
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2020

Pinpointing Software Inefficiencies With Profiling Pinpointing Software Inefficiencies With Profiling

Shasha Wen
William & Mary - Arts & Sciences, swen@email.wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wen, Shasha, "Pinpointing Software Inefficiencies With Profiling" (2020). Dissertations, Theses, and
Masters Projects. Paper 1593091771.
http://dx.doi.org/10.21220/s2-t14d-3d56

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1593091771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1593091771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.21220/s2-t14d-3d56
mailto:scholarworks@wm.edu

Pinpointing Software Ine�ciencies with Profiling

Shasha Wen

Williamsburg, VA

Bachelor of Computer Science, Beihang University, China, 2010
Master of Computer Science, Beihang University, China, 2013

A Dissertation presented to the Graduate Faculty
of The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

College of William & Mary
January 2020

c
�Copyright by Shasha Wen 2020

ABSTRACT

Complex code bases with several layers of abstractions have abundant ine�ciencies
that a↵ect the performance. These ine�ciencies arise due to various causes such as
developers’ inattention to performance, inappropriate choice of algorithms and
ine�cient code generation among others.
To eliminate the redundancies, lots of work have been done during compiling phase.
However, not all redundancies can be easily detected or eliminated with compiler
optimization passes due to limited optimization scopes, and execution contexts act
as severe deterrents to static program analysis. There are also profiling tools which
can reveal how resources are used. However, they can hardly distinguish whether
the resource are worth fully used. More profiling tools are in need to diagnose
resource wastage and pinpoint ine�ciencies.
We have developed three tools to pinpoint di↵erent types of ine�ciencies in
di↵erent granularity. We build Runtime Value Numbering (RVN), a dynamic
fine-grained profiler to pinpoint and quantify redundant computations in an
execution. It is based on the classical value numbering technique but works at
runtime instead of compile time. We developed RedSpy–a fine-grained profiler to
pinpoint and quantify value redundancies in program executions. Value
redundancy may happen over time at same locations or in adjacent locations, and
thus it has temporal and spatial locality. RedSpy identifies both temporal and
spatial value locality. Furthermore, RedSpy is capable of identifying values that
are approximately the same, enabling optimization opportunities in HPC codes
that often use floating point computations. RVN and RedSpy are both
instrumentation based tools. They provide comprehensive result while introducing
high space and time overhead. Our lightweight framework, Witch, samples
consecutive accesses to the same memory location by exploiting two ubiquitous
hardware features: the performance monitoring units (PMU) and debug registers.
Witch performs no instrumentation. Hence, witchcraft—tools built atop
Witch—can detect a variety of software ine�ciencies while introducing negligible
slowdown and insignificant memory consumption and yet maintaining accuracy
comparable to exhaustive instrumentation tools. Witch allowed us to scale our
analysis to a large number of code bases.
All the tools work on fully optimized binary executable and provide insightful
optimization guidance by apportioning redundancies to their provenance–source
lines and full calling contexts. We apply RVN, RedSpy and Witch on programs
that were optimization targets for decades and guided by the tools, we were able to
eliminate redundancies that resulted in significant speedups.

TABLE OF CONTENTS

Acknowledgments vi

Dedication vii

List of Tables viii

List of Figures ix

1 Introduction 2

Thesis Statement . 3

Thesis Contributions . 3

Thesis Organization . 4

2 RVN: Pinpointing Redundant Computations 5

2.1 Introduction . 5

2.2 Background and Motivation . 6

A practical example of computation redundancies 8

2.3 Related Work . 9

Static analysis of computation redundancies 9

Dynamic analysis of redundancies 10

2.4 Basic Runtime Value Numbering Methodology 10

2.4.1 Implementation Details . 11

E�ciently maintaining value numbers 11

Handling operand aliases 12

i

Handling parallel programs 12

2.5 Algorithmic Refinement . 13

2.5.1 Reducing Time Overhead . 13

Approximate hashing . 13

Selective instruction instrumentation 14

Bursty sampling . 14

2.5.2 Reducing Space Overhead . 14

2.5.3 Providing Insights for Optimization 15

Metric to quantify redundancy 16

2.6 Experiments . 16

2.6.1 410.bwaves . 17

2.6.2 456.hmmer . 19

2.6.3 434.zeusmp and 173.applu . 20

2.6.4 Sweep3D . 21

3 RedSpy: Exploring Value Locality in Software 24

3.1 Introduction . 24

3.2 Related Work . 26

3.2.1 Traditional Value Profiling . 26

3.2.2 Other Redundancy Optimization Techniques 28

3.3 Methodology . 28

Exploiting Value Locality. 30

Limitations: . 30

3.4 Detection of Value Redundancies . 30

3.4.1 Temporal Redundancy . 30

Memory Temporal Redundancy. 31

Register Temporal Redundancy. 31

Value Approximation in Temporal Redundancy. 32

ii

Metric of Temporal Redundancy. 32

3.4.2 Spatial Redundancy . 33

Spatial Redundancy in Memory. 34

Spatial Redundancy in Registers. 34

Approximating Spatial Redundancy. 34

3.5 Recording and Reporting Redundancy 34

Attributing Memory-temporal Redundancies. 35

Attributing Register-temporal Redundancies. 35

Attributing Memory-spatial Redundancies. 36

Attributing Register-spatial Redundancies. 36

Sampling for Low Overhead. 36

Handling Parallel Programs. 36

Presentation. 36

3.6 Experiments . 37

Volume of Redundancy. 37

Sampling Accuracy. 39

RedSpy Overhead. 39

3.7 Case Studies . 40

3.7.1 SPEC CPU2006 h264ref . 41

3.7.2 NWChem . 42

3.7.3 Rodinia LavaMD . 42

3.7.4 Rodinia Hotspot . 43

3.7.5 Rodinia Backprop . 44

3.7.6 Rodinia Particlefilter . 44

3.7.7 Comparison with Other State-of-the-art Tools 45

4 Watching for Software Ine�ciencies with WITCH 46

4.1 Introduction . 46

iii

4.2 Related Work and Motivation . 48

Tools Based on Hardware Debug Registers: 49

4.3 Background and Terminology . 50

Hardware Performance Monitoring Units (PMU): 50

Hardware Debug Registers: 50

Linux Perf events: . 50

Call Path Profiling: . 50

Terminology: . 51

4.4 Methodology and Design . 51

4.4.1 Challenge with Samples Intervening Accesses 52

Adversary Sample: . 54

4.4.2 Challenges with Proportional Attribution 54

4.4.3 Limitations . 56

4.5 Design and Implementation . 57

PMU Sampling: . 57

Watchpoint Registration: 57

Precise PC of a Watchpoint: 57

Fast Watchpoint Replacement: 58

Stack Addresses: . 58

4.6 Witchcraft: Client Tools of Witch 59

4.6.1 SilentCraft: Silent Store Detection 59

4.6.2 LoadCraft: Load-after-load Detection 60

4.6.3 Witchcrafts on Multi-threading 60

4.6.4 Discussion . 61

4.6.5 Presentation . 61

4.7 Evaluation . 61

4.8 Case Studies . 64

iv

4.8.1 NWChem-6.3 . 65

4.8.2 Ca↵e-1.0 . 66

4.8.3 GNU Binutils-2.27 . 67

4.8.4 SPEC OMP2012 367.imagick 67

4.8.5 Discussion on Other Optimizations 68

5 Conclusion 69

Thesis Confirmation . 70

5.1 Innovation Highlights . 70

Instrument with Sliding Window 70

Temporal and Spatial Value Locality 70

Approximation Checking for Floating Points 70

Monitoring Consecutive Accesses with Sampling 70

New Linux Kernel Patch to Better Support Debug Registers 71

5.2 Research Highlights . 71

Bibliography 71

v

ACKNOWLEDGMENTS

My thanks go to my advisor, Dr. Xu Liu, without whom this PhD program would
not be successful. Dr Liu is a good mentor who gave very good suggestions
whenever I struggled. Dr Liu is also a good friend who cares not only the progress
of the projects but also the student’s life and careers.
I also want to thank Milind Chabbi, one of my collaborators. His wealth of
knowledge and thoughtful thinking impressed and helped me a lot.
I have also met good friends, Han Li, Yubao Zhang, Du Shen among others who
enriched my PhD live with lots of joy.

vi

This dissertation is dedicated to my parents who support me without hesitate, my
husband Zhang Xu who encourages me in various ways, and also my cute baby girl

Luciana Xu.

vii

LIST OF TABLES

2.1 Performance improvement after eliminating redundancies in the stencil
code. 9

2.2 Redundant Fraction for SPEC Benchmarks 17
2.3 Overhead of RVN with sampling . 17
2.4 Performance Improvement . 18

3.1 Machine configurations. 37
3.2 Breakdown of temporal redundant bytes and redundant instructions

in di↵erent benchmark suites. 38
3.3 Comparing overhead and redundancy with sampling enabled and dis-

abled. The sampling covers 1% instructions. 39
3.4 RedSpy’s space and time overheads in the unit of times (⇥) on SPEC

CPU2006 benchmarks. 40
3.5 Overview of performance improvement guided by RedSpy on di↵erent

platforms. 40
3.6 RedSpy vs. other tools: whether value redundancies identified by

RedSpy can be identified by other tools. 45

4.1 Runtime slowdown (⇥) and memory bloat (⇥) over native execution:
Witch (DeadCraft, SilentCraft, LoadCraft) vs. exhaustive monitoring
tools (DeadSpy, RedSpy, LoadSpy). 64

4.2 Geomean and median of slowdown and memory bloat of Witch tools
at di↵erent sampling rates on SPEC CPU2006. 65

4.3 Performance improvement guided by Witch. 65

viii

LIST OF FIGURES

2.1 An example of value numbering. 7
2.2 Hashing < operator ,VN (ˆS [0]),VN (ˆS [1])), · · · > to a 64-bit integer. . 13
2.3 A redundancy pair reported in bwaves. 19

