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INTRODUCTION

Infectious disease has grown in significance in
our increasingly impacted and altered marine eco -
systems (Harvell et al. 1999), with mollusks being
among the affected taxa (Ward and  Lafferty 2004).
Protozoan parasites in the genus Bonamia (Haplo -
sporidia; Sprague 1979) are one of the major threats
to oyster populations, yet we know little about how
and when they came to achieve their current distri-
butions. B. exitiosa (Hine et al. 2001, Berthe & Hine
2003) in particular has caused large-scale mortalities

in New Zealand Ostrea chilensis since it was discov-
ered in Foveaux Straight, New Zealand, in the 1980s
(Dinamani et al. 1987), with retrospective evidence
that it was associated with disease events as early as
1964 (Hine et al. 2001). Since its description, B. exi-
tiosa has been observed in several commercial and
non-commercial oyster hosts in various locations
around the world (Hill et al. 2014). In addition to O.
chilensis from New Zealand, it has been noted to
infect O. angasi and Saccostrea glomerata in Aus-
tralia; O. puelchana and O. stentina (= O. equestris,
Shilts et al. 2007) from Argentina; wild O. stentina (=
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ABSTRACT: The significance of infectious disease has intensified as our marine ecosystems are
increasingly altered, with molluscan taxa being among the affected. One of the important patho-
gens to emerge in recent years, the oyster parasite Bonamia exitiosa, has a broad geographic dis-
tribution and has been found to infect a number of oyster species. In order to better understand
how B. exitiosa achieved this wide distribution, a gene genealogy was constructed using internal
transcribed spacer region ribosomal DNA sequencing data from across the host species range.
The analysis revealed population structure in the form of 4 well-defined groups of sequences: 3
corresponding to geographic regions (temperate Atlantic and Pacific waters of the Southern
Hemisphere, California, and the western Atlantic along the coast of the Americas) and the fourth
geographically cosmopolitan. Inclusion of B. exitiosa sequences from New Zealand, Australia, and
Argentina in the Southern Hemisphere group may reflect natural dispersal of the parasite via raft-
ing with oyster hosts, whereas the California group may reflect limited anthropogenic movement
of a host species, Ostrea lurida. The extensive geographic distribution of B. exitiosa parasites
belonging to the cosmopolitan and Atlantic Coast groups may relate to both natural and anthro-
pogenic dispersal of a single host, O. stentina, which is distributed from the eastern Americas to
the Mediterranean and African coast to New Zealand — that is, in most regions where B. exitiosa
has been found to occur.
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O. equestris, Shilts et al. 2007) and experimental
Crassostrea ariakensis along the southeastern US
coast; O. lurida in California, USA; O. edulis in Eng-
land, Spain, and Italy; and O. stentina in Tunisia
(Kroeck & Montes 2005, Corbeil et al. 2006, Abollo et
al. 2008, Hill et al. 2010, 2014, Narcisi et al. 2010,
Longshaw et al. 2013). B. exitiosa also potentially
infects O. stentina (= O. aupouria, Shilts et al. 2007)
from New Zealand (based on PCR results only; Hill
et al. 2014). It is not yet clear how the disease it
causes (known as bonamiasis) impacts some popu -
lations, especially with respect to non-commercial
hosts. However, because B. exitiosa has been the
cause of severe mortality in some oyster species in
the wild (Doonan et al. 1994, Cranfield et al. 2005)
and in aquaculture systems (Burreson et al. 2004),
understanding how it came to achieve its wide distri-
bution is important. If the more recent observations
of B. exitiosa are the result of contemporary introduc-
tions rather than long-established presences that
have gone unnoticed, it is imperative that preventa-
tive measures be taken to obviate similar economic
and ecological losses due to accidental introductions
elsewhere.

Phylogeographic studies explore the principles and
processes involved in the geographical distributions
of genealogical lineages, especially those within and
among closely related species (Avise 2000). With the
rise in global connectivity, these studies are becom-
ing increasingly useful for tracking the concomitant
dispersal of organisms around the world. Some B.
exitiosa dispersal hypotheses have already been pro-
posed, but these have been based mainly on the
occurrence of epizootics and/or conjecture about the
parasite’s supposed presence/absence. For ex ample,
B. exitiosa purportedly reached Australia from its
presumed origins in New Zealand through shipment
of live, commercial-sized oysters, which were held in
Victorian and Tasmanian waters in the early 1990s
(Hine & Jones 1994, Hine 1996). Additionally, Abollo
et al. (2008) detected B. exitiosa in O. edulis in Gali-
cia, NW Spain, and they hypothesized that the para-
site could have been inadvertently introduced
through the legal or illegal importation of oysters
from B. exitiosa-endemic areas. The authors also
suggested the possibility of an introduction via the
ballast water and outer hulls of ships, which was a
hypothesis proposed by Bishop et al. (2006) regard-
ing the presence of B. exitiosa (then identified only as
Bonamia sp.) in North Carolina C. ariakensis and O.
stentina. We sought to test the validity of existing
hypotheses and to develop additional hypotheses
regarding the dispersal of B. exitiosa using network

analysis to examine internal transcribed spacer re -
gion ribosomal DNA (ITS rDNA) sequences of B. exi-
tiosa found in New Zealand, Australia, Argentina,
Tunisia, and along the east and west coasts of the
USA.

