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Introduction

Epigenetics is defined as heritable changes in gene ex-

pression that are not linked to changes in the DNA se-

quence. Epigenetic events are one of the important mecha-

nisms that regulate the differentiation of different types of

cells during both prenatal and postnatal development. The

major epigenetic mechanisms that affect gene expression are

histone modification, genomic DNA methylation, and activi-

ties of noncoding RNAs (Gibney & Nolan, 2010). Histone

modifications via two distinctive enzymes histone acetyl-

transferases (HATs) and histone deacetylases (HDACs) in-

volve different mechanisms of histone substrate binding and

catalysis (Buchwald, et al., 2009 ; de Ruijter, et al., 2003).

Histone acetylation is generally associated with transcrip-

tional activation, whereas deacetylation of histones represses

gene expression. DNA methylation plays an important role

via the addition of a methyl group to the 5th carbon of cyto-

sine in the CpG dinucleotide sequence during DNA repair,

recombination, and replication (Chin, et al., 2011). A non-

coding RNA (ncRNA) is a functional RNA molecule that is

transcribed from DNA, but not translated into a protein. The

epigenetic related ncRNAs include miRNA, siRNA, piRNA

and lncRNA (Peschansky & Wahlestedt, 2014).

A greater understanding of the epigenetic events in bone

cells could help improve tissue engineering strategies in the

bone and identify novel anabolic targets. Recently, several

types of histone deacetylase inhibitors (HDACis) have been

used to induce calcification and promote osteogenesis. How-

ever, variations in the results of these studies exist, and a

consensus on the usefulness of HDACis has not been

reached thus far (Haberland, et al., 2009). In this review, we

summarized on the effectiveness of several types of HDACis

on osteogenesis and discussed the possibility of using them

in the clinical setting.

Histone deacetylases ( HDACs ) and histone
deacetylase inhibitors (HDACis)

The acetylation of histone proteins is a balance between

the activities of both HATs and HDACs. HDACs with his-
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Abstract

The major epigenetic mechanisms affecting gene ex-

pression are histone modifications, DNA methylation,

and activities of noncoding RNAs. Histone modifica-

tions by two distinctive enzymes histone acetyltrans-

ferases (HATs) and histone deacetylases (HDACs) dis-

play different mechanisms of histone substrate binding

and catalysis, and affect gene transcriptions. Recently,

HDAC inhibitors (HDACis) that increase acetylation of

histones have been clinically applied for certain types

of diseases including cancer, epilepsy, bipolar disorder,

and blood diseases. Although HDAC is controlled os-

teogenesis both in vitro and in vivo, no clinical applica-

tion of HDACi for bone regeneration has been per-

formed. This review introduces how HDACis affect

bone regeneration in vitro and in vivo. Certain types of

HDACis may be clinically useful for bone regeneration.
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tone acetylation are generally associated with an increase in

gene transcription, whereas deacetylation results in decreased

gene transcription. Eighteen HDACs have been identified in

humans, and are divided into four subclasses based on the

homology to the yeast genes as follows : class I (HDAC1,

HDAC2, HDAC3, and HDAC8), class IIa (HDAC4, HDAC

5, HDAC7, and HDAC9), class IIb (HDAC6 and HDAC10),

class III (sirtuin [SIRT1] to −7), and class IV (HDAC11)

(Haberland, et al., 2009). HDACs often induced pathogenic

transcriptions ; therefore their inhibition might prove useful

for the treatment of various diseases (Chuang, et al., 2009).

HDACis have been chemically synthesized and applied for

the treatment of psychiatric and neurological diseases (van

Bokhoven H. , 2011 ) . In addition, several classes of

HDACis, including hydroxamic acids, cyclic peptides, bu-

tyrates, and benzamides have been discovered (Yoshida, et

al., 1990 ; Komatsu, et al., 2001 ; Candido, et al., 1978). The

hydroxamates include vorinostat, givinostat, abexinostat,

panobinostat, belinostat, and the prototypical HDACi,

trichostatin A ( TSA ) . The cyclic peptides include com-

pounds such as depsipeptide and troponin, whereas the ben-

zamides include entinostat ( MS − 275 ) , and mocetinostat.

