

W&M ScholarWorks

Reports

1985

Study of Alosa stock composition and year-class strength in Virginia: Annual Report 1984

Joseph G. Loesch Virginia Institute of Marine Science

William H. Kriete Jr. Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/reports

Part of the Aquaculture and Fisheries Commons

Recommended Citation

Loesch, J. G., & Kriete, W. H. (1985) Study of Alosa stock composition and year-class strength in Virginia: Annual Report 1984. Virginia Institute of Marine Science, William & Mary. https://doi.org/10.25773/ ksht-9f21

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

VIVAS QL 632 632 C64 HS 1984

Annual Report, 1984

Project Title: Study of <u>Alosa</u> stock composition and year-class strength in Virginia Project Number: AFC 13-1 Project Period: 1 January 1984 - 31 December 1984

Prepared by

Joseph G. Loesch and William H. Kriete, Jr.

Virginia Institute of Marine Science School of Marine Science College of William and Mary Gloucester Point, Virginia 23062

[1985]

LIBRARY of the VIRGINIA INSTITUTE of MARINE SCIENC

TABLE OF CONTENTS

Page	Number
------	--------

Preface	iii
Acknowledgments	v
List of Tables	vi
List of Figures	vii
Executive Summary	ix
Job 1. Evaluation of the <u>Alosa</u> Stocks and Fisheries in Virginia	1
Introduction	1
Materials and Methods	1
Results	3
Total Virginia Landings James River Landings Chickahominy River Landings York River Landings Rappahannock River Landings Age Composition Length and Weight Analysis Species Composition Mortality Estimates	3 4 4 5 5 6 7
Discussion	8
Job 2. Annual Index of Juvenile <u>Alosa</u> Abundance	9
Introduction	9
Materials and Methods	9
Results	10
Index of Abundance Growth Natural Mortality	10 11 11
Discussion	11
Literature Cited	13

PREFACE

This presentation is the annual report for P. L. 89-304, AFC 13-1 project "Study of <u>Alosa</u> stock composition and year-class strength in Virginia," for the period 1 January 1984 to 31 December 1984. The fishes of concern were the alewife (<u>Alosa pseudoharengus</u>), American shad (<u>A</u>. <u>sapidissima</u>), and the blueback herring (<u>A. aestivalis</u>).

The <u>Alosa</u> species were once an important component of the landings of Virginia fisheries. In the last decade, however, there has been a dramatic decrease in American shad and river herring landings. The 1981 landings of <u>Alosa</u> species in Virginia were the lowest ever recorded. American shad and river herring are also sought by recreational fishermen in Virgina; however, data are few and the extent of this activity is unknown. Additionally, these species have a vital ecological role. Young-of-the-year <u>Alosa</u> are the dominant pelagic prey species in their extensive freshwater and upper estuarine nursery grounds. After spawning, adults return to the sea and are prey of many marine piscivores. It is important that studies of the <u>Alosa</u> stocks in Virginia be continued. Current data, as well as historical data, are needed in order that analyses are constructive contributions to rational management strategies.

The research presented herein directly addresses research concerns stated in the Shad and River Herring Action Plan and augments on-going monitoring research and extant data bases. These data will be a pertinent contribution to the total data base that is being constructed to assist in the formulation of management strategies for the east coast <u>Alosa</u> stocks.

iii

The following jobs were contracted by the Virginia Institute of Marine Science.

Job 1: Evaluation of the Alosa Stocks and Fisheries in Virginia

<u>Objectives</u>

- Estimate fishing effort, landings, and catch-per-unit-of-effort (CPUE) of adult river herring (alewife and blueback herring) and American shad in Virginia during the 1984 fisheries.
- 2. Determine the present status of the stocks relative to former years by comparison of landings and CPUE.
- 3. Estimate current biological statistics (age and size frequencies, species composition, etc.) of river herring and American shad.
- Estimate the total contributions of year classes to the river herring fishery.

Job 2: A Study of Juvenile Alosa Abundance Growth and Mortality

Ob<u>jectives</u>

- 1. Determine an index of abundance for juvenile river herring and American shad.
- 2. Estimate growth and mortality rates of juveniles in tidal freshwater.

ACKNOWLEDGMENTS

We are indebted to the following Virginia Institute of Marine Science personnel for their assistance in this project: Steve Atran, Loisirene Blumberg, Joice Davis, Deane Estes, Carol Furman, Lillian Hudgins, Curtis Leigh, James Owens, Gloria Rowe, and Roanne Trapani. We also express our thanks to the many commercial fishermen who have so kindly helped us when we asked them for assistance. The Virginia Landings data were supplied by the Virginia Marine Resources Commission.

The project was funded, in part, by the United States National Marine Fisheries Service, Northeast Region, through Public Law 89-304.

LIST OF TABLES

ż

Table		Page Number
1.1.	Summary of sample data from the <u>Alosa</u> commerical fisheries during the 1984 spawning run in the major Virginia tributaries to Chesapeake Bay	15
1.2.	Number of active pound net stands in Chesapake Bay and its Virginia tributaries during January-June 1984	16
1.3.	Number of stake gill net stands fished in Virginia rivers 1982-1984 (A) and linear meters of gill netting fished primarily for American shad per 5-mile block (B) in 1984. Figures in parentheses represent the total meters of gill netting in the James, York and Rappahannock rivers	17
1.4.	Estimated catch in kg of American shad by stake gill nets for 5-mile sections in the James River 1984 by half-month intervals and by sex. Effort from Table 1.3. Index in kg/m of net	18
1.5.	Yearly landings in kg of American shad by pound nets and stake gill nets, and river herring by pound nets. Landings for the James, York and Rappahannock rivers are estimations	19
1.6.	Yearly catch-per-unit-of-effort for American shad in stake gill nets and river herring in pound nets for the years 1975-1984. Stake gill net effort is in meters of netting. Pound net effort is in number of nets per season	20
1.7.	Estimated catch in kg of American shad and river herring by pound nets in the York River 1984 by half- month intervals. Figures in parentheses are estimated species composition	21
1.8.	Estimated catch in kg of American shad by stake gill nets for 5-mile sections in the York River 1984 by half-month intervals. Effort from Table 1.3. Index in kg/m of net	22
1.9.	Estimated catch in kg of American shad and river herring by pound nets in the Rappahannock River 1984 by half-month intervals	23
1.10.	Estimated catch in kg of American shad by stake gill nets in the Rappahannock River 1984 by half-month intervals. Effort from Table 1.3. Index in kg/m of net	24

List of Tables (continued)

Table Page Number Year-class frequency of alewife (sexes pooled) in 1.11. 25 the York River commercial fishery samples, 1984..... Year-class frequency of blueback herring (sexes pooled) 1.12. in the York River commercial fishery samples, 1984.... 26 Year-class frequency of alewife (sexes pooled) in the Rappahannock River commercial fishery samples, 1.13. 1984..... 27 Year-class frequency of blueback herring (sexes 1.14. pooled) in the Rappahannock River commercial fishery 28 samp]es, 1984..... Year-class frequency of American shad in the Virginia commercial gill net fishery, 1984..... 1.15. 29 Length (mm) and weight (g) statistics for river herring in the York and Rappahannock rivers, 1984..... 1.16. 30 Length (mm) and weight (g) statistics for American 1.17. shad in the James, York and Rappahannock gill net fisheries, 1984..... 31 Estimated rates of instantaneous total mortality (Z), 1.18. annual mortality (A), survival (S), and exploitation (E) for alewife and blueback herring in the Rappahannock River. A natural mortality rate of 1.1 was assumed.... 32 Maximal catch-per-unit-of-effort (CPUE) values for 2.1. juvenile Alosa in the Mattaponi and Pamunkey rivers. 1979-1984..... 33 Estimates of instantaneous daily mortality for juvenile 2.2. Alosa in the Mattaponi (M) and Pamunkey (P) rivers. 1979-1984.... 34

vii

LIST OF FIGURES

Figure		Page Number
1.1.	Area designations utilized during aerial pound net counts	35
1.2	Virginia landings, 1965-1984	36
2.1.	Growth curves for juvenile alewives, 1984	37
2.2.	Growth curves for juvenile blueback herring, 1984	38
2.3.	Growth curves for juvenile American shad, 1984	39

.