MATERIALS AND METHODS

Sample collection and DNA extraction

Samples of 7 oyster species were obtained from
10 locations (Table 1). Oysters were shucked, and
small pieces of gill and mantle tissue (~3−5 mm3)
were preserved individually in 95% ethanol or
placed directly in lysis solution (QIAamp DNA Kit,
Qiagen), except for the 2004 California Ostrea lurida
samples, where 3 to 4 individuals were placed in the
same tube and stored at −80°C until being trans-
ferred to 100% ethanol for shipping. Genomic DNA
from each oyster sample was extracted using a Qia-
gen QIAamp DNA Kit. DNA was eluted in 100−225 µl
of elution buffer and stored at 4°C.

PCR, cloning, and sequencing

PCR, cloning, and sequencing of ITS region rDNA
was performed as described by Hill et al. (2014).
Briefly, primers HaploITSf (Hill et al. 2010) and ITS-B
(= reverse primer D; Goggin 1994) were used to
amplify a ~750 base pair (bp) product, which in -
cludes ~220 bp of the 3’ end of the small subunit ribo-
somal RNA (SSU rRNA) gene, the complete ITS-1,
5.8S gene, and ITS-2 region rDNA, and a short frag-
ment (~20 bp) of large subunit (LSU) rDNA. A 25 µl
total reaction contained 1× PCR Buffer (Invitrogen),
2−2.5 mM MgCl2, 0.2 mM dNTPs, each primer at
0.25 µM, 0.05 U µl−1 Platinum Taq DNA polymerase
(Invitrogen), and 200−250 ng (= 0.5−1.6 µl) template
DNA. A 7 min initial denaturation was followed by
35 cycles of denaturation at 95°C for 1 min, annealing
between 55 and 61°C for 1 min, and extension at
72°C for 1.5 min, followed by a final extension at
72°C for 7 min.

Purified PCR products were cloned into plasmid
vector pCR4-TOPO using the TOPO TA Cloning Kit
(Invitrogen), and then transformed into One Shot
TOP10 competent Escherichia coli cells (Invitrogen).
Bacterial colonies containing plasmid inserts of the
appropriate size were cultured and then extracted
using the QIAprep Spin Miniprep Kit protocol (Qia-
gen). Primers HaploITSf (Hill et al. 2010) and ITS-B
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(= reverse primer D; Goggin 1994) were used for
bidirectional sequencing, which was performed on
either a LI-COR 4200L or a 16-capillary 3130xl
Genetic Analyzer (Applied Biosystems). Comple-
mentary sequences were compared to one another
and to their chromatograms using MacVector 8.0
(Oxford Molecular) or CodonCode Aligner.

Sequence alignment and network analysis

Bonamia exitiosa sequences were aligned using
MAFFT v. 6 (Katoh & Toh 2008). When identical B.
exitiosa sequences were recovered from an individ-
ual oyster host, a single representative se quence was
used in the alignment since it is not possible to dis-
criminate between the case of multiple B. exitiosa
parasites with identical sequences and the same B.
exitiosa clone that is recovered multiple times from
the same individual. The GenBank accession num-
bers of the sequences used are listed in Table 1. Once
the alignment was produced, the ends of longer
sequences were removed so that, with gaps, the
sequences were of equal length.

To examine the genealogical relationships among
sequences, the B. exitiosa sequence alignment was
analyzed using TCS (Clement et al. 2000). Gaps were
treated as a fifth state for the network analysis, and
the program calculated maximum connection steps
at 95%.