Some of these HDACis have been approved for use as phar-

maceutical drugs (Jones, et al., 2016).

Involvement of HDACs in bone development

Bone development is a dynamic and complex process that

requires precise control of the transcriptional events in multi-

ple cell types, and is sensitive to changes in HDACs levels

(Dudakovic, et al., 2013). HDACs play important roles in

maintaining the balance between osteoblastic bone formation

and osteoclastic bone resorption, processes that are crucial

for bone tissue homeostasis (Destaing, et al., 2005). The cru-

cial roles of several HDACs in both intramembranous and

endochondral bone development are shown in Table 1.

a. Class I HDACs ( HDAC 1, HDAC 2, HDAC 3, and

HDAC8)

The roles of HDACs in bone development have been

evaluated mainly by the genetic deletion of each HDAC

(Schroeder & Westendorf, 2005). Class I HDACs are essen-

tial regulators for both intramembrane and endochondral

bone development. Targeted deletion of HDAC1 is lethal re-

sulting in severe proliferation defects and retardation in de-

velopment (Lagger, et al. , 2002 ; Trivedi, et al. , 2007 ) .

Germline deletion of HDAC2 has partialy embryonic lethal-

ity, and causes significant decreases in body size and long

bone length as a result of abnormal endochondral ossifica-

tion (Trivedi, et al., 2007). HDAC1 and HDAC2 inhibit os-

Class HDACs Targeted protein Protein expression Mode of action Terminal bone phenotype References

I

HDAC1 RUNX2 ↓ Inhibition of osteoblast differentia-
tion

Severe proliferation defects and retar-
dation in bone development

Lagger, et al., 2002

HDAC2
RUNX2 ↓ Inhibition of osteoblast differentia-

tion Reduced body size and long bone
length

Lee, et al., 2006
Dou, et al., 2016

FoxO1 ↓ Increased osteoclastogenesis

HDAC3 RUNX2 ↓
Suppression of osteoblast differen-
tiation
Decreased matrix mineralization

Embryonic lethal
Severe endochondral bone defects
Severe craniofacial malformations in
skull

Singh, et al., 2013
Schroeder et al., 2004

HDAC8 Otx2 and Lhx1 ↑ Decreased intramembranous ossifi-
cation

Ossification defects in frontal bone Haberland, et al., 2009

II

HDAC4 RUNX2 ↓ Premature endochondral ossification
by repressing transcriptional activity

Skeletal defects and premature skull
ossification

Vega, et al., 2004

HDAC5 RUNX2 ↓ Suppression of osteoblast differen-
tiation

Reduced trabecular bone density
Juvenile osteoporosis

Obri, et al., 2014
Kang, et al., 2005

HDAC6 RUNX2 ↓ Cytoskeletal changes in osteoclasts
and bone resorption

Increased cancellous bone density
Westendorf, et al.., 2002

Zhang, et al., 2008

HDAC7 RUNX2 ↓
Regulation of endochondral ossifica-
tion by deacetylation− independent
manner

Reduced femur lengths, and decreased
trabecular bone density

Jensen, et al., 2008
Bradley, et al., 2015

III

Sirt1 NA NA
Osteoblast differentiation of mesen-
chymal stem cells

Developmental defects, including
shorter stature, craniofacial abnormali-
ties, increased cartilage apoptosis
Reduced endochondral ossification

Bradley, et al., 2015
Cheng, et al., 2003

Backesjo, et al., 2006

Sirt6 NA NA
Facilitates endochondral ossification
by controlling chondrocyte prolif-
eration and differentiation

