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ABSTRACT

Human behavior recognition and analysis have been considered as a core
technology that can facilitate a variety of applications. However, accurate
detection and recognition of human behavior is still a big challenge that attracts
a lot of research efforts. Among all the research works, motion sensors-based
human behavior recognition is promising as it is low cost, low power, and easy
to carry. In this dissertation, we use motion sensors to study human behaviors.

First, we present Ultigesture (UG) wristband, a hardware platform for detecting
and analyzing human behavior. The hardware platform integrates an
accelerometer, gyroscope, and compass sensor, providing a combination of (1)
fully open Application Programming Interface (API) for various application
development, (2) appropriate form factor for comfortable daily wear, and (3)
affordable cost for large scale adoption.

Second, we study the hand gesture recognition problem when a user performs
gestures continuously. we propose a novel continuous gesture recognition
algorithm. It accurately and automatically separates hand movements into
segments, and merges adjacent segments if needed, so that each gesture only
exists in one segment. Then, we apply the Hidden Markov Model to classify
each segment into one of predefined hand gestures. Experiments with human
subjects show that the recognition accuracy is 99.4% when users perform
gestures discretely, and 94.6% when users perform gestures continuously.

Third, we study the hand gesture recognition problem when a user is moving.
We propose a novel mobility-aware hand gesture segmentation algorithm to
detect and segment hand gestures. We also propose a Convolutional Neural
Network to classify hand gestures with mobility noises. For the
leave-one-subject-out cross-validation test, experiments with human subjects
show that the proposed segmentation algorithm achieves 94.0% precision, and
91.2% recall when the user is moving. The proposed hand gesture
classification algorithm is 16.1%, 15.3%, and 14.4% more accurate than
state-of-the-art work when the user is standing, walking, and jogging,
respectively.

Finally, we present a tennis ball speed estimation system, TennisEye, which
uses a racket-mounted motion sensor to estimate ball speed. We divide the
tennis shots into three categories: serve, groundstroke, and volley. For a
serve, we propose a regression model to estimate the ball speed. In addition,
we propose a physical model and a regression model for both groundstroke
and volley shots. Under the leave-one-subject-out cross-validation test,
evaluation results show that TennisEye is 10.8% more accurate than the
state-of-the-art work.
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Chapter 1

Introduction

In the field of ubiquitous computing, human behavior recognition is an important re-

search topic and has been used in many human-centric services and applications, such

as health monitoring [1], remote control [2], and personalized recommendation [3]. Typ-

ically, human behavior recognition can be divided into two categories: computer vision-

based behavior recognition andwearable sensor-based behavior recognition. Computer

vision-based behavior recognition requires a camera to capture the human behaviors,

while wearable sensor-based behavior recognition requires a physical sensing device to

be worn on human bodies. Compared with computer-vision based recognition, wearable

sensor-based behavior recognition technology is lower cost, lower power, not influenced

by lighting environment, and has no color calibration in advance. Therefore, we utilize

wearable sensors to detect and recognize human behaviors in the present study.

There have already been many wearable sensor-based human behavior recognition

platforms, such as eWatch [4], a wearable sensing and notification platform; E-Gesture,

a hand gesture recognition platform [5]; and E4, a healthcare monitoring wristband [6].

There are three common problems in current behavior recognition platforms: (1) They

are not comfortable to wear. Many platforms are too big to be used in daily life, e.g.,

eWatch [4]. (2) They do not provide open API. Most wearable platforms do not open

their APIs to public, such as E-gesture [5]. Therefore, other developers cannot build ap-

plications based on their platforms. (3) Some platforms are very expensive, e.g., a E4
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healthcare monitoring wristband charges $1690 with open API [6]. Therefore, a wear-

able sensor-based behavior recognition platform that is comfortable to wear, provides

open API access, and can be bought at an affordable price does not exist.

Hand gesture recognition is a trending topic in human behavior recognition research.

Several wearable systems with gesture recognition technology have been proposed,

e.g., upper limb gesture recognition for stroke patients [1] and for patients with chronic

heart failure [7], glove-based sign language recognition [8], and wristband-based smok-

ing gesture recognition [9]. Most gesture recognition prototypes assume that a user

performs one hand gesture at a time and that the user is not moving. Instead, in many

scenarios, a person tends to perform multiple hand gestures continuously or to perform

hand gestures while moving. For example, a person tends to perform hand gestures

continuously to remotely control a drone or smart TV. In addition, a person tends to use

hand gestures to control a music app while jogging. In these scenarios, the traditional

hand gesture recognition algorithms do not work. Therefore, it is essential to recog-

nize hand gestures when a person performs multiple gestures continuously and when a

person is moving.

In addition to hand gesture recognition, tennis ball speed estimation is another emerg-

ing topic in human behavior study. Aggressive tennis shots with high ball speed are the

key factors in winning a tennis match. Today’s tennis players are increasingly focused

on improving ball speed. As a result, in recent tennis tournaments, records of tennis

shot speeds are broken again and again. The traditional method for calculating the

tennis ball speed uses multiple high-speed cameras and computer vision technology,

such as Hawk-eye technology [10] [11] and PlaySight [12]. However, high-speed cam-

eras are very expensive and hard to set up. Another way to calculate the tennis ball

speed is to use motion sensors, which are lower in cost, lower in power usage, not in-

fluenced by lighting environment, and easier to set up. There are some commercial

products on the market that assess the performance of the players and estimate the

ball speed [13] [14] [15]. However, none of these commercial products open their al-
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gorithms to the public. In addition, no previous publication has used motion sensors to

calculate the tennis ball speed. Therefore, the smotion sensors-based tennis ball speed

estimation problem remains to be explored.

1.1 Problem Statements

In this dissertation, we investigate how to exploit motion sensors to recognize and ana-

lyze human behaviors. Specifically, we work on the following four problems:

(1) Developing a Wristband-based Platform for Behavior Recognition. There

have already been many wristband-based behavior recognition platforms. Some are

developed by researchers at universities, while others are commercial products on the

market. We find that the platforms developed by researchers usually do not provide

open API, and are awkward to wear. Products on the market are quite expensive. For

example, the price of Motorola Moto 360 (2nd Gen.) is over $300 [16], and the price of

E4 wristband is $1690 [6]. Therefore, we are motivated to develop a wristband-based

platform for human behavior recognition, which provides open API access, is comfort-

able to wear, and can be bought at an affordable price.

(2) Recognizing Hand Gestures When a User Performs Multiple Gestures Con-

tinuously. Most hand gesture recognition prototypes can only recognize hand gestures

one by one. Accurate recognition of continuous gestures is difficult for most gesture

recognition prototypes [17]. To recognize multiple continuous hand gestures, we first

need to partition this sequence of hand movement into non-overlapping segments, such

that each segment contains one complete gesture. Then, some classification algorithms

can be applied to classify each segment into one of predefined gestures. Segment-

ing multiple continuous hand gestures faces a few challenges. First, the segmentation

should extract exactly one entire hand gesture, neither more nor less than needed. Oth-

erwise, the extracted segments contain non-gesture noises, or miss useful gesture in-

formation, which leads to inaccurate classification. In addition, when a user performs
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multiple continuous gestures, the segmentation should not split a single gesture into

multiple segments, or put multiple gestures into a single segment. To deal with these

challenges, we propose a continuous gesture data segmentation and recognition al-

gorithm. The proposed algorithm first segments a sequence of hand movements into

several small segments. Then, it merges the adjacent segments so that each segment

contains one complete hand gesture. Finally, we apply the Hidden Markov Model to

classify the hand gestures.

(3) Recognizing Hand Gestures When a Person is Moving. Hand gesture is a

promising mobile user interface as it can simplify the interaction with a smartphone when

a user is moving. However, most gesture recognition prototypes do not take mobility into

consideration. When a user is moving, gesture recognition is difficult. The first reason

is that hand swinging motions during walking or jogging are mixed with hand gestures.

It is hard to classify whether a hand movement comes from hand swinging motions or

a hand gesture. In addition, when the user performs a hand gesture while moving, the

hand movement is a combination of the hand gesture and the body movement. The

mobility noises caused by the body movement reduce the accuracy of the hand gesture

recognition. To deal with these two challenges, we propose a novel mobility-aware ges-

ture segmentation algorithm to detect and segment hand gestures, and a Convolutional

Neural Network (CNN) model to classify hand gestures with mobility noises.

(4) Estimating Tennis Ball Speed Using a Racket-Mounted Sensor. Tennis ball

speed is an important metric in assessing the skill level of a tennis player. However, it is

not easy to estimate the tennis ball speed based on a motion sensor. First, it is hard to

build a model to accurately calculate the tennis ball speed, because it is influenced by

a variety of factors: type of stroke, stroke strength, stroke angle, string tension, and ball

impact position. Some of these cannot be measured by a motion sensor, making it hard

to calculate the ball speed accurately. Second, it is hard to build a model that is accurate

for all kinds of tennis players. Different players have different tennis skills and stroke

patterns. For example, advanced players perform strokes consistently and correctly,
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while beginning players perform strokes inconsistently and incorrectly. A model that is

accurate for the advanced players may not be accurate for the beginning players and

vice versa. To deal with these two problems, we investigate the physical impact process

between a tennis racket and a tennis ball. Then, we propose two models to calculate the

groundstroke speed: a physical model and a regression model. We apply the physical

model to calculate the ball speed for advanced players, and the regression model to

calculate the ball speed for beginning players.

1.2 Contributions

This dissertation proposes four contributions towards human behavior recognition and

analysis. The overall contributions are as follows:

Developing a Wristband-based Platform for Human Behavior Study. We develop a

UG wristband, a motion sensors-based platform for human behavior study. It integrates

a Cortex-M4 processor, a Bluetooth Low Energy (BLE) module, a 3-axis gyroscope, a

3-axis accelerometer, and a 3-axis digital compass sensor. It is comfortable to wear,

provides open API access, and can be bought at an affordable price. Specifically, we

make two contributions:

• We carefully design the hardware and firmware of the UG wristband. The size of

a UG wristband printed circuit board is similar to that of a quarter. Therefore, it is

easy to carry. A UG wristband only integrate motion sensors that are widely used

by researchers. Therefore, it is cheap. We implement four firmware components to

manage the hardware components, and provide a series of interfaces to configure

the UG wristband that (1) configure and read sensor readings, (2) manage the

peripherals, (3) configure BLE modules, (4) update firmware.

• We provide a series of open APIs to Android developers. The developers can use

our APIs to configure and access the data of the connected UG wristband through
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BLE. An Android library is carefully designed so that one smartphone can connect

to multiple UG wristbands without conflict.

Recognizing Hand Gestures When a User Performs Multiple Gestures Continu-

ously. We propose a novel continuous gesture segmentation and recognition algorithm.

Specifically, we make two contributions:

• We present a continuous gesture segmentation and recognition framework. We

propose a lightweight and effective data segmentation mechanism to segment po-

tential hand gestures from a sequence of hand movements. Then, we apply Hid-

den Markov Model to classify hand gestures.

• Our experimental results show that our system can recognize hand gestures with

99.4% accuracy when users perform gestures discretely. When users perform

gestures continuously, our system can segment hand gestures with 98.8% accu-

racy and recognize hand gesture with 94.6% accuracy.

Recognizing HandGesturesWhen a Person isMoving. Wepropose a novel mobility-

aware hand gesture segmentation algorithm to detect and segment hand gestures.

Specifically, we make three contributions:

• We propose a novel mobility-aware gesture segmentation algorithm to detect and

segment hand gestures. We first apply a machine learning algorithm to classify the

current body movement into moving or non-moving. If the user is not moving, we

apply a threshold-based segmentation algorithm to segment the hand gestures.

If the user is moving, we propose a novel self-correlation metric to evaluate the

self-correlation of the sensor readings. Then, we apply a moving segmentation

algorithm to segment the hand gestures.

• We design a CNN model to classify the hand gestures with mobility noises. We

apply a batch normalization layer, a dropout layer, a max-pooling layer, and L2

regularization to overcome overfitting and handle mobility noises.
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• We integrate the gesture segmentation and classification algorithms into a system,

MobiGesture. Our experimental results show that the proposed segmentation al-

gorithm achieves 94.0% precision and 91.2% recall when the user is moving. The

proposed hand gesture classification algorithm is 16.1%, 15.3%, and 14.4% more

accurate than state-of-the-art work when the user is standing, walking, and jog-

ging, respectively.

Estimating Tennis Ball Speed Using a Racket-Mounted Sensor. We explore the

motion sensors-based tennis ball speed estimation problem. Specifically, wemake three

contributions:

• We propose a tennis ball speed calculation system, TennisEye. It is the first re-

search publication to calculate the serve, groundstroke and volley speed of a tennis

ball using a racket-mounted motion sensor.

• We propose two models to calculate the groundstroke speed: a physical model

and a regression model. We apply the physical model to calculate the ball speed

for advanced players, and the regression model to calculate the ball speed for

beginning players.

• We evaluate the proposed system using the tennis shot data from players of differ-

ent levels. Our experiment results show that TennisEye is 10.8% more accurate

than the state-of-the-art work.

1.3 Dissertation Organization

The rest of this dissertation is structured as follows. In Chapter 2, we discuss related

work. In Chapter 3, we present our motion sensors-based platform, UG wristband. In

Chapter 4, we propose a continuous hand gesture recognition algorithm. In Chapter 5,

we propose a novel mobility-aware hand gesture recognition algorithm. In Chapter 6,

we present a tennis ball speed estimation algorithm. Finally, we conclude in Chapter 7.
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Chapter 2

Related Work

This chapter reviews related work in wristband-based gesture recognition platforms and

gesture recognition algorithms.

2.1 Wristband-based Gesture Recognition Platforms

There have already been many wristband-based gesture recognition platforms. Some

are developed by researchers in universities, while others are commercial products in

the market. There are some common problems in current gesture recognition platforms.

For example, most of current platforms do not open their API to the public [18][19][4][9],

so they can not benefit other researchers and developers. Additionally, most platforms

are too large to wear on wrist [4] [5] [19]. Some researchers just attach one smart phone

on their wrist, which is inconvenient for daily wearing [20]. In the market, several wear-

able devices provide open API and are comfortable to wear, such as smart watch [16]

and E4 healthcare monitoring wristband [6]. However, these products are very expen-

sive. Table 2.1 shows the comparison of wristband-based gesture recognition platforms.

From the table, we find that the platforms developed by researchers [18][19][4][9][5] usu-

ally do not provide open API, and are awkward to wear. Products on the market [6][16]

are quite expensive, e.g., the price of Motorola Moto 360 (2nd Gen.) is over $300 and

the price of E4 wristband is $1690. The motion sensors inside these platforms usu-
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ally provide a high frequency sampling rate, e.g., Motorola Moto 360 (2nd Gen.) uses

InvenSense MPU-6050 motion sensor which provides up to 1 kHz sampling rate for

accelerometer and 8 kHz for gyroscope [21]. However, due to operating system and

power requirement, the sampling rate for smart watch is limited to a lower frequency,

e.g., 50 Hz [16]. This greatly limits the research study in gesture recognition and motion

sensing. Therefore, we are motivated to develop a wristband-based platform for gesture

recognition and control, which provides open API access, is comfortable to wear, and

can be bought at an affordable price.

Table 2.1: Comparison of wristband-based gesture recognition platform

Platform Open API Wearable Affordable price
Dong et al. [18] × × ×
Junker et al. [19] × ×

√

eWatch [4] × ×
√

RisQ [9] ×
√ √

E-Gesture [5]
√

×
√

E4 [6]
√ √

×
Moto 360 (2nd Gen.) [16]

√ √
×

Ultigesture Wristband
√ √ √

2.2 Continuous Gesture Recognition

Inertial sensors-based gesture recognition has been widely studied in mobile and perva-

sive computing. Various approaches dealing with the recognition of gestures or events

have been presented. RisQ applies motion sensors on the wristband to recognize smok-

ing gestures [9]. Bite Counter [22] utilizes a watch-like device with a gyroscope to detect

and record when an individual takes a bite of food. Porzi et al. [23] propose a smart

watch-based gesture recognition system for assisting people with visual impairments.

Xu et al. classify hand/finger gestures and written characters from smart watch motion

sensor data [24]. FingerPad [25], uTrack [26], and Finexus [27] use magnetic sensors

to recognize finger gestures.

To recognize continuous hand gestures, the first step is to extract potential gesture
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samples from a sequence of hand movements. A simple way to do this is to wear an

external button on their fingers or hold it in their hand, and press this button to explicitly

indicate the start and end of gestures [28][20]. In order to do this, users must wear

an external button on their fingers or hold it in their hand. Unlike a wristband, wearing

a button all day is burdensome and unnatural, limiting the usability of a hand gesture

system. Another way to do this is to segment gestures automatically. The motion data

are automatically partitioned into non-overlapping, meaningful segments, such that each

segment contains one complete gesture.

Compared with button-enabled segmentation, automatic gesture segmentation pro-

vides a natural user experience. Park et al. apply a threshold-based method to detect

short pauses at the start and end of gestures [5]. They assume that a gesture is trig-

gered when the gyroscope reading is higher than a threshold, and this gesture ends

when the gyroscope reading is lower than this threshold. The authors define eight dis-

crete gestures. When users perform these eight defined gestures, the gyroscope read-

ings are always big. However, there are still many gestures that contain some small

gyroscope readings, in which case their system mistakenly divides these gestures into

multiple segments. Parate et al. assume that the gestures begin and end at some rest

positions [9]. They segment gestures by computing the spatio-temporal trajectory of the

wrist using quaternion data and tracking rest positions. However, all the segmentation

and recognition procedures in their system are implemented in smart phone. They do

not demonstrate their system’s feasibility and performance in resource-limited wearable

devices. Other researchers propose some complex segmentation methods, such as se-

quence analysis [19] and probability calculation [29]. However, these methods require

huge computational effort, which can not be effectively and efficiently implemented in

resource-limited wristbands.
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2.3 Gesture Recognition With Movement Noises

As far as we know, two efforts have been put forth to study the gesture recognition

problem when the user is moving. Park et al. [5] propose a gesture recognition sys-

tem with a hand-worn sensor and a mobile device. To segment hand gestures, they

design a threshold-based closed-loop collaborative segmentation algorithm. It automat-

ically adjusts the threshold according to four mobility situations: RIDE, STAND, WALK,

and RUN. To recognize hand gestures, they propose a Multi-situation HMM architec-

ture. There are several limitations in their system. For the gesture segmentation, their

threshold-based segmentation algorithm cannot effectively differentiate the predefined

hand gestures from the hand swinging motions in our dataset. For the gesture recog-

nition, they train a HMM model for each pair of hand gesture and mobility situation. In

total, 32 HMM models are trained in their system. As the number of the hand gestures

or the number of the mobility situations increases, their computational cost increases

dramatically. Different from this work, we only train one CNN model, which consumes

much less computational power and time. Additionally, evaluation results show that our

CNN model performs better than Multi-situation HMM model under leave-one-subject-

out cross-validation test. The second work comes from Murao et al. [30]. They propose

a combined-activity recognition system. This system first classifies user activity into

one of three categories: postures, behaviors, and gestures. Then DTW is applied to

recognize hand gestures for the specific category. However, their system requires five

sensors attached to the human body to recognize activity. Instead, we only use one

sensor.

2.4 Tennis Shots Analysis

There are mainly two ways to analyze tennis shots. One way is to use computer vision

technology. The other way is to use wearable motion sensors.

In computer vision technology, some researchers use one camera to study the tra-
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jectory of tennis ball. For example, Yan et al. introduce a methodology to process low

quality single camera videos and track a tennis ball with the aid of a modified particle

filter [31]. Qazi et al. combine machine learning algorithms with computer vision tech-

niques to predict ball trajectories [32]. Wang et al. employ a neural network approach to

predict ball trajectories [33]. These one camera-based methods can only capture video

data in two dimensions. The lack of the video data in the third dimension makes data not

usable for high precision applications such as line calling or player performance analy-

sis. For this reason, some researchers use multiple dimensional video data to study the

tennis shots. Pingali et al. are pioneers to build a multiple camera real time ball tracking

system based on six cameras [34]. So far, there have been several commercial prod-

ucts for three dimensional tennis ball tracking and line calling, such as Hawk-eye tech-

nology [10] [11] and PlaySight [12]. Hawk-eye technology achieves extremely precise

results (mean error rating of 2.6 mm) as it employs 6 to 10 high-dimensional cameras to

equip the court. This technology has been applied by many researchers [35] [36] [37].