Genetic differentiation

Maximum likelihood fits of 24 different nucleotide
substitution models were conducted in MEGA6
(Tamura et al. 2013) and the lowest Bayesian infor-
mation criterion score was considered to best de -
scribe the observed substitution pattern among se -
quences. Sequences were collapsed into unique
haplotypes using FaBox v. 1.41 (Villesen 2007). Pop-
ulation pairwise ΦST values were calculated between
geographic collections with and without considera-
tion of B. exitiosa sequences recovered from different
host species as different groups. To assess the magni-
tude of differences between groups recovered by the
TCS analysis, pairwise ΦST values between groups
were calculated. Significance was assessed using
10000 permutations of the data. All ΦST values
between se quences were based on a Kimura 2-para-
meter (K2P) distance method using the Arlequin v.
3.1.5.3 software package (Excoffier & Lischer 2010).
Nucleotide diversity per site (π), gene diversity (h),

and the average number of pairwise nucleotide dif-
ferences with in and between sequences from differ-
ent locations and groups (k) were also calculated
using the Arlequin software assuming a K2P model.
Here, gene diversity (h) is defined as the probability
that 2 randomly chosen sequences are different in a
population (Nei 1987). Genetic differentiation esti-
mates and tests of population subdivision including
both haplotype- and nucleotide-based statistics were
calculated using DNAsp (Librado & Rozas 2009).

RESULTS

We found 290 Bonamia exitiosa ITS region rDNA
sequences from a total of 410 cloned and sequenced
PCR fragments (720 bp) recovered from 7 oyster host
species after excluding identical sequences recov-
ered from a single oyster. Information regarding the
number of individual oysters per geographic region
from which B. exitiosa sequences were obtained and
other information regarding clone number and aver-
ages per sampling location and host are presented in
Table 1. B. exitiosa sequences were obtained from 1
to 11 oysters per location. The average number of
clones sequenced per individual varied from 4.0 to
20.8, and the average number of unique sequences
per individual ranged from 2.5 to 16.4 (Table 1). The
total number of clones sequenced per region ranged
from 14 (Australia) to 104 (California), with the total
number of unique sequences ranging from 7 (Aus-
tralia) to 82 (California).

Of the 290 B. exitiosa sequences analyzed, 234
unique sequences were present, and 4 well-defined
groups emerged and were designated as ‘Cosmo -
politan,’ ‘Southern Hemisphere,’ ‘western Atlantic,’
and ‘California’ based on their geographic distribu-
tion (Figs. 1 & 2). The most common sequence be -
longed to the Cosmopolitan group and was found at
every sampling location where B. exitiosa was de -
tected by PCR except in California, and in every oys-
ter host species except Ostrea lurida from California,
Saccostrea glomerata from Australia, and O. chilen-
sis from New Zealand. This sequence was found in a
total of 23 individuals: 4 O. stentina from Tunisia, 4
O. puelchana and 3 O. stentina from Argentina, 1 O.
stentina from New Zealand, 1 O. angasi from Aus-
tralia, and 5 O. stentina and 5 Crassostrea ariakensis
from North Carolina, South Carolina, and/or Florida,
making up 36.7% of haplotypes in the Cosmopolitan
group. A second sequence (4.4% of haplotypes) with -
in the Cosmopolitan group was found in 4 individu-
als: 1 O. stentina from Tunisia, 2 O. puelchana from

68
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Fig. 1. TCS network of Bonamia exitiosa internal transcribed
spacer region rDNA sequences, generated using TCS v. 1.21
(Clement et al. 2000), where gaps were treated as a fifth
state and maximum connection steps were calculated at
95%. Network was refined using Adobe Illustrator and
Inkscape. Colors represent sampling locations from which
sequences were obtained. Individual sequences are repre-
sented by either solid ovals, or pie charts if the specific
sequence was found in more than 1 location. NC: North
 Carolina; SC: South Carolina; FL: Florida; CA: California.

Full species names are given in Table 1

Antarctic Circumpolar Current

Equator

O. stentina
(Payraudeau 1826)

O. stentina
(Say 1834)

Southern Hemisphere B. exitiosa 
California B. exitiosa

Cosmopolitan B. exitiosa 

Western Atlantic B. exitiosa 

O. lurida

S. glomerata

O. puelchana
O. stentina

O. stentina

O. angasi
O. chilensis

(Angas 1868)

Fig. 2. Current geographic distribution of Bonamia exitiosa lineages and
host Ostrea stentina, with depictions of propo sed dispersal hypotheses:
major global trade routes from the 1400s to the 1800s (black arrows;
Rodrigue 2013) and an example of 1 voyage (red arrows; Turnbull 2004)
out of hundreds made during the Age of Exploration. Of the 2 sizes of
orange circles, the smaller depicts finding a Southern Hemisphere B. 

exitiosa outside of its geographic range
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Argentina, and 1 C. ariakensis from North Carolina.
All but one B. exitiosa sequence from Tunisian O. sten -
tina (97.4%) belonged to the Cosmopolitan group.
Sequences within the Cosmopolitan group (n = 116)
had a nucleotide sequence diversity of 0.004 ± 0.002,
a gene diversity of 0.964 ± 0.014, and se quen ces dif-
fered by an average of 2.637 ± 1.418 nucleotides
(Table 2).