.

.

EXECUTIVE SUMMARY

- Landings in Virginia of all <u>Alosa</u> species increased in 1984 relative to 1983. Since overall effort declined, catch-per-unit-of-effort (CPUE) also increased. It was the third successive year that <u>Alosa</u> landings in Virginia increased.
- Five hundred and seventy-two metric tons (MT) of river herring and 8.2 MT of American shad were landed from pound nets in the York and Rappahannock rivers.
- 3. Gill net fishermen landed an estimated 478 MT of American shad in the James, York and Rappahannock rivers.
- Age 6 blueback herring remained a strong component of the pound net catches in 1984 whereas age 6 alewife comprised less than 9% of the catches.
- 5. Mean estimates of total mortality (\overline{Z}) were 1.47 and 1.61 for alewife and blueback herring, respectively.
- 6. Juvenile indices of abundance for alewife and American shad were again higher in the Mattaponi River than in the Pamunkey River.
- 7. Data indicate higher mortality rates of juvenile <u>Alosa</u> in the Pamunkey River than in the Mattaponi River.

Job 1. Evaluation of the Alosa Stocks and Fisheries in Virginia

INTRODUCTION

The Virginia Institute of Marine Science (VIMS) continued its annual assessment of the <u>Alosa</u> stocks and fisheries in Virginia inshore waters. These data are essential for any eventual consideration of an <u>Alosa</u> management plan in Virginia, and for the State-Federal coastwide management plan presently being developed.

MATERIALS AND METHODS

Samples of river herring were collected biweekly in the months of April and May from the York River and in March, April, and May from the Rappahannock River. American shad samples were collected in April from the James, York, and Rappahannock fisheries (Table 1.1).

When available, 22.7 kg of river herring were randomly sampled from commercial pound net catches in the York and Rappahannock rivers. These nets employ a 50.8 mm stretched mesh in their entrapment section, and are assumed to be nonselective for herring age 3 or older.

Random samples of up to 100 American shad were taken from commercial catches. The fishery primarily employs gill nets with 12.4 to 14.0 cm stretched mesh which favor the capture of females, the larger of the sexes.

River herring samples were returned to VIMS where species, sex, body length (fork length), and weight were recorded. These data were used to partition the log-book estimates of landings in each sampling period into biomass and numbers-at-age. American shad data, except for age, were collected at the sampling site. Ages were determined from otoliths for river herring. American shad were aged from scales by the method of Cating (1953), i.e., counting the number of annuli and spawning check marks, and

adding a year for the scale edge. A sonic digitizer microcomputer complex was used to "read" American shad scales (Loesch and Kriete, 1983).

Pound net catch estimates for the fisheries in York and Rappahannock rivers were determined by multiplying the catch-per-unit-of-effort (CPUE) (kg/net per half-month) of the index nets by the number of nets actively fishing (weighted by net size) in each strata of the river. Index nets are those for which daily records were kept by cooperating fishermen. Effort was determined by semi-monthly aerial counts of active pound nets (Table 1.2 and Fig. 1.1). Seasonal pound net CPUE was determined by dividing total landings by the average number of nets fished, adjusted for the length of the fishing season for each species.

Pound net fishermen in the lower strata of the Rappahannock River did not supply catch and effort data in 1983 and 1984. An estimate of the missing data for the lower portion of the river was made from its average proportion of the total catch in the years 1978-1982.

The catch-and-effort data for alewife and blueback herring were pooled because the fishery does not target one species or the other and both federal and state agencies report all river herring landings as alewife.

Stake gill net catch estimates for the fisheries in the James, York, and Rappahannock rivers were determined by multiplying the CPUE (kg/m of net per half-month) of index nets by meters of stake gill netting in 5-nautical mile strata of the river. Effort was determined by a count of stake gill nets during the peak of the American shad fishing season (Table 1.3). Yearly stake gill net CPUE was determined by dividing total landings by total netting fished for shad.

Because of the close proximity of all the nets to adjoining strata, nets in the mile 10-15 stratum in the James River (four gill net stands in

the lower and two in the upper portion of the stratum) were assigned to respective adjoining strata.

Annual <u>Alosa</u> landings data from all Virginia waters and the Potomac River for the years 1965-1972 were obtained from the respective U.S. Fishery Statistical Digests. The 1973-1976 data were from the annual summaries of Current Fisheries Statistics, NMFS, Division of Statistics and Market News. Since 1976, total landings data for Virginia have been obtained from the Virginia Marine Resources Commission (VMRC). The VMRC preliminary report for the 1984 landings did not have a complete compilation of river herring catches in the Rappahannock and York rivers. However, estimates of the 1984 catches of river herring in the two rivers were made from VIMS Logbook data and, subsequently, were used to adjust the reported preliminary total catch.

The PRIME 750 computer system at VIMS was used in conjunction with a "package program," SPSS (Nie et al. 1975) to analyze data, and to construct tables and figures.

RESULTS

Total Virginia Landings

Approximately 1,120 metric tons (MT) of river herring were landed in Virginia in 1984. The landings were a 34% (287 MT) increase relative to the 1983 catch, and were the highest since 1976 (Fig. 1.2). Nineteen eightyfour was the third consecutive year of increased river herring landings. American shad landings in Virginia also increased in each of the last three years (Fig. 1.2). In its preliminary 1984 annual summary of Virginia landings, VMRC reported that about 576 MT of American shad were landed, a 99% increase relative to the 1983 landings of 289 MT. The 1984 landings of American shad were the highest since 1977, and were 89% of the mean landings for the decade preceding the historic low (226 MT) in 1981.

Some specific contributions to the total 1984 landings of alosids are considered below.

James River Landings

Our aerial observations of pound net effort showed that only one pound net was set in the James River during 1984. The capture of finfishes is severely restricted as a result of kepone contamination, making pound net operations in the river unprofitable.

It was determined from the logbooks of cooperating fishermen that stake gill nets caught about 206 MT of American shad in 1984 (Table 1.4), an increase of 12 MT relative to 1983 (Table 1.5). As in 1983, most of the landings are attributable to the lower stratum of the river (miles 05-10) where 46% of the catch was made during April. An unknown proportion of the catch in the upper strata (miles 20-60) was sold to local markets, and it is possible that, as in 1982 and 1983, landings for that portion of the river were underestimated.

Following the pattern of 1983 (Loesch and Kriete 1983), peak landings in 1984 occurred during the first half of April.

Chickahominy River Landings

Landings data collected by VMRC showed that approximately 187 MT of river herring were caught in the haul seine fishery in the Chickahominy River in 1984. The landings were about 100 MT more than the 1983 catch, and represented the third successive year of increased river herring landings in the river. No other alosid fisheries are conducted in the Chickahominy River.

York River Landings

Logbook data, in conjunction with commercial sample data, indicated that alewife pound net landings increased from 2.7 MT in 1983 to 4.1 MT in

1984 (Table 1.5). In contrast, there was a slight decrease in the blueback herring catch in 1984 relative to 1983 (40 MT and 41 MT, respectively); thus the net change was a 0.5 MT increase in river herring landings. Effort continued to decline but CPUE for river herring increased relative to 1983 (Table 1.6). Peak landings of river herring, primarily blueback herring, occurred during the first half of May (Table 1.7). Peak landings of American shad from pound nets occurred in the second half of May. However, since no female American shad were reported for that period by index fishermen, it is probable that the spent females were included in landings of male American shad.

Our logbook data showed a substantial increase in both stake gill net landings of American shad and the associated CPUE in 1984 relative to 1983 (Tables 1.5 and 1.6). Peak landings of 99 MT of shad occurred during the first half of April (Table 1.8).

Rappahannock River Landings

Analysis of the logbook data indicated that pound net fishermen in the Rappahannock River landed about 3 MT of American shad and 527 MT of river herring in 1984 (Table 1.9). The landings represent increases of 33% and 26%, respectively, relative to landings in 1983 (Table 1.5).

Stake gill netters in the Rappahannock River landed 18 MT of American shad in 1984 (Table 1.10), the highest landings since 1979 (Table 1.5). The increase occurred despite a reduction in effort below mile 38, and the closure of the river to fishing from mile 38 to mile 68.

