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Georgios Giannopoulos1*†, Katherine R. Hartop1†, Bonnie L. Brown2, Bongkeun Song3,
Lars Elsgaard4 and Rima B. Franklin1

1 Department of Biology, Virginia Commonwealth University, Richmond, VA, United States, 2 Department of Biological
Sciences, University of New Hampshire, Durham, NH, United States, 3 Department of Biological Sciences, Virginia Institute
of Marine Science, College of William & Mary, Gloucester Point, VA, United States, 4 Department of Agroecology, Aarhus
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We investigated the effects of trace metal additions on microbial nitrogen (N) and carbon
(C) cycling using freshwater wetland sediment microcosms amended with micromolar
concentrations of copper (Cu), molybdenum (Mo), iron (Fe), and all combinations thereof.
In addition to monitoring inorganic N transformations (NO3

−, NO2
−, N2O, NH4

+) and
carbon mineralization (CO2, CH4), we tracked changes in functional gene abundance
associated with denitrification (nirS, nirK, nosZ), dissimilatory nitrate reduction to
ammonium (DNRA; nrfA), and methanogenesis (mcrA). With regards to N cycling,
greater availability of Cu led to more complete denitrification (i.e., less N2O accumulation)
and a higher abundance of the nirK and nosZ genes, which encode for Cu-dependent
reductases. In contrast, we found sparse biochemical evidence of DNRA activity and
no consistent effect of the trace metal additions on nrfA gene abundance. With regards
to C mineralization, CO2 production was unaffected, but the amendments stimulated
net CH4 production and Mo additions led to increased mcrA gene abundance. These
findings demonstrate that trace metal effects on sediment microbial physiology can
impact community-level function. We observed direct and indirect effects on both N and
C biogeochemistry that resulted in increased production of greenhouse gasses, which
may have been mediated through the documented changes in microbial community
composition and shifts in functional group abundance. Overall, this work supports a
more nuanced consideration of metal effects on environmental microbial communities
that recognizes the key role that metal limitation plays in microbial physiology.

Keywords: denitrification, DNRA, carbon mineralization, wetland microbes, trace metals

INTRODUCTION

Wetland microbes are important for removing anthropogenic pollutants from surface waters,
effectively preventing the contaminants from entering downstream coastal and marine ecosystems.
Human-derived industrial nitrogen (N) input to the environment has been estimated to 150 Tg
N y−1 (Schlesinger, 2009), and is of particular concern because it is linked to water quality
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degradation, eutrophication, and increased emissions of nitrous
oxide (N2O), which is a strong greenhouse gas (GHG) that
also contributes to ozone depletion (Ravishankara et al.,
2009; IPCC, 2013). Biological production of N2O is mainly
through denitrification, nitrification, and nitrifier-dentrification;
in addition, some denitrifying microbes can remove N2O by
reducing it to inert dinitrogen (N2). Annually, ∼10% of the
human-derived N input is returned to the atmosphere as N2 via
denitrification from wetlands and terrestrial ecosystems globally
(Schlesinger, 2009). Wetlands are equally important for their role
in carbon (C) cycling. Despite their relatively small coverage
(∼10% of global land area), these ecosystems store large amounts
of organic C and emit considerable amounts of methane (CH4)
at an estimated rate of 144 Tg CH4 y−1 (IPCC, 2014). These
net CH4 emissions represent a balance between the microbial
processes of methanogenesis and methanotrophy.

Microbial production and consumption of N2O and CH4
is catalyzed by oxidoreductases that utilize metal co-factors
such as molybdenum (Mo), copper (Cu), and iron (Fe) (Glass
and Orphan, 2012). For denitrification, the pathway includes
the reduction of nitrate (NO3

−) to nitrite (NO2
−), catalyzed

by a periplasmic or membrane bound Mo nitrate reductase
(NAR) (Schwarz et al., 2009), and the further reduction of
NO2

− to nitric oxide (NO) by either a heme-Fe cytochrome
cd1 or a Cu co-factor nitrite reductase (NIR), expressed by
the genes nirS and nirK, respectively (Adman et al., 1995;
Einsle et al., 1999). NO is further reduced to N2O by
nitric oxide reductase (NOR), which contains a heme-Fe co-
factor (Shiro et al., 2012). Finally, N2O is reduced by a
Cu-containing nitrous oxide reductase (NOS) (Rosenzweig,
2000). Similar metal complexes are key in methane cycling.
For example, Fe-, Ni-, and Zn-dependent ferredoxins and
dehydrogenases catalyze the early steps of methanogenesis, and
all methanogens utilize a common Ni methyl-coenzyme M
reductase (MCR; mcrA) to catalyze the rate-limiting and final
step of CH4 production (Glass and Orphan, 2012; Wongnate
and Ragsdale, 2015). Cu also has an integral role in CH4
oxidation. For example, aerobic methanotrophs scavenge Cu
with methanobactin, a high-affinity chaperone (Chang et al.,
2018), for use in Cu-dependent CH4 monoxygenases. Some
anaerobic methanotrophs, such as members of the NC10
phylum (e.g., Methylomirabilis oxyfera), utilize a Cu-dependent
particulate methane monoxygenase (pMMO) and an Fe-rich cd1
nitrite reductase to couple CH4 oxidation to denitrification via
nitrite-dependent methane oxidation (N-DAMO) (Deutzmann
et al., 2014; Cheng et al., 2019). Because of these sorts
of interconnected pathways and processes, the abundance
and bioavailability of trace metals in the environment can
impact N and C biogeochemistry and exert a control on
associated GHG emissions.

