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Abstract

An exocellular proteinase synthesized by the geophilic dermatophyte Trichophyton vanbreuseghemii has
been purified and characterized. The fungus obtained from soil in Iran was cultivated in modified
Czapek–Dox liquid medium containing 0.1% bacteriological peptone and 1% glucose as the nitrogen and
carbon sources. Partial purification of the proteinase was accomplished by (NH4)2SO4 precipitation,
followed by ion exchange chromatography. Analysis of the enzyme by SDS-PAGE revealed a single
polypeptide chain with an apparent molecular mass of 37 kDa. Proteinase activity was optimum at pH 8,
but remained high in the range of pH 7–11. Moreover, the partially purified enzyme presented a kera-
tinolytic activity as evidenced by the keratin azure test. The inhibition profile and the good activity of
the enzyme towards the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide suggested that it
belonged to the chymotrypsin/subtilisin group of serine proteinases. The keratinolytic properties of
T. vanbreuseghemii suggest that this fungus may be an alternative for the recycling of industrial keratinic
wastes.
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Introduction

Keratin is an insoluble macromolecule requiring
the secretion of extracellular enzymes for its deg-
radation. This protein comprises long polypeptide
chains, which are resistant to numerous proteases.
Adjacent chains are linked by disulphide bonds
which are thought to be responsible for its stability
and resistance against degradation [1]. However,
the food and feed industry generates large quan-
tities of keratinic wastes that constitute a growing
problem. At present, their recycling consists in a
alkaline hydrolysis at high temperature. Therefore,
the development of new methods for the biocon-

version of these materials has raised much scien-
tific interest and the processing by keratinolytic
microorganisms may be a valuable alternative.
The keratinophilic fungi are the major group of
organisms capable to use keratin as the sole source
of carbon and nitrogen. Secretion of keratinolytic
enzymes has been demonstrated in some patho-
genic fungi with a high affinity for keratin which
can cause infections by invading skin or scalp of
mammals [2]. However, such enzymes are not
exclusively associated with pathogenic fungi since
they have also been found in some geophilic spe-
cies [3, 4]. Indeed, it has been reported that among
ten keratinophilic fungal species, only three were
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able to perforate and degrade hair rapidly: Chry-
sosporium keratinophilum, Microsporum gypseum
and T. vanbreuseghemii [4, 5]. Keratinases have
been characterized for the first two species [6–8],
but nothing is known for the third one, probably
in relation with the lack of pathogenicity of this
fungus and with its paucity in the environment.
The recent isolation by one of us of one strain of
T. vanbreuseghemii from soil in Iran led us to
investigate the proteolytic equipment of this fun-
gus. Here, we report the partial purification and
characterization of an extracellular proteinase
from T. vanbreuseghemii which supports a kera-
tinolytic activity.

Materials and methods

Microorganism and culture conditions

This study was carried out using one isolate of
T. vanbreuseghemii Ir-84 obtained from soil in
Iran. The fungus was propagated on yeast extract/
peptone/dextrose (YPD) agar plates at 25 �C, and
inoculum was prepared from 7-day-old cultures by
flooding with approx. 10 ml of sterile distilled
water and scraping off the agar plates.

Enzyme production

Trichophyton vanbreuseghemii Ir-84 was grown in
modified Czapek–Dox liquid medium (MCLM)
containing glucose, 10 g; K2HPO4, 1 g; MgSO4,
0.5 g; KCl, 0.5 g; FeSO4Æ7H2O, 0.01 g; chloram-
phenicol, 10 g; and bacteriological peptone 0.1%
(w/v) as the nitrogen source. For kinetic study of
enzyme production, triplicate cultures of T. vanb-
reuseghemii Ir-84 were carried out in 100-ml sterile
flasks containing each 50 ml of MCLM which
were incubated at 25 �C for up to 3 weeks. After
incubation, they were filtered through 0.45 lm-
pore-size pre-tared membranes (Millipore) which
were then lyophilized for determination of the
mycelial dry weight, and proteolytic activity was
assayed in the culture filtrates using the chromo-
genic substrate N-Suc-Ala-Ala-Pro-Phe-pNA
(Sigma) [9]. Specific activities which correspond to
the enzyme activity in nkat per mg of mycelial dry
weight, were determined. One katal is being
defined as the amount of enzyme which releases
one mole of pNA in one second.