Age Composition

The 1984 age frequencies of river herring (sexes pooled) and American shad determined from samples of the commercial catches in the James, York, and Rappahannock River fisheries are presented in Tables 1.11-1.15. Loesch

and Kriete (1982 and 1983) noted that the rise in river herring catches in 1982 and 1983 was due, at least in part, to a strong contribution to the total landings by the 1978 year class. Sample data in 1984 indicate that the 1978 year class at age 6 was less than 9% of the pound net catches of alewife, but the year class was still a strong component of the blueback herring catches.

Past and present American shad data (Loesch and Kriete 1980, 1981, 1982, 1983 and Table 1.15 herein) consistently reflect gill-net selectivity for ages 5 and 6. Therefore, the modality of the 1978 year class of American shad was not unexpected at ages 5 and 6. Its co-modality at age 4 (Loesch and Kriete 1982), however, offers some evidence that it may be among the stronger year classes of American shad in the last decade.

The river herring age composition data were used in conjunction with sex ratio and mean weight-at-age data to estimate year-class contributions to the total landings.

Length and Weight Analysis

Mean values for fork length and total body weight for river herring, derived from samples of the pound net catches in the York and Rappahannock rivers, are presented in Table 1.16. Similar data for American shad, derived from samples of gill net catches in the James, York, and Rappahannock rivers, are presented in Table 1.17.

As stated above, river herring mean weight-at-age data were used in conjunction with age composition and sex ratio data to estimate year-class contributions to the annual landings.

Species Composition

Alewife constituted 31% of the 2,098 river herring sampled in the York and Rappahannock rivers in 1984 (Table 1.1), but were only 20.6% of the

total landings in these two rivers (Table 1.5). The apparent discrepancy is because the samples are a constant weight (22.7 kg) rather than a constant proportion of the catch. Alewife are the major proportion of the river herring samples only in periods when landings are low (March and early April). The proportion of blueback herring in the samples is superior when landings are much greater. Thus, the proportion of alewife in our total sample is enhanced relative to the actual contribution to the biomass of river herring landed. Each estimate of species percentages was therefore weighted by landings in the sampling period. The weighted estimates were then summed throughout the season to obtain the contribution of each species to the total biomass landed.

Sex Ratios

The sex ratio data (Table 1.1) were used in conjunction with species age structure and mean weight-at-age data to estimate year-class contributions to the total landings.

Mortality Estimates

Estimates of instantaneous total mortality rates (Z) for the 1969-1975 year classes in the Rappahannock River were previously made (Loesch and Kriete 1983). Using assumed instantaneous natural rate (M=1.1), annual rates of mortality (A), survival (S), and exploitation (E) were also made. Herein, with the additional 1984 data, some previous estimates were revised and "first cut" estimates of mortality were made for the 1976 and 1977 year classes.

The mean estimate of total mortality (\overline{Z}) was 1.47 for alewife and 1.61 for blueback herring, (Table 1.18) thus, the estimates of the mean annual mortality rates (\overline{A}) were 77% and 80% and the mean exploitation rates (\overline{E}) were 31% and 40%, respectively (Table 1.18).

DISCUSSION

An apparent improvement in the abundance of alosid stocks in Virginia was indicated by three successive increases in annual landings. This premise was supported by catch-effort statistics in 1984 when effort declined but CPUE increased in both the York and Rappahannock shad and river herring fisheries. These results could occur if effort were reduced in periods of marginal availability. However, a comparison of active pound nets in 1984 with those nets in 1983 (Loesch and Kriete 1983) showed that the decrease in effort was consistent throughout the river herring season.

The range in annual mortality rates for alewife (70% to 87%) and blueback herring (67% to 89%) in Virginia are similar to alewife mortality rates in New England. DiCarlo (1981) reported annual mortalities of 73% and 80% for spawning alewife in 1980 and 1981 in Massachusetts, while Walton (1981) reported that alewife fishing mortalities ranged from 80% to 95% in Maine.

Since the New England river herring stocks have not exhibited the decline of some southern stocks, it appears that the stocks can maintain a reasonably high level of abundance when subjected to high levels of annual mortality.

Job 2. Annual Index of Juvenile Alosa Abundance

INTRODUCTION

The VIMS annual study of juvenile migratory <u>Alosa</u> was continued in 1984. The intent of the study was to estimate relative abundance, growth, and mortality. Long-term objectives are to assess any relationship between the annual index of abundance and future recruitment, and to determine if there is a periodicity of strong year classes.

MATERIALS AND METHODS

Indices of juvenile <u>Alosa</u> abundance were estimated by sampling in their nursery zones (tidal freshwater) in the Mattaponi and Pamunkey rivers. The nursery zone in the Mattaponi River was sampled six times between 6 June and 9 July 1984 and the Pamunkey river was sampled five times between 7 June and 3 July 1984.

Loesch and Kriete (1983) established a standardized sampling unit and a minimum size limit for catch-effort considerations, and detailed the stratifed sampling plan employed. A bow-mounted 1.5 m x 1.5 m pushnet (Kriete and Loesch 1980) was used to capture the juveniles (young-of-theyear). Because juvenile <u>Alosa</u>, or their prey, exhibit negative phototropic responses (Loesch et al. 1982), samples were collected at night to minimize the effects of varying intensities of incident light.

A weighted overall mean CPUE, where stations were replicates per stratum, was calculated for each sampling period. The largest of these CPUE values was defined as the index of abundance, and is referred to as the maximal CPUE. The advantages of a maximal CPUE vis-a-vis a seasonal mean CPUE were also discussed by Loesch and Kriete (1983). Sampling was conducted weekly to enhance the accuracy of the estimate of maximal relative

abundance. Turner and Chadwick (1972) reported serious deficiencies in their annual index of juvenile striped bass when the index was developed from catch data collected at two-week intervals.

Estimates of mean CPUE that followed the maximal CPUE, but clearly preceded the onset of the seaward migration, were used in conjunction with the maximal value to estimate the instantaneous natural mortality rate (M). The \log_{e} of the ratio of maximal CPUE to a subsequent CPUE was used to calculate M when there was only one usable CPUE subsequent to the maximal value. Division by the number of days elapsed from the maximal CPUE (day 1) to the subsequent CPUE gave the daily instantaneous rate of natural mortality (M_d). With two or more usable CPUE values following the maximal CPUE, catch curves (Ricker 1975) were used to derive M_d.

Increases in mean fork length were used to calculate juvenile <u>Alosa</u> growth. All juveniles in samples of size N \leq 50 were measured; for N > 50, a random subsample of 50 fish was taken.

RESULTS

Index of Abundance

Maximal CPUE values for alewife, blueback herring, and American shad in the Mattaponi and Pamunkey rivers are given in Table 2.1. With the exception of the value for American shad in the Pamunkey River, where few shad were caught, the time of occurrence and the magnitude of maximal CPUE values in 1984 followed patterns previously noted (Loesch and Kriete 1983). The maximal CPUE values for alewife and American shad occurred earlier than those for the blueback herring. However, the blueback herring index was of greater magnitude (Table 2.1). Also, the maximal CPUE values for American shad and alewife again occurred in the Mattaponi River. The maximal CPUE

for blueback herring also occurred in the Mattaponi River, but this was an exception to the general pattern.

<u>Growth</u>

There is considerable "noise" in the growth data (Figs. 2.1, 2.2, 2.3) and, because of recruitment of smaller fish and emigration of larger individuals (Loesch and Kriete 1983), observed growth in length underestimates true growth.

The principal use of the juvenile length data is to note salient changes in the growth rate. In conjunction with apparent changes in the slope of the catch curves, the observed changes in the growth rate aid in the selection of CPUE values for the estimation of juvenile mortality. <u>Natural Mortality</u>

Estimates of daily instantaneous natural mortality rates (M_d) have been made since 1979 (Table 2.2). Because of three-week intervals between sampling, the 1980 and 1981 values (which contain the most extreme M_d 's) are not considered reliable (Loesch and Kriete 1983).

In 1984, four of the six estimates of mortality were made from catch curves; the M_d values for American shad in the Mattaponi River and blueback herring in the Pamunkey River were obtained from the \log_e of the ratio of two successive CPUE values.

