.89	18	1.99	17	1.91	17
1BB : 2SG	1.91	17	2.15	2	1.98	14	1.94	16	2.14	3	1.94	14
1LB : 1 SG	2.07	6	2.09	5	2.07	6	2.08	3	2.01	15	2.03	7
1LB : 2 SG	2.13	2	2.14	3	2.18	1	2.10	2	2.12	4	2.20	1
1CP : 1 MZ		7		13	2.08							
	2.06		2.00		2.00	5	2.00	10	2.07	9	2.08	4
1CP : 2 MZ		4		8	2 09							
	2.11		2.05		2.07	4	2.01	9	2.23	2	2.17	2
1BB :1MZ		14		18	2.01							
	1.96		1.94		2.01	12	1.98	12	1.98	18	1.98	12
1BB :2MZ		5		16	2.06	_						
	2.10		1.97	10		7	1.99	11	2.08	8	2.04	6
1LB : 1MZ		3	2.02	10	2.05	0	• • •	_	• • • •	10	• • • •	-
	2.12		2.03	0		8	2.05	6	2.04	12	2.07	5
1LB:2MZ	0.17	1	2.04	9	2.16	•	0.10	1	0.06	10	0.10	2
100 141 70	2.17	10	2.04	1.5	1.00	2	2.13	I r	2.06	10	2.13	3
ICP:IAbu/0	1.98	12	1.98	15	1.96	16	2.06	5	2.02	14	1.97	13
ICP:2Abu70	2.03	8	2.01	12	2.04	9	2.07	4	2.05	11	1.99	
IBB:IAbu/() 1.97	13	1.96	Γ/	1.89	18	1.92	17	2.00	16	1.89	18
IBB:2Abu70	2.00	11	2.07	6	2.02	11	1.97	13	2.03	13	1.93	15
ILB:1Abu70	2.01	10	1.99	14	1.99	13	2.02	8	2.09	7	2.00	10
1LB:2Abu70	2.02	9	2.02	11	2.15	3	2.03	7	2.11	5	2.02	8

Table7. Land equivalent ratio (LER) for cowpea (CP), black eyed bean (BB), lablab bean (LB), Sudan grass (SG), maize (MZ) and Abu70, mixtures during winter, summer and autumn seasons of 2014/2015 and 2015/2016.

These results were in line with those of Raposo *et al.* (1995), working in intercropping of maize and beans in different plant arrangements and densities, who recorded high LER in intercrop involving 2:2 row arrangements than with monocrop. Fininsa (1997) reported that LER for intercrop was far above that of monocrop with maximal relative yield advantage of 28%.

CONCLUSION

The highest forage yield was obtained when the ratio 1:1 (30 kg seeds /ha for each legume and grass) for lablab bean and maize was used in autumn (62.5 and 51.1 t/ha for 2014 and 2015, respectively) and winter (45.8 and 45.5 t/ha for 2014 and 2015, respectively) and 1:1 for cowpea and Sudan grass in summer (48.6 and 56 t/ha for 2014 and 2015, respectively) was practiced.

REFERENCES

- Albakri, M.M., A.E.S. Ibrahim and A.S. Gangi. 2003. Forage yield potential of Sudan grass-cowpea irrigated mixtures in central Sudan. Gezira Journal of Agricultural Science 1(2): 94-110.
- Al-haj, A.S. 1995. Growth and Yield of Intercropped Maize and Cowpea as Influenced by Cowpea Planting Schedule and Intercropping Pattern. M.Sc. Thesis, Crop Science Department, Faculty of Agricultural Sciences, University of Gezira, Wad Medani, Sudan.
- Elobaid, E.E. 2001. Effect of Seed Rate and Sowing Date on the Forage Yield of Sorghum-lablab Mixtures. M.Sc. Thesis, Crop Science Department, Faculty of Agricultural Sciences, University of Gezira, Wad Medani, Sudan.
- Fininsa, C. 1997. Effect of planting pattern, relative planting date and intra-row spacing on Haricot bean-maize intercrop. African Crop Science Journal 5: 15-22.
- Giller, K. E. 2001. Nitrogen Fixation in the Tropical Systems. 2nd Edition CABI: Wallingford, UK. pp: 150-300.
- Hussain, A.E. 2000. Effect of Crop Mixing on Forage Yield of Three Sorghum Cultivars and Three Legume Forages. M.Sc. Thesis, University of Gezira, Wad Medani, Sudan.
- Ibrahim A.E.S. 1994. Influence of nitrogen application and stage of harvesting on dry matter production of *Sorghum sudanense-Lablab purpureus* mixture in central Sudan. Experimental Agriculture 30 : 447 452.
- Ibrahim, M., M. Rafiq, A. Sultan, M. Akram and A.R. Goheer. 2006. Green fodder yield and quality evaluation of maize and cowpea sown alone and in combination. Journal of Agricultural Research 44: 15–21.
- Iqbal, A., N. Akbar, H. Z. Khan, R. N. Abbas and J. Ahmad. 2012. Productivity of summer legume forages intercropped with maize as affected by mixed cropping in different sowing techniques. Journal of Animal and Plant Sciences 22(3) : 758-763.
- Lithourgidis, A.S. and C.A. Dordas. 2010. Forage yield, growth rate and nitrogen uptake of faba bean intercrops with wheat, barley and rye in three seeding ratios. Crop Science 50:2148-2158.
- Ofori, F. and W.R. Stern. 1987. Cereal-legume intercropping systems. Advanced Agronomy 41: 41-90.
- Osman, J.A. 1995. Variability and Interrelations of Some Forage Yield Characteristics of Sorghum Cultivars and Screening Them For High Yield under Mixing with Lubia (*Lablab purpureus* (L) Sweet). M.Sc. Thesis, Crop Science Department. Faculty of Agricultural Sciences, University of Gezira, Wad Medani, Sudan.
- Raposo, J.A.D.E.A., L. Schuch, F.N.D.E. Assis, A.A. Machado and F.N. De-Assis. 1995. Intercropping of maize and beans in different plant arrangements and densities in Pelotas, Pesquisa. Agropecuaria Brasilleira 30: 639-647.
- Singh, S.P. 1981. Studies on special arrangement in sorghum-legume intercropping systems. Journal of Agricultural Sciences. (Cambridge) 97: 655 661.
- Soil Survey Staff. 1999. (SoilTaxonomy). A Basic System of Soil Classification for Making and Interpreting Soil Surveys. USDA Handbook NO. 436. Washington D.C. USA.