In addition to Hawk-eye, PlaySight is another multi-camera based sports video-review

and analytics system [12]. This system is equipped with six high-dimensional cameras,

and uses advanced image processing and analytical algorithms to capture and log stroke

type, ball trajectory, speed and spin, in-depth shot data, player movement and more. We

collect the tennis data in a tennis court that is equipped with a PlaySight system. The

computer vision-based technology requires that a tennis court is equipped with camera

systems. However, most tennis courts are not equipped with such systems. Therefore,

most players can not get access to these systems, which limits the popularity of this

technology.

Recent trends show that inertial motion sensors are being used to analyze tennis

shots. Some works focus on the stroke behaviors classification. They classify ten-

nis stroke types into forehand, backhand, serve, volley, smash, top spin, and back

spin [38] [39] [40] [41] [42]. A variety of machine learning algorithms have been applied,

including SVM [38], longest common subsequence [40], Random Forest [41], CNN, and
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Bidirectional Long Short-Term Memory Networks (BLSTM) [42]. In addition to stroke

classification, some researchers assess the performance of tennis strokes and provide

recommendations to improve tennis skills [43][44][45]. Srivastava et al. study the con-

sistency of tennis shots [43]. The authors provide recommendations on wrist rotation

based on shots performed by professional players. TennisMaster used Hidden Markov

Model to segment a tennis serve into 8 phases [44]. By studying the power, gesture, and

rhythm for each phase, the authors build a regression model which outputs the score of a

serve. Sharma et al. segment a tennis serve into various key points, including start, tro-

phy pose, cocking position, impact, and finish [45]. The authors constitute serve phases

including backswing, pronation, and follow-through, by using the motion between these

key points. By comparing the serve phases from a user and that from professionals, the

system provide the user with corrective feedback and insights into their playing styles.

Different from stroke behaviors classification and performance assessment, we inves-

tigate the interaction between the racket and the ball. To our knowledge, none of the

previous works use motion sensors to estimate tennis ball speed.

In addition to these research works, there are also some commercial products on

the market that assess the performance of the players, such as Zepp [13], Usense [14],

Babolat [15]. These products either integrate the motion sensors inside the racket [15],

or require users to attach the motion sensors onto the racket [13] [14]. They analyze the

tennis data and compute the key performance metrics for each swing, such as stroke

type, ball speed, ball spin, and sweet spot. However, none of these commercial products

opens their algorithms to the public.

14



Chapter 3

Ultigesture: A wristband-based

platform for motion sensing

3.1 Introduction

There are mainly three problems in current wearable systems. (1) Not comfortable to

wear. Many prototypes are too big that can not be used in reality. (2) No open Appli-

cation Programming Interface (API). Most wearable prototypes do not open their APIs

to public. Other developers cannot build applications based on their prototype. (3) Too

expensive. Some wearable systems are quite expensive, e.g., a E4 healthcare mon-

itoring wristband charges for $1690 with open API [6]. Additionally, most of gesture

recognition prototypes can only recognize hand gestures one by one. Retrieving the

meaningful gesture segments from continuous stream of sensor data is difficult for most

gesture recognition prototypes [17].

In this chapter, we present Ultigesture (UG) wristband, a motion sensing platform.

The hardware platform integrates an accelerometer, gyroscope and compass sensor,

providing powerful sensing capability for gesture recognition. We open our data sensing

and gesture recognition APIs to the public, so that developers and researchers can build

their applications or carry out research based on our wristband platform. Because we

only integrate hardware components that are necessary for gesture recognition, our
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wristband is small, comfortable, and affordable.

3.2 Design of UG Wristband

We design our UG wristband as a platform for motion sensing study. It includes a series

of hardware components, such as an accelerometer, gyroscope and compass sensor for

data sensing, a powerful ARM Cortex-M4 microcontroller unit (MCU) for data process-

ing, and a Bluetooth Low Energy (BLE) module for data transmission. We implement

four firmware components to manage the UG wristband hardware components. The

users can configure the UG wristband to work in three different modes by buttons. We

open a series of BLE interfaces. Android developers can use our UG APIs to develop

Android apps and manipulate multiple UG wristbands through BLE. Our smart wristband

is available online [46]. Compared with existing data sensing and gesture recognition

platforms, our wristband has three main advantages:

Open API. We open our data sensing APIs to Android developers. Developers can

use our UG wristband as the data collector so that they can build their applications on

top of our UG wristband. our APIs are designed as simple as possible so that it is easy

for Android developers to use.

Figure 3.1: UG wristband

Comfortable to wear. We carefully design our UG wristband to make it comfortable

to wear. Fig. 3.1 shows the appearance and the printed circuit board (PCB) design of
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our UG wristband. The size of the PCB is very small with 26mm length and 25mm

width, which is much smaller than previous wristband platforms [4] [5]. The size of the

wristband shell is: 50mm length, 30mmwidth, and 11.7mm thickness, which is very easy

to carry.

Affordable price. A practical, cheap, and open API platform is always strongly

demanded by the researchers and developers inmotion sensing. Some research groups

use very large and expensive sensors ($2,000) [18], while others use generic smart

watches (Motorola Moto 360 2nd Gen., over $300 [16]), or complex monitoring devices

(E4 wristband: $1690 [6]). All these products are quite expensive for the motion sensing

research and development. As our platform is designed for the motion sensing and

gesture control, we only integrate necessary components into UGwristband, e.g., one 9-

axis motion sensor MPU-9250 ($5), and one nRF52832 SoC ($5) that includes a Cortex-

M4 processor and a BLE module. Therefore, our platform provides an affordable price

for the customers to purchase and develop further.

3.2.1 Design of Hardware

Our smart wristband integrates an nRF52832 System on Chip (SoC) from Nordic Semi-

conductor as MCU. The nRF52832 SoC incorporates a powerful Cortex-M4 processor

with 512kB flash and 64kB RAM, and a 2.4GHz transceiver that supports BLE proto-

col. The Cortex-M4 processor provides strong computation capability for complex data

processing and the gesture recognition algorithm. The BLE module enables our wrist-

band to run for a long period of time, and communicate with other medical devices that

also support BLE. We carefully tune the hardware parameters for antenna so that the

communication range of BLE can reach as far as 40 meters.

In terms of motion sensing, a 9-axis motion sensor MPU-9250 is embedded in our

smart wristband. The MPU-9250 is a System in Package that combines two chips:

the MPU-6500, which contains a 3-axis gyroscope, a 3-axis accelerometer; and the

AK8963, a 3-axis digital compass sensor. Compared to other smart wristbands in the
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market that integrate different types of sensors, we only focus on the motion sensors

that are widely used by researchers.

The capacity of the battery is a restriction for wearable devices. Our smart wristband

is powered by a coin-size Li-Ion battery (3.7V, 75mAH). To account for the small capacity

of the battery, we focus on the energy efficiency in our design. When turned on, our smart

wristband consumes 10∼20mAH, depending on how many computing functionalities

are used. When turned off, our smart wristband only consumes 1uAH, which greatly

prolongs the battery lifespan. The UG wristband can be charged through Micro-USB

port. The charging time is around 1 hour. We also integrate 5 LEDs and 1 toggle button

into UG wristband, which saves as user interfaces.

3.2.2 Design of Firmware

Table 3.1: Design of Firmware

Firmware Component Controlled Hardware Component Description
Sensors Manager Accelerometer Configure and read the accelerometer data

Gyroscope Configure and read the gyroscope data
Magnetometer Configure and read the magnetometer data

Watchdog Manager Watchdog Detect and recover from firmware malfunctions

Widgets Manager Button Detect if the button is pressed and how long it is pressed
5 LEDs Configure 5 LEDs to be on/off
Battery Measure the battery level
Battery Charger Detect if the battery is being charged or not

BLE Manager BLE Manage BLE stack and BLE communication

Firmware is used to control the function of various hardware components, which is

embedded in flashmemory of a UGwristband. We implement four firmware components

to manage the UG wristband hardware components: Widgets Manager, Sensors Man-

ager, Watchdog Manager and BLE Manager. The relationship between the firmware

components and the hardware components are shown in Table 3.1.

Sensors Manager. The Sensor Manager is used to configure and communicate

with the MPU-9250 IMU by Serial Peripheral Interface (SPI) Bus. Its functionality in-

cludes parameterizing the register addresses, initializing the sensor, getting properly

scaled accelerometer, gyroscope, and magnetometer data out, calibration and self-test
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of sensors. The sampling rates for the accelerometer, gyroscope, and compass sensor

are up to 4 kHz, 1 kHz, and 8 Hz, which are configurable by the users. The measure

range for these three sensors are set to be±4g (g is gravity),±2000◦/sec, and±4800µT .

Watchdog Manager. Watchdog is an electronic timer that is used to detect and

recover from firmware malfunctions. The Watchdog Manager manages the watchdog

and regularly resets the watchdog timer to prevent it from elapsing. If, due to a hardware

fault or program error, the Watchdog Manager fails to reset the watchdog, the watchdog

timer elapses and generates a timeout signal. This timeout signal resets the firmware.

Widgets Manager. Widgets Manager is used to control the hardware widgets, in-

cluding button, LEDs, battery, and battery charger. The functionality of it includes de-

tecting if the button is pressed and how long it is pressed, configuring the 5 LEDs to be

on or off, measuring the voltage of the battery, and detecting if the battery is charged or

not.

BLE Manager. Every BLE device can work in one of two roles before and after BLE

connection. Before connecting to another BLE device, a BLE device can work either in

central role or peripheral role. The device in the central role scans for advertisement,

and the device in the peripheral role makes the advertisement. After connecting to

another BLE device, a BLE device can work either in server role or client role. The

device in the server role stores and provides data to client, and the device in the client

role requests data from server. BLE Manager is used to configure our UG wristband to

work in peripheral role before BLE connection, and server role after BLE connection. It

is in charge of a series of BLE operations, such as configuring BLE stack, making the

advertisement, connecting to a central device, and transmitting data.

BLE provides an application-level protocol called Generic Attribute Profile (GATT) on

top of a link-layer connection, which provides the general specification for data transmis-

sion over a BLE link. The GATT of UG wristband is shown in Fig. 3.2. There are three

service: Sensor Manage (SM) Service, Widgets Manage (WM) Service, and Device

Firmware Update (DFU) Service. The SM Service includes a collection of information
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Sensor Manage(SM) Service

Widgets Manage (WM) Service

Device Firmware Update (DFU) Service

SM Service Transmit Characteristic

SM Service Receive Characteristic

WM Service Transmit Characteristic

WM Service Receive Characteristic

DFU Packet Characteristic

DFU Control Point Characteristic

DFU Revision Characteristic

UG Generic Attribute Profile

Figure 3.2: UG Generic Attribute Profile

related to sensors. It includes two characteristics: SM Service Transmit Characteristic

and SMService Receive Characteristic. The SMService Transmit Characteristic is used

to transmit sensor data to a remote BLE device. The SM Service Receive Characteristic

is used to receive BLE command from a remote BLE device. A BLE command can be

“sampling accelerometer at 10Hz”. The WM Service includes a series of information re-

lated to widgets. It includes two characteristic: WM Service Transmit Characteristic and

WM Service Receive Characteristic. The WM Service Transmit Characteristic is used

to transmit widgets’ information to a remote BLE device, such as battery level. The WM

Service Receive Characteristic is used to receive BLE command from a remote BLE

device. A command can be “lighting the first LED”. The Device Firmware Update (DFU)

Service exposes necessary information to perform Device Firmware Update on the de-

vice. It includes three characteristics. The DFU Packet Characteristic is used to receive

firmware. The DFU Control Point Characteristic is used to control the process of the

firmware update. The DFU Revision Characteristic shows the revision of the firmware.

There are three modes UG wristband can work on: Powered Off Mode, Work Mode,

and Firmware Update Mode. In Powered Off Mode, all the firmware components are
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turned off to save power. In Work Mode, All the firmware components are turned on.

In this mode, the UG wristband can collect sensor data and send them to a remote

BLE device. Firmware Update Mode is used to update firmware inside UG wristband,

which fixes bugs or add new features. In Firmware Update Mode, a UG wristband only

exposes Device Firmware Update Service to remote BLE devices and wait for firmware

update. To update firmware in the UG wristband, a remote BLE device, such as a smart

phone, needs to first write to the DFU Control Point Characteristic to enable firmware

update, and then send a new firmware to DFU Packet Characteristic. After receiving

the new complete firmware, the UG wristband resets the system, loads new firmware,

and enters Work Mode.

Powered 
Off 
Mode

Work 
Mode

Firmware
Update
Mode

Press button for 3s

Press button for 3s
and then release it

Press button for 20s

Finish firmware update/
press button for 20s

Start

Figure 3.3: Mode Transition

We use the hardware button to switch between different modes. In Powered Off

Mode, the user can press button for 3 seconds to enter Work Mode. In Work Mode, the

user can press button for 3 seconds and release it to enter Powered Off Mode, or press

button for 20 seconds to enter Firmware Update Mode. As we do not want the user to

enter Firmware Update Mode by mistake, we set a long time, 20 seconds, to switch from

Work Mode to Firmware Update Mode. In Firmware Update Mode, the user can press

button for 20 seconds to exit Firmware Update Mode, or wait for the finish of firmware

update. The Three modes transition is shown in Fig. 3.3.

3.2.3 Design of API

Generally the BLE programming on a smartphone works as a central device. It scans

the peripheral devices and then connects to it. The connection is then used to access
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the peripheral device’s characteristics or wait for notifications from peripheral device.
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Figure 3.4: Typical BLE write op-
eration
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Figure 3.5: UG write operation

However, there occur some problems when an Android application tries to connects

and communicates with multiple peripheral devices. Suppose an Android application

wants to write to two UG wristbands at the same time, as shown in Fig. 3.4. The typical

way goes that the Android application first needs to scan and create two Android Blue-

toothDevice objects: BluetoothDevice1 and BluetoothDevice2 for these two UG wrist-

bands. Then it needs to request two Android BluetoothGatt objects: BluetoothGatt1 and

BluetoothGatt2, to manage the BLE connection and communication with UGwristbands.

Finally, it can write to these two UG wristbands at the same time. However, in Android,

neither multiple BluetoothGatt objects are allowed to execute at the same time, nor one

BluetoothGatt object is allowed to execute multiple operations at the same time. Other-

wise, some unexpected results are come up. In this case, writing to two UG wristbands

at the same time leads to the lost of write command, or even BLE disconnection, which

is also observed by other researchers [47].

With the consideration of this issue, we provide a UGGattManager class in our APIs

to coordinate multiple BLE operations, as show in Fig. 3.5. First, the Android application

scans and creates two UGDevice objects: UGDevice1 and UGDevice2. Then, instead

of creating two BluetoothGatt objects, two UGDevice objects request BLE write oper-
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ations to the same UGGattManager object. The UGGattManager object queues BLE

operations from the UGDevice objects and requests one instance of BluetoothGatt. It

sends BLE operations to the BluetoothGatt object from queue one by one and receives

if the BLE operations are successfully executed by the BluetoothGatt object. The BLE

operation is polled out of queue only when the previous BLE operation is successfully

executed or time out. In this way, the BLE operations are executed in a sequence and

write conflict is avoided.

public class UGGattManager {

    private static final UGGattManager mUGGattManager  = new
        UGGattManager ();

    private UGGattManager (){}

    public static UGGattManager getInstance(){
        return mUGGattManager ;

   ...
   }
}

Figure 3.6: Design of UGGattManager

To make sure all BLE operations are sent to the same UGGattManager object, we

apply the singleton pattern for UGGattManager as shown in Fig. 3.6. UGGattManager

class has its constructor as private and have a static instance of itself. It provides a

static method to get its static instance to outside world. In this way, only one instance

of UGGattManager class is created. Therefore, all BLE operations are sent to the only

object of UGGattManager class.

We provide a series of open APIs to Android developers as shown in Table 3.2. There

are mainly three classes in our open APIs: UGManager, UGDevice and UGGattMan-

ager. UGManager class is used to scan UG devices and return BLE connection status

for each device. UGDevice class is used to manage the connected UGDevices. It pro-

vides a series of functions to let developers to get access to the data of the connected

UG wristbands. UGGattManager manages BLE operations and communication proto-
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Table 3.2: UG APIs

Class UG APIs Description
UGManager UGManager(Context c, StatusChangeCallback cb) Public constructor

void startScan(ScanCallback cb) Start a BLE scan for UG wristbands
void stopScan() Stop scanning
Interface ScanCallback(){ Callback reporting a BLE device found during a device scan
void onScan (UGDevice device)}

Interface StatusChangeCallback{ Callback triggered if the status of a UG wristband is changed
void onStatusChange (UGDevice device, int status)}

UGDevice void connect() Connect to a UG wristband
void disconnect() Disconnect from a UG wristband
void startDataSensing(DataAvailableCallback cb, int rate) Start to read sensor data from a UG wristband with certain rate
void stopDataSensing() Stop reading sensor data from a UG wristband
void setLED(Byte[] ledMask) Set the LEDs of a UG wristband to be on/off
int getBatteryLevel() Get the battery level of a UG wristband
String getAddress() Get the MAC address of a UG wristband
Interface DataAvailableCallback{ Callback reporting the sensor data received from a UG wristband
void onDataAvailable (UGDevice device, float[] data)}

UGGattManager N/A Manage BLE operations and communication protocol

col, which is invisible to developers.

3.3 Performance Evaluation
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Figure 3.7: Packet loss rate between 1 to 6 UG wristbands and a Pixel phone.

We measure the packet loss rate by sending packets from UG wristbands to a Pixel

phone running Android 8.0. We configured 1 to 6 UG wristbands to send sensor data to

the test device at different sampling rates, ranging from 1ms to 12 ms for 5 trials. We

wrote an Android app to receive the sensor data from the UG wristbands and checked
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the packet loss rate. The transmission power of the UG wristbands was set to be 0dB,

which is the default transmission power of the nRF52832 SoC. The distance between

the UG wristbands and the Pixel phone was within 10cm. Fig. 3.7 shows the packet loss

rate under different sampling intervals. Error bars in the figure represent the standard

deviation. From the figure, we find that the packet loss rate for 1 to 3 UG wristbands

reaches 0 when the sampling interval is over 4ms, and the packet loss rate for 4 to 6

UG wristbands reaches 0 when the sampling rate is over 12ms.
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Figure 3.8: Battery charging curve
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Figure 3.9: Battery discharging curve

We used a 10-bit resolution analog-to-digital converter in the nRF52832 SoC to mea-

sure the voltage of the battery pin during charging and discharging. To charge a UG

wristband, we used an AC/DC power adapter charger with 5.2V, 2.4A output. To dis-

charge a UG wristband, we configured the UG wristband to sample sensor data at 20 Hz

and sent the sensor data to a Pixel phone through BLE. The transmission power of UG

wristband was set to be 0dB. Fig. 3.8 shows the battery charging curve. From the figure,

we find that the voltage of the battery rises rapidly at the beginning and then gradually

becomes stable. Fig. 3.9 shows the battery discharging curve. From the figure, we find

that the voltage of the battery drops almost linearly. The lifetime of the battery is 4.47

hours. It takes only 2.8 minutes to reach 3.85V during charging, while it takes 4.0 hours

to drop from 3.85V. This corresponds to 2.8 minutes of charging for 4 hours of use.
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3.4 Conclusion

In this chapter, we present Ultigesture, a wristband platform for gesture recognition for

future remote control use. We carefully design the hardware and the firmware of Ultiges-

ture wristband. It is comfortable to wear, with open API, and at an affordable price.
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Chapter 4

Continuous Gesture Recognition

for Remote Control

4.1 Introduction

Healthcare is one important application scenario of gesture recognition technology. Lots

of researchers and companies pay much attention to this area. According to the report

published by MarketsandMarkets, the Healthcare application is expected to emerge as

a significant market for gesture recognition technologies over the next five years [48]. In

medicine, the ability of touch-free motion sensing input technology is particularly useful,

where it can reduce the risk of contamination and is beneficial to both patients and their

caregivers. For example, surgeons may benefit from touch-free gesture control, since

it allows them to avoid interaction with non-sterile surfaces of the devices in use and

hence to reduce the risk of infection. With the help of gesture control, the surgeons can

manipulate the view of X-ray and MRI imagery, take notes of important information by

writing in the air, and use hand gesture as commands to instruct robotic mechanism to

perform complex surgical procedures. Wachs et al. [49] have developed a hand-gesture

recognition system that enables doctors to manipulate digital images during medical

procedures using hand gestures instead of touch screens or computer keyboards. In

their system, a Canon VC-C4 camera and a Matrox Standard II video-capturing device
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are used for gesture tracking and recognition. The system has been tested during a

neurosurgical brain biopsy at Washington Hospital Center.