Although extensive research has considered the relative
contribution of key environmental factors (e.g., pH, NO3

−,
NO2

−, O2, and C/N ratio) in regulating the microbial
processes associated with N and C biogeochemistry, our
understanding of the impact of metal availability is more
limited. Metals in the environment have traditionally been
seen as unwanted pollutants, and trace metal accumulation

has been linked to toxicity and inhibition of ecosystem
processes (Samanidou and Papadoyannis, 1992). For example,
concentrations exceeding the mg L−1 range for Cu, Mo, Fe,
Zn, and Pb severely inhibit denitrification in soils, sediments,
surface water bodies, and waste waters (Labbé et al., 2003;
Magalhães et al., 2007; Liu et al., 2016). However, given the
dependence of many microbial enzymes on metal co-factors,
it also is possible for the opposite effect to occur – wherein
enzyme function is limited due to an inadequate supply of
trace metals. This scenario has received limited attention in
environmental studies, but is well documented in case studies
with model organisms. In fact, in vitro studies have shown
that lack of Cu, Mo, or Fe severely inhibits denitrification
or methane cycling due to the formation of non-functional
enzymes typically lacking the respective metal co-factor. For
example, in the soil bacteria Paracoccus denitrificans and
Pseudomonas stutzeri, Cu is required to express a functional
NOS dimer and reduce N2O to N2 (Granger and Ward, 2003;
Felgate et al., 2012; Black et al., 2016). In methanotrophs
oxidizing CH4 to methanol (CH3OH), the switch between a Cu-
dependent pMMO or Fe-dependent soluble MMO (sMMO) is
regulated by the availability of each metal (Murrell et al., 2000;
Bollinger, 2010).

Despite great progress in understanding metal ecotoxicity
and metalloenzyme biochemistry, our knowledge of how
trace metal availability affects microbial activity in the
environment is generally limited to selected processes such
as ammonium (NH4

+), NO3
−, and CO2 assimilation in

aquatic ecosystems (Twining et al., 2007; Glass et al., 2012;
Moore et al., 2013; Romero et al., 2013; Schoffman et al.,
2016). A broader understanding of how metal availability
regulates microbial processes, especially in soils and sediments,
is necessary if we are to fully comprehend environmental
controls on ecosystem N and C cycling. In this study, we
investigated the effects of trace metal additions on the microbial
biogeochemistry of freshwater wetland sediments focusing
primarily on NO3

−/NO2
− reduction and GHG kinetics,

and used quantitative polymerase chain reaction (qPCR) to
assess changes in the abundance of key microbial functional
groups associated with these processes. We hypothesized that
greater bioavailability of Mo, Fe, and Cu in the sediments
would increase denitrification and that greater Cu availability
would reduce N2O emissions (i.e., by stimulating NOS
functioning). We also predicted that CO2 emissions would
increase, driven by higher denitrification rates, and CH4
production would decrease because stimulated denitrifiers
would outcompete methanogens for C substrates under
anoxic conditions.

MATERIALS AND METHODS

Sampling and Sediment Properties
Wetland soil was collected from a tidal-fluvial bar deposit
in Pamunkey River (Virginia, United States; N 37.557451, W
−76.972521) in October 2016. Five samples from the 5–15 cm
depth interval (∼350 g each) were collected ∼2 m apart using
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a PVC core (diameter, 10 cm). Porewater was collected from a
small pit, which was emptied and allowed to refill naturally with
porewater prior to collection. Samples were kept on ice in a cooler
during transport to the lab and stored overnight (4◦C) until
experimental setup and characterization using standard methods
(SSSA, 1996). Total metal content was analyzed according to
United States Environmental Protection Agency (EPA) standard
methodology at the Soil Testing, Insect ID and Plant Diagnostic
Lab, Cooperative Extension of the University of the New
Hampshire (Durham, NH, United States), and porewater Fe(II)
concentrations were measured spectrophotometrically following
Viollier et al. (2000). Sediment and porewater properties are
summarized in Table 1. Previous studies at this site had identified
these sediments to be conducive of denitrification, dissimilatory
nitrate reduction to ammonium (DNRA), and methanogenesis
(Berrier, 2019; Dang et al., 2019).

Experimental Set-up
After removal of visible root and stone fragments, the five soil
samples were combined in equal parts to form a composite
sample for subsequent experiments. The soil (1 kg) was amended
with 1.5 L of filtered porewater (Cellulose, 10-µm pore-size,
Millipore, Burlington, MA, United States) and homogenized
using a commercial blender (30 s at max speed) to a final soil-
to-liquid ratio of 1:3.5 (dry w/v). Soil slurry aliquots (50 mL)
were then transferred to sterile 125-mL glass bottles (Wheaton,
Millville, NJ, United States). The bottles were crimped with
rubber septa (#224100-180, Weaton, Millville, NJ, United States)
and incubated for 3 days in the dark (25◦C) to allow residual O2
to be consumed. Each bottle then received 250 µL of 2 M KNO3,
yielding a final nominal NO3

− concentration of 10 mM, ensuring
non-limiting N conditions corresponding to typical NO3

−

concentrations used in DEA protocols (SSSA, 1994; Murray
and Knowles, 1999). Next, metal additions were accomplished
by dispensing small aliquots (<1 ml total) from aqueous stock
solutions of ammonium heptamolybdate [(NH4)6Mo7O24], iron
sulfate (FeSO4), and copper sulfate (CuSO4) to generate final
slurry concentrations of 28 µM Mo, 74 µM Fe, and 26 µM

TABLE 1 | Initial properties of sediment and pore-water.