The second cluster of sequences, the Southern
Hemisphere group, was found almost exclusively in
oysters sampled in Argentina, New Zealand, and
Australia (96.3% of Southern Hemisphere sequences
were from these 3 sampling locations, Figs. 1 & 2).
Sequences within the Southern Hemisphere group
(n = 57) had a nucleotide sequence diversity of 0.003
± 0.002, a gene diversity of 0.983 ± 0.010, and
sequen ces differed by an average of 1.923 ± 1.110
nucleotides (Table 2). The most common sequence in
this group, representing 15.2% of Southern Hemi-
sphere haplotypes, was found in 7 individuals: 1 O.
puel chana from Argentina, 2 O. chilensis and 3 O.
sten tina from New Zealand, and 1 S. glomerata from
 Australia. A second sequence in the Southern Hemi -
sphere group (6.5% of Southern Hemisphere haplo-
types) was found in 3 individuals: 2 O. chilensis

from New Zealand and 1 O. stentina from Argentina.
Southern Hemisphere sequences were also recov-
ered from 2 oysters sampled from outside of this geo-
graphic region. One sequence from an O. stentina
from Tunisia was found to belong to the Southern
Hemisphere group and was identical to a sequence
found in an O. stentina from Argentina. A second
Southern Hemisphere sequence was found in 1 O.
lurida from California, and this sequence was identi-
cal to 2 sequences recovered from New Zealand, 1
found in O. chilensis and 1 found in O. stentina.

A third cluster of sequences, the western Atlantic
group, was predominantly found in samples taken
from North Carolina, South Carolina, and Florida;
66.7% of the western Atlantic group sequences were
from these locations. However, several sequences
from oysters sampled in Argentina also belonged to
this group. Overall, sequences within the western
Atlantic group (n = 36) had a nucleotide sequence
diversity of 0.002 ± 0.002, a gene diversity of 0.960 ±
0.020, and sequences differed by an average of 1.600
± 0.972 (Table 2). The most common western Atlantic
group sequence was found only in North and South
Carolina (Fig. 1). This sequence, which represented
24% of haplotypes in this group, was found in 6 indi-

70

Geographic region                Host(s)                                                                               n                 h                           k                          π

Sampling location
Australia                                Saccostrea glomerata                                                     4      1.000 ± 0.177       2.509 ± 1.690      0.004 ± 0.003
Australia                                Ostrea angasi                                                                  3      1.000 ± 0.272       4.026 ± 2.741      0.006 ± 0.005
Tunisia                                   O. stentina                                                                       38      0.996 ± 0.008       3.155 ± 1.670      0.004 ± 0.003
Argentina                              O. puelchana                                                                   46      0.993 ± 0.008       3.140 ± 1.657      0.004 ± 0.003
Argentina                              O. stentina                                                                       19      0.983 ± 0.026       2.277 ± 1.307      0.003 ± 0.002
New Zealand                         O. chilensis                                                                      24      0.989 ± 0.015       1.632 ± 0.998      0.002 ± 0.002
New Zealand                         O. stentina                                                                       20      0.984 ± 0.024       2.529 ± 1.420      0.004 ± 0.002
North Carolina                      C. ariakensis                                                                   21      0.976 ± 0.023       1.764 ± 1.064      0.002 ± 0.002
North and South Carolina    O. stentina                                                                       28      0.950 ± 0.025       1.645 ± 0.999      0.002 ± 0.002
Florida                                    Crassostrea ariakensis                                                    5      0.900 ± 0.161       1.605 ± 1.131      0.002 ± 0.002
California                               O. lurida                                                                          82      0.994 ± 0.004       2.660 ± 1.433      0.004 ± 0.002

TCS grouping
Southern Hemisphere          O. stentina, O. chilensis, O. puelchana, S. glomerata 57      0.983 ± 0.009       1.923 ± 1.110      0.003 ± 0.002
California                               O. lurida                                                                          81      0.994 ± 0.004       2.643 ± 1.426      0.004 ± 0.002
Cosmopolitan                        O. stentina, O. puelchana, C. ariakensis, O. angasi    116      0.964 ± 0.014       2.637 ± 1.418      0.004 ± 0.002
Western Atlantic                   O. stentina, C. ariakensis                                               36      0.960 ± 0.020       1.600 ± 0.972      0.002 ± 0.002

TCS Cosmopolitan group
Tunisia                                   O. stentina                                                                       37      0.996 ± 0.008       3.231 ± 1.705      0.005 ± 0.003
Argentina                              O. stentina, O. puelchana                                              39      0.970 ± 0.020       2.623 ± 1.433      0.004 ± 0.002
Western Atlantic                   O. stentina, C. ariakensis                                               30      0.897 ± 0.053       1.807 ± 1.072      0.003 ± 0.002
(North & South Carolina,
Florida, USA)