Gesture recognition technology in healthcare can be mainly divided into two cate-

gories: computer-vision based gesture recognition and wearable sensor-based gesture

recognition. The system developed by Wachs et al. [49] is an example of computer-

vision based gesture recognition system. Though the system was tested in real-world

scenarios, there still exists some disadvantages. It is expensive, needs color calibra-

tion before each use, and is highly influenced by lighting environment. Compared with

computer-vision based recognition, wearable sensor-based gesture recognition tech-

nology is low cost, low power, requires only lightweight processing, no color calibration

in advance, and is not interfered by lighting environment. Several wearable systems

with gesture recognition technology have been proposed for healthcare application sce-

narios, e.g., upper limb gesture recognition for stroke patients [1] and for patients with

chronic heart failure [7], glove-based sign language recognition for speech impaired pa-

tients, and for physical rehabilitation [50]. However, most of gesture recognition proto-

types can only recognize hand gestures one by one. Retrieving the meaningful gesture

segments from continuous stream of sensor data is difficult for most gesture recognition

To answer these problems, we address one research questions: How does one

retrieve and recognize hand gestures from a continuous sequence of hand movements?

We propose a novel, lightweight, and high-precision continuous gesture segmenta-

tion and recognition algorithm. First, we separate data from a sequence of hand move-

ments into meaningful segments. Next, nearby segments are merged based on gesture

continuity, gesture completeness and gesture symmetry metrics. The noise segments

are then filtered out so that each segment contains one single gesture. Finally, we ex-

tract features from the acceleration and gyroscope data, and apply the Hidden Markov

Model to recognize the gesture for each segment.

We summarize our contributions as follows:

1. We present a continuous gesture segmentation and recognition framework. We
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propose a lightweight, and effective data segmentation mechanism to segment

potential hand gestures from a sequence of hand movements. Then, we apply

Hidden Markov Model recognize hand gestures.

2. Our experiment results show that our system can recognize hand gesture with

99.4% accuracy when users perform gestures discretely. When users perform

gestures continuously, our system can segment hand gesture with 98.8% accuracy

and recognize hand gesture with 94.6% accuracy.

The remainder of this chapter is organized as follows. First, we introduce the system

framework in Section 4.2. The design of UG wristband is introduced in Section 3.2. We

present our continuous gesture segmentation and recognition algorithm in Section 4.3.

In Section 6.3, we evaluate the system performance. Finally, we draw our conclusion in

Section 6.5.

4.2 System Overview

The framework of the continuous hand gesture segmentation and recognition is shown

in Fig. 4.1. It contains three modules: Sensing, Data Segmentation, and Hand Gesture

Recognition. In the Sensing module, accelerometer, gyroscope and compass sensor

readings are collected from 9-axis Inertial Measurement Unit (IMU) in the wristband. The

sampling rate is set to be 20Hz with a balanced consideration of recognition accuracy,

computational cost, and power restriction in the wristband.

The Data Segmentation module segments potential gestures from a sequence of

handmovements. To segment gestures from handmovements, we first apply a threshold-

based method to detect the start and end of the sequence of handmovements. As found

in previous work [9] [51], while performing a hand gesture, people start from a static posi-

tion, and then end in another static position. Therefore, the gestures tend to lie between

these static positions. We develop a novel gesture segmentation algorithm to detect

these static positions, and thus separate the sequence of hand movements into multiple

29



Accelerometer & Gyroscope

Sequence Start/End Detection

Noise Segments Removal

Features Extraction

Classification

Sensing

Gesture Controller

Hand
Gesture

Recognition 

Data 
Segmentation

Within-sequence Gesture Separation 

Merging Adjacent Segments

Figure 4.1: Continuous Gesture Segmentation and Recognition Framework

segments, where one gesture may lie in one segment or several adjacent segments.

To avoid splitting a single gesture’s data into multiple segments, three metrics are pro-

posed as post-processing to merge the adjacent segments so that each gesture only

lies in one segment. Finally, the Noise Segments Removal module is applied to remove

segments with noise gestures.

The Recognition module receives segments from Data Segmentation module and

classifies each segment as one predefined gesture or noise gesture. We apply the

Hidden Markov Model to classify gestures because it has shown high recognition accu-

racy [19]. The recognized gesture can be utilized as a command to control the medical

instruments or healthcare-related devices, such as a medical computer screen, X-ray or

MRI navigation.
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4.3 Continuous Hand Gesture Recognition

The proposed continuous hand gesture recognition algorithmmainly contains threemod-

ules: Sensing, Data Segmentation, and Hand Gesture Recognition. The Sensing mod-

ule collects the accelerometer and gyroscope sensor readings from IMU continuously,

and outputs the sensor readings to the Data Segmentation module. The sampling rate of

each sensor is set to be 20Hz with a balanced consideration of recognition accuracy, and

computation and energy cost of the wearable device. The Data Segmentation module

extracts individual gesture segments from a sequence of hand movements. The Hand

Gesture Recognition module applies the HMM model to classify each individual ges-

ture segment into one of the predefined gestures (Left, Right, Up, Down, Back&Forth,

Clockwise, and Counterclockwise) or noise. The recognized gestures can be utilized to

remotely control the medical instruments or healthcare related devices. In the follow-

ing section, we first introduce the seven gestures defined in our system (Sec. 5.2.1).

Then, the data segmentation module (Sec. 6.2.4) and the gesture recognition module

(Sec. 4.3.3) are presented in more detail.

4.3.1 Gesture Definition

There has been substantial research on gesture recognition. Some work define ges-

tures according to application scenarios, such as gestures in daily life [19], or repetitive

motions in very specific activities [9], while others define gestures casually [5]. In this

project, we turn user’s hand into a remote controller. We carefully design the hand ges-

tures that best emulate a remote controller. Typically, a remote controller includes the

following functions: left, right, up, down, select, play/pause, back. Therefore, we de-

fine the following seven gestures corresponding to these functions. At the beginning,

the user extends his/her hand in front of his/her body. Then he/she moves towards a

certain direction and moves back to the starting point again. We define the following

gestures:
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1. Left gesture: move left and then move back to the starting point

2. Right gesture: move right and then move back to the starting point

3. Up gesture: move up and then move back to the starting point

4. Down gesture: move down and then move back to the starting point

5. Back&Forth gesture: move to shoulder and then extend again to the starting point

6. Clockwise gesture: draw a clockwise circle

7. Counterclockwise gesture: draw an counterclockwise circle

Left Right

Down

Up

Back & Forth

ClockwiseAnticlockwise

Figure 4.2: Seven defined gestures for remote control

These seven gestures are illustrated in Fig. 4.2. The defined hand gestures are very

similar to the hand gestures defined by Wachs et al. [49]. Their gesture recognition

system has been tested during a neurosurgical brain biopsy, which shows that these

gestures are suitable as a remote controller for healthcare applications. To be noticed,

each defined gesture ends at the starting point. Therefore, each gesture is independent

from the others. Users can continuously perform the same or different gestures, which

enables continuous control.
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4.3.2 Data Segmentation

A simple way to segment hand gestures from a sequence of hand movements is to use

a hand-controlled button to clearly indicate the starting point and the end point of each

individual gesture. However, in order to do so, the user must wear an external button

on their fingers or hold it in their hands, which is obtrusive and burdensome. Another

way is to segment gestures automatically. The motion data are automatically partitioned

into non-overlapping, meaningful segments, such that each segment contains one com-

plete gesture. Automatic segmenting a continuous sensor data stream faces a few chal-

lenges. First, the segmentation should extract exactly one entire hand gesture, neither

more nor less than needed. Otherwise, the extracted segments contain non-gesture

noises, or miss useful gesture information, which leads to inaccurate classification. In

addition, when a user performs multiple continuous gestures, the segmentation should

not split a single gesture into multiple segments, or put multiple gestures into a sin-

gle segment. To deal with these challenges, a continuous gesture data segmentation

method is proposed, which contains three main steps: sequence start and end points

detection, within-sequence gesture separation, and merging adjacent segments.

4.3.2.1 Sequence start and end points detection

A lightweight threshold-based detection method is used to identify the start and end

points of hand movements. To characterize a user’s hand movement (HM ), a detection

metric is defined using the gyroscope sensor readings as

HM =
√

Gyro2x +Gyro2y +Gyro2z, (4.1)

where Gyrox, Gyroy, Gyroz are the gyroscope readings of the X-axis, Y-axis, and

Z-axis. When the user’s hand is stationary, the HM is very close to zero. The faster

a hand moves, the larger the HM is. When the HM is larger than a threshold, i.e.

50 degree/second, we regard it as the start point of hand movement. Once the HM is

smaller than this threshold for a certain period of time, i.e. 400ms, we regard it as the end
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point of the hand movement. The time threshold is necessary as, in one single gesture,

the HM may fall below this threshold occasionally, leading to unexpected splitting of

this gesture [52][53]. Because the HM only keeps the magnitude of the vector sum of

three axes and drops the direction information, this threshold-based detection method

is independent of the device’s orientation and therefore simplifies the gesture models.
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Figure 4.3: HM based start and end points detection

Fig. 4.3 shows the gyroscope readings and the HM of one Left gesture and one

Clockwise gesture. From Fig. 4.3(c), we see that theHM of the Left gesture falls below

50 degree/second at 1.6s. The Left gesture begins from moving left, then pauses, then

moves right back to the original position. The low HM comes from the short pause in

the Left gesture. The 400ms time frame prevents the Left gesture from being split into

two separate hand movements.

Fig. 4.4 shows data processing for one continuous hand movement: raising hand

horizontally→ performing Left gesture→ performing Back&Forth gesture→putting down

hand. Raw gyroscope readings are shown in Fig. 4.4(a). The correspondingHM results

for this hand movement sequence are shown in Fig. 4.4(b).
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(a) Raw gyroscope readings (b) Detect the start/end

(c) Segmentation based on HM (d) Segmented gyroscope data

(e) Merged segments

Seg1 Seg2 Seg3 Seg4 Seg5 Seg1 Seg2 Seg3 Seg4 Seg5

Seg1 Seg2

Seg6 Seg6

Seg3 Seg4

Start End

Threshold

Figure 4.4: Data processing for one continuous hand movement

4.3.2.2 Within-sequence gesture separation

After detecting the start and end points of one sequence of hand movements, we par-

tition this sequence of hand movements into non-overlapping, meaningful segments so

that one hand gesture lies in one or several consecutive segments.

The hand gestures we defined start from and end in static positions that users feel

comfortable with and choose according to their own free will. At static positions, the

magnitude of hand rotation is relatively small. Therefore, the HM valley is a good in-

dicator of the connecting point between two neighboring hand gestures. We employ

a valley detection algorithm with a sliding window to detect valleys of the HM in the

hand movement data. We utilize valleys’ positions as the segment points to partition

the hand movement data into multiple and non-overlapping segments. Specifically, the

sample at time t(i) is a valley if it is smaller than all samples in the time window of
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[t (i)− tw/2, t (i)+ tw/2]. Since the duration of one hand gesture is normally longer than

0.6 second, the window size tw is set to be 0.6s.

With the window size threshold, the proposed algorithm is able to identify the HM

valleys. However, sometimes there are a few false valleys which are not real switches

of hand gestures. The reason is that the valley recognition algorithm only compares the

HM magnitude in the time window, but does not take the absolute magnitude of theHM

into consideration. A false HM valley may have large value, which indicates obvious

and drastic rotation or movement. We collected the gyroscope data of a set of the

continuous hand gestures which was conducted under supervision and the magnitude

of HM valleys was carefully checked. The results show that, in general, the magnitude

of the real HM valleys is less than 100 degree/second. Therefore, another condition,

i.e. HM is less than 100 degree/second at the valleys, is added into the valley detection

algorithm to eliminate the false valleys.

Fig. 4.4(c) shows the segmentation result based on the proposed valley detection

algorithm. In total, five HM valleys are detected and six segments are generated. In

this way, the raw gyroscope readings can be partitioned into six segments, as shown in

Fig. 4.4(d). Each segment is one complete gesture or part of one complete gesture.

One question here is why we use gyroscope readings in the proposed segmentation

method, rather than the accelerometer readings. The accelerometer is mainly suitable

for detection of speed change. Comparatively, gyroscope is more powerful for detec-

tion of orientation change. For hand movement during conducting hand gestures, the

orientation change is more significant than the speed change. Thus, gyroscope-based

segmentation method is more robust and accurate than accelerometer-based segmen-

tation method, and can provide higher segmentation accuracy [5].

4.3.2.3 Merging adjacent segments

For one continuous gyroscope readings stream, after segmentation, we get a series of

partitioned segments. One gesture may lie in one segment or several continuous seg-
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ments. In Fig. 4.4(d), segment 1 refers to “raise hand horizontally” movement, segment

2 and 3 belong to Left gesture, segment 4 and 5 are from Back&Forth gesture, and

segment 6 is “put down hand” movement. The Left gesture and the Back&Forth ges-

ture are both partitioned into two segments. To merge the adjacent segments so that

one gesture only lies in one segment, we propose three measurement metrics to de-

cide whether two neighboring segments should be merged: Gesture Continuity metric,

Gesture Completeness metric, and Gesture Symmetry metric.

The Gesture Continuity metric measures the continuity of data in two neighboring

segments. When two segments differ greatly in its signal shape at the connecting point,

it is less likely that these two segments belong to the same single gesture. On the

other hand, if two segments have similar slopes near the connecting point, these two

segments may belong to one gesture. Based on this intuition, we compute the slopes

near connecting points for each segments. If two slopes computed from two segments

are similar, we say these two neighbor segments have similar shapes. Fig. 4.5 illustrates

the computation of Gesture Continuity metric of a Right gesture:

For the sensor reading of each gyroscope axis, gx, gy and gz (assume gi), we do the

following:

1. In gi, we find the connecting point (t1) between two segments [t0, t1] and [t1, t2],

which is also a valley point in HM curve;

2. We extract the data points near connecting point (t1) within one time window of

600ms, which is the same as the window size in valley detection algorithm. As the

sampling rate is 20Hz, we pick 6 points before the connecting point (t1) as ta, tb,

tc, td, te, tf and 6 points after the connecting point (t1) as tg, th, ti, tj , tk, tl;

3. Twelve lines tat1, tbt1,· · · , tlt1 are formed. For any 2 lines among the 12 lines, the

angle between them is computed, and the maximum angle is defined as θgi ;

4. We compute the weight wgi as the area size of the curve gi in the time window

[t0, t2].
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As there are three axes for gyroscope readings, we compute the three angles (θgi , i ∈

{x, y, z}) and three weights (wgi , i ∈ {x, y, z}) corresponding to the three axes. The

Gesture Continuity (Con) at the connecting point t1 is calculated as:

Con (t1) =
∑
(wgi ·θgi)∑

wgi
(4.2)

The higher the angle θgi is, the bigger difference the signal shape is, and the less

likely for the two segments to belong to the same gesture. In addition, a larger gyroscope

reading of one axis indicates greater hand rotation around this axis. Accordingly, we add

wgi as weights to three axes. Con is the weighted version of the angle θgi . It ranges from

0 degree to 180 degree. Small Con stands for similar signal shapes for two neighbor

segments. We merge two segments if the Gesture Continuity metric Con is small.

Figure 4.5: Computation of Gesture Continuity and Gesture Completeness metric

In Fig. 4.5, the Right gesture is partitioned into two segments [t0, t1] and [t1, t2]. From

the figure, we see that angle θgz is quite small and weight wgz is very large. Therefore,

the Con is small, and two segments [t0, t1] and [t1, t2] should be merged.

TheGesture Completenessmetricmeasures the completeness of data in two neigh-

boring segments if they belong to one complete gesture. To achieve continuous control,
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each gesture we chose to recognize starts from one user-chosen random position and

ends with the same position. Even though the sensor readings vary during the proce-

dure of a gesture, the sum of sensor readings should be close to zero for a complete

gesture. Utilizing this gesture property, we calculate the Gesture Completeness (Com)

metric as follows:

Com (t1) =

∣∣∣
∑t2

t0
gx

∣∣∣+
∣∣∣
∑t2

t0
gy

∣∣∣+
∣∣∣
∑t2

t0
gz

∣∣∣
∑t2

t0
|gx|+

∑t2
t0

|gy |+
∑t2

t0
|gz |

(4.3)

Here, gx, gy, gz are sensor readings of each gyroscope axis, t1 is the connecting point

between two segments [t0, t1] and [t1, t2]. Com ranges from 0 to 1. Small Com stands

for that two neighboring segments belong to one gesture. We merge two segments if

Com is low. In Fig. 4.5, we see that the sum of sensor readings for each axis is very

close to zero. Therefore, Com is small and two segments [t0, t1] and [t1, t2] should be

merged.

The Gesture Symmetry metric measures the symmetry of data in two neighboring

segments. As all the gestures defined are symmetric, two segments that constitute a

single gesture are symmetric with respect to the point connecting them. We merge two

neighboring segments if they are symmetric to each other, and partition them if they are

not.

We utilize Dynamic Time Warping (DTW) to calculate the Gesture Symmetry met-

ric. DTW is an algorithm to find an optimal match between two temporal sequences. It

specifies a distance metric, DTW Distance, to measure the similarity between two tem-

poral sequences. If two temporal sequences differ a lot in shape, the DTW Distance

metric is large. Otherwise, the DTW Distance metric is small. We apply Segment [t0, t1]

and the opposite of Segment [t1, t2] as two temporal sequences, and compute DTWDis-

tance between these two segments. As there are three axes for gyroscope readings, we

compute three DTW Distances (DTWgi , i ∈ {x, y, z}) and three corresponding weights

(wgi , i ∈ {x, y, z}), which are the same as Eq. 4.2. The Gesture Symmetry (Sym) for

these two neighboring segments is calculated as:
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Sym (t1) =
∑
(wgi ·DTWgi)∑

wgi
(4.4)

Small Sym stands for that two neighboring segments are symmetric to each other

with respect to the connecting point. We merge two segments if the Gesture Symmetry

metric Sym is small.

We apply a threshold-based method to merge neighboring segments. If the Gesture

Continuity metric, the Gesture Completeness metric, and the Gesture Symmetry metric

of a connecting point are smaller than certain thresholds, we merge two segments that

correlated to this connecting point. We apply a brute-force search to find the thresholds

of three metrics that maximizes the segmentation accuracy.

For a given dataset of hand movement, we first compute segmenting points by valley

detection algorithm and compute three metrics for each of them. After that, we get three

arrays: one array with Gesture Continuity data, one array with Gesture Completeness

data, and one array with Gesture Symmetry data. We choose each possible combination

of these three kinds of data as thresholds, and compute the segmentation accuracy for

the whole dataset. The combination that achieves the highest segmentation accuracy is

chosen as the thresholds for the Gesture Continuity metric, the Gesture Completeness

metric, and the Gesture Symmetry metric.

Fig. 4.6 shows the Con, Com and Sym values for 100 gestures performed by one

user continuously. In these 100 continuous gestures, there are 177 connecting points.