Sediment properties Pore-water concentrations

Organic matter (%) 25 (±4) NO3
− (mM) 0.10 (±0.03)

Gravimetric water content (%) 79 (±6) NO2
− (mM) 0.07 (±0.02)

Bulk density (g cm−3) 0.18 (±0.05) SO4
2− (mM) 0.16 (±0.04)

C/N ratio 11 (±2) Cl− (mM) 0.4 (±0.1)

pH (1:5H2O) 6.1 (±0.3) NH4
+ (mM) 0.3 (±0.1)

Co (mg kg−1) 8.3 K+ (mM) 0.11 (±0.01)

Cu (mg kg−1) 37.8 Mg2+ (mM) 0.26 (±0.10)

Fe (g kg−1) 13.5 Ca2+ (mM) 0.29 (±0.10)

Mo (mg kg−1) 5.2 Fe2+ (µM) 97.3 (±81.9)

Ni (mg kg−1) 16.2

Zn (mg kg−1) 135.6

Data are shown as mean ± standard error (n = 4) except for total metal content,
which was analyzed using a composite sample.

Cu. Metal additions were based on a preliminary assessment
of N2O emissions derived by a model denitrifying bacterium,
P. denitrificans, incubated with different Mo, Fe, and Cu levels
(Supplementary Table S1). Seven experimental treatments were
established to test the effect of each metal individually (Mo, Fe,
or Cu) and in all possible combinations (Mo + Fe, Mo + Cu,
Fe + Cu, and Mo + Fe + Cu). In addition, control microcosms
were prepared, to which no metals were added. Four replicate
microcosms were prepared for each control and treatment.
Each bottle was then vortexed briefly (30 s, 6000 rpm), flushed
with N2 (60 min), and incubated without shaking in the dark
(25◦C). Gas (5 mL) and slurry supernatant (1.5 mL) samples
were collected using a sterile syringe after 0, 6, 12, 24, 48,
72, and 96 h. Withdrawn gas volumes were replaced with
equal N2 gas volumes. Following the 96-h sampling, bottles
were opened in an O2-free chamber, and 0.3 g dry weight
of soil was removed and immediately frozen (−20◦C) for
molecular analyses.

Analytical Techniques and Calculations
Slurry samples were centrifuged (10,000 g, 5 min) and the
resulting supernatant was filtered (0.22-µm pore size), and stored
frozen (−20◦C) until the concentrations of NO3

−, NO2
−, sulfate

(SO4
2−), and NH4

+ was determined by ion-chromatography
(ICS – 5000+, Dionex, Sunnydale, CA, United States) utilizing
Eluent Generator Cartridges; 23–45 mM KOH and 20 mM
methanesulfonic acid, for anion and cation analysis respectively.
Ions were separated through Dionex IonPac AG18/AS18
(2 × 250 mm) and IonPac CG12/CS12 (A – 5 µm, 3 × 150 mm)
columns with suppression, AERS 500 and CERS 500 for anion
and cation analysis, respectively, and detected by a Dionex CD
conductivity sensor.

Gas samples were stored in 3 mL Exetainer vials (Labco,
United Kingdom) that previously were flushed with N2 and
vacuumed with a gas-tight syringe by removing four volumes,
i.e., resulting in a vial pressure of ca. 6 kPa. Concentrations of
N2O, CO2, and CH4 were determined via gas chromatography
(Shimadzu GC-14A using Porapak-N and HayeSep-D and
Molecular Sieve MS13 columns and equipped with ECD (N2O),
TCD (CO2), and FID (CH4) detectors (Shimadzu, Columbia,
MD, United States) as described in Morrissey and Franklin
(2015). For each gas, total gas production was determined as
the sum of the gas accumulated in the headspace and the
gas dissolved in the liquid slurry (e.g., Robertson et al., 1999)
using the Ideal gas law, Henry’s gas solubility law, and Bunsen
coefficients (at 25◦C) of 0.545, 0.032, and 0.772 for N2O, CH4,
and CO2, respectively (Felgate et al., 2012; Sander, 2015). To
compare overall GHG emissions across treatments, we estimated
the combined global warming potential (GWP) of CO2, N2O, and
CH4 in terms of CO2-equivalents (g CO2-eq) using the 100 years
GWP factors of 298 for N2O and 28 for CH4 as calculated on a
mass to mass basis (IPCC, 2013).

Molecular Techniques
DNA was extracted from frozen soil samples (∼0.3 g dry
weight) using the DNEasy Kit from Qiagen (Germantown,
MD, United States) following the manufacturer’s instructions
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The retrieved DNA was visualized on a 1.2% agarose gel and
quantified using a Nanodrop spectrometer (Thermo Fisher
Scientific, Wilmington, DE, United States). Quantitative PCR
(qPCR) was used to determine the abundance of microbial
groups typically found in wetland sediments: total bacteria (eub),
nitrite reducers (denitrification: nirK and nirS; DNRA: nrfA),
nitrous oxide reducers (nosZ-clade I and II), and methanogens
(mcrA). SensiFASTTM SYBR R© No-ROX Kit Polymerase 2× mix
(Bioline, United Kingdom) was used for all reactions except
nosZ-clade II, which used SYBR green Go-Taq R© qPCR Master
Mix (Promega, Madison, WI, United States). Primers were
purchased from IDT (Integrative DNA Technologies, Skokie, IL,
United States) and the DNA for the standard curves was extracted
from isolates obtained from ATCC (American Type Culture
Collection, Manassas, VA, United States). Data were collected
using a Bio-Rad CFX-384 Real Time System (Bio-Rad, Hercules,
CA, United States) and analyzed using CFX Manager software
(Ver. 3.1), except nosZ-clade II quantification was conducted
using QuantStudio 6 Flex (Thermo Fisher Scientific, Wilmington,
DE, United States). Primers, qPCR reaction conditions, and
efficiencies are summarized in Table 2.