The data indicate that the rates of mortality differ between the Pamunkey and Mattaponi rivers. All three mean (\overline{M}_d) differences and 10 of the 12 estimates of M_d were higher in the Pamunkey River (Table 2.2).

DISCUSSION

The data base of juvenile indices of abundance and the subsequent contributions of year classes to the fisheries are not large enough for a thorough analysis. At present, only the 1978 year class has, for all

practical purposes, exited from the fisheries. The overall index of river herring in 1978, the initial year for pushnet sampling, was obtained from a single survey in each river during August and September (Loesch et al. 1979). Regardless of the lateness of the survey the index is the highest of record. At this time, the 1978 index appears to have been a harbinger of the strong contributions made by that year class to the fisheries in the past few years. The next highest juvenile indices of river herring since 1978 occurred in 1982, when there was strong recruitment by the 1978 year class.

Loesch and Kriete (1983) discussed in detail the problems of estimating juvenile alosid growth from observed mean lengths. Briefly, two major sources of error that result in an underestimation of growth are the tendency for the precocious juveniles to migrate downstream (Loesch 1969, Marcy 1976), and protracted recruitment due to a lengthy spawning period. These two aspects of alosid behavior result in apparent periods of little or no growth or even "negative growth."

The reason(s) for the general occurrence of higher juvenile mortality rates in the Pamunkey River relative to the rates in the Mattaponi River is not known. It does not appear to be density related since the larger catches and larger maximal CPUE values for alewives and American shad most often occur in the Mattaponi River.

LITERATURE CITED

Cating, J. P. 1953. Determining age of Atlantic shad from their scales. U.S. Fish and Wildl. Serv. Fish. Bull. <u>54</u>(85):187-199.

DiCarlo, J. S. 1981. Overview of alosid stocks of Massachusetts. Dept. Fish. Wildl. and Recreational Vehicles. Boston, MA.

- Kriete, W. H., Jr. and J. G. Loesch. 1980. Design and relative efficiency of a bow-mounted pushnet for sampling juvenile pelagic fishes. Trans. Amer. Fish. Soc. <u>109</u>:649-652.
- Loesch, J. G. 1969. A study of the blueback herring, <u>Alosa aestivalis</u> (Mitchill), in Connecticut waters. Ph.D. Dissertation. University of Connecticut, Storrs, Connecticut, USA.
- Loesch, J. G., and W. H. Kriete, Jr. 1980. Anadromous fishes research program, Virginia. Annu. Rep. 1980. Nat. Mar. Fish. Serv. Proj. No. AFC 10-1. Virginia Institute of Marine Science, Gloucester Point, Virginia. 96 p.
- Loesch, J. G., and W. H. Kriete, Jr. 1981. Anadromous Fisheries Research, Virginia. Annu. Rep. 1981. Nat. Mar. Fish. Serv. Proj. No. AFC 10-2. Virginia Institute of Marine Science, School of Marine Science, College of William and Mary, Gloucester Point, Virginia, 74 p.
- Loesch, J. G. and W. H. Kriete, Jr. 1982. Anadromous Fisheries Research, Virginia. Annu. Rep. 1982. Nat. Mar. Fish. Serv. Proj. No. AFC 10-3. Virginia Institute of Marine Science, School of Marine Science, College of William and Mary, Gloucester Point, Virginia. 55 p.
- Loesch, J. G. and W. H. Kriete, Jr. 1983. Anadromous fisheries research, Virginia. Comp. Rep. AFC-10-1 to 10-4. Virginia Institute of Marine Science, Gloucester Point, Virginia. 56 p.

LISRARY YIRGIMIA INSTITUTE MARINE SCIENCE 1

- Loesch, J. G., W. H. Kriete, Jr. and E. J. Foell. 1982. Effects of light intensity on the catchability of juvenile anadromous <u>Alosa</u> species. Trans. Amer. Fish. Soc. 111(1):41-44.
- Loesch, J. G., W. H. Kriete, Jr., J. G. Travelstead, E. J. Foell and M. A. Hennigar. 1979. Biology and management of mid-Atlantic anadromous fishes under extended jurisdiction. Part II: Virginia Completion Rep. 1977-1979. Nat. Mar. Fish. Serv. Proj. No. AFCS 9-1 to 9-3. Virginia Institute of Marine Science, Gloucester Point, Virginia. 204 p.
- Marcy, B. C., Jr. 1976. Early life history studies of American shad in the lower Connecticut River and the effects of the Connecticut Yankee Plant. Pages 141-168 <u>in</u> D. Merriman and L. M. Thorpe (eds.), The Connecticut River Ecological Study; the Impact of a Nuclear Power Plant. Amer. Fish. Soc. Monogr. No. 1.
- Nie, N. H., C. H. Hull, J. G. Jenkins, K. Steinbrenner, and D. H. Bent. 1975. Statistical package for the social sciences. McGraw-Hill Book Co., New York. 675 p.
- Ricker, W. E. 1975. Computations and interpretations of biological statistics of fish populations. Bull. Fish. Res. Bd. Can. No. 191. 382 p.
- Turner, J. L. and H. K. Chadwick. 1972. Distribution and abundance of young-of-the-year striped bass, <u>Morone saxatilis</u>, in relation to river flow int he Sacramento-San Joaquin Estuary. Trans. Amer. Fish. Soc. 101(3):442-452.
- Walton, C. J. 1981. Population biology and management of the alewife (<u>Alosa pseudoharengus</u>) in Maine. AFC-21-2 Dept. Sea Shore Fish., Augusta, ME.

River and Month	<u>Al</u> Male	<u>ewife</u> Female	<u>Blu</u> Male	<u>eback</u> Female	<u>Americ</u> Male	<u>an Shad</u> Female
<u>James</u> April					20	80
<u>York</u> April May	7 25	33 17	131 172	176 348	33	80
<u>Rappahannock</u> March April May	151 107 29	131 126 23	126 202	132 162	30	71
Totals (M&F)) 6	549	1,	449	3	314

Table 1.1. Summary of sample data from the <u>Alosa</u> commercial fisheries during the 1984 spawning run in the major Virginia tributaries to Chesapeake Bay.

<u> </u>	Area	<u>Jan Feb</u> * 23			Mar		Apr		May		Jun	
		23		1	Mar 27	12	26	$\frac{1}{14}$	23	$\frac{0}{14}$	28	
Α.	James River	0		1	1	1	1	1	1	1	1	
Β.	Back Riyer	0		0	0	0	1	-	1	3	1	
С.	Poquoson River	0		0	0	0	0	0	0	0	0	
D.	York River	1		1	1	6	8	10	12	10	10	
E.	Mobjack Bay	0		0	2	6	6	7	8	8	7	
F.	Piankatank River	0		1	1	1	3	4	4	3	4	
G.	Rappahannock River	0		1	33	37	40	40	42	31	28	
Η.	Great Wicomico River	0		0	0	0	1	4	3	3	3	
I.	Potomac River	0	1	1	15	31	55	75	77	78	80	
	a. Virginia tributaries to Potomac River	0		0	0	1	2	3	4	4	4	
J.	Cape Henry to Fort Wool	0		0	3	3	3	6	8	8	8	
Κ.	Old Point-Tue Marsh Point	0		2	6	6	8	9	9	8	8	
L.	York Spit	0		0	0	1	5	7	8	9	10	
Μ.	New Point- Stingray Point	0		1	5	8	10	16	17	16	17	
N.	Windmill Point- Smith Point	0		0	5	10	13	13	12	12	12	
	Eastern Shore									•		
0.	Above Hungar Creek	0		0	0	3	4	7	8	8	8	
Ρ.	Below Hungar Creek	<u>0</u>	_	<u>1</u>	_1	9	_11	_17	_21	_24	_24	
	TOTAL	1	1	9	73	123	171	220	235	226	225	

t

Table 1.2.	Number of active pound net stands in Chesapeake Bay and its Virginia tributaries during January-June, 1984.	