Of all these connecting points, 99 of them separate two gestures, which are marked

as blue stars; the other 78 connecting points are inside gestures, which are marked as

red circles. The thresholds for Con, Com, and Sym are 27.29, 0.22 and 99635. The

combination of these thresholds are shown as the red cubic areas in the figure. If Con,

Com, and Sym for a connecting point are smaller than these three thresholds, we merge

two segments correlated at this connecting point into one. From Fig. 4.6, we find that

almost all red circles are distributed in the red cubic areas of the figure, while blue stars

are quite evenly distributed in the figure. It shows that the proposed threshold-based
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Figure 4.6: Con VS Com VS Sym

method can effectively distinguish if the connecting points are inside one gesture or not.

We merge two neighboring segments if their connecting point is inside one gesture.

From Fig. 4.4(d) to Fig. 4.4(e), we find that segment 2 and 3 in Fig. 4.4(d) are merged

into segment 2 in Fig. 4.4(e), which is a Left gesture. Segment 4 and 5 in Fig. 4.4(d) are

merged into segment 3 in Fig. 4.4(e), which is a Back&Forth gesture. Each segment in

Fig. 4.4(e) contains exactly one complete gesture.

4.3.2.4 Noise Segments Removal

We extract the following three features from each segment to classify if it is a noise seg-

ment:

(1) Duration of segment. Usually, the duration of one gesture is within a certain range.

Among all the gesture data collected by us, no gesture lasts longer than 3 seconds, or

shorter than 0.8 second. Therefore, if the duration of one segment is outside of these

boundaries, this segment is filtered out as noise.

(2) HM of segment. The user is not supposed to perform the gestures too quickly.

Therefore, HM , which measures the hand movement, is limited in a certain range. In
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our gesture dataset, we find that the max HM is 474 degree/second. Therefore, seg-

ments with the HM value above 474 degree/second are removed.

(3) Completeness of segment. The Gesture Completeness metric is used for segments

merging as defined in Eq. (4.3). Here we use this metric again to remove noise seg-

ments. As each gesture defined by us starts from and ends in the same position, the

Gesture Completeness metric (Com) for each gesture segment should be a small value.

For all the gesture data collected, the Com values of more than 99% of gestures are

smaller than 0.3. Therefore, if the Com of one segment is larger than 0.3, this segment

is removed.

In Fig. 4.4(e), the Com value for Segments 1 to 4 are 0.98, 0.08, 0.04, 0.76, respec-

tively. Therefore, Segment 1 and 4 are removed, Segment 2 and 3 are forwarded to the

Hand Gesture Recognition module. Notably, Segment 1 and 4 are the “raise hand hori-

zontally” movement and “put down hand” movement, which are not predefined gestures

for our application.

4.3.3 Hand Gesture Recognition

According to the data segmentation results, we extract 6 representative features for

model training and testing from the acceleration and gyroscope data of each segment:

(1) raw acceleration data, (2) the first-derivative of acceleration data, (3) the integral of

the acceleration data, (4) raw gyroscope data, (5) the first-derivative of gyroscope data,

and (6) the integral of the gyroscope data. The first-derivative and the integral of the

data are shown to be effective in improving recognition accuracy [5]. This is due to their

ability to describe the main characteristics of the gesture: absolute trending (raw data),

its relative change (first-derivative), and the cumulative effect (integral).

We utilize the Hidden Markov Model (HMM) algorithm to train classifiers for online

hand gesture recognition, as it has shown high accuracy in previous work [5][19][29].

For each gesture, an HMM model is trained based on a set of the same gesture data.

We train the HMMmodels using the standard Baum-Welch re-estimation algorithm [54].
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Each HMM model is configured with 4 states and 2 Gaussian components. To filter out

non-gestural movements or undefined gestures, a noise HMM model is trained using

the ergodic topology [29]. At runtime, each data segment is classified as one of the

predefined gestures or noise. We use the Viterbi algorithm [55] to efficiently calculate the

likelihood of the input data segment for each gesture model. Then, the gesture model

with the highest likelihood is selected as the classified gesture. If the noise model is

classified, we reject the gesture.

4.4 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms. We first in-

troduce our dataset in Section 6.3.1. Next, we evaluate the threshold-based gesture

segmentation algorithm in Section 4.4.2. Finally, we evaluate the accuracy of the ges-

ture recognition algorithm when the users perform gestures separately and continuously

in Section 4.4.3.

4.4.1 Data Collection

Table 4.1: Characteristics of ten participants

Test Device Human Subject No. Gender Age Height(cm) Weight(kg)
Human Subject 1 male 29 174 62
Human Subject 2 male 30 171 68

Moto 360 Human Subject 3 male 27 174 70
Human Subject 4 male 28 181 81
Human Subject 5 male 28 182 74
Human Subject 6 male 26 178 70
Human Subject 7 male 28 173 73

UG wristband Human Subject 8 male 27 174 67
Human Subject 9 male 27 180 66
Human Subject 10 male 28 180 72

We collect the accelerometer and gyroscope data of seven hand gestures from 10

human subjects. The data collection experiment contains two independent steps: (1)
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each participant performs each gesture 10 times. During this experiment, the partici-

pants are asked to pause for 1 to 2 seconds between each gesture. (2) We randomly

generate a sequence of 50 gestures. Participants are then asked to perform this se-

quence of gestures without pausing. We take video of each participant as they com-

plete this task to serve as ground truth. We use a Motorola Moto 360 (2nd Gen.) smart

watch to collect the gesture data from five human subjects and use a UG wristband to

collect the gesture data from the other five human subjects. The characteristics of our

participants are shown in Table 5.1. We call the gesture data collected by the Moto 360

as Moto dataset, and the gesture data collected by the UG wristband as UG dataset.

4.4.2 Gesture Segmentation Results

Table 4.2: Comparison of different metrics for Threshold-based Gesture Segmentation

Metrics Precision Recall F-Measure Accuracy
Con 90.9% 96.6% 93.6% 94.4%
Com 88.9% 97.4% 92.6% 93.9%
Sym 92.9% 82.6% 85.9% 90.3%

Con+Com+Sym 97.4% 97.4% 97.4% 97.7%

We evaluate the segmentation accuracy with leave-one-subject-out cross-validation

on the Moto dataset. We choose the hand gesture data from four participants as the

training dataset, and the remaining one as the test dataset. For the training dataset, we

apply a brute-force search to compute the optimal thresholds for the Gesture Continu-

ity metric, the Gesture Completeness metric, and the Gesture Symmetry metric. Then,

we test these three thresholds on the test dataset. Precision, recall, F-measure and

accuracy as considered as the evaluation metrics. Table 4.2 shows the segmentation

performance under different metrics: the Gesture Continuity metric, the Gesture Com-

pleteness metric, the Gesture Symmetry metric, and all three features together. From

the table, we find that the segmentation accuracy is 97.7% when using all three metrics

together. When using only one metric, the Gesture Continuity metric performs best. Its

segmentation accuracy is 94.4%. The second one is the Gesture Completeness met-

44



ric. The segmentation accuracy is 93.9%. The worst one is the Gesture Symmetry, the

accuracy of which is 90.3%.

Table 4.3: Comparison between Machine learning Algorithms and Threshold-based
Method for Gesture Segmentation

Algorithm Precision Recall F-Measure Accuracy
AdaBoost 97.2% 97.1% 97.1% 97.1%

Naive Bayes 95.9% 95.9% 95.9% 95.9%
SVM 96.3% 96.2% 96.2% 96.2%
J48 97.9% 97.9% 97.9% 97.9%

RandomForest 98.1% 98.1% 98.1% 98.1%

In addition to the proposed threshold-based method, another way to classify the seg-

menting points is to use machine learning algorithm. We apply WEKA machine-learning

suite [56] to train five commonly used classifiers using all these three metrics as fea-

tures. The classifiers include AdaBoost (run for 100 iterations), Naive Bayes, SVM (with

polynomial kernels), J48 (equivalent to C4.5 [57]), and Random Forests (ten trees, four

random features each). We run 5-fold cross-validation on this dataset for each clas-

sifiers. Precision, recall, F-measure and accuracy are used as the evaluation metrics.

The classification results for these five algorithms are shown in Table 4.3. From the

table, we find that RandomForest Performs the best. 98.1% of segments are correctly

merged. The second one is J48. 97.9% segments are correctly merged. From Table 4.2,

we find that the accuracy of the threshold-based method is 97.7%, which is very close

to the RandomForest algorithm and performs better than AdaBoost, Naive Bayes, and

SVM. As the threshold-based method is lightweight and has comparable performance

with the machine learning algorithms, we apply the threshold-based method for gesture

segmentation.

The Gesture Continuity metric is computed within a time window for a connecting

point. A short time window size may result in the loss of good information, while a large

time window sizemay incur noise. We examine the performance of the Gesture Continu-

ity metric under different time window size, which is shown in Fig. 4.7. Three evaluation

metrics are considered: precision, recall, and accuracy. When the time window size is
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Figure 4.7: Precision, recall and accuracy under different window size

smaller than 300ms or larger than 800ms, the segmentation accuracy goes down dra-

matically. When the time window size is 500ms or 600ms, the segmentation accuracy

is highest: 94.4%. When the time window size is 500ms, the precision is larger than the

recall. In this case, we will have more false negatives and less false positives. When

the time window size is 600ms, the recall is larger than the precision. In this case, there

are more false positives and less false negatives. In our system, false negative means

that one segment is wrongly partitioned into two segments, while false positive means

that two segments are wrongly merged into one. We prefer less false negatives over

less false positives. This leads us to favor recall over precision. Therefore, we choose

600ms as the time window size to compute the Gesture Continuity metric.

4.4.3 Gesture Recognition Results

We evaluate the performances of the proposed algorithms on both Moto dataset and UG

dataset. For each dataset, we evaluate the proposed algorithms on the discrete ges-

tures and the continuous gestures separately. First, we evaluate the gesture recognition

accuracy with leave-one-subject-out cross-validation on each participant when perform-

ing gestures discretely. We use gesture samples from four participants to train the HMM

models, and then apply these HMM models to classify the gesture samples from the re-
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maining participant. Second, we use all the non-continuous hand gesture samples to

train the HMM models, and evaluate the proposed algorithm on the continuous hand

gesture samples.

Table 4.4: Confusion matrix for gesture classification on the Moto dataset with just ac-
celeration features

Left Right Up Down Back&Forth Clockwise Counterclockwise
Left 50 0 0 0 0 0 0
Right 0 48 0 0 0 0 2
Up 0 0 50 0 0 0 0

Down 0 0 0 40 0 6 4
Back&Forth 0 0 0 0 50 0 0
Clockwise 0 0 4 0 0 46 0

Counterclockwise 0 0 0 0 0 0 50

Table 4.5: Confusion matrix for gesture classification on the Moto dataset with just gy-
roscope features

Left Right Up Down Back&Forth Clockwise Counterclockwise
Left 42 6 4 0 0 0 0
Right 0 40 0 0 10 0 0
Up 0 0 50 0 0 0 0

Down 0 0 0 48 2 0 0
Back&Forth 0 0 0 0 50 0 0
Clockwise 0 0 0 0 0 50 0

Counterclockwise 0 0 0 0 0 0 50

Table 4.6: Confusion matrix for gesture classification on the Moto dataset with both
acceleration and gyroscope features

Left Right Up Down Back&Forth Clockwise Counterclockwise
Left 50 0 0 0 0 0 0
Right 0 50 0 0 0 0 0
Up 0 0 48 0 2 0 0

Down 0 0 0 50 0 0 0
Back&Forth 0 0 0 0 50 0 0
Clockwise 0 0 0 0 0 50 0

Counterclockwise 0 0 0 0 0 0 50

Table 4.4 shows the confusion matrix for gesture classification on the Moto dataset

with just acceleration features. The average accuracy is 95.4%. Table 4.5 shows the

confusion matrix for gesture classification on the Moto dataset with just gyroscope fea-

tures. The average accuracy is 93.7%. Table 4.6 shows the confusion matrix for gesture

classification on the Moto dataset with both acceleration and gyroscope features. The
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Table 4.7: Confusion matrix for gesture classification on the UG dataset with just accel-
eration features

Left Right Up Down Back&Forth Clockwise Counterclockwise
Left 46 0 0 0 0 0 4
Right 0 40 0 0 0 0 10
Up 0 0 48 0 0 0 2

Down 0 0 0 50 0 0 0
Back&Forth 0 0 0 0 48 0 2
Clockwise 0 0 0 0 0 50 0

Counterclockwise 0 0 0 0 0 0 50

Table 4.8: Confusion matrix for gesture classification on the UG dataset with just gyro-
scope features

Left Right Up Down Back&Forth Clockwise Counterclockwise
Left 50 0 0 0 0 0 0
Right 0 50 0 0 0 0 0
Up 0 0 50 0 0 0 0

Down 0 0 0 50 0 0 0
Back&Forth 0 0 8 0 42 0 0
Clockwise 0 0 0 0 0 50 0

Counterclockwise 0 0 0 0 0 0 50

average accuracy is 99.4%. Table 4.7 shows the confusion matrix for gesture classifica-

tion on the UG dataset with just acceleration features. The average accuracy is 94.9%.

Table 4.8 shows the confusion matrix for gesture classification on the UG dataset with

just gyroscope features. The average accuracy is 97.7%. Table 4.9 shows the confusion

matrix for gesture classification on the UG dataset with both acceleration and gyroscope

features. The average accuracy is 98.3%. From these tables, we find that the proposed

gesture classification algorithm performs well on both datasets. The gesture classifica-

tion algorithm with both acceleration and gyroscope features has the best performance

Table 4.9: Confusion matrix for gesture classification on the UG dataset with both ac-
celeration and gyroscope features

Left Right Up Down Back&Forth Clockwise Counterclockwise
Left 50 0 0 0 0 0 0
Right 4 46 0 0 0 0 0
Up 0 0 50 0 0 0 0

Down 0 0 0 50 0 0 0
Back&Forth 0 0 2 0 48 0 0
Clockwise 0 0 0 0 0 50 0

Counterclockwise 0 0 0 0 0 0 50
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among these two datasets with accuracy over 98%. In the Moto dataset, the gesture

classification algorithm with acceleration features is 1.7% more accurate than the ges-

ture classification algorithm with gyroscope features. In the UG dataset, the gesture

classification algorithm with gyroscope features is 2.8% more accurate than the gesture

classification algorithm with acceleration features. We see there is only less than 3%

accuracy difference between the two features. Therefore, we can reasonably conclude

that there is no significant accuracy difference between the two features.
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Figure 4.8: Segmentation and recognition
accuracy of the continuous hand gesture
recognition algorithm on the Moto dataset.
Sub1 means human subject one
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Figure 4.9: Segmentation and recognition
accuracy of the continuous hand gesture
recognition algorithm on the UG dataset.
Sub1 means human subject one

Fig. 4.8 demonstrates the segmentation accuracy after removing noise segments,

recognition accuracy with both acceleration and gyroscope features, and overall accu-

racy of the continuous gesture recognition algorithm on the Moto dataset. The overall

accuracy is the product of the segmentation accuracy and recognition accuracy. The av-

erage segmentation accuracy is 98.8% (standard deviation: 1.8%), the average recog-

nition accuracy is 95.7% (standard deviation: 4.1%), and the average overall accuracy

is 94.6% (standard deviation: 4.0%). Fig. 4.9 demonstrates the segmentation accu-

racy, recognition accuracy, and overall accuracy of the continuous gesture recognition

algorithm on the UG dataset. The average segmentation accuracy is 96.4% (standard

deviation: 5.4%), the average recognition accuracy is 97.4% (standard deviation: 1.9%),

and the average overall accuracy is 94.0% (standard deviation: 6.8%). Experimental re-
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sults demonstrate that the proposed segmentation algorithm and recognition algorithm

are very promising.

Table 4.10: Confusion matrix for classification of continuous hand gestures on the Moto
dataset

Left Right Up Down Back&Forth Clockwise Counterclockwise
Left 28 0 0 0 0 0 6
Right 0 40 0 0 0 0 0
Up 0 0 36 0 2 0 0

Down 0 0 0 29 0 0 0
Back&Forth 0 0 0 0 44 0 0
Clockwise 2 0 0 0 0 23 0

Counterclockwise 0 0 0 0 0 0 23

Table 4.11: Confusion matrix for classification of continuous hand gestures on the UG
dataset

Left Right Up Down Back&Forth Clockwise Counterclockwise
Left 34 0 0 0 0 1 0
Right 0 40 0 0 0 0 0
Up 0 0 39 0 0 0 0

Down 1 0 0 28 0 0 0
Back&Forth 0 0 0 0 39 0 2
Clockwise 0 0 0 0 0 25 0

Counterclockwise 2 0 0 0 0 0 23

Table 4.10 shows the confusion matrix for classification of continuous hand gestures

on the Moto dataset. From the table, we see that six Left gestures are mistakenly clas-

sified as Counterclockwise, two Up gestures are mistakenly classified as Back&Forth,

and two Clockwise gestures are mistakenly classified as Left. Table 4.11 shows the con-

fusion matrix for classification of continuous hand gestures on the UG dataset. From the

table, we see that one Left gesture is mistakenly classified as Clockwise, one Down ges-

ture is mistakenly classified as Left, two Back&Forth gestures are mistakenly classified

as Counterclockwise, and two Counterclockwise gestures are mistakenly classified as

Left. These misclassifications mainly come from the difference between training ges-

ture samples and test gestures samples. We utilize gestures discretely performed by

the users as the training set, and gestures continuously performed by the users as the

test set. When users perform gestures continuously, sensor readings include lots of

motion noises, which lead to the lower recognition accuracy.
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Figure 4.10: Classification accuracy
for continuous hand gesture recognition
with different HMM models on the Moto
dataset. Sub1 means human subject one
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Figure 4.11: Classification accuracy for
continuous hand gesture recognition with
different HMM models on the UG dataset.
Sub1 means human subject one

Fig. 4.10 shows the classification accuracy for continuous hand gesture recognition

on the Moto dataset with different features: HMMmodels with just acceleration features,

HMM models with just gyroscope features, and HMM models with both acceleration

and gyroscope features. The average accuracy for the HMM models with accelera-

tion, gyroscope, and both acceleration and gyroscope features are: 86.0% (standard

deviation: 16.6%), 82.0% (standard deviation: 7.4%), and 94.6% (standard deviation:

4.0%), respectively. Fig. 4.11 shows the classification accuracy for continuous hand

gesture recognition on the UG dataset with different features. The average accuracy for

the HMM models with acceleration, gyroscope, and both acceleration and gyroscope

features are: 96.6% (standard deviation: 2.6%), 97.1% (standard deviation: 2.4%), and

97.4% (standard deviation: 1.9%), respectively. Statistically, HMM models with both the

acceleration and gyroscope features are more accurate (the highest average accuracy)

and more stable (the lowest standard deviation).

4.5 Conclusion

In this chapter, we propose a novel continuous gesture segmentation and recognition

algorithm. For a sequence of hand movement, we separate data into meaningful seg-

ments, merge segments based on the Gesture Continuity metric, the Gesture Com-
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pleteness metric, and the Gesture Symmetry metric, remove noise segments, and fi-

nally recognize hand gestures by HMM classification. Evaluation results show that the

proposed algorithm can achieve over 94% recognition accuracy when users perform

gestures continuously.
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Chapter 5

MobiGesture: Mobility-aware Hand

Gesture Recognition

5.1 Introduction

Regular mobility, such as walking or jogging, is one of themost effective ways to promote

health andwell-being. It helps improve overall health and reduces the risk of many health

problems, such as diabetes, cardiovascular disease, and osteoarthritis [58][59][60]. In

addition, regular mobility can also improve depression, cognitive function, vision prob-

lems, and lower-body function [61][62]. According to the evidence-based Physical Activ-

ity Guidelines released byWorld Health Organization [63] and the U.S. government [64],

adults aged 18-64 should do at least 150 minutes of moderate-intensity or 75 minutes

of vigorous-intensity aerobic activity per week, or an equivalent combination of both to

keep healthy.

Nowadays, lots of people like to listen to music on their smartphones while they

do aerobic activity, such as walking or jogging. Many smartphone apps track users’

workouts, play music, and even match the tempo of the songs to users’ paces, such

as Nike+ Run Club [65], RunKeeper [66], MapMyRun [67]. However, it is inconvenient

for the users to interact with these apps while walking or jogging. To change the music,

users need to slow down, take out the smartphone, and then change the music. This
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is troublesome. Instead, it is more convenient for users to use gestures to control the

music. Unlike traditional touchscreen-based interaction, hand gestures can simplify the

interaction with a smartphone by reducing the need to take out the smartphone and slow

down the pace.