3.1 Breakdown of redundant bytes written in di↵erent benchmark suites. . 37
3.2 A redundancy pair reported in h264ref. 41
3.3 A redundancy pair reported in NWChem. 42

4.1 Detecting dead writes using Witch. The client, DeadCraft, sub-
scribes to the precise PMU store event with a desired sample period.
1
� PMU counter overflows triggering an interrupt. 2

� Witch handles
the signal, extracts the calling context (C

watch

) of the interrupt and the
address accessed (M), and o↵ers the triplet hC

watch

,M,AccessTypei
to DeadCraft. 3

� DeadCraft asks Witch to monitor subsequent load
or store to M . 4

� Witch sets a watchpoint to monitor M , and the
execution continues 5

� Program accesses M , which causes a CPU trap.
6
� Witch handles the trap signal, extracts the calling context (C

trap

),
and o↵ers the triplet hC

trap

,M,AccessTypei to DeadCraft. 7
� If the

AccessType is a store, DeadCraft infers a dead write and attributes it
to hC

watch

, C
trap

i. 51
4.2 a[] and b[] and x are involved in dead writes in 3:2:1 ratio (50%:33%:17%),

respectively. The sampling interval is 50K stores. Our proportional,
context-sensitive scheme apportions dead writes in near perfect ratio. 56

4.3 (a) A PMU sample happens in a deeper call stack when B() is accessing
address M; signal handler sets a watchpoint to monitor the address M.
(b) A shallower application call stack, function A(), triggers another
PMU sample, the signal handler is established in a location that over-
writes M, triggering a spurious watchpoint. (c) An alternate signal
stack for PMU signal handler and watchpoint signal handler solves the
problem. 59

4.4 Witch tools vs. instrumentation tools on SPEC CPU2006. Error
bars capture di↵erent sampling rates. Ground truth instrumentation
data is unavailable for gobmk, sjeng, and Xalan since they ran out of
memory. The benchmarks with multiple inputs (e.g., bzip2) appear
multiple times with di↵erent numerical su�xes. 63

4.5 Comparison of dead writes with di↵erent number of debug registers.
Error bars are for di↵erent (100K - 100M) sampling intervals. 64

ix

4.6 The pair of dead and kill stores with full contexts reported byWitch’s
dead store client. 66

x

Pinpointing Software Ine�ciencies with Profiling

Chapter 1

Introduction

High tech now is everywhere in our lives, we have voice service enabling us to “talk” with
the devices, we have auto drive to save us from the tra�c, we have smart phones to man-
age almost everything in our lives. All these high technologies are supported on top of
massive computations. To meet the rapidly increasing computing needs, as we can see,
the hardware in recent decades has developed quite fast. More cores are integrated on
chip for high thread-level parallelism. Deeper memory hierarchy with multiple layers of
caches is applied to shorten the data access latency. To take fully use of the highly de-
veloped hardwares, production softwares, including HPC applications need to be seriously
designed and maintained which is nontrivial to achieve. On the other hand, sophisticated
flow of control and deep hierarchy of component libraries increase the complexity of the
software systems resulting it more challenging to keep the e�ciency. Various ine�ciencies
hide in the execution of the softwares. These ine�ciencies can be treat as two categories
according to how they occur. Some ones exist in the logic of the program and are irrel-
evant with the hardware, which we refer as “bare-software” ine�ciencies. Others happen
when we map the execution to the hardwares and are hardware relevant, which we refer as
“software-hardware interaction” ine�ciencies. “Bare-software” ine�ciencies can arise from
causes such as developers’ attention to functionality instead of performance, suboptimal
implementation choice, suboptimal code generation among others. “Software-hardware in-
teraction” ine�ciencies are related with resource allocation and resource contention like
the data placement in heterogeneous memory systems, cache false sharing issue in multi-
threading programs, bandwidth contention when manipulating large amounts of data.

The “software-hardware interaction” ine�ciencies are more popular among researchers.
Di↵erent methodologies, online or o✏ine, are introduced to extract the access patterns of
memory traces to conclude better data allocation strategies – on local memory or on remote
memory in NUMA architectures, on DRAM or on NVM on heterogeneous memory systems.
Various simulations are built to estimate whether memory contention happens. Machine
learning techniques are also applied in predicting whether contention happens and even di-
agnosing how it happens. In comparison, less works are trying to solve the “bare-software”
ine�ciencies which include unnecessary computation, unnecessary data manipulation, and
excessive synchronization, to name a few. This thesis focuses on reducing “bare-software”
ine�ciencies and we use ine�ciencies for short in later descriptions.

2

Traditionally, optimizing compilers are adept at eliminating redundant operations by
techniques such as common sub-expression elimination [29], value numbering [98], and con-
stant propagation [115] among others. However, compilers’ myopic program view limits
their analysis to a small scope–individual functions or files. Ine�ciencies related with alias-
ing, input sensitivity, work-flow sensitivity among some of others can hardly be captured
at compile time. Link-time optimizations [36, 56] can gain more details and o↵er better
visibility; however, the analysis is still conservative. Layers of abstractions, dynamically
loaded libraries, multi-lingual components, aggregate types, aliasing, sophisticated flows of
control, and combinatorial explosion of execution paths make it practically impossible to
obtain a holistic view of an application to apply all available compiler optimizations. On
top of compiling phase based optimization methodologies, monitoring runtime executions is
in need to explore more improvement opportunities. State-of-the-art performance profiling
techniques such as HPCToolkit [5], VTune [49], gprof [39], OProfile [95], and CrayPAT [30]
monitor code execution to identify hot code regions, idle CPU cycles, arithmetic intensity,
and cache misses, among others. These tools can recognize the utilization (saturation or
underutilization) of hardware resources, but they cannot inform whether a resource is be-
ing used in a fruitful manner that contributes to the overall e�ciency of a program. For
example, none of the aforementioned profilers can identify if computing the exponential

of a loop invariant number inside a loop is a wasteful use of the floating-point unit. They
may, in fact, mislead us by acclaiming such loop with a high IPC (instructions executed
per cycle) metric. When profiling performance with these tools, significant manual e↵orts
are in need to root cause where the ine�ciencies happen.

Thesis Statement Runtime wastage profiling can monitor the real execution of pro-
grams running on modern CPU machines to pinpoint whether any hardware resources are
unfaithfully used, the severity of the issue and provide valuable insights to understand
program and improve the code quality.

Thesis Contributions To detect unnecessary operations, one solution is fine-grained
program monitoring. Fine-grained analysis profilers microscopically monitor each dynamic
instruction, its operands, memory accesses, and runtime values. A key advantage of micro-
scopic program-wide monitoring is that it can identify redundancies irrespective of user-
level program abstractions. Runtime tracking di↵erent forms of redundancies o↵ers vis-
ibility into program ine�ciencies and hence o↵ers new avenues to tune codes. Another
advantage of fine-grained program monitoring is that it can give a comprehensive analysis
about the redundancies by monitoring all the instructions of interest to the developers.

We have build two di↵erent fine-grained monitoring profilers to detect di↵erent kinds
of unnecessary operations from di↵erent point of views. The first profiler, Runtime Value
Numbering (RVN), targets to analyze instructions running on the CPU and detect if there
are any CPU cycles wastage. In RVN, we implement value numbering technique during
runtime, capture the operands and operator for all the symbolic computations and explore
if the same computation is repeatedly executed by the CPU. When the same computation
is conducted multiple times, one may find a way to reuse the previous calculated result
and save the CPU cycles for more valuable work. The second profiler, RedSpy, targets
value related redundancy. We verified the existence and significance of value locality, the

3

same (similar) value has a probability to be rewrite to the same location and the same
(similar) value has a probability to be write to adjacent locations. Writing the same data
to the same location, also known as silent write, doesn’t change the status of the system
and is a symptom of some kinds of redundancies in the code. RedSpy explores write value
locality happening in both memory and registers, two typical storage locations in a CPU
system. Redundancies are reported when the same (similar) data are updated to the
same location. RedSpy exposed unnecessary operations from the data’s point of view.

While providing higher visibility, fine-grained monitoring su↵ers from high overhead
and massive memory usage. The high overhead of fine-grained ine�ciency detection tools
has kept them away from wide adoption. There is a need to make such tools more available
to the developer community so that ine�ciency detection can be made commonplace-run
with each code check-in to isolate ine�ciencies at the earliest. We then developed Witch,
a lightweight ine�ciency detection framework, to address this issue. Witch combines the
best of both worlds, low overhead of coarse-grained profilers and ine�ciency detection of
fine-grained profilers. Our key observation is that an important class of ine�ciency detec-
tion schemes, explored previously via fine-grained profilers, requires monitoring consecutive
accesses to the same memory location. For example, detecting repeated initialization, a
dead write [20], requires monitoring store after store without an intervening load to the
same location. To achieve the goal, Witch applies two hardware resources, performance
monitoring unit (PMU) and debug registers to monitor consecutive accesses and explore
unnecessary data movements.

Thesis Organization The rest of this dissertation is structured as follows. Chapter 2
discusses more details about the methodology and implementation of RVN profiler. Chap-
ter 3 shows instead of the traditional instruction-based analysis, how RedSpy can expose
ine�ciencies from data’s point of view. Chapter 4 proposes a much lightweight framework,
Witch, to pinpoint unnecessary memory data manipulating with negligible overhead. 5
concludes the work.

4

Chapter 2

RVN: Pinpointing Redundant

Computations

2.1 Introduction

Software systems are increasing in their complexity since they employ a hierarchy of li-
braries. Library abstractions provide reusability, but they introduce redundancies that
add additional overheads. Furthermore, unlike previous generation microprocessors that
consisted of a few heavyweight superscalar cores, emerging microprocessor architectures
consist of many lightweight cores. In the light of theses trends, e�ciently using CPU
cycles is becoming increasingly important.