Bone growth retardation Mostoslavsky, et al., 2006

Table 1 : Role of histone deacetylases (HDACs) in bone development

HDAC : Histone deacetylase ; RUNX2 : Runt−related transcription factor 2 ;↑ : Up regulation ;↓ : Down regulation ; Otx2 : Orthodenticle homeobox 2 ; Lhx1 :
LIM homeobox 1 ; Sirt : Sirtuin ; NA : Not applicable.
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teoblast differentiation via down−regulation of the Runt−re-

lated transcription factor2 (Runx2) , a key factor for os-

teoblast differentiation (Lagger, et al. , 2002 ; Lee, et al. ,

2006 ) . HDAC 2 also inhibits Forkhead box protein O 1

(FoxO1), a negative regulator of osteoclast differentiation to

promote osteoclastogenesis (Dou, et al., 2016). Furthermore,

germline deletion of HDAC3 has been shown to cause early

embryonic lethality (Montgomery, et al. , 2008) , whereas,

HDAC3 suppression caused severe endochondral bone de-

fects due to decreased amount of cartilage matrix formation,

fewer osteoblasts, and poor cortical as well as trabecular

bone architecture in animals (Bradley, et al., 2013 ; Razidlo,

et al. , 2010). HDAC3 is also involved in intramembrane

bone development. Loss of HDAC3 in the neural crest cells

resulted in severe craniofacial malformations, including mi-

crocephaly, cleft palate, impaired bone formation in the

skull, and hypoplasia of the teeth (Singh, et al., 2013). Simi-

larly, HDAC3 conditional knockout mice in osterix−express-

ing progenitor cells resulted decreases in calvarial bone

thickness and density (Razidlo, et al., 2010). The global de-

letion of the HDAC8 gene in mice leads to perinatal lethal-

ity due to altered cranial and facial features, and this is phe-

nocopied by the conditional deletion of HDAC8 in cranial

neural crest cells (Haberland, et al., 2009). Both, HDAC3

and 8 are transcriptional co−repressors of several transcrip-

tion factors ; therefore, the suppression of HDAC 3 in

preosteoblasts reduces matrix mineralization and the expres-

sion levels of several genes that target Runx2 (Schroeder et

al., 2004). HDAC8 represses the aberrant expression of ho-

meobox transcription factors, specifically, orthodenticle ho-

meobox 2 (Otx2) and LIM homeobox 1(Lhx1), essential for

proper head development (Haberland, et al., 2009). Taken

together, HDAC1, 2, and 3 play important roles in bone de-

velopment via Runx2 activation. HDAC8 contributes to nor-

mal bone formation via its inhibitory effect on the aberrant

expression of homeobox proteins.

b. Class II HDACs ( HDAC 4, HDAC 5, HDAC 6, and

HDAC7)

Class II HDACs mainly contribute to endochondral bone

development. Unlike the class I HDACs, germline deletion

of most class II HDACs does not cause embryonic lethality

but results in some level of functional redundancy. HDAC4

deficiency leads to premature endochondral ossification re-

sulting in skeletal defects such as vertebrae body fusion, de-

crease in the length of the long bone, and premature skull

ossification (Vega, et al., 2004). Although HDAC5 knockout

mice showed no abnormal structures or growth defects, they

presented with reduced trabecular bone density at 2 − 3

months of age, despite modest increases in the rates of bone

formation ( Obri, et al. , 2014 ) . The genetic deletion of

murine HDAC6 modestly increased the density of the can-

cellous bone (Zhang, et al., 2008 ; Westendorf, et al., 2002).

Postnatal deletion of HDAC 7 in the same population of

chondrocytes led to an expansion of the proliferative zone,

narrowing of the hypertrophic zone, reduction in femur

lengths, and decrease in trabecular bone density (Bradley, et

al., 2015a). Class II HDACs have low intrinsic deacetylase

activity and work through functional complexes involving a

class I HDAC. All class II HDACs have been shown to

deacetylase Runx2 thereby, repressing its transcriptional ac-

tivity, decreasing osteoblast differentiation, and promoting

osteoclastogenesis (Table 1) (Kang, et al. , 2005 ; Westen-

dorf, et al., 2002 ; Jensen, et al., 2008).

c. Class III HDACs (Sirt1 and Sirt6)

Class III HDACs, Sirt1 and Sirt6, play important roles in

endochondral ossification. The activation of Sirt1 in mesen-

chymal stem cells promotes osteogenic differentiation, essen-

tial for endochondral ossification ( Barter, et al. , 2012 ) .