When a user is moving, gesture recognition is difficult. The first reason is that hand

swinging motions during walking or jogging are mixed with the hand gestures. It is hard

to classify if a hand movement comes from hand swinging motions or a hand gesture. In

addition, when the user performs a hand gesture while moving, the hand movement is a

combination of the hand gesture and the body movement. The mobility noise caused by

the body movement reduces the accuracy of the hand gesture recognition. Therefore,

it is hard to recognize hand gestures when the user is moving. To solve the gesture

recognition problem when the user is walking or jogging, two research questions need

to be answered: (1) How to segment the hand gestures when the user is moving? (2)

How to accurately classify the hand gestures with mobility noises?

In order to answer the first research question, we first apply an AdaBoost Classifier to

classify the current bodymovement into moving or non-moving. If the user is not moving,

we apply a threshold-based segmentation algorithm to segment the hand gestures. If

the user is moving, the sensor readings are periodic and self-correlated. So, we propose

a novel self-correlation metric to evaluate the self-correlation of the sensor readings. If

the sensor readings are not self-correlated at the moving frequency, we regard it as a

potential gesture sample. Then, a moving segmentation algorithm is applied to segment

the hand gestures.

In order to answer the second research question, we design a Convolutional Neural

Network (CNN) model to classify the hand gestures with mobility noises. We apply a

batch normalization layer, a dropout layer, a max-pooling layer and L2 regularization to

overcome overfitting and handle mobility noises.

In addition, we integrate the gesture segmentation and classification algorithms into a

system called, MobiGesture. For the leave-one-subject-out cross-validation test, exper-
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iments with human subjects show that the proposed segmentation algorithm accurately

segments the hand gestures with 94.% precision and 91.2% recall when a user is mov-

ing. The proposed hand gesture classification algorithm is 16.1%, 15.3%, and 14.4%

more accurate than state-of-the-art work when a user is standing, walking and jogging,

respectively.

As far as we know, two efforts have been made to study the gesture recognition

problem when a user is moving. Park et al. [5] propose a Multi-situation HMM archi-

tecture. They train a HMM model for each pair of hand gesture and mobility situation.

As the authors define 8 hand gestures and 4 mobility situations, 32 HMM models are

trained in total. Given a hand gesture, they apply the Viterbi algorithm [68] to calcu-

late the likelihood of each HMM model. The HMM model with the highest likelihood

is selected as the classified gesture. As the number of the hand gestures and/or the

number of the mobility situations increases, their computational cost increases dramat-

ically. Different from their work, we only train one CNN model, which consumes much

less computational power and time. In addition, evaluation results show that our CNN

model performs better than Multi-situation HMM on gesture classification under leave-

one-subject-out cross-validation test. The second effort comes from Murao et al. [30].

They propose a combined-activity recognition system. This system first classifies user

movement into one of three categories: postures (e.g., sitting), behaviors (e.g., walk-

ing), and gestures (e.g., a punch). Then, Dynamic Time Warping (DTW) is applied to

recognize hand gestures for the specific category. However, their system requires five

sensors to be attached to the human body for gesture recognition. Instead, we only use

one sensor, and hence are less intrusive.

We summarize our contributions as follows:

1. We propose a novel mobility-aware gesture segmentation algorithm to detect and

segment hand gestures.

2. We design a CNN model to classify hand gestures. This CNN model conquers

mobility noises and avoids overfitting.
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3. We integrate the gesture segmentation and classification algorithms into a system,

MobiGesture. Our experiments results show that the proposed segmentation al-

gorithm achieves 94.0% precision and 91.2% recall when the user is moving. The

proposed hand gesture classification algorithm is 16.1%, 15.3%, and 14.4% more

accurate than state-of-the-art work when the user is standing, walking and jogging,

respectively.

The remainder of this chapter is organized as follows. First, we present the moti-

vation in Section 5.2. Then, we introduce the system architecture in Section 6.2.1. We

present our mobility-aware segmentation algorithm in Section 5.4, and CNN model in

Section 5.5. In Section 6.3, we evaluate the system performance. Finally, we draw our

conclusion in Section 6.5.

5.2 Motivation

Hand gestures can help users interact with various mobile applications on smartphones

in mobile situations. One common scenario is to control a music app while walking or

jogging. We define our hand gestures to be suitable for music control in Section 5.2.1.

Based on these defined gestures, we introduce the challenge of gesture recognition

when the user is walking or jogging in Section 5.2.2. Finally, we present our data collec-

tion and the data set in Section 5.2.3. This data set is used for performance evaluation

during the rest of the chapter.

5.2.1 Gesture Definition

There has been substantial research on gesture recognition. Some works define ges-

tures according to application scenarios, such as gestures in daily life [19], or repetitive

motions in very specific activities [9], while others define gestures casually [5]. In our

system, we carefully define the hand gestures that are suitable for controlling a music

app. Typically, a music app provides the following functions to control the music: next
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Figure 5.1: Ten number gestures for remote control

track, previous track, volume up, volume down, play/pause, repeat on/off, shuffle on/off.

Therefore, we define seven gestures corresponding to these seven functions. At the

beginning, the user extends his/her hand in front of his/her body. Then he/she moves

towards a certain direction and moves back to the starting point again.

These seven gestures are illustrated in Fig. 4.2 and are defined as follows: (1) Left

gesture: move left and thenmove back to the starting point; (2) Right gesture: move right

and then move back to the starting point; (3) Up gesture: move up and then move back

to the starting point; (4) Down gesture: move down and then move back to the starting

point; (5) Back&Forth gesture: move to shoulder and then extend again to the starting

point; (6) Clockwise gesture: draw a clockwise circle; (7) Counterclockwise gesture:

draw an counterclockwise circle. In addition, we define 10 number gestures as shown

in Fig. 5.1 to select a specific song in the music app.

5.2.2 Challenge of Gesture Recognition under Mobility

To recognize hand gestures, a typical gesture processing pipeline consists of three

steps: (1) detect a hand gesture from a sequence of hand movements; (2) segment

the hand gesture; (3) classify the segmented hand gesture. When it comes to a mobile

situation, the noises caused by body movements present several practical challenges

for these three steps.
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Figure 5.2: Accelerometer readings of a Right gesture when a user is jogging

First, it is hard to detect gestures while a user is moving. While the user is standing

without performing any gesture, the accelerometer readings keep stable. When the

user performs a gesture such as the Right gesture, the accelerometer readings change

dramatically. Therefore, it is easy to detect a gesture by measuring the amplitude or

deviation of the sensor readings. However, when it comes to a jogging scenario, a Right

gesture and hand swinging motions are mixed together as shown in Fig. 5.2. Therefore,

it is hard to tell whether a hand movement comes from the hand swinging motions or a

hand gesture.

The second challenge is that it is hard to segment hand gestures while the user is

moving. To perform a hand gesture while walking or jogging, the user needs to raise

his/her hand, perform a gesture, and then put down his/her hand. To segment hand

gestures while the user is moving, we need to not only filter out hand swinging motions

caused by body movements, but also accurately exclude the hand-raising and hand-

lowering movements. If the starting point and end point of a hand gesture is not precisely

determined, it is hard to classify hand gestures accurately. As shown in Fig. 5.2, it is

difficult to find the starting point and end point of a Right gesture while jogging.

The third challenge is that it is hard to classify hand gestures when a user is mov-
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ing. After gesture segmentation, a segmented hand gesture sample includes not only

the gesture the user performs, but also the noises caused by the body movements. Ad-

ditionally, when the user performs a hand gesture while walking or jogging, (s)he needs

to keep the walking/jogging pace while performing this gesture. The effort to keep the

moving pace influences the shape of the hand gesture that the user performs. Therefore,

the hand gesture performed when the user is standing is slightly different from the same

type of hand gesture performed when the user is walking or jogging. Both the mobility

noises and the gesture differences reduce the accuracy of gesture classification.

5.2.3 Dataset

Table 5.1: Characteristics of five participants

Human Subject No. Gender Age Height(cm) Weight(kg)
1 male 29 174 62
2 female 27 167 55
3 male 28 180 73
4 male 39 170 87
5 male 30 171 68

We used a UG wristband [69] to collect 17 hand gestures from 5 human subjects,

which is shown in Fig. 5.3. The UG wristband sampled the accelerometer and gyro-

scope readings at 50 Hz. The data collection experiment contained three independent

steps. (1) Each participant performed each gesture 10 times while standing. (2) Each

participant performed each gesture 10 times while walking on a treadmill. (3) Each par-

ticipant performed each gesture 10 times while jogging on a treadmill. In total, 2550 hand

gestures were collected. While walking or jogging on a treadmill, different participants

tended to walk or jog at different speeds. In our experiment, the speed of walking ranged

from 2 miles/hour to 3 miles/hour, and the speed of jogging ranged from 4 miles/hour to

6 miles/hour. We took video of each participant as they completed these tasks to serve

as ground truth. The characteristics of our participants are shown in Table 5.1.
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5.3 System Architecture
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The system architecture of the MobiGesture is shown in Fig. 6.1. We apply a novel

mobility-aware segmentation module to partition the raw accelerometer and gyroscope

readings into segments so that each segment contains one complete hand gesture. In

the mobility-aware segmentation module, we first detect whether or not the user is mov-

ing. We extract a series of time-domain and frequency-domain features from accelerom-

eter readings and apply an AdaBoost Classifier to classify the current body movement

into moving or non-moving. If the user is not moving, sensor readings are clean and

do not contain any mobility noise. In this case, we apply a simple threshold-based seg-

mentation algorithm to segment the hand gestures.

On the other hand, if the user is walking or jogging, the sensor readings are peri-

odic and self-correlated. We perform Fast Fourier Transform (FFT) on accelerometer

readings and compute the dominant frequency, which is the frequency of walking or

jogging. Based on the dominant frequency, we propose a novel self-correlation metric,
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SC. This metric represents the self-correlation characteristics of accelerometer read-

ings at the given frequency. When the user is walking or jogging, the sensor readings

are self-correlated at the dominant frequency. Once the sensor readings are no longer

self-correlated at the dominant frequency, we regard it as a potential gesture sample.

Then, a moving segmentation algorithm is applied to partition the accelerometer and

gyroscope readings into segments based on SC metric.

As the 17 predefined gestures are different from each other and users tend to perform

the gestures at different speeds, the duration of each gesture is different. Therefore, the

size of each segment is different. We apply a Cubic Spline Interpolation algorithm [70] to

rescale the size of each segment so that each segment contains the same data points.

Finally, we design a 9-layer Convolutional Neural Network to recognize hand gestures.

The Convolutional Neural Network is designed to be anti-overfitting and robust to mo-

bility noises.

5.4 Mobility-aware Segmentation

A simple way to segment hand gestures from a sequence of hand movements is to use

a hand-controlled button to clearly indicate the starting point and the end point of each

individual gesture. However, in order to do so, the user must wear an external button on

their fingers or hold it in their hands, which is obtrusive and burdensome. Another way

is to segment gestures automatically. The motion data are automatically partitioned into

non-overlapping, meaningful segments, such that each segment contains one complete

gesture. Automatic segmentation when a user is moving faces a few challenges. First,

when the user is moving, the hand gestures are mixed with the mobility noises, which

leads to inaccurate segmentation. In addition, the segmentation should extract the hand

movement caused by the hand gestures rather than the hand movement caused by the

body movement. Otherwise, the extracted segments contain non-gesture noises, or

miss useful gesture information, which leads to inaccurate classification. To deal with
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these challenges, we propose a mobility-aware segmentation algorithm. we first classify

the body movement into non-moving or moving. Then, we propose a non-moving seg-

mentation algorithm and a moving segmentation algorithm to segment hand gestures

for two different moving scenarios.

5.4.1 Feature Extraction

It is difficult to accurately detect the mobility situation solely based on a wristband. The

reason is that the sensors in the wristband measure the combination of hand motion,

gravity, and body movement. In order to accurately detect if the user is moving or not,

additional sensors that are tightly attached on the body are required. However, this

requirement is intrusive.

Instead of attaching additional sensors on the body, we infer the body movement

based on the sensor readings from the wristband. When the user is walking, the hands

are pointing to the ground with the palm facing towards the user. When the user is jog-

ging, the hands are pointing forward with the palm facing towards the user. The orienta-

tion of the hand is fixed and stable during walking or jogging. The sporadic occurrence

of a hand gesture influences the orientation of the hand in a short time. However, the

orientation of the hand is stable for most of the time during walking or jogging. This moti-

vates us to use the orientation of the hand to infer the body movement. In addition, when

a user is walking or jogging, the user swings his/her hands periodically. The sporadic

occurrence of a hand gesture does not influence the dominant frequency of walking or

jogging. This motivates us to use the frequency of hand swinging motions to infer the

body movement.

We apply a sliding window with an overlapping of 50% for the accelerometer read-

ings. Thewindow size is 5 seconds. We compute a series of time-domain and frequency-

domain features for each time window.

For the time-domain features, we compute the mean of the accelerometer readings

of the X-axis, Y-axis, and Z-axis accordingly, the mean of the pitch, and the mean of the

62



roll to represent the orientation of the hand for each time window. The pitch and roll are

computed as

Pitch = arctan

(
Accy√

(Accx)2 + (Accz)2

)
, (5.1)

Roll = − arctan
(
Accx
Accz

)
, (5.2)

where Accx, Accy, Accz are the accelerometer readings of the X-axis, Y-axis, and Z-axis

for each time window.

For the frequency domain, we first compute the amplitude of accelerometer readings

as

Acc =
√

(Accx)2 + (Accy)2 + (Accz)2 , (5.3)

where Accx, Accy, Accz are the accelerometer readings of the X-axis, Y-axis, and Z-axis

for each time window. Then, we perform Fast Fourier transform (FFT) for all the am-

plitude of the accelerometer readings within each time window. We find the dominant

frequency, which has the largest amplitude in the frequency domain. Finally, the domi-

nant frequency and the amplitude of the dominant frequency are chosen as frequency-

domain features.

5.4.2 Mobility Classification

We apply the WEKA machine-learning suite [56] to train five commonly used classifiers.

The classifiers include AdaBoost (run for 100 iterations), Naive Bayes, SVM (with poly-

nomial kernels), J48 (equivalent to C4.5 [57]), and RandomForests (100 trees, 4 random

features each). To evaluate the performance of the proposed algorithms, we apply two

tests: 5-fold cross-validation and leave-one-subject-out (LOSO) cross-validation. The

5-fold cross-validation test uses all the gesture data to form the dataset. It partitions the

dataset into 5 randomly chosen subsets of equal size. Four subsets are used to train

the model. The remaining one is used to validate the model. This process is repeated 5

times such that each subset is used exactly once for validation. The leave-one-subject-

out cross-validation test uses the gesture data from four subjects to train the classifica-
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tion model, and then applies this model to test the gesture samples from the remaining

subject. Precision, recall, and F-measure are considered as the evaluation metrics.

Table 5.2: Comparison of Machine learning Algorithms for Mobility Classification

Test Algorithm Precision Recall F-Measure
AdaBoost 93.5% 93.5% 93.5%

Naive Bayes 91.6% 91.4% 91.5%
5-fold SVM 93.5% 93.5% 93.3%

J48 96.0% 96.0% 96.0%
RandomForest 96.9% 96.9% 96.9%

AdaBoost 94.9% 94.6% 94.4%
Naive Bayes 93.6% 91.4% 91.5%

LOSO SVM 93.6% 92.5% 92.2%
J48 91.0% 88.7% 89.0%

RandomForest 93.7% 92.2% 92.2%

The classification results for these five algorithms are shown in Table 5.2. Under

the 5-fold cross-validation test, RandomForest performs the best. The precision, re-

call, and F-measure are 96.9%, 96.9%, and 96.9%, respectively. Under the leave-one-

subject-out cross-validation test, AdaBoost performs the best. The precision, recall,

and F-measure are 94.9%, 94.6%, and 94.4%, respectively. We favor the leave-one-

subject-out cross-validation test over the 5-fold cross-validation test to avoid overfitting.

Therefore, we choose AdaBoost classifier to classify the body movement.

5.4.3 Non-Moving Segmentation

When the user is not moving, we apply a lightweight threshold-based detection method

to identify the starting and end points of the hand gestures. To characterize a user’s hand

movement (HM), a detection metric is defined using the gyroscope sensor readings as

HM =
√

Gyro2x +Gyro2y +Gyro2z, (5.4)

where Gyrox, Gyroy, Gyroz are the gyroscope readings of the X-axis, Y-axis, and Z-

axis. When the user’s hand is stationary, the HM is very close to zero. The faster a

hand moves, the larger the HM is. When the HM is larger than a threshold, i.e. 50
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degree/second, we regard it as the starting point of a hand movement. Once the HM

is smaller than this threshold for a certain period of time, i.e. 200 ms, we regard it as

the end point of the hand movement. The time threshold is necessary. Without it, the

HM may fall below this threshold occasionally, leading to unexpected splitting of this

gesture [52][53]. As a gesture does not last shorter than 260 ms or longer than 2.7

seconds in our dataset, we drop a segment if the length of this segment is shorter than

260 ms or longer than 2.7 seconds.

5.4.4 Self-Correlation Analysis

When the user is walking or jogging, the sensor readings are periodic and self-correlated

at the frequency of walking or jogging. Once the user performs a gesture while walking or

jogging, the sensor readings are neither periodic nor self-correlated. Based on this ob-

servation, we propose a novel self-correlation metric SC to measure the self-correlation

of the accelerometer readings as

SC(t) =
∑

i∈{x,y,z}

T∑

j=1

[Acci (t+ j)−Acci (t+ j − T − 1)] /T, (5.5)

where Acci (i ∈ {x, y, z}) are the accelerometer readings of the X-axis, Y-axis, and

Z-axis. T is the cycle of the walking or jogging, which is computed as the inverse of

the dominant frequency. t is the current time. If the accelerometer readings are self-

correlated at the dominant frequency, the SC is very close to zero. If the accelerometer

readings are not self-correlated at the dominant frequency, the SC is either a large pos-

itive value or a large negative value. Fig. 5.5(a) shows the accelerometer readings of a

Left gesture when a user is walking. The computed SC curve is in Fig. 5.5(b).

From Fig. 5.5(a) and (b), we find that the SC is very close to zero when the user

swings his/her hand during walking. The SC begins to increase when the user raises

his/her hand. The peak of the SC occurs when the user finishes raising his/her hand and

begins to perform a Left gesture. The valley of the SC occurs when the user finishes
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Figure 5.5: Segmentation when a user is moving

performing a Left gesture and begins to put down his/her hand. After the user puts down

the hand and continues to swing the hand, the SC goes back to zero. We find that the

peak and the valley of the SC curve are good indicators of the starting point and the end

point of the Left gesture. The reason is that when the user raises his/her hand or puts

down his/her hand, the orientation of his/her hand changes a lot. This change greatly

increases or reduces the SC metric.

When the user is walking, the hand is pointing to the ground. Impacted by the force of

gravity, the accelerometer readings of the Y-axis are always negative. When the user is

jogging, the hand is pointing forward with the palm facing towards the user. In this case,

the accelerometer readings of the X-axis are impacted by gravity and always have neg-

ative values. However, when the user raises his/her hand and performs the gesture, the

palm faces the ground. The accelerometer readings of the Z axis are impacted by grav-

ity and have positive values. Therefore, when the user is walking or jogging, the sum of
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the accelerometer readings in 3 axes are always negative. When the user raises his/her

hand, the sum of the accelerometer readings increases and reaches the maximum right

after raising hand. As the SC is computed by the difference of the accelerometer read-

ings in two adjacent time window (window size is the cycle of walking or jogging), SC

reaches the peak right after raising hand. Similarly, SC reaches the valley right after

putting down hand. Therefore, we use the peak and the valley of the SC curve as the

starting point and the end point of the Left gesture.

