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Abstract Most present forecast systems for estuaries predict conditions for only a few days into the
future. However, there are many reasons to expect that skillful estuarine forecasts are possible for longer
time periods, including increasingly skillful extended atmospheric forecasts, the potential for lasting
impacts of atmospheric forcing on estuarine conditions, and the predictability of tidal cycles. In this study,
we test whether skillful estuarine forecasts are possible for up to 35 days into the future by combining an
estuarine model of Chesapeake Bay with 35-day atmospheric forecasts from an operational weather model.
When compared with both a hindcast simulation from the same estuarine model and with observations,
the estuarine forecasts for surface water temperature are skillful up to about 2 weeks into the future, and
the forecasts for bottom temperature, surface and bottom salinity, and density stratification are skillful for
all or the majority of the forecast period. Bottom oxygen forecasts are skillful when compared to the model
hindcast, but not when compared with observations. We also find that skill for all variables in the estuary
can be improved by taking the mean of multiple estuarine forecasts driven by an ensemble of atmospheric
forecasts. Finally, we examine the forecasts in detail using two case studies of extreme events, and we
discuss opportunities for improving the forecast skill.

Plain Language Summary This paper evaluates a suite of forecasts for Chesapeake Bay water
temperature, salinity, and dissolved oxygen created using a numerical model. By comparing the model
forecasts with observations, we show that the model forecasts for temperature and salinity are more
accurate than reference forecasts of previously observed conditions or the long-term mean; in other
words, the forecasts are skillful. In general, the forecasts are skillful for at least 2 weeks into the future.
Improvements to our forecasting system, such as predicting future river discharge into Chesapeake Bay,
would likely improve the forecast skill even more. By showing that accurate, skillful forecasts are possible
for a much longer time frame than previously considered, this paper takes an important step toward
applying forecasts to improve water quality and fisheries management and to prepare for the impacts of
extreme events like hurricanes and heat waves.

1. Introduction
Ocean model forecasts of water levels, temperature, salinity, and other properties for estuaries and similar
coastal regions have primarily focused on lead times of a few days into the future. For example, in the United
States, a number of Operational Forecast Systems provide guidance for temperature, salinity, water levels,
and currents for the next 2 days for major coastal and estuarine regions including Chesapeake Bay (Lanerolle
et al., 2011), the northern Gulf of Mexico (Wei et al., 2014), and San Francisco Bay (Peng et al., 2014). Experi-
ments with both operational and research models have shown that short-term estuarine and coastal forecasts
can help protect lives and property by predicting storm surges and inundation (Stanev et al., 2016) and by
assisting with search and rescue operations (Cho et al., 2014) and can protect public and ecosystem health
by forecasting the advection and dispersion of oil spills (Castanedo et al., 2006) and the development of
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harmful algal blooms (Brown et al., 2013). Forecasts for problems such as hypoxia can also make the public
aware of the problem and its causes and solutions (Testa et al., 2017).

Although most estuarine ocean forecasts have focused on a few days of lead time, in the atmosphere, mod-
ern weather forecasts routinely have skill up to 10 days in advance as a result of substantial improvements to
operational forecast models (Bauer et al., 2015). With additional improvements to these models, the extent
of skillful weather forecasts may soon approach the estimated upper bound of weather-scale predictability
of around 2 weeks (Zhang et al., 2019). Furthermore, recent modeling experiments have shown the ability
to skillfully forecast weekly mean atmospheric conditions (but not daily weather variability) at subseasonal
time scales of between 2 weeks to 2 months into the future (Li & Robertson, 2015; Pegion et al., 2019; Vitart,
2014). The lasting impact of initial land surface conditions (Koster et al., 2010, 2011) and the Madden-Julian
oscillation of atmospheric convection over the tropical Indian and Pacific Oceans (Zhang, 2013) contribute to
predictability at the subseasonal time scale. Skillful forecasts at even longer seasonal time scales of 3 months
to 1 year are also possible (Baehr et al., 2015; Jia et al., 2015; MacLachlan et al., 2015). Much of the pre-
dictability at the seasonal time scale is driven by slow ocean modes, and skillful forecasts of monthly mean
sea surface temperature (SST) have been produced for several large ocean regions (Hervieux et al., 2017;
Hobday et al., 2016; Jacox et al., 2017; Siedlecki et al., 2016; Spillman & Alves, 2009; Stock et al., 2015).

There are multiple reasons to expect that skillful forecasts for estuaries are possible beyond the few days
typically considered and potentially even beyond the 2-week limit for atmospheric weather forecasts. River
discharge forcing is a major driver of variability in estuarine salinity and circulation; as one example, the
relationship between the upstream length of saltwater intrusion in an estuary and the inflowing river dis-
charge generally follows a power law (MacCready, 1999, 2007; Monismith et al., 2002). However, estuaries
have a lagged response to river discharge forcing (e.g., Xu et al., 2012, found that modeled salinity lagged
river discharge by 40 to 70 days in Chesapeake Bay), which implies a degree of future predictability from
previously observed river discharge or upper estuary fluxes. Furthermore, tidal elevation and velocity follow
nearly perfectly predictable cycles that likely confer a significant amount of predictability to tidally driven
estuarine hydrodynamics. Finally, atmospheric forcing drives estuarine temperature and also has a role in
modulating salinity and circulation (e.g., Li & Li, 2011), so the extended predictability and lasting impacts
of atmospheric conditions are likely to transfer to predictability of estuarine conditions.

To test the limits of predictability of estuarine conditions, this study develops and tests a modeling system for
subseasonal forecasting of conditions in Chesapeake Bay, a large coastal plain estuary in the Mid-Atlantic
region of the United States. The model system combines an estuarine model with proven skill and routine
use in the Chesapeake Bay research community (Da et al., 2018; Irby & Friedrichs, 2019; Irby et al., 2016,
2018; Scully, 2016; Xu et al., 2012) with atmospheric forecasts from an operational weather model (Pegion
et al., 2019; Zhou et al., 2016, 2017; Zhu et al., 2018) (section 2). With this model system, we conduct an
extensive set of retrospective forecast experiments in which the estuarine model is initialized with realistic
conditions and then runs in forecast mode with forcing obtained from an atmospheric forecast. We use
these forecast results to test whether temperature, salinity, and oxygen can be skillfully predicted using the
model system (section 3). We also test whether the estuarine forecasts can be improved by generating and
averaging multiple forecasts using multiple atmospheric model ensemble members-forecasts that represent
uncertainty with slightly different initial conditions. Then, we examine model predictions for a few unique,
high-impact events, and we discuss potential sources of future improvements to the model skill (section 4).

