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Executive Summary 
 

The sustained production of sufficient forage is critical to advancing ecosystem-based 

management in Chesapeake Bay.  Yet factors that affect local abundances and habitat conditions 

necessary to support forage production remain largely unexplored.  Here, we quantified suitable habitat 

in the Chesapeake Bay region for four key forage fishes:  bay anchovy Anchoa mitchilli, juvenile spot 

Leiostomus xanthurus, juvenile weakfish Cynoscion regalis, and juvenile spotted hake Urophycis regia.  

We coupled information from 17 years of monthly fisheries surveys with hindcasts from a numerical 

model of dissolved oxygen (DO) conditions and a 3-D hydrodynamic model of the Bay that provided 

estimates of habitat conditions across 18 covariates of salinity, temperature, DO, depth, and current 

speed for the period 2000 to 2016.  Sediment composition and distance to shore metrics were also 

considered.  The hindcast covariates were subsampled at the times and locations of the fisheries surveys 

to provide dynamic habitat metrics that are not generally observed at the time of fish sampling (e.g., 

current velocity, salinity stratification).  Hindcast covariates were also used to describe habitat 

conditions in areas of Chesapeake Bay that are not sampled routinely by fisheries-independent surveys 

such as the Potomac River and Mobjack Bay.  Boosted regression trees were used to identify influential 

habitat covariates for each species, and these influential covariates were then used to construct habitat 

suitability models.  Habitat suitability indices, which ranged between 0 (poor habitat) and 1 (superior 

habitat), were assigned to each location in the 3-D model grid for each season in 2000-2016.  Based on 

the estimated habitat suitability index and using a GIS approach, we quantified suitable habitat (defined 

as habitats with a habitat suitability index > 0.5) throughout the Chesapeake Bay and its tidal tributaries.  

Furthermore, we validated the modeling approach using out-of-sample observations from Mobjack Bay 

in 2010-2012.   

Suitable seasonal habitat extents for forage species exhibited strong seasonal and annual signals 

reflecting temporal heterogeneity in habitat conditions in Chesapeake Bay.  Current speed, water depth, 

and either temperature or dissolved oxygen were identified as important covariates for the four forage 

species we examined, and distance to shore was important for three of the four species; thus, suitable 

habitat conditions resulted from a complex interplay between water quality and the physical properties 

of the habitat.  In our study, two species exhibited a relationship between relative abundance and 

extent of suitable habitats – juvenile spot in summer and bay anchovy in winter; as such, estimates of 

the minimum habitat area required to produce a desired abundance (or biomass) of forage fish can be 

used to establish quantitative habitat targets or spatial thresholds that may serve as spatial reference 

points for management.  In an ecosystem-based approach, important habitats may be targeted for 

protection (e.g., by limiting fishing activities that may incidentally capture or injure forage fishes) or 

restoration (e.g., by improving water quality conditions), thereby ensuring production of sufficient 

forage for predators.  In addition, the consequences of aquatic habitat alterations, whether due to 

climate change or physical disturbances can be investigated using projections of environmental 

conditions and habitat suitability in the region, though these projections will introduce additional 

uncertainty. 
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Introduction 
 

Stock assessments rarely account for trophic interactions among aquatic predators and their 

prey, yet such interactions are recognized as critical to advancing ecosystem-based management.  

Indeed, the spatial distribution and abundance of prey may drive the distribution and abundance of 

their predators.  For example, predators such as summer flounder use estuarine and coastal waters of 

the eastern US to feed on abundant prey during spring, summer, and fall (Murdy et al. 1997; Latour et 

al. 2008; Buchheister and Latour 2011), and striped bass undertake seasonal feeding migrations along 

the US coast to utilize abundant prey in non-natal estuaries (Mather et al. 2009).  Migratory movements 

and trophic interactions of predators such as summer flounder and striped contribute to the 

connectivity between coastal and offshore ecosystems.  Furthermore, the abundance of prey may affect 

the overall health and condition of predators that rely on the supply of sufficient prey for maintenance 

and growth.  For example, long-term, broad-scale patterns in the productivity of the Chesapeake Bay is 

reflected as changes in body condition of piscivorous fishes, suggesting bottom-up effects on fish 

productivity (Latour et al. 2017).  Low abundance of prey species, particularly prey fish, may affect the 

health of predators:  for example, the severity of mycobacterium disease in Chesapeake Bay striped bass 

is associated with low prey abundance (Jacobs et al. 2009).  Forage fishes often comprise important 

components of the diet of top predators and serve as a link between trophic levels; furthermore, the 

continued production of sufficient forage fish is recognized as critical to advancing ecosystem-based 

management in the Bay (CBP 2015, 2018; Ihde et al. 2015).  Although feeding habits of many predators 

are well studied, the distribution and abundance of prey species that comprise the forage base of 

predators have received less attention (but see Arbeider et al. 2019 and Woodland et al. in press).  In 

particular, the relationship between the abundance of forage species and the extent of their suitable 

habitats remains largely unexplored.  

Static features of the environment, such as substrate type, are often used to characterize fish 

habitats because such features affect fish distributions and habitat use (Day et al. 1989; Fabrizio et al. 

2013).  Dynamic environmental conditions such as salinity, temperature, dissolved oxygen (DO), and 

depth also contribute to variations in the distribution and abundance of estuarine and coastal species.  

In the dynamic estuarine environment, conditions vary across multiple spatial scales and annual, 

seasonal, daily, and tidal scales.  The range of dynamic conditions is large in temperate estuaries and 

often dictates the phenology and spatial distribution of fishes (Buchheister et al. 2013).  For example, in 

river-dominated estuaries, river flow affects salinity and alters the extent of suitable habitats for juvenile 

fishes (Kostecki et al. 2010), many of which may serve as forage for predators.  For ectotherms, 

temperature is a key determinant of habitat suitability because critical processes such as metabolic 

rates, movement, and growth are governed by temperature (Little et al. 2020).  Seasonal changes in DO 

concentrations in estuarine and coastal waters may also shape the distribution and habitat use of fishes.  

In particular, abundance of fish is low in hypoxic (< 2 mg O2/l) regions of estuaries and nearshore waters 

(Craig and Crowder 2005; Zhang et al. 2009; Buchheister et al. 2013; Glaspie et al. 2019), suggesting that 

fishes actively avoid hypoxic habitats.  Low DO conditions are believed to limit the extent of suitable 

habitat for fishes, particularly during summer in estuarine and coastal systems that exhibit prolonged 

seasonal hypoxia.   

Other habitat features, such as bottom-current velocities, water column stability, and salinity 

stratification, may contribute to the variation in the spatial distribution and abundance of fishes and 

other organisms (Manderson et al. 2011; Jenkins et al. 2015; Bever et al. 2016).  For example, 

predictions of suitable habitats for the endangered Delta smelt Hypomesus transpacificus in the San 
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Francisco Estuary were improved when current velocities were considered in addition to salinity and 

turbidity conditions (Bever et al. 2016).  Small-bodied fishes such as Delta smelt and anchovies may 

select areas of low current velocities presumably to maintain position while minimizing energy 

expenditure in a dynamic environment (Hatin et al. 2007).  Species that use chemical cues to detect 

predators may avoid areas with high current velocities because such currents may interfere with their 

ability to escape from predators (Powers and Kittinger 2002).  Conversely, estuarine habitats with higher 

current velocities may enhance feeding of some species by increasing the delivery of planktonic prey 

(Parsons et al. 2015).  Other species may use tidal currents to assist in horizontal movements within the 

estuary (e.g., tidal-stream transport), and thus, current speed may be important for elucidating patterns 

in habitat use.  Hydrodynamic complexity may therefore represent a key determinant of suitable 

habitats in estuarine systems (Bever et al. 2016).  Indeed, hydrodynamic models have been used to 

estimate habitat volume for estuarine species using information on physiological tolerances and 

bioenergetics requirements (e.g., Schlenger et al. 2013).  Outputs from such models have also been used 

to assess the effect of sea-level rise on fishes that depend on marsh habitats for juvenile growth and 

survival (Fulford et al. 2014).  A few studies have coupled hydrodynamic models with fisheries surveys to 

assess the extent of suitable habitats (Le Pape et al. 2003; MacWilliams et al. 2016; Bever et al. 2016), 

but only one study (Le Pape et al. 2003) examined the relationship between abundance of fish and 

changes in the extent of suitable estuarine habitat. 

Forage-fish management must not only be informed by knowledge of the characteristics of 

suitable habitat, but also by the dynamics of the extent of habitats that support these species.  The 

largest estuary in the US, the Chesapeake Bay, provides a useful model in which to investigate the 

relationship between annual changes in forage abundance and the extent of suitable coastal habitats.  

The health and sustainability of iconic fisheries in this system depend on sufficient production and 

availability of forage as well as effective management and protection from anthropogenic degradation 

of habitats.  With the exception of a single study (Woodland et al. in press), habitat conditions necessary 

to support forage production in this system remain largely unexplored.   

In this study, we considered four forage fishes that are numerically dominant in the fish 

community of Chesapeake Bay (Tuckey and Fabrizio 2020):  bay anchovy Anchoa mitchilli, juvenile spot 

Leiostomus xanthurus, juvenile spotted hake Urophycis regia, and juvenile weakfish Cynoscion regalis.  

We focus on forage fishes rather than invertebrates because of the availability of temporally and 

spatially rich data for these taxa in Chesapeake Bay.  Small-bodied fishes such as bay anchovy and the 

juvenile stages of larger species are important components of the diets of resident and transient 

predators in Chesapeake Bay (Buchheister and Latour 2011; Buchheister and Latour 2015).  Together, 

the selected forage species are available year-round.  Our objectives were to (1) quantify suitable 

habitats for forage species in Chesapeake Bay from 2000 to 2016, and (2) assess the relationship 

between the extent of suitable habitats and annual forage abundance.  Because we selected 

taxonomically and ecologically disparate species, we expected that suitable habitats would be defined 

by habitat features that differed among species.  If the extent of suitable habitats limits the production 

of forage fishes in Chesapeake Bay, then we would expect annual patterns in forage fish abundances to 

exhibit patterns similar to those for suitable habitats. 

To address our objectives, we examined monthly catches of forage fishes from fisheries-

independent surveys along with descriptors of habitat conditions.  Because fish-habitat relationships are 

best derived from observations across broad spatial scales and long time periods (Gray et al. 2011; 

Lecours et al. 2015), we quantified these relationships for Chesapeake Bay and its subestuaries during 

the 17-year period, 2000-2016.  We considered many covariates because we were unsure about which 
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ones may play a role in fish-habitat use, and because uncertainty in fish-habitat models may arise from 

the omission of covariates that limit habitat use (Cade et al. 2005).  Furthermore, rather than 

considering only those habitat features measured at the time of fish sampling (i.e., bottom temperature, 

salinity, DO), we considered dynamic habitat conditions obtained as hindcasts from two numerical 

models, as well as several static features as covariates for habitat suitability modeling.  Model covariates 

included DO, depth, and multiple salinity, temperature, and current speed covariates, as well as 

sediment composition and distance to shore.  We applied a data-driven approach, boosted regression 

tree analysis (Elith et al. 2008), to select a subset of habitat covariates that were most influential in 

explaining fish relative abundance.  Nonparametric suitability models using the histogram approach 

were then constructed using the selected influential covariates following the method in Tanaka and 

Chen (2015) and Guan et al. (2016).  This nonparametric method ascribes higher suitability to conditions 

in which greater abundances of organisms are observed, and as such, are process-based models.  

Nonparametric suitability models have been applied to estimate annual changes in habitat suitability for 

American lobster (Tanaka and Chen 2015) and Atlantic cod (Guan et al. 2016) in the northwest Atlantic 

Ocean.  However, habitat suitability modeling has not yet been applied to understand fish-habitat 

relationships in Atlantic coast estuaries, systems which likely exhibit less depth variation but greater 

tidal ranges and dynamic habitat conditions.  Habitat suitability models for each of the four forage 

species were used to visualize and quantify seasonally suitable habitat throughout the Chesapeake Bay 

from 2000 to 2016.  We examined seasonal habitat suitability because some of these species are 

seasonal migrants that use the Chesapeake Bay as a nursery.  Finally, to assess the role of habitat area in 

driving forage fish abundance, we used nonparametric regressions to relate annual estimates of the 

extent of suitable habitat to annual baywide estimates of fish abundance.   

 

Methods 
 

We developed an integrated modeling framework to couple information on the abundance of 

forage taxa with environmental conditions estimated from two numerical models of Chesapeake Bay.  

The primary data were monthly catches from fishery-independent surveys of forage fishes, hindcasts of 

dynamic environmental conditions (covariates describing salinity, temperature, current speed, depth, 

and dissolved oxygen conditions), and estimates of static habitat conditions (sediment composition and 

distance to shore).  