Computation redundancy is a common kind of ine�ciency in programs. Classical
compile-time optimizations such as global value numbering [98], constant propagation [115],
and common sub-expression elimination [29], fall short of expectations due to aliasing, lim-
ited scopes of optimization, and redundancies that are specific to some inputs, execution
paths, or runtime execution contexts. Our experiments show that more than 20% in-
structions are redundant in many SPEC CPU2006 reference benchmarks, even when the
benchmarks were fully optimized using profile-guided optimization.

Performance tools, such as HPCToolkit [5], VTune [49], gprof [39], OProfile [95],
and CrayPAT [30], among others can e�ciently identify code sections executing exces-
sive amount of CPU cycles via well-known metrics such as floating point operations per
second (FLOPS) or cycles per instruction (CPI). While these tools may identify hot code
regions where a program spends a lot of time, they do not provide insights on whether the
resources were well utilized. A low CPI (or high FLOPS) ensures that the application is
not stalled for resources; however, it does not ensure that the application is making good
use of its resources.

While a vast amount of literature has focused on profiling for hot paths and memory
access latencies, little has been done to profile redundant computations. To overcome
the limitations of state-of-the-art optimization methods and profiling tools, we design,

5

implement, and evaluate a profiler for pinpointing computation redundancies. Our profiler
performs runtime value numbering (RVN) to identify computation redundancies in fully
optimized binary code. RVN identifies code regions that have prodigal CPU resource
consumption. Then, RVN attributes such resource wastage to source lines in their full
contexts and quantifies the wastage with a redundancy metric. Finally, RVN informs
top calling contexts where redundancy is high, which enables developers to focus on code
regions that demonstrate opportunities for non-trivial improvement.

RVN complements the static compiler technique by identifying more computation re-
dundancies for optimization, giving opportunities for feedback-directed optimization, code
specialization, and workload-based performance tuning. Designing an e↵ective RVN pro-
filer faces to two challenges:
1) Overhead: both time and space overheads of runtime value numbering is comparable
to that of instruction-level trace collection. Such overhead is prohibitively high, making it
impractical to profile long-running programs.
2) Result interpretation: because profiling is applied to the binary code, the measure-
ment provides redundancy information at the assembly level that is di�cult to interpret
by programmers.

This work addresses these challenges and makes RVN practical for real programs. To
evaluate RVN, we select four sequential programs from the SPEC CPU2000 and CPU2006
benchmark suites and one parallel HPC benchmark from the DOE national laboratory.

Guided by our profiler, we identify significant computation redundancies and obtain
up to more than 20% speedups for these benchmarks compiled by di↵erent compilers with
optimization options. In summary, our work has the following three contributions:

• We implement runtime value numbering (RVN) to profiler computation redundancies.
Our profiler works on unmodified, fully optimized binaries. RVN outperforms the
static analysis by identifying more redundancies in programs.

• We develop a variety of optimization techniques in RVN to minimize its runtime and
space overheads, and make RVN applicable to real sequential and MPI programs.

• We collect rich information about the computation redundancies identified by RVN,
such as fraction of redundancy and attribute it to the code in its full calling contexts.
Such information provides insights for programmers to refactor their code to eliminate
redundancies that can obtain non-trivial performance gains.

2.2 Background and Motivation

Value numbering (VN for short) [98] is a well-known data-flow analysis technique for de-
termining the equivalence of two computations in a program and eliminating one of them
with the results of the other. VN assigns symbolic values to computations in such a way
that two computations are assigned the same symbolic value only if they are equivalent.
However, not all equivalent computation need be assigned the same symbolic value. An
optimistic VN algorithm assigns the same value to all expressions unless proved otherwise,
whereas a pessimistic VN algorithm assigns di↵erent values to di↵erent expression unless

6

1. x = a * b
2. x = x + c
3. d = a
4. e = b
5. y = d * e
6. z = y + c

<*, 1, 2> = 4; VN(x) = 4
<+, 3, 4> = 5; VN(x) = 5
VN(d) = VN(a) = 1
VN(e) = VN(b) = 2
<*, 1, 2> redundant! VN(y) = 4
<+, 3, 4> redundant! VN(z) = 5

1 2

3

1. for (i = 0; i < N ; i++) {
2. f(2);
3. f(5);
5. }

Figure 2.1: An example of value numbering.

they are proved equal. VN can be performed per basic block, over a region of blocks or on
the entire function via dominance information. VN may discover more redundancies than
other compiler techniques do, such as constant propagation [115], partial redundant elim-
ination [24], common subexpression elimination [29], and code motion [26]. VN, however,
may also miss redundancies that these techniques may discover.

Figure 2.1 shows a concrete example of how VN identifies computation redundancies
within a basic block. The VN processes each instruction statically. It obtains the previously
computed symbolic value of each operand on the RHS, assigning a unique number if the
operand is newly encountered. Then, it hashes the symbolic values assigned to operands
together with the operator to obtain a symbolic value for the computation. If the computed
symbolic value for a computation is already present in the table of previously computed
values, then the current computation is redundant. In this basic block, instructions on
Line 4 and 5 are redundant since the computations on the RHS are already computed by
instruction on Line 1 and 2.

The aforementioned classical value numbering is employed by modern compilers to
eliminate redundancies in scalar variables. Cooper et al. [28] have proposed applying the
VN to subscript array variables. The compile-time VN does not eliminate all redundancies
because of the following reasons:

1. Static analysis cannot accurately identify redundancies if pointers, aliases, and mem-
ory accesses are involved. For example, compilers cannot detect the redundant ex-
pression (*c + *d) in Line 5 in Listing 2.1.

2. Static analysis has limited analysis scopes. VN can’t be applied across di↵erent pro-
cedures or compilation units. For example, the mod computation, a%b, on Line 3
in the function CalleeModule in Listing 2.3 called from the function CallerModule

makes the mod computation on Line 11 redundant. However, since CalleeModule

and CallerModule are independent compilation units, the redundancy is not de-
tected.

3. Static analysis does not take program inputs into consideration, omitting input-
dependent redundancies. Line 4 in Listing 2.4 computes the same value as Line 3,
when the input arrays A and B have same values. But neither icc, nor gcc detected
this.

4. Static analysis is always conservative in nature. It does not optimize context- or
path- sensitive redundancies. In Listing 2.2, Line 7 has a redundant computation
along the BB1!BB2!BB3 path, which is not redundant along the BB1!BB3 path.

7

1 /* a and c alias each other */
2 /* b and d alias each other */
3 int AliasRedundancy(int * a, int *b,
4 int *c, int *d){
5 int v1 = *a + *b;
6 int v2 = *c + *d;
7 return v1 + v2;
8 }

Listing 2.1: Redundancy due to aliasing.

1 void PathSensitiveRedundancy (){
2 BB1: v1 = a + b;
3 if(cont){
4 BB2: a = c;
5 b = d;
6 }
7 BB3: v2 = c + d;
8 }

Listing 2.2: Path-sensitive redundancy.

1 Compilation Unit 1
2 int CalleeModule(int a, int b){
3 if (a%b == 0)
4 ...
5 else
6 ...
7 }
8 Compilation Unit 2
9 void CallerModule(int a, int b){

10 CalleeModule(a, b);
11 if (a%b == 0)
12 ...
13 else
14 ...
15 }

Listing 2.3: Redundancy across compilation
units.

1 /* callee function */
2 int Callee(int *a,int *b,int scaleFactor){
3 for(int i = 0 ; i , N; i++){
4 a[i] = a[i] * N;
5 b[i] = b[i] * N;
6 }
7 }
8 /* caller function */
9 void Caller (){

10 int * a = new int[N];
11 int * b = new int[N];
12 // Init a;
13 memcpy(b, a, N * sizeof(int));
14 Callee(a, b, alpha /* scaleFactor */);
15 }

Listing 2.4: Input-sensitive redundancy.

Finally, static analysis does not quantify the benefit from redundancy elimination. Large
optimization e↵orts may lead little performance gains.

A practical example of computation redundancies Listing 2.5 shows a stencil com-
putation that is widely used in scientific applications [44]. The computation updates a
value of an element in the matrix, by adding the values of its neighbors in all four di-
rections. However, when we compute two adjacent elements, there are many redundant
addition operations on the neighbor elements in each direction. We partially eliminate
the redundancies by reusing the addition result computed in the j direction 1. Table 2.1
shows the reduction of instructions and CPU cycles for the optimized stencil code with
M = N = 10000 and T = 10. The significant performance improvement (35.8%) shows
the importance of redundancy elimination. It is worth noting that such redundancies are
di�cult to optimize via static analysis, especially in the presence of pointers and aliases.

Moreover, computation redundancies can highly depend on the input. In the extreme
case, when the matrix in Listing 2.5 is sparse, most of the additions are redundant, because
they always perform addition with zero. This kind of redundancies cannot be identified
by the static analysis, whereas a profiler looking for redundant computations during the
program execution can detect such redundancies.

It is worth noting that existing dynamic profilers based on the widely used cycle per
instruction (CPI) metric, do not accurately quantify the computation ine�ciency. Low
CPI does not necessarily mean the computation is e�cient. In fact, in this case, compared

1

Redundancies can be further reduced with transformation in i direction.

8

1 for (i = T; i < N - T; i++) {
2 for (j = T; j < M - T; j++){
3 temp = 0;
4 for (k = 1; k < T; k++)
5 temp += matrix[i-k][j] + matrix[i][j-k] + matrix[i+k][j] + matrix[i][j+k];
6 matrix[i][j] += temp;
7 }
8 }

Listing 2.5: Redundancies in a stencil code.

Table 2.1: Performance improvement after eliminating redundancies in the stencil code.

Program Orig. Optimize. %Reduction

#Instructions(billion) 72.8 39.64 45.6
#cycles(billion) 32.74 20.97 35.8

to the optimized code whose CPI is 0.53, the original code, as shown in Listing 2.5, has
a lower CPI—0.45. Thus, a dynamic profiler that pinpoints redundant computations is
essential to understand execution ine�ciencies.