2. Methods
We tested whether skillful subseasonal forecasts for an estuary are possible by conducting forecast simula-
tions using an estuarine model of Chesapeake Bay (ChesROMS) (Da et al., 2018; Xu et al., 2012) driven by
forecasts from an atmospheric model from the SubX experiment (Pegion et al., 2019). We focused on pre-
dictability during April through August, when hypoxia (Bever et al., 2013; Hagy et al., 2004; Murphy et al.,
2011; Officer et al., 1984; Taft et al., 1980) and other water quality issues (Glibert et al., 2001; Jacobs et al.,
2014; Kaper et al., 1981; Mulholland et al., 2009) are common in the bay. We note that during these months,
the predictability of the atmosphere over the United States is generally lower than during the late fall and
winter seasons (DelSole et al., 2017; Pegion et al., 2019). The spring-summer focus of the experiment thus
provides a high difficulty test case for subseasonal estuarine prediction, but one that is essential for intended
applications.
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2.1. Terminology

Because there are some differences between the terminologies commonly used by the atmospheric and
ocean forecasting communities, we first clarify the meaning of some of the terms used in this paper. The goal
of this paper is to assess the skill of our forecast model, which is a measure of the accuracy of the model fore-
casts compared to the accuracy of a (typically naive) reference forecast such as the long-term mean or the
previous day's value (Murphy, 1988). Accuracy can be measured by metrics such as the root-mean-square
error (RMSE), mean absolute error, or other metrics commonly used by ocean modelers to compare model
simulations with observations. A forecast model is considered skillful if its forecasts have better accuracy
than the reference forecasts.

Our estuarine hindcast simulation was designed to capture historically observed conditions; this follows the
terminology commonly used by ocean modelers (Zhang et al., 2010). The hindcast was forced by best esti-
mates of the boundary conditions for the atmosphere, ocean boundary, and river input, with these forcings
varying during the duration of the hindcast; that is, the hindcast includes “future” information that would
not even theoretically have been available to a prediction system. For example, the atmospheric forcing was
obtained from a reanalysis that repeatedly assimilated observations to estimate the time-varying state of the
atmosphere.

In our retrospective forecast, or reforecast, simulations, we used the ChesROMS estuarine model to forecast
historical conditions using only data that could, in principle, have been available at the initialization times
of the model simulations. For example, atmospheric forcing was obtained from a global weather model
that was initialized at the same time as the estuarine model and subsequently ran in free-running forecast
mode. The key property that makes these forecasts retrospective is that they were performed well after the
verification time. For brevity, we also refer to the results from these experiments as simply forecasts in the
text. Because these reforecast experiments capture the data constraints that a forecast model faces while
providing an extended set of historical simulations for forecast evaluation, reforecast simulations can be
used to estimate the accuracy and skill of a real or hypothetical real-time forecast system that forecasts future
conditions naturally using only data that is presently available (Hamill et al., 2006).

We use the definition of lead time that is common in longer-range weather forecasting to refer to the time
elapsed between when a forecast simulation was initialized and the earliest time when the forecast was valid.
Under this definition, if a forecast simulation was initialized at 0000 1 January, the resulting forecast for a
daily mean averaged over 0000–2359 1 January would be a forecast with 0-day lead, or a “Lead 0” forecast,
and a “Lead 1” forecast from the same simulation would be a daily mean over 0000–2359 2 January.

2.2. ChesROMS Estuarine Model

The estuarine component of the model system is the Chesapeake Bay Regional Ocean Modeling System
(ChesROMS) (Da et al., 2018; Xu et al., 2012). ChesROMS models the bay hydrodynamics on a 100 ×
150 curvilinear horizontal grid (Figure 1), with a resolution of between 600 and 4,500 m, and with 20
terrain-following vertical layers. Additional details about the model configuration are presented in Da
et al. (2018). The accuracy of the model at simulating velocity, tidal and nontidal elevation, temperature, and
salinity over a range of time scales has been evaluated with hindcast simulations by Xu et al. (2012), Irby
et al. (2016), and Da et al. (2018), so the hindcast accuracy will be only briefly examined in this manuscript.
ChesROMS requires boundary conditions for the ocean boundary and for river discharge, which are dis-
cussed in section 2.5. ChesROMS is also driven by forcing from the atmosphere, including 3-hourly 2-m
temperature and humidity, 10-m wind components, surface pressure, surface net longwave and shortwave
radiation, and precipitation.

The ChesROMS estuarine model was coupled with the simple model for dissolved oxygen developed by
Scully (2010, 2013, 2016). In this model, oxygen is treated as a passive tracer, oxygen concentrations in the
uppermost model layer are set to saturation based on temperature and salinity at every time step, oxygen
is removed (respired) at a rate of 1.4× 10−4 mmole m−3 s−1 that is constant at all times and everywhere in
the estuarine portion of the model domain, and oxygen concentrations are not allowed to become negative.
Oxygen concentration boundary conditions for both the open boundary and for river discharge are also set to
saturation. This model, which has been termed the simple respiration model or constant respiration model
(Bever et al., 2018; Irby et al., 2016), has been shown to perform comparably to complex biogeochemical
models (Bever et al., 2013; Irby et al., 2016), and the computational cost savings make the large number
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Figure 1. Map of the ChesROMS model domain, with the model bathymetry shaded for illustration. Black squares
show the locations of observations used to evaluate the model experiments. Blue triangles show locations where river
discharge was added.

of reforecast simulations needed for this study feasible. It should be noted that there are a few different
variants of the simple respiration model that differ on the respiration rate, whether the rate varies seasonally
or vertically, and how the surface concentration is set. The version we use is identical to the version in
Scully (2016).

2.3. GEFS Atmospheric Model

We used forecasts from the National Centers for Environmental Prediction (NCEP) Global Ensemble Fore-
cast System (GEFS) (Zhou et al., 2016, 2017; Zhu et al., 2018) as atmospheric boundary conditions for our
estuarine model reforecast simulations. The GEFS model output were obtained from the Subseasonal Exper-
iment (SubX) data set (Pegion et al., 2019, doi:10.7916/D8PG249H), which contains subseasonal reforecast
simulations from seven different models. We selected the GEFS model reforecasts for this study because the
model output provided in the data set contains all variables necessary to drive the estuarine model, and the
GEFS output also contains more ensemble members than other models in the data set.

The GEFS model reforecasts that we obtained from the SubX data set were initialized once weekly (every
Wednesday) from 1999 to 2015. Each reforecast began with initial conditions obtained by assimilating obser-
vations and subsequently ran freely in forecast mode for 35 days. The SubX data set contains 11 GEFS
ensemble members, each of which began with slightly different initial conditions. The output from each
reforecast ensemble member was saved at daily resolution on a 1◦ grid, although the actual model was run
at a higher resolution.

2.4. Atmospheric Forecast Bias and Drift Correction

We applied a simple bias and drift correction to the GEFS model output to prepare it for use as forcing for
the ChesROMS estuarine model. This correction is necessary because weather and climate models com-
monly contain biases in their mean state, and, as a result of initializations that consistently deviate from the
model mean state, they may also contain biases that are not stationary over time (Hermanson et al., 2018;
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Stockdale, 1997). The method used in this study corrected the atmospheric model mean but did not adjust
the variance or other moments of the distribution; this potential limitation is discussed in section 4.2. For
simplicity, we refer to the bias and drift correction as only “bias correction” in the remainder of the text, with
the intention that we are correcting for the mean difference between the GEFS data and the observations
(bias) and are allowing this bias correction factor to be a function of the forecast lead time (drift).

To apply the correction, we first calculated a lead-dependent daily climatology for the ensemble mean of
each GEFS variable needed to force ChesROMS using the method described in Pegion et al. (2019). The
lead-dependent model climatology describes the model mean climate M, averaged over 1999 to 2015 and for
a given point, as a function of forecast initialization day of year i and forecast lead time l: M(i, l). Because
GEFS reforecasts were initialized once weekly, the climatology for each combination of initialization day
of year and lead is noisy because it was produced from the average of at most a few simulations. The
method developed by Pegion et al. (2019) and applied in this study uses a triangular filter to produce a
smooth lead-dependent climatology. After calculation, the GEFS lead-dependent climatology was bilinearly
interpolated to a uniform 0.2◦ grid.

Next, to obtain a lead-dependent observed climatology O(i, l), we applied the same averaging method to
reanalysis data from the North American Regional Reanalysis (NARR) (Mesinger et al., 2006), also interpo-
lated to a uniform 0.2◦ grid and averaged to daily means. After determining the NARR daily climatology,
each day of year in the NARR climatology was matched with possible combinations of initialization day
and lead.

Finally, we defined a lead-dependent correction factor Δ for each variable and point:

Δ(i, l) = O(i, l) − M(i, l) (1)

and added this correction to the GEFS forecast for the given point, initialization date, and lead time. In
this way, bias corrections were applied for each variable needed to drive ChesROMS. The u and v wind
components were corrected simultaneously by calculating a correction factor for overall wind speed. For
wind speed and precipitation, which should not be below 0, we used a ratio in Equation 1 and applied the
correction by multiplying.

2.5. Model Forcing and Experiments

As a first step for our forecasting system, we used the ChesROMS model to run a hindcast simulation for
18 years (1998 to 2015). The first year was discarded afterward to eliminate the spinup period, leaving data
from 1999 to 2015. In the hindcast simulation, the estuarine model was forced using 3-hourly atmospheric
conditions from the NARR interpolated to the uniform 0.2◦ grid, as in other studies using ChesROMS (Xu
et al., 2012; Scully, 2016). A hindcast simulation of the mechanistic Dynamic Land Ecosystem Model
(DLEM) (Tian et al., 2015; Yang, Tian, Friedrichs, Hopkinson, et al., 2015; Yang, Tian, Friedrichs, Liu, et al.,
2015) provided daily freshwater fluxes for ten rivers that drain into the Chesapeake (Figure 1). Using DLEM
discharge matches the version of ChesROMS developed by Feng et al. (2015), although other studies using
ChesROMS have used discharge observed at gauging stations. We used DLEM discharge as it allows poten-
tial future work to more easily switch to a full biogeochemical model (such as that in Feng et al., 2015) or
to use model forecast river discharge. The temperature of the river discharge was set to the 1980–2011 cli-
matological monthly mean values observed at gauging stations (Feng et al., 2015). Temperature and salinity
conditions along the ocean boundary were set to radiation with nudging toward World Ocean Atlas climatol-
ogy, and sea surface elevation was set using a nontidal component, derived from observations at two coastal
stations, plus a tidal component calculated using seven harmonic constituents obtained from the Advanced
Circulation (ADCIRC) model (Mukai et al., 2002). Boundary elevation and momentum used the Chap-
man (1985) and Flather (1976) conditions, respectively, and also included tidal currents calculated from the
Mukai et al. (2002) data. These boundary conditions and other configuration choices not mentioned match
those used in Da et al. (2018).

Restart files generated once per day during the estuarine hindcast simulation were subsequently used as ini-
tial conditions for retrospective forecast simulations. In these reforecast experiments, atmospheric forcing
was obtained from the bias-corrected GEFS model reforecasts. River discharge was specified as a smoothed
daily climatology averaged over 1980 to 2011, and ocean boundary conditions used the same sources as
in the hindcast simulation, except the nontidal water level was fixed at the value obtained from the two
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coastal stations for the day of the model initialization. We also note that because the reforecast experiments
were driven by daily averages from GEFS, the reforecasts will not capture diurnal variability driven by the
atmosphere, and our analysis is primarily focused on daily averaged ChesROMS output. Although these
simplifications may reduce the forecast skill, they are necessary in the absence of skillful models for forecast-
ing river discharge and broader ocean boundary conditions. We will assess the forecast skill despite these
simplifications in section 3, and we will discuss possible future improvements in section 4.2.

The reforecasts were initialized on the first Wednesday of each month (matching the GEFS model that was
initialized on Wednesdays) from April to August of 1999 to 2015 and were run for 35 days. For each initializa-
tion date, we ran five separate estuarine model ensemble members, each with atmospheric forcing obtained
from a different GEFS ensemble member. Only the atmospheric forcing differed between ensembles; each
member used the same estuary initial conditions and river discharge and open boundary forcing. Overall,
the retrospective forecast suite contains a total of 425 model runs and 14,875 days of model simulation.

2.6. Forecast Skill Assessment

We tested three different aspects of the model skill: how well the hindcast simulation compares with obser-
vations, how well the reforecast simulations compare with the hindcast experiment, and how well the
reforecast simulations compare with observations. The comparison between the hindcast simulation and
the observations is not the main focus of this paper because versions of ChesROMS have been compared
with observations by Xu et al. (2012) and Irby et al. (2016), so the majority of the assessment of the hindcast
simulation is provided in the supporting information (Tables S1–S5). We focus on the comparisons between
the reforecast simulations and the hindcast and observations because these comparisons provide a baseline
to test the skill of our model forecasts.

To compare the hindcast and reforecast skill with independent observations, we obtained observations of
surface and bottom temperature, salinity, and dissolved oxygen from the Chesapeake Bay Program (CBP)
data set (Chesapeake Bay Program, 2018). This data set contains instantaneous vertical profiles from over
100 locations in the bay, and in many locations the profiles were taken twice every month during the warm
season. Although we evaluate the hindcast skill for 39 locations in the supporting information, in the main
text we select data from eight locations that are representative of the center of the bay and are roughly evenly
spaced apart (Figure 1). To match these instantaneous observations with the model forecasts, for each obser-
vation, we rounded the time of observation to the nearest hour and selected the model instantaneous value
from the same date and hour. For surface variables, data from 2 m depth were selected from the observa-
tions, and the model output were interpolated to the same depth. For bottom variables, the deepest value was
selected from each vertical profile and from the model output. Note that some error is potentially introduced
to the bottom data comparison due to the model bathymetry and profile depths not matching exactly, either
due to the inability of the model to resolve variations in bathymetry or to incomplete vertical profiles. We
also used the CBP observations to assess the model skill at predicting density stratification. Density was cal-
culated using the surface and bottom temperature and salinity observations, and stratification was defined
as the difference between the bottom and surface density. To evaluate the model predictions of oxygen inte-
grated over space, we compared the hypoxic volume predicted by the model (defined as the volume of water
in the model with a dissolved oxygen concentration below 2 mg l−1) with the hypoxic volume estimated from
the CBP observations by Bever et al. (2013).

For a few qualitative comparisons, we also obtained observations of SST from the National Oceanic
and Atmospheric Administration (NOAA) National Ocean Service monitoring station at Cambridge, MD.
Hourly observations from this station were averaged to daily means and compared with the model daily
means. Although this monitoring station and others in the bay provide fairly continuous observations of
SST, we primarily use the CBP observations because the monitoring stations have shorter periods of record
and several stations have evidence of instrument errors.

In addition to comparing the reforecasts with the CBP observations, we also compared the reforecast daily
means with the ChesROMS hindcast daily means. Assessing forecast skill against the model hindcast aug-
ments the observation-based assessment in two ways. First, this comparison represents a situation where
the forecast model is perfectly initialized and exactly captures the dynamics of the system, and thus it pro-
vides an isolated measure of the predictability limits imposed by the imperfect atmospheric forecasts and
the climatological river discharge and open boundary conditions. Second, under the assumption that the
hindcast simulation reasonably captures the dynamics of the system, comparing the forecasts against the
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Figure 2. Example of SST observations, observation-based reference
forecasts, and the model-based hindcast and reforecast predictions for the
Cambridge, MD, station in May 2004.

hindcast provides a spatially and temporally continuous perspective on
forecast skill that cannot be provided by patchy observational data. Due to
these considerations, in section 3 we will begin by analyzing the forecast
skill against the hindcast and then assess how the skill changes when the
forecasts are compared with direct observations.

The skill of the forecasts was evaluated using the mean square error
(MSE) skill score (Murphy, 1988; Murphy & Epstein, 1989), which com-
pares the percent improvement of the MSE calculated for a set of forecasts
and observations relative to the MSE for a set of reference forecasts and
observations:

Skill = 100% ×
(

1 −
MSEforecast

MSEreference

)
. (2)

A skill score of 100% indicates a perfect improvement over the refer-
ence forecast (a perfect match to the observations), and a skill score of
0% indicates that the forecast is not any more accurate than the refer-
ence forecast. Positive skill scores indicate that the model is skillful, while
negative skill scores, which are produced when MSEforecast >MSEreference,
indicate an unskillful model. The means in Equation 2 were taken over
time and, in most cases, over the eight CBP stations along the center of
the bay (Figure 1) to provide integrative measures of forecast skill.

We considered two reference forecasts to assess the skill of the estuarine model with Equation 2: a forecast
of climatological mean conditions for the given location and verification date and a forecast of persistence of
the anomaly (the difference between the observed value and the climatological mean) observed at the given
location averaged over the day before the forecast initialization. The ultimate choice of reference forecast
is commonly the most accurate reference forecast, which tends to be persistence for short-term forecasts
and climatology for long-term forecasts (Murphy, 1992). We found that climatology was typically the more
accurate reference forecast for the variables and daily weather to subseasonal time scales examined here,
so for brevity we present only skill scores calculated using the climatological reference forecast and provide
scores calculated relative to the persistence forecast in the supporting information. Note that other reference
forecasts are possible; for example, Murphy (1992) shows that persistence and climatology linearly combined
based on autocorrelation is more accurate than either reference forecast alone. For both the comparison with
the hindcast and with the observations, the climatological mean for the reference forecast was determined
using the same method used to smooth the GEFS daily climatology.

To reduce the impact of systematic errors in the estuarine model, we applied a stationary bias correction
(without correction for drift) to the estuarine hindcast and reforecast output when using the skill metric
(Equation 2) to compare the model output with the observations. With this correction, we assess the model
skill based on its capacity to simulate anomalies that are consistent with the observations, while allowing for
the possibility of a simple mean offset. This correction is not strictly necessary but makes the skill score more
meaningful by removing the impact of consistent model biases. A similar bias correction could be applied in
a real-time forecasting context using the same model hindcast simulations, so the model-observation com-
parison remains fair. The hindcast and reforecast bias was corrected by subtracting the difference between
the hindcast climatology and the observed climatology from the reforecasts. The reforecast climatology
and mean biases are similar to the hindcast climatology and biases because the reforecasts were initialized
from the hindcast and driven with bias-corrected atmospheric conditions and climatological conditions for
other inputs; however, the reforecast climatology and biases may still differ from the hindcast, and the sim-
ple method applied here will not correct for this difference. Additionally, the stationary correction is not
a function of forecast lead time and will not remove any changes in bias over time that may be present in
the estuarine reforecasts. However, an advantage of this simple method that does not use the retrospective
forecasts to calculate bias is that it avoids artificially increasing the skill of the forecasts.

To demonstrate the forecast evaluation described above graphically, we selected data for the first 2 weeks of
the May 2004 forecast for the National Ocean Service monitoring station located at Cambridge, MD, a choice
that allows a particularly clear illustration, and plotted the results in Figure 2. Because this example takes
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Figure 3. Skill scores comparing the hindcast simulation with the CBP
observations, using the observed climatology as a reference.

place during spring, the reference forecasts of both climatology and
anomaly persistence warm during the forecast period; however, per-
sistence remains cooler than climatology, which is consistent with the
modestly cooler than average conditions observed by the monitoring sta-
tion during the day before the initialization of the forecast. Both the
observations, hindcast, and reforecast indicate a rapid warming in the
first two weeks, and the reforecast simulation is closer to the observations
than the reference forecast for all but the first 3 days, which indicates a
generally skillful forecast. Note that a mean bias exists in the reforecast
even at Lead 0 because the hindcast simulation used for initialization is
also biased. While we account for this bias via the simple correction dis-
cussed in the preceding paragraph, it could also be reduced by using data
assimilation.