Fisheries surveys and estimation of relative abundance 
Geo-referenced catches of forage fishes were obtained from two bottom-trawl surveys:  the 

Virginia Institute of Marine Science Juvenile Fish Trawl Survey (hereafter, Virginia survey) and the 

Maryland DNR Blue Crab Summer Trawl Survey (hereafter, Maryland survey).  The sampling domain of 

the Virginia survey includes waters greater than 1.2 m depth throughout Virginia tidal waters of the 

Chesapeake Bay and its major tributaries (James, York, and Rappahannock rivers; Figure 1A).  Each 

month, from January to December, the Virginia survey sampled fishes from 111 stations selected from a 

random stratified survey design (Table 1).  A 30’ semi-balloon bottom trawl was deployed for 5 minutes 

at each site; protocol details are available in Tuckey and Fabrizio (2016).  In addition, the Virginia survey 

sampled Mobjack Bay, a large subregion of the Chesapeake Bay system, in summer 2010-2012 using a 

stratified sampling design.  Fisheries observations from Mobjack Bay were considered for external 

validation of the habitat suitability models.  The Maryland survey is primarily a shallow-water survey 
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(mean depth=2.1 m; all sites < 5.5 m deep) that samples fishes from fixed sites in tributaries and sounds 

of the Maryland portion of the Chesapeake Bay (Figure 1B).  A 16' semi-balloon otter trawl is towed for 6 

minutes at each site.  In 2000 and 2001, sampling was conducted monthly from May through October at 

37 sites in the Chester River, Choptank River, Eastern Bay, Patuxent River, Pocomoke Sound, and Tangier 

Sound.  In 2002 and thereafter, 16 additional sites were sampled in Fishing Bay, the Little Choptank 

River, and the Nanticoke River (57 sites total; Table 1; Figure 1B).  No sampling occurred in Maryland 

waters in May 2006. 

Species and seasons -- We considered juvenile (age-0) spot, weakfish, and spotted hake as 

forage for piscivorous species in Chesapeake Bay; all life stages of bay anchovy were considered forage. 

Because the Virginia survey encounters multiple age classes of the targeted species, we applied monthly 

threshold values of fork length (bay anchovy only, mm) or total length (mm) from the Virginia survey to 

enumerate the catch of age-0 spot, weakfish, and spotted hake (Tuckey and Fabrizio 2016); spot, 

weakfish, and spotted hake captured by the Maryland survey were assumed to be predominantly 

juvenile fish, as no length measurements were available for these species.  This assumption was 

reasonable because of the small size of the gear and shallow depths sampled by the Maryland trawl; 

shallow habitats such as these are predominantly used by small-bodied fishes (e.g., Blaber and Blaber 

1980; Ruiz et al. 1993).   

For each trawl tow, we expressed the relative index of abundance as the catch per unit effort 

(CPUE), where effort was estimated by the area swept by the net.  Area swept (km2) was calculated as 

the product of the width of the net opening (3.19 m for the Virginia survey, 2.85 m for the Maryland 

survey) and the length of the tow (km) estimated as the geodetic distance between the GPS coordinates 

recorded at the beginning and end of each tow.  To ensure that CPUE represented relative abundance, 

catches from only those seasons in which individuals were available to the gear were considered:  

juvenile spotted hake in spring (March, April, May); juvenile spot in summer (June, July, August) and fall 

(September, October, November); juvenile weakfish in summer and fall; and bay anchovy in summer, 

fall, and winter (December, January, February).  Note that no sampling was completed in Maryland in 

winter and thus, the bay anchovy CPUE index in winter was based on catches from Virginia waters only.   

Baywide indices of relative abundance – We performed a formal data-level integration (sensu 

Fletcher et al. 2019) of the Virginia and Maryland surveys to obtain a single estimate of scaled relative 

abundance that reflected the abundance of each species throughout the Chesapeake Bay.  A Bayesian 

hierarchical method (Conn 2010) was used to estimate baywide relative abundance using species-

specific CPUEs (standardized to a mean of 1.0 across the 17 years) from the two trawl surveys.  The 

Conn (2010) method extracts a single annual index to represent the pattern exhibited by the multiple 

indices under the assumption that component indices are subject to process error (from variation in 

catchability, spatial distribution, etc.) and sampling error (i.e., within-survey variance; Conn 2010).  The 

coefficient of variation is used to weight the individual data sources (Conn 2010).  Simulations using this 

approach indicate good performance under a number of scenarios, including violation of assumptions 

(Conn 2010).  Annual baywide indices of relative abundance and their associated 95% credible intervals 

were estimated for the season of interest for each forage species.  We used WinBugs accessed through 

an R script (R Core Team 2019) to perform these calculations.  All hierarchical baywide indices were 

inspected graphically using SAS® software to confirm that the baywide index reasonably captured the 

dynamics observed by the Maryland and Virginia surveys.   
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Habitat covariates   
Habitat conditions throughout the Chesapeake Bay and its tributaries were obtained for 2000 

through 2016; two static features and 22 dynamic habitat features (Table 2) were considered.  An 

interpolated DO model and a hydrodynamic model (described below) were used to hindcast high-

resolution estimates (spatially and temporally) of habitat conditions. 

Static habitat covariates - Sediment composition was expressed as the percent of fine sediment 

of the top layer of the seabed; this covariate provided fine-spatial scale information on a key feature of 

fish habitat (Kritzer et al. 2016).  We also considered distance to shore (km) as a measure of the affinity 

of forage fishes to shorelines.  Fringing marsh and other shallow water areas may provide resources that 

enhance survival and growth of forage fish (e.g., refuge from predators and provisioning of food; 

Manderson et al. 2004; França et al. 2009), and as such, this distance may influence fish habitat use.  

Distance to shore was calculated in a GIS using the straight-line distance between the sample site and 

the nearest shoreline.    

Bottom-water dissolved oxygen - DO concentrations (mg O2/l) were predicted for bottom 

waters of the Chesapeake Bay and its tributaries from a numerical model (Du and Shen 2014) that was 

modified to include observations from monthly fisheries surveys, quarter-hourly records from Maryland 

data buoys (Maryland Eyes on the Bay), quarter-hourly records from the Virginia Estuarine and Coastal 

Observing System (VECOS), and monthly to bi-monthly surveys from the Chesapeake Bay Program’s 

Water Quality Monitoring Program.  We used the Du and Shen (2014) model to spatially interpolate 

bottom DO conditions using inverse-distance weighting; this horizontal interpolation allowed us to 

assign bottom DO values to each 1-km2 grid cell.  Daily interpolated DO values were estimated from 

monthly DO values for 2000 to 2016 by linear regression, where the observed daily change in DO was 

estimated by the slope of the corresponding regression for each grid cell.   

To determine the validity of the interpolated bottom DO values, we ground-truthed model-

based hindcasts with field observations from a subset of observations (2010 to 2012; n=4,604).  

Questionable hindcasts were those where the observed DO was less than or equal to 5 mgO2/l (or 2 

mgO2/l) but the model-based estimate exceeded 5 mgO2/l (or 2 mgO2/l); about 1.0% (or 1.6%) of the 

estimated DO concentrations appeared questionable and were further cross-checked against field notes.  

Some of the discrepancies were due to malfunctioning DO meters (these ‘observed’ values were 

removed and the interpolation was repeated); other discrepancies were due to inconsistent deployment 

of DO probes (probe may have been more than 1 meter above the seabed; these values were removed 

from consideration).  In one case, we found that the 1-km2 resolution of the model could not capture 

localized low DO conditions:  we interpolated DO to be greater than 5.0 mg O2/l, but the on-site, 

instantaneous measurement was 0.27 mg O2/l.  Field notes indicated that all shrimp, crabs, and fishes 

captured at this site were dead.  Because adjacent stations were normoxic, we concluded that a highly 

localized hypoxic event had been encountered by the survey.  Thus, small-scale instantaneous 

measurements of environmental conditions will not match exactly the model-based interpolated values.  

Nevertheless, at least 98% of hindcasts from this model were reasonably accurate. 

Temperature, salinity, depth, and current speed covariates - Estimates of bottom temperature, 

bottom salinity, time-varying depth, and current speed were obtained from a three-dimensional model 

of the Chesapeake Bay developed using the UnTRIM hydrodynamic model (Casulli and Zanolli 2002; 

Casulli and Zanolli 2005).  The UnTRIM hydrodynamic model was applied previously to large estuaries, 

such as Chesapeake Bay (Shen et al. 2006; Sisson et al. 2010; Wang et al. 2015) and San Francisco Bay 
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(Cheng and Casulli 2002; Bever and MacWilliams 2013; MacWilliams et al. 2015; Bever et al. 2016), and 

is well suited to perform hydrodynamic, water level, salinity, and temperature modeling in the Bay. 

The Chesapeake Bay model uses an unstructured grid that allows grid cell sizes to vary spatially 

to increase computational efficiency and to directly resolve the complex shoreline and bathymetry of 

the Chesapeake Bay and its tributaries (Figure 2). This model takes advantage of the grid flexibility 

allowed in an unstructured mesh by gradually varying grid cell sizes, beginning with large grid cells in the 

Atlantic Ocean and transitioning to finer grid resolution in the smaller channels of the tributaries and the 

northern portion of the estuary.  This approach offers significant advantages in terms of numerical 

efficiency and accuracy, and allows for local grid refinement for detailed analysis of local hydrodynamics, 

while incorporating the overall hydrodynamics of the larger estuary in a single model. The Chesapeake 

Bay model uses fixed vertical layers (Z-grid) with a vertical grid resolution of 0.5 m to a depth of 40 m 

below zero North American Vertical Datum of 1988 (NAVD88) and a resolution of 1 m thereafter. The 

Federal Emergency Management Agency Region III bathymetric and topographic digital elevation model 

in NAVD88 was used to specify bathymetry throughout the model domain (Forte et al. 2011). 

Bathymetric data from the U.S. Army Corps of Engineers, Baltimore District, were used for many of the 

main navigation channels to best include the bathymetry of dredged navigation channels (USACE 2016). 

Observed water levels from the National Oceanic and Atmospheric Administration stations at 

the Chesapeake Bay Bridge Tunnel (CBBT, station 8638863) and Reedy Point (station 8551910) were 

used to specify water levels at the Atlantic Ocean boundary and Delaware side of the C&D Canal, 

respectively (Figure 2). Salinity and water temperature at the ocean boundary were specified based on 

monthly climatology values from World Ocean Atlas 2013.  Average daily salinity and water temperature 

observations from the U.S. Geological Survey (USGS) Delaware River at Reedy Island Jetty (01482800) 

station were used at the Delaware side of the C&D Canal. 

River inflows included 12 tributaries (Figure 2), representing the majority of the freshwater flow 

into the Chesapeake Bay.  USGS discharge data were scaled based on the ratio of the gauged area to the 

overall drainage area to specify the freshwater discharges for the model input following methods in Xu 

et al. (2012).  Salinity of the inflows was set to zero practical salinity units (psu), except for the 

Susquehanna, which was set to 0.1 psu based on data from the Chesapeake Bay Interpretive Buoy 

System (CBIBS) Susquehanna location.  Temperature of the inflows was set using observations from 

various data sources based on availability and proximity to the inflow locations. 

Wind, evaporation, precipitation, air temperature, incoming solar radiation, and relative 

humidity were specified using 3-hourly gridded North American Regional Reanalysis (NARR) products 

(Figure 2).  NARR incoming radiation includes the effect of cloud cover, so the cloud cover for the heat 

flux calculation was set to zero.  To help minimize the NARR underestimation of wind speed over the 

Chesapeake Bay (Scully 2013), the NARR wind speed was scaled based on relationships developed 

between NARR wind speeds and observed wind speeds from the National Data Buoy Center.  Wind 

forcing was applied at the water surface as a wind stress with the wind drag coefficient varied based on 

local wind speed according to the formulation of Large and Pond (1981). 

The Chesapeake Bay model was used to simulate the 17-year period spanning 2000 through 

2016 for this study.  The model was initialized in August 1999, providing 4.5 months for the model to 

spin up before 1 January 2000.  Vertical profile data collected as part of the EPA Water Quality 

Monitoring Program (WQMP) were used to specify initial conditions for salinity and water temperature. 
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Prior to application of the Chesapeake Bay model, the system was delineated into 142 

contiguous polygons to facilitate development of fish habitat maps and estimation of habitat areas for 

specific regions (e.g., the Potomac River).  Polygons were delineated based on the Chesapeake Bay 

model grid to ensure that calculation of polygon characteristics was directly related to the spatial 

distribution of modeled environmental conditions used to characterize fish habitat.  Multiple polygons 

were delineated in the Bay and each of the larger tributaries in the longitudinal and lateral directions, to 

capture the longitudinal salinity gradients and lateral variability in depth.  Each longitudinal reach was 

subdivided into three lateral polygons using a left shoal, channel, and right shoal approach.  A depth of 

9.1 m (used here as -9.1 m North American Vertical Datum of 1988) was used to distinguish between 

channel and shoal regions, based on graphical inspection of catch rates by depth for each of the forage 

species.  Not all longitudinal reaches included a left shoal, channel, and right shoal polygon.  Also, for 

some of the mainstem Bay reaches, a center shoal polygon was delineated because of multiple channels 

deeper than the 9.1 m threshold.  Small embayments were delineated with a single longitudinal reach 

containing a shoal and a channel polygon (where channel depths occurred in the polygon).  These 

embayments included Fishing Bay, the Little Choptank River, the lower Nanticoke/Wicomico rivers, 

Baltimore Harbor to Patapsco River, and the upper Bay flats and lower Susquehanna River. 

Both static (constant in time) and dynamic (time-varying) environmental variables were 

calculated for use in habitat suitability models and for estimating suitable habitat area throughout 

Chesapeake Bay.  A total of 23 variables was calculated from the Chesapeake Bay hydrodynamic model 

and another variable was extracted from the numerical model of bottom dissolved oxygen (Table 2).  A 

large number of environmental variables were initially considered for use in developing fish habitat 

suitability models to eliminate the need for a priori specification of environmental conditions that may 

be important for describing abundance and distribution of forage fishes.  

Static variables did not vary with time and were determined at locations where trawl tows were 

completed based on the midpoint of each tow. The distance to shoreline was estimated for each tow by 

calculating the shortest distance to the shoreline, even if the closest shoreline was an in-Bay island 

(Figure 3).  A seabed grain size distribution was developed for the Chesapeake Bay and tributaries based 

on observed surface seabed grains size data (Moncure and Nichols 1968; Byrne et al. 1983; Kerhin et al. 

1988; Velinsky 1994; Maryland Geological Survey 1996; Reid et al. 2005), as part of the development of 

the Chesapeake Bay hydrodynamic, wave, and sediment transport model.  This baywide surface grain-

size distribution map was used to estimate a seabed percent fine sediment at the location of each tow 

(Figure 3). 

Environmental covariates were extracted from the Chesapeake Bay hydrodynamic model at the 

same time and location of the individual tows to allow us to couple fisheries observations with hindcasts 

of environmental covariates.  For the Virginia survey, habitat covariates were extracted from the model 

at the midpoint of each tow.  The Maryland survey used fixed trawl station locations, and we initially 

assumed that the tows occurred at those fixed sites.  The recorded depth from each Maryland trawl 

tow, however, varied considerably from the depth at the fixed station location; we determined this by 

comparing the recorded depth with water depth from the numerical model and depth from a digital 

elevation model.  We therefore used the recorded water depth observed during each tow to estimate 

the actual geographic location of each tow by identifying the closest location to the fixed station 

location that had a water depth similar to the observed water depth at the time of sampling. 

The Chesapeake Bay model was used to hindcast environmental covariates at multiple temporal 

and spatial scales.  The use of multiple scales to describe environmental conditions may provide more 
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accurate predictions of habitat suitability (Lecours et al. 2015).  Dynamic variables were extracted from 

the Chesapeake Bay model for two time periods. The first period was the instantaneous value at the 

time of the trawl tow. The second period was the time-average of the 24.8 hours before the trawl tow, 

encompassing one tidal cycle. The instantaneous values represent the conditions at the time of the tow 

and the tidal-averaged values represent the conditions a fish at the location of the tow would have 

experienced over the preceding tidal cycle.  Tidally-averaged, depth-averaged conditions were also 

obtained for salinity, temperature, and current speed (Table 2).  We also considered covariates 

describing near-bed conditions (one m above the seabed), and maximum depth-averaged current speed 

over the tidal cycle or tidally-average current speed.  Maximum depth-averaged current speed was 

examined because habitats exhibiting relatively high tidal-averaged current speeds may be used by fish 

as long as the maximum current speed does not exceed a threshold.  A simple tidal-averaged covariate 

provides a measure of current speed during flood or ebb tide, which may be used by some species to aid 

in movements within the estuary (e.g., Brady and Targett 2013).  Because vertical or horizontal gradients 

in current speed may act to aggregate food near complex currents or fronts, we also considered these 

covariates.  The vertical gradient in the current speed was calculated as the difference between the 

current speed one meter above the bottom and one meter below the surface; the horizontal gradient in 

the current speed was calculated as the maximum difference in current speed between adjacent model 

grid cells. 

Although habitat conditions near the seabed may be most relevant for understanding fish-

habitat relationships for demersal species such as spotted hake, habitat use may respond more strongly 

to overall conditions in the water-column because even demersal fishes are not confined to near-bed 

habitats.  For example, salinity stratification may influence the supply of food or DO to the near-bed 

region sampled by the trawl, and may be an indicator of forage fish occurrence.  Thus, we used 

covariates describing salinity and temperature stratification; these covariates were calculated as the 

difference between instantaneous surface (top 1 m) and near-bed (1 m above seabed) conditions.  In 

addition, because favorable habitats may be characterized by a range of conditions, we considered 

covariates based on the percent of time that near-bed conditions fell within a given range, for example, 

the percent of time that salinity exceeded 20 psu.  The percent of time within a given salinity or 

temperature range was calculated over the same time interval used for tidal-averaging of the other 

covariates.  We identified three salinity ranges (< 10 psu; 10 to 20 psu; > 20 psu), and three temperature 

ranges (< 10° C; 10 to 20° C; >20° C) consistent with observed patterns in fish communities in 

Chesapeake Bay (Tuckey and Fabrizio, pers. obs.).   

Validation of the Chesapeake Bay hydrodynamic model – Salinity and temperature from 

hindcasts of conditions for the 17-year period of study were validated using the CBIBS buoy data (n=7 

stations), WQMP vertical profile data (n=13 stations), WQMP stations in the tributaries (n=38 stations), 

and temperature and salinity observations recorded at the time of fish sampling in Virginia (n=20,334 

observations; Figure 4).  The use of multiple data sources throughout the estuary provides a robust 

model validation and allowed us to validate the model across tidal, seasonal, and interannual time 

scales.  The model was validated in the mainstem of the Chesapeake Bay and in the major tributaries 

using methods detailed in MacWilliams et al. (2015) and Irby et al. (2016); these methods used the 

means and correlations of the observed and estimated values, model skill (Willmott 1981), and target 

diagram statistics (Jolliff et al. 2009) to assess the accuracy of the model.  For brevity, we present results 

based on target diagram statistics, as in Irby et al. (2016), who compared the accuracy of eight models of 

the Chesapeake Bay. 
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The target diagram statistics determine how the mean and variability of the model estimates 

related to those of the observed data (Jolliff et al. 2009; Hofmann et al. 2011). This approach uses the 

bias and the unbiased Root-Mean-Square Difference (ubRMSD) between the observations and 

estimates, which are normalized by the standard deviation (biasN and ubRMSDN) to assess the accuracy 

of model-based estimates. The ubRMSDN was multiplied by the sign of the difference between the 

observed and modeled standard deviations to indicate overestimation (positive) or underestimation 

(negative) of the observed variability.  On target diagrams, the Y axis is biasN and the X-axis is ubRMSDN. 

The radial distance from the origin to each data point is the normalized total Root-Mean-Square 

Difference (RMSDN, calculated as 𝑅𝑀𝑆𝐷𝑁 = √𝑏𝑖𝑎𝑠𝑁
2 + 𝑢𝑏𝑅𝑀𝑆𝐷𝑁

2).  The RMSDN is a dimensionless 

number, where values less than 1.0 indicate that model estimates were more accurate than simply 

estimating the mean of the observations.  Thresholds established by MacWilliams et al. (2015) allow 

assessment of the accuracy of hydrodynamic model estimates such that an RMSDN less than 0.25 

indicates very accurate estimates, 0.25 to 0.5 indicates accurate estimates, 0.5 to 1.0 indicates 

acceptable estimates, and greater than 1.0 indicates relatively poor agreement between model-based 

estimates and observations. 

The validation of model-based estimates of salinity and temperature using the co-located 

fisheries survey observations from Virginia waters for 2000 through 2016 demonstrated that the salinity 

and temperature observed during fisheries sampling were accurately estimated; the RMSDN was less 

than 0.44 for salinity and less than 0.23 for temperature (Figure 5). The model was similarly accurate for 

both surface and bottom values. The model-based estimates of salinity were slightly biased high at high 

salinity values (> 15 psu), and model-based estimates of temperature were slightly biased low at low 

temperature (< 5°C). 

Data from the WQMP were used to validate salinity and temperature for each year in the 

mainstem and the tributaries separately.  For brevity, we report results for the mainstem during the two 

years evaluated in Irby et al. (2016).  Modeled salinity and temperature were similar in accuracy in 2004 

and 2005 to other models evaluated using similar methods for the same years (see Table 3 in Irby et al. 

2016).  Model validation for 2000 through 2016 indicated that the model-based estimates of bottom 

salinity in the mainstem were more accurate after 2005.  Stratification was accurately estimated but was 

slightly lower in magnitude than the observed stratification. The depth-to-maximum stratification was 

also accurately estimated by the model, with depth-to-maximum stratification slightly closer to the 

water surface for the model-based estimates than what was observed.  

The detailed validation of the model-based estimates of salinity and temperature indicated that 

the estimated values were similar in accuracy to the suite of Chesapeake Bay models evaluated by Irby 

et al. (2016). Our validation also demonstrated that the model accurately estimated temperature and 

salinity in the major tributaries and accurately estimated the salinity and temperature co-located with 

the fisheries catch data. We concluded that the Chesapeake Bay model is sufficiently accurate under a 

wide range of environmental conditions for hindcasting fish habitat conditions for multiple timescales 

and multiple spatial scales. 

Selection of influential habitat covariates 
Boosted regression trees (BRTs) were used to select a subset of influential habitat covariates 

that explained variations in catch rates of fish (number of fish per 5-minute tow).  Regression trees make 

minimal assumptions about the underlying distribution of the abundance of fish and are ideal for 

identifying covariates that are important drivers of abundance (Breiman et al. 1984).  The regression 

tree algorithm uses recursive partitioning to explain variation in the response (catch rates), that is, 
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observations are repeatedly split into increasingly homogeneous groups based on threshold values of 

the predictors (habitat covariates; Breiman et al. 1984).  Cross-validation was used to assess model fit 

and to ensure that the resultant trees were applicable to out-of-sample observations; cross-validation 

was achieved by fitting the tree to a subset of the data (the training set) and fit was assessed using the 

remaining data (the test set).  Furthermore, the performance of regression tree algorithms may be 

improved with ensemble methods such as boosting, which aggregates multiple trees to enhance the 

stability of the resultant model (Knudby et al. 2010).  All habitat covariates considered in BRT models 

were standardized to permit direct comparison of covariate importance (Schielzeth 2010).  We used a 

Poisson response to model the number of fish captured per tow with the R package ‘dismo’ and the 

gbm.step procedure (R Core Team 2019; Elith et al. 2008; Elith and Leathwick 2017).  Catches from the 

Virginia survey were expressed as numbers of fish per 5-minute tow and used without modification, but 

catches from the Maryland survey, which sampled fishes for 6 minutes, were expressed in 5-minute-tow 

equivalencies rounded to the nearest integer.   

Optimization of BRT models – Prior to fitting the BRTs to the fisheries observations from 2000 

to 2016 and the associated habitat covariates, we optimized the model-fitting parameters of the BRTs 

by exploring the combination of parameter values that produced the lowest deviance for cross-validated 

data sets (Elith et al. 2008; Cameron et al. 2014).  To determine optimal parameters values for the BRTs 

and because optimization is computationally intensive, we used a subset of observations (2010-2012; 

n=4,604 tows) that represented notably different environmental conditions (2011 was a wet year 

compared with 2010) as well as large differences in the relative abundance of forage species.  BRT 

parameters were optimized separately for spotted hake, weakfish, spot, and bay anchovy using the 

gbm.step procedure in R (R Core Team 2019).  Model fitting failed for bay anchovy, so we optimized the 

BRT parameters for winter (Dec-Jan-Feb) and summer (Jun-Jul-Aug) samples separately for this species.   

Optimization focused on selection of the learning rate and tree complexity, which are model-

fitting parameters assigned by the analyst.  The learning rate determines how quickly the model 

approximates the observed data (Miller et al. 2016), and the tree complexity represents the level of 

interaction possible among the predictors.  Another parameter selected by the analyst is the bag 

fraction, or the proportion of the data considered for training the model.  Observations for the training 

subset are selected randomly without replacement for each model run and the remaining observations 

are used for cross-validation.  Preliminary investigations suggested that a bag fraction of 0.75 was 

reasonable.  Using this bag fraction, we fitted a series of trees to a range of learning rates (0.0005, 

0.0050, 0.0075, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0750) and tree complexities (1, 3, 5, 10), 

similar to Cameron et al. (2014).  For each species, we considered only those BRTs for which at least 

1,000 trees were fit and selected parameters that reduced the deviance in the cross-validated data (Elith 

et al. 2008).  We identified the optimal tree complexity for each species by graphically examining the 

change in cross-validated deviance across learning rates using SAS® software.  Next, using the selected 

tree complexity, we identified the learning rate that produced the minimum cross-validated deviance.   

To select influential habitat covariates, we fitted BRT models for each species for the period 

2000 to 2016 (Ntotal=25,333 tows; NVirginia=20,326 tows, NMaryland = 5,007 tows) using a bag fraction of 0.75 

and values of the optimized species-specific learning rates and tree complexities determined by 

optimization.  In addition, optimization runs indicated that the six covariates describing percent time 

were least informative, so these were not considered further.  Therefore, a suite of 18 covariates (16 

dynamic, 2 static; Table 2) were considered for the BRT models.  These modeling results allowed us to 

identify and select a subset of important covariates for each species from the estimates of variable 

influence and scree plots produced by the gbm.step procedure (R Core Team 2019).   
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Habitat suitability models  

Habitat suitability models were used to assign habitat suitability scores and to quantify the 

extent of suitable habitat for forage fishes throughout the Chesapeake Bay and its tributaries from 2000 

to 2016, across the four seasons.  Habitat suitability models were estimated with the nonparametric 

histogram approach because this approach makes no assumption about the nature of the relationship 

between environmental features and fish abundance (Guan et al. 2016).  Briefly, thresholds of 

environmental conditions that resulted in a gradient of suitability indices (SIs) from least suitable (0) to 

most suitable (1) were identified for each influential habitat covariate.  The HSI was calculated as the 

mean of two or more environmental-condition-specific SIs, and also ranged between 0 and 1 to ease 

interpretation.   

Suitability index - We estimated suitability indices (SIs) for the range of observed values for each 

of the influential habitat covariates identified by the species-specific BRTs.  We used the approach 

described in Tanaka & Chen (2015) to estimate SIs but applied a disjoint clustering method to identify 

‘natural clusters’ of the habitat covariates for the histogram approach; we implemented this method 

with the FastClus procedure in SAS/STAT® software (version 9.4 of the SAS System for Microsoft).  

Tanaka & Chen (2015) fixed the number of individual bins to 10 for each habitat covariate, but we found 

that this resulted in bins with few observations (<5) or narrowly defined limits (e.g., bottom 

temperature between 16.2 and 16.3 °C).  Thus, we allowed the number of bins to vary (but not exceed 

10), and restricted cluster sizes to a minimum of 40 observations; in all cases, the smallest cluster 

included at least 54 observations, allowing a reasonable description of average abundance in each 

cluster.  Once the clusters were defined, the SIs were estimated using 

𝑆𝐼𝑖𝑗 =
𝐶𝑃𝑈𝐸𝑖𝑗 −  𝐶𝑃𝑈𝐸𝑖,𝑚𝑖𝑛

𝐶𝑃𝑈𝐸𝑖,𝑚𝑎𝑥 −  𝐶𝑃𝑈𝐸𝑖,𝑚𝑖𝑛
 

where SIij is the suitability index for cluster j of habitat covariate i, CPUEij is the average catch (fish/km2) 

observed in cluster j of habitat covariate i, and CPUEi,min and CPUEi,max are the minimum and maximum 

average  catches observed across all clusters of habitat covariate i  (Tian et al. 2009; Chang et al. 2012).  

In this manner, the SIs ranged between 0 and 1.0, with 1.0 indicating the most suitable (single factor) 

conditions and 0 the least.  More explicitly, each covariate cluster, defined by a range of values, was 

associated with an SI score.   

Habitat suitability index - HSIs were calculated for each sample site and each grid cell in the 

hydrodynamic model by expressing the HSI as an average of the SIs across multiple habitat covariates.  

Thus, HSIs were calculated from the individual suitability indices, but we restricted the number of 

covariates in the HSI to those that were most influential as determined by the BRTs (Table 3). Care was 

taken to consider only those covariates that did not exhibit high correlations with other influential 

covariates, that is, only those covariates with r2 < 0.8 were considered in the calculation of the HSIs.  In 

this manner, we avoided overweighting of the HSI for a particular habitat condition.     

As an average across multiple SIs, the HSI at a given site can be expressed as an arithmetic mean 

or a geometric mean (e.g., Brown et al. 2000; Tanaka and Chen 2015).  A single approach to estimation 

of the HSI may not be appropriate for all species (e.g., Yu et al. 2019), so we explored the two models of 

the mean.  The arithmetic mean model for the HSI is given by 

𝐻𝑆𝐼𝑎𝑚 =  
𝑆𝐼1  +  𝑆𝐼2  + 𝑆𝐼3  + ⋯ +  𝑆𝐼𝑝

𝑝
 



   

Page 13 
 

where SI1 is the suitability index for habitat covariate 1, SI2 is the suitability index for covariate 2, and so 

forth; and p is the number of covariates considered (e.g., Hess and Bay 2000).  The geometric mean 

model for the HSI is  

𝐻𝑆𝐼𝑔𝑚 =  √𝑆𝐼1  ×  𝑆𝐼2  × 𝑆𝐼3  ×  … × 𝑆𝐼𝑝
𝑝

  

(e.g., Layher and Maughan 1985; Lauver et al. 2002; Tian et al. 2009).  The geometric mean index applies 

the concept of a ‘limiting factor’ whereby a low SI for a single covariate results in a low HSIgm (Zajac et al. 

2015).  Regardless of formulation, HSIs ranged between 0 and 1.  All HSI calculations were performed in 

SAS® or Matlab (MathWorks Inc.). 

The area of suitable habitat throughout the Chesapeake Bay and its tributaries for each species 

and season was estimated using a GIS by summing the areas of individual hydrodynamic model grid cells 

where HSI exceeded a given threshold of suitability.  For example, we calculated the area within the 

Chesapeake Bay region where HSI exceeded 0.4, 0.5, 0.6, 0.7, and 0.8 for each species and season.  

Areas of suitable habitat for each forage species were visualized through time using a GIS; this capability 

facilitated estimates of forage habitat in areas of Chesapeake Bay that are not routinely sampled by 

fisheries surveys.  That is, we estimated the extent and location of suitable habitats for forage fishes 

using hindcasts of habitat covariates from the two environmental models and estimates of static 

features (distance to shore and sediment composition). 

Calibration of HSIs – We calibrated the HSI models by graphical examination of the relationship 

between the HSI and the average relative abundance for each species-season combination (e.g., Tanaka 

and Chen 2015); these graphs were produced using SAS® software.  We used trimmed means as a 

measure of the average because these means are insensitive to the occasional extreme (outlier) catches 

observed for some species; data were trimmed by 5%.  For a properly calibrated HSI, the mean relative 

abundance of forage fish is expected to increase as habitat conditions approach optimal for the species, 

that as, as the HSI increases from 0 to 1.0. 

Verification of modeling approach – We verified the BRT approach for selection of covariates 

and evaluated the reliability of the two formulations of HSI for forage fishes using a cross-validation 

approach.  In this approach, we randomly selected ~70% of the fisheries observations (N=18,121) to 

comprise the training data set, and the remaining ~30% (N=7,212) was used as the test (or verification) 

data set.  The random selection of samples was without replacement and followed a stratified design to 

ensure representation across years, seasons, and geographic areas.  Training and test data sets were 

constructed separately for each species; note that for this analysis we omitted fall observations for bay 

anchovy because the BRT model failed to produce a boosted regression tree with at least 1000 trees 

(Elith et al. 2008).  For each training data set, we fitted BRTs, selected influential covariates, and 

modeled the HSIam and HSIgm.  Note that the BRTs for each data set may have indicated a different 

number of influential covariates, as well as a different suite of influential covariates, than what was 

identified in the original run using all the samples (i.e., the original species-specific BRT fitted to 

observations from 25,333 tows).  The resulting HSI models were applied to each of the test data sets to 

estimate the predicted HSIs.  Due to computational intensity, 10 cross-validation data sets were 

generated (consistent with Pennino et al. 2020).  The expected performance of the HSIam and HSIgm 

metrics for each species and season was evaluated with the root mean square error (RMSE), which was 

calculated as the standard deviation of the residuals (i.e., the difference between the predicted HSI and 

observed HSI for each location of fish sampling).  RMSE is a commonly used metric to evaluate model 

performance; we used a t-test to assess differences in the mean RMSE.  We retained the HSI formulation 

that exhibited the lower RMSE for further analyses.  The training and test data sets were created using 
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the SurveySelect procedure in SAS/STAT® software, and the gbm.step function in R (R Core Team 2019) 

was used for identification of important covariates; the FastClus procedure in SAS/STAT® software was 

used to delineate habitat suitability bins, and the SQL procedure in SAS® was used for subsequent data 

management. 

Transferability of the HSI model – In addition to calibration of the species-specific HSIs and 

verification of our use of BRTs and HSIs to describe suitable habitats, we assessed the transferability of 

our modeling approach using a two-fold block validation (Wenger and Olden 2012; Fletcher et al. 2019).  

Transferability refers to the ability to predict the suitability of habitats in regions that were not used to 

develop the HSI models, in our case, Mobjack Bay.  We followed the general guidance in Wenger and 

Olden (2012) and evaluated HSIs for fisheries observations from Mobjack Bay which were not used in 

the identification of influential covariates, or in the development of the HSI models.  Thus, these data 

represent an independent quantitative assessment of our approach (Theuerkauf and Lipcius 2016).  

Relative abundances of juvenile fish in Mobjack Bay were expressed as the mean number of fish 

captured per m2 in summer 2010, 2011, and 2012 (n=129 tows).  We graphically examined the pattern 

of relative abundance per unit of suitable habitat (derived from the HSI model) for juvenile spot and 

juvenile weakfish in Mobjack Bay and compared these patterns to those observed in Chesapeake Bay.  

For this analysis, we adjusted the baywide indices of relative abundance for juvenile spot and bay 

anchovy in Chesapeake Bay by multiplying these values by a constant (10 for juvenile spot, 100 for bay 

anchovy); this allowed us to compare values in the same order of magnitude for Chesapeake Bay and 

Mobjack Bay.  No adjustments were necessary for estimates of the indices of baywide relative 

abundance for weakfish in Chesapeake Bay.  Because we had fisheries observations from only 3 years, 

we refrained from fitting predictive models to these data and instead used a graphical approach 

implemented with SAS® software.  Similar patterns in relative abundance per unit of suitable habitat 

across years for Mobjack Bay and Chesapeake Bay indicate that the HSI models can be used to estimate 

suitable habitat extents in areas not sampled by surveys in Maryland and Virginia.   

Coupling of fisheries surveys and physical models 
Calculation of extent of suitable habitat – Results from the habitat-suitability models were used 

to define suitable habitat by identifying the range of conditions that support each of the forage fishes 

(e.g., salinities > 20 psu with current speeds < 1 m/s).  To facilitate estimation of habitat suitability for 

each forage species, we considered environmental and physical conditions (e.g., distance to shore, 

percent fine sediment) at each hydrodynamic model grid cell.  For each hydrodynamic model grid cell, 

we calculated the daily (24-hr) average value for environmental covariates because this temporal 

framework corresponded best with the tidal-averaged (24.8-hr average) period used for some of the 

environmental covariates.  The median daily value was used to estimate a seasonal value for each 

environmental covariate.  The habitat suitability model was then used to estimate the species- and 

season-specific HSI value for each hydrodynamic model grid cell; this allowed us to quantify suitable 

habitat area for each year, species, and season.  Interannual variability in suitable habitat was examined 

using various thresholds to define ‘suitable’ habitat (e.g., HSI > 0.5, HSI > 0.6, etc.) and depicted 

graphically to illustrate changes in extent of suitable habitat between 2000 and 2016.  Preliminary 

investigations revealed that annual patterns in suitable habitat extents were similar among the 0.5, 0.6, 

and 0.7 thresholds; the extent of habitats with HSIs > 0.8 was too low to be useful.  Therefore, we 

selected the 0.5 threshold for subsequent analyses; this threshold value was used by Theuerkauf and 

Lipcius (2016) to describe habitat suitability for the eastern oyster Crassostrea virginica in Chesapeake 

Bay and by Birkmanis et al. (2020) for pelagic sharks in Australia.  We present habitat areas for the entire 

Chesapeake Bay and its tributaries, as well as estimates for Virginia waters, Maryland waters, the 
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Potomac River, and Mobjack Bay.  Estimation of suitable habitat area over these select regions 

demonstrated how output from the Chesapeake Bay hydrodynamic and dissolved oxygen models can be 

combined with habitat suitability models to estimate seasonal and interannual variability in fish habitat 

over multiple spatial scales and to estimate the amount of suitable habitat outside the areas sampled by 

fisheries surveys (Potomac River, Mobjack Bay). 

Mapping of suitable habitat – To facilitate mapping of seasonal habitat conditions for each 

species, seasonal environmental covariates, SIs, and HSI were calculated for each hydrodynamic model 

grid cell.  This approach resulted in maps that spanned the Chesapeake Bay and its tributaries and 

captured the interannual and seasonal variability in habitat conditions.  In this manner, we mapped the 

species-specific seasonal HSIs at the spatial resolution of the hydrodynamic model because processes 

operating at small spatial scales may be masked when environmental conditions are averaged over large 

spatial scales (Windle et al. 2012). 

Relationship between suitable habitat extent and relative abundance of forage species   

Annual and seasonal changes in the area of suitable habitat may affect the abundance of forage 

species in temperate ecosystems.  We addressed this hypothesis by relating the annual time series of 

suitable habitat with annual estimates of baywide relative abundance for each of the forage species 

(objective 2).  We limited the exploration of these relationships to the season during which each species 

was most vulnerable to the trawl gear:  bay anchovy in summer and winter, juvenile spotted hake in 

spring, juvenile spot in summer and fall, and juvenile weakfish in summer and fall.  Note that we were 

unable to fit a BRT model to habitat covariates for bay anchovy in fall, and thus, fall HSIs were not 

available for this species.  For bay anchovy in winter, we used the relative abundance index from the 

Virginia survey because the Maryland survey did not sample in winter.  We rank transformed the 

abundance indices because of the small number of observations (n=17 years except for bay anchovy in 

winter, n=16) and conducted nonparametric regression analyses to examine the relationship between 

rank abundance and extent of suitable habitat.  For this analysis, we assumed the relationship was 

stationary, that is, the effect of suitable habitat extent on the abundance of forage fish was constant 

through time (e.g., Zeng et al. 2018).  In addition, we tested the null hypothesis that the extent of 

suitable habitat in Chesapeake Bay did not vary between 2000 and 2016; as before, we rank-

transformed the extent of suitable habitat (defined as areas with HSI>0.5).  Computations for 

nonparametric regression analyses were performed with the rank and glm procedures in SAS®.    

Inspection of the residuals against the predicted values (ranked relative abundance or ranked extent of 

suitable habitat, obtained with the sgplot procedure in SAS®) suggested that the residuals were 

uniformly distributed in all cases (rank regression assumes that the residuals are continuous; Kloke and 

McCain 2012). 

 

Results 
 

Influential habitat covariates  
Optimization of BRTs yielded values for the model-fitting parameters (learning rate, lr; tree 

complexity, tc) that varied among species:  bay anchovy summer: lr=0.02, tc=3; bay anchovy winter 

lr=0.02, tc=3; juvenile spot lr=0.02, tc=10; juvenile spotted hake lr=0.01, tc=10; and juvenile weakfish 

lr=0.005, tc=10.  These species-specific parameters were used to fit the BRTs to the 2000-2016 

observations. 
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Environmental conditions and habitat features that comprised suitable habitats varied among 

species.  Furthermore, the number of influential covariates identified by BRTs varied among species and 

ranged between four and seven (Table 3).  Conditions at sites sampled in Maryland waters differed from 

those in Virginia waters:  in Maryland, sampled habitats tended to be shallower, closer to shore, warmer 

in summer, and cooler in fall than habitats sampled in Virginia.  Most notably, Maryland sites exhibited 

lower bottom DO concentrations in summer than Virginia sites (Figure 6).  In addition, relative to sites in 

Virginia, Maryland sites exhibited lower surface salinities, less stratification in terms of salinity and 

temperature, lower current speeds and less stratification in current speeds (Figure 6).  Water depth and 

one of the current speed metrics were consistently identified as influential covariates for all species; one 

of the temperature covariates was influential in describing suitable habitats for forage fishes in spring, 

summer, and fall, but was not selected for describing suitable habitats in winter (note, however, that 

the correlation between temperature and dissolved oxygen, which was important in winter, suggests 

that temperature may play a role in delineating suitable habitats in winter).  Salinity defined suitable 

habitats for bay anchovy and juvenile spotted hake, and distance to shore explained suitable habitats for 

bay anchovy, juvenile spot, and juvenile weakfish.  Bottom DO conditions delineated suitable habitats 

for bay anchovy in summer and winter and for all seasons for juvenile spot.   

Description of suitable habitats for forage fishes  
The relationships between environmental covariates and their corresponding suitability index 

varied by species and season.  Suitability indices reflected seasonal patterns in habitat use of forage 

species in a manner consistent with observations based on trawl survey catches.  In Chesapeake Bay, for 

example, juvenile spot are more commonly observed away from the shoreline in summer, whereas in 

fall, juvenile spot may also be found close to shore.  In contrast, juvenile weakfish use habitats near the 

shoreline in summer, and away from the shoreline in fall.  Specific descriptions of suitable habitats for 

each species and season are presented below using the 0.5 threshold to define suitable habitat (i.e., 

conditions for which SI > 0.5). 

For juvenile spot in summer, suitable habitats were more than 11,818 m from shore, shallower 

than 5.1 m or deeper than 10.2 m, and were characterized by tidal-averaged current speeds less than 

0.000389 m/s and tidal-averaged temperature stratifications greater than 2.17°C (Figure 7).  In addition, 

juvenile spot occupied habitats with low dissolved oxygen (< 4.8 mgO2/l) in summer; maximum 

suitability occurred in habitats characterized by DO concentrations between 2.2 and 3.2 mgO2/l (Figure 

7).  In fall, suitable habitats for juvenile spot were between 1,226 and 3,397 m from shore and deeper 

than 13.0 m; these habitats were characterized by tidal-averaged current speeds between 0.000064 and 

0.000227 m/s, and tidal-averaged temperature stratifications greater than 2.78°C.  Habitats with DO less 

than 6.2 mgO2/l were occupied by juvenile spot in fall and maximum suitability occurred in habitats 

characterized by DO concentrations between 4.0 and 5.3 mgO2/l.   

Suitable habitats for juvenile weakfish in summer were characterized by tidal-averaged bottom 

temperatures greater than 25.9°C, depths greater than 7.7 m, and tidal-averaged current speed 

stratification between 0.066 and 0.293 m/s; these habitats were located less than 3,760 m from shore.  

Suitable habitats for juvenile weakfish in fall were characterized by tidal-averaged bottom temperatures 

greater than 24.5°C, depths greater than 10.4 m, tidal-averaged current speed stratification greater than 

0.1 m/s, and were located generally more than 5,104 m from shore.   

Suitable habitats for juvenile spotted hake in spring were deeper than 12.7 m, and characterized 

by tidal-averaged bottom temperatures between 5.3 and 14.2°C, tidal-averaged salinity stratification 

greater than 4.9 psu, and maximum depth-averaged current speeds that exceeded 0.5 m/s.   
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Suitable habitats for bay anchovy in summer occurred where the tidal-averaged salinity 

stratification ranged between 4.3 and 11.1 psu, substrate composition ranged between 1.2 and 14.4% 

fine sediment, distance to shore exceeded 3,784 m, tidal-averaged bottom temperatures ranged 

between 23.7 and 27.0°C, tidal-averaged surface salinity ranged between 17.1 and 26.0 psu, depth 

ranged between 5.1 and 16.1 m, and the horizontal gradient in tidal-averaged current speed was less 

than 0.000179 m/s.  In winter, suitable habitats for bay anchovy were characterized by bottom DO 

concentrations between 6.6 and 10.4 mgO2/l, distance to shore greater than 5,220 m, tidal-averaged 

surface salinity greater than 23.7 psu, substrate composition that ranged between 6.9 and 46.3% fine 

sediments, depths between 9.1 and 13.2 m, and horizontal gradients in tidal-averaged current speed 

less than 0.000084 m/s (Figure 8). 

Habitat suitability indices 
Verification of modeling approach – Bootstrap analyses verified that BRTs were a reliable 

means to select influential covariates; we found that, in general, the same or similar covariates were 

consistently identified as most influential among the 10 bootstrap realizations.  For juvenile spotted 

hake, the HSI formulation based on the geometric mean (HSIgm) provided the best approximation to the 

original HSI estimated for each sample as indicated by the significantly lower RMSE (Figure 9; t = 4.56, P 

< 0.05).  Unlike the results for juvenile spotted hake, the HSI based on the arithmetic mean (HSIam) 

performed better for bay anchovy (Figure 9; t = -5.27, P < 0.05); although we found no evidence for a 

difference in the mean RMSEs for the HSIam and the HSIgm for juvenile weakfish and juvenile spot (Figure 

9; tweakfish = -1.65, P = 0.12; tspot = -1.13, P = 0.27), we used the HSIam for these species because the mean 

RMSE of the HSIam was consistently less than the mean RMSE of the HSIgm. 

 Average relative abundance (estimated by the trimmed mean) for each of the four species 

increased as the HSI approached 1.0 (Figure 10), indicating proper calibration of the habitat suitability 

models.  The ranges of observed HSI values across years were 0 to 0.92 for bay anchovy in summer; 0.04 

to 0.98 for bay anchovy in winter; 0 to 0.95 for juvenile spotted hake in spring; 0.12 to 0.98 for juvenile 

spot in summer; 0.04 to 0.86 for juvenile spot in fall; 0.09 to 0.99 for juvenile weakfish in summer; and 0 

to 0.89 for juvenile weakfish in fall (Figure 11).   

External validation of HSI models with fisheries catch data from Mobjack Bay – The extent of 

suitable summer habitat area for juvenile spot and juvenile weakfish in Mobjack Bay was about 1% of 

that observed in Chesapeake Bay, yet annual changes observed in Chesapeake Bay were reflected in 

Mobjack Bay (Figure 13).  This congruent pattern suggested that annual fluctuations in environmental 

conditions in summer are coherent among areas.  Annual changes in the index of relative abundance for 

juvenile spot per unit of suitable habitat were similar for Mobjack Bay and Chesapeake Bay in summer 

(Figure 13), indicating a consistent relationship between the extent of suitable habitat and juvenile spot 

abundance among the two areas.  Similarly, annual changes in the index of relative abundance for 

juvenile weakfish and bay anchovy per unit of suitable habitat in Mobjack Bay displayed the same 

pattern observed for fish in Chesapeake Bay (Figure 13).  The annual pattern for juvenile weakfish was 

less clear than that for juvenile spot due to the imprecision of the annual estimates of the index of 

relative abundance for juvenile weakfish (Figure 13).   

Suitable habitat extent for forage fishes 
 For a given species, habitat suitability and the extent of suitable habitat varied annually (e.g., 

Figure 14) and seasonally (e.g., Figure 15).  The HSI maps were useful tools for visualizing the dynamic 

nature of habitats for forage species and for identifying times and locations that may potentially support 

high abundances of forage fishes. 
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Juvenile spotted hake – We found a strong seasonal pattern in the extent of suitable habitat for 

juvenile spotted hake in Chesapeake Bay, such that little to no suitable habitat was available in summer 

and fall; suitable habitat area increased in winter, and was greatest in spring (Figure 15). This seasonal 

signal in the suitable habitat extent appeared to be driven by seasonal changes in water temperature in 

the Bay.  Winter habitat extent increased during years when waters began to warm earlier (2012) than 

when waters warmed later in winter (2011).  Similar seasonal patterns in the amount of suitable habitat 

were predicted for most of the subregions evaluated.  During the 17 years examined, we estimated a 

lack of suitable habitat for spotted hake in Mobjack Bay.  Except for 2007, suitable habitat in winter was 

sparse in the Potomac River until 2012, indicating that the Potomac River may now be warming earlier in 

the year or not cooling as much in winter.  These results for the Potomac River also demonstrated that 

the pattern in the annual extent of suitable habitat in the tributaries does not always coincide with that 

observed in the bay proper.  Suitable habitat areas for spotted hake in spring were relatively deep, away 

from the shoreline and marshes, and exhibited pronounced salinity stratification. 

Juvenile spot - The extent of suitable habitat for juvenile spot displayed a strong seasonal 

pattern, with relatively little suitable habitat in fall and winter and relatively more suitable habitat area 

in spring and summer (Figure 16). The seasonal signal in the extent of suitable habitats for juvenile spot 

appeared to be driven by the combination of the environmental and physical covariates and was not 

well described by a single covariate.  The seasonal pattern in the amount of suitable habitat predicted 

for the entire Chesapeake Bay was also predicted for the Virginia, Maryland, and Potomac River 

subregions.  In tributaries and embayments smaller than the Potomac River that are relatively close to 

the shoreline (e.g., Mobjack Bay), the extent of suitable habitat for juvenile spot in spring was generally 

greater than that in summer.  For juvenile spot, suitable habitats were primarily found in shallow areas 

near the shoreline in spring, but in the deeper portions of the Chesapeake Bay and its tributaries in 

summer (Figure 16). 

Juvenile weakfish – The amount of suitable habitat for juvenile weakfish exhibited a strong 

seasonal pattern:  little suitable habitat in winter and a greater extent of suitable habitat in summer; the 

extent of suitable habitats in fall was generally greater than in spring (Figure 17).  In Mobjack Bay, the 

greatest extent of suitable habitat occurred in summer, and no suitable habitat occurred in fall and 

winter.  For this species, we observed similar extents of suitable habitats in Virginia waters in summer 

and fall, but markedly lower extents of suitable habitats in fall compared with summer in Maryland 

waters.  This result is due to the observation that HSI values in the mainstem of the bay in fall were 

greater in waters south of the Rappahannock River than in waters north of the Rappahannock River 

(Figure 17).  In summer, suitable habitats for juvenile weakfish were found close to the shoreline of the 

Chesapeake Bay and in the tributaries; in fall, suitable habitats were located at the mouth of the 

Potomac River and in the lower Chesapeake Bay. 

Bay anchovy – Like other forage fishes, the estimated extent of suitable habitat for bay anchovy 

exhibited a strong seasonal pattern, with the greatest extent of suitable habitat area in spring, and 

generally greater extent of suitable habitat area in summer than in winter (Figure 18).  This seasonal 

pattern was true for the Chesapeake Bay, and for Virginia waters and the Potomac River.  The relative 

difference in suitable habitat area between spring and the other seasons was larger for the Potomac 

River than for the larger regions that include the mainstem portion of the Bay.  In Maryland waters, a 

greater extent of suitable habitat area was often observed in winter compared with summer.  The 

seasonal and interannual variability in suitable habitat extent for the smallest subregion, Mobjack Bay, 

was notably more complex than for the other regions.  The HSI maps suggested that the distribution of 

bay anchovy throughout the Chesapeake Bay varied seasonally, with habitat conditions more suitable 
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for bay anchovy in the tributaries in spring than in summer and winter.  Suitable habitat conditions 

occurred in areas that reflected the interplay of multiple environmental and physical covariates, and we 

were unable to succinctly describe suitable habitat areas for this species.  Perhaps this is why we 

encountered difficulty in development of habitat suitability models for this species and why different 

covariates were used for each season.  

Suitable habitat and relative baywide abundance 
 Seasonal indices of relative abundance for forage fishes in Chesapeake Bay were variable across 

years, and interannual patterns in the Virginia survey were generally similar to those in the Maryland 

survey, particularly for juvenile spotted hake in spring, juvenile spot in summer and fall, and juvenile 

weakfish in summer (Figure 19).  Inconsistent patterns were observed for weakfish in fall and bay 

anchovy in summer, suggesting that seasonal processes affecting abundance and habitat use of these 

species varied across regions (Maryland, Virginia) of the Chesapeake Bay.  We note that the mean index 

of relative abundance for weakfish in fall was several orders of magnitude lower in Maryland waters 

than in Virginia, and as such, the Maryland survey index may not reflect the overall pattern of 

abundance for this species in the Chesapeake Bay.  Similarly, the mean index of relative abundance for 

bay anchovy in summer was an order of magnitude lower in Maryland waters than in Virginia.          

Two contrasting relationships were detected between the ranked baywide relative abundance 

index and the extent of suitable habitat for forage fishes, where the extent of suitable habitat was 

determined using an HSI threshold of 0.5.  We observed a significant positive relationship between 

seasonal ranked baywide relative abundance and extent of suitable habitat for juvenile spot in summer 

(F=4.57, P=0.05; Table 4; Figures 20 and 21).  The baywide relative abundance index for juvenile spot in 

summer was highly variable with contrasting periods of low abundance (2001, 2002, 2003, 2009) 

followed by a single year of high abundance (2010) and several years of low abundance (2014, 2015, 

2016; Figure 21).  Note that the extent of suitable summer habitat for juvenile spot exhibited no 

significant linear pattern across time (F=0.01, P=0.93; Table 4).  We observed a similar relationship for 

bay anchovy in winter:  the extent of suitable habitat in winter was a significant determinant of the 

ranked relative abundance of bay anchovy as determined by the VA survey (F=19.98, P<0.01; Table 4; 

Figures 20 and 21).  Suitable winter habitat for bay anchovy also exhibited no systematic change through 

time (F=0.17, P=0.69; Table 4).    

More commonly, we were unable to detect a significant relationship between the area of 

suitable habitat and the rank-transformed estimate of baywide relative abundance of juvenile spotted 

hake in spring, juvenile spot in fall, juvenile weakfish in summer and fall, and bay anchovy in summer 

(Table 4).  For juvenile spotted hake in spring, we found no indication that the extent of suitable habitat 

was limiting, except perhaps in 2002 when the area of suitable habitat (HSI>0.5) declined below 1,600 

km2 and the ranked abundance index was among the lowest observed in the time series.  This, however, 

may be coincidental.  The extent of suitable spring habitat for spotted hake varied without trend since 

2000 (F=0.21, P=0.65; Table 4).  The index of ranked abundance for juvenile spot in fall was highly 

variable, exhibiting periods of low abundance before and after 2010.  The extent of suitable habitat for 

spot in fall exhibited no trend through time (F=1.11, P=0.31; Table 4) and was markedly less than in 

summer.  We found no evidence of an effect of the extent of suitable fall habitat on the ranked relative 

abundance of juvenile spot in fall (F=0.01, P=0.93; Table 4).  The baywide relative abundance of juvenile 

weakfish was variable in summer and fall, with little contrast across years (Figure 19).  Relative baywide 

abundance of juvenile weakfish in summer 2001 was high, but otherwise, abundance remained 

somewhat stable.  In contrast, the extent of suitable habitat for juvenile weakfish increased significantly 

in summer (F=10.39, P<0.01; Table 4; Figure 22A) and fall (F=8.68, P=0.01; Table 4; Figure 22B).  The 
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relative abundance of juvenile weakfish, however, exhibited no detectable response to increases in the 

extent of suitable habitats in either summer or fall (Fsummer=2.75, P=0.12; Ffall=0.12, P=0.73; Table 4).  The 

relative abundance of bay anchovy in summer was highly variable and annual estimates were imprecise.  

Although the extent of suitable habitat for bay anchovy in summer increased significantly since 2000 

(F=24.37, P<0.01; Table 4; Figure 22C), we were unable to detect a response in the ranked relative 

abundance of bay anchovy to changes in the extent of suitable habitat in summer (F=0.06, P=0.80; Table 

4). 

 

Discussion 
 

Our modeling framework combined the power of machine learning to identify influential habitat 

covariates with the flexibility of nonparametric approaches to characterize habitat suitability and the 

capabilities of GIS to quantify and depict suitable (and unsuitable) habitats for forage fishes in 

Chesapeake Bay from 2000 to 2016.  We coupled information from fishery surveys with static features 

of the environment and modeled values of dynamic conditions to identify locations in the Chesapeake 

Bay that serve as suitable habitats for forage fishes.  In an ecosystem-based approach, these locations 

may be targeted for protection (e.g., by limiting fishing activities that may incidentally capture or injure 

forage fishes) or restoration (e.g., by improving water quality conditions), thereby ensuring production 

of sufficient forage for predators.  In addition, the consequences of aquatic habitat alterations, whether 

due to climate change or physical disturbances can be investigated using projections of environmental 

conditions and habitat suitability in the region (e.g., Brown et al. 2013).  Importantly, our modeling 

approach for building forage-fish habitat suitability models was verified and validated for the 

Chesapeake Bay, thereby allowing estimation of habitat suitability for regions that are not routinely 

sampled by fishery surveys (e.g., Mobjack Bay, Potomac River).  Furthermore, our results allow resource 

managers to focus protection measures on areas with critical habitats (e.g., locations that persistently 

support suitable habitats) in Chesapeake Bay and to identify environmental conditions that affect the 

suitability of habitats for forage fishes.  We found annual patterns in suitable habitat extent that 

mirrored those of baywide relative abundance for two forage species; as such, estimates of the 

minimum habitat area required to produce a desired abundance (or biomass) of forage fish can be used 

to establish quantitative habitat targets (Kritzer et al. 2016) or spatial thresholds that may serve as 

spatial reference points for management (Reuchlin-Hugenholtz et al. 2016).  In our study, two species 

exhibited a relationship between relative abundance and extent of suitable habitats – juvenile spot in 

summer and bay anchovy in winter.  Quantitative habitat targets and spatial reference points for these 

species warrant further consideration.  

Suitable seasonal habitat extents for forage species exhibited annual changes reflecting 

temporal heterogeneity in habitat conditions in Chesapeake Bay, with a strong seasonal signal.  Current 

speed, water depth, and either temperature or dissolved oxygen were identified as important covariates 

for the four forage species we examined, and distance to shore was important for three of the four 

species; thus, suitable habitat conditions resulted from a complex interplay between water quality and 

the physical properties of the habitat.  Variation in seasonal extents were more pronounced (e.g., 

juvenile spotted hake) than annual variations in suitable habitat extent indicating that the Chesapeake 

Bay serves as a nursery area for juvenile fishes but the nursery function is temporally restricted.  For 

some species, the extent of suitable seasonal habitat increased since 2000 (juvenile weakfish in summer 
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and fall, and bay anchovy in summer), whereas for other species, extents varied annually with no clear 

trend.  None of the species examined were at the southern limit of their geographic range, and as 

waters of the Chesapeake Bay continue to warm (Hinson et al. in review), we expect that suitable 

habitat extent may increase for species with broad thermal tolerances such as spot, bay anchovy, and 

weakfish.  Salinity may, however, mediate the ability of species to tolerate higher temperatures and 

could serve to limit suitable habitats in the future.  It is unclear how the interaction of salinity, 

temperature, and other covariates will affect habitats in Chesapeake Bay under expected climate-

change scenarios.  Laboratory-based investigations of the interactive effects of salinity on the thermal 

tolerances for these species could be informative. 

The relationship between the extent of suitable habitat and relative abundance of forage 

species was species dependent and, when present, varied seasonally.  Such relationships have not been 

widely explored for aquatic species; to our knowledge, only two other studies (Le Pape et al. 2003; Yu et 

al. 2019) attempted to relate extent of suitable habitat and relative abundance.  In the Yu et al. (2019) 

study, a graphical assessment was used to note the consistency between declines in the relative 

abundance of neon flying squid Ommastrephes bartramii and the spatial shrinkage of suitable habitats 

in the northwest Pacific Ocean (Yu et al. 2019).  In contrast to Yu et al. (2019), we used nonparametric 

regression to statistically evaluate the strength of such relationships for forage fishes in Chesapeake Bay 

and found a positive relationship between suitable habitat extent and baywide relative abundance of 

bay anchovy in winter and juvenile spot in summer, suggesting that environmental conditions may 

affect the carrying capacity of the Chesapeake Bay for these two forage species during a portion of the 

year.  Seasonal variation in the location of suitable habitats has been demonstrated for several estuarine 

species, and linked to variation in freshwater input (e.g., Rubec et al. 2019).  In Chesapeake Bay, 

freshwater input influences salinity and salinity stratification, however, we identified additional 

hydrodynamic covariates such as temperature stratification and current speed that contributed to 

variation in suitable habitats.  For example, for bay anchovy, the suitability of winter habitats was partly 

determined by dissolved oxygen and the horizontal gradient in the tidally averaged current speed.  

Although water temperature was not considered in the HSI model for bay anchovy in winter due to the 

correlation with dissolved oxygen, we cannot rule out temperature as an important covariate describing 

habitat conditions for bay anchovy in winter.  Interestingly, the HSI model for juvenile spot also included 

bottom dissolved oxygen; suitable habitats exhibited DO levels less than 4.0 mg O2/l in summer and less 

than 5.3 mg O2/l in fall, suggesting that juvenile spot use habitats that may be considered marginal for 

DO.  Low DO conditions are associated with warmer waters and indeed, juvenile spot were more likely 

to be observed in habitats where the tidally-averaged temperature stratification exceeded 2.2°C in 

summer and 2.7°C in fall.  Habitat conditions in the Chesapeake Bay region were not limiting for juvenile 

spot in fall, suggesting that suitable habitat extent in fall exceeds that necessary to support the 

population of spot that remains in the system by the end of summer.  One possible explanation for the 

decoupling of habitat extent and relative abundance for juvenile spot in fall concerns temperature.  

Mean water temperatures in Chesapeake Bay are greatest in late August-early September and the 

increased metabolic rates and energy demands of predators during this time may increase predation 

mortality on juvenile spot.  Rising water temperatures in early fall may also affect the phenology of spot 

emigration resulting in earlier emigration and fewer juvenile spot remaining in the Chesapeake Bay 

during fall in warmer years.  Although we were unable to detect a decline in the extent of suitable fall 

habitats for juvenile spot, warming water temperatures in fall associated with directional climate change 

may deteriorate habitat conditions for this species.  Continued monitoring of fall abundances and a 

better understanding of the cues that trigger spot emigration in fall will be necessary to address this 

hypothesis.   
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A decoupling of favorable habitat extent and relative abundance was also observed for juvenile 

spotted hake in spring and juvenile weakfish in summer and fall.  Factors other than the extent of 

suitable habitat likely affected relative seasonal abundances of these species-season combinations as 

well as juvenile spot in fall and bay anchovy in summer.  That is, even in years when suitable habitat 

extent was relatively low, the availability and extent of seasonal habitats were sufficient to support 

these forage species and therefore, other factors such as predation (Minello et al. 1989) or food 

availability (Tableau et al. 2016) may have contributed to changes in relative abundances.  In particular, 

our results for juvenile weakfish are consistent with the observed increase in natural mortality rates for 

this species in the 2000s (ASMFC 2019; Krause et al. 2020).  Although suitable habitat extent for juvenile 

weakfish in summer and fall increased significantly since 2000, abundance of juvenile weakfish was 

affected by factors other than (or in addition to) the extent of suitable habitat.  For weakfish, the 

sources of increased natural mortality remain unclear, but increased levels of predation and interspecific 

competition are believed to have played a role (ASMFC 2019).  Abundances of other forage fishes may 

be limited by a potential lack of prey, or by declines in suitable habitats used by earlier life stages such 

as eggs and larvae.  Another possible reason for the lack of a relationship between suitable habitat area 

and baywide relative abundance is that the seasonal relative abundance indices for these species were 

imprecise and hence were statistically invariable across time (based on 95% credible intervals of the 

baywide hierarchical index).  Thus, a ‘good’ year with relatively high mean relative abundance index was 

not statistically discernible from a ‘poor’ year with relatively low index; this lack of contrast may have 

hampered our ability to detect a relationship between relative abundance indices and suitable habitat 

extents.  Such results suggest that if population abundance is changing, the sampling intensity 

(temporal, spatial) of current fisheries surveys is insufficient to detect such changes.  Alternatively, 

abundance may be fairly stable (but variable) across years. 

In this study, we included information from two fishery-independent surveys, one of which (the 

Maryland survey) yielded fewer annual observations but sampled shallow-water habitats across a large 

portion of the estuarine salinity gradient.  Overall, our fisheries observations were collected at a 

relatively fine spatial resolution (> 100 sites sampled/month) and high temporal intensity (monthly), 

thereby minimizing biases due to seasonal or short-term habitat use (e.g., by sampling only one or two 

months each year).  Our initial concern that inclusion of observations from a temporally less intense 

survey could weaken our ability to detect relationships between the extent of suitable habitat and 

relative abundance of forage fishes was unfounded.  For example, we were able to observe an effect of 

DO on the relative baywide abundance of juvenile spot in summer because low DO conditions are more 

prevalent in summer in Maryland waters of the Chesapeake Bay.  The Chester River, Eastern Bay, Little 

Choptank River and Patuxent River in particular exhibited DO levels in summer that were lower than 

what was typically observed in Virginia waters in summer.  In addition, sites sampled in Maryland waters 

also provided observations from shallow habitats close to shore, and these conditions were not well 

sampled in Virginia waters, thus, the two surveys together provided observations from a greater range 

of environmental conditions commonly encountered in the Chesapeake Bay region.       

Hydrodynamic models and other numerical models of environmental conditions can provide 

information on dynamic habitat features that are not measured at the time of sampling and represent a 

significant step towards refining spatial relationships between fish and their environment (e.g., Crear et 

al. 2020).  Consideration of such information may yield habitat models with greater predictive accuracy 

(Scales et al. 2017).  In our study, we used daily and tidal-averaged conditions to develop habitat 

suitability models that reasonably reflected the relationship between (daily) environmental conditions 

and relative abundance (at the tow level) of forage fishes in Chesapeake Bay.  This fine-scale approach is 
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preferable to one that uses seasonal averages of habitat conditions to build habitat suitability models 

(Scales et al. 2017).  Indeed, the temporal resolution of the environmental covariates used to build the 

suitability model affects the scale of inference.  For example, Woodland et al. (2020) recently described 

annual patterns in the distribution and abundance of forage fishes and invertebrates relative to patterns 

of predation and environmental conditions in the Chesapeake Bay and its major tributaries.  Seasonal 

changes, however, could not be addressed in that study because several habitat conditions were 

represented by annual means (e.g., average discharge from tributaries, and the Atlantic Multidecadal 

Oscillation [AMO] index).  Large-scale climatic changes as indexed by the AMO affect mean abundances 

of bay anchovy and juvenile spot (Woodland et al. 2020), and our findings for bay anchovy in winter and 

juvenile spot in summer are consistent with results presented in Woodland et al. (2020).  Specifically, 

our results suggested that environmental conditions contribute to the observed variation in relative 

abundance of these forage species.  Although we did not consider large-scale climate indices per se, we 

did examine small-scale environmental indicators of climate change (temperature, salinity) and 

demonstrated how these changes affect habitat suitability and relative baywide indices of abundance 

for bay anchovy in winter and juvenile spot in summer.  Our study did not, however, address possible 

lags in the response of forage species to environmental warming, nor did we consider the effect of 

warming rates; rather than examining multiple drivers of forage abundance, we focused on the 

characterization and role of suitable habitat.  Unlike Woodland et al. (2020) who found greater relative 

abundance of bay anchovy in the upper bay than in the lower bay, our indices of relative abundance for 

bay anchovy in summer were an order of magnitude lower in Maryland than those observed in Virginia 

waters, perhaps because we lacked samples from deep sites (>2.7 m) in Maryland (compared with 

maximum depths in Virginia of 13.2 m).  Similar to Woodland et al. (2020), we found that bay anchovy 

and juvenile spot exhibited higher relative abundances in southern tributaries than in northern 

tributaries of the Chesapeake Bay, but our spatial depiction of suitable habitat conditions throughout 

the system allowed us to examine the fine-scale spatial distribution of suitable habitats.  Such depictions 

are helpful for identifying the geographic focus of management efforts to protect or restore habitats.   