Statistical Analyses
Data did not comply with the normality and variance
homogeneity assumptions for ANOVA [RStudio (base); Shapiro’s
test, Bartlett’s test]; therefore, non-parametric Kruskal-Wallis
tests with Bonferroni correction were applied to assess differences
in the mean of ranks among the treatments [RStudio (agricolae)],
without any data transformation. For all statistical tests,
p ≤ 0.05 was considered significant. Summary statistics were
calculated with RStudio (dyplr) (Boston, MA, United States) and
plotted with SigmaPlot 14 (Systat Software Inc., San Jose, CA,
United States). Central tendency and measures of dispersion
are shown as mean ± standard error (SE) with n = 4, unless
otherwise specified.

RESULTS

The Effect of Trace Metal Additions on
NO3

−, NO2
−, and NH4

+ Kinetics
Kinetics of NO3

− and NO2
− transformations in microcosm

pore-water were similar across all treatments. Nitrate reduction
commenced at the same time for all the treatments (12–24 h,
Figure 1), and the NO3

− pool (10–11 mM) was generally
consumed within the first 48 h of the incubation. Nitrite was
produced concurrently with NO3

− depletion and, on average,
0.25± 0.02 mM NO2

− remained across all treatments at the end
of the experiment (Figure 1). An increasing trend in pore-water
NH4

+ concentration was observed for all treatments during
the incubation, and treatments receiving additional Mo + Fe
(p < 0.01) and Mo+ Fe+ Cu (p < 0.01) had significantly higher
NH4

+ than the control at the end of the experiment (Figure 1).
On average, 2.7 ± 0.1% and 4.6 ± 0.7% of NO3

− was recovered
as NO2

− or NH4
+, respectively, at the end of the incubation.

The Effect of Trace Metal Additions on
N2O, CH4, and CO2 Cumulative Gas
Kinetics
Concurrent with NO3

− consumption in the slurries, N2O
production increased rapidly between 24 and 48 h, especially
in treatments without added Cu (Figure 2A). The control and
treatments with Mo, Fe, and Mo + Fe accumulated significantly
more N2O (approximately 79, 55, 62, and 94% of added NO3

−,
respectively), than the treatments with Cu, Fe + Cu, Mo + Cu,
and Mo + Fe + Cu (approximately 13, 14, 4, and 11% of the
added NO3

−, respectively; Figure 2D). Total N2O concentrations
reached a plateau between 48 and 96 h, most likely due to
exhaustion of available C and NO3

−. CH4 accumulated quickly
in the microcosms (6–12 h) and continued to be produced for
the duration of the incubation, reaching a final concentration of

TABLE 2 | Primers and reaction conditions for qPCR assays.

Target Primers PCR Mix (15 µL) Standard Reaction Condition & Efficiency References

Eubacteria
(16S rRNA)

eub338
eub518

1.2 ng template, 0.1 µM
each primer

Desulfovibrio desulfuricans
ATCC 27774

95◦C for 4 min, then 40 cycles of 30 s at 95◦C, 30 s at 55.5◦C,
and 60 s at 72◦C. E = 102%, R2 = 0.992.

Fierer et al.,
2005

Denitrifiers
(nirS)

cd3aF
R3cd

10 ng template, 0.1 µM
each primer

Paracoccus denitrificans
ATCC 17741

95◦C for 4 min, then 50 cycles of 30 s at 95◦C, 30 s at 56◦C
and 60 s at 72◦C. E = 113%, R2 = 0.993.

Throback
et al., 2004

Denitrifiers
(nirK)

nirKq-F
nirK1040

1.5 ng template, 0.35 µM
each primer

Pseudomonas sp. ATCC
13867

15 min at 95◦C, 9 touchdown cycles of 95◦C for 15 s, 68◦C for
60 s, and 81.5◦C for 30 s (−1◦C per cycle for annealing); then
28 cycles of 95◦C for 15 s, 60◦C for 60 s, and 81.5◦C for 30 s.
E = 116%, R2 = 0.974.

Smith et al.,
2007

Denitrifiers
(nosZ clade I)

nosZ1F
nosZ2F

10 ng template,
1 µM each primer

Pseudomonas fluorescens
C7R12

15 min at 95◦C, 6 cycles of 95◦C for 15 s, 67◦C for 30 s with a
touchdown of −1◦C by cycle, 72◦C for 30 s, and 80◦C for 15 s
(acquisition data step); 40 cycles of 95◦C for 15 s and 62◦C for
15 s, 72◦C for 30 s, and 80◦C for 15 s; and 1 cycle at 95◦C for
15 s and 60◦C for 15 s, to 95◦C for 15 s. E = 92%, R2 = 0.978.

Henry et al.,
2006

Denitrifiers
(nosZ clade II)

nosZIIF
nosZIIR

10 ng template, 1.5 µM
each primer

Plasmid- nosZII 15 min at 95◦C, 55 cycles of 95◦C for 15 s, 54◦C for 30 s,
72◦C for 30 s, and 80◦C for 35 s. E = 63%, R2 = 0.990.