A.	River					Number o	of Gill Ne	t Stands		
						1982	1983	1984		
	James York Rappahannock					124 174 55	151 149 46	107 121 37		
в.	River	Mile	Numbe	r of Stands	<u>Number of Se</u>	<u>ctions</u>	Average	Length/Section	Meters	of Net
	James	05-10 10-15		26	752			9.1	(6,843)	6,843
		15-20		42	711			12	(8,532)	4,266
		20-25		19	321			12	(3,852)	1,926
		25-60			323			12	(3,876)	3,876
•		. ==	Total	$\frac{20}{107}$	2,107				(23,103)	16,911
	i									
	York	10-15		37	673			14.2	(9,557)	9,366
		15-20		28	434			14.2	(6,163)	6,040
		20-25		18	389			7.6	(2,956)	2,779
		25-29		<u>38</u>	746			7.6	(5,670)	5,330
			Total	121	2,242				(24,346)	23,515
	Rappahannock	15-20		3	47			15.7	(738)	487
		20-25		3	47			15.7	(738)	487
		25-30		3 3 9	164			15.7	(2,575)	1,698
		30-35		14	198			15.7	(3,109)	2,050
		35-40		5	126			9.1	(1,147)	756
		40-60		3	44			9 . 1	(400)	264
			Total	14 5 <u>3</u> 37	626				(8,707)	5,742

•

Table 1.3. Number of stake gill net stands fished in Virginia rivers 1982-1984 (A) and linear meters of gill netting fished primarily for American shad per 5-mile block (B) in 1984. Figures in parentheses represent the total meters of gill netting in the James, York and Rappahannock rivers.

		American Shad						
Half-Month Period	River Mile Inde	Male Estimated x Catch	Female Estimated Index Catch	Total Estimated <u>Catch</u>				
February 2nd	05-10 0.40 10-15	768	0.3235 2,214 502 0.1177 <u>227</u> <u>456</u> 3,399	4,981 1,270 574 <u>1,153</u> 7,978				
March 1st .	05-10 0.17 10-15	463	0.1832 1,254 285 0.0668 129 <u>259</u> 1,927	2,438 748 338 <u>679</u> 4,203				
March 2nd	05-10 0.93 10-15 15-20 20-25 0.73 25-60 Total	3,132	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19,530 9,259 4,180 <u>8,412</u> 41,381				
April 1st	05-10 0.89 10-15 15-20 20-25 0.50 25-60 Total	2,161	$ \begin{array}{r} 6.6173 \\ - & - \\ 3.0608 \\ - & 13,058 \\ 5,895 \\ - & 11,864 \\ - & 76,099 \end{array} $	51,432 15,219 6,871 <u>13,827</u> 87,349				
April 2nd	05-10 0.38 10-15 15-20 20-25 0.11 25-60	488	5.8785 2.0454 60,820	42,866 9,214 4,159 <u>8,371</u> 64,610				
	Total Grand Total	35,531	169,990	205,521				

Table 1.4. Estimated catch in kg of American shad by stake gill nets for 5-mile sections in the James River 1984 by half-month intervals and by sex. Effort from Table 1.3. Index in kg/m of net.

	Stake	Gill Net	Pound Net					
		can Shad o	Americ o	an Shad o	River H	lerring Blueback		
James 1977 1978 1979 1980 1981 1982 1983 1984	11,612 116,348 17,328 59,003 12,056 21,811 46,822 35,531	186,495 574,935 263,203 343,026 105,550 37,731 146,715 169,990		(a	.)			
York 1977 1978 1979 1980 1981 1982 1983 1984	3,376 31,666 23,460 25,012 23,453 23,811 45,717 58,104	137,748 174,780 186,074 246,719 158,905 134,676 167,590 196,550	8,894 16,676 5,492 2,267 2,361 5,236 2,780 2,469	3,217 13,141 10,224 6,453 630 179 2,157 1,056	10,298 16,021 22,256 43,391 5,454 15,499 2,714 4,131	87,966 135,954 195,150 176,955 189,769 197,621 40,979 40,066		
Rappahannock 1977 1978 1979 1980 1981 1982 1983 1984	2,298 10,909 2,199 1,366 2,621 2,616 2,113 5,043	22,053 45,870 21,619 8,831 10,015 5,256 4,969 12,949	2,949 2,096 2,046 614 824 2,395 1,629 2,225	1,268 1,871 1,562 1,038 832 1,487 747 936	84,688 130,804 56,016 23,283 33,767 87,689 103,066(b 113,787(b			

Table 1.5.	Yearly landings in kg of American and river herring by pound nets.	shad by pound nets and stake gill nets, Landings for the James, York and				
	Rappahannock rivers are estimations.					

.

(a) Data not available.(b) See text for explanation.

	Stake Gill Net			Pou	nd Net
	Effort	<u>Americ</u> 0	an Shad o		River Herring
James River 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984	25,832 20,464 26,884 28,134 37,207 41,739 38,250 15,088 18,485 16,911	$2.7 \\ 1.9 \\ 0.4 \\ 4.1 \\ 0.5 \\ 1.4 \\ 0.3 \\ 1.4 \\ 2.5 \\ 2.1 \\$	8.8 25.1 6.9 20.4 7.1 8.2 2.8 2.5 7.9 10.0	(a)	
York River 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984	22,106 21,424 19,326 15,954 13,968 19,940 21,298 28,262 30,404 23,515	0.5 0.2 2.0 1.7 1.3 1.1 0.8 1.5 2.5	4.5 3.0 7.1 10.9 13.3 12.4 7.5 4.8 5.5 8.4	(a) 9.88 12.74 12.00 15.95 17.50 21.05 11.82 8.33	9,946 11,929 18,117 13,815 11,156 10,124 3,696 5,306
Rappahannock River 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984	28,973 32,517 13,595 13,681 13,497 8,758 11,591 6,736 6,836 5,742	0.1 0.2 0.8 0.2 0.2 0.2 0.2 0.4 0.3 0.9	0.8 0.5 1.6 3.4 1.6 1.0 0.9 0.8 0.7 2.3	50.67 35.09 32.01 27.28 34.93 28.00 45.53 32.44 34.80(b) 34.26(b)	4,819 3,185 6,534 18,788 13,732 7,808 7,066 12,811 11,981(b) 15,401(b)

Yearly catch-per-unit-of-effort for American shad in stake gill nets and river herring in pound nets for the years 1975-1984. Stake gill net effort is in meters of netting. Pound net effort is in number of nets per season. Table 1.6.

(a) Data not available.(b) See text for explanation.

		American Shad			River Herring							
		Male		Female				Alewife		Blueback		
Half-Month	Number		Estimated		Estimated		Estimated		Estimated		Estimated	Number of
Period	Nets	Index	Total	Index	Total	Index	Total	Percent	Total	Percent	Total	Index_Nets
April 1st	6	31.1	187	130.7	784	74.4	446	5.1	23	94.9	423	6
April 2nd	8	9.5	76	34.0	272	323.2	2,585	24.8	641	75.2	1,944	6
May 1st	10	98.2	982	(a)		4,030.8	40,308	8.6	3,467	91.4	36,841	6
May 2nd	12	102.0	1,224	(a)		71.5	858			100.0	858	6
Total			2,469		1,956				4,131		40,066	
Grand Total				3,525					4	4,197		

Table 1.7. Estimated catch in kg of American shad and river herring by pound nets in the York River 1984 by half-month intervals. Figures in parentheses are estimated species composition.

(a) none reported by index fishermen.

Half-Month Period	River Mile	Ma Index	le Estimated <u>Catch</u>	Female Estimated Index Catch	Total Estimated <u>Catch</u>
February 2nd	10-15 15-20 20-25 25-30 Total	0.1339 0.8075	1,254 809 2,244 <u>4,304</u> 8,611	$\begin{array}{c cccc} 0.1342 & 1,257 \\ & 811 \\ \hline 0.6927 & 1,925 \\ & 3,692 \\ & 7,685 \end{array}$	2,511 1,620 4,169 <u>7,996</u> 16,296
March 1st	10-15 15-20 20-25 25-30 Total	0.2003 0.6249	1,876 1,210 1,737 <u>3,331</u> 8,154	$\begin{array}{c cccc} 0.2758 & 2,583 \\ & & 1,666 \\ \hline 0.6426 & 1,786 \\ & & 3,425 \\ & & 9,460 \end{array}$	4,459 2,876 3,523 <u>6,75</u> 6 17,614
March 2nd	10-15 15-20 20-25 25-30 Total	0.7749 1.064	7,258 4,680 2,957 <u>5,671</u> 20,566	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	26,149 16,863 9,468 <u>18,159</u> 70,639
April 1st	10-15 15-20 20-25 25-30 Total	0.6594 0.6382	6,176 3,983 1,774 <u>3,402</u> 15,335	3.727 34,908 22,511 3.267 9,079 <u>17,413</u> 83,911	41,084 26,494 10,853 <u>20,815</u> 99,246
April 2nd	10-15 15-20 20-25 25-30	0.3122	2,924 1,886 215 <u>413</u> 5,438	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23,566 15,198 4,145 <u>7,950</u> 50,859
	Total Grand T	otal	58,104	196,550	254,654

Table 1.8. Estimated catch in kg of American shad by stake gill nets for 5-mile sections in the York River 1984 by half-month intervals. Effort from Table 1.3. Index in kg/m of net.