We used BRTs to identify influential covariates from a large suite of possible covariates, similar 

to Georgian et al. (2019) who used random forests to select 13 covariates from a set of 30 possible 

covariates describing habitat conditions of deep-sea environments.  Satellite imagery, ocean observing 

systems, and hydrodynamic models yield a multitude of environmental descriptors of habitat and these 

data are commonly used to study habitat ecology of fishes.  As the number of habitat descriptors 

available to researchers increases, variable reduction techniques are critical to selection of influential 

covariates, that is, covariates that are useful to explain the variation in observed abundance and 

distribution of aquatic organisms.  We applied BRTs to identify a subset of covariates useful in describing 

habitat conditions that affect the relative abundances of forage fishes in Chesapeake Bay.  Based on our 

observations with BRTs, tree complexity can play a large role in improving the outcome of cross-

validation and model fitting, and should therefore be optimized based on the data under consideration.  

Many researchers either fail to optimize regression trees or when optimization is implemented, only a 

single parameter is optimized (typically learning rate; e.g., Georgian et al. 2019, Yu et al. 2020) after 

using the default bag fraction (0.75) and selecting an arbitrary value for tree complexity (typically 

between 2 and 5; e.g., Georgian et al. 2019, Pennino et al. 2020, Yu et al. 2020).  Due to the lack of 

consistency among published studies, approaches and guidelines for optimization of regression trees for 

ecological data warrant further research, particularly as BRTs appear useful as a variable selection 

technique. 
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Across the four species we examined, the geometric mean formulation of the HSI was best for 

juvenile spotted hake, but otherwise, the arithmetic mean formulation was preferred.  The HSIgm is 

widely used but may penalize the index too harshly for mobile species that can tolerate broad variations 

in environmental conditions, including sub-optimal conditions for limited periods of time.  For instance, 

in areas where DO is less than 2.0 mg/L, the individual suitability index for DO is likely to be 0; in this 

case, the value of the HSIgm is also 0, but other environmental conditions in these areas may be suitable, 

even optimal, and thus, the overall habitat suitability may not be well indexed by an HSIgm value of 0.  

For instance, the hypoxia tolerance of juvenile spot is insensitive to a broad range of temperatures 

commonly observed in Chesapeake Bay (10 – 30° C; Marcek et al. 2019), so an area characterized by DO 

< 2.0 mg/L and bottom temperatures around 25° C may be more suitable than indicated by the HSIgm 

index.  Temperature, and other factors including salinity, may affect hypoxia tolerance in fishes, but the 

nature of such interactions is quite variable among fishes (Rogers et al. 2016).  As such, seasonal models 

may be better able to reflect changes in habitat suitability for species that exbibit temperature-

mediated environmental tolerances such as hypoxia tolerance in striped bass (Lapointe et al. 2014) and 

summer flounder (Capossela et al. 2012).  Selection of the HSIgm or HSIam formulation clearly depends on 

species, and thus, rather than arbitrary selection, we recommend consideration of multiple formulations 

of the HSI and use of data-driven analyses and assessment of model performance to inform selection 

(Chang et al. 2012; Tanaka and Chen 2015; Yu et al. 2019; this study). 

Future applications  
We examined habitat suitability for four forage fishes that are important components of the 

food web structure in Chesapeake Bay as indicated by contemporary trophic analyses of fish predators 

in the region.  As the system continues to warm, forage species such as penaeid shrimp will likely 

increase in abundance (Tuckey et al. in press); we expect penaeid shrimp will become a significant 

component of the diet of many predators in Chesapeake Bay as they have in other estuarine systems 

(Minello and Zimmerman 1983; Minello et al. 1989; Fujiwara et al. 2016).  Indeed, we hypothesize that 

penaeid shrimp may become as important as Mysids currently are for fishes of Chesapeake Bay 

(Buchheister and Latour 2015).  Habitat suitability models for penaeid shrimp could be developed from 

existing data from trawl surveys in Virginia and Maryland, but supplementation of such surveys with 

additional shallow-water surveys, particularly in Virginia, will be required. 

The accuracy of projections of habitat suitability models to areas not sampled by fishery-

independent surveys or to years not included in the models is overestimated by commonly used 

measures of model performance (Wenger and Olden 2012), and thus, model transferability must be 

assessed.  Transferability refers to model generality and how well a model can project into new 

geographic regions or times (Elith and Leathwick 2009).  Elith et al. (2010) and Wenger and Olden (2012) 

demonstrate this with presence/absence data, but there is a need to extend this approach to abundance 

data and to develop guidelines for efficient estimation.  Transferability assessments may not be 

necessary if “projections do not extend beyond the conditions represented by the data used to fit the 

model,” that is, as long as projections avoid extrapolation beyond the range of predictors used in the 

training data set or extension to areas where novel combinations of predictors occur (Conn et al. 2015).  

Our fisheries observations came from two surveys that sampled across a broad geographic area in the 

largest estuary in the US; these observations represent 17 years of monthly sampling, and as such, 

reflect the breadth of habitat conditions that fishes are likely to encounter in Chesapeake Bay.  The 

Virginia survey employed a stratified random design and the Maryland survey used a targeted (non-

random) design; when observations are spatially extensive, the integration and use of information from 

surveys based on different sampling designs can provide models with good predictive performance 
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(Soranno et al. 2020).  Furthermore, when the number of observations used to fit the model is 

sufficiently large (we used observations from 25,333 tows), then projections for unsampled areas within 

the same time frame are considered interpolations (Elith and Leathwick 2009; Soranno et al. 2020).  We 

consider our projections of HSIs in Mobjack Bay, Potomac River, and other subestuaries that were not 

routinely sampled by fishery-independent surveys to be interpolations and valid for assessment of 

habitat conditions in non-sampled areas during the timeframe of the study (2000-2016).   

Projections of habitat suitability into the future and under novel climate conditions, however, 

can be more problematic (Elith et al. 2010).  Indeed, models that are useful descriptors of current 

conditions and distributions of species may lead to poor predictions in other times (Elith et al. 2010).  

For example, climate change is expected to exert effects on the structure of fish communities in river-

dominated estuaries through changes in temperature and salinity (Feyrer et al. 2015), and these 

changes may affect how fishes use estuarine habitats.  The habitat suitability models that we developed 

may be used to assess the suitability of Chesapeake Bay habitats under various climate-change 

scenarios, but such applications will require additional research and model building.  In particular, 

additional transferability assessments are recommended.  More specifically, our modeling approach 

should be cross-validated by non-random assignment of observations to temporally distinct groups to 

ensure that the relationships between fish abundance and habitat conditions (e.g., temperature) are not 

extrapolated beyond the range of the data used to fit the model (Wenger and Olden 2012).  Globally, 

the last five years have been four of the warmest years on record (Arguez et al. 2020) and as such, may 

provide a reasonable indication of the relationship between forage fish abundance and habitat 

conditions in Chesapeake Bay in the future.  We considered habitat conditions and fish habitat 

relationships up to and including 2016 and our current model would require updating with more 

contemporary information.  Habitat conditions in the last 5 years, however, may not foretell conditions 

in the future.  Hinson et al. (in review) report that the Chesapeake Bay warmed by about 0.7° C since 

1985, or about 0.24°C per decade; this rate of warming is similar to the predicted rate of warming of sea 

surface temperature in the North Atlantic by 2050 under a ‘reduced emissions’ scenario (Hinson et al. in 

review).  The Chesapeake Bay is experiencing this rate today.  Moreover, surface- and bottom-water 

warming in Chesapeake Bay is primarily driven by warming air temperatures in the region.  Thus, it is 

reasonable to assume that increasing air temperatures associated with global warming will continue to 

affect warming of the Chesapeake Bay.  On a global scale, future years have a strong likelihood of 

remaining near record levels (i.e., setting new records; Arguez et al. 2020), and we therefore 

recommend that habitat suitability projections for Chesapeake Bay be constrained within a relatively 

short time frame (5-10 years) to ensure projections do not extrapolate beyond the maximum observed 

temperature conditions.  The reliability of those projections can be assessed using metrics such as the 

generalized independent variable hull (gIVH, Conn et al. 2015) or multivariate environmental similarity 

surfaces (MESS, Elith et al. 2010).  The gIVH extends Cook’s concept of influence from a linear regression 

framework to complex models that incorporate multiple covariates to describe abundance in space and 

time.  MESS provides a means to index the similarity of an observation to the reference data used to 

build the model (Elith et al. 2010).  Formalized approaches such as gIVH and MESS are necessary to 

evaluate whether projections are extrapolations or interpolations (Elith et al. 2010; Conn et al. 2015), 

and thus, to guide inferences.  

Finally, we note that the uncertainties associated with habitat suitability modeling and resulting 

projections are rarely assessed (Elith and Leathwick 2009).  We are aware of only one study that 

explored uncertainty of HSI model projections (e.g., Zajac et al. 2015), but such uncertainties are useful 

for understanding the limitations of model-based results for conservation and fisheries management.  
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Uncertainties may arise from model specification (e.g., the type of model used, or covariates omitted 

from the model) and from the observations used to fit the model (e.g., samples may not represent the 

population of interest, or sample size may be inadequate).  Ensemble approaches have been used to 

partially mitigate model uncertainty, but ensemble models do not fully overcome the limitations of the 

individual component models (Elith et al. 2010).  Model and observational uncertainties may affect 

habitat suitability projections in different ways, and the analysis of uncertainty for HSI models warrants 

further research (Zajac et al. 2015) and engagement with environmental statisticians.  In particular, a 

flexible hierarchical modeling framework recently described by Hefley and Hooten (2016) and which 

incorporates point processes to model presence/absence and count data appears to be a promising 

unifying approach for modeling the distribution of species across time and space.  
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Table 1.  Number of sites sampled monthly by fishery surveys in Virginia and Maryland waters of 

Chesapeake Bay, March 2000 to November 2016, and total number of sites for each year.  We omitted 

observations from January 2000, February 2000, and December 2016 in Virginia from consideration 

because these represented incomplete sampling in the three-month seasonal period (Dec-Jan-Feb).  

Blank values in the Maryland portion of the table indicate that no sampling was completed in those 

months and years. 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Virginia Survey 
2000   66 101 103 111 109 111 114 110 111 98 936 

2001 30 30 30 66 110 111 111 111 114 111 110 94 1032 

2002 66 90 66 90 96 96 96 97 95 96 96 96 1078 

2003 66 95 66 96 96 111 111 111 78 144 111 105 1181 

2004 57 114 66 105 111 111 111 111 111 111 111 105 1224 

2005 66 105 66 105 111 111 111 111 111 111 111 90 1224 

2006 66 105 66 105 110 111 111 111 111 111 78 105 1175 

2007 66 105 66 105 111 111 111 111 111 111 111 105 1224 

2008 66 105 66 105 111 111 111 111 111 111 111 105 1224 

2009 66 105 66 105 111 111 111 111 111 111 110 105 1223 

2010 66 105 66 105 111 111 111 111 111 111 111 105 1224 

2011 66 105 66 105 111 111 111 111 111 111 111 105 1224 

2012 66 105 66 105 111 111 111 111 111 111 92 105 1205 

2013 66 105 66 105 111 111 111 111 111 111 111 105 1224 

2014 66 97 74 105 111 111 111 111 111 111 111 105 1224 

2015 66 77 94 105 111 111 110 110 111 111 111 105 1222 

2016 66 103 66 105 111 111 111 110 111 111 111  1221 

Maryland Survey 
2000     37 36 37 37 36 37   220 

2001     37 37 37 37 36 37   221 

2002     36 37 37 37 37 37   221 

2003     53 50 53 53 53 52   314 

2004     53 53 53 53 53 53   318 

2005     53 53 53 53 53 53   318 

2006      53 53 53 53 53   256 

2007     45 53 53 53 53 53   310 

2008     37 53 53 53 53 53   302 

2009     37 53 53 52 53 53   301 

2010     53 53 53 53 53 53   318 

2011     53 53 53 53 50 53   315 

2012     53 53 53 53 53 53   318 

2013     53 53 53 53 53 53   318 

2014     53 53 53 53 53 53   318 

2015     53 53 53 53 53 53   318 

2016     52 52 52 52 52 52   312 
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Table 2.  List of the 24 static and dynamic habitat features considered for optimization of boosted 

regression trees (BRTs) for forage fishes in Chesapeake Bay, 2010 - 2010.  With the exception of the six 

‘percent time’ covariates, the same covariates were used to fit the BRTs to the 2000-2016 observations, 

allowing us to identify influential covariates for use in habitat suitability models.    

 

Type Habitat covariate Units 
Static Sediment composition (percent fine sediment) % 

Static Distance to shore m 

Dynamic Water depth m 

Dynamic Bottom dissolved oxygen mg O2/l 

Dynamic Tidal-averaged depth-averaged salinity psu 

Dynamic Tidal averaged surface salinity  psu  

Dynamic Tidal averaged bottom salinity psu 

Dynamic Tidal averaged salinity stratification  psu  

Dynamic Tidal-averaged depth-averaged temperature ° C 

Dynamic Tidal averaged bottom temperature ° C 

Dynamic  Tidal averaged surface temperature ° C 

Dynamic Tidal averaged temperature stratification ° C 

Dynamic Tidal averaged depth-averaged current speed m/s 

Dynamic Maximum depth-averaged current speed m/s 

Dynamic Tidal averaged surface current 1 m below surface m/s 

Dynamic Tidal averaged bottom current, 1 m above bottom m/s 

Dynamic Tidal averaged vertical stratification in current speed m/s 

Dynamic Tidal averaged horizontal gradient in current speed m/s 

Dynamic Percent time bottom waters < 10 C  % 

Dynamic Percent time bottom waters between 10 and 20 C % 

Dynamic Percent time bottom waters > 20 C % 

Dynamic Percent time bottom waters < 10 psu % 

Dynamic Percent time bottom waters between 10 and 20 psu % 

Dynamic Percent time bottom waters > 20 psu % 
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Table 3.  Influential covariates (checked and shaded boxes) identified by boosted regression trees for 

bay anchovy, juvenile spot, juvenile spotted hake, and juvenile weakfish from Chesapeake Bay, 2000-

2016.  The number of influential habitat covariates is denoted in parentheses after the species’ name. 

 

Habitat covariate 
Juvenile 
spotted 
hake (4) 

Juvenile 
weakfish  

(4) 

Juvenile 
spot  
(5) 

Bay 
anchovy-

winter 
(6) 

Bay 
anchovy-
summer 

(7) 

Physical covariates 

Distance to shore      

Percent fine sediment      

Water depth       

Temperature covariates 

Tidal average  
bottom temperature      

Tidal average  
temperature stratification 

     

Salinity covariates 

Tidal average  
surface salinity 

     

Tidal average salinity 
vertical stratification      

Dissolved oxygen 

Bottom dissolved oxygen 
  

  
 

Current speed covariates 

Tidal average current 
speed stratification 

     

Tidal average current 
speed horizontal gradient 

     

Maximum depth-averaged 
current speed      
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Table 4.  Results from the nonparametric regression analyses for juvenile spotted hake, juvenile spot, 

juvenile weakfish, and bay anchovy from Chesapeake Bay, 2000- 2016.  The model fit to the data was Yi 

= β0 + β1X1i + εi where Yi is the rank-transformed response, n is the sample size, β0 is the overall average 

response (intercept), β1 is the regression coefficient (slope), X1i is the value of the predictor for 

observation i, and εi is the unexplained random error.  The F-statistic is used to test the significance of 

the model.  Extent of suitable habitat was calculated for each season as the sum of the areas throughout 

Chesapeake Bay with HSI > 0.5.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Rank-transformed response 
(Y) 

Predictor (X1) n F P 

Juvenile spotted hake in Spring 

Relative abundance Extent of suitable habitat 17 0.01 0.91 

Extent of suitable habitat Year 17 0.21 0.65 

Juvenile spot in Summer 

Relative abundance Extent of suitable habitat 17 4.57 0.05 

Extent of suitable habitat Year 17 0.01 0.93 

Juvenile spot in Fall 
Relative abundance Extent of suitable habitat 17 0.01 0.93 

Extent of suitable habitat Year 17 1.11 0.31 

Juvenile weakfish in Summer 

Relative abundance Extent of suitable habitat 17 2.75 0.12 

Extent of suitable habitat Year 17 10.39 <0.01 

Juvenile weakfish in Fall 
Relative abundance Extent of suitable habitat 17 0.12 0.73 

Extent of suitable habitat Year 17 8.68 0.01 

Bay anchovy in Summer 

Relative abundance Extent of suitable habitat 17 0.06 0.80 

Extent of suitable habitat Year 17 24.37 <0.01 

Bay anchovy in Winter 

Relative abundance Extent of suitable habitat 16 19.98 <0.01 

Extent of suitable habitat Year 16 0.17 0.69 
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Figure 1. Sample sites (filled circles) of two surveys used to assess relative abundance of forage fishes 

in Chesapeake Bay, 2000-2016.  (A) Sites sampled by the VIMS Juvenile Fish Trawl Survey in a 

representative month; site selection is based on a random stratified survey design, thus, sites sampled in 

any given month vary randomly, but the number of sites sampled remains constant, with only minor 

changes due to weather or vessel complications.  During 2000 to 2016, this survey sampled 1,224 

sites/year. (B) Sites sampled by the Maryland Blue Crab Summer Trawl Survey; fixed sites are sampled 

monthly between May and October.  The star symbols denote multiple sample sites in the region (for 

clarity, individual sites are not shown).   

(A)                 (B) 
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Figure 2. Model domain and boundary conditions for the 3-dimensional UnTRIM Chesapeake Bay 

model used to hindcast environmental conditions for forage fishes, 2000-2016. 
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Figure 3.  Distance to shoreline (km) and sediment composition (% fines) of the seabed in Chesapeake 

Bay. 
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Figure 4.  Locations used for validation of the 3-dimensional hydrodynamic model for Chesapeake Bay. 
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Figure 5.  Validation of salinity and temperature hindcasts from the hydrodynamic model of 

Chesapeake Bay, 2000-2016.  Scatter plots compare model estimates to observations recorded during 

the fisheries sampling for (A) bottom salinity and (B) bottom temperature during 2012; the black line is 

the 1 to 1 line.  Target diagrams show each year (red) for (C) bottom salinity, (D) bottom temperature, 

(E) surface salinity, and (F) surface temperature. Text marks are the 2-digit year starting in 2000. 
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Figure 6.  Frequency histograms of seasonal environmental and physical conditions at sites sampled by 

the Virginia and Maryland surveys in the Chesapeake Bay and its major tributaries, 2000 – 2016.  The 11 

covariates depicted are those identified as influential covariates for juvenile spotted hake, juvenile 

weakfish, juvenile spot, and bay anchovy. 
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Figure 6.  continued 
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Figure 6.  continued 
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Figure 7.  Suitability indices for 5 habitat covariates for juvenile spot in summer (May-July) for 

Chesapeake Bay, 2000-2016:  bottom dissolved oxygen, distance to shore, water depth, horizontal 

gradient of tidal-averaged current speed, and tidal-averaged temperature stratification. 
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Figure 8. Suitability indices for 6 habitat covariates for bay anchovy in winter (December-February) for 

Chesapeake Bay, 2000-2016: bottom dissolved oxygen, distance to shore, tidal-averaged surface salinity, 

percent fine sediment, water depth, and horizontal gradient of tidal-averaged current speed. 
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Figure 9.  Box-and-whisker plots of the root mean-square error (RMSE) for two formulations of the 

habitat suitability index (HSI) estimated from 10 bootstrap replicates of 25,333 observations for forage 

species in Chesapeake Bay from 2000 to 2016.  Bootstrap replicates were partitioned into training 

(~70%) and test (~30%) sets:  the training set was used to identify influential covariates and to estimate 

the habitat suitability index (HSI); the test set was used to predict the HSI, which was then compared 

with the HSI from the training set and used to calculate RMSEs.  The RMSEs were estimated across 

seasons for all species, except for bay anchovy, which lacked observations in fall.  The diamond symbol 

in the plot displays the mean, the horizontal blue line is the median, the top and bottom of the boxes 

are the quartiles, the whiskers represent 1.5 times the interquartile range, and the open circles denote 

outliers.  Significant differences in the mean RMSEs were detected for bay anchovy and hake; we did not 

detect a difference in mean RMSEs for spot or weakfish.  Lower values of the mean RMSE indicate better 

model performance.  
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Figure 10.  Relationship between HSI and trimmed mean catches of forage fishes in Chesapeake Bay, 

2000-2016:  juvenile spotted hake in spring, juvenile spot in summer, juvenile spot in fall, juvenile 

weakfish in summer, juvenile weakfish in fall, bay anchovy in summer, and bay anchovy in winter.  For 

juvenile spotted hake, the HSIgm is shown, whereas the HSIam is shown for other species (see text).  Note 

the different y-axes. 
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Figure 11.  Frequency histograms of the estimated habitat suitability indices (HSI) for juvenile spotted 

hake in spring (HSIgm), juvenile spot in summer and fall (HSIam); juvenile weakfish in summer and fall  

(HSIam); and bay anchovy in summer and winter (HSIam) pooled for 2000 – 2016.  HSIgm is the geometric 

mean HSI and HSIam is the arithmetic mean HSI.   
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Figure 12.  Extent of suitable habitats (km2) for juvenile spot, juvenile weakfish, and bay anchovy in 

Chesapeake Bay and Mobjack Bay in summer 2010, 2011, and 2012.  Suitable habitat was defined as 

habitats with HSIam values > 0.5.  The Mobjack Bay fisheries observations were not used to develop the 

habitat suitability model and thus, these independent data were used for external validation of the 

modeling approach. 
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Figure 13.  Patterns in the relative abundance per unit (km2) of suitable summer habitat for juvenile 

spot, juvenile weakfish, and bay anchovy in Chesapeake Bay and Mobjack Bay in 2010, 2011, and 2012.  

Suitable habitat was defined as areas with HSIam values > 0.5.  The Mobjack Bay fisheries data were not 

used to develop the habitat suitability model and thus, these independent data were used for external 

validation of the modeling approach.  The points were jittered to improve clarity. 
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Figure 14.  Habitat suitability for juvenile spot in 2011 (A) and 2014 (B) in Chesapeake Bay showing the 

annual variation in the extent of suitable habitats in summer for this species.  The habitat suitability 

index ranges from 0 (red) indicating poor habitat to 1 (dark blue), with any shade of blue indicating 

suitable habitat.  
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Figure 15.  Habitat suitability for juvenile spotted hake in 2012 in Chesapeake Bay showing seasonal 

variation in the extent of suitable habitats for this species.  The habitat suitability index ranges from 0 

(red) indicating poor habitat to 1 (dark blue), with any shade of blue indicating suitable habitat.  
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Figure 16.  Habitat suitability for juvenile spot in 2011 in Chesapeake Bay showing seasonal variation in 

the extent of suitable habitats for this species.  The habitat suitability index ranges from 0 (red) 

indicating poor habitat to 1 (dark blue), with any shade of blue indicating suitable habitat.  
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Figure 17.  Habitat suitability for juvenile weakfish 2011 in Chesapeake Bay showing seasonal and 

spatial variation in the extent of suitable habitats for this species.  The habitat suitability index ranges 

from 0 (red) indicating poor habitat to 1 (dark blue), with any shade of blue indicating suitable habitat.  
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Figure 18.  Habitat suitability for bay anchovy in 2011 in Chesapeake Bay showing seasonal and spatial 

variation in the extent of suitable habitats for this species.  The habitat suitability index ranges from 0 

(red) indicating poor habitat to 1 (dark blue), with any shade of blue indicating suitable habitat.  Note 

that a fall habitat suitability model was not available for this species. 
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Figure 19.  Seasonal standardized abundance indices for forage fishes (juvenile spotted hake, juvenile 

spot, juvenile weakfish, and bay anchovy) in Maryland (blue) and Virginia (red) waters of Chesapeake 

Bay, 2000-2016.  Seasons were Feb-Apr for spring, May-Jul for summer, Aug-Oct for fall, and Nov-Jan for 

winter.  The seasonal relative abundance index was estimated as the mean catch per unit effort (CPUE), 

calculated as the number of fish captured divided by the area swept by the trawl (number/km2).  

Seasonal CPUEs were standardized to a mean of 1.0 across the 17 years, thus, patterns of abundance 

can be readily compared across states, but these standardized abundance indices do not reflect absolute 

differences in estimated mean CPUEs within a given year.  For example, mean relative abundances 

(CPUEs) of spotted hake in spring were at least one order of magnitude greater in Virginia than in 

Maryland.  Note that bay anchovy were not sampled in Maryland in winter, and thus, only the 

standardized index for Virginia is depicted. 
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Figure 19.  continued 
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Figure 20.   Nonparametric relationship between rank abundance and extent of suitable habitat (km2) 

for (A) juvenile spot in summer and (B) bay anchovy in winter in Chesapeake Bay, 2000 – 2016.  

Observations are depicted by blue circles; the solid line is the nonparametric regression fit to the 

observations, and the dashed line is the 95% prediction limit.  Values of HSIam>0.5 were considered 

suitable habitat. 
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Figure 21.  Relative abundance (scaled index) and extent of suitable habitat (km2) for (A) juvenile spot 

in summer and (B) bay anchovy in winter in Chesapeake Bay, 2000 – 2016.  Relative abundance (blue 

polygon) is depicted with a 95% credible interval; area of suitable habitat is denoted with green squares.  

Values of HSIam>0.5 were considered suitable habitat. 
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Figure 22.  Pattern of change in the extent of suitable habitat for (A) juvenile weakfish in summer, (B) 

juvenile weakfish in fall, and (C) bay anchovy in summer in Chesapeake Bay, 2000 – 2016.  The extent of 

suitable habitat was rank-transformed due to the low sample size (n=17), and the regression line 

estimates the nonparametric fit to the data.  All regression slopes were positive and significantly 

different from 0 (Table 4).  Values of HSIam>0.5 were considered suitable habitat. 
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