Australia/New Zealand        O. stentina, O. angasi                                                     9      0.972 ± 0.064       2.904 ± 1.680      0.004 ± 0.003

Table 2. Diversity indices of Bonamia exitiosa by sampling location and by TCS analysis results. n: number of sequences analyzed; h: gene
diversity; k: average number of pairwise nucleotide differences within and between sequences from different locations and groups; 

π: nucleotide diversity per site
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viduals: 4 O. stentina (3 from North Car-
olina and 1 from South Carolina) and 2 C.
ariakensis from North Carolina. A second
sequence was shared between 2 O. stentina
and 2 C. ariakensis from North Carolina
(16% of haplotypes in this group). A third
sequence was found in 2 O. stentina (1 from
North Carolina and 1 from South Carolina)
and 1 C. ariakensis from North Caro lina
(8%), and a fourth sequence was found in 2
O. stentina: 1 from North Carolina and 1
from South Carolina (8%). All other
sequences were unique. Twelve sequences
recovered from oysters sampled in
Argentina were found to belong to the
western Atlantic group, 9 from O.
puelchana and 3 from O. sten tina, compris-
ing 18.5% of the sequen ces from Argentina.

The 2 most common sequences in the Cal-
ifornia group were each found 5 times (each
representing 6.8% of haplotypes in this
group) and differed from each other by 1 bp
(Fig. 1). These sequences were only found
in O. lurida from California. The other
sequences belonging to this group were
unique. Sequences within the California
group (n = 81) had a nucleotide sequence
diversity of 0.004 ± 0.002, a gene diversity of
0.994 ± 0.004, and sequences differed by
an average of 2.643 ± 1.426 nucleotides
(Table 2).

Overall, gene diversity was 0.99, and there
were an average of 7.94 nucleotide differ-
ences among the groups. The number of un-
corrected average pairwise distances be-
tween groups ranged from 1.888 be tween
the Southern Hemisphere and western At-
lantic groups and 4.220 between Southern
Hemisphere and California groups. Popula-
tion pairwise ΦST values ranged from 0.043
between the Atlantic Coast and California
groups to 0.450 between the Southern
Hemisphere and California groups. Esti-
mates of genetic differentiation including
both gene- and nucleotide-based estimates
indicated that there were significant differ-
ences among all groups (p < 0.001; Table 3A)

To examine the relationships among geo -
graphic regions, sequences were grouped
by collection location (without regard to
TCS clustering). If B. exitiosa was found in
multiple host species in a single geo-
graphic region, host species were analyzed
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separately. The highest pairwise ΦST values among
 geographic regions were between B. exitiosa se -
quences recovered from O. lurida from California
and O. chilensis from New Zealand (0.437, p <
0.001, Table 3B); these sequences differed by an
uncorrected average of 4.1 bp among sequences
from the 2 locations (Table 4). Within a collection
location, significant differences were seen between
B. exitiosa from O. stentina and O. chilensis in New
Zealand (ΦST = 0.036, p = 0.005), and these se -
quences differed by an average of 2.2 bp. Signifi-
cant differences were also observed between para-
site sequences collected from O. angasi and S.
glomerata collected in Australia (ΦST = 0.190, p =
0.027). Sequences taken from these 2 hosts differed
by an average of 4.0 bp; however, the overall num-
ber of sequences examined was small (n = 7). There
were no significant differences between B. exitiosa
sequences sampled from O. puel chana and O.
stentina collected in Argentina or between O.
stentina and C. ariakensis collected in North and
South Carolina nor between either Caro lina oyster
and C. ariakensis collected in Florida.

Since the Cosmopolitan group was distributed
among all sampling locations, with the exception of
California, patterns of diversity among locations
within this group were examined separately. Cosmo-
politan B. exitiosa sequences from Tunisia were the
most diverse, having the highest gene diversity
(0.996 ± 0.008), nucleotide diversity (0.005 ± 0.003),
and number of pairwise differences among se -
quences (3.231 ± 1.705). The lowest values of all
measures within this group occurred in sequences
recovered from North and South Carolina and
Florida (Table 2).

DISCUSSION

The analyses in this study revealed that Bonamia
exitiosa has a significant level of population structure
based on ITS region rDNA sequences, demonstrating
that while some sequences are distributed broadly,
others appear to be confined to particular geographic
areas. The network displays a strong geographic
 signal in the distribution of B. exitiosa sequences, and
these differences are statistically significant. Samples
comprise 4 reasonably well-defined groups: (1) the
Cosmopolitan group, which represents B. exitiosa se-
quences from almost all sampling locations except
California; (2) the western Atlantic group, which rep-
resents sequences from North and South Carolina,
Florida, and Argentina; (3) the Southern Hemisphere
group, which is composed mostly of sequences from
Argentina, New Zealand, and Australia, with the ex-
ception of a sequence from California and another
from Tunisia; and (4) the California group, which only
includes sequences found in California. These phylo-
geographic groupings like ly indicate that natural
 historical factors at least partly shaped the current
 distribution of B. exitiosa. However, contemporary
anthro pogenic factors (e.g. intentional and uninten-
tional introduction or transplantation of oysters for
aquaculture or fisheries  restoration, or via ship hulls
or ballast) also seem to be influencing its distribution
as seen with the wide distribution of Cosmopolitan
group sequences and the occasional detection of
Southern Hemisphere B. exitiosa sequences in north-
ern locations (Tunisia and California).

The predominant cell form of B. exitiosa in host tis-
sue is a naked, uninucleate microcell less than 5 µm in
size, and it is unknown what form the parasite takes
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ARG_Opu ARG_Ost NZL_Ost NZL_Och AUS_Sgl AUS_Oan USA_ USA_NC_ TUN_Ost USA_ USA_FL_
NSC_Ost Car CA_Olu Car

ARG_Opu 2.702 2.961 2.793 3.254 3.634 2.402 2.489 3.321 3.639 2.534
ARG_Ost −0.030 2.493 2.324 2.762 3.193 1.974 2.053 2.884 3.233 2.094
NZL_Ost 0.100 0.068 2.174 2.643 3.572 2.272 2.422 3.361 4.023 2.586
NZL_Och 0.386 0.353 0.073 2.117 3.509 2.140 2.346 3.404 4.061 2.626
AUS_Sgl 0.397 0.340 0.092 0.020 3.975 2.605 2.811 3.858 4.516 3.091
AUS_Oan 0.012 0.007 0.257 0.646 0.663 2.846 2.892 3.647 3.973 2.850
USA_NSC_Ost −0.013 −0.005 0.163 0.485 0.499 −0.024 1.714 2.507 2.610 1.719
USA_NC_Car 0.015 0.015 0.254 0.632 0.647 −0.037 −0.008 2.524 2.812 1.723
TUN_Ost 0.145 0.143 0.491 0.988 0.992 0.016 0.083 0.040 3.933 2.414
USA_CA_Olu 0.724 0.753 1.414 1.906 1.911 0.603 0.447 0.590 1.008 3.095
USA_FL_Car 0.138 0.134 0.496 0.989 1.005 0.000 0.075 0.020 0.009 0.951

Table 4. Pairwise differences between populations of Bonamia exitiosa based on a Kimura 2-parameter distance method are shown above
the diagonal and the corrected average pairwise difference between populations (πbetween xy – (πwithin x + πwithin y) / 2) are below the diagonal. 

Location and host abbreviations as in Table 3
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when released from the host and into the environ-
ment. The duration of B. exitiosa survival outside of
the host is unknown, but Arzul et al. (2009) found that
purified B. ostreae cells from host tissue had a clear
preference for specific environmental conditions such
as temperature (<25°C) and salinity (euhaline), and
further demonstrated that the percentage of B.
ostreae cells producing esterase activity (a measure of
cell viability) decreased significantly at most salinities
after 48 h in suspension (Arzul et al. 2009). B. perspora
Carnegie et al. 2006 is currently the only Bonamia
species for which spores have been observed. This
finding could suggest that other species within the
genus also produce these more resistant life-stages
(Carnegie et al. 2006) and support the hypothesis of
dispersal via ballast water and/or along oceanic cur-
rents. However, having not observed these stages in
B. exitiosa, it seems unlikely that the parasite could
disperse great distances through varied environments
on its own, suggesting that natural and/or anthro-
pogenic co-dispersal of the parasite and host(s) ap-
pears most likely. Based on the geographic patterns
resulting from the TCS network analysis, as well as
the diversity of the sequences at each location, we dis-
cuss potential distribution hypo theses of B. exitiosa.

Southern Hemisphere Bonamia exitiosa

Some B. exitiosa sequences seem to be restricted to
the Southern Hemisphere, with grouping of sequen -
ces from Argentina, northern and southern New
Zealand, and Australia, with 2 exceptions: 1 sequen -
ce from Tunisia that is identical to a sequence found
in Argentina in the same oyster host, O. stentina, and
another sequence from California that is identical to
a sequence found in both northern and southern
New Zealand in 3 different oyster hosts (O. lurida, O.
stentina, and O. chilensis, respectively). These se -
quences are clearly nested within the Southern
Hemisphere group, potentially indicating a more
recent introduction of the Southern Hemisphere B.
exitiosa to California and Tunisia. Because of the
geographic disjunction of these sequences, anthro-
pogenic means likely facilitated the dispersal of
these exceptions.