				American Shad River Herring									
Half Month		Number	Male		Female	_		Alewife		Blueback		Number of	
				Estimated		Estimated	1	Estimated		Estimated		Estimated	
Period	Mile	Nets	Index	Total	Index	Total	Index	Total	Z	Total	X	Total	Index Net
March 1st	31-70	1	0.4	0.4			38.1	38	100.0	38			5(a)
March 2nd	31-70	21	3.9	82	0.9	19	. 60.0	1,260	100.0	1,260			8
April 1st	31-70	22	3.0	66	5.0	110	58.2	1,280	83.8	1,073	16.2	207	9
April 2nd	31-70	23	4.5	104	10.5	242	733.5	16,871	38.2	6,444	61.8	10,427	11
May 1st	31-70	22	14.8	326	3.0	66	1,87 <u>9</u> .8	41,356	19.2	7,940	80.8	33,416	12
May 2nd	31-70	24	13.0	312	0.7	<u>· 17</u> ·	211.5	5,076	1.3	66	98.7	5,010	6
Total				890.4		454			<u>.</u>	16,821		49,060	
Grand Total	L				1,344	4.4		65,881					
Estimated 1	landings	mile 0-3	30	1,335		480				96,966 ^{(Ъ})	364,779 ^(b)	
					1,81	5(c)		461,745(c)				
Grand Total	l for Ra	nnahanno	ck River	. ,	3,15	9.4		527,626					

Table 1.9. Estimated catch in kg of American shad and river herring by pound nets in the Rappahannock River 1984 by half-month intervals.

(a) Index nets installed after pound net count.

(b) Species ratio estimated from 1977-1979 commercial landings data.

(c) Landings for miles 0-30 estimated from 1978-1982 commercial landings data.

à.

		America Male	an Shad Female	Total
Half-Month Period	River Mile Index	Estimated	Estimated Index Catch	Estimated Catch
February 2nd	15-25 25-30 0.031 30-35 35-40 40-65(a)	13 53 64 24	0.0035 7 3	17 59 71 27
	Total	156	18	174
March 1st	15-25 25-30 30-35 35-40	51 55 179 216 80	0.0524 89 107 40	77 268 323 120
	40-65(a) Total	526	262	788
March 2nd	15-25 25-30 30-35 35-40	4 161 563 679 251	0.3410 699 258	327 1,142 1,378 509
	40-65(a) Total	1,654	1,702	3,356
April Ist	15-25 25-30 30-35 35-40 40-65(a)	213 6 741 895 330	595 1.2221 2,075 2,505 924	808 2,816 3,400 1,254
	Total	2,179	6,099	8,278
April 2nd	15-25 25-30 30-35 35-40 40-65(a)	44 0 153 185 68	429 0.8805 1,495 1,805 666	473 1,648 1,990 734
	Total	450	4,395	4,845
May 1st	15-25 25-30 30-35 35-40	7 27 32 12	0.0947 161 194 72	53 188 226 84
	40-65(a) Total	78	473	551
Total Grand Total	:	<u>5,043</u>	12,949	17,992

Table 1.10. Estimated catch in kg of American shad by stake gill nets in the Rappahannock River 1984 by half-month intervals. Effort from Table 1.3. Index in kg/m of net.

(a) see text for explanation

				RELATIVE	ADJUSTED	сим
			ABSOLUTE	FREQ	FREQ	FREQ
CATEGORY	LABEL	CODE	FREQ	(PCT)	(PCT)	(PCT)
		76.	3	4.2	4.3	4.3
		77.	4	5.6	5.7	10.0
		78.	6	8.3	8.6	18.6
		79.	21	29.2	30.0	48.6
		80.	28	38.9	40.0	88.6
		81.	8	11.1	11.4	100.0
		9.*	2	2.8	MISSING	100.0
		TOTAL	72	100.0	100.0	
MEAN	70 200		0 146	MED	T A 14	70 506
MODE	79.300	STD ERR	0.146		IAN	79.536
KURTOSIS	80.000 0.851	STD DEV SKEWNESS	1.220 -0.997		IANCE	1.488
MINIMUM	76.000	MAXIMUM	81.000		GE	5.000
VALID CAS	ES 70	MISSING C	ASES 2			

Table 1.11. Year-class frequency of alewife (sexes pooled) in the York River commercial fishery samples, 1984.

*Age codes

- 0 includes some age \geq 7 or 1975 or older
- 9 missing age data

CATEGORY LA AGE 7+	BEL	CODE 0.* 76. 77. 78. 79. 80. 81. 9.*	ABSOLUTE FREQ 26 23 85 65 50 7 485 743	RELATIVE FREQ (PCT) 3.5 0.3 3.1 11.4 8.7 6.7 0.9 65.3 100.0	ADJUSTED FREQ (PCT) 10.1 0.8 8.9 32.9 25.2 19.4 2.7 MISSING 100.0	CUM FREQ (PCT) 10.1 10.9 19.8 52.7 77.9 97.3 100.0 100.0
MEAN MODE KURTOSIS MINIMUM VALID CASES	70.756 78.000 5.131 0.000 258	STD ERR STD DEV SKEWNESS MAXIMUM MISSING C.	1.47 23.75 -2.65 81.00 ASES 48	3 VAF 9 RAM 0	DIAN RIANCE NGE	78.418 564.216 81.000

Table 1.12. Year-class frequency of blueback herring, (sexes pooled) in the York River commercial fishery samples, 1984.

*Age codes

0 - includes some age \geq 7 or 1975 or older

9 - missing age data

CATEGORY LA AGE 7+	BEL	A CODE 0.* 77. 78. 79. 80. 81. 9.* TOTAL	BSOLUTE FREQ 2 6 23 94 148 43 315 631	RELATIVE FREQ (PCT) 0.3 1.0 3.6 14.9 23.5 6.8 49.9 100.0	ADJUSTED FREQ (PCT) 0.6 1.9 7.3 29.7 46.8 13.6 MISSING 	CUM FREQ (PCT) 0.6 2.5 9.8 39.6 86.4 100.0 100.0
MEAN MODE KURTOSIS MINIMUM	79.130 80.000 149.586 0.000	STD ERR STD DEV SKEWNESS MAXIMUM	0.35 6.38 -12.15 81.00	5 VAF 6 RAN	DIAN RIANCE NGE	79.723 40.774 81.000
VALID CASES	316	MISSING CA	ASES 31	5		

Table 1.13. Year-class frequency of alewife (sexes pooled) in the Rappahannock River commercial fishery samples, 1984.

*Age codes

- O includes some age \geq 7 or 1975 or older
- 9 missing age data

CATEGORY LAE AGE 7+	BEL	CODE 0.* 76. 77. 78. 79. 80. 81. 9.*	ABSOLUTE FREQ 3 1 13 45 94 81 2 384 623	RELATIVE FREQ (PCT) 0.5 0.2 2.1 7.2 15.1 13.0 0.3 61.6 100.0	ADJUSTED FREQ (PCT) 1.3 0.4 5.4 18.8 39.3 33.9 0.8 MISSING 100.0	CUM FREQ (PCT) 1.3 1.7 7.1 25.9 65.3 99.2 100.0 100.0
MEAN MODE KURTOSIS MINIMUM	78.054 79.000 74.651 0.000	STD ERR STD DEV SKEWNESS MAXIMUM	0.573 8.865 -8.672 81.000	5 VAR 2 RAN	IAN IANCE GE	79.112 78.589 81.000
VALID CASES	239	MISSING CA	ASES 384	, +		

Table 1.14. Year-class frequency of blueback herring (sexes pooled) in the Rappahannock River commercial fishery samples, 1984.