5.4.5 Moving Segmentation

We segment the hand gestures when the user is moving by searching for the peak and

valley of the SC. We compute the SC metric from the accelerometer readings. If the

SC value is larger than 5 m2/sec2, we start to search for the peak of the SC within a 4

second time window. Once the peak is found, we regard it as the starting point of the

hand gesture, and begin to search for the valley of the SC. We define the valley of the

SC to be the smallest SC within a 4 second time window and is lower than a threshold, -5

m2/sec2. Once the SC valley is found, we regard it as the end point of the hand gesture.

We extract the accelerometer and gyroscope readings between the starting point and

the end point as the segment. As a gesture does not last longer than 2.7 seconds in our

dataset, we drop a segment if we cannot find the valley of the SC after the peak of the

SC for 2.7 seconds.

Fig. 5.6 and Fig. 5.7 show the performance of the moving segmentation under differ-

ent window sizes and different SC thresholds accordingly. Three evaluation metrics are

considered: precision, recall, and F-measure. As the window size or the SC threshold

increases, the segmentation precision increases and the recall decreases. When the

window size is 4 s and the SC threshold is 5 m2/sec2, the F-measure is at its highest

value: 93.7%. Therefore, we choose 4 s as the time window size and 5 m2/sec2 as the

SC threshold to segment the hand gestures when the user is moving.
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5.4.6 Performance

We compare our gesture segmentation algorithm with E-gesture [5], which is the state-

of-the-art. E-gesture segments the hand gestures based on the amplitude of the gyro-

scope readings. A hand gesture is triggered if the amplitude of the gyroscope readings

is higher than 25 degree/sec. The triggered gesture is assumed to have ended if the

amplitude of the gyroscope readings is lower than 25 degree/sec for 400 ms. Different

from E-gesture, we first apply the AdaBoost classifier to classify the body movement

into moving or non-moving. Then, we apply two different segmentation algorithms to

segment the hand gestures accordingly.

Table 5.3: Comparison of the Gesture Segmentation Performance

Scenario Algorithm Precision Recall F-Measure
MobiGesture 5-fold 92.2% 93.5% 92.8%

Non-moving MobiGesture LOSO 92.6% 90.1% 91.3%
E-gesture 98.0% 97.1% 97.5%

MobiGesture 5-fold 93.5% 94.6% 93.7%
Moving MobiGesture LOSO 94.0% 91.2% 92.2%

E-gesture 8.5% 18.3% 11.3%

We evaluate the segmentation accuracy by checking the overlap between a segment

and a hand gesture. If the middle of a hand gesture lies in a segment, this gesture is
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correctly segmented by that segment. The performance of MobiGesture and E-Gesture

are shown in Table 5.3. From the table, we find that MobiGesture performs stably in both

moving scenarios. The F-measure in two moving scenarios are around 92%. E-gesture

performs well when the user is not moving. However, it performs poorly when the user

is moving. When the user is moving, the F-measure of E-gesture is only 11.3%. The

possible reasons are: (1) the sensors in their wristband are different from ours; (2) their

predefined hand gestures are different from ours.

We change the threshold of E-gesture from 25 degree/sec to 250 degree/sec with a

step of 25 degree/sec and evaluate the performance of E-gesture. Fig. 5.8 shows the F-

measure of E-gesture under different thresholds. When the threshold is 175 degree/sec,

the F-measure of E-gesture in moving scenario is at its highest value: 74.5%. This is

still much lower than the accuracy of our moving segmentation algorithm: 93.7% under

5-folder cross-validation test, and 92.2% under leave-one-subject-out cross-validation

test. Therefore, their segmentation algorithm can not accurately segment the hand ges-

tures when the user is moving. Their solution is not general enough to be extended to

the new gestures and hardware platform.

When a user is standing without performing any gesture, the gyroscope readings

are close to zero. The amplitude of the gyroscope readings is a good measurement to
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segment the hand gestures. Both E-gesture and MobiGesture use the amplitude of the

gyroscope readings to segment the hand gestures. Therefore, both algorithms perform

well when the user is standing. However, when a user is moving, the hand gestures

are mixed with the hand swinging motions. With E-gesture, the amplitude of the gyro-

scope readings can not differentiate the hand gestures from the hand swinging motions.

Therefore, E-gesture performs poorly in the moving scenarios. Instead, we utilize the

self-correlation of the sensor readings to segment the hand gestures, which takes the

hand swinging motions into consideration. Therefore, the proposed segmentation algo-

rithm accurately distinguishes the hand gestures from the hand swinging motions.

5.5 Deep Learning Classification

Two approaches are popular for classifying hand gestures. One is to use conventional

machine learning classifiers, such as Naive Bayes [24], Random Forest [9], and Support

Vector Machines [23]. The other is to use sequential analysis algorithms, such as Hidden

Markov Model (HMM) [5] and Dynamic Time Warping (DTW) [30].

In our system, we use a 9-layer CNN as the classification algorithm. There are

several advantages of the CNN over the other classifying approaches. (1) Instead of

manually selecting features, CNN is able to automatically learn parameters and features.

(2) CNN is very suitable for complex problems. Based on our study, we find that it is

capable of handling mobility noises and reducing overfitting. (3) CNN is very fast to run

in the inference stage even when the number of classes is very large.

5.5.1 Data Scaling

As 17 predefined hand gestures are different from each other and different users perform

hand gestures at different speeds, the duration of each hand gesture is different. Fig. 5.9

shows the distribution of the gesture duration in our dataset. The maximum gesture

duration is 2.7 seconds. The minimum gesture duration is 260 ms. The average gesture
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duration is 1.2 seconds. As the sampling rate is 50 Hz, each gesture contains 60 sample

points on average.

As a CNNmodel requires input data with the same size, we format the segment data

so that each segment has the same size. We apply the Cubic Spline Interpolation [71] to

rescale the number of sample points for each segment to 60. As 3-axis accelerometer

readings and 3-axis gyroscope readings are collected by each sampling, 60 × 6 data

points are generated after interpolation. This 60×6 data matrix is used for classification.

5.5.2 Convolutional Neural Network

We design a 9-layer CNN as the classification algorithm. A CNN consists of an input

and an output layer, as well as multiple hidden layers. The output of the i-th layer of a

n-layer neural network is given by:

y(i) = σ(i)
(
W (i)x(i) + b(i)

)
, (5.6)

where y(i) is the output, x(i) is the input, σ(i) is the activation function,W (i) is the weight

matrix, and b(i) is the bias vector [72]. x(0) is the original input, which is a matrix of the

accelerometer and gyroscope sensor data. y(n) is the final output, which is one of 17

predefined hand gestures. The output of the (i− 1)-th layer is the input of the i-th layer,

i.e., x(i) = y(i−1).

Fig. 5.10 shows the architecture and parameter settings of the CNN. It includes the

following 9 layers:

5.5.2.1 Input Layer

The input layer is the entrance to the CNN. It provides data for the following layers. After

data scaling, we get a 60× 6 data matrix. This matrix is supplied to the input layer.
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Figure 5.10: Architecture and parameter settings of the 9-layer CNN

5.5.2.2 Convolutional Layer

The convolutional layer divides the input data into multiple regions. For each region, it

computes a dot product of the weights and the input, and then adds a bias term. A set of

weights that are applied to a region is called a kernel. The kernel moves along the input

data vertically and horizontally, repeating the same computation for each region. The

step size with which it moves is called a stride. We use ten 3×3 kernels and stride of 1 in

both vertical and horizontal directions. To preserve the output size of the convolutional

layer, we use a padding of 1 in both vertical and horizontal directions. It adds rows or

columns of zeros to the borders of the original input.

5.5.2.3 Batch Normalization Layer

Batch normalization is used to speed up network training, reduce the sensitivity to net-

work initialization, and improve the generalization of the neural network when the training

dataset contains data from different users. To take full advantage of batch normalization,

we shuffle the training data after each training epoch.
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5.5.2.4 ReLU Layer

Convolutional and batch normalization layers are usually followed by a nonlinear acti-

vation function. We choose a Rectified Linear Unit (ReLU) as the activation function. It

performs a threshold operation on each input, where any input value less than zero is

set to zero. ReLU is easy to compute and optimize. It provides fast and effective training

for deep neural networks. It has been shown more effective than traditional activations,

such as logistic sigmoid and hyperbolic tangent, and is widely used in CNN [72].

5.5.2.5 Max-pooling Layer

The max-pooling layer reduces the number of connections to the following layers by

down-sampling. It partitions the input into a set of non-overlapping rectangles. For

each rectangle, it outputs the maximum. The intuition is that the exact location of a

feature is less important than its rough location relative to other features. The pooling

layer reduces the number of parameters to be learned in the following layers, and hence

reduces overfitting.

5.5.2.6 Dropout Layer

As a fully connected layer occupies most of the parameters, it is prone to overfitting. One

method to reduce overfitting is dropout. It randomly removes some nodes from a neural

network with a given probability. All the incoming and outgoing edges to a dropped-out

node are also removed. The dropout probability in our system is 0.6.

5.5.2.7 Fully-connected Layer

The fully-connected layer connects all of its neurons to the neurons in the previous layer,

i.e., the dropout layer. It combines all the features learned by the previous layers to

classify the input. The size of the output of the fully-connected layer is equal to the

number of hand gesture classes, i.e., 17 in our experiments.
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5.5.2.8 Softmax Layer

The softmax layer applies a softmax activation function to the input. The softmax ac-

tivation function normalizes the output of the fully connected layer. The output of the

softmax layer consists of positive numbers that sum to one, which can then be used as

classification probabilities by the classification layer.

5.5.2.9 Classification Layer

The probabilities returned by the softmax activation function are the input to the classifi-

cation layer . The classification layer assigns this input to one of the 17 hand gestures,

and computes the loss function.

As in many other learning systems, the parameters of a CNN model are optimized

to minimize the loss function. We apply the Stochastic Gradient Descent with Momen-

tum [73] to learn the CNN parameters (weightsW and biases b). It updates the param-

eters of the CNN by taking small steps in the direction of the negative gradient of the

loss function:

θl+1 = θl − α∇E(θl) + γ(θl+1 − θl), (5.7)

where θ is the parameter vector, l is the iteration index, α is the learning rate, E(θ) is

the loss function, and γ is the momentum term [72]. The momentum term γ controls the

contribution of the previous gradient step to the current iteration. We use a momentum

term of 0.9 and a learning rate of 0.03.

Very large weights can cause the weight matrix W to get stuck in a local minimum

easily since gradient descent only makes small changes to the direction of optimization.

This eventually makes it hard to explore the weight space, which leads to overfitting.

To reduce overfitting, we use L2 regularization, which adds an extra term into the cost

function to penalize large weights. The regularized loss function is:

ER(θ) = E(θ) + λΩ(W ), (5.8)

74



where λ is the regularization factor, and Ω(W ) = W TW /2 is the regularization function.

The regularization factor in our system is 0.03.

5.5.3 Performance

We apply both the 5-fold cross-validation and leave-one-subject-out cross-validation to

evaluate the performance of our CNN model. Accuracy is considered as the evaluation

metric. It is defined as the number of correctly classified instances divided by the number

of all testing instances. Under the 5-fold cross-validation test, the accuracy of the gesture

classification when the user is standing, walking, and jogging are 92.2%, 90.1%, and

88.6%, respectively. The gesture classification accuracy when the user is jogging is

only 3.6% lower than that when the user is standing. Therefore, we conclude that the

moving scenarios do not influence the classification accuracy significantly in our system

under the 5-fold cross-validation test.

Under the leave-one-subject-out cross-validation test, the accuracy of the gesture

classification when the user is standing, walking, and jogging are 86.6%, 84.6%, and

75.1%, respectively. The gesture classification accuracy when the user is jogging is

11.5% lower than that when the user is standing. In contrast to the 5-fold cross valida-

tion test, the gesture classification is heavily influenced by the moving scenarios under

the leave-one-subject-out cross-validation test. This is reasonable as the leave-one-

subject-out test brings noises from different body sizes and different ways of performing

the same type of hand gesture. The combination of these noises and mobility noises

significantly influences the gesture classification performance.

We compare our gesture classification algorithm with E-gesture [5]. E-gesture pro-

poses a Multi-situation HMM model for gesture classification. During training, a HMM

model is built and trained for each pair of gesture and mobility situation. During testing,

E-gesture computes the Viterbi scores [68] for each of the HMM models, and the best

candidate is selected to be the classification result. We call this method Multi-situation

HMM.
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Table 5.4: Comparison of the Gesture Classification Performance

Test Scenarios Algorithms Accuracy
Standing Multi-situation HMM 97.8%

CNN 92.2%
5-fold Walking Multi-situation HMM 96.2%

CNN 90.1%
Jogging Multi-situation HMM 96.5%

CNN 88.6%
Standing Multi-situation HMM 70.5%

CNN 86.6%
LOSO Walking Multi-situation HMM 69.3%

CNN 84.6%
Jogging Multi-situation HMM 60.7%

CNN 75.1%

We apply the 5-fold cross-validation test and leave-one-subject-out cross-validation

test to evaluate the gesture classification performance. Table 5.4 shows the gesture

classification accuracy of these two algorithms under three different moving scenarios.

Under the leave-one-subject-out cross-validation test, CNN is 16.1%, 15.3%, and 14.4%

more accurate than Multi-situation HMMwhen the user is standing, walking and jogging,

respectively. Under the 5-fold cross-validation test, Multi-situation HMM is roughly 7%

more accurate than CNN. For Multi-situation HMM, the average accuracy is 96.8% un-

der the 5-fold cross-validation test, and 66.8% under the leave-one-subject-out cross-

validation test. There is 30% accuracy difference between these two tests. It shows

that Multi-situation HMMmodel is overfitted. For CNN, the accuracy difference between

these two tests is 8.2%. The reasonably small difference shows that overfitting is sig-

nificantly reduced.

5.6 Performance Evaluation

In this section, we first evaluate the overall performance of MobiGesture, which inte-

grates the aforementioned segmentation and CNN algorithms. We also compare Mo-

biGesture with state-of-the-art work. Then, we evaluate the overhead of MobiGesture
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and compare it with state-of-the-art work.

5.6.1 Accuracy

Table 5.5: Comparison of the Overall Performance

Test Scenarios Algorithms Accuracy
Standing E-Gesture 95.8%

MobiGesture 85.0%
5-fold Walking E-Gesture 8.2%

MobiGesture 83.1%
Jogging E-Gesture 8.2%

MobiGesture 82.8%
Standing E-Gesture 69.1%

MobiGesture 80.2%
LOSO Walking E-Gesture 5.9%

MobiGesture 79.5%
Jogging E-Gesture 5.2%

MobiGesture 70.6%

The overall performance of MobiGesture and E-gesture are shown in Table 5.5. Un-

der the 5-fold cross-validation test, E-gesture performs well when the user is standing.

However, when the user is walking or jogging, the accuracy of E-gesture is very low. The

reason is that E-gesture can not differentiate the hand gestures from the hand swinging

motions. MobiGesture performs stably under different moving scenarios. The recog-

nition accuracy when the user is jogging is only 2.2% lower than that when the user

is standing. Under the leave-one-subject-out cross-validation test, when the user is

standing, the accuracy of E-gesture is only 69.1%. It is much lower than the accuracy

under 5-fold cross validation: 95.8%. It shows that the gesture classification model in

E-gesture is overfitted. When the user is walking or running, E-gesture performs poorly

again due to the low segmentation accuracy. The accuracy of MobiGesture under the

leave-one-subject-out cross-validation test is 3.6% ∼ 12.2% lower than that under the

5-fold cross-validation test. The reasonably small difference shows the effectiveness of

MobiGesture’s anti-overfitting design.
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5.6.2 Time Delay

Table 5.6: Comparison of the Time consumption

Algorithm Training Time (s) Testing Time (ms)
Multi-situation HMM 89.6 40.8

CNN 56.7 13.8

Table 5.6 shows the time consumption of training and testing of Multi-situation HMM

and CNN. For the training time, Multi-situation consumes 58% more time than CNN. For

the testing time, Multi-situation HMM consumes roughly three times as much as CNN.

Multi-situation HMM trains a HMMmodel for each pair of the hand gestures and themov-

ing scenarios, while MobiGesture only trains one CNN model for all the hand gestures

and moving scenarios. As the number of moving scenarios increases, Multi-situation

HMM consumes more time for testing, while our CNN keeps the same. Therefore, CNN

is more practical than Multi-situation HMM to be implemented for real-time classification.

5.7 Conclusion

In this chapter, we present MobiGesture, a mobility-aware gesture recognition system.

We present a novel mobility-aware gesture segmentation algorithm to detect and seg-

ment hand gestures. In addition, we design a CNN model to classify the hand gestures

with mobility noises. Evaluation results show that the proposed CNN is 16.1%, 15.3%,

and 14.4% more accurate than state-of-the-art work when the user is standing, walking

and jogging, respectively. The proposed CNN is also two times faster than state-of-the-

art work.
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Chapter 6

TennisEye: Tennis Ball Speed

Estimation using a

Racket-mounted Motion Sensor

6.1 Introduction

With the advance of ubiquitous computing, cyber physical systems, and human com-

puter interaction, wearable devices are becomingmore andmore popular nowadays [74] [75].

Applications of wearable devices have been widely extended to the field of sports. For

example, Hao et al. propose a running rhythm monitoring system based on the sound

of breathing through smartphone embedded sensors [76]. Kranz et al. propose an au-

tomated assessment system for balance board training called Gymskill, which provides

feedback on training quality to the user based on smartphone integrated sensors [77].

In addition, there are several studies in other sports like running [78], skiing [79], climb-

ing [80], cricket [81], football [82], and table tennis [83]. In addition to these research

publications, the industrial wearable devices market is also evolving at a rapid pace.

The global industrial wearable devices market has reached a value of 1.5 billion dollars

in 2017, and is expected to have a compound annual growth rate (CAGR) of 9.6% [84].

The wearable devices market in sports is expected to register a CAGR of 9.8%, during
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the forecast period (2018 - 2023) [85].

There are also applications of wearable devices in tennis training. Several commer-

cial tennis assistant systems are available on the market that aim to improve players’

performance [13] [14] [15]. These products either integrate the motion sensors inside

the racket [15], or require users to attach the motion sensors onto the racket [13] [14].

They analyze the motion sensor data and compute the key performancemetrics for each

swing, such as stroke type, ball speed, ball spin, and ball impact location. In addition to

these commercial products, there are also several existing research works on analyzing

the performance of tennis shots. For instance, Srivastava et al. analyze the consistency

of the tennis shots [43]. The authors provide recommendation on wrist rotation based

on the shots from professional players. Sharma et al. analyze the tennis serve [45]. By

comparing the serve phases of a user to those of professionals, the system provide the

user with corrective feedback and insights into their playing styles.

Tennis ball speed is an important metric in assessing the skill level of a tennis player.

There are two main ways to calculate the tennis ball speed. One way is to use multiple

high-speed cameras to capture ball movement and calculate speed, such as Hawk-eye

technology [10] [11] and PlaySight [12]. These systems use advanced image process-

ing and analytical algorithms to capture ball movement and calculate speed. However,

high-speed cameras are very expensive and hard to set up. Therefore, most players

cannot get access to these systems, which limits their popularity. Another way is to

use motion sensors. Compared with camera-based method, the motion sensors-based

method is lower cost, more energy efficient, not influenced by lighting environment, and

easier to set up. There are some commercial products on the market that assess the

performance of the players and estimate the ball speed [13] [14] [15]. However, none

of these commercial products open their algorithms to the public. In addition, to our

knowledge, no previous publication has used motion sensors to calculate the tennis ball

speed. Therefore, we are motivated to explore how to use a motion sensor to calculate

the tennis ball speed.
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There are several research publications and commercial products that use motion

sensors to analyze tennis shots. However, none of them open their source codes and

datasets to the public. Source codes and tennis dataset sharing are valuable as they

allow researchers to build their works upon others rather than repeat already existing

research work. In addition, they encourage more connection and collaboration between

researchers, which promotes the tennis research. Therefore, we are motivated to open

our source codes and tennis dataset to the public1.

We present TennisEye, a tennis ball speed calculation system using a racketmounted

sensor. We apply a simple threshold-based method to detect if there is a tennis stroke.