3. Results
Before evaluating forecasts produced using ChesROMS, we first evalu-
ate the ChesROMS hindcast simulation during April through August of

1999 through 2015 (supporting information Tables S1–S5). For surface and bottom temperature and salinity,
nearly all correlation coefficients are above 0.5, and the mean square and absolute errors are low relative to
the modeled and observed means. The central portion of the bay in the model has a modest warm bias at the
surface, and the majority of the bay is slightly too saline at both the surface and the bottom. These results
are comparable to the evaluations of temperature and salinity in other studies that have used ChesROMS
(Da et al., 2018; Irby et al., 2016; Xu et al., 2012). To predict oxygen, we coupled ChesROMS with the sim-
ple oxygen model developed by Scully (2016). This model does fairly well at capturing the seasonal cycle of
oxygen, as indicated by the correlation coefficients in Table S5 that are mostly around 0.7 to 0.8 and RMSEs
that are typically less than the observed standard deviations. However, the oxygen errors are high relative to
the modeled and observed means, and some of this error stems from a low bias in the model. When hypoxic
volume, the volume of water with an oxygen concentration below 2 mg L−1, is calculated for the entire hind-
cast and compared with the data-derived estimates from Bever et al. (2013), we obtain an R2 value of 0.86,
which compares well with the R2 value of 0.82 obtained by Scully (2016) for a longer hindcast simulation.
We obtain a lower R2 of 0.67 when the comparison is limited to the months from April to August.

In a forecasting context, it is important to consider how the errors of the model compare to the errors of a
simple prediction that can be readily made without a model, such as a prediction of the seasonally varying
long-term mean (i.e., compared to climatology) (section 2.6). In this comparison (Figure 3), the hindcast sur-
face and bottom temperature and salinity predictions have much lower errors compared to the observations
than the climatology does, as indicated by the large positive skill. However, the negative skill for bottom
oxygen means that the error of the hindcast oxygen simulation is higher than the error of the long-term
climatology; in other words, although the model predicts the regular seasonal cycle of oxygen fairly well
(Table S5) it cannot reliably predict the anomalies relative to the seasonal cycle. This comparison, which
requires the model to skillfully predict instantaneous oxygen measurements at eight discrete points in space
(Figure 1), is a stringent test for a model with fairly coarse resolution and smooth bathymetry that predicts
oxygen using a simple parameterization (section 2.2). We will discuss improvements to the model system
that may improve the oxygen skill in section 4.2. Due to the substantial variability of oxygen in Chesapeake
Bay over both time and space, we also expect that assessing predictions of oxygen averaged over time or
space, rather than assessing instantaneous predictions for a few points, would result in positive skill. Indeed,
the hindcast predictions of hypoxic volume do have a modest amount of skill compared to the estimated cli-
matology of hypoxic volume (Figure 3). However, in the remainder of the results, we will continue with the
pointwise assessment of bottom oxygen despite the apparent lack of skill when compared to instantaneous
observations to keep the forecast assessment for oxygen comparable to the assessments of temperature and
salinity. Comparing the pointwise oxygen forecasts with the hindcast may also still provide information
about the potential forecastability of oxygen.

Next, we briefly examine the skill of the daily mean GEFS atmospheric temperature forecasts over Chesa-
peake Bay from the five ensemble members that we used to drive the estuarine model (Figure 4). Without
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Figure 4. Skill score for raw (blue) and bias-corrected (orange) GEFS daily
mean 2-m air temperature forecasts. Consistent with the model output used
in this study, the forecasts are means of the first five GEFS ensemble
members, and skill was only calculated for forecasts initialized between
April and August and was averaged over a region representative of
Chesapeake Bay (76◦W, 38–39◦N).

bias and drift correction, the five-member ensemble mean forecast
remains skillful relative to climatology out to 7 days of lead time. Includ-
ing bias correction makes a minor difference to the skill in the first week
but does increase the length of the skillful forecast period to nine days.
The raw forecast skill is lower for the first forecast day than for the second,
which suggests the presence of an initial shock in the model as it adjusts
to the assimilated initial conditions. With bias correction applied, this
shock is removed, and the first forecast day is about as skillful as the sec-
ond day. Additionally, note that the corrected atmospheric forecast skill in
Figure 4 settles at a value below 0 for leads longer than 20 days; this occurs
in part because the correction only modifies the forecast mean and does
not correct the variance or other moments of the forecast distribution.

Even when only a single atmospheric ensemble member is used to drive
the estuarine model, the estuarine surface temperature forecast skill eval-
uated against the hindcast simulation exceeds the atmospheric ensemble
mean skill (comparing Figure 5 with Figure 4). In addition to surface tem-
perature, all other variables can be skillfully forecast with at least 10 days
of lead time, and surface salinity can be skillfully forecast for the entire
period. Note that the forecast system has more difficulty exceeding the
skill of a persistence forecast for surface salinity than the skill of a clima-
tological forecast, but the forecasts are nevertheless skillful (Figure S1).

Skill for bottom salinity and stratification and for surface temperature and bottom oxygen appear to be simi-
lar, suggesting connections between these variables. Surface salinity skill is higher than bottom salinity skill,
which is consistent with numerical model hindcasts routinely simulating surface salinity more accurately
than bottom salinity (Irby et al., 2016; Tables S2 and S4). Surface salinity variability in Chesapeake Bay is
driven by tides and wind at shorter time scales and by previous river discharge at longer time scales (Xu et al.,
2012), all factors with effects that can be well simulated by the model and well predicted in a forecasting con-
text. Bottom salinity is also driven by factors including mixing and advection of shelf salinity (Lee & Lwiza,
2008) that are more difficult to model and to forecast. Furthermore, bottom salinity is less variable than

Figure 5. Skill of the ensemble mean estuarine model reforecasts evaluated against the hindcast simulation as a function of the size of the ensemble. The skill
was calculated for the average MSE of forecasts from stations in the center of the bay (Figure 1) and compared against the MSE of a climatological reference
forecast. For ensemble sizes between 1 and 4, the MSE was also averaged for ensemble mean forecasts from ensembles representing all possible combinations.
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Figure 6. Skill of ensemble mean forecasts evaluated against the hindcast simulation at all model grid points. For this
figure, surface values were taken from the uppermost model layer.

surface salinity, so a climatological reference forecast has a lower MSE for bottom salinity than for surface
salinity, and therefore, model forecasts of bottom salinity must be more accurate to obtain a high skill score.

Adding an additional ensemble member simulation and using the ensemble mean as the forecast signif-
icantly increases the estuarine forecast skill and extends the skillful lead time by several days for most
variables (Figure 5). The difference between the skill of the ensemble mean forecasts and the individual
forecasts is especially high for surface temperature and stratification, two variables that have particularly
strong responses to atmospheric forcing. The ensemble mean has a negligible difference in skill compared
to the individual forecast only in roughly the first 5 days of the forecast period, which is not too surprising
because (1) the atmospheric forecasts take some time to diverge from the perturbed initial conditions and
(2) the estuarine simulations begin from the same initial conditions and take time to respond to the diverg-
ing atmospheric forcing. Although adding additional members to the ensemble always increased the skill of
the ensemble mean, the marginal improvement from an additional ensemble member quickly diminishes,
and the skill of a five-member ensemble was only modestly better than the skill of a three-member ensem-
ble. Therefore, although we will focus on the five-member mean in the remainder of the results, we expect
that a three-member ensemble would produce similar results and would be adequate in future studies if
computational resources were limited.

When assessed against the hindcast simulation, the skill of the forecast SST is fairly uniformly distributed
over the bay (Figure 6) with only slightly higher skill over the western side of the bay at intermediate lead
times. The spatially uniform decline toward unskillful forecasts after around two weeks is consistent with
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Figure 7. Skill of the ensemble mean forecasts evaluated against the hindcast simulation (blue) and against the CBP observations (black). For this comparison,
the forecasts have been corrected for mean biases by comparing the hindcast and observed climatologies.

atmospheric forcing being the primary driver of SST in the bay. The surface salinity forecasts are skillful
throughout the majority of the bay at short lead times. Skill is maintained over the full forecast window
for the central portion of the bay but quickly drops to 0 near the mouths of the Susquehanna River and
the other tributaries due to the use of climatological river discharge forcing in the reforecast simulations.
Similarly, at longer lead times, the highest salinity skill is found near the eastern shore, the farthest from any
of the river inputs and the open boundary. Aside from the first few days, skill for bottom oxygen is primarily
concentrated in the deep central channel of the bay, the eastern shore, and in a few of the tributaries. Skill
relative to climatology is also present outside of the bay along the shelf; however, this skill is an artifact of
persistence (Figure S2).

The previous forecast evaluations have compared forecast skill against the hindcast simulation, so in Figure 7
we compare the forecasts with independent observations to get an estimate of real-world forecast skill. The
reforecast-hindcast comparison in this figure also uses hourly model output that was subsampled to match
the times of the observations to ensure a fair comparison; note that the reforecasts were forced with daily
average atmospheric forecasts and will fail to capture some subdaily variability but will include variability
due to tides. These results confirm that the skill identified by comparing with the hindcast is also present
when comparing with observations, although naturally the skill when comparing with observations is some-
what lower. The only exception is for bottom oxygen, which is not skillful at any lead time when compared
with the observations (skill scores for oxygen range from −28% to −41% and are not shown in Figure 7).
Note that the forecast skill compared to the observations for Lead 0 is nearly the same as the hindcast skill
compared to the observations in Figure 3, and in later leads the forecast skill generally declines. In other
words, the skill of the forecasts is constrained by the skill of the hindcast that was run with the same estuary
model and was used to initialize the forecasts.

4. Discussion
Overall, the results have shown that temperature, salinity, and stratification for the majority of Chesapeake
Bay can be skillfully forecast at least 2 weeks in advance, which is beyond the extent of skillful atmospheric
temperature forecasts from the GEFS model for the same region. Oxygen can also be forecast with skill when
the forecasts are compared with the model hindcast, but not when they are compared with the observations.
The forecast skill for all variables was improved by taking the mean of multiple estuarine model ensemble
members driven by multiple atmospheric forecasts, although the improvement primarily occurred after the
first 5 days and as the number of ensemble members was increased from one to three.
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Figure 8. (a) NARR 2-m temperature anomaly for 9 June 2008. (b) GEFS five-member ensemble mean 2-m temperature anomaly forecast issued 4 June 2008
and valid 9 June 2008. (c and d) Observations or data-derived estimates (black), model hindcast (red), individual ensemble member forecasts (light blue),
and ensemble mean forecast (dashed dark blue) for SST and baywide hypoxic volume, respectively. Hypoxic volume estimates are from Bever et al. (2013).

The forecast skill assessment presented so far was conducted at a high level by averaging over a long series
of forecasts, so in this discussion we use two case studies to gain a perspective on the skill of individual
forecasts and to discuss the strengths and weaknesses of the model forecast system (section 4.1). Then, we
discuss modifications and additions to the forecast system that could improve the skill (section 4.2).

4.1. Forecast Case Studies

We chose two events for case studies that represent high-impact phenomena that occasionally affect the
Chesapeake Bay region during the warm season: first, a heat wave that occurred over the eastern United
States in June 2008, and second, a hurricane (Irene) that passed over the bay area in August 2011. These case
studies also represent two types of extreme events with particularly promising forecastability at subseasonal
to seasonal time scales (Vitart et al., 2019; Xiang et al., 2015).
4.1.1. June 2008
The first case study examines the heat wave that impacted the eastern United States in early June 2008.
Over Chesapeake Bay, the warmest air temperature was observed on 9 June, and on this day temperatures
of 5◦C to 10◦C above the 1999–2015 climatological mean were present over the entire eastern United States
(Figure 8a). The GEFS weather forecasts used in this study were initialized on 4 June, and the ensemble
mean 2-m temperature forecast for 9 June (Lead 5) was a close match to the reanalysis (Figure 8b). Con-
sistent with the predictability of the atmospheric conditions during this event, SSTs were also accurately
predicted by the forecast system (Figure 8c). Note that although the atmospheric temperature peaked on
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Lead 5, the SST observed at the National Ocean Service station in Cambridge, MD, did not peak until Lead
8. The hindcast also peaked at Lead 8 at Cambridge, while the peak of the reforecast ensemble mean was
delayed until Lead 10. This delay is consistent with the hypothesis that some of the extended skill of the estu-
arine forecasts is from the delayed, autocorrelated response of the estuary to predictable weather conditions.
After the peak of the heat wave, both observed and hindcast temperatures gradually subsided. The ensem-
ble mean forecast followed the hindcast closely until around Lead 20, when the forecast continued reverting
to normal while the hindcast and observations leveled off at around 1◦C above normal. The behavior of the
forecasts is consistent with the general tendency for the mean SST forecast to approach the long-term clima-
tology toward the end of the forecast period because of unskillful atmospheric forecasts that also fluctuate
around climatology, the use of climatological temperatures for river input, and relaxation toward climatol-
ogy at the boundary. Finally, the estimated baywide volume of hypoxic water increased significantly during
and following the heat wave (Figure 8d), and every forecast ensemble member correctly predicted the shift
from below-normal to above-normal hypoxic volume conditions, although the increase in hypoxic volume
occurred too quickly in both the forecasts and the hindcast.

Although obtaining skill for this particular event is not too surprising because the maximum air tempera-
tures occurred only a few days after the start of the forecast, recent research does suggest that heat waves
in many regions may be predictable over even longer time scales. For example, Teng et al. (2013) identified
an atmospheric pattern that typically precedes summer heat waves over the continental United States by
2 weeks, Lavaysse et al. (2019) found that model skill at forecasting European extreme temperatures extends
to about 2 weeks, and McKinnon et al. (2016) found a pattern of Pacific Ocean SSTs that is predictive of
warm temperatures in the Eastern US by up to 50 days in advance.
4.1.2. August 2011
Hurricane Irene passed near the mouth of Chesapeake Bay on 27–28 August 2011 and brought storm surge
and inland flooding from heavy rain (Avila & Stewart, 2013). In addition to flooding, the storm had other
impacts including increased oyster mortality due to reduced salinity in nearby Delaware Bay (Munroe
et al., 2013) and increased turbidity in Chesapeake Bay (Palinkas et al., 2014; Xie et al., 2018). The storm
also significantly cooled the surface water in Chesapeake Bay (Figure 9a) and aerated the bottom water
(Figure 9b).

The GEFS and estuarine model reforecasts in this study were initialized on 3 August, long before Irene
formed as a tropical storm on 20 August. Accordingly, the model forecasts did not precisely capture the storm
and its impact. However, four of the five GEFS ensemble members used in this study did have a low-pressure
system pass near the bay at some time during the second half of the forecast period (Figure 9c), while the
remaining member (Member 5) produced a low to the northeast with a trailing cold front. Some of these
events produced cooler surface waters similar to those observed following Irene (Figure 9a), although the
timing of the events varied. Consistent with atmospheric uncertainty around the formation of a tropical
cyclone as well around the timing of a cooling event earlier in the forecast period, the uncertainty in SSTs
was high for the majority of the forecast period: The range of temperatures forecast by the ensemble spanned
3◦C for much of the forecast, compared to the roughly 1◦ to 2◦ range in Figure 8c. During the first half of the
forecast period, the ensemble also displayed some uncertainty about hypoxic volume, although all members
predicted volumes above normal, which is consistent with the data-derived estimates from Bever et al. (2013)
(Figure 9b). During the second half, the three ensemble members that forecast a low or cold front around
the right time (Members 1, 3, and 5) also correctly forecast a significant aeration event and a shift to near-
or below-normal hypoxia conditions, while the remaining two members forecast a continuation of severe
hypoxia.

Although we only produced estuarine forecasts using the first five GEFS reforecasts initialized on 3 August
2011, we have examined the remaining six GEFS atmospheric reforecast members from 3 August and the
GEFS reforecasts initialized on 10, 17, and 24 August. Of the remaining six members from 3 August, none
predicted a storm making landfall near the bay like Member 3 in Figure 9c, although two members did
produce a low offshore near the end of the forecast period. The reforecasts initialized on 10 August indi-
cated a stronger probability of a cyclone near the bay: 4 of the 11 members produced a strong low over
Cape Hatteras sometime between 22 August and 5 September, and several of the remaining members pro-
duced weaker lows or storms farther offshore. By 17 August, all but 2 of the 11 ensemble members correctly
predicted a tropical or extratropical cyclone in the vicinity of the bay during the second or third week of
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Figure 9. (a, b) Observations or data-derived estimates (black), model hindcast (red), individual ensemble member
forecasts (light blue), and ensemble mean forecast (dashed dark blue) for SST and hypoxic volume, respectively.
Hypoxic volume estimates are from Bever et al. (2013). (c) Mean sea level pressure forecasts for the five GEFS members
(first five panels) and the NARR reanalysis (bottom right panel). All GEFS forecasts were initialized on the same date
but are valid at different times. Red colors indicate high MSLP, and blue colors indicate low MSLP.
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the forecast, although the exact timing still varied. In the reforecasts initialized 24 August, all 11 ensem-
ble members correctly placed a strong tropical cyclone near the bay on 28 August. These results confirm
the extended forecastability of Irene and highlight the importance of using multiple ensemble members to
capture uncertainty about the formation, track, and timing of the storm.

Here we presented only a single case study that highlights the potential applications for estuarine forecasting
in a situation where skillful tropical cyclone forecasts are possible. Although in general skillful deterministic
prediction of the genesis and track of an individual tropical cyclone multiple weeks in advance remains an
elusive challenge (Xiang et al., 2015), recent studies have shown that dynamical models do have skill at
forecasting the statistics of tropical cyclones at subseasonal to seasonal time scales. For example, Li et al.
(2016) showed that the GEFS model has skill at predicting tropical cyclone counts and intensity in the North
Atlantic Ocean two weeks in advance. Xiang et al. (2015) demonstrated skill at 5- to 10-day lead predictions
of individual tropical cyclones. Lee et al. (2018) found that for most ocean basins, the formation of tropical
cyclones could be skillfully forecast in the first week by the majority of the six subseasonal models that they
tested; however, forecast skill declined significantly in the second week and beyond. Vecchi et al. (2014)
and Murakami et al. (2016) showed that skillful forecasts of regional tropical cyclone activity aggregated
over a hurricane season are possible several months prior to the start of the season. However, beyond the
single case study presented here, it remains to be seen whether these forecasts translate to skill at forecasting
conditions for estuarine and coastal regions.

4.2. Potential Improvements to the Model System

In this study, we presented a proof of concept subseasonal estuarine forecast system for Chesapeake Bay
that can skillfully forecast temperature, salinity, and potentially oxygen at least two weeks in advance in
the majority of the bay. However, the modeling system included notable simplifications, such as not using
forecast river discharge or data-assimilative initial conditions, that reduced the computational costs and
model development time but may have also reduced the skill of the forecast system. In this section, we
discuss modifications to the forecast system that could improve the forecast skill and make the forecasts
more useful to managers and other stakeholders.

Although the hindcast used as initial conditions for the reforecast experiments had reasonable accuracy
when compared to the observations, assimilating observations to improve the initial conditions would also
improve the forecast skill, especially in the earlier part of the forecast (e.g., Hoffman et al., 2012). However,
assimilating data in estuarine and coastal models, where large spatial and temporal variability is present, is
more challenging than in global and regional ocean models where data assimilation is more common (Li
et al., 2015; Stanev et al., 2016; Xu et al., 2002). Data assimilation is also computationally costly, and it would
not be feasible to implement assimilation for the 18 years of simulation used in this study. Data assimilation
is also not currently implemented in the operational forecast model for Chesapeake Bay, presumably for the
same reasons.