*Age codes

- 0 includes some age \geq 7 or 1975 or older
- 9 missing age data

Sex	Year Class	James	York	Rappahannock	Total	Frequency (%)
Male	1977 1978 1979	2 5 10	7 26	2 7 21	4 19 57	5.0 23.75 71.25
Totaĺ		17	33	30	80	
Female	1976 1977 1978 1979 1980	1 21 50 9 1	2 33 44 1	1 9 40 18 3	2 32 123 71 5	0.86 13.73 52.79 30.5 2.15
Tota]		82	80	71	233	

Table 1.15. Year-class frequency of American shad in the Virginia commercial gill net fishery, 1984.

			<u>York</u>	644		<u>Rappahannock</u> Std.			
<u>Species</u>	Sex		<u>N</u>	Mean	Std. Error	<u> N </u>	Mean	Error	
Alewife	Male	Length Weight	22 22	242.2 178.1	2.863 9.749	327 327	237.4 209.3	0.628 2.203	
	Female	Length Weight	50 50	252.3 213.3	2.144 5.998	302 301	248.5 243.4	0.807 2.849	
Blueback	Male	Length Weight	273 273	238.7 167.0	0.762 1.959	329 329	228.6 144.9	0.710 1.546	
	Female	Length Weight	469 469	250.9 192.1	0.709 1.890	293 292	241.7 172.4	0.771 2.294	

Table 1.16. Length (mm) and weight (g) statistics for river herring in the York and Rappahannock rivers, 1984.

.

Sex			James			York			Rappahannock		
		N	Mean	Std. Error	N	Mean	Std. Error	N	Mean	Std. Error	
Male	Length	17	425.1	3.028	33	418.1	2.295	30	429.5	2.867	
	Weight	17	1340.4	27.984	35	1292.7	20.860	30	1329.5	31.282	
Female	Length	82	465.0	2.242	80	455.6	2.420	71	465.2	2.435	
	Weight	83	1877.9	27.499	80	1747.9	28.159	71	1891.7	31.326	

Table 1.17. Length (mm) and weight (g) statistics for American shad in the James, York and Rappahannock gill net fisheries, 1984.

Table 1.18. Estimated rates of instantaneous total mortality (Z), annual mortality (A), survival (S), and exploitation (E) for alewife and blueback herring in the Rappahannock River. A natural mortality rate of 1.1 was assumed.

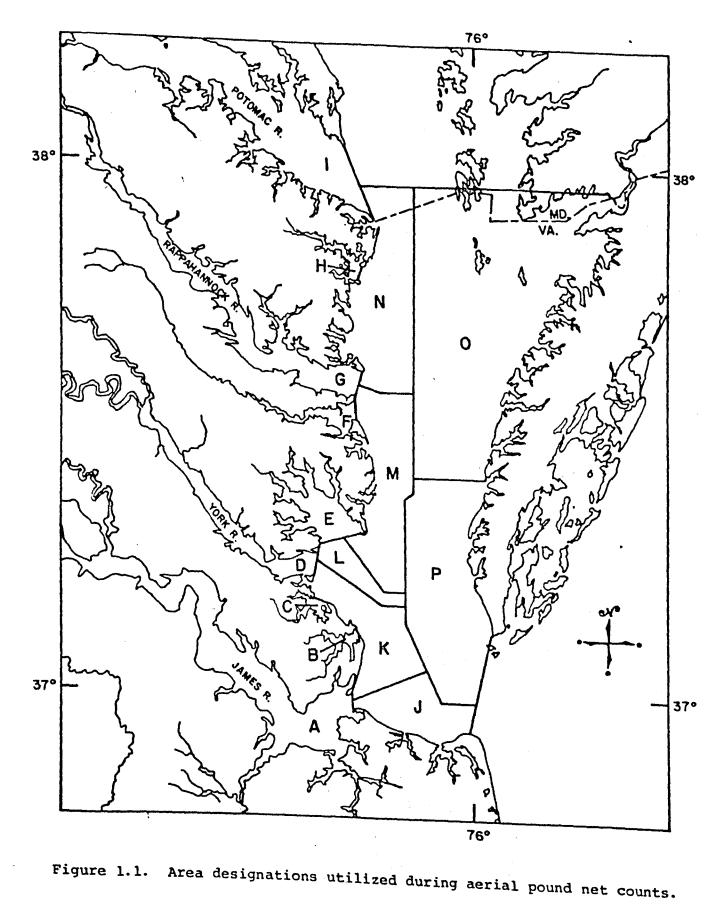
Year		Al	ewife		Blueback	
<u>Class</u>	Z	A	S	E	<u>Z A S</u>	Ē
1969 1970 1971 1972 1973 1974 1975 1976 1977	2.06 1.38 1.21 1.65* 3.01* ⁺ 1.32 1.20* 1.58 1.42*	0.87 0.75 0.70 0.81 - - 0.73 0.70 0.79 0.76	0.13 0.25 0.30 0.19 - - 0.27 0.30 0.21 0.24	0.62 0.24 0.10 0.42 - 0.20 0.10 0.38 0.27	1.72* 0.82 0.18 0 1.90 0.85 0.15 0 1.74 0.82 0.18 0 1.47 0.77 0.23 0 1.11 0.67 0.33 0 1.65 0.81 0.19 0 1.31 0.73 0.27 0).67).46).55).47).31).01).42).19).46
Mean	1.47	0.77	0.23	0.31		.40

*Z estimated from the log of the ratio of CPUE values at ages 5 and 6. All other Z values were estimated from catch curves (regression of CPUE or age).

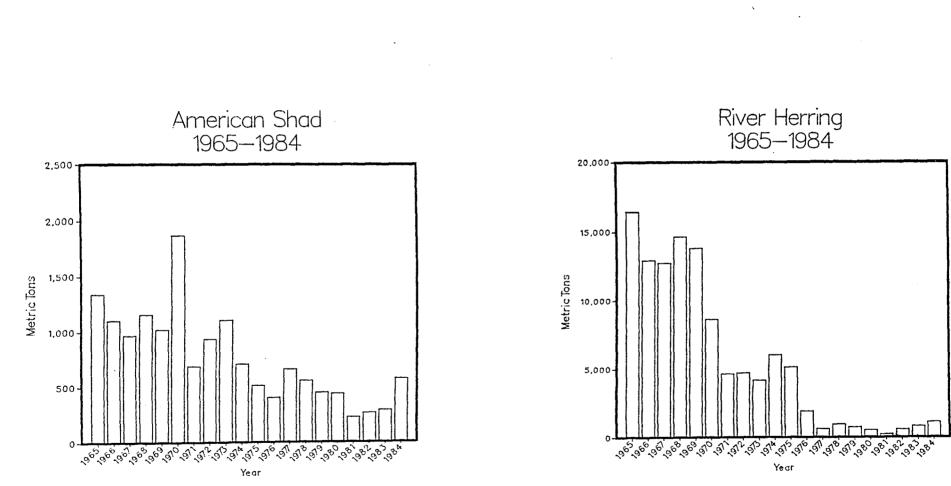
⁺The Z value for the 1973 year class, a statistical outlier, was omitted from the calculations.

<u></u>	Maximal CPUE								
		Mattaponi		·	Pamunkey	**************************************			
<u>Year</u>	Alewife	Blueback	Amer. Shad	Alewife	Blueback	Amer. Shac			
1979	6.0	73.0	38.1	6.7	224.8	57.4			
1980	2.9*	4.6*	38.8*	3.6	87.9	7.1			
1981	10.0*	11.6	18.0*	6.5*	16.7	5.3*			
1982	38.0	289.0	21.1	28.3*	408.2	3.0*			
1983	36.2	36.1	16.5	4.2	120.7	7.5			
1984	28.1	220.8	34.4	7.1*	88.9	2.5			

Table 2.1. Maximal catch-per-unit-of-effort (CPUE) values for juvenile <u>Alosa</u> in the Mattaponi and Pamunkey rivers, 1979-1984.