Although B. exitiosa sequences found in New Zea -
land were predominantly in this group, sequences
from northern New Zealand O. stentina belonged to
both the Southern Hemisphere and Cosmopolitan
groups while sequences from southern New Zealand
O. chilensis exclusively belonged to the Southern
Hemisphere group. Consequently, there were signif-

icant differences between these 2 sampling areas.
Sampling location and host, therefore, influences the
geographic patterns we see, highlighting the impor-
tance of exploring more locations and hosts. Oysters
have been intentionally transplanted to novel loca-
tions worldwide since Roman times (Andrews 1980),
resulting in the introduction of pathogens to new
locales and to naïve, native hosts (Bishop et al. 2006).
Crassostrea gigas was introduced to northwestern
New Zealand in 1958 from Japan or Tasmania, Aus-
tralia (Ruesink et al. 2005), and is hypothesized to be
a reservoir for B. exitiosa (Lynch et al. 2010). Perhaps
this is when the Cosmopolitan B. exitiosa was intro-
duced to northern New Zealand. However, until B.
exitiosa ITS region rDNA sequences from C. gigas
and other locations in New Zealand are obtained, we
cannot speculate further.

With respect to all other sequences found in the
Southern Hemisphere group, it appears that gene
flow is occurring between New Zealand, Australian,
and Argentinean populations of B. exitiosa. One
likely natural mechanism is rafting of B. exitiosa-
infected oysters on surface currents, such as the
Antarctic Circumpolar Current, which has been sug-
gested as a dispersal mechanism for O. chilensis from
New Zealand to Chile (Ó Foighil et al. 1999, Donald
et al. 2005). Providing a means of transport for the
host would also conceivably allow transport of the
parasite B. exitiosa. To further validate this hypo -
thesis, additional samples from Chile and from the
African coasts would need to be examined.

California Bonamia exitiosa

Seventy-one B. exitiosa sequences found in O.
lurida from California were unique to this sampling
location and host, with the exception of the single
 sequence which clustered with the Southern Hemi-
sphere (Figs. 1 & 2). Other than the possible recent
introduction of the Southern Hemisphere B. exitiosa
into California, it appears that there is and has been
little connectivity between California B. exitiosa pop-
ulations and those of other regions. Based on gene di-
versity (h = 0.99) and the structure of the network, the
recent introduction of a majority of B. exitiosa to Cal-
ifornia is unlikely. A recent introduction would likely
show a network dominated by a single sequen ce that
was very closely related or identical to se quences
from the geographic area from which it was intro-
duced rather than the patterns observed in this study.

Restricted dispersal of this particular B. exitiosa
 lineage could be a result of both natural and anthro-
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pogenic influences. Historically, O. lurida ranged
from Baja California (Mexico) to Sitka, Alaska (USA)
(Dall 1914), which would define the natural range of
this B. exitiosa group if it is in fact host specific, and
there is currently limited anthropogenic movement
of this severely depleted oyster species. Additionally,
the East Pacific Barrier, which is 5400 to 7300 km of
uninterrupted open water (Grigg & Hey 1992), could
also prevent the natural dispersal via rafting of both
host and parasite, as has been demonstrated for other
fauna (Grigg & Hey 1992).

The introduction of B. exitiosa into this region was
likely facilitated by anthropogenic means. In Elkhorn
Slough, California, alone, 38 of 58 known marine
invasive species were likely introduced through oys-
ter culture (Wasson et al. 2001). Based on the number
of pairwise differences and pairwise ΦST values in
this dataset, the California group appears to be most
closely related to the western Atlantic group, sug-
gesting that the California B. exitiosa may have
origin ated from the western Atlantic coast (or vice
versa). However, it would also be important to ex -
plore other regions and hosts. Again, C. gigas, one of
the most cosmopolitan macroscopic marine inverte-
brates, was introduced to the US West Coast in 1902
(Ruesink et al. 2005) and should be considered in
future efforts to better understand its potential role in
the dispersal of B. exitiosa.

Cosmopolitan and western Atlantic 
Bonamia exitiosa

The Cosmopolitan group represents sequences
found in all sampling locations except in California.
This group may represent dispersal over some
unknown time period of a lineage particularly adapt-
able to new hosts and environments, or it may reflect
recent and extensive anthropogenic dispersal. Mech-
anisms of distribution probably vary, but anthro-
pogenic means seem most likely given the disjunct
geographic distribution of these samples. The ana -
lysis of B. exitiosa ITS region rDNA also reveals a
more loosely defined cluster of sequences that are
closely related to the Cosmopolitan group, but ap -
pear to be restricted to the western Atlantic coast
(North Carolina, South Carolina, Florida, and even
Argentina), found in wild O. puelchana and O. sten -
tina, and experimental Crassostrea ariakensis.