إنتاجية بعض الأعلاف البقولية ومخاليطها تحت ظروف الري في أواسط السودان

نصر الدين عبده سيد أحمد و على صالح جانقي و أبو الحسن صالح إبراهيم و إبراهيم البشير محمد

كلية العلوم الزراعية، جامعة الجزيرة، واد مدنى، السودان

الخلاصة

نفذت هذه الدراسة خلال صيف، خريف وشتاء 2015/2014 و2016/2015 بالمزرعة التجريبية لكلية العلوم الزراعية، جامعة الجزيرة، السودان. تهدف هذه الدراسة لتقييم أثر الخلط علي إنتاجية المحاصيل البقولية المختارة و هي اللوبيا الحلو واللوبيا البيضاء واللوبيا العفن ومخاليطها مع المحاصيل النجيلية حشيشة السودان، أبوسبعين والذرة الشامية تحت ظروف الري في أواسط السودان. زرعت المحاصيل النجولية منفرده و في مخاليط بنسبة 1 : 1 و 1 : 2. تم استخدام تصميم القطاعات العشوائية الكاملة بأربعة مكررات. الخلط أدى إلى زيادة معنوية لكل من وزن النبات الرطب، دليل مساحة الأوراق وإنتاجية العلم الرجعة مكررات. الخلط أدى إلى زيادة معنوية لكل من وزن النبات الرطب، دليل مساحة الأوراق وإنتاجية العلم الأخضر خلال معظم المواسم بينما أدى الخلط إلى نقصان عدد الأفرع في مختلف المواسم. كانت قيم نسبة مكافئ الأرض في أغلب المواسم أعلى من الواحد الصحيح. بناءً على نتائج هذه الدراسة ولتحقيق إنتاجية أعلاف عالية نوصي بزراعة المحاصيل معلي من الواحد الصحيح. والذراعة في مختلف المواسم. كانت قيم نسبة مكافئ الأرض في أغلب المواسم أعلى من الواحد الصحيح. بناءً على نتائج هذه الدراسة ولتحقيق إنتاجية أعلاف الأخضر خلال معظم المواسم أعلى أدى الخلط إلى نقصان عدد الأفرع في مختلف المواسم. كانت قيم نسبة مكافئ الأرض في أغلب المواسم أعلى من الواحد الصحيح. بناءً على نتائج هذه الدراسة ولتحقيق إنتاجية أعلاف عالية نوصي بزراعة المحاصيل البقولية في مخالية في معاني والذر الشامية خلو 30 كجم بذور/هكتار لوبيا عفن + 30 كجم بذور/هكتار ذرة شامية خلال فصلي البقولية في مخالية وي الشراء و 30 كجم بذور/هكتار خريا عون + 30 كجم بذور/هكتار خرائبة المواسم أعلي المولي والشتاء والشاء و30 كجم بذور/هكتار خريا وليا عفن + 30 كجم بذور/هكتار ذرة شامية خلال فصلي الخريف والشتاء والشتاء والشاء و30 كجم بذور/هكتار لوبيا عفن + 30 كجم بذور/هكتار ذرة شامية خلال فصلي البقولية في مخالي والشتاء والشاء و30 كجم بذور/هكتار خرابية المولي فلي ألمكان في المولي البي الموليا فل البقولية في والشتاء والشتاء والشتاء والشاء و30 كجتار لوبيا حلو + 30 كجم بذور/هكتار خرافي كملي خلال فصل الصي ألمي المولي المولي المولي الفلي المولي المولي فالي المولي المولي المولي المولي المولي المولي ألمي المول الفلي المولي ألمي ألمل ماله المولي فالله المولي المولي ا

Gezira j. of agric. sci. 15 (2((2017)