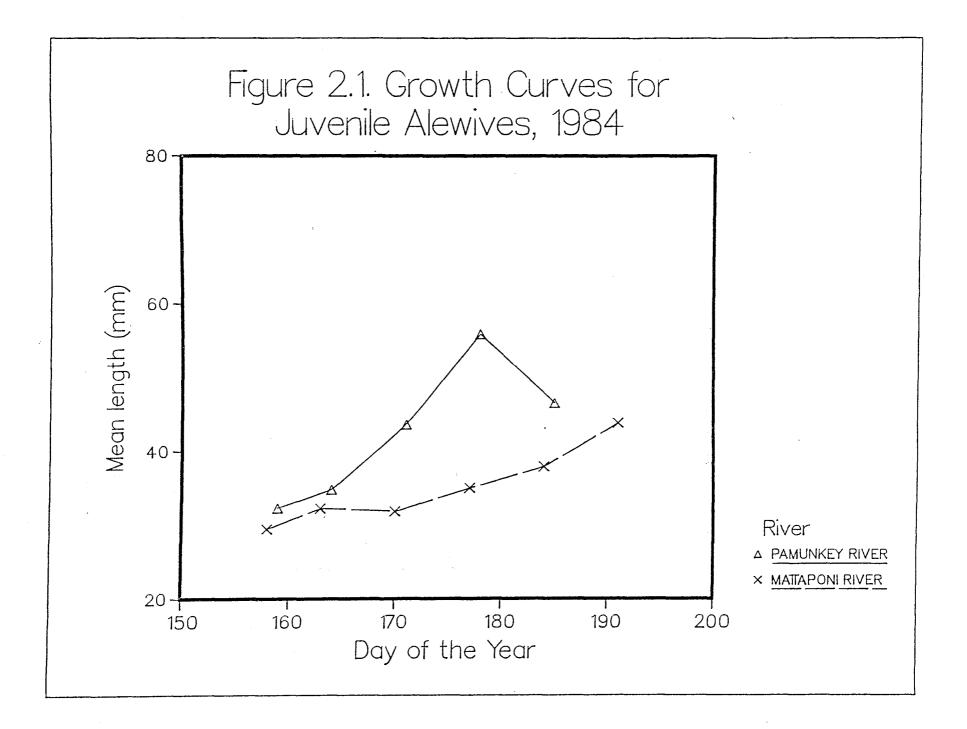

*Maximal CPUE occurred in the first sampling period.

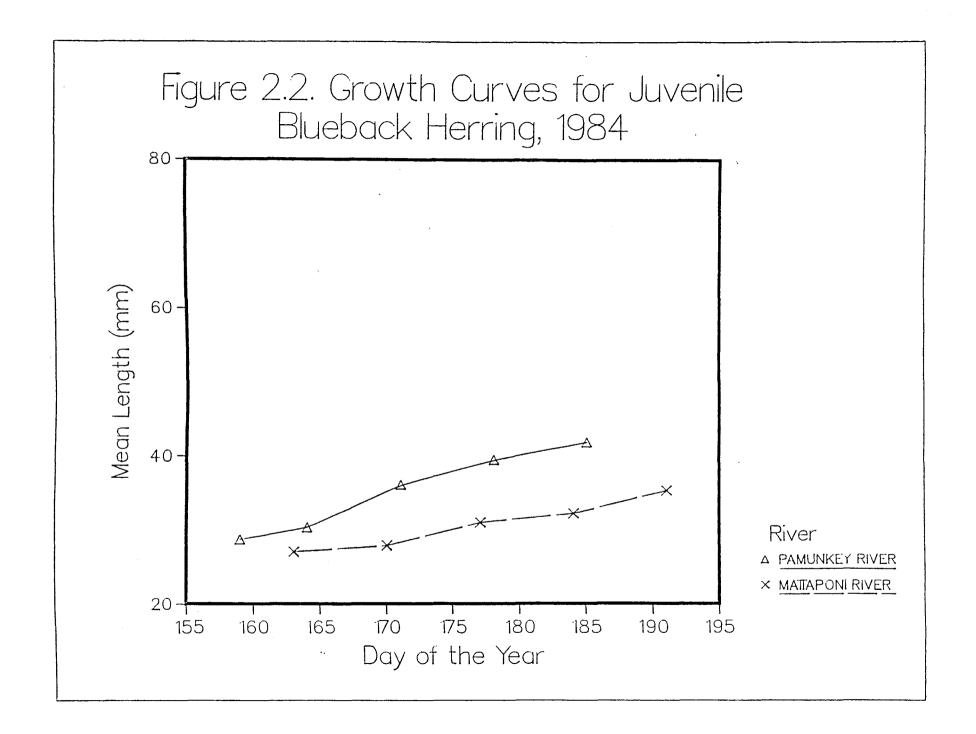
Species	River	1979	1980	1981	1982	1983	1984	Mean*
Alewife	M	0.036	0.330	0.105	0.036	0.038	0.042	0.037
	P	0.040	0.041	0.058	0.043	0.068	0.036	0.046
American	. M	0.040	0.056	0.080	0.042	0.030	0.056	0.042
shad	P	0.060	0.080	0.043	0.050	0.078	0.057	0.061
Blueback	M	0.034	0.022	(+)	0.077	0.041	0.030	0.045
	P	0.040	0.031	0.016	0.046	0.052	0.078	0.054

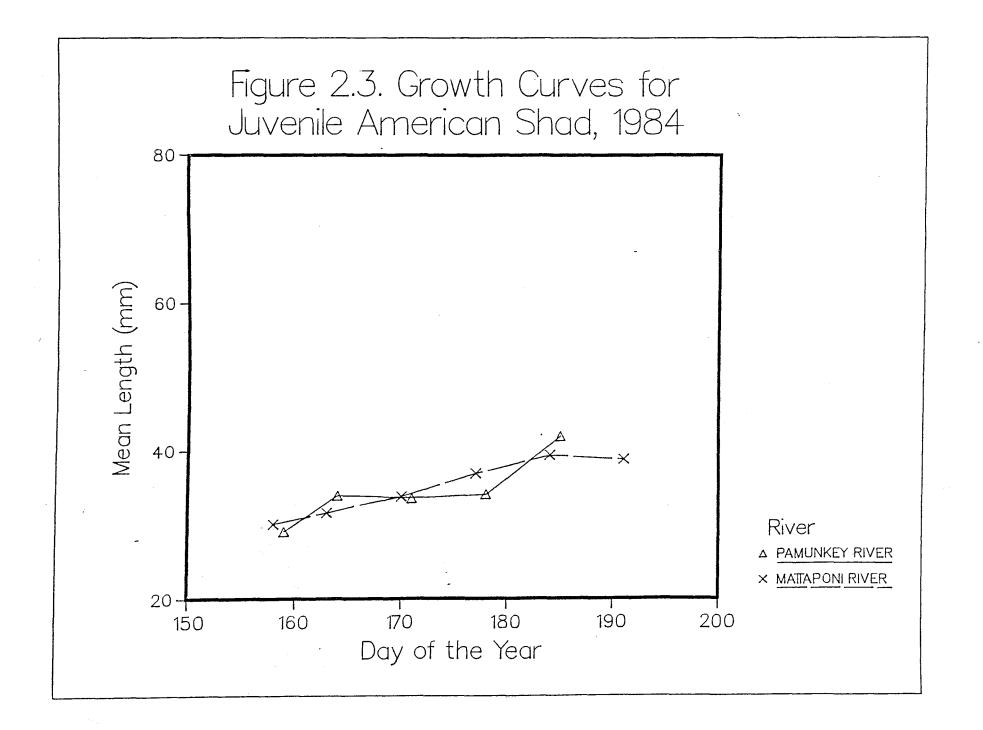

Table 2.2. Estimates of instantaneous daily mortality for juvenile <u>Alosa</u> in the Mattaponi (M) and Pamunkey (P) rivers, 1979-1984.

•

*The 1980 and 1981 data were omitted (see text). (+)Data were too few for a reasonably objective estimate of mortality.




Figure 1.2. Virginia Landings 1965–1984.



1 metric ton = 2205 lb.

1 metric ton = 2205 lb.