Semedo et al.,
2018

DNRA (nrfA) nrfA6F
nrfA6R

10 ng template, 0.3 µM
each primer

Escherichia coli ATCC
11775

50◦C for 2 min, 95◦C for 8.5 min, and 50 cycles of 20 s at
94◦C, 40 s at 54.5◦C, and 10 s at 72◦C. E = 101%, R2 = 0.987.

Takeuchi,
2006

Methanogens
(mcrA)

Mlas
mcrA-rev

2 ng template, 0.6 µM
mlas, 0.7 µM mcrA-rev

Methanococcus voltae
ATCC BAA-1334

95◦C for 5 min, then 50 cycles of 20 s at 95◦C, 20 s at 59◦C,
and 45 s at 72◦C. E = 93%, R2 = 0.991.

Steinberg and
Regan, 2009
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FIGURE 1 | Time course of pore-water concentrations (mM) of nitrate (NO3
−; A–D), nitrite (NO2

−; E–H), and ammonium (NH4
+; I–L) in microcosms amended with

molybdate (Mo), iron (Fe), copper (Cu), and combinations thereof. Data are shown as mean ± standard error (n = 4).

∼0.8 mmoles (Figure 2B). By the end of the incubation, all metal
additions caused an increase in CH4 production relative to the
control, though the differences were only significant between the
control and the Cu, Mo + Cu, and Mo + Fe + Cu treatments
(Figure 2E). CO2 production also increased throughout the
incubation period, most rapidly between 12 and 24 h, and reached
∼2 mmoles CO2 at the end of the incubation (Figure 2C). As
with CH4, the only significant treatment differences for CO2
production were between the control and the Cu, Mo + Cu,
Mo+ Fe+ Cu treatments (Figure 2F).

The Effects of Trace Metal Addition on
Targeted Microbial Groups
Bacterial abundance in the control treatment was 5.4 × 108

(±4.5 × 107) 16S rDNA copies g−1 sediment dry weight,
which did not differ significantly from the abundance estimates
obtained for the Cu, Mo, Mo + Fe, or Mo + Fe + Cu
treatments. Abundance in the three remaining treatments
(Fe, Fe + Cu, and Mo + Cu) was slightly higher (1.4-
fold) and significantly different from the control (p = 0.005;
Supplementary Figure S1). Trace metal addition affected the
abundance of nirK (p < 0.001), nirS (p < 0.001), nosZ-I
(p = 0.001) and nosZ-II (p = 0.013) denitrifying microbial groups
(Figure 3). Reducers of NO2

− utilizing Cu-NIR (nirK) were
more abundant in all treatments when compared to the control,

though the increase due to Fe addition was not significant.
Microbial groups having a cytochrome cd1-NIR (nirS) were
relatively more abundant in the Mo and Fe + Cu treatments.
The nosZ clade I and II microbial groups responsible for
the reduction of N2O to N2 were in general more abundant
in the treatments that received Cu. We observed no effect
of trace metals on DNRA NO2

− reducers (nrfA, p = 0.24;
Figure 3) but found that methanogens were more abundant
in the treatments containing additional Mo (Mo, Mo + Cu,
Mo + Fe, and Mo + Fe + Cu; mcrA (p = 0.001); Figure 3) when
compared to the control.

DISCUSSION

We observed that trace metal (Mo, Fe, Cu, and their
combinations) addition to wetland sediments regulated GHG
emissions (Figure 2) and altered the abundance of microbial
functional groups typically associated with N removal and
C cycling (Figure 3). Previous studies have examined the
effects of trace metal availability on these processes, often
reporting inhibitory effects (Giller et al., 1998; Magalhães
et al., 2007, 2011; Deng et al., 2018; Keller and Wade, 2018)
however, the range of metal concentrations previously tested
far exceeds the levels applied in the current study. The
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FIGURE 2 | Time course (A–C) and final cumulative gas concentrations (96 h; D–F) of nitrous oxide (N2O; upper panels), methane (CH4; middle panels), and carbon
dioxide (CO2; lower panels) in mmoles per microcosms amended with molybdate (Mo), iron (Fe), copper (Cu), and combinations thereof. Data are shown as
mean ± standard error (n = 4). Letters within each bar graph (D–F) indicate significant differences as determined by Kruskal–Wallis and Bonferroni post hoc testing.

key interpretation of the current experiment is that when
available at trace levels, metals, specifically Cu, enhanced the
reduction of N2O to N2 and increased CH4 and CO2 emissions
from wetland sediments. When N2O, CH4, and CO2 were
combined and expressed as g CO2-eq per microcosm, all
treatments receiving Cu addition (Cu, Mo + Cu, Fe + Cu,
and Mo + Fe + Cu) had significantly lower CO2-eq emissions
(p < 0.001; Figure 4), indicating a major role of Cu in anaerobic
respiration (denitrification and methanogenesis) as a regulator of
nutrient cycling and GHG emissions.