Once a tennis stroke is detected, we use a time window to extract stroke data and inter-

polate the sensor readings if the true value exceeds the measurement limit. We apply

the Random Forest classifier to classify each tennis stroke into one of three stroke types:

serve, groundstroke, and volley. A serve is a shot to start a point. A groundstroke is

a shot that is executed after the ball bounces once on the ground, while a volley is a

shot that is executed before the ball bounces on the ground. If the tennis stroke is a

serve, we apply a regression model to calculate serve speed. If the tennis stroke is

a groundstroke or volley, we propose two models: a physical model and a regression

model. For advanced players, they have consistent and correct stroke gestures. We

use the physical model to calculate the ball speed for them. For beginning players, they

have inconsistent and even incorrect stroke gestures. We use the regression model to

calculate the ball speed.

We summarize our contributions as follows:

1. We propose a tennis ball speed calculation system, TennisEye. It is the first re-

search publication to calculate the serve, groundstroke and volley speed of a tennis

ball using a racket-mounted motion sensor.

2. We propose two models to calculate the groundstroke speed: a physical model

and a regression model. We apply the physical model to calculate the ball speed
1https://hongyang-zhao.github.io/TennisEye/
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for advanced players, and the regression model to calculate the ball speed for

beginning players.

3. We evaluate the proposed system using the tennis shot data from players of differ-

ent levels. Our experiment results show that TennisEye is 10.8% more accurate

than the state-of-the-art work.

4. We collect an accurate and high-quality tennis dataset. We open our source codes

and tennis dataset to the public.

The remainder of this chapter is organized as follows. First, we introduce the system

design in Section 6.2. In Section 6.3, we evaluate the system performance. We discuss

the system and future work in Section 6.4. Finally, we draw our conclusion in Section 6.5.

6.2 TennisEye Design

We introduce the system design of TennisEye in this section. First, we introduce the data

processing in Section 6.2.1. Then, we introduce the sensor deployment and data collec-

tion in Section 6.2.2. Following that, modules in the data processing are introduced one

by one: stroke detection in Section 6.2.3, data segmentation in Section 6.2.4, data inter-

polation in Section 6.2.5, stroke classification in Section 6.2.6, serve speed calculation

in Section 6.2.7, and groundstroke/volley speed calculation in Section 6.2.8.

6.2.1 Overview of TennisEye

The data processing of TennisEye is shown in Fig. 6.1. A motion sensor is deployed on

a racket handle to collect the accelerometer and gyroscope readings, which are real-

time transmitted to a smart phone through Bluetooth Low Energy (BLE). Based on the

collected motion data, a threshold-based method is proposed to detect tennis strokes.

Once a tennis stroke is detected, we apply a peak detection algorithm to find the impact

time when a ball hits the racket. Once the impact time is found, we use a sliding window
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Figure 6.1: Data Processing of TennisEye

with a length of 2 seconds to extract the stroke data. For the stroke data, we apply a

cubic spline interpolation to compensate the sensor readings if the sensor saturates.

Then, we use the Random Forest classifier to classify each tennis stroke into one of

three stroke types: serve, groundstroke, and volley. If the tennis stroke is a serve, we

propose a serve speed estimation method to calculate serve speed. If the tennis stroke

is a groundstroke or volley, we propose two models, a regression model and a physical

model, to calculate the ball speed for the beginning player and the advanced player,

respectively. We train the models and evaluate the performance of the system using a

laptop.
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Figure 6.2: Sensor placement and coordinate system

6.2.2 Sensor Deployment

The motion sensor we used is a UG sensor [69]. It includes a triaxial acceleration sensor

and a triaxial gyroscope. The measure range of the accelerometer and the gyroscope

were set to be ± 16g and ± 2000◦/sec, respectively. Both sensors were sampled with

100 Hz. The UG sensor was fixed at the handle of the racket. Fig. 6.2 shows the sensor

position and the coordinate system. We call the side with the UG sensor side A, and the

side without the UG sensor side B.

Figure 6.3: Birdview of the tennis court from a PlaySight camera

We collected data in a tennis court that was equipped with a PlaySight system [12],

which included six high definition (HD) cameras. The PlaySight system uses image

processing algorithm to recognize stroke type, ball speed, and more. We use the stroke
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type and the ball speed calculated by the PlaySight system as the ground truth. The

birdview of the tennis court from a PlaySight camera is shown in Fig. 6.3.

6.2.3 Stroke Detection

When a player plays tennis, he/she not only swings a racket, but also performs some

non-stroke actions during a match. For example, he/she may run on the court, use the

racket to pick up a ball from the court surface, or twirl the racket in his/her hands while

waiting for an opponent to serve. The aim of the stroke detection is to detect stroke

behaviors, rather than those non-stroke actions.
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Figure 6.4: Accelerometer readings in the X-axis when a player plays tennis

We find that when a player hits a ball, the player swings the racket in a circular motion.

In this circular motion, the racket is affected by a centripetal acceleration that points to

the human torso. This centripetal acceleration generates a spike in the accelerometer

readings in X-axis, ax. Fig. 6.4 shows ax when a player plays tennis. Each spike in the

figure is a tennis stroke. Other non-stroke actions, such as lateral run, twirling a racket,

or picking up a ball, do not generate large values in ax. Therefore, we use ax to detect

stroke behaviors. If ax is larger than a threshold, i.e. 9g, it is regarded as a stroke.
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6.2.4 Data Segmentation

After a stroke is detected, the next step is to find the start and end time of a tennis stroke

and extract this interval of sensor data as stroke data. The extracted stroke data will be

used for ball speed calculation.

There are mainly four phases for a tennis stroke: backswing, acceleration, impact,

and follow-through. In a backswing phase, a player moves a racket behind his/her body

and prepares to swing forward. In an acceleration phase, the player moves the racket

forward. The speed of the racket increases in this phase. At the end of the acceleration

phase and the start of the impact phase, the speed of the racket reaches maximum. In

an impact phase, the racket hits a tennis ball. Due to impact, the speed of the racket

decreases rapidly. Finally, in a follow-through phase, the player slows down the racket

after hitting a ball.

Based on our study, we find that the impact phase occurs in the middle of these four

phases. In addition, the speed of the racket reaches maximum at the start of the impact

phase. Therefore, by looking for the time when the speed of the racket reaches maxi-

mum, we find the start of the impact phase. In our coordinate system, no matter which

stroke (serve, forehand, backhand) a player plays, the racket always rotates around Y-

axis. Therefore, the position with the max absolute value of the gyroscope readings in

the Y-axis is the start of the impact phase.

Fig. 6.5 shows the gyroscope readings of a tennis serve. From the figure, we find

that the valley of gy is the start of the impact phase. We apply a peak detection algorithm

with a sliding window on the absolute values of the gyroscope readings in the Y-axis,

|gy|, to find the impact start time. As the minimum interval between two consecutive

strokes is 2 seconds, the time window size is set to be 2 seconds. Specifically, |gy(t)| is

a peak if it is larger than all of the samples in the time window of [t− 1s, t+ 1s]. Since

the minimum of |gy| for a stroke in our dataset is 814.5 degree/sec, the detected peak of

|gy| should be larger than 814.5 degree/sec. After the impact start time tstart is detected,

we use a time window of [tstart − 1s, tstart + 1s] to extract the stroke data.
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Figure 6.5: Gyroscope readings of a serve

6.2.5 Data Interpolation

In our dataset, we find that the gyroscope readings in the Y-axis sometimes saturate

when a player serves with a high speed. This saturation happens when a sensor mea-

sures a value that is larger than its measurement range ± 2000◦/sec. The blue line in

Fig. 6.6 shows an example of the sensor saturation. In the figure, we find that the raw

gyroscope readings in the Y-axis saturate from 0.52 seconds to 0.54 seconds. To deal

with this problem, we apply the cubic spline interpolation [71] to interpolate the satu-

rated gyroscope readings in the Y-axis. Specifically, we use the gyroscope readings

in the Y-axis within the range of [tsat_start − tw, tsat_start) and
(
tsat_end, tsat_end + tw

]
to

construct new data points within the range of
[
tsat_start, tsat_end

]
. tsat_start and tsat_end

are the start and end times of the saturation, which are 0.52 seconds and 0.54 seconds

in this case. tw is empirically set to be 100ms. The gyroscope readings in the Y-axis

after interpolation are shown as the red dashed line in the figure.
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Figure 6.6: Interpolation of the gyroscope readings in the Y-axis

6.2.6 Stroke Classification

After data interpolation, the next step is to classify the stroke type for each stroke data

segment. First, we extract a series of features from each data segment. The features

include mean, standard deviation, skewness, kurtosis, minimum, and maximum of each

axis of accelerometer and gyroscope readings. The amplitude of accelerometer and

gyroscope readings are also computed. In total, 38 features for each data segment are

calculated and normalized between [0, 1]. Second, we apply a machine learning classi-

fier to classify each data segment into one of three stroke types: serve, groundstroke,

and volley. We compare the performance of five classifiers: Naive Bayes, AdaBoost,

Support Vector Machine (SVM), Decision Tree, Random Forest. Since the Random For-

est performs best as shown in Section 6.3.4, we choose the Random Forest classifier

for stroke classification.

6.2.7 Serve Speed Calculation

For a tennis serve, the initial speed of a ball is quite small and mainly depends on the

racket speed. The larger the racket speed, the higher the ball speed. This motivates us
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to use the racket speed to calculate the serve speed. When a player serves a tennis ball,

the racket swings in a circular motion with the human shoulder as the center. Because

the racket rotates around the Y-axis in our coordinate system, gy measures the angular

speed of the racket. We use gy at the impact start time to model the ball serve speed

vb_serve by a linear regression model as:

vb_serve = k · |gy (tstart)|+ b, (6.1)

where k and b are the parameters of the linear regression model. All of the tennis serve

data are used to train the serve model. k and b are calculated by using the method of

least squares [86]. k and b are 0.025 and 20.06, respectively.

6.2.8 Groundstroke/Volley Speed Calculation

We propose two models to calculate the ball speed: a physical model and a regression

model. The physical model is built based on the physical impact between a racket and

a ball, while the regression model applies a linear regression model to estimate the ball

speed. For advanced players, they have correct stroke gestures, and similar gestures

for the same type of the stroke. We propose a physical model to calculate the ball

speed for them. For beginning players, it is hard to build the physical model due to

two reasons. First, their stroke gestures are incorrect. With incorrect stroke gestures

and terrible tennis skills, they often swing the racket in an awkward way, which is hard

to build the physical model. Second, for the same type of the stroke, they may perform

different gestures and swing the racket in different ways. The big variance in their stroke

gestures reduces the accuracy of the physical model. Therefore, instead of building a

physical model, we propose a simple regression model to calculate the ball speed for

the beginning players.

89



6.2.8.1 Physical Model

The impact between a racket and a tennis ball is governed by some physical laws and

mechanical principles. By applying these laws and principles, we propose a physical

model to estimate ball speed. The outgoing ball speed is mainly influenced by two fac-

tors: the racket speed and the incoming ball speed. The racket speed can be calculated

using motion sensors, while the incoming ball speed is unknown. Without the incoming

ball speed, the outgoing ball speed cannot be calculated by a physical model. To solve

this problem, we apply a physical law (conservation of linear momentum [87]) and a

mechanical principle (Coefficient of Restitution [88]). Both the physical law and the me-

chanical principle contain the incoming ball speed parameter. We combine these into

one by eliminating the incoming ball speed parameter to get the outgoing ball speed.

The physical process of the impact between the ball and the racket is very compli-

cated. With only one single racket-mounted sensor, it is hard to accurately describe

the impact process. Therefore, we make several assumptions to simplify the physical

model:

1. The tennis ball horizontally hits and bounces off the racket.

2. The ball impacts at the center of the racket face.

3. During impact, there is a constant hand force on the racket.

There are four reasons to these three assumptions. (1) The physical impact process

between a racket and a tennis ball is very complicated. Without these assumptions, it

is extremely difficult to build a physical model only using motion sensors. (2) Even if

we build a model without these simplified assumptions, this model will be very compli-

cated. A complicated model may require much more computation and energy cost than

the simplified model. This is not feasible for the small-size device embedded into the

racket. (3) As shown in Section 6.3, the evaluation results demonstrate that our pro-

posed models perform quite well already. A complicated model may only increase the
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Figure 6.7: Physical impact process between a tennis racket and a tennis ball

accuracy a little. (4) These assumptions are made based on our observations on tennis

matches. We find that the angle between a ball and the normal to the racket string plane

is typically quite small. Otherwise, the ball will either move towards the ground or move

towards the sky. Accordingly, we assume that the ball horizontally hits and bounces off

the racket. In addition, we find that tennis balls usually hit at the center of the rackets

for advanced players. Therefore, we assume that the ball impacts at the center of the

racket face. Finally, we find that the duration of the impact is roughly 20ms, as shown in

Fig. 6.5. Thus, it is reasonable to assume a constant hand force during this short period

of time.

Based on these assumptions, the physical impact process is shown in Fig. 6.7. Be-

fore impact, there is a hand force HF exerted on a racket. Under the influence of the

hand force, the racket of mass M is moving at velocity vr_start towards a tennis ball. At

the same time, this tennis ball of mass m is moving at velocity vb_in towards the racket.

After impact, the tennis ball bounces off the racket at velocity vb_out, reducing the velocity

of the racket to vr_end.

By conservation of linear momentum, we get:
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∫ tend

tstart

HFdt = M ·
(
vr_end − vr_start

)
+m ·

(
vb_out + vb_in

)
, (6.2)

where tstart and tend are the start and end times of impact. In this equation, tstart, M ,

and m are known. tstart is calculated in data segmentation module, as shown in Sec-

tion 6.2.4. M and m are 300g and 50g. To calculate vb_out, we need to calculate the

other unknown parameters first. They are tend, vr_end − vr_start, HF , and vb_in.

Calculating tend. The impact starts when a ball hits a racket, and ends when the ball

leaves the racket. During the impact, due to the momentum lost by the ball, the speed

of the racket decreases rapidly. After the ball leaves the racket, the speed of the racket

increases again. By searching for the change of the racket speed, we find the end time

of impact. More specifically, by searching from tstart, tend is calculated as:

tend = t if |gy (t)| < |gy (t+ 1)| (6.3)
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Figure 6.8: Acceleration and gyroscope data of a forehand shot

Fig. 6.8 shows the acceleration data (left figure) and gyroscope data (right figure) of

a forehand shot performed by a left-hand player. The start time of impact tstart is marked

as the red dashed line.The end time of impact tend is marked as the black dashed line.

Calculating vr_end − vr_start. vr_end − vr_start can be calculated as the integration

of the accelerometer readings in the Z-axis. However, as there are two sides of the

rackets, the accelerometer readings in the Z-axis will have opposite values when the
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tennis ball hits on the different sides. The motion sensor is attached on the side A of

the racket, as shown in Fig. 6.2. When the side A of the racket hits the tennis ball, the

movement direction of the racket is the same as the positive direction of the Z-axis of the

sensor. vr_end− vr_start is calculated as the integration of the accelerometer readings in

the Z-axis. However, when the side B of the racket hits the tennis ball, the movement

direction of the racket is opposite to the positive direction of the Z-axis of the sensor, as

shown in Fig. 6.7. vr_end − vr_start is calculated as the integration of the inverse of the

accelerometer readings in the Z-axis. Therefore, to calculate the ball speed, we need

to reorientate the motion sensor so that the positive direction of the Z-axis of the sensor

is the same as the movement direction of the racket.

Table 6.1: Eight impact types between a tennis ball and a racket

Dominant Forehand/ Racket side that
gy(tstart)

DirectionZ−axis and
Hand Backhand hits a ball Directionracket

Left

Forehand Side A > 0 Same
Forehand Side B < 0 Opposite
Backhand Side A > 0 Same
Backhand Side B < 0 Opposite

Right

Forehand Side A > 0 Same
Forehand Side B < 0 Opposite
Backhand Side A > 0 Same
Backhand Side B < 0 Opposite

There are eight possible impact types between a tennis ball and a racket, which are

summarized in Table 6.1. From the table, we find that when the gy(tstart) is larger than 0,

the positive direction of the Z-axis of the sensor is the same as the movement direction

of the racket. When the gy(tstart) is smaller than 0, the positive direction of the Z-axis

of the sensor is opposite to the movement direction of the racket. This motivates us to

use gy(tstart) to reorientate the sensor readings in Z-axis. The reoriented accelerometer

readings in the Z-axis a
′
z is calculated as:

a
′
z =

{
az gy (tstart) > 0
−az gy (tstart) < 0 (6.4)

The change of the racket speed vr_end − vr_start in Eq. 6.2 is calculated as the inte-
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gration of the reoriented acceleration readings in the Z-axis during impact as:

vr_end − vr_start =

∫ tend

tstart

a
′
z (t) dt (6.5)

Calculating HF. This hand force causes the racket to move in an accelerated mo-

tion, which is measured by the Z-axis of the accelerometer. As we assume that the

hand force is constant during impact, we use the adjusted accelerometer readings in

the Z-axis a
′
z at the start time of impact tstart to model the hand force. The larger the

hand force, the larger the acceleration. Thus, we choose a linear function to model this

relationship as shown below:

HF = kHF ·M · a′
z (tstart) + bHF , (6.6)

where kHF and bHF are the model parameters. After substituting Eq. 6.3 through Eq. 6.6

into Eq. 6.2, Eq. 6.2 has four unknown parameters: kHF , bHF , vb_in, vb_out. We use the

incoming ball speed vb_in and outgoing ball speed vb_out calculated from the PlaySight

system to train this model. First, we get the incoming and outgoing ball speeds for

each tennis shot from the PlaySight system. Then, we feed the incoming and outgoing

ball speeds of all the tennis shots into Eq. 6.2. Finally, we use the method of least

squares [86] to calculate kHF and bHF . kHF and bHF are 0.236 and 65.83, respectively.

Calculating vb_in. After kHF and bHF are determined, there are two unknown pa-

rameters in Eq. 6.2: vb_in and vb_out. To calculate vb_out, we need to calculate vb_in first.

However, vb_in is hard to be calculated using a motion sensor. To solve this problem,

we apply the coefficient of restitution (COR) to build another equation between vb_in

and vb_out. We combine these two equations into one by eliminating vb_in parameter to

calculate vb_out.

The COR is defined as the ratio of the final velocity to the initial velocity between

two objects after their collision [88]. The COR is a measure of how much kinetic energy

remains after the collision of two bodies, with the value that ranges from 0 to 1. If the

COR is close to 1, it suggests that very little kinetic energy is lost during the collision;
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on the other hand, if it is close to 0, it indicates that a large amount of kinetic energy is

converted into heat or otherwise absorbed through deformation. In our case, the COR

is calculated as:

e =
vb_out − vr_end
vr_start + vb_in

(6.7)

In this equation, the racket speed before impact vr_start is calculated by the gyro-

scope readings in the Y-axis:

vr_start = |gy (tstart)| ·Rswing, (6.8)

where Rswing is the swing radius of the circular motion, which is the distance between

the center of the racket face and the rotation center. Howard Brody measured the swing

radius among a number of players [89]. He found that the average radius between the

butt end of the racket and the rotation center is 0.2m. As the distance between the

center of the racket face and the butt end of the racket is 0.52m, as shown in Fig. 6.2.

Therefore, Rswing is set to be 0.72m.

By substituting vr_start into Eq. 6.5, we calculate the racket speed after impact vr_end

as:

vr_end = vr_start +

∫ tend

tstart

az
′ (t) dt (6.9)

After substituting Eq. 6.8 and Eq. 6.9 into Eq. 6.7, Eq. 6.7 has three unknown pa-

rameters: e, vb_in, vb_out. We feed the ball speeds calculated from the PlaySight system

into Eq. 6.7 to calculate e. We feed the incoming ball speeds and outgoing ball speeds

calculated from the PlaySight system into Eq. 6.7 to calculate e. The distribution of all

calculated COR values is shown in Fig. 6.9. We find these COR values obey a normal

distribution with a mean of 0.16. Because there are many impact factors for COR es-

timation (such as ball speed, stroke force, string tension and impact position) and the

correlations between these impact factors and the COR are unknown, it is extremely

difficult to explicitly define the COR model. In addition, most COR values are close to
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the mean of this normal distribution. Therefore, we assume COR to be a constant value,

0.16, for all the tennis shots to simplify the model.