One host that appears to be present in all locations,
except California, is O. stentina. A phylogenetic
 stu dy of Ostrea species found O. stentina, O. eques -
tris, and O. aupouria to be synonymous (Shilts et al.

2007). All are known hosts of B. exitiosa (Hill et al.
2014), and occur in nearly every geographic region
from which B. exitiosa has been detected: New
Zealand/ Australia, the southeastern USA, and the
Mediterra nean Sea. Each of the oyster species syn-
onymized by Shilts et al. (2007) was described in the
1800s: O. stentina in 1826, O. equestris in 1834, and
O. aupouria (= Ostreola virescens) in 1868 (Cook
2010). Thus, this oyster species has been established
in its various locales for a minimum of 142 yr, making
it possible for B. exitiosa to have been established for
at least this long. Therefore, introduction via natural
or anthropogenic means in recent decades cannot
fully explain the distribution of this single host and
this parasite.

Furthermore, the diversity of B. exitiosa ITS region
rDNAsequences seen in North Carolina, South Caro -
lina, and Florida is indicative of a non-recent intro-
duction and/or multiple introductions. The former
contradicts the hypothesis proposed by Bishop et al.
(2006) that recent anthropogenic dispersal via ballast
water may explain how B. exitiosa came to be in
North Carolina. Without a molecular clock and addi-
tional genetic data of the hosts themselves, it is diffi-
cult to say exactly when this distribution occurred.
However, it is plausible that ships during the Age of
Exploration (ca. 1400−1800s) colonized by a small
oyster, such as O. stentina, could have provided
transport of B. exitiosa.

Natural dispersal of the parasite also may be occur-
ring in the populations of the western Atlantic coast.
If a continuous host population exists, it is possible
that the western Atlantic coast B. exitiosa is dispers-
ing through direct transmission. With oyster popula-
tions in close proximity, hydrodynamics and topo-
graphical features may also affect the distribution of
the parasite through the water column (Cranfield et
al. 2005). Natural co-dispersal with a host or hosts is
also a possibility given the geographical proximity of
the populations.

O. stentina has not been reported from California,
so the presence of B. exitiosa may reflect a limited
invasion event. Perhaps B. exitiosa-infected O. sten -
tina were introduced transmitting the parasite to
the native oyster, O. lurida, but did not establish pop-
ulations. Alternatively, O. stentina may be present
cryptically.

Origins of Bonamia exitiosa

With increasing observations of B. exitiosa around
the world, the geographic origin of the parasite is
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becoming less clear. Because B. exitiosa is present
in archival histological material of O. chilensis from
Foveaux Strait, New Zealand, dating to 1964 (Hine &
Jones 1994), it was hypothesized that the parasite is
enzootic to this region (Hine 1996, Corbeil et al.
2006). However, only the Southern Hemisphere B.
exitiosa was found in this host, and this group is not
as diverse as the Cosmopolitan group based on our
dataset. The highest diversity was observed in B.
 exitiosa found in Tunisian O. stentina, suggesting a
Mediterranean origin. On the other hand, Bonamia
spp. SSU rDNA phylogenies have a basal Bonamia
sp. in Hawaii (Hill et al. 2014), suggesting an origin at
lower latitudes. Exploration of more tropical locations
from additional non-commercial host species may
provide further insight to the derivation of B. exitiosa.

FUTURE WORK

To better understand how Bonamia exitiosa came
to achieve its current distribution, it is essential to
understand how its hosts were distributed. The distri-
bution of hosts, particularly the widely distributed
host Ostrea stentina, has heavily influenced the
 dispersal and current biogeographic patterns of the
parasite. It is obvious based on this dataset that B.
exitiosa has a complex history that includes many
introductions, both recent and historical. These find-
ings emphasize the need for additional sampling to
fill in geographic gaps (e.g. Africa, Asia, and Europe;
Abollo et al. 2008, Narcisi et al. 2010, Longshaw et al.
2013) as well as additional potential hosts (e.g. Crass-
ostrea gigas). Additional sampling would also allow
calculation of more accurate distance estimates, fur-
ther resolve the relationships among sampling areas,
and perhaps find other evidence of recent dispersal
of the parasite.

These hypotheses should further be tested by
developing multiple genetic loci of oyster hosts and
B. exitiosa, as well as the development of a molecular
clock. This would further elucidate phylogeographic
patterns and dispersal timing of the various hosts and
the parasite and perhaps lead to insight into the
question of origin.
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