Denitrification
In our experiments, none of the trace metal additions had
an effect on NO3

− removal (Figure 1), which is somewhat
surprising since all bacterial nitrate reductases contain a Mo
cofactor at their active sites (Moreno-Vivian et al., 1999). This

may indicate that Mo was not limiting to the denitrifiers in this
set of soils. Also, we observed a small delay in NO3

− reduction
(∼24 h) in all treatments that could be attributed to the lag time
required to induce the denitrifying pathway within a population
less accustomed to substantial concentrations of this alternative
electron acceptor (Dodla et al., 2008). Concurrent with the loss
of NO3

−, we observed minor transient accumulation of NO2
−;

this pattern has been observed frequently (Cooper and Smith,
1963; Taghizadeh-Toosi et al., 2020; Wang et al., 2020) and is
thought to be a result of stochastic transcriptional regulation of
the nir operon (Hassan et al., 2016). Following NO2

− reduction,
NO is produced. Though we did not analyze NO concentrations,
it is unlikely that NO accumulated in our microcosms but was
instead quickly reduced to N2O. Since NO has potent cytotoxicity
at µM levels (Chaudhari et al., 2017; Hartop et al., 2017), any
accumulation would have had a negative effect on other aspects
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FIGURE 3 | Gene copies per g sediment (dry weight) at the end of incubation (96 h) in microcosms amended with molybdate (Mo), iron (Fe), copper (Cu), and
combinations thereof. Genes were targeted representing nitrite reducers (nirS, nirK, and nrfA), nitrous oxide reducers (nosZ-I and II), and methanogens (mcrA). Data
are shown as mean ± standard error (n = 4). Letters within each bar graph indicate significant differences as determined by Kruskal–Wallis and Bonferroni post hoc
testing.

of microbial metabolism, particularly CO2 production, which we
did not observe.

Regardless of what other metals were included in the
microcosms, we observed a dramatic effect of Cu addition,
leading to enhanced reduction of N2O to N2 (Figure 2) and an
increased abundance of nitrite (nirK) and nitrous oxide (nosZ
clade I and II) reductase genes (Figure 3), which both code for
Cu-containing enzymes. Overall, gene abundance for nosZ clade
II was ∼10-fold greater than for clade I, which is consistent
with recent reports that clade II is the dominant form in many
soil ecosystems (Jones et al., 2013, 2014; Orellana et al., 2014;
Ligi et al., 2015; Graves et al., 2016). Clade II is also affiliated
with a broader diversity of organisms than Clade I including
several non-denitrifiers (Graf et al., 2014; Hallin et al., 2018),
so it is important to recognize that our Clade II estimates
may reflect changes in community composition that do not
necessarily directly relate to N2O reduction. Subsequent analysis
using primers that target subclades within Clade II (sensu
Chee-Sanford et al., 2020) or metagenomic sequencing could
help resolve this and provide a better understanding of the
ecophysiology of various nosZ populations. The overall strong
effect of Cu on N2O reduction was prevalent because the
last step of denitrification is catalyzed by a Cu-containing

reductase and no alternative pathways for N2O transformation
have yet been discovered (Thomson et al., 2012). In other
laboratory experiments, Cu has similarly been found to be a
strong driver of denitrifying metabolism. For example, Cu-
deficient cells can have more transcripts of nosZ and Cu-
scavenging genes to compensate for the loss of N2O reduction
due to limited Cu availability (Felgate et al., 2012). Also, strains
deficient in Cu-transporters and chaperones may be unable to
reduce N2O to N2, forming a nonfunctional NOR, even though
nosZ is expressed (Sullivan et al., 2013). In our microcosms,
denitrifying bacteria were able to rapidly take advantage of
excess NO3

− due to copious bioavailable Cu for synthesis of
NOS. Even though concentrations of NO3

− and Cu are usually
lower in environmental scenarios, similar trade-offs may exist,
which could affect ecosystem emissions of N2O and require
further investigation.

DNRA
Over the course of the study, small accumulations of pore-water
NH+4 occurred (Figure 1) depending on the type of metal added,
and DNRA could be another possible factor affecting the fate
of added NO3

−. The accumulation of NH4
+ was greatest in

treatments that contained both Mo and Fe (i.e., Mo + Fe and
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FIGURE 4 | Global warming potential in g of CO2 equivalents (g CO2-eq) of
cumulative gas concentrations (96 h) of nitrous oxide, methane, and carbon
dioxide in anoxic slurries amended with molybdate (Mo), iron (Fe), copper
(Cu), and combinations thereof. Data are shown as mean ± standard error
(n = 4). Letters indicate significant differences as determined by Kruskal–Wallis
and Bonferroni post hoc testing.

Mo + Fe + Cu), which may indicate a synergistic response
of the enzymes that reduce NO3

− (all nitrate reductases are
Mo-dependent) and the DNRA-specific nitrite reductase (nrfA),
which includes a multi-heme complex. Overall, the accumulated
NH4

+ (<1 mM) was much lower than the amount of NO3
−

removed (∼10 mM), and the abundance of the DNRA marker
gene nrfA was low (Figure 3), so it is likely that negligible DNRA
occurred in our microcosms. Indeed, anoxic organic matter
mineralization (as indicated by consistent CO2 production) could
contribute to the accumulation of NH4+ and the observed
differences due to metal addition could be indirect responses.
DNRA and N mineralization commonly co-occur in wetland
sediments (White and Reddy, 2009), but DNRA seems to be
important mainly in environments with high C availability and
limited NO3

− availability (Hill, 2019). More conclusive results on
DNRA activity in the present wetland setting require additional
analyses, e.g., using 15NO3

− to trace the production of 15NH4
+

from DNRA. Additional analyses using alternate nrfA primers
could also be informative. In particular, the qPCR primers we
used have poor coverage of NrfA Clade I and thus limited ability
to detect members of the family Geobacteraceae, which have
recently been found to be potentially significant for DNRA across
a range of different soil habitats (Nelson et al., 2016). Given
the recognized importance of Geobacteraceae in metal cycling
(Röling, 2014), further consideration of this group using novel
primers such as those recently developed by Cannon et al. (2019)
would better assess the genetic potential for DNRA and effects of
trace metal availability.