Germline Sirt1 deficiency increased p53−mediated apoptosis

and produced severe developmental defects, including

shorter stature, craniofacial abnormalities, increased cartilage

apoptosis, and reduced endochondral ossification and corti-

cal thickness in mice (Cheng, et al., 2003). Sirt6 facilitates

endochondral ossification by controlling chondrocyte prolif-

eration and differentiation. Sirt6 knock out mice displayed

growth retardation shortly after birth, failed to thrive, and

died at around 3.5 weeks of age due to genomic instability

and degeneration of multiple organs (Mostoslavsky, et al.,

2006). Although Sirt1 and Sirt6 have been shown to play

important roles in bone development, the involvement of the

other types of Sirts remains to be elucidated.

Involvement of histone deacetylase inhibitors
(HDACis) in osteogenesis

HDACis affect many cellular properties, such as the cell

cycle, Progression proliferation rates, gene expression, dif-

ferentiation potential, accumulation of reactive oxygen spe-

cies, and changes in cell death pathways ( Khan & La
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Thangue, 2012 ; Conte & Altucci, 2012 ; Dawson & Kou-

zarides, 2012). Attempts to apply HDACis for the regenera-

tion of different tissues, such as cardiac, neural / nervous,

dental, liver, and cartilaginous tissues, have been made (Oh-

tani & Dimmeler, 2011 ; Hsieh, et al., 2004 ; Duncan, 2011,

2012 ; Kurinna, et al., 2011 ; Hong, et al., 2009). Among

them, the involvement of HDACis in bone regeneration is

well documented (Boer, et al. , 2006 ; Cho et al. , 2005 ;

Huynh et al., 2016, 2017). The osteogenic differentiation of

different cell types is accelerated by several types of

HDACis including sodium butyrate ( NaB ) , valproic acid

(VPA), trichostatin A (TSA), suberoylanilide hydroxamic

acid (SAHA), and Benzamide (MS−275) (Fig. 1 ; Table 2).

NaB promoted osteoblast bone formation by enhancing the

activities of Runx2 and ALP in vitro (Iwami & Moriyama,

1993) ; the effects of NaB on the osteoblastic cell line and

periodontal ligament fibroblast were reported for the first

time in this study. Similarly, VPA and TSA enhanced osteo-

genic differentiation with the upregulation of several os-

teoblast marker genes (Lee, et al., 2006, 2009 ; Cho, et al.,

2005 ; Xu, et al., 2009, 2013 ; Jeon, et al., 2006). SAHA,

another pan HDACi, promoted mineralization and migration

in primary osteoblasts by inducing the expression and activ-

ity of metalloproteinase (MMP)−13 (Duncan, et al., 2016).

In addition, MS−275 has been found to stimulate bone for-

mation by inducing the transcription of tissue−nonspecific

alkaline phosphatase (TNAP) (Kim, et al., 2011). Together,

these data indicate that the suppression of HDAC activity

with these HDACis sufficiently promote the osteogenic dif-

ferentiation of several cells via the upregulation of various

transcription−related proteins, which may distinct roles dur-

ing this process.

Fig 1 : Schematic representation showing role of HDACis on several cells for osteogenesis
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Possible clinical applications of histone deace-
tylase inhibitors (HDACis) for bone regenera-
tion

To date, four HDACis have been approved by the United

States Food and Drug Administration (US FDA) for the fol-

lowing anti − cancer drugs : Vorinostat, Romidepsin, Beli-

nostat, and Panobinostat. Vorinostat (SAHA ; trade name,

ZolinzaⓇ) is a linear hydroxamate compound that was ap-

proved for the treatment of cutaneous T − cell lymphoma

(CTCL) (Mann, et al., 2007). Romidepsin (FK228 or dep-

sipeptide ; trade name, IstodaxⓇ) is a cyclicpeptide HDACi

that was originally approved for the treatment of CTCL by

the US FDA ; subsequently, its use was extended for the

treatment of peripheral T−cell lymphoma (PTCL) (Whit-

taker, et al., 2010). A third FDA approval was given for the

HDACi Belinostat ( PXD 101 ; trade name, BeleodaqⓇ ) ,

which is a hydroxamic acid compound licensed for the treat-

ment of relapsed or refractory PTCL. Like the other two

FDA−approved HDACis, Belinostat is in the clinical trial

phase for solid tumors (Poole, 2014). Panobinostat (LBH−

589 ; trade name, FarydakⓇ) is the most recently approved

HDACi (Oki, et al., 2013) and was licensed for the treat-

ment of multiple myeloma. Additionally, more than five

HDACis are in phase III clinical trials, including reposition-

ing of already approved HDACis (Jeon, et al., 2006). In ad-

dition to cancer treatment, the use of HDACis has been

evaluated in various non−cancer diseases including neurode-

generative disease, inflammatory disease, osteoporosis, car-

diovascular disease, HIV, and neurological diseases (Choi &

Mostoslavsky, 2014 ; Dinarello, et al., 2011 ; Falkenberg &

Johnstone, 2014 ; Lakshmaiah, et al., 2014). Some HDACis

have been used for the treatment of experimentally−induced

osteoporosis and fractures, and have successfully promoted

bone regeneration in animal models (Boer et al. , 2006 ;

McGee−Lawrence & Westendorf, 2011). Thus, they may be

applied for bone regeneration as a clinically secure drug.

Conclusion

Recently, it has been demonstrated that HDACis can im-

prove tissue engineering strategies. Bone tissue engineering

has found early success in studies combining mesenchymal

stem cells (MSCs) with HDACis ; therefore, there is a poten-

tial to translate this research into the clinical settings. Pres-

ently, researchers aim to combine scaffolds with growth fac-

tors, suitable cells, and environmental stimuli to generate

functional tissue, such as bone and dentin in hard tissue re-

generation region. This review shows that HDACis could be

utilized as chemical cues to improve the efficacy of current

tissue engineering techniques.

Inhibitor Targeted cell Mechanism of action Effect References

NaB

Cloned osteoblastic cell lines
Periodontal ligament fibroblasts

Increased ALP activity Enhancement of bone formation Iwami & Moriyama, 1993

Primary bone marrow cells
Rat osteosarcoma cells
Calvaria cells

Increased the expression of Runx2, OC
and ALP

Osteogenesis Lee, et al, 2006, 2009

Adipose−derived stromal cells Decreased oxygen tension Osteogenesis Xu, et al., 2009

VPA

Adipose cells
Bone marrow stromal cells

Increased the expression of Runx 2,
OSX, OPN, BMP2 and ALP

Osteogenic differentiation
Cho, et al., 2005
Jeon, et al., 2006

Adipose−derived stromal cells Decreased oxygen tension Osteogenesis Xu, et al., 2009

Dental pulp stem cells Increase OC, BSP, OPN Osteogenesis Shen, et al., 2002

TSA

Primary bone marrow cells
Rat osteosarcoma cells
Calvaria cells

Increased the expression of Runx2, OC
and ALP

Osteogenesis Lee, et al, 2006, 2009

Bone marrow stromal cells
Increased the expression of Runx2 and

ALP
Osteogenic differentiation Cho, et al., 2005

Human periodontal ligament cells Increased the expression of Runx2
Osteogenesis and enhanced mineral

deposition
Huynh, et al., 2016

SAHA Primary osteoblasts Increased MMP−13 Osteogenesis Duncan, et al., 2016

MS−275 Primary osteoblast precursors Increased TNAP Osteoblast bone formation Kim, et al., 2011

Table 2 : The role of HDAC inhibitors (HDACis) on osteogenesis

NaB : sodium butyrate ; VPA : valproic acid ; TSA : Trichostatin A ; SAHA : suberoylanilide hydroxamic acid ; MS−275 : benzamide ; ALP : alkaline phosphatase ;
Runx2 : runt−related transcription factor 2 ; OC : osteocalcin ; OSX : osterix ; OPN : osteopontin ; BMP2 : bone morphogenetic protein 2 ; BSP : bone sialoprotein ;
MMP−13 : matrix metallopeptidase ; TNAP : tissue−nonspecific alkaline phosphatase.
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