To use the atmospheric forecasts to drive the estuarine model, we applied a simple bias correction and down-
scaling method that interpolated the forecasts to a higher resolution and corrected the mean bias of the
forecasts by comparing with an atmospheric reanalysis. More sophisticated methods could improve the skill
of the atmospheric and estuarine forecasts by also correcting other moments of the distribution, accounting
for covariance between variables, and separating the differences between land and water and the differences
in weather and climate across the bay, both of which are poorly resolved at the 1 degree resolution that the
atmospheric forecasts were archived at. However, a more sophisticated downscaling method is not guaran-
teed to improve the forecasts; for example, some correction methods can produce erroneous results near
land/sea boundaries (Lanzante et al., 2018).

Although the estuarine model configuration in the reforecast experiments used climatological river dis-
charge, the hindcast from which the initial conditions were derived used realistic river discharge forcing,
and so the reforecast simulations captured the effects of past river discharge anomalies (e.g., the predictable
advection and dispersion of a recent freshet) but not future anomalies. Given that the 35-day forecasts are
short compared to the bay residence time (which Du & Shen, 2016, estimated to be 180 days on average)
and compared to the estimated 40 to 70 days by which bay mean salinity lags total river discharge (Xu et al.,
2012), using climatological river discharge forcing for the 35-day forecast experiments is not likely to be a
severe limitation in the mainstem bay. This hypothesis is supported by the presence of salinity skill for the
majority of the bay at extended leads, except near the sources of river discharge (Figure 6). However, using
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skillfully forecast river discharge as input would still improve the salinity and stratification forecasts, and
forecast discharge would be especially important to consider for seasonal forecasts longer than the 35-day
forecasts tested here. Recently developed operational forecast models, such as the National Water Model,
could be used in a real-time forecasting system. However, for retrospectively assessing the forecast skill,
we are not aware of any river discharge models that have run reforecast simulations that cover the time
period of this study. A possible alternative approach would be to use a simple water balance model to esti-
mate runoff and river discharge using forecasts of precipitation and temperature over the Chesapeake Bay
watershed (e.g., Muhling et al., 2018), although forecast skill for precipitation is significantly lower than for
temperature (DelSole et al., 2017; Pegion et al., 2019) and it is possible that using a simple water balance
method would not provide enough skill at forecasting river discharge to significantly increase the skill of
the estuarine forecasts.

When comparing against the hindcast, the bottom oxygen forecasts had lower errors than the hindcast clima-
tology or hindcast anomaly persistence. However, when compared against the CBP observations, the bottom
oxygen forecasts were not skillful even with the simple, stationary bias correction included (Figure 7). The
bottom oxygen in the hindcast was also not skillful (Figure 3). One possible cause of the low skill for oxygen
concentration is the simple method used to model oxygen, which parameterizes all biogeochemical sinks
of oxygen with a single, constant respiration rate. Utilizing a full biogeochemical model, such as the mod-
els in Da et al. (2018) or Irby et al. (2016), may provide improved forecast skill for oxygen by capturing the
variability driven by biogeochemical processes. Supporting this theory, oxygen was forecast well during the
two case studies (section 4.1) when oxygen variability was driven by extreme weather events, rather than
by biogeochemical processes, that were captured by the atmospheric and estuarine models. Alternatively,
allowing the respiration rate in the simple oxygen model to vary seasonally or over depth could improve the
oxygen predictions (Bever et al., 2013). The significant spatial variability of dissolved oxygen may also com-
plicate the skill assessment; in Figure 7, we assessed skill aggregated over eight discrete points along the
deep central region of the bay, but forecast skill compared to the observations could be higher at other loca-
tions (e.g., Ross & Stock, 2019). The ChesROMS configuration also uses fairly coarse resolution compared
to some other models of Chesapeake Bay (Irby et al., 2016), and the coarse resolution and resulting smooth
bathymetry could limit the ability to correctly predict bottom oxygen. However, we tested skill at predicting
hypoxic volume, which integrates oxygen concentrations over space, and found that although errors were
reduced, the forecasts were still not skillful when compared to the observed climatology of hypoxic volume
(not shown). We also found that skill compared to the hindcast was higher along the central channel than
in other regions (Figure 6).

Although the hindcast and 35-day forecasts had reasonable accuracy, expanding the southeastern portion
of the model domain (along which open boundary conditions were applied) to cover a larger portion of the
shelf may improve the accuracy of the forecasts, especially if the forecasts were to be extended to longer
lead times. In Chesapeake Bay, winds along the shelf drive a significant amount of subtidal variability in sea
level and exchange between the estuary and the shelf (Wang, 1979a, 1979b; Wang & Elliott, 1978; Wong &
Valle-Levinson, 2002), and dissolved oxygen is also advected up-estuary from the shelf and mouth in deep
water (Li et al., 2015). These processes were not captured in the reforecast simulations because of the limited
extent of the regional model domain and the use of fixed nontidal elevation and velocity boundary condi-
tions. On the other hand, simulations with a coupled biogeochemical model by Da et al. (2018) have shown
that even in the small ChesROMS domain, dissolved oxygen concentrations in the bay are only weakly
sensitive to boundary conditions for dissolved inorganic nitrogen.

Finally, our results primarily examined the skill of the five-member ensemble average forecast and did not
compare the accuracy of the distribution of the ensemble forecasts. With appropriate postprocessing, the
information provided by the multiple ensemble members could be presented as a probabilistic forecast
(Gneiting & Katzfuss, 2014), which is more informative and often more useful (Krzysztofowicz, 2001; Ramos
et al., 2013). It would also be worth testing whether an ensemble of five simulations is also sufficient for
probabilistic forecasts, or if more members are beneficial.
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5. Conclusion
We conducted an extensive set of reforecast experiments for an estuary and found that temperature, salinity,
and stratification could be skillfully forecast beyond the limit of weather-scale predictability of the atmo-
sphere and beyond the short forecasts that have been previously developed for estuarine and coastal systems.
After roughly the first five days, the skill of the forecasts was significantly improved by taking the ensem-
ble mean of a series of estuarine forecasts produced from an ensemble of atmospheric forecasts. Given
that extensive estuarine forecasts appear to be possible, it is worth exploring whether these forecasts can
be implemented in management decisions and made informative to other forecast users. Further improve-
ments to the forecast system, such as the production of skillful probabilistic forecasts, may also improve the
usefulness of the model forecasts. Finally, although we expect that our results will generalize and apply to
forecasts of other estuaries, it would be interesting to compare the predictability and forecast skill across
multiple estuaries. Forecast skill may be even higher in some other regions, such as those with stronger
atmospheric predictability or stronger forcing from predictable river discharge, and could be higher or lower
in other types of estuaries, such as deep fjords, compared to the coastal plain estuary we studied.

Data Availability Statement

Estuarine model data are available online (https://doi.org/10.6084/m9.figshare.9893891.v5). All other data
are publicly available from the sources cited in the text.
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