Effect on Carbon Mineralization
Wetland soils are large C sinks because anoxic conditions
constrain organic matter mineralization and oxidation. In

freshwater wetlands, the lack of electron acceptors such as O2,
NO3

−, and SO4
2−, may lead to fermentative and reductive

conditions where organic C will be reduced to CH4 (Kim et al.,
2015; Cheng et al., 2019). In this study, the pattern of CO2
production primarily reflected the magnitude of denitrification,
as discussed earlier. We assumed that the fraction of total CO2
as bicarbonate (HCO−) was likely constant, because at the end
of the incubation pH increased approximately 1 pH-unit due to
denitrification and no substantial differences were found in pH
among the treatments (Supplementary Table S2). Equally, we
did not quantify and identify forms of dissolved organic carbon
as this was out of the scope of this study. We hypothesized
that denitrifier activity would outcompete methanogen activity
similar to the findings of Klüber and Conrad (1998); rather,
CH4 accumulated throughout the incubations (Figure 2B). This
result was unexpected because denitrification should suppress
methanogenesis as a result of the higher Gibb’s free energy
(1G0). This set of sediments originates from a freshwater wetland
that is known to produce significant amounts of CH4 and host
diverse methanogenic communities (Morrissey and Franklin,
2015; Berrier, 2019; Dang et al., 2019). It appears that the
inhibitory effect of NO3

− addition was transient or partial. It
is possible that the rapid NO3

− consumption and subsequent
removal of denitrification intermediates alleviated inhibitory
effects on methanogenesis. Since both processes were occurring,
it is evident that denitrifiers and methanogens were competing
for available C.

Overall, the higher abundance of methanogens (mcrA) and
noticeable accumulation of CH4 in all metal treatments versus
the control indicates an important role of trace metal availability
in CH4 cycling in our system. As expected, Mo addition enhanced
the abundance of mcrA genes (Mo, Mo + Cu, Mo + Fe,
and Mo + Fe + Cu treatments; Figure 3). This is because
a Mo co-factor is typically required for formylmethanofuran
dehydrogenase (fmd) that catalyzes the reduction of CO2 to
formyl-methanofuran in the first step of methanogenesis by
reduction of CO2 with electrons from H2 (Glass and Orphan,
2012). The subsequent step in methanogenesis is catalyzed
by MCR, which is a Ni-containing enzyme. Because we did
not add Ni in any of our treatments, we assumed that MCR
would not change (or would decrease due to competition with
denitrification). Instead, Mo addition and the increasing partial
pressure of CO2 in the bottles during the incubation seem to have
triggered a shift toward a Mo-based methanogenesis pathway.
In general, CH4 production in Pamunkey River sediments have
been found to proceed by hydrogenotrophic, acetoclastic, and
syntrophic pathways (Berrier, 2019; Dang et al., 2019).

Though no Cu-dependent enzymes have yet been identified
in the methanogenesis pathways (Glass and Orphan, 2012), the
effect of Cu concentration on CH4 emissions from wetlands
is an area of active research. Prior work by Keller and Wade
(2018) found a strong suppression of CH4 emissions following
Cu amendments to peatland soils, and argued broadly that
Cu may inhibit methanogenesis in wetland environments. This
contradicts our finding that Cu addition elicited more CH4
than the control (Figure 2), as well as similar results from
Thomas and Pearce (2004). Interestingly, the discrepancy across
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these three studies cannot be explained by simply looking at
the concentration of Cu added; our Cu amendments were
approximately 10-fold lower than those made by Keller and
Wade (2018), whereas the amendments made by Thomas and
Pearce (2004) were 10-fold higher. Understanding the effects
of Cu on net CH4 fluxes requires further study and should
consider potential mitigating factors such as soil texture and
cation exchange capacity (Thomas and Pearce, 2004), the impact
of Cu amendments on dissolved organic carbon availability
(Jiao et al., 2005), and metal effects on methane oxidation
(Mohanty et al., 2000).

Environmental Implications
Previous studies have examined the effects of trace metal
abundance (or addition) on N and C cycling in sediments, peat,
and agricultural soils. Typically, those studies report an inhibitory
effect; however, the ranges of trace metal concentrations in
those studies far exceed the levels of the current study. For
instance, Keller and Wade (2018) amended peat slurries with
∼200 µM trace element solution and found a significant decrease
in CH4 emission, most likely due to Cu-induced toxicity.
Similarly, Magalhães et al. (2007) observed 85% inhibition of
denitrification accompanied by accumulation of substantial N2O
and NO2

− at 79 µg Cu g−1 sediment (equivalent to 1200 µM
Cu) in estuaries. In a follow-up study, lower denitrification
rates due to Cu (∼900 µM) were accompanied by a decline
in the abundance and β-diversity associated with the nirK,
nirS, and nosZ microbial groups (Magalhães et al., 2011),
while keeping in mind that the coverage of those primers
has improved greatly since then. Elsewhere, the particularly
low concentrations of dissolved Cu, Fe, and Mo (∼5, 1, and
0.2 µg L−1, respectively) and the copious dissolved organic C
(∼80 mg L−1) (Raudina et al., 2017) in peatlands triggered
substantial emissions of CH4 and N2O (Basiliko and Yavitt,
2001; Basiliko et al., 2013; Voigt et al., 2017). A more recent
study that tested the effects of Cu pollution (addition of
100 µg L−1, ∼1.6 µM) on urban freshwater wetland sediments
found significantly reduced CH4 emissions, but no change in
N2O emissions (Doroski et al., 2019). In the latter case, the
lack of a N2O response could be due to low NO3

− availability
(18 µM) relative to C.