Enzyme purification

Flasks (2 l) containing 1 l of MCLM were inocu-
lated with the fungal suspension, and incubated
for 15 days at 25 �C. Cultures were then filtered
successively through filter paper no. 3 (Whatman)
and 0.2 lm-pore-size filters (Millipore). To limit
enzyme autolysis, all procedures were carried out
at 4 �C. Enzyme purification was realized using a
two-step procedure consisting in ammonium sul-
phate precipitation followed by ion-exchange
chromatography. To do this, solid (NH4)2SO4 was
added to the culture supernatant to 80% satura-
tion. After 1 h of stirring at 4 �C, the suspension
was centrifuged at 4 �C for 30 min at 20,000� g.
The pellet was then resuspended in minimum
volume of distilled water and dialyzed against
three changes of 20 mM Tris–HCl buffer, pH 8
(buffer A). Insoluble material was removed by
centrifugation at 10,000� g for 10 min, then the
dialysate was loaded onto a column (2� 20 cm)
containing 50 ml of DEAE–Trisacryl M gel
(Biosepra) equilibrated with buffer A. After
washing the column with five volumes of buffer A,
100 ml of 0.1 M NaCl in buffer A was applied to
the column at a flow rate of 60 ml/h, followed by a
linear gradient of NaCl (0.1–0.3 M NaCl, 300 ml)
in the same buffer. Eluate was collected by 3-ml
fractions. Fractions with enzyme activity were
pooled, dialyzed against 20 mM Tris–HCl buffer,
pH 8 and stored as aliquots at )20 �C.

The last step of purification was monitored for
protein by measuring the absorbance at 280 nm.
The proteolytic activity of the different chromato-
graphic fractionswas assayedusingN-Suc-Ala-Ala-
Pro-Phe-pNA, and their protein concentration was
determined as described by Bradford [10], using
BSA as standard.

Enzyme activity assay

Substrates were dissolved in dimethyl sulfoxide
(DMSO) at a stock concentration of 5 mM.
Unless otherwise stated, the assay was performed
on polystyrene microtiter plates and the reaction
mixture contained, per well, 180 ll of a suitably
diluted proteinase solution in buffer A and 20 ll of
chromogenic substrate (0.5 mM final concentra-
tion). After 30 min of incubation at 37 �C, the
amount of p-nitroaniline (pNA) released was
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measured at 405 nm using a Titertek Multiscan
spectrophotometer (Labsystem). Three different
chromogenic substrates were used: N-Suc-Ala-
Ala-Pro-Phe-pNA, N-Suc-Ala-Ala-Pro-Leu-pNA
and N-Bz-Phe-Val-Arg-pNA (Sigma) (where Suc is
succinyl and Bz, benzoyl) titrating the chymo-
trypsin/subtilisin, elastase and trypsin activities
respectively. Enzyme activity was expressed in
nkat/ml. Keratinolytic activity was measured using
keratin azure (Sigma). Samples (1 ml) were incu-
bated with keratin azure (5 mg) at 37 �C for 8 h in
buffer A. Keratinolytic activity was determined by
measuring the absorbance at 595 nm, the enzyme
unit being defined as the amount of enzyme pro-
ducing an increase in A595 of 0.001 unit per hour.

Electrophoretic analysis

Protein purity and the molecular mass of the
enzyme were evaluated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS–PAGE)
using the discontinuous buffer system of Laemmli
[11]. Samples (20 lg of protein per lane) were
analyzed on 1.5-mm-thick slab gels [12% (w/v)
polyacrylamide resolving gel; 3% (w/v) poly-
acrylamide stacking gel]. Gels were stained with
Coomassie brilliant blue R-250 and the electro-
phoretic migration of the proteinase was com-
pared with that of low-molecular-mass protein
markers (Pharmacia).

Inhibition studies

Proteinase inhibitors were tested for activity against
proteinase with the optimized protocol (i.e. pH 8.0).
Aliquots of the proteinase solutions (160 ll at
3.3 lg/ml) in buffer A) were preincubated for
10 min at 37 �C with 20 ll of 10-fold concentrated
stock solutions of each reagent. Then, 20 ll samples
of chromogenic substrate,N-Suc-Ala-Ala-Pro-Phe-
pNA (5 mM) were added, and proteinase activity
was assayed as described above. Phenyl methyl
sulfonyl fluoride (PMSF), 7-amino-1-chloro-3-L-
tosylamidoheptan-2-one (Tos-Lys-CH2Cl, TLCK)
and 1-chloro-4-phenyl-3-L-tosylamidobutan-2-one
(Tos-Phe-CH2Cl, TPCK) were prepared as stock
solutions in methanol, and chymostatin was pre-
pared in DMSO. Stock solutions of the other
potential protease inhibitors were prepared in
distilled water. The effects of several ions at 10 mM
final concentrations on proteinase activity were

investigated as described above. Residual activities
were calculated from triplicate determinations as
percentages of the activities in control samples
without reagent. Appropriate solvent controls were
run in parallel when required.

Optimum pH

The influence of pH on proteinase activity was
determined by using the standard proteinase assay
with N-Suc-Ala-Ala-Pro-Phe-pNA chromogenic
substrate. Determination of the optimum pH was
performed at 37 �C with the following buffer sys-
tems: 0.2 M Tris/HCl buffer (pH 7–9) and 0.2 M
carbonate buffer (pH 10–11). Activities were esti-
mated as percentages of the maximum.

Results

Study of the kinetics of enzyme synthesis demon-
strated that production of the enzyme reached a
maximum at day 15, and then remained stable until
day 21 (Figure 1). Thus, the fungus was cultivated
in MCLM for two weeks for all subsequent
experiments. Purification of the protease was then
undertaken and Figure 2 shows the elution profile
obtained after DEAE chromatography. Proteins
bound to the column were eluted using a step of
0.1 M NaCl which provided two major protein
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Figure 1. Time course of serine proteinase production of
T. vanbreuseghemii. Proteolytic activity was determined by
measuring the rate of hydrolysis of the chromogenic substrate
N-Suc-Ala-Ala-Pro-Phe-pNA. Specific activity corresponds to
activity in nkat per mg of mycelial dry weight.
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peaks, followed by a linear gradient of NaCl
(0.1–0.3 M) leading to a very weak protein peak
(Figure 2). A weak proteinase activity was detected
in the protein peak corresponding to the exclusion
step. Enzyme detection in the eluate revealed a
second peak with high proteinase activity corre-
sponding to 0.24 M NaCl which superimposed
with the last protein peak. The purification steps
are summarized in Table 1 with an overall recovery
of 25.8% and 3.6-fold purification. Analysis by
SDS-PAGE of the enzymatic peak disclosed a
major protein band with an apparent molecular
mass of 37 kDa and several minor bands (Figure 3,
lane 3). Only weak activities were detected on
N-Bz-Phe-Val-Arg-pNA (119 nkat/ml) and N-Suc-
Ala-Ala-Pro-Leu-pNA (92 nkat/ml) which are
specific substrates for trypsin and elastase-like
serine proteinases, respectively. In contrast, the
partially purified enzyme proved to be efficient
towards the synthetic substrate N-Suc-Ala-Ala-
Pro-Phe-pNA (533 nkat/ml), suggesting that it

belongs to the chymotrypsin/subtilisin group of
serine proteases. In addition, an activity of 126 U/
ml was observed using the keratin azure test, thus
confirming the keratinolytic activity of the enzyme.

The effects of different reagents were tested on
the activity of T. vanbreuseghemii proteinase
(Table 2). The enzyme was inactivated by PMSF,
TPCK and chymostatin. This last compound
which acts specifically on chymotrypsin/subtilisin-
like serine proteinases caused a drastic decrease in
enzyme activity with 8% residual activity. TLCK
and SBTI, which are trypsin inhibitors, had a
significant effect on proteinase activity. The pro-
teinase was also inhibited by the reducing agent
2-ME. A slight effect was observed for SDS
whereas methanol and ethanol partially affected
the proteinase activity. In contrast, proteinase was
not inhibited by elastatinal, benzamidine, bestatin,
leupeptin, E-64, iodoacetamide, NEM, pepstatin
A, EDTA and DMSO. Finally, the proteinase
activity was partially inhibited by the presence of
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Figure 2. Purification by DEAE chromatography of T. vanbreuseghemii serine proteinase. Purification was monitored for protein by
measuring the absorbance at 280 nm, and for enzyme activity by measuring the rate of hydrolysis of the chromogenic substrate N-Suc-
Ala-Ala-Pro-Phe- pNA.

Table 1. Purification of the serine-protease from T. vanbreuseghemii

Purification steps Volume

(ml)

Total

protein (mg)

Total

activity (nkat)

Specific

activity (nkat/mg)

Yield

(%)

Purification

(fold)

Culture filtrate 4870 53.5 1,165,878 21,792 100 1

(NH4)2SO4 precipitation 71 21.9 598,032 27,307 51.3 1.25

DEAE(Trisacryl M 42 3.8 300,873 79,177 25.8 3.63
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NH4Cl and NaNO2, but not by NaNO3 at a final
concentration of 10 mM (Table 3). Moreover, the
enzyme was completely inhibited by some cations
such as Ag+, Al3+, Cu2+ and Hg2+, whereas
Co2+, Li+, Mg2+, Mn2+ caused only partial
inhibitions (residual activity comprised between 40
and 67%). No effect was observed for Ca2+, Fe2+

and Zn2+. For optimum pH, enzyme assays were
performed from pH 7 to 11. The proteinase was
found to have an alkaline optimum pH of 8, but it
remained active until pH 11 (data not shown).

Discussion

Trichophyton vanbreuseghemii was isolated from
soil in Tunisia by Rioux, Jarry and Juminer at
1964 for first time. Since this date, this fungus has
been found in different parts of the world like
Canada, Europe and North Africa, and it is now
considered to be world-wide distributed. Although
T. vanbreuseghemii shows great capabilities to
perforate hair in vitro, probably due to proteolytic
enzymes [4], it is considered as a non-pathogenic
fungus, only one case of human infection having
been reported as yet [12]. Therefore, this fungus
may be interesting for recycling the keratin wastes
from food and feed industry. However, to our
knowledge the proteolytic equipment of T. vanb-
reuseghemii has never been studied.

Previous studies performed on other filamen-
tous fungi using various protein-free culture media
allowed us to define the best culture conditions for
protease synthesis [13, 14]. These culture conditions
were applied to a T. vanbreuseghemii isolate from
soil in Iran, and cultivation of the fungus in modi-
fied Czapek–Dox liquid medium containing 0.1%
bacteriological peptone and 1% glucose gave a high
enzyme level after incubation for two weeks. The
proteinase was then partially purified from the
culture filtrate by a simple two-step method
involving ammonium sulphate precipitation and
anion-exchange chromatography. Inhibition pro-
file of the enzyme, as well as the determination of
its activity towards various synthetic substrates and
of its optimum pH, demonstrated that it belonged
to the chymotrypsin/subtilisin family of serine
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Figure. 3. SDS-PAGE pattern of T. vanbreuseghemii serine
proteinase. Lane 1: culture filtrate; lane 2: first protein peak
eluted from DEAE–Trisacryl column with 0.1 M NaCl; and
lane 3: partially purified enzyme eluted from the column with
0.24 M NaCl. Molecular mass (MM) of standard proteins (94,
67, 43, 30, 20.1 and 14.4 kDa) are indicated in the left.

Table 2. Effect of various compounds on the activity of
Trichophyton vanbreuseghemii proteinase

Reagent Final

concentration

Residual

activity (%)

PMSF 1 mM 31

Chymostatin 100 lM 8

TPCK 1 mM 33

TLCK 1 mM 41

SBTI 50 lM 53

2-ME 1% 22

SDS 1% 71

Methanol 10% 47

Ethanol 10% 39

The following compounds had no effect on the enzyme activity
at the concentrations tested and indicated in parentheses:
EDTA, iodoacetamide (10 mM); N-ethylmaleimide (2 mM);
pepstatin A, benzamidine (1 mM); leupeptin (100 lM); E-64,
bestatin, elastatinal (10 lM) and DMSO (10%).

Table 3. Effect of ions at 10 mM final concentration on the
activity of Trichophyton vanbreuseghemii proteinase

Reagent Residual activity (%)

Ag+ 0

Al3+ 0

Co2+ 67

Cu2+ 2

Hg2+ 0

Li+ 46

Mg2+ 46

Mn2+ 40

NH4
+ 33

NO2
) 50

The following ions had no effect on the enzyme activity: Ca2+,
Fe2+, Zn2+ and NO3

).
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proteinases. As all chymotrypsins/subtilisins, the
fungal proteinase was highly sensitive to PMSF and
chymostatin. In addition, hydrolysis rate of differ-
ent synthetic substrates of serine-proteinases was
the highest withN-Suc-Ala-Ala-Pro-Phe-pNA. The
enzyme activity was lower for N-Bz-Phe-Val-Arg-
pNA which is more specific for trypsin-like serine
proteinase, and very weak for N-Suc-Ala-Ala-Pro-
Leu-pNA, a substrate of elastase-like serine
proteinase. The fact that the proteinase was not
totally inefficient on these two last substrates seems
to be a common feature of fungal subtilisins, since it
has also been reported for similar chymotrypsin/
subtilisin-like serine proteinases purified from
Aspergillus fumigatus [13] or Scedosporium apio-
spermum culture filtrate [14]. Likewise, the enzyme
was totally inhibited by heavy-metal cations such as
Ag+, Al3+, Cu2+ and Hg2+, which is also in
agreement with similar findings on serine protein-
ases fromA. fumigatus and S. apiospermum [13, 14].
Moreover, as other subtilisins, the serine proteinase
of T. vanbreuseghemii which supports a keratino-
lytic activity as demonstrated by the keratin azure
test, presented an alkaline optimum pH.

All these results are therefore consistent with
previous findings from other groups working on
keratinolytic fungi. Usually, fungal keratinases
belong to the class of serine proteinases. For
instance, it is well established that serine protein-
ases produced by Trichophyton rubrum [15, 16],
Trichophyton schoenleinii [17], Trichophyton ment-
agrophytes [18], Doratomyces microsporus [19],
Microsporum canis [20], Scopulariopsis brevicaulis
[21] and Hendersonula toruloidea [22] support a
keratinolytic activity. However, a few keratinolytic
enzymes belong to the class of metalloproteases
such as some keratinases from M. canis [23] and
C. keratinophilum [6] or the fungalysins that have
been isolated in T. rubrum, T. mentagrophytes and
M. canis [24]. Optimum pH of the different kera-
tinases that have been characterized so far, may
vary from acidic pH, 4.5 for T. mentagrophytes
[18], 5.5 for T. mentagrophytes var. erinacei [25]
and T. schoenleinii [17], to alkaline pH, 8 for
M. canis metalloprotease [23] and T. rubrum [16],
8–9 for D. microsporus [19] and 9 for M. canis
subtilisin serine protease [20], C. keratinophilum [6]
and H. toruloidea [22]. In addition, most of these
enzymes have similar molecular mass, about 30
kDa [16–22]. The serine proteinase from T. vanb-
reuseghemii presented a molecular mass of 37 kDa,

but several minor bands of lower molecular mass
were also detected by SDS-PAGE, probably in
relation with the high autolytic potential already
reported for such enzymes [26] since no proteinase
inhibitors could be used during the purification
procedure.

Keratinolytic enzymes may be of great interest
particularly for industries of leather, food and
poultry that produce large quantities of keratinic
wastes [27–29]. Here, a serine proteinase from T.
vanbreuseghemii has been partially purified and its
keratinolytic activity has been established. The
potential use of this geophilic fungus or of this
extracellular proteinase in the bioconversion of
industrial keratinic wastes is worthy of the atten-
tion of environmentalists.
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