
W&M ScholarWorks W&M ScholarWorks 

VIMS Articles Virginia Institute of Marine Science 

2020 

Impact of Vaccination and Pathogen Exposure Dosage on Impact of Vaccination and Pathogen Exposure Dosage on 

Shedding Kinetics of Infectious Hematopoietic Necrosis Virus Shedding Kinetics of Infectious Hematopoietic Necrosis Virus 

(IHNV) in Rainbow Trout (IHNV) in Rainbow Trout 

Darbi R. Jones 
Virginia Institute of Marine Science 

Barbara J. Rutan 
Virginia Institute of Marine Science 

AR Wargo 
Virginia Institute of Marine Science 

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles 

 Part of the Marine Biology Commons 

Recommended Citation Recommended Citation 
Jones, Darbi R.; Rutan, Barbara J.; and Wargo, AR, Impact of Vaccination and Pathogen Exposure Dosage 
on Shedding Kinetics of Infectious Hematopoietic Necrosis Virus (IHNV) in Rainbow Trout (2020). Journal 
of Aquatic Animal Health. 
DOI: 10.1002/aah.10108 

This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M 
ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M 
ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/vimsarticles
https://scholarworks.wm.edu/vims
https://scholarworks.wm.edu/vimsarticles?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F1980&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F1980&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


FEATURED PAPER

Impact of Vaccination and Pathogen Exposure Dosage on Shedding Kinetics
of Infectious Hematopoietic Necrosis Virus (IHNV) in Rainbow Trout

Darbi R. Jones,* Barbara J. Rutan, and Andrew R. Wargo
Virginia Institute of Marine Science, William & Mary, Post Office Box 1346, 1370 Greate Road, Gloucester Point,
Virginia 23062, USA

Abstract
Vaccine efficacy in preventing clinical disease has been well characterized. However, vaccine impacts on transmis-

sion under diverse field conditions, such as variable pathogen exposure dosages, are not fully understood. We evalu-
ated the impacts of vaccination on disease-induced host mortality and shedding of infectious hematopoietic necrosis
virus (IHNV) in Rainbow Trout Oncorhynchus mykiss. Fish, in up to three different genetic lines, were exposed to
different dosages of IHNV to simulate field variability. Mortality and viral shedding of each individual fish were
quantified over the course of infection. As the exposure dosage increased, mortality, number of fish shedding virus,
daily virus quantity shed, and total amount of virus shed also increased. Vaccination significantly reduced mortality
but had a much smaller impact on shedding, such that vaccinated fish still shed significant amounts of virus, particu-
larly at higher viral exposure dosages. These studies demonstrate that the consideration of pathogen exposure dosage
and transmission are critical for robust inference of vaccine efficacy.

Rainbow Trout Oncorhynchus mykiss is an important
aquaculture species worldwide (Cowx 2005). The USA
alone produced almost 19,900 metric tons of food-grade
trout in 2019 (USDA NASS 2020). Infectious disease
has been and continues to be a major problem in Rain-
bow Trout aquaculture (Roberts and Shepherd 1974;
Meyer 1991; LaPatra et al. 1994; Lafferty et al. 2015).
Vaccinations are an effective tool for managing a variety
of diseases in trout aquaculture (Leong and Fryer 1993;
Sommerset et al. 2005; Kurath 2008; Subasinghe 2009);
however, there are many trout pathogens for which vac-
cines have proven ineffective or are not available. Fur-
thermore, although many vaccines have been investigated
for how well they protect against clinical disease
(LaFrentz and LaPatra 2003; Adelmann et al. 2008;
Kurath 2008; de las Heras et al. 2010; Cain and Zinn
2011), very little is known about how they affect patho-
gen transmission.

Evidence from a variety of systems indicates that many
vaccines provide only limited protection against transmis-
sion. For example, transmission from vaccinated hosts to
unvaccinated hosts was documented in vaccinated baboons
exposed to Pertussis (Warfel et al. 2014), in Atlantic Sal-
mon Salmo salar exposed to infectious hematopoietic
necrosis virus (IHNV; Long et al. 2017), and in case-control
studies using live, attenuated oral polio vaccines (Sutter
et al. 1991). Additionally, protection under diverse condi-
tions commonly observed in the field, such as variable
pathogen exposure dosages, is not fully understood (Lang-
wig et al. 2019). Recent studies have indicated that vaccine
efficacy is pathogen dose dependent, particularly in the con-
text of preventing transmission (i.e., transmission blocking:
Gomes et al. 2014; Langwig et al. 2017). Therefore, typical
single pathogen dose vaccine trials may not accurately pre-
dict vaccine efficacy in the field. In particular, long-term or
repeated pathogen exposures in the field may overwhelm
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vaccine protection against disease and transmission. If vac-
cinated individuals can transmit, it could result in pathogen
persistence; in turn, this could allow disease to persist par-
ticularly in areas where vaccine coverage is poor. This may
be a challenge to pathogen eradication (Gandon et al.
2003; Meyns et al. 2006; Van der Goot et al. 2007) and
influence the potential evolutionary responses of pathogens
to vaccination, such as the evolution of increased virulence
(Lipsitch and Moxon 1997; Gandon et al. 2001). Ulti-
mately, the poor understanding of vaccine impacts on
transmission has greatly hindered the ability to make reli-
able predictions of vaccine efficacy and likely plays a role
in vaccine failures observed in the field (Lavine et al. 2010).