The abundance of bioavailable metals in the environment,
typically in their ion forms, is often several orders of
magnitude lower than the routinely reported total metal content.
Further, the ion form of trace metals could be unavailable to
microorganisms due to physicochemical interactions (release
and sorption kinetics with soil particles and organic matter)
and plant uptake (Giller et al., 1998). At neutral and
alkaline pH levels, metals tend to be effectively immobilized
as inorganic compounds (metal-oxides, -hydroxides, and -
carbonates). Additionally, organic complexes such as humic
ligands are known to bind metal cations thus lowering their
availability to microbes and plants. Furthermore, hydrogen
sulfide (H2S), naturally produced due to dissimilatory SO4

2−

reduction in salt marshes, may limit the availability of trace
metals through the production of insoluble metal-sulfide
complexes with potential implications for N cycling and N2O

emissions (Gauci et al., 2004; Butterbach-Bahl et al., 2013).
Sulfate-reducing bacteria may outcompete methanogens and
thus suppress CH4 emissions in salt marshes. In the current
study, the added SO4

2− as CuSO4 and FeSO4 could potentially
have been reduced to H2S; however, the initial and final
porewater SO4

2− concentrations remained at comparable levels
(average change over time across treatments was only 2.8%,
Supplementary Table S2) and no sulfide odor was detected when
microcosms were opened.

Out of the three metals tested here, Fe2+ addition does not
appear to influence N and C cycling in this set of sediments. Fe3+

is an abundant element in our biosphere including wetlands,
however not directly biologically available, as it has to be
reduced to Fe2+. Fe2+ was added in our microcosms due to
its role in the reduction of NO2

− to NO with cytochrome
cd1 NIR. Apparently, this set of sediments has the capacity to
supply enough Fe2+. Another, Fe-dependent N-cycling process
besides denitrification and DNRA is anaerobic ammonium
oxidation (anammox), which relies heavily on cytochromes
and oxyreductases containing Fe (Ferousi et al., 2017), and its
relative prevalence could be determined by isotopic assessments
(Brunner et al., 2013).

Ex situ experimentation offers key advantages in disentangling
factors in a controlled environment. It is acknowledged that
longer incubation times could shift the microbial community
toward a fitter structure for trace metal or high levels of
NO3

− utilization. The aim of this study was to investigate
the prospective of trace metal additions stimulating mixed-
community microbial systems, as seen previously on model
organisms. Equally, longer incubations, frequent sampling and
non-limiting substrates could help us illustrate the potential of
trace metals to enhance microbial functioning and microbial
groups. Follow-up studies should consider shorter incubation
times and lower substrate concentrations to understand the
temporal shift in microbial function and diversity upon trace
metal additions.

The present results suggest that trace levels of Cu exert a more
important effect on N2 and N2O emissions from the environment
than previously thought. These findings are important not only
for understanding fundamental controls on N2O production,
but also for making predictions about potential future emissions
given increasing nutrient and metal loads associated with urban
pollution. Likewise, the effect of trace metal availability on
denitrification enzymology also is of considerable interest in the
context of agriculture and food production, and it has been
suggested that metal additions could be a possible strategy to
mitigate high soil N2O emissions associated with crop production
(Richardson et al., 2009; Shen et al., 2019).

CONCLUSIONS AND FUTURE
CHALLENGES

Our results demonstrate that trace metal availability affects
microbial processes, resulting in greater GHG emissions and
C mineralization. We found that even short-term (96 h)
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manipulation of trace metal availability led to changes in
community structure (functional group abundance) and
potential increases in GHG emissions. In particular, our results
suggest that trace metal bioavailability may, directly or indirectly,
regulate or co-limit denitrification kinetics and favor more
active microbial communities that are able to quickly acquire
the bioavailable metals and incorporate them in functional
oxidoreductases. Disentangling the potential controls of various
metals on denitrification and other N-cycling processes such as
DNRA and anaerobic ammonium oxidation (anammox) and co-
varying effects on C cycling, requires additional experimentation
across a range of metal concentrations, substrates [e.g., lower
(NO3

−)] and biochemical processes in different soil types and
ecosystems. Future studies should also investigate metagenomic
and metatranscriptomic profiles to understand and evaluate
the ecological importance of trace metal limitation. This
would allow a more comprehensive examination of potential
impacts beyond the small group of functional genes that we
considered, and would avoid issues such as primer bias, poor
coverage, and inefficient amplification often associated with
qPCR of phylogenetically diverse groups. Such studies should
be accompanied by high-throughput metabolite or process rate
analysis either in the lab or in the field.
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FIGURE S1 | Average eub gene copies g−1 sediment (dry weight) at the end of
incubation (96 h) in microcosms amended with molybdate (Mo), iron (Fe), copper
(Cu), and combinations thereof. Letters above each bar graph indicate significant
differences as determined by Kruskal–Wallis and Bonferroni post hoc testing.

TABLE S1 | Growth (OD600) and headspace N2O (ppm) at 24 h for Paracoccus
denitrificans incubated at different metal levels, under denitrifying conditions, in
denitrifying mineral medium containing 20 mM NO3

−. Cu2+, total Mo and total Fe
were determined by ICP-OES at Environmental Sciences Analytical Labs, School
of Environmental Sciences, University of East Anglia, United Kingdom
(Unpublished data, Ph.D. Thesis, Giannopoulos, G. 2015).

TABLE S2 | Initial (0 h) and final (96 h) SO4
2− concentrations and pH (96 h) of

microcosm pore-water in the various treatments (n = 4, mean ± SE).
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