We then combine the Eq. 6.9 and the Eq. 6.2 by eliminating the incoming ball speed

to get the outgoing ball speed as:

vb_out =
e

1 + e
· 1

m

[
m · vr_start −M ·

(
vr_end − vr_start

)
+

m

e
· vr_end +

∫ tend

tstart

HFdt

]

(6.10)

From the above equation, we find that the outgoing ball speed vb_out depends on

vr_start, vr_end, tstart, tend, and HF . The incoming ball speed vb_in does not appear in

the equation as it is eliminated when we combine Eq. 6.2 and Eq. 6.7. Though vb_in

does not appear in Eq. 6.10, it indirectly influences the outgoing ball speed via vr_end,

which is calculated based on the integration of acceleration data in the Z-axis during

impact as shown in Eq. 6.9. The larger incoming ball speed, the larger fluctuation of the

acceleration data during impact. Therefore, the influence of the incoming ball speed is

considered in our model.
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6.2.8.2 Regression Model

When a player performs a groundstroke or volley, he/she swings the racket in a circular

motion. In our coordinate system, the racket rotates around the Y-axis for both strokes.

Similar to the serve speed model, we use gy to calculate the outgoing ball speed vb_out

by a linear polynomial model as:

vb_out = k · |gy (tstart)|+ b, (6.11)

where k and b are the parameters of the linear regression model. We use all the tennis

groundstroke and volley data to train this model by the method of least squares [86]. k

and b are 0.039 and 3.94, respectively.

6.3 Performance Evaluation

We evaluate the performance of TennisEye in this section. We first introduce the data

set in Section 6.3.1. Then, we introduce the performance of TennisEye using leave-

one-subject-out cross validation, self test, and 5-fold cross validation in Section 6.3.2.1,

Section 6.3.2.2, and Section 6.3.2.3, respectively. We evaluate the influence factors on

the physical model in Section 6.3.2.4. After that, we evaluate the performance of stroke

detection in Section 6.3.3 and stroke classification in Section 6.3.4. Finally, we evaluate

the overall performance of TennisEye in Section 6.3.5.

6.3.1 Data Set

We collected data from 7 players. Based on their self-report information, we divided the

subjects into three categories: coach, regular player, and casual player. The coaches

play several times per week, the regular players play one time per week, and the casual

players play 0∼2 times per month. Table 6.2 shows the summary of tennis data we

collected with a UG sensor. In total, we collected 569 serves, 1398 groundstrokes, and

18 volleys.
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Table 6.2: Dataset collected with a UG sensor

Player Player Dominant Data Collection Time # Serve # Groundstroke # VolleyDescription Hand
# 1 Male Coach Right 5/8/2018 36 0 0
# 2 Female Coach Left 5/15/2018; 5/22/2018 75 214 5
# 3 Female Coach Right 8/13/2018 50 136 0
# 4 Regular Player Right 5/23/2018 0 302 3
# 5 Casual Player Left 7/7/2018; 7/15/2018; 7/22/2018 0 628 10
# 6 Casual Player Right 5/7/2018; 8/13/2018; 9/7/2018 263 118 0
# 7 Casual Player Right 9/7/2018 145 0 0

Table 6.3: Dataset collected with both a UG and a Zepp sensor

Player Data Collection Time # Serve # Groundstroke # Volley
# 3 8/13/2018 50 136 0
# 5 7/22/2018 0 209 6
# 6 9/7/2018 46 118 0
# 7 9/7/2018 145 0 0

No previous publication has usedmotion sensors to estimate tennis ball speed. How-

ever, we are aware that there are some tennis sensors on the market, such as Zepp [13],

Sony Sensor [90], Usense [14], and Babolat Play [91]. These sensors are attached to

the tennis racket. By analyzing the tennis data, they compute the key performance met-

rics for each swing, such as stroke type and ball speed. Among them, Sony Sensor and

Usense are no longer manufactured. Babolat Play does not compute the ball speeds

of groundstroke and volley shots, which we focus on. Zepp is a popular tennis sen-

sor that recognizes stroke types and calculates serve, groundstroke and volley speeds.

Therefore, we choose Zepp as state-of-the-art work. To compare with the ball speed cal-

culation algorithm in Zepp, we collected tennis data using both a UG and Zepp sensor.

Table 6.3 shows the summary of the tennis data collected.

6.3.2 Ball Speed Calculation Accuracy

6.3.2.1 Leave-one-subject-out Evaluation

To evaluate the performance of the proposed ball speed models. First, we use the video

data to locate each tennis stroke in the dataset collected with a UG sensor as shown
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Figure 6.10: Performance of ball speed estimation models under leave-one-subject-out
cross validation

in Table 6.2. Then, we calculate the tennis ball speeds for each stroke based on the

proposed ball speed models. Finally, we compare the ball speeds calculated by our

model with the ball speeds calculated by other models. Here, we use the leave-one-

subject-out cross validation to evaluate the performance of the proposed ball speed

models. The leave-one-subject-out cross validation uses the tennis shot data from 6

subjects to train the ball speed estimation model, and then applies this model to estimate

the ball speed from the remaining subject. Mean and standard deviation of error are

considered as the evaluation metrics. The results are shown in Fig. 6.10. For the serve

ball speed estimation, the error of the proposed regression model is 4.3±4.0 miles/hour.

The accuracy is 93.4%. For the groundstroke and volley ball speed estimation, the

error of the proposed physical model and regression model are 5.0±4.9 miles/hour and

4.9±4.4 miles/hour respectively. The accuracy are 88.4% and 88.8% respectively. For

all the tennis shot data, the error of the proposed physical model and regression model

are 4.8±4.7 miles/hour and 4.7±4.3 miles/hour, respectively. The accuracy are 90.0%

and 90.2%, respectively. From Fig. 6.10, we find that the performance of the physical

model is similar to that of the regression model. For the casual players, the regression

model is slightly better. For the regular players, two models have similar performances.

For the coaches, the physical model performs slightly better than the regression model.
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Therefore, we use the regression model to estimate the ball speed for beginner players

and the physical model to estimate the ball speed for advanced players.

Table 6.4: Comparison with State-of-the-art Ball Speed Models

Ball Speed Model Evaluation Metric Serve Groundstroke + Volley Serve + Groundstroke + Volley

Peter et al. [83] Mean±Std 11.6±7.1 miles/hour 7.6±6.9 miles/hour 9.1±7.3 miles/hour
Accuracy 81.4% 81.2% 81.3%

Zepp Mean±Std 5.2±5.7 miles/hour 10.6±miles/hour 8.9±7.8 miles/hour
Accuracy 91.8% 70.8% 77.4%

Phy Mean±Std N/A 5.3±5.7 miles/hour 4.9±5.1 miles/hour
Accuracy N/A 86.7% 89.1%

Reg Mean±Std 4.3±3.9 miles/hour 5.1±4.9 miles/hour 4.8±4.6 miles/hour
Accuracy 93.1% 87.4% 89.5%

We compare our ball speed models with two works: the ball speed model in Zepp

and a table tennis ball speed model [83]. There are two reasons to choose this table

tennis ball speed model for comparison. (1) Both tennis and table tennis belong to

racket sports. Compared with other racket sports, table tennis is most similar to tennis.

(2) As far as we know, this table tennis model is the only motion sensors-based ball

speed model for racket sports. We evaluate the performance of these three models

using leave-one-subject-out (LOSO) cross validation. The dataset used for evaluation is

collected with both a UG and Zepp sensor, as shown in Table 6.3. The evaluation results

are shown in Table 6.4. From the table, we find that the proposed physical model and

regression model have similar performance. Both of them perform much better than

Zepp and the table tennis model. For all the tennis shot data, the proposed physical

model is 7.8% more accurate than the table tennis model and 11.7% more accurate

than Zepp. The proposed regression model is 8.2% more accurate than the table tennis

model and 12.1% more accurate than Zepp. The table tennis model performs better

than Zepp, especially in groundstroke and volley speed estimation. However, it is still

outperformed by our models. We think there are two main reasons. (1) Table tennis and

tennis are two racket sports that differ a lot in terms of the size, mass, and material of

the ball and racket. In addition, the techniques of swinging the rackets are different. In

table tennis, a player swings the racket with a lot of wrist action. However, in tennis, a

player swings the racket with a lot of body rotation and less wrist action. Therefore, the
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table tennis model may not be appropriate for tennis. (2) In this table tennis model, the

racket speed is modeled as the sum of the wrist linear speed and wrist rotation speed.

However, in tennis, the racket speedmainly depends on the rotation of the arm and body.

Therefore, our models are more accurate than the table tennis model in characterizing

the tennis racket speed.

6.3.2.2 Self Evaluation

Serve Groundstroke+Volley Serve+Groundstroke+Volley

M
ea

n
/S

td
 o

f 
Er

ro
r 

(m
il

es
/h

o
u

r)

Player 1 Player 2 Player 3 Player 4

Player 5 Player 6

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Player 7

15

P
h
y

P
h
y

P
h
y

P
h
y

P
h
y

R
eg

R
eg

R
eg R
eg

R
eg

R
eg

R
eg R
eg R
eg

R
eg P
h
y

P
h
y

P
h
y

P
h
y

P
h
y

P
h
y

P
h
y

R
eg

R
eg

R
eg

R
eg R
eg R

eg R
eg

16
17
18
19
20
21
22
23
24

Figure 6.11: Performance of ball speed estimation models under self test

The self test partitions the dataset for each player into 5 randomly chosen subsets

of equal size. Four subsets are used to train the model, and the remaining one is used

to validate the model. This process is repeated 5 times, such that each subset is used

exactly once for validation. The results of the self test are shown in Fig. 6.11. Mean and

standard deviation of error are considered as the evaluation metrics. For the serve ball

speed estimation, the error of the proposed regression model is 4.0±3.6 miles/hour. For

the groundstroke and volley speed estimation, the error of the proposed physical model

and regression model are 4.6±4.6 miles/hour and 4.2±3.9 miles/hour. For all the tennis

shot data, the error of the proposed physical model and regression model are 4.4±4.3

miles/hour and 4.2±3.8 miles/hour. Under the self test, both the regression model and

the physical model perform better than that under leave-one-subject-out cross validation.
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In addition, under the self test, the regression model always performs slightly better than

the physical model for all the players.

6.3.2.3 Cross Evaluation
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Figure 6.12: Performance of ball speed estimation models under 5-fold cross validation

The 5-fold cross-validation test uses all the data to form the dataset. It partitions the

dataset into 5 randomly chosen subsets of equal size. Four subsets are used to train the

model, and the remaining one is used to validate the model. This process is repeated

5 times such that each subset is used exactly once for validation. The results of the

5-fold cross validation are shown in Fig. 6.12. Mean and standard deviation of error are

considered as the evaluation metrics. For the serve ball speed estimation, the error of

the proposed regression model is 4.1±3.8 miles/hour. For the groundstroke and volley

speed estimation, the error of the proposed physical model and regression model are

4.8±4.8 miles/hour and 4.6±4.0 miles/hour. For all the tennis shot data, the error of the

proposed physical model and regression model are 4.6±4.5 miles/hour and 4.4±3.9

miles/hour. Under the 5-fold cross-validation test, both the regression model and the

physical model perform better than that under leave-one-subject-out cross validation,
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Figure 6.13: Performance of the phys-
ical model under different incoming ball
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Figure 6.14: Performance of the physi-
cal model under different racket speeds

and worse than that under self test. In addition, under the 5-fold cross-validation test,

the regression model always performs slightly better than the physical model.

6.3.2.4 Influence Factors on the Physical Model

We evaluate the performance of the physical model under different incoming ball speeds

and racket speeds using the leave-one-subject-out cross validation. The results are

shown in Fig. 6.13 and Fig. 6.14. From Fig. 6.13, we find that the physical model per-

forms well for both advanced and beginner players under various incoming ball speeds.

Therefore, the incoming ball speed factor does not have significant influence on the ac-

curacy of the physical model. From Fig. 6.14, we find that the physical model performs

well for advanced players under various racket speeds. However, when the racket

speed is too low (< 30 miles/hour) or too high (≥ 60 miles/hour), the physical model

does not perform well for beginner players. The reduction of the accuracy results from

the awkward and incorrect swing gestures performed by beginner players when they

swing the racket too slow or too fast.
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Figure 6.15: Performance of stroke detection under different thresholds

6.3.3 Stroke Detection Accuracy

Fig. 6.15 shows the performance of the stroke detection under different thresholds.

Three evaluation metrics are considered: precision, recall, and F-measure. F-measure

considers the balance between precision and recall as described in Eq. 6.12:

F -measure = 2 ∗ Precision ∗Recall

Precision+Recall
(6.12)

From the figure, we find that as the threshold increases, the precision increases

and the recall decreases. When the threshold is 9g, the F-measure is at highest value:

97.8%. Therefore, we choose 9g as the threshold for stroke detection. Under this thresh-

old, the accuracy and recall are 98.5% and 97.2%. The promising results show the

effectiveness of the proposed stroke detection method.

6.3.4 Stroke Classification Accuracy

We apply the WEKA machine-learning suite [56] to train five commonly used classi-

fiers. The classifiers include AdaBoost (run for 100 iterations), Naive Bayes, SVM (with
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Figure 6.16: Performance of Tennis-
Eye under leave-one-subject-out cross
validation
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polynomial kernels), Decision Tree (equivalent to C4.5 [57]), and Random Forests (100

trees, 4 random features each). Table 6.5 shows the performance of these five clas-

sifiers under 5-fold cross validation test. Same as stroke detection, precision, recall,

and F-measure are considered as the evaluation metrics. From the table, we find that

the Random Forest classifier performs the best. The precision, recall, and F-measure

are 96.2%, 98.2%, and 97.2%, respectively. Therefore, we choose the Random Forest

classifier for stroke classification.

Table 6.5: Comparison of Machine learning Algorithms for Stroke Classification

Algorithm Precision Recall F-Measure
AdaBoost 92.1% 92.5% 92.3%

Naive Bayes 79.6% 71.6% 73.9%
SVM 92.1% 94.2% 92.9%

Decision Tree 83.4% 85.3% 84.4%
RandomForest 96.2% 98.2% 97.2%

6.3.5 TennisEye Performance

Fig. 6.16 shows the overall performance of TennisEye system and Zepp using the leave-

one-subject-out cross validation. Mean and standard deviation of error are considered

as the evaluation metrics. The cumulative distribution functions of TennisEye and Zepp
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are shown in Fig. 6.17. The error of TennisEye is 5.6±4.9 miles/hour, while that of Zepp

is 8.9±7.8 miles/hour. The accuracy of TennisEye is 88.2%, while that of Zepp is 77.4%.

Therefore, TennisEye is 10.8% more accurate than Zepp in terms of the accuracy.

6.4 Discussion and Future Work

In our physical model, we make several assumptions. For example, we assume that the

tennis ball horizontally hits and bounces off the racket. In addition, we assume that the

ball impacts at the center of the racket face. However, these are not always the case.

The tennis ball may hit the racket with different angles and different positions. In our

study, we find that coaches always swing the racket horizontally and hit the tennis ball

at the sweet spot of the racket, while the casual players often swing the racket at different

angles and hit the tennis ball at bad positions, i.e., racket frame. For the casual players,

the large variance of their tennis swings and bad hit positions significantly reduce the

accuracy of the proposed physical model. Thus, the physical model does not perform

well for the casual players. We plan to further improve the accuracy of the physical

model by releasing these two assumptions.

In our study, we only consider the horizontal impact between a tennis racket and a

tennis ball. However, the racket not only moves horizontally, but also vertically. During

impact, the vertical momentum of the racket converts to the vertical speed and spin

speed of the tennis ball. It would be interesting to explore how much momentum are

converted to the vertical speed and how much momentum are converted to the spin

speed. We plan to take the vertical speed of the racket into consideration to further

improve the accuracy of the ball speed estimation model. In addition, we also plan to

estimate ball spin speed in the future.

In addition, the impact process between a tennis ball and a tennis racket is very

short. To accurately measure the racket vibration during the impact, a high sampling

rate of the UG sensor is needed. The sampling rate in our system is set to be 100Hz. It
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would be interesting to investigate whether the accuracy will be further improved or not

with a higher sampling rate, which will be explored in the future.

6.5 Conclusion

In this chapter, we propose TennisEye, a tennis ball speed calculation system using a

racket mounted sensor. It detects tennis strokes, recognizes stroke types, and calcu-

lates the ball speed. We propose a regression model to estimate the serve speed. In

addition, we propose two models, a regression model and a physical model, to esti-

mate the groundstroke and volley ball speed for the beginning and the advanced player,

respectively. For the leave-one-subject-out cross-validation test, experiments with hu-

man subjects show that the TennisEye is 10.8% more accurate than the state-of-the-art

work. TennisEye is promising and has commercial potential as it is lightweight and more

accurate than the existing commercial product.
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Chapter 7

Conclusion and Future Work

In this dissertation, we investigate how to utilize motion sensors to study human behav-

iors. Specifically, we work on the following four topics:

First, we present Ultigesture, a wristband platform for motion sensing and human

behavior study. We carefully design the hardware and the firmware of Ultigesture wrist-

band. It is comfortable to wear and affordably priced. We provide a series of open APIs

to Android developers. The developers can use our APIs to configure and access the

data of the connected UG wristband through BLE. An Android library is carefully de-

signed so that one smartphone can connect to multiple UG wristbands without conflict.

Second, we propose a novel continuous gesture segmentation and recognition algo-

rithm. For a sequence of hand movement, we separate data into meaningful segments,

merge segments (based on the Gesture Continuity metric, the Gesture Completeness

metric, and the Gesture Symmetry metric), remove noise segments, and finally recog-

nize hand gestures by the HMMclassification. Evaluation results show that the proposed

algorithm can achieve over 94% recognition accuracy when users perform gestures con-

tinuously.

Third, we present MobiGesture, a mobility-aware gesture recognition system. We

present a novel mobility-aware gesture segmentation algorithm to detect and segment

hand gestures. In addition, we design a CNN model to classify hand gestures with

mobility noises. Evaluation results show that the proposed CNN is 16.1%, 15.3%, and
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14.4% more accurate than state-of-the-art work when the user is standing, walking and

jogging, respectively. The proposed CNN is also two times faster than state-of-the-art

work.

Finally, we propose TennisEye, a tennis ball speed estimation system using a racket-

mounted sensor. It detects tennis strokes, recognizes stroke types, and calculates ball

speed. We propose a regression model to estimate the serve speed. In addition, we

propose two models, a regression model and a physical model, to estimate the ground-

stroke and volley ball speed for beginning and advanced players, respectively. Evalua-

tion results show that TennisEye is 10.8% more accurate than the state-of-the-art work.

For future work, we are considering the following four research directions:

• Our UG wristband only integrates accelerometer, gyroscope, and compass sen-

sors for sensing. It would be interesting to add more sensors, such as a micro-

phone and an infrared sensor. With more sensors integrated, a UG wristband will

sense the human behaviors from different views.

• Rather than separately recognizing continuous hand gestures and hand gestures

with body movement noises, it would be interesting to investigate the continu-

ous hand gesture recognition with body movement noises. In some scenarios, a

person tends to perform multiple hand gestures continuously while moving. For

example, a person may like to use hand gestures to continuously control a toy car

while walking with it. In addition, a person may like to continuously change music

while jogging. In these scenarios, continuous hand gesture recognition with body

movement noises is needed.

• Ball speed is an important factor in assessing the skill level of a player. In this

dissertation, we use a racket-mounted sensor to estimate tennis ball speed. In

future work, we plan to use motion sensors to estimate ball speed in other swing

sports, such as badminton, golf, and baseball. We hope that our research can

benefit players who cannot get access to the expensive Hawk-Eye system.
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• Finally, we use motion sensors to study the human behaviors, including hand ges-

tures and sports. In future work, we plan to use motion sensors to study other as-

pects of human behaviors, such as human activity recognition, person-to-person

interaction and human-computer interaction. Our long-term goal is to use motion

sensors to detect, recognize, and understand human behaviors.
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