In Rainbow Trout aquaculture, one of the leading patho-
gens is IHNV. This is a single-stranded, negative-sense
RNA virus found in the family Rhabdoviridae (Bootland
and Leong 1999). This pathogen is endemic to salmonid
species along the Pacific coast of North America, but can
now be found worldwide where trout aquaculture occurs
(Sano et al. 1977; Hill 1992; OIE 2015; Dixon et al. 2016).
It causes an acute disease resulting in epidemics in trout
farms and hatcheries (Troyer et al. 2000) with up to 100%
mortality (Bootland and Leong 1999). The virus is transmit-
ted horizontally through the water via bodily fluids or car-
cass degradation, or by cohabitation with infected fish
(Amend 1975; Traxler et al. 1993). High mortality due to
IHNV in aquaculture settings causes extreme economic loss
to the industry. As a result, vaccines against IHNV have
been created to manage the spread of the pathogen. One of
the most effective is a DNA vaccine developed by Corbeil
et al. (1999), which has been shown to reduce salmonid
mortality by up to 100% (Corbeil et al. 2000a, 2000b; Gar-
ver et al. 2005). Given the promising results of this vaccine,
a similar IHNV DNA vaccine was developed and commer-
cialized by Novartis (Basel, Switzerland), which received
licensure in 2005 by the Canadian Food Inspection Agency
for use in farmed Atlantic Salmon in Canada and in 2013
by the U.S. Department of Agriculture (USDA) for use in
U.S. aquaculture (Salonius et al. 2007; USDA APHIS 2013;
Garver and Wade 2017). Despite this vaccine's success in
controlling disease in a laboratory setting, little is known
regarding its efficacy in the field, particularly with regards
to viral transmission. A study published by Long et al.
(2017) showed that shedding and transmission of IHNV in
vaccinated individuals was possible, but was reduced in
Atlantic Salmon. However, Rainbow Trout have a different
susceptibility to and evolutionary history with IHNV than
Atlantic Salmon (LaPatra 1998). Furthermore, the viral
shedding kinetics of the two fish species in the absence of
vaccination are different (Garver et al. 2013; Wargo et al.
2017) and therefore likely to be differentially impacted by
vaccination. Another study of a closely related pathogen,
viral hemorrhagic septicemia virus, demonstrated that viral
shedding from Muskellunge Esox masquinongy after DNA

vaccination was still possible, but only at very low levels as
determined by plaque assays (Standish et al. 2016). Whether
DNA vaccination will reduce viral shedding and transmis-
sion of IHNV in Rainbow Trout is unknown.

In this study, we investigated the impact of vaccination
on shedding kinetics of IHNV in Rainbow Trout across a
range of viral exposure dosages to simulate field variability.
Host-to-host transmission through the entire infectious per-
iod is difficult to measure for IHNV and many other patho-
gens. However, previous studies have shown that IHNV
transmission is correlated with the amount of virus shed
from the host into the water (Doumayrou et al. 2019). Here,
we used viral shedding that was quantified at numerous
time points throughout the infection as an estimate of trans-
mission. Although shedding kinetics have previously been
characterized in this system (Wargo et al. 2017), the effects
of viral exposure dosage and vaccination on these kinetics
has yet to be shown. To increase the field relevance and gen-
eralizability of the study, we also investigated vaccine
impacts on viral shedding kinetics in three genetically dis-
tinct trout lines used in aquaculture. Multiple fish lines are
used in aquaculture, and studies have indicated that fish
populations may differ immunogenetically and respond dif-
ferently to vaccination (Overturf et al. 2003). This study is
directed toward increasing the ability to infer IHNV vaccine
transmission prevention efficacy in the field.

METHODS
Fish lines.— Three Rainbow Trout fish lines were used

in the experiments, designated IHNV.R, ARS-Fp-R, and
ARS-Fp-S, to reflect genetic diversity that would be found
in aquaculture. Line IHNV.R was obtained from Clear
Springs Foods (Buhl, Idaho) and has been selected for a
variety of aquaculture production-enhancing traits such as
growth and resistance to IHNV and other diseases (LaPa-
tra and Towner 2006). Line ARS-Fp-R was bred exclu-
sively for five generations to be genetically resistant to
Flavobacterium psychrophilum, the causative agent of bac-
terial coldwater disease (BCWD), by the National Center
for Cool and Cold Water Aquaculture (NCCCWA; within
USDA's Agricultural Research Service) in West Virginia.
Line ARS-Fp-S originated from the same ancestor as line
ARS-Fp-R, but was bred for one generation to be suscepti-
ble to BCWD, and then randomly outbred to maintain
susceptibility (Wiens et al. 2013). Fish lines IHNV.R,
ARS-Fp-R, and ARS-Fp-S were used for experiment 1,
while only IHNV.R and ARS-Fp-R were used for experi-
ment 2.

Virus.— The pathogen used for the experiments was
IHNV (Salmonid novirhabdovirus) isolate C (genotype
mG119M; GenBank accession number AF237984). The
genotype of this isolate is within the M genogroup and it
was first isolated in the Idaho trout aquaculture region
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(Kurath et al. 2003). For these studies, a new virus stock
was propagated by passing a previous virus stock on epithe-
lioma papulosum cyprini cells at a multiplicity of infection
of 0.005 (Fijan et al. 1983). The culture was then stored at
−80°C in Eagle's minimum essential media (MEM; Gibco)
supplemented with 10% fetal bovine serum, as previously
described (Peñaranda et al. 2011). This virus stock was enu-
merated by triplicate plaque assays (Batts and Winton
1989) and found to have a titer of 7.56 × 108 plaque forming
units (PFU)/mL. We used a viral stock with as few passes in
cell culture since its original isolation as possible (i.e., <10).

Vaccine.— The vaccine used in this study was the DNA
vaccine pWg containing the glycoprotein (G) gene of
IHNV isolate WRAC (genotype mG010M). It was propa-
gated using plasmid Gigaprep kits (Qiagen) from the orig-
inal transfected bacteria (Corbeil et al. 1999, 2000a). This
vaccine is heterologous to the virus exposure strain (IHNV
isolate C) used in this study. The vaccine provides highly
efficient disease protection as previously characterized
(Corbeil et al. 2000a; LaPatra et al. 2001; Garver et al.
2005). A total of 120 (experiment 1) or 200 (experiment 2)
fish from each line were vaccinated with an intramuscular
injection of 0.05 µg of the vaccine in 25 µL of phosphate
buffered saline (PBS) or sham-vaccinated with 25 µL of
PBS. Fish were then placed in 50-gal tanks and held in
freshwater at 15°C for 30 d (450 degree days) to allow
acquired immunity to develop (Corbeil et al. 2000a).

Virus exposure and shedding sampling.—At 30 d post-
vaccination, fish were exposed to one of six (experiment 1)
or five (experiment 2) dosages of IHNV in batches grouped
by treatment (10 fish per treatment in experiment 1; 20 fish
per treatment in experiment 2) by placing them into 1 L of
static water containing virus for 1 h. Supplemental aeration
was provided during the virus challenge. Individual fish
weights (mean ± SD) were comparable between the fish
lines, and averaged 2.55± 0.29 g and 2.46 ± 0.58 g for
experiments 1 and 2, respectively. Virus exposure levels
were 1 × 101, 1 × 102, 1 × 103, 1 × 104, and 1 × 105 PFU/mL
water in experiment 1, and 1 × 103, 1 × 104, to 1 × 105, and
1 × 106 PFU/mL water in experiment 2. These exposure
levels were highly controlled and precisely quantified, and
therefore we refer to them as dosages here. The method of
virus exposure was exactly the same for vaccinated and
unvaccinated fish. Higher dosages were used in experiment
2 because few fish were infected at the lower dosages in
experiment 1, which hindered elucidation of the shedding
kinetics and vaccine effects. Both experiments also con-
tained a negative control group exposed to the cell culture
medium (MEM with 10% fetal bovine serum). After expo-
sure, fish were transferred to 6-L tanks and washed at a flow
rate of 1,500–1,600 mL/min for 1 h to remove exposure
virus. The fish were then individually separated into ran-
domly assigned 0.8-L tanks in a tower rack system (Aqua-
neering), with water flow set to 150 mL/min. After all fish

were distributed (approximately 2 h), water flow was turned
off and a 1-mL water sample was taken from each tank
(day 0) and stored in a labeled 1.5-mL polypropylene micro-
centrifuge tube. This day-0 sample was used to ensure that
all exposure virus had been removed after the wash step.
The tanks were then held static for 22 h, after which 1 mL
of water was again sampled from each tank (day 1). Hold-
ing the water static allowed for an estimation of the accu-
mulation of the total amount of virus shed over the
previous 22-h period. Water flow was turned back on to
150mL/min for a 2-h wash, which permitted 22.5 volumes
of tank exchange. This flow rate and wash period ensured
that all virus was removed from the tank, and was deter-
mined by a pilot study measuring virus quantity over time
(Supplemental Figure 1 available in the online version of
this article). This sampling and wash cycle was repeated
daily until 7 d postexposure. After sampling on day 7 (which
previous studies have indicated is when viral shedding decli-
nes: Wargo et al. 2017), tanks were flushed for 2 h and then
flow was set to 80 mL/min. Water was then turned off to all
tanks 22 h before sampling on day 10. Samples were taken
until day 10 in experiment 1 and day 7 in experiment 2.
Mortality was also tracked for 40 d in experiment 1 and for
30 d in experiment 2. Water samples were stored at –80°C
for further processing. The sampling design allowed us to
quantify the total amount of virus that each individual shed
per day. Water temperature (mean ± SD) was maintained at
15± 1°C and fish were provided with oxygen via air stones
throughout the experiment. Fish were not fed the day before
the experiment or on day 0. Fish were then fed on Mon-
days, Wednesdays, and Fridays during the experiment. Fish
were maintained on a 12-h photoperiod. Over the experi-
mental period, 42 fish (11.67%) died in experiment 1 and 56
fish (14%) died in experiment 2; however, dead fish were left
in their tanks until completion of the study and their water
was sampled as described above. At the end of the experi-
ment, all of the remaining fish were euthanized with an
overdose of 0.27 mg/mL tricaine methanesulfonate buffered
with 0.09 mg/mL sodium bicarbonate. All fish experiments
were approved by the William and Mary Institutional Ani-
mal Care and Use Committee under protocol number
IACUC-2014-06-17-9666-arwargo.

Sample processing.— The RNA was extracted from 210
µL of the water samples using the cador Pathogen 96
QIAcube HT Kit (Qiagen) with a Tecan Freedom EVO
100 liquid handling robot, as per manufacturer guidelines
with the following modifications. Each 210-µL water sam-
ple was transferred from the 1.5-mL microcentrifuge tube
to a 96-well, 2-mL-deep lysis plate. A mixture of 84 µL
VXL, 1 µL carrier RNA, and 20 µL Proteinase K was
added to each sample, after which the samples were vor-
texed for 30 s at 6–12 × g and allowed to incubate at
room temperature for 5 min. The samples were vortexed
again for 30 s at 6–12 × g before 310 µL ACB buffer was
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added. The samples were then vortexed for another 30 s at
6–12 × g and transferred to a nucleic acid-binding filter
plate. They were pulled into the filter membrane using a
vacuum manifold at 250 mbar for 180 s. Each sample was
washed with 600 µL of Buffer AW1, eluted at 350 mbar
for 180 s. The samples were then washed with 600 µL of
Buffer AW2, eluted at 350 mbar for 60 s. They were
washed again with 700 µL of 100% ethanol, eluted at 350
mbar for 30 s. Finally, the samples were dried two times
(700 mbar for 30 s followed by 350 mbar for 120 s) under
vacuum. A 100-µL volume of AVE buffer was then added
to the filter plate and allowed to sit for 120 s. The RNA
was eluted into an elution plate using the vacuum mani-
fold at 700 mbar for 360 s. All extracted RNA was stored
at –80°C until further processing.

RNA samples were transcribed to cDNA using oligo
(dT) random primers and Moloney murine leukemia virus
(M-MLV) reverse transcriptase (Promega), with 11 µL of
sample in a 20-µL reaction volume, as previously
described (Wargo et al. 2010). For quantification of viral
RNA, cDNA was diluted 1:2, then used in a qPCR reac-
tion with forward and reverse primers IHNV N 796F,
IHNV N 875R (Life Technologies), TaqMan probe IHNV
N 818MGB (Life Technologies), and TaqMan Universal
PCR Master Mix No AmpErase UNG (Life Technolo-
gies) on a QuantStudio6 qPCR machine as described else-
where (Purcell et al. 2013). Each qPCR plate also
included triplicate wells of an 8-step, 10-fold dilution series
of artificial positive control (APC) DNA plasmid standard
to allow for absolute quantification of viral RNA (Purcell
et al. 2013). All samples fell within the linear range of
detection. Our qPCR assay allowed us to distinguish
between the vaccine and virus, because the qPCR assay
specifically targets the IHNV N gene and the vaccine only
contains the viral G gene. Therefore, only the amount of
virus shed, not the vaccine, was quantified. The qPCR
assay provides the number of viral RNA copies in water
samples presented as virus copies per mL of water.

Statistics.— Statistical analyses were carried out in R
(version 3.2.2; R Core Team, Vienna) and RStudio (version
1.1.423; RStudio Team, Boston). R code and appropriate
data files are available upon request. For all analyses,
assumptions of homogeneity of variance and normality
were tested with residual plots, Levene's tests, and Shapiro–
Wilk tests, where appropriate. Minimal models were chosen
by comparing model fits using AIC values, with differences
<2 considered significant. Under the assumption of parsi-
mony, the simplest model that converged, with equal or
lower AIC, was chosen. For clarity, only the statistical find-
ings are presented in the main body of text. Details on mini-
mal models selected can be found in the Supplemental
Materials (available in the online version of this article). Of
the 3,240 samples that were processed in experiment 1, only
four samples tested positive out of the 900 negative controls

(fish not exposed to virus), indicating a false positive rate of
0.44%. Of the 3,200 samples that were processed in experi-
ment 2, only eleven samples tested positive out of 1,040 neg-
ative controls, indicating a false positive rate of 1.06%.
Retesting of these samples indicted that they likely became
contaminated during the qPCR step. We are confident that
this was not due to infection of negative control fish,
because no single negative control fish was positive for two
or more subsequent time steps, and the false positives were
sporadically dispersed throughout the experiment. In order
to correct for the false positive rate, we took an average of
the negative control values and subtracted it from all of the
other sample values. This was a conservative approach and
likely overestimated the level of false positives. Ultimately,
this correction did not change any of the models or statisti-
cal results, so the uncorrected results were presented. Unless
noted otherwise, dead fish were included in the analyses of
shedding data. Removal of dead fish did not significantly
affect the results, likely because very few vaccinated fish
died during the experiment.

Survival.— Survival was visualized using Kaplan–Meier
analyses with the “survfit” function in the “survival” pack-
age in R. Escapees (12 in experiment 1 and 4 in experi-
ment 2) were censored from the day of escape forward.
Analyses for all fish in experiment 1 and unvaccinated fish
in experiment 2 were done using Cox proportional hazard
models in R with the “coxph” function in the “survival”
package (Therneau 2015). Explanatory fixed factors in the
models were vaccine, fish line, and log10 (dosage), which
was a continuous variable. Their interactions were also
included. The baseline was set to the ARS-Fp-R unvacci-
nated fish treatment. Due to lack of mortality for any of
the vaccinated fish in experiment 2, the coxph models
were not able to converge. Therefore, a log-rank test with
the “survdiff” function in R was used to compare the sur-
vival of vaccinated versus unvaccinated fish in experiment
2, pooled across all dosages and fish lines. Relative per-
cent survival (RPS) was calculated for both experiments
using the following formula: RPS= [1 – (the percent of
mortality of vaccinated individuals/the percent mortality
of controls)] × 100.

Number of fish shedding per day.— The daily number of
fish that shed virus was analyzed with a logistic regression.
The response variable in the model was the proportion of
fish shedding per day as indicated by a positive water
sample. Day 0 and the negative control dosage were not
included in the model because our goal was to determine
if shedding differed between treatments from the point
that shedding began. The explanatory fixed factors in each
of the models were vaccine, fish line, log10 (dosage), and
day, with interactions included. A unique identifier for
each fish (fish ID) nested in day was included in the model
as a random factor, because the same fish were sampled
at multiple time points (repeated measures). Data were
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analyzed using the “glmer” function in the “lme4” pack-
age in R (Bates et al. 2015), with a binomial data struc-
ture. The baseline model was represented by the
unvaccinated, ARS-Fp-R fish treatment.

Quantity of virus shed per day.— The daily quantity of
virus shed was analyzed with mixed effects models in R
with the “lme” function in the “nlme” package (Pinheiro
et al. 2015). The response variable in the model was
log10+ 1 transformed RNA copies of IHNV per mL.
Explanatory fixed factors were vaccine, fish line, log10
(dosage), and day. To avoid over-parameterizing the
model, only investigations of main effects and two-way
interactions were possible given the number of positive
replicate samples per treatment. Fish ID nested in day
was included in the model as a random factor, because
each fish was sampled at multiple time points (repeated
measures). A maximum likelihood estimation of parame-
ters was used due to its ability to allow for model selection
and to handle sample sizes of <30 fish per treatment.
Water samples with no detectable virus were dropped
from the analysis because our goal was to determine if the
amount of shedding differed between treatments for fish
that were actively shedding virus. To ensure adequate sta-
tistical replication, this analysis was conducted for days 1–
7 and dosages 103, 104, and 105 PFU/mL for experiment
1, with the addition of dosage 106 PFU/mL for experiment
2. Other dosages and time points were omitted because of
insufficient replicate positive samples. Thus, this analysis
compares the rate of shedding between fish during the
peak shedding period. The baseline model was represented
by the unvaccinated, ARS-Fp-R fish treatment.

Total virus shed.— Total virus shed was analyzed using
a negative binomial regression with the “glm.nb” function
in the “MASS” package in R (Venabeles and Ripley
2002). The response variable was the amount of virus shed
by each individual fish per day totaled over all days of the
experiment and then log transformed. Explanatory fixed
factors were vaccine, fish line, and log10 (dosage). Their
interactions were also included. The negative control treat-
ment was dropped from the analysis, because we were
interested in comparing vaccine and dosage impacts on
shedding between fish exposed to virus. However, fish
exposed to virus that did not shed were included. The
baseline model was represented by the unvaccinated,
ARS-Fp-R fish treatment.

RESULTS

Survival
Fish mortality largely occurred between day 7 and day 25,

although the kinetics differed between treatments and experi-
ments (Figure 1). For experiment 2, vaccination reduced
mortality to zero across all virus dosages and fish lines. This

reduction in mortality was significant when compared with
the levels observed in unvaccinated fish (n= 200), after pool-
ing across exposure dosage and fish line (log-rank test: χ2=
65, df = 1, P< 0.0001). In both experiments, as virus expo-
sure dosage increased, the hazard of death also significantly
increased in unvaccinated fish (experiment 1: χ2= 1.63, df =
1, P < 0.05; experiment 2: χ2= 39.29, df = 1, P< 0.001;
Supplemental Tables 1 and 2 available in the online version
of this article). In vaccinated fish, this rate of increase was
reduced by 34% in experiment 1 and did not occur in experi-
ment 2 because mortality remained at zero even at high viral
exposure dosages where mortality reached up to 60% in
unvaccinated fish. Thus, vaccination reduced the risk of mor-
tality in both experiments, and the effect was more pro-
nounced at the higher virus exposure dosages compared with
the lower dosages. This was largely because fish mortality
was minimal at the lowest dosages even in unvaccinated fish,
diminishing the possible effect of vaccination. The RPS
(mean ± SD) was 50± 50% at the lowest dosage in both
experiment 1 and 2. The RPS at the highest dosage was 78 ±
25% in experiment 1 and 100 ± 0% in experiment 2. A fish
line effect was also observed, such that the IHNV.R fish line
had a 63% and 52% lower hazard of dying in experiments 1
and 2, respectively, compared with the ARS-Fp-R line (ex-
periment 1: χ2= 11.3, df= 2, P < 0.05; experiment 2: χ2=
6.77, df= 1, P < 0.01; Supplemental Tables 1 and 2). This
occurred in all treatments in experiment 1 and only with
unvaccinated fish in experiment 2, because mortality was
zero for the vaccinated fish in both fish lines in experiment 2.
None of the unexposed control fish died in experiment 2 and
low-level mortality of control fish was observed in experi-
ment 1, which did not affect the results.

Number of Fish Shedding per Day
In general, the number of fish shedding peaked on day

2 and then rapidly declined (Figure 2). The timing of
shedding was highly consistent across treatments, such
that more than 90% of the fish started shedding by day 2
and more than 80% stopped shedding by day 7 in both
experiments. The analysis revealed that as exposure
dosage increased, the probability of shedding also
increased (experiment 1: Z= 14.1; df= 1, 2,231; P <
0.001; experiment 2: Z= 12.6; df = 1, 2,232; P < 0.001;
Supplemental Tables 3 and 4), such that very few fish shed
at the lowest dosages and all individuals shed at the high-
est dosages in both experiments (Figure 2). For experi-
ment 2, this relationship differed between fish lines; the
rate of increase was lower for the IHNV.R fish line (Z =
−2.1; df = 1, 2,232; P = 0.037; Supplemental Table 4).
For experiment 1, the relationship between the probability
of shedding and dosage depended on day (Z = −7.8; df =
1, 2,231; P < 0.0001; Supplemental Table 3). At lower
dosages, the probability of shedding remained at zero
through time, whereas as at the highest dosage it
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decreased from nearly one to zero through time (Supple-
mental Figure 2a). For experiment 2, the probability of
shedding the virus initially increased and then began to
decrease over time (Z = −13.0; df = 1, 2,232; P < 0.0001;
Supplemental Table 4). However, the shape of this rela-
tionship was consistent across dosages (Supplemental Fig-
ure 2b). In experiment 1, there was a general reduction in
the probability of shedding across all fish lines due to vac-
cination, but this difference was only significant for the
ARS-Fp-S fish line (Z = −3.6; df = 2, 2,231; P < 0.001;
Supplemental Table 3; Supplemental Figure 3). There was
also a greater reduction in the probability of shedding
due to vaccination at early time points compared with
later time points (Z = 1.7; df = 1, 2,231; P = 0.09; Sup-
plemental Table 3; Supplemental Figure 4a). This is
because at later time points, the probability of shedding

was zero in experiment 1 regardless of vaccine treatment,
so a vaccine effect was not possible. In contrast, the prob-
ability of shedding decreased more rapidly through time
in vaccinated fish compared with unvaccinated fish in
experiment 2 (Supplemental Figure 4b). This resulted in
no difference in the probability of shedding between vac-
cinated and unvaccinated fish at early time points, but a
significantly lower probability in vaccinated fish at later
time points (Z = −8.1; df = 1, 2,232; P < 0.001; Supple-
mental Table 4).

Quantity of Virus Shed per Day
Generally, the amount of virus shed was variable

through time and depended on viral exposure dosage and
vaccination (Supplemental Figure 5). In an effort to com-
pare viral shedding rates, the daily amount of virus shed

FIGURE 1. Survivorship of Rainbow Trout exposed to IHNV. Panels represent experiment 1 for fish lines (a) ARS-Fp-R, (b) IHNV.R, and (c)
ARS-Fp-S, and experiment 2 for fish lines (d) ARS-Fp-R and (e) IHNV.R. Lines represent the Kaplan–Meier survivorship through time of
unvaccinated (dotted line) or vaccinated (solid line) fish exposed to different dosages (PFU/mL) of virus (denoted by color). Lines that are not visible
had zero mortality (proportion survival= 1) and overlap.
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was analyzed for only those fish shedding detectable virus
(see Methods). For both experiments, as viral exposure
dosage increased, the amount of virus shed generally sig-
nificantly increased (experiment 1: F = 1,628.6; df = 1,
134; P < 0.001; experiment 2: F = 14.8; df = 1, 250; P <
0.001; Supplemental Tables 5 and 6; Supplemental Fig-
ure 6). For experiment 1, the shedding rate rapidly
increased until day 4 and then began to taper across all
dosages (Figure 3a). In experiment 2, the shedding rate
slightly increased or remained stable through time at the
lowest dosages and decreased through time at the highest
dosages (Figure 3b). Vaccination significantly decreased
the rate of viral shedding (experiment 1: F = 27.7; df = 1,
134; P < 0.001; experiment 2: F = 8.6; df = 1, 250; P =
0.004; Supplemental Tables 5 and 6) across all treatments
in both experiments (Supplemental Figure 7), but did not
completely eliminate shedding. Despite suggestive trends,
there was no significant difference in the amount of virus
shed between the fish lines across dosages or through time
(Supplemental Figure 8).

Total Virus Shed
In an effort to compare absolute viral fitness between

treatments, the total amount of virus shed by each fish
was analyzed. The analysis for both experiments indicated
that the total amount of virus shed increased with increas-
ing dosage (experiment 1: Z = 17.1; df = 1, 295; P <
0.0001; experiment 2: Z = 7.0; df = 1, 314; P < 0.0001;
Figure 4; Supplemental Tables 7 and 8). For experiment
1, there was a significantly higher amount of virus shed by
unvaccinated fish compared with vaccinated fish across all
treatments (Z = −4.5; df = 1, 295; P < 0.0001; Figure 4a;
Supplemental Table 7). For experiment 2, the amount at
which vaccination reduced the total amount shed
decreased as dosage increased, but remained significant
across all dosages (Z = 2.5; df = 1, 314; P = 0.012; Fig-
ure 4b; Supplemental Table 8). Despite suggestive trends,
no significant difference was observed between the fish
lines in the total amount of virus shed for either experi-
ment (Supplemental Tables 7 and 8).

DISCUSSION
This is one of the first studies to investigate vaccine

impacts on host mortality and virus shedding kinetics
across multiple pathogen exposure dosages (as reviewed in
Langwig et al. 2019) and host lineages. The study pro-
vided an estimate of the efficacy of blocking transmission
using vaccination under diverse conditions, which may be
encountered in the field. In general, the IHNV DNA vac-
cine resulted in decreased mortality with RPS ranging
from 50% to 100% across multiple genetic lines and vari-
ous exposure dosages. This was even true at high patho-
gen exposure dosages, despite increased mortality in

unvaccinated groups. These findings are in line with other
studies investigating the disease prevention efficacy of this
vaccine (Corbeil et al. 2000b; Garver et al. 2005; Kurath
2008). The vaccine was much less effective at preventing
viral shedding, and the majority of vaccinated fish became
infected and shed virus. In addition to bolstering inference
of efficacy under potential field conditions, the quantifica-
tion of shedding kinetics across multiple virus exposure
dosages provided insights into possible mechanisms of
vaccine protection.

The reduction in mortality due to vaccination appeared
to be partly driven by a significant reduction in the proba-
bility of fish shedding virus. If shedding is associated with
in-host infection levels as has been previously observed
(Wargo et al. 2011, 2017), this may indicate that the vac-
cine reduced the probability of infection. However, large
numbers of vaccinated fish still shed the virus, particularly
at higher viral exposure dosages. Furthermore, reductions
in mortality were greater than reductions in shedding in
vaccinated hosts. Although not directly measured here,
these results suggest that the vaccine was only partially
successful at blocking infection, and that this was not the
only mechanism by which the vaccine reduced mortality.

Interestingly, vaccination also reduced the overall rate
of viral shedding by infected fish through time, resulting in
a lesser total amount of virus shed in vaccinated versus
unvaccinated fish. The reduced shedding rate due to vacci-
nation appears to be driven by reductions in peak shedding
as well as more rapid cessation of shedding in vaccinated
versus unvaccinated fish. This was most pronounced in
experiment 2, likely because the lowest three dosages in
experiment 1 caused very little shedding in unvaccinated
fish, so a vaccine effect could not be observed. These find-
ings are in line with others that have found that vaccination
expedites pathogen clearance (De Jong and Kimman 1994;
Coward et al. 2014). Again, these reductions were not abso-
lute, in that vaccinated fish still shed a significant amount
of virus. Likewise, small or insignificant reductions in shed-
ding were often observed when mortality was reduced to
zero. The bulk of this shedding occurred during days 1–4,
where vaccine effects on shedding were even less pro-
nounced. Therefore, viral load reductions can only partially
explain vaccine disease protection.

Collectively, these results indicate that the mechanism
by which the IHNV DNA vaccine operates involves both
resistance and tolerance. Here, we define tolerance as host
reductions in levels of clinical disease without reductions
in pathogen load (Råberg et al. 2007). Given that the shed
and within-host IHNV loads are correlated (Wargo and
Kurath 2011), the vaccine appeared to make hosts more
resistant by reducing the number of hosts infected, the
peak viral loads within hosts, and the duration of viremia.
This warrants further investigation given that within-host
loads weren’t measured here. Regardless, the changes in
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FIGURE 2. The number of fish shedding IHNV per day. Panels represent experiment 1 for Rainbow Trout lines (a) ARS-Fp-R, (b) IHNV.R, and (c)
ARS-Fp-S and experiment 2 for fish lines (d) ARS-Fp-R and (e) IHNV.R. Lines represent the total number of fish out of 10 (panels a–c) or 20
(panels d–e) that had detectable IHNV shedding by qPCR through time. Unvaccinated fish are represented by the dotted line and vaccinated fish are
represented by the solid line. The color in the legend represents the challenge dosage of virus in PFU/mL. Points represent when samples were taken.
Lines that are not visible had zero fish shedding.
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shedding (and likely infection) levels were relatively small
compared with changes in survival, suggesting that a toler-
ance mechanism was equally (if not more) important as
resistance. This tolerance mechanism allowed for increased
survival of vaccinated fish, even at the same viral shedding
levels as unvaccinated fish. These results are similar to a
study where fish that were vaccinated against enteric red-
mouth disease were exposed to Yersinia ruckeri; although
the vaccine prevented mortality, the bacterial burdens in
the spleen were the same for both vaccinated and unvacci-
nated fish (Harun et al. 2011).

Immunologically, one protective mechanism thought to
partially account for the high efficacy of the IHNV DNA
vaccine is the robust stimulation of innate immune
responses. When vaccinated with pWg, there is an up-reg-
ulation of mx-1 and vig-8 in trout (Purcell et al. 2004,
2006). After penetrating the skin defenses, this is the first
line of host defense against RNA viruses and indicates
that early, non-specific, type I interferon anti-viral
response is important in stimulating adaptive immunity
against IHNV (Verhelst et al. 2013). Peñaranda et al.
(2009) showed that when trout are exposed to IHNV, mx-
1 was up-regulated on day 1, peaked on day 3, and
remained high until after day 7. This generally followed
the shedding kinetics described here in that shedding
peaked around days 1–3 and then began to decline. Col-
lectively, this suggests that the up-regulation of mx-1 due
to vaccination leads to more rapid viral clearance, and
ultimately reduced mortality. There is also evidence that
this primed interferon response provides some protection
against infection and partially blocks viral replication
(Park et al. 2011). However, the immune response in vac-
cinated fish appears to be more effective at managing dis-
ease even when viral loads remain high. This tolerance
may be due to better regulation of immunopathology, sim-
ilar to that of Chinook Salmon Oncorhynchus tshawytscha
exposed to Renibacterium salmoninarum (Metzger et al.
2010). Given that innate immunity was not directly mea-
sured here, this warrants further investigation.

Pathogen exposure dosage had a large impact on mor-
tality and shedding, which ultimately influenced vaccine
efficacy. As dosage increased, mortality, probability of
shedding, and total amount of viral shedding also
increased commensurately. Vaccination appeared to atten-
uate this dosage effect, such that the increase in shedding
with increasing dosage was reduced in vaccinated fish
compared with unvaccinated fish. However, when analyz-
ing the total amount of virus shed over the entire experi-
ment, there was evidence that at very high dosages,
prevention of shedding by vaccination (and to some
extent, prevention of disease) were reduced. This suggests
that at very high viral dosages, immunity provided by vac-
cination is diminished. These findings agree with the find-
ings of others that increasing pathogen dosage leads to

increased infection probability and reduced vaccine effi-
cacy, although studies are limited and the shape of the
relationship varies between systems (Gomes et al. 2014;
Langwig et al. 2017, 2019). A few studies have investi-
gated whether the increase in probability of infection with
pathogen exposure dosage is a function of simply more
virus particles entering the host (independent action) or
virus particles interacting in some way to enhance infec-
tion (mass action), such as through suppression or over-
whelming of the immune system (Regoes et al. 2003;
Zwart et al. 2011). Previous studies in this system indicate
an independent action mechanism, in that the increased
probability of infection with dosage is not greater than
expected since there are simply a large number of infec-
tious particles present (McKenney et al. 2016). However,
these previous studies did not examine the duration of
shedding, which could provide some insights into the nat-
ure of protection.

Our results show that the duration of viral shedding
was not dosage dependent. For all dosages, peak shedding
occurred between day 2 and day 4 and shedding largely
stopped by day 10, as was also found by Wargo et al.
(2017). Mortality, on the other hand, began around day 5,
well after the majority of virus was shed; but again, the
kinetics were consistent across dosages. The impact of
dosage on infection kinetics in other systems is variable.
Some studies suggest that lower dosages may lead to pro-
longed infection due to delayed immune stimulation, while
others indicate that higher dosages may result in longer
infection durations because they overwhelm the immune
system (Li and Handel 2014). Because dosage increased
the initial probability—but not duration—of shedding, this
implies that immune clearance of the virus by fish oper-
ated at the same rate regardless of dosage. This suggests
that increasing the dosage did not lead to suppression of
the immune system and supports the independent action
hypothesis of virus particles, as previously observed by
McKenney et al (2016). However, the results imply that
vaccine protection may operate under a threshold, wherein
high viral dosages will overwhelm reductions in the proba-
bility of infection due to vaccination, and that these reduc-
tions are not absolute. This has been observed in other
systems (Langwig et al. 2019) and could be a function of
limits in the level of immune stimulation that vaccination
can provide, such as antibody production. Examining vac-
cine efficacy at multiple vaccine dosages may shed light
on this.

Fish line had a minor effect on shedding kinetics and
vaccine protection, highlighting the importance of fish back-
ground when inferring vaccine efficacy. There was evidence
that the IHNV.R fish had lower disease susceptibility, in
that their mortality levels were significantly reduced. These
results are not surprising given that the IHNV.R line has
been selectively bred against IHNV disease. This appears to
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operate through both a resistance and tolerance mechanism.
Resistance was evident in the finding that the probability of
shedding did not increase as quickly for the IHNV.R line
with virus exposure dosage compared with the other fish

lines. Yet this effect was small, and high numbers of
IHNV.R fish still became infected and shed virus despite
reduced levels of mortality, indicating that tolerance may be
stronger than resistance. This suggests that selective

FIGURE 3. The predicted quantity of IHNV shed through time. Lines represent the best fit trend of the predicted daily amount of virus shed (log10
[virus RNA copies/mL water+ 1]) for various pathogen exposure dosages log10 (PFU/mL) for experiment (a) 1 and (b) 2 from the statistical models
described in Methods. The gray shading is the 95% CI around the model fit line. The dots are fitted values for individual fish; some individuals have
the same predicted value and thus the dots overlap.

10 JONES ET AL.



breeding and vaccination may operate by the same mecha-
nism. There was also an indication that the ARS-Fp-S fish
line responded better to vaccination than the other fish lines.
This was largely observed when comparing viral shedding
rather than fish mortality. The mechanism behind this phe-
nomenon is unknown. Selective breeding of the IHNV.R
and ARS-Fp-R lines may have reduced their immune com-
petence compared with the ARS-Fp-S line, which has not
undergone selective breeding. It has been observed that
selective breeding results in reduced antibody diversity in
fish (Sommer 2005; Spielman et al. 2007), and could there-
fore reduce vaccine competence. Host immunity to one
pathogen can also have tradeoffs with susceptibility to
another (Ehlinger 1977; Alcivar-Warren et al. 1997). There
was some indication of this here because the ARS-Fp-R
line, which has been bred for resistance to bacterial coldwa-
ter disease, suffered more mortality than the IHNV.R line.
Regardless of the mechanisms, differences in fish line
responses to vaccination could have major implications for
disease management in aquaculture.

In summary, our results indicated that IHNV vaccine
efficacy is dependent on pathogen exposure dosage and
fish line. Overall, vaccination reduced pathogen fitness by
an order of magnitude or less (i.e., resulted in reduction in
total shedding). If viral shedding is correlated with trans-
mission as other studies have suggested (Wargo and Kur-
ath 2012; Doumayrou et al. 2019), this would imply that
vaccinated hosts are still able to transmit the virus, despite
experiencing little clinical disease. Epidemiologically, the
ability of vaccinated individuals to transmit the disease
could greatly hinder management and eradication of dis-
ease, particularly if there is transmission between vacci-
nated and unvaccinated fish (e.g., between wild and
cultured populations; Troyer and Kurath 2003). There are
also potential long-term evolutionary consequences, such

as the selection for increased pathogen virulence (Gandon
et al. 2001; Mackinnon et al. 2008). Evidence of vaccine-
induced virulence has been observed in Marek’s disease
virus (Davison and Nair 2004; Nair 2005; Atkins et al.
2013; Read et al. 2015). Whether this could occur in the
IHNV system warrants further investigation. However,
vaccines such as the one used in the present study, which
reduce clinical disease but allow transmission, are of par-
ticular concern.

This study illustrates the importance of considering
exposure dosage, infection, and transmission when evalu-
ating vaccine efficacy. The development of vaccines that
prevent transmission would be beneficial. This could
improve disease management in vaccinated and unvacci-
nated host populations by increasing herd immunity (Met-
calf et al. 2015). A transmission-blocking vaccine would
alleviate the potential risk of vaccine-induced selection for
virulence (Gandon et al. 2001). A variety of IHNV vacci-
nes and other fish pathogen vaccines are available or cur-
rently in development (Collins et al. 2019). However, the
transmission prevention efficacy of these vaccines under
common field conditions, such as variable pathogen
dosages or fish lines, is largely unknown. Our results were
consistent with the one other study examining IHNV
transmission after DNA vaccination (Long et al. 2017). In
that study, the authors reported that transmission from
vaccinated to unvaccinated Atlantic Salmon via cohabita-
tion occurred in 50% of the population. It should be noted
that Long et al. (2017) used different host infection routes,
species, housing conditions, virus strains, and detection
methods. How these factors affect viral transmission suc-
cess warrants further investigation. Despite these differ-
ences, both studies indicate that transmission from
vaccinated fish can occur and is likely not a rare event.
Many other fish vaccines, particularly those delivered

FIGURE 4. The predicted total amount of IHNV shed. Dosage is a continuous variable from (a) 101 to 105 PFU/mL for experiment 1 and (b) from
103 to 106 PFU/mL for experiment 2. Lines represent the best fit linear trend of predicted total amount of virus shed (log10 [virus RNA copies/mL
water+ 1]) for various pathogen exposure dosages from the statistical models described in Methods. Dots represent the predicted values for each fish;
some individuals have the same value and thus they overlap. Black lines represent unvaccinated hosts while gray lines represent vaccinated hosts. The
gray shading is the 95% CI around the model fit line.
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through non-injection routes (e.g., immersion or with feed)
have been shown to have lower disease prevention efficacy
than the DNA vaccine studied here (Kurath 2008; Plant
and LaPatra 2011). Whether this translates to lower trans-
mission-blocking efficacy is unclear; however, if that is the
case, it is likely to heavily impact their utility for disease
management. Our results indicate that selective breeding
against IHNV may also act via a similar tolerance mecha-
nism as vaccination, wherein disease (but not infection
levels or transmission) is reduced. This would result in the
same potential concerns about pathogen persistence and
virulence evolution associated with vaccines also being
applicable to selective breeding. Overall, this and future
studies into vaccines that block transmission are likely to
facilitate the development, evaluation, and efficacy of dis-
ease management programs.
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