2.3 Related Work

There are a variety of techniques applied in compilers to eliminate redundant computations.
Elaborating all of these techniques, however, is outside the scope of this work. In this
section, we review the most related work that adopt either static or dynamic analysis.

Static analysis of computation redundancies Cooper et al. [28] extended tradi-
tional value numbering algorithm to identify inter-iteration redundant computations in
loops. They assigned value numbers to array references in a loop to identify redundant
computations across loop iterations. They integrated this new value numbering technique
to perform enhanced scalar replacement at compile time and achieved good performance
improvement.

Deitz et al. [29] extended the common sub-expression elimination to identify redundant
computations across loop iterations. Their approach analyzes instructions only with sum-
of-products operators and memory reference operands. Moreover, their approach requires
stringent index expressions for array references, which limits its applicability.

Luo et al. [76] developed equivalent computation elimination (ECE) to remove redun-
dant computations in multi-dimensional stencil code. Their approach can identify and
eliminate redundancies that reside in deep loop nests.

Hundt et al. [45] developed MAO, a compiler-independent tool to identify and eliminate
useless and redundant computations. MAO statically analyzes a program’s assembly code
with a sliding window, looking for a predefined set of patterns that define ine�cient com-
putations. The small size of sliding windows limits MAO’s optimization scope, preventing
it from identifying inter-procedural and inter-module ine�ciencies.

All these static approaches su↵er from limitations related to aliasing, optimization
scope, and insensitivity to input and execution contexts, as described in Section 2.2. In

9

contrast, RVN is a dynamic approach, which is compiler-independent. RVN can identify
more computation redundancies than static approaches.

Dynamic analysis of redundancies Chabbi et al. [20] developed DeadSpy tool to iden-
tify dead stores. They track every memory store to pinpoint the ones that are never loaded
before subsequent stores. They associate pairs of instructions involved in a dead write with
their calling contexts and source code locations to guide manual program optimizations.
Unlike DeadSpy, RVN detects redundancies in arithmetic-logic, as well as load and store
instructions.

Butts et al. [13] developed a hardware-based method to track CPU-bound operations
and identify useless computations in a program. They do not provide detailed feedback
for optimization. In contrast, RVN also monitors memory operations and provides rich
optimization guidance.

Moreover, both of these two approaches pinpoint useless computations, but not re-
dundant computations. Redundant computations are the same computations that are
performed more than once, which are not necessarily useless computations. To the best
of our knowledge, RVN is the first dynamic tool that identifies all kinds of computation
redundancies.

2.4 Basic Runtime Value Numbering Methodology

A straightforward implementation of RVN is to adapt the existing static value numbering
algorithm, as shown in Algorithm 2.1. RVN maintains a counter gValue to assign unique
numbers to di↵erent values computed in an execution, and a map (VNMap) to record the
value number associated with each unique computation (Line 2 and 3). At runtime, RVN
monitors every instruction under execution. It decodes operators as well as both source
and target operands. Typically, an instruction has multiple source operands and one target
operand. If the source operands do not have a value number already assigned, RVN assigns
a unique number obtained by incrementing gValue to each of them (Line 8-12).

If an operator copies a source operand to a target operand, RVN assigns the value
number of the source operand to the target operand, which means that the value is passed
from one operand to another without change. RVN constructs a key (hashKey) formed
by the operator and the value numbers of the source operands (Line 21). If the operator
is commutative, such as addition and multiplication, RVN sorts all the value numbers
of the source operands (Line 17) to expose potential redundancies via. computation re-
association [11]. If the operator is not commutative, such as subtraction and division, RVN
retains the order of the operands. Then RVN uses this key to index the computation of
this instruction into the global VNMap. If the hashKey is already in the map, RVN records
a redundancy because the computation is performed earlier. Otherwise, RVN inserts the
hashKey in the map and associates it with a new value number. This value number is
also assigned to the target operand. The choice of the Hash function greatly influences
the performance of RVN, which we discuss later. In rare cases, an x86 instruction can
have multiple target operands; RVN gives each target operand a new value (not shown in
Algorithm 1).

10

Algorithm 1 Algorithm for RVN, invoked before each instrumented instruction
1: /* data structures */
2: uint64 t gValue = 0;
3: unordered map¡Key t, uint64 t¿ VNMap;
4: I := instruction about to execute;
5: P := I’s operator;
6: T := I’s target operand;
7: S := {I’s source operands in order};
8: for each source operand S[i] in S do

9: if S[i] is not already assigned a VN then

10: VN(S[i]) := ++gValue;
11: end if

12: end for

13: if —S— == 1 and P copies source operand S[0] to T then

14: VN(T) := VN(S[0]);
15: else

16: if P is commutative then

17: Ŝ := sort(VN(S[0]), VN(S[1]), ...);
18: else

19: Ŝ := {VN(S[0]), VN(S[1]), ...};
20: end if

21: hashKey := Hash(P, Ŝ[0], Ŝ[1], ...);
22: if VNMap contains hashKey then

23: record redundancy in the RedundancyTable ;
24: else

25: VNMap[hashKey] := ++gValue;
26: end if

27: if T 6= NULL then

28: VN(T) := VNMap[hashKey];
29: end if

30: end if

On each instruction, RVN records the instruction pointer where the value number
was computed. On encountering a redundant computation, RVN, records a pair of in-
struction pointers where the previous value number was computed, and the current in-
struction where the redundant computation occurred, into a table—RedundancyTable.
RedundancyTable is keyed by the pair of instructions, and the value stored in each entry
of the RedundancyTable is the number of times the redundancy happened at the same pair
of instructions. Pairs with higher redundancy values are reported first for the developer
inspection.

2.4.1 Implementation Details

We have implemented RVN using Intel’s dynamic instrumentation framework—Pin [2] . In
the following paragraphs, we elaborate some of the implementation details of RVN in the
context of Pin.

E�ciently maintaining value numbers RVN leverages Pin to decode each instruction
to obtain its operator and operands. An x86 instruction can have one operator and one or
more operands on both left- and right-hand sides. Operands can fall into three categories:
registers, immediate numbers and memory references. Pin uses a unique integer to encode
each register. We use these encoding bits to index into a table to fetch the value number
associated with a register. It incurs only O(1) time overhead to fetch the value number of

11

a specific register. Since immediate numbers are encoded in the instruction stream, we use
their values as keys to map to the assigned value numbers. The number of registers in the
system is constant, while there is only a small amount of immediate numbers in a binary.
Consequently, maps for both registers and immediate numbers have negligible sizes.

As for operands with memory references, we assign a value number to each e↵ective
address used in the instruction, regardless of the operand’s addressing mode. Associating
value numbers with e↵ective addresses disambiguates memory aliasing due to indirection
employed by programs. The number of memory addresses used in a program is large.
To e�ciently access the value number of a memory address, we use the page-table-based
shadow memory technique [20]. Shadow memory creates shadow bytes that are associated
with every memory byte used in the program. These shadow bytes are invisible to the
original program and are used to record the value numbers for operand with memory
references. The shadow memory allows RVN to obtain the value number for each memory
address in O(1) time.

Handling operand aliases Aliases can exist in operands that reference registers or
memory. In x86 architectures, di↵erent segments of a register can be accessed via di↵erent
register names. For example, the register AL is the lower 8 bits of AX, AX is the lower 16
bits of EAX, and EAX is the lower 32 bits of RAX. We handle the value number assignment
to these registers as follows. If the value number of a smaller-scoped register, e.g., AH is
updated, then the value number of all the large-scoped registers, such as AX, EAX, and RAX

that enclose the bits of AH are also updated. If a larger-scope register, e.g., AX updates
its value number, RVN updates the value numbers of all its constituent smaller-scoped
registers AL and AH (in this particular case, updating the value number of AX will also
update the value numbers of EAX, and RAX).

A similar issue occurs for operands that reference memory. Typically, write to a location
and the corresponding read from the location are of the same size, and hence RVN obtains
the value number associated with the starting address of an operand, irrespective of the size
of the memory operand. One may improve the precision of RVN by maintaining the value
numbers for each byte of a location accessed by an instruction at the cost of additional
overhead. Our experience using RVN demonstrated no need for byte-level value numbers
for larger memory accesses.

Handling parallel programs RVN runs out-of-the-box for programs parallelized by
MPI [80]. Each process performs the RVN individually and records the analysis results
into separate files without any interference. Results are merged in a postmortem fash-
ion. Adapting RVN for multithreaded applications is complicated, since updates to shared
locations by one thread need to be informed to other threads. In our prototype, we
ignore multiple threads in the same address space, and instead, each thread performs
RVN independently by maintaining thread-private RVN data structures (gValue, VNMap,
RedundancyTable, and the shadow memory). Our approach is justified, since computa-
tional redundancies that might arise between two independent threads are both rare and
hard to eliminate without incurring synchronization overheads.

12

Instrument
analyzer

Binary code

Calling context

Redundancies

Viewer

VN(S[0])

operator

63 55

VN(S[0])

27

VN(S[1])

02856

operator

63 55 17 01856

VN(S[2])VN(S[1])

3637

VN(S[0])operator

63 55 13 01456

VN(S[2])VN(S[1])

4142

VN(S[3])

2728

⌃ ⌃

⌃ ⌃ ⌃

⌃ ⌃ ⌃ ⌃

Figure 2.2: Hashing < operator ,VN (Ŝ [0]),VN (Ŝ [1])), · · · > to a 64-bit integer.

2.5 Algorithmic Refinement

The basic RVN algorithm has high space and time overheads. The hashing technique and
heavyweight instrumentation highly impact the runtime overhead. Moreover, the number
of entries in VNMap can quickly grow large causing una↵ordable space overhead. Finally,
the assembly-level data gathered from the basic RVN algorithm needs to be associated
with full calling contexts and source code for consumption by application developers. We
address these three issues in the following subsections.

2.5.1 Reducing Time Overhead

Approximate hashing The hash function used to compute the hash key from operands
and operators of an instruction is one of the governing factors in the overhead of RVN. A
binary blob formed by all bits of the operator and all operands is collision free, but very
slow, whereas a fixed-width hash that does not pay attention to the contents of the operator
or operands can be fast but too inaccurate due to hash collisions. We trade-o↵ speed for
accuracy, but do so prudently to keep the collision to a minimal level. Our hash is a 64-bit
fixed-width key formed from the operator and set of operands, but the hash function pays
weightage to the operator and operands that play a significant role in forming a unique
key.

Figure 2.2 shows, how we compute a 64-bit hash of a computation by incorporating
operator and operands of the x86 ISA. The highest 8 bits represent the instruction operator.
From our experiments, such 8 bits can cover all the frequently-used operators without
conflict; other lengthy operators are not commonly used. The following 56 bits encode the
value number of each operand. For a typical x86 instruction, there can be two or more
operands. We evenly divide the 56 bits to include all the truncated operand values. For
example, if an instruction has two operands, the least 28 bits of each operand value will be
used by the hash function. Two non-redundant instructions that have the same operator
and their operands share the same least several bits but not the significant ones, may hash
to the same 64-bit value. To evaluate the e↵ectiveness of our hashing strategy, we measured
the hash collision in 15 SPEC CPU2006 benchmarks. The geometric mean of collisions
was only 0.095%, which corroborates the accuracy of our hashing.

13

Selective instruction instrumentation In an application, not all kinds of instructions
triggering redundancies can be removed legally. For example, a comparison instruction
consistently executed in a spin loop is not a candidate for optimization. The analysis of
such instructions not only produces false positives, but also incurs high runtime overhead.
Therefore, RVN does not monitor comparison and control flow instructions. RVN also
ignores stack maintenance operations such as push and pop.

Bursty sampling Despite the aforementioned filtering, keeping the RVN instrumenta-
tion enabled for the entire application can add high overhead. The source of the overhead
is the size of the hash table used for storing all value numbers generated during the ex-
ecution. A large number of keys in VNMap slow down the lookup performed during each
instruction.

We develop a sampling method to reduce instruction instrumentation. RVN periodically
enables and disables instruction instrumentation to reduce runtime overhead at the cost
of sacrificing some measurement accuracy. To balance the overhead and accuracy, we
define two thresholds: enable interval (E)—the interval during which the measurement is
enabled, and disable interval (D)—the interval during which the measurement is disabled.
This type of bursty sampling is e↵ective for loop-based programs or programs with repeated
execution patterns because it does not miss significant redundancies that occur with high
frequencies [119]. To avoid blind spots during sampling, RVN randomizes the last a few
bits of sampling thresholds. Our experiments show that enable interval of 100 million
instructions and disable interval of 1 billion instructions gives a good balance between
overhead and accuracy.

In the sampling approach, all the bookkeeping data structures needs to be invalided
from one enabled interval to the next enabled interval. For example, the shadow memory
needs to be cleared before starting each sample. Intuitively, this is time consuming because
traversing all the shadow memory bytes is non-trivial. We leverage the feature of value
numbering, to overcome this issue without incurring a significant overhead. Whenever the
monitoring is reenabled, the global counter gValue for value number assignment is not
reset, which means that the value number increases monotonically. Therefore, we record
the starting value in the global counter at the beginning of each monitoring period. If we
find the value number in the shadow memory is smaller than this starting value, this value
number is from one of the previous sampling period and is invalidated with the new value
number.

2.5.2 Reducing Space Overhead

The basic RVN inserts a 64-bit hash value for each dynamic instruction instance into VNMap.
Because a typical processor executes billions of instructions per second, the hash map can
quickly use up the whole memory space. To reduce the space overhead, we bound RVN’s
memory consumption, making it not depend on the number of dynamic instructions. We
refine the RVN implementation as follows. We only maintain the most recent N hash values
for each static instruction, where N is a configurable parameter by the user. Therefore, the
size of VNMap is proportional to the number of static instructions.

14

To limit the number of entries per instruction in VNMap, we employ the shadow memory
technique, again. In this case, the address of the instruction acts as the key for the shadow
memory. The contents of the shadow memory contain the last N value numbers produced
by that instruction. Once we examine an instruction I, we update the oldest value number
produced by I’s computation with the current value number of the computation produced
by I, if this value is di↵erent from any of the last N value numbers produced by I. This
incurs O(N) runtime overhead (O(1), when N is 1). With this optimization, with N = 1,
the RVN consumes 8⇥ memory for our tested programs, on average.

It is worth noting that maintaining only a subset of value numbers per instruction may
miss some redundancies. For example, if a hash value V of an instruction is replaced by
the new one, the RVN cannot identify the subsequent computation with the hash value V
as a redundancy. In practice, such redundancy omission occurs when there is a large time
interval between executions of the two instructions in the redundancy pair. Usually, such
redundancies are di�cult to optimize due to the long distance between the two instructions.
When a previous instance of an instruction is redundant with its future instance, we might
miss such redundancies if they are separated by more than N execution instances of the
same instruction. For stencil-based codes, a rule of thumb is to choose N to equal the
number of points in a dimension that the stencil is computed on.

2.5.3 Providing Insights for Optimization

To make RVN useful for application developers, we need to associate the redundancy
information collected by RVN with the source code and execution contexts. Doing so
involves mapping a redundancy pair of instructions to their source locations, their enclosing
functions, along with the call paths from main leading to the current pair of functions. The
calling context provides insights into redundancies across procedures and pinpoints “hot”
call paths where redundancies are pervasive.

Collecting the calling context for each instruction and e�ciently storing it is a com-
plicated problem. We leverage the CCTLib library [18]—a call path collection library for
Pin tools—to e�ciently collect and store the calling context of each instruction through-
out the execution. CCTLib is tailored for fine-grained instrumentation tools that require
frequent call path collection. RVN queries the CCTLib on each instruction to obtain a
32-bit handle that uniquely represents the full calling context of the current instruction.
Internally, CCTLib maintains a calling context tree (CCT) [6] and the handle points to
one of its tree nodes. A path implied by a node in the CCT to the root of the tree provides
a unique call path. CCTLib also provides APIs for associating each instruction along the
call path to the source locations, which helps RVN provide the source-level mapping along
with call-site-level attribution for each redundant computation.

On encountering a redundant computation (Line 23 in Algorithm 1), RVN creates
a 64-bit key (rKey) formed by a pair of two 32-bit calling context handles, one for the
current instruction and one for the previous instruction where the computation was already
performed. RVN inserts rKey into RedundancyTable. If the same redundancy was already
reported for the given pair of contexts previously, RVN increments the value associated
with the key in RedundancyTable.

15

Metric to quantify redundancy To quantify the extent of redundant computations
in an execution, we define the Redundancy Fraction (R) as the total number of dynamic
redundant instructions out of the total number of dynamic instructions executed. The
Redundancy Fraction is the fraction of total dynamic instructions that are redundant.

R =
Total Redundant Instructions

Total Instructions

With bursty sampling, RVN detects the redundant operations only during the sampling
period. We approximate the redundant fraction R̂ as:

R̂ =

NP
i=0

Redundant Instructions in Sample i

NP
i=0

Total Instructions in Sample i

.

R̂ may be slightly di↵erent from the real redundancy fraction R because we can miss
redundancies when monitoring is disabled due to sampling technique.

2.6 Experiments

We evaluate RVN on an 8-core Intel Nehalem processor clocked at 2.93GHz attached with
48GB DDR3 memory. We apply RVN to benchmarks from SPEC CPU2000 [107] and
CPU2006 [104] benchmark suites with reference inputs, as well as one parallel HPC bench-
mark: Sweep3D [46]. We compile these programs using gcc 4.7 with -O2 option and
profile-guided optimization (PGO) as well as icc 11.1 with default -O2 option. Table 2.2
shows that these codes have non-trivial redundant computations.

We optimize the redundant computations pinpointed by RVN for four benchmarks
from SPEC CPU2000 and CPU2006, as well as Sweep3D. As shown in Table 2.3, RVN
incurs about 44⇥ runtime overhead and 8⇥ space overhead, on average to profile these
benchmarks. Table 2.4 shows the performance improvement for individual loops and the
whole program of these benchmarks with both test and reference inputs. We leverage
HPCToolkit [5] to glean hardware events, such as CPU cycles and graduated instructions
to further understand the speedups due to redundancy elimination. From the table, we
can see the significant reduction of CPU cycles consumed in the optimized loops in each
benchmark. However, the number of instructions associated with these loops are not always
reduced as we expect. The principle reason is that our optimizations break the SIMD
instruction generation by compilers, leading the code to executing more instructions. We
elaborate this issues in Section 2.6.3. Moreover, the overall speedups for 434.zeusmp and
173.applu are very small because the redundant computations in both benchmarks are not
in hot loops.

In the remaining section, we describe our findings via the RVN profiler in each bench-
mark and discuss the code optimizations for eliminating redundancies.

16

Table 2.2: Redundant Fraction for SPEC Benchmarks

Program
% Redundant Fraction (R̂)

Min Max Average GeoMean

bzip2 9.56 20.72 15.34 14.61
gcc 18.40 21.28 20.28 20.23
mcf 4.16 10.12 6.27 5.76

hmmer 18.42 20.27 19.53 19.51
libquantum 0.64 6.69 2.92 1.84
h264ref 12.91 13.16 13.07 13.07
omnetpp 21.52 22.81 22.29 22.28
astar 26.82 28.13 27.68 27.68
bwaves 3.12 6.73 4.67 4.43
zeusmp 4.29 4.75 4.51 4.51
gamess 15.50 18.26 16.77 16.73
milc 6.23 6.58 6.45 6.45

gromacs 8.89 11.32 9.75 9.69
leslie3d 3.60 4.21 3.86 3.85
namd 3.13 3.18 3.16 3.16
soplex 9.67 20.07 13.58 3.85
povray 18.28 20.20 19.56 19.54
calculix 12.84 24.75 18.80 17.83

gemsRDTD 4.04 11.95 6.79 5.95
tonto 13.97 18.40 15.47 15.34
lbm 8.28 9.00 8.57 8.56
wrf 5.26 7.72 6.62 6.54

sphinx3 3.46 12.09 6.94 6.04
applu 4.67 16.11 9.11 7.90

GeoMean 7.82 12.59 10.16 9.68

Table 2.3: Overhead of RVN with sampling

Program Time Space
bwaves 41.8⇥ 5.8⇥
zeusmp 27.6⇥ 7.4⇥
hmmer 46.5⇥ 15.3⇥
applu 45.4⇥ 7.3⇥

sweep3d 44.7⇥ 4.1⇥

2.6.1 410.bwaves

Figure 2.3 shows a redundancy pair with their full calling contexts identified by our RVN
profiler. This redundancy occurs many times during the execution. The movsdq instruc-
tion continuously loads the same data from memory to register %xmm0. This redundancy,
however, occurs inside the math library used by the application code. The instruction
causing the redundancy by itself provides no useful information for tuning. Beyond this,
we neither have source code access, nor can one optimize it for just one workload. The
calling contexts collected by RVN, however, provide rich insights: the redundancy occurs
in a pow function, called at line 47 in file jacobian lam.f. Listing 2.6 shows the source
code at the call site of pow. Our further study shows that this piece of code is in a loop
nest (denoted as jacobian lam.f:loop(30) in Table 2.4). The base value used for the
power of 0.75d0 computation remains the same across loop iterations, which is the cause
of redundant pow computations. To remove this redundancy, we modify the code to reuse
the value from the previous call to the pow function if the base value remains unchanged
from the previous call to the current. The optimization can achieve significant performance

17

Table 2.4: Performance Improvement

Program Procedures:loops
gcc (-02) gcc (PGO) icc (-02)

%Cycle† %Ins.† WS‡ %Cycle %Ins. WS %Cycle %Ins WS

410.bwaves
block solver.f:loop(167) -97.1 -97.3

1.07⇥
-96.9 -97.1

1.12⇥
-55.1 -52.6

1.04⇥jacobian lam.f:loop(30) -16.0 -16.8 -16.0 -16.8 -6.3 -2.9
shell lam.f -13.6 -15.2 -10.9 -13.5 -9.1 -3.9

434.zeusmp
lorentz.f:loop(675 or 552) -22.0 -6.3

1⇥
-6.7 -<0.1

1⇥
-4.2 +8

1⇥forces.f:loop(466) -15.8 +6.9 -10.8 -6.9 -13.45 +4.6
pdv.f:loop(317) -6.5 -10.5 -5.6 -12.8 -18.1 +29.8

456.hmmer
hmmcalibrate.c:loop(499) -13.9 -7.2

1.06⇥ -6.5 -15.8
1.06⇥ -5.9 -8.8

1.09⇥
fast algorithms.c:loop(119) -14.1 -16.9 -7.3 -15.7 -6.1 -8.9

173.applu applu.f:loop(2660) -30.1 -3.4 1⇥ -9.1 +2.8 1⇥ -0.58 +0.44 1⇥
sweep3d sweep.f:loop(397) -26.3 +4.3 1.08⇥ -21.0 -9.2 1.05⇥ -39.6 -6.2 1.22⇥

†
The percentages (%) of cycle and instruction reduction (-) and increment (+) due to redundancy elimination.

‡
WS means whole-program speedup due to redundancy elimination.

1 ros=q(1,ip1 ,jp1 ,kp1)
2 us=q(2,ip1 ,jp1 ,kp1)/ros
3 vs=q(3,ip1 ,jp1 ,kp1)/ros
4 ws=q(4,ip1 ,jp1 ,kp1)/ros
5 a1=(1.0d0/ros -1.0d0/ro)/step
6 mu=(mu +((gm -1.0d0)*(q(5,ip1 ,jp1 ,kp1)/ros -0.5d0*(us*us+vs*vs+ws*ws)))**0.75d0)/2.0d0

Listing 2.6: Redundant power function calls in bwaves

improvement by reducing the costly function call pow in the loop as shown in Table 2.4.
Listing 2.7 shows another significant redundancy in block solver:loop(167) identi-

fied by RVN. The tool finds that the mod operations in Lines 5 and 6 are redundant with
themselves. Further studies in the source code show that the computation of jm1 and jp1

are loop invariants for the outer-most k loop. The computation involves heavyweight mod
operations that can significantly degrade the program’s performance. Completely eliminat-
ing this redundancy is di�cult because recomputing jm1 and jp1 are necessary in the inner
loop. The values of jm1 and jp1, however, can be determined without the mod operation.
For iterations, 2 through ny-1, jm1 is j-1 and jp1 is j+1. The values are special for the
first and last iteration of the j loop, hence we peel those iterations. Listing 2.8 shows the j
loop after the optimization. The similar optimizations also apply to the inner-most i loop
and outer-most k loop. As shown in Table 2.4, our optimization can significant reduces
the loop’s execution time and instruction number.

Besides these two major redundancies, we also optimize some other minor redundancies
identified by RVN. For the whole program compiled with gcc -O2, we are able to reduce
division and multiplication instructions by 74.8% and 9.3%, respectively; we also reduce
memory loads and stores by 13.4% and 14.5%, respectively. As a result, we get 1.07⇥
speedup for the whole bwaves benchmark. With PGO and icc, our optimization can also
achieve 1.12⇥ and 1.04⇥ speedups.

18

movsdq 0x8(%rdi,%r10,8), %xmm0:__mul::0
callq 0x7f1116aca6b0:__dvd::0
callq 0x7f1116aca840:__mpexp::0
callq 0x7f1116acaf40:__mplog::0
callq 0x7f1116acb330:__slowpow::0
callq 0x7f1116acc810:__ieee754_pow_sse2::0
callq 0x7f1116a8d610:pow::0
callq 0x400ab0:jacobian_:jacobian_lam.f:47
callq 0x404380:shell_:shell_lam.f:193
callq 0x405470:MAIN__:flow_lam.f:63
callq 0x402660:main:flow_lam.f:67

********************REDUNDANT WITH ***********************
movsdq 0x8(%rdi,%r10,8), %xmm0:__mul::0
callq 0x7f1116aca6b0:__dvd::0
callq 0x7f1116aca840:__mpexp::0
callq 0x7f1116acaf40:__mplog::0
callq 0x7f1116acb330:__slowpow::0
callq 0x7f1116acc810:__ieee754_pow_sse2::0
callq 0x7f1116a8d610:pow::0
callq 0x400ab0:jacobian_:jacobian_lam.f:47
callq 0x404380:shell_:shell_lam.f:193
callq 0x405470:MAIN__:flow_lam.f:63
callq 0x402660:main:flow_lam.f:67

--

Figure 2.3: A redundancy pair reported in bwaves.

1 do k=1,nz
2 km1=mod(k+nz -2,nz)+1; kp1=mod(k,nz)+1
3 do j=1,ny
4 jm1=mod(j+ny -2,ny)+1; jp1=mod(j,ny)+1
5 do i=1,nx
6 im1=mod(i+nx -2,nx)+1; ip1=mod(i,nx)+1
7 ...
8 enddo
9 enddo

Listing 2.7: Redundant mod in bwaves.

2.6.2 456.hmmer

RVN pinpoints significant redundancies between Lines 2 and 4 in the loop shown in List-
ing 2.92. To better understand the causes of these redundancies, we investigate the loop’s
assembly code in Listing 2.10. RVN points that a pair of redundant assignments in red in
line 3 and 10. The two assignments write the same values in %ecx to the same memory
location if the value in %ecx is not changed by the conditional move instruction in blue.
However, during the program execution, the condition for this instruction in blue is seldom
true, which prevents %ecx from receiving a new value and consistently causes the instruc-
tion in line 10 to be redundant. Similar redundant memory stores occur multiple times in
this benchmark.

To remove such redundant assignments, we refactor the source code as shown in List-
ing 2.11. We introduce a temporary scalar variable to maintain the intermediate values of
sc instead of frequently overwriting the same memory location with the same sc value. The
optimization reduces 69% memory stores in the loop in Listing 2.9 with the gcc -O2 com-

2

DeadSpy [20] also found these redundancies as dead writes.

19

1 !perform k = 1 case
2 do k=2, nz -1
3 km1=k-1; kp1=k+1; j = 1; jm1 = ny; jp1 = 2
4 !perform i loop
5 do j = 2, ny - 1
6 jm1 = j - 1; jp1 = j + 1
7 !perform i loop
8 enddo
9 j = ny; jm1 = ny - 1; jp1 = 1

10 !perform i loop
11 enddo
12 !perform k = nz case

Listing 2.8: Optimized code in bwaves.

1 for (k = 1; k <= M; k++) {
2 mc[k] = mpp[k-1] + tpmm[k-1];
3 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;
4 if ((sc = dpp[k-1] + tpdm[k-1])> mc[k]) mc[k] = sc;
5 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;
6 mc[k] += ms[k];
7 if (mc[k] < -INFTY) mc[k] = -INFTY;
8
9 }

Listing 2.9: Memory write redundancies in hmmer.

pilation. After optimizing all the redundancies pointed by RVN, this benchmark achieves
significant speedups: 1.06⇥, 1.06⇥, and 1.09⇥ to the code generated by gcc -O2, gcc PGO,
and icc -O2, respectively.

It is worth noting that compilers do not optimize the redundant memory writes because
they cannot know whether the array mc aliases with others, such as ip, tpim, tpdm, and
bp. Consequently, compilers end up retaining dead memory writes. In reality, these arrays
do not alias with one another and hence our optimization is safe.

2.6.3 434.zeusmp and 173.applu

Listing 2.12 shows the code su↵ering from cross-iteration computation redundancies identi-
fied by RVN. For example, the computation in line 2 is redundant because the computation
is already done at line 3 in the previous iteration. The similar redundancies appear mul-
tiple times in this loop and some other loops. We remove these redundancies, via the
scalar replacement [16] technique by introducing temporary variables that hold the results
computed in the current iteration and reuse them in the next iteration, as shown in List-
ing 2.13. From Table 2.4, we can see the redundancy elimination can significant speedup
these loops by up to 30%.

The 173.applu benchmark from SPEC CPU2000 also su↵ers from a very similar redun-
dancy. The rhs procedure has similar inter-iteration redundancies and requires the same
scalar replacement optimization as for the code of zeusmp shown in Listing 2.12 and 2.13.

It is worth noting that our optimization does not reduce the instruction numbers in
both benchmarks. The reason is that the original code (e.g., Listing 2.12) has regular
access patterns and unit strides. Compilers can easily generate SIMD instructions in these
loops. However, the optimized code (e.g., Listing 2.13) introduces many scalars, which

20

1 mov (%r10 ,%rax ,4) ,%ecx
2 add 0x0(%r13 ,%rax ,4) ,%ecx #mpp[k-1]+ tpmm[k-1]
3 mov %ecx, 0x4(%rdx) #assign mc[k]
4 mov 0x18(%rsp),%rbx
5 mov (%r9 ,%rax ,4) ,%r15d
6 add (%rbx ,%rax ,4) ,%r15d #dpp[k-1]+ tpdm[k-1]
7 mov 0x20(%rsp),%rbx
8 cmp %ecx ,%r15d #%ecx is mc[k]
9 cmovge %r15d, %ecx

10 mov %ecx, 0x4(%rdx) #assign mc[k]

Listing 2.10: The assembly binary of the code in listing 2.9.

1 for (k = 1; k <= M; k++) {
2 int tmpmc = mpp[k-1] + tpmm[k-1];
3 if ((sc = ip[k-1] + tpim[k-1]) > tmpmc) tmpmc = sc;
4 if ((sc = dpp[k-1] + tpdm[k-1])> tmpmc) tmpmc = sc;
5 if ((sc = xmb + bp[k]) > tmpmc) tmpmc = sc;
6 tmpmc += ms[k];
7 if (tmpmc < -INFTY) mc[k] = -INFTY;
8 else mc[k] = tmpmc;
9

10 }

Listing 2.11: Remove Memory write redundancies in hmmer.

prevents compilers from generating SIMD instructions, leading to more instructions in
these optimized loops. This observation is even obvious for code generated by icc, which
has better SIMD generation support compared to gcc. Since the performance gains by
eliminating redundant computations and memory accesses in 434.zeusmp are larger than
the losses due to hurting the SIMD generation, we still see significant speedups for all the
optimized loops in 434.zeusmp.

2.6.4 Sweep3D

Sweep3D, an ASCI benchmark, solves a 1-group time-independent discrete ordinates 3D
cartesian geometry neutron transport problem. It is written in Fortran and parallelized
with MPI. RVN monitors both sequential and MPI versions with the default input data
and reports significant computation redundancies in the loop highlighted in Listing 2.14.
RVN identifies redundant computations, such as additions, multiplications, divisions, sub-
tractions, and memory movements existing in all the code ranging from Line 2 to 10.

Further studies on the code show that arrays mu, hi, and sigt have identical elements.
Consequently, the computations from Line 2 to 4 are loop invariant. We hoist these three
lines of code outside of the loop. Further, we discover that arrays phi, phijb, and phikb

can be divided into a few continuous segments with the same beginning and ending indices;
and each of these arrays has elements in each segment with the same value. Therefore,
we always perform a conditional check for the segment boundaries and reuse the value
computed at the beginning of each segment to avoid redundant computations in Line 5 to
10.

Our optimizations speed up the loop by up to 39.6% (icc). Because this loop is the
hottest in the program, the entire application is improved by up to 22% (icc) when the

21

1 do 11 i=ibeg -1,iend
2 d1b2oo(i) = ((g2b (i) * b2(i, j, k))**2 - (g2b (i-1) * b2(i-1, j, k))**2)
3 * g2ai (i) * g2ai (i)
4 d1b2po(i) = ((g2b (i) * b2(i, j+1, k))**2 - (g2b (i-1) * b2(i-1, j+1, k))
5 **2) * g2ai (i) * g2ai (i)
6 d1b3oo(i) = ((g31b(i) * b3(i, j, k))**2 - (g31b(i-1) * b3(i-1, j, k))**2)
7 * g31ai(i) * g31ai(i)
8 d1b3op(i) = ((g31b(i) * b3(i, j, k+1))**2 - (g31b(i-1) * b3(i-1, j, k+1))
9 **2) * g31ai(i) * g31ai(i)

10 d2b3oo(i) = ((g32b(j) * b3(i, j, k))**2 - (g32b(j-1) * b3(i, j-1, k))**2)
11 * g32ai(j) * g32ai(j)
12 d2b3op(i) = ((g32b(j) * b3(i, j, k+1))**2 - (g32b(j-1) * b3(i ,j-1,k+1))
13 **2) * g32ai(j) * g32ai(j)
14
15 continue

Listing 2.12: Inter-iteration redundancies in zeusmp.

code is running sequentially. For the parallel execution with 48 processes on an AMD
Magny-Cour machine, our optimization is still e↵ective: 1.16⇥ and 1.10⇥ speedups (not
shown in Table 2.4) for the whole program compiled by gcc -O2 and icc -O2, respectively.

22

1 tmp1 = g32ai(j) * g32ai(j)
2 tmp4 = (g2b(ibeg -2) * b2(ibeg -2, j, k))**2
3 tmp6 = (g2b(ibeg -2) * b2(ibeg -2, j+1, k))**2
4 tmp8 = (g31b(ibeg -2) * b3(ibeg -2, j, k))**2
5 tmp10 = (g31b(ibeg -2) * b3(ibeg -2, j, k+1))**2
6 do 11 i=ibeg -1,iend
7 tmp2 = g2ai(i) * g2ai(i)
8 tmp3 = g31ai(i) * g31ai(i)
9 tmp5 = (g2b(i) * b2(i,j,k))**2

10 tmp7 = (g2b(i) * b2(i, j+1, k))**2
11 tmp9 = (g31b(i) * b3(i,j,k))**2
12 tmp11 = (g31b(i) * b3(i, j, k+1))**2
13
14 d1b2oo(i) = (tmp5 - tmp4) * tmp2
15 d1b2po(i) = (tmp7 - tmp6) * tmp2
16 d1b3oo(i) = (tmp9 - tmp8) * tmp3
17 d1b3op(i) = (tmp11 - tmp10) * tmp3
18
19 tmp4 = tmp5
20 tmp6 = tmp7
21 tmp8 = tmp9
22 tmp10 = tmp11
23
24 11 continue

Listing 2.13: Remove inter-iteration redundancies in zeusmp.

1 do i = i0 , i1, i2
2 ci = mu(m)*hi(i)
3 dl = (sigt(i,j,k) + ci + cj + ck)
4 dl = 1.0 / dl
5 ql = (phi(i) + ci*phiir + cj*phijb(i,lk,mi) + ck*phikb(i,j,mi))
6 phi(i) = ql * dl
7 phiir = 2.0d+0*phi(i) - phiir
8 phii(i) = phiir
9 phijb(i,lk ,mi) = 2.0d+0*phi(i) - phijb(i,lk ,mi)

10 phikb(i,j,mi) = 2.0d+0*phi(i) - phikb(i,j,mi)
11 enddo

Listing 2.14: Redundnat computations in Sweep3D.

23

Chapter 3

RedSpy: Exploring Value Locality

in Software

3.1 Introduction

Sophisticated flow of control and a hierarchy of component libraries have increased the com-
plexity of modern software productions which often introduces ine�ciencies which prevent
applications from achieving optimal performance.

In this work, we focus on wasteful data movement, which we refer to as “redundancy”.
The term “redundancy” should not be misinterpreted as “resiliency” for fault-tolerance.

Compilers often fail to eliminate many kinds of redundancies since the myopic view of
the program limits their analysis to a small scope—individual functions or files. Link-time
optimization [36, 56] can o↵er better visibility; however, the analysis is still conservative.
Layers of abstractions, dynamically loaded libraries, multi-lingual components, aggregate
types, aliasing, sophisticated flows of control, and combinatorial explosion of execution
paths make it practically impossible for compilers to obtain a holistic view of an application
to apply its optimizations.

Orthogonal to static analysis is the coarse-grained runtime profiling that identifies pro-
gram hot spots. Performance analysis tools such as HPCToolkit [5], VTune [49], gprof [39],
OProfile [95], and CrayPAT [30] monitor code execution to identify hot code regions, idle
CPU cycles, arithmetic intensity, and di↵erent level of cache misses, to name a few. These
tools can recognize the utilization (saturation or underutilization) of hardware resources,
but they cannot inform whether a resource is being used in a fruitful manner or not.

The solution to the limitations of static compiler analysis and coarse-grained profil-
ing is a less commonly employed paradigm of fine-grained program monitoring. Unlike
coarse-grained profilers, fine-grained analysis involves microscopic monitoring of each dy-
namic instruction, its operands, memory accesses, and runtime values. A key advantage
of microscopic program-wide monitoring is that it can identify redundancies notwithstand-
ing user-level program abstractions. Furthermore, as identified in prior work, RVN, and

24

1 for (int i = 0 ; i < N; i++) {
2 /* Func() is side -effect free */
3 A[i] = 2 * Func(i);
4 /* use of A[i]. Line 3 is not a dead store */
5 ... = A[i];
6 /* A[i] gets the same value as after line 3 */
7 A[i] = Func(i)+Func(i);
8 /* use of A[i]. Line 7 is not a dead store */
9 ... = A[i];

10 }

Listing 3.1: Redundancy not detected by classic value profiling [14, 15, 35, 113] ,
DeadSpy [20], and RVN.

demonstrated in our case studies in §3.7, various forms of program ine�ciencies—e.g., sub-
optimal implementation choice and poor algorithmic choice—often manifest as redundant
operations. Hence, runtime tracking di↵erent forms of redundancies o↵ers visibility into
program ine�ciencies and hence o↵ers new avenues to tune codes.

The classical value profiling [14, 15, 35, 113] has focused on identifying frequently
occurring values at di↵erent program granularities such as functions, basic blocks, and
instructions. While this classical approach helps identify a unit of code with potential
for data or branch speculation, the approach does not render itself useful in identifying
redundancies in execution—e.g., the value keeps changing unpredictably, but it is same as
the one generated elsewhere in the program. For example, in Listing 3.1, the value of A[i]
keeps changing and has no predictability. However, there is a redundancy between line
3 and line 7, which write the same value to A[i]. Existing fine-grained profilers [20] do
not detect this redundancy. DeadSpy [20], which tracks accesses to every memory location,
cannot recognize the redundancy between line 3 and line 7 because of an intervening “load”
of the location A[i]. RVN, which assigns unique values to computations analogous to value
numbering [10], assigns di↵erent values to the computations on line 3 and line 7 and hence
fails to recognize the redundancy in this case.

Our work distinguishes from prior value profiling e↵orts by focusing on how a location
often gets overwritten with the same (or approximately the same) value, regardless of
the instructions involved in the computation. We classify value locality into two kinds:
temporal and spatial. Temporal value locality indicates that the same value overwrites
the same storage location; spatial value locality indicates that the nearby storage locations
share a common value.

One can exploit value locality to eliminate redundant computations and tune perfor-
mance. Redundancy arising from temporal value locality can be eliminated by removing
redundant computations and redundant data movements. Redundancy arising from spa-
tial value locality can be eliminated by memorization [83]—remember the value computed
with a storage location and reuse it if the same computation is performed on an adjacent
location. Not all redundancies seen in an execution need be eliminated. In our experience,
a high fraction of redundancy demands an investigation and often yields a path to code
tuning. Value locality is often a symptom of some kinds of redundancy; we use the terms
value locality and redundancy interchangeably in this work.

The definition of both kinds of value locality can be relaxed from the same value to
approximately the same value if approximate computation results can be tolerated. Samadi

25

et al. [99] pointed out that approximate results by reusing similar values can significantly
save computation operations, yielding more than a 2.5⇥ speedup with tolerable accuracy
loss. Thus, exploiting value locality shows promising performance gains by eliminating
redundancies or approximating computations. However, this technique is overlooked by
optimizing compilers; similarly, none of the existing coarse-grained or fine-grained profilers
recognize the potential for approximate computations.

Value locality pervasively exists in several code bases, which opens a wide avenue for
performance tuning. Table 3.2 summarizes the maximum redundancies we observed in
each of SPEC CPU2006 integer and floating-point reference benchmarks, Rodinia suite,
MineBench, and NWChem. Redundancies in loads, stores, and computations can be as
high as 39%, 79%, and 82%, respectively.

In this work, we propose RedSpy, a fine-grained profiler to pinpoint and quantify
value locality (exact and approximate) in executions. RedSpy works on fully optimized
binary executables and instruments instructions with Intel Pin [75]. RedSpy attributes
each redundancy instance to its provenance—a pair of instructions (one generating the old
value and one re-generating the same value), their source lines along with their calling
contexts. RedSpy presents the context pairs in the order of frequency of redundancies
to easy investigating top ine�ciencies. Guided by RedSpy, we are able to eliminate
redundant operations in critical code bases and achieve speedups as high as 2.2⇥. We also
show our optimizations are architecture independent and demonstrate their benefits on
multiple processor architectures and compilers.

We make the following contributions in this work:

• We develop a tool (RedSpy) to pinpoint redundancies arising from the temporal and
spatial locality of values including the potential for approximate computing.

• We develop techniques that provide rich performance insights, which include metrics
and provenance of redundancies that serve to focus on tuning code regions involved
in high redundancies.

• We demonstrate significant speedups in important code bases by exploiting value
locality identified by RedSpy.

• We tackle important implementation challenges related to aliasing, SIMD, and
floating-point registers. We build a practical tool that ensures moderate profiling
overhead. RedSpy is open sourced [1].

3.2 Related Work

We review the related work from two aspects. §3.2.1 reviews existing value profilers. §3.2.2
shows other approaches on eliminating redundant operations.

3.2.1 Traditional Value Profiling

Lipasti et al. [69, 68] proposed value locality and exploited it in a hardware extension—
the value prediction unit. Their work was concerned with same instruction frequently

26

loading the same value from memory and producing same value into a register. Lepak
and Lipasti [62] introduced the concept of “silent stores”—stores that overwrite the value
already existing in memory. Silent stores do not change the system state. They developed
a hardware mechanism to “squash” silent stores by converting every store instruction into
a three-operation sequence—a load, a comparison, and a conditional store (if the store is
not silent). Their scheme resulted in 33% reduction in cache line write-back, and 6.3%
speedup on average. In a follow-up work [63], the same authors repurposed the data-cache
Error Checking and Correcting (ECC) code’s hardware logic, which allowed them to avoid
a potentially expensive load operation introduced in the earlier scheme. Furthermore, they
proposed exploiting idle cache read ports for store verification. The two new techniques in
conjunction could detect more than 90% of silent stores.

There are more hardware approaches. Miguel et al. [82, 81] proposed hardware exten-
sions to identify approximate load values; Yazdanbakhsh et al. proposed RFVP [118], a
hardware approach to exploit approximate computation.

Our work di↵ers from all these hardware-based approaches in the following ways: first,
RedSpy is a pure software tool and does not need any hardware changes; second, RedSpy
detects redundancies not only in loads and stores (cache or memory) but also in compu-
tations performed in processor registers and any combination of these and allows approx-
imation in each case; third, while the hardware approaches attempt to silently hide inef-
ficiencies, RedSpy aims to highlight code regions causing ine�ciencies to help developers
tune their code, which can lead to higher speedups.

Bell et al. [9] explored silent stores with source code analysis and compiler optimization
levels. Like us, they inferred that the root cause of silent stores is often algorithmic in
nature.

Calder et al. [14, 15, 35] proposed probably the first value profiler on DEC Alpha pro-
cessors. They instrument the program code and record top N values to pinpoint invariant
or semi-invariant variables stored in registers or memory locations. A variant of this value
profiler is proposed in a later research [113]. Unlike RedSpy, their approach (1) does not
identify spatial and approximate redundancies, (2) does not recognize redundancies when
the value changes in the same storage location, and (3) does not provide calling context of
instructions that have redundant values.

Muth et al. [84] proposed value profiling for code specialization. Their approach, how-
ever, identifies the redundant values in registers only. Oh et al. [92] automatically special-
ized loops in script programs based on patterns. They collected value profiles to identify
static instructions that always produce the same value. Their approach cannot identify
optimization opportunities for partially redundant values.

Chung et al. [25] developed a procedure-level value profiler, which identifies redundant
values passed to the same function as parameters multiple times. Kamio and Masuhara [58]
proposed a similar method-level value profiling in JAVA programs. These two approaches
omit the redundancies that happen elsewhere, e.g., individual instructions or loops.

Burrows et al. [12] used hardware performance counters to sample values in Digital
Continuous Profiling Infrastructure (DCPI) [7]. Their approach incurs low runtime over-
head, but its sampling technique captures only the currently occurring value. It cannot
identify redundancies since it does not maintain a history of values in a storage location.

Henry et al. proposed MAQAO VPROF [42], which profiles values in high-performance

27

computing code bases. VPROF monitors hot loops or functions and captures the frequen-
cies of each value computed. However, VPROF requires extensive manual e↵ort. VPROF
does not capture calling contexts of redundant function calls. VPROF works only at
function-level granularity, which is coarse-grained.

Unlike existing value profilers, RedSpy has four distinct features. First, RedSpy is
the only value profiler that tracks the history of values occurring in a storage location,
which allows it to recognize value redundancy. Second, it identifies and exploits both
temporal and spatial value locality. Third, it provides rich information including calling
contexts and redundancy metrics associated with program source code. Fourth, RedSpy
not only identifies redundant computations but also explores opportunities for approximate
computing.

3.2.2 Other Redundancy Optimization Techniques

Compilers employ a variety of techniques, e.g., value numbering, constant propagation,
and partial redundancy elimination, to eliminate redundant operations. Elaborating these
compiler techniques is outside the scope of this work. Beyond these classical compiler
techniques, there exist many static analysis techniques [28, 29, 76, 45] to identify redundant
computation. However, these static approaches su↵er from limitations related to aliasing,
optimization scope, and insensitivity to execution contexts. In this section, we only review
profiling techniques beyond value profiling.

Chabbi and Mellor-Crummey [20] developed DeadSpy to identify execution-wide dead
stores. DeadSpy tracks every memory operation to pinpoint a store operation that is not
loaded before a subsequent store to the same location. They associate pairs of instructions
involved in a “dead write” with their calling contexts and source code locations to guide
manual program optimizations. DeadSpy is value agnostic. Unlike DeadSpy, RedSpy
detects redundancies arising in computations (registers) and data movement (memory)
operations.

Butts et al. [13] developed a hardware-based method to track CPU-bound operations
and identify useless computations in a program. They do not provide detailed feedback for
optimization. In contrast, RedSpy uses a software method to monitor memory operations
and provides rich optimization guidance.

Our previous work, RVN, assigns symbolic values to dynamic instructions and identifies
redundancies on the fly. RVN e↵ectively performs symbolic equivalence at runtime but
does not inspect actual runtime-generated values. Hence, RVN misses out on certain
opportunities that RedSpy can detect by explicitly inspecting values generated at runtime.
Furthermore, RVN essentially performs a tracing of instructions and incurs heavy space
and time overheads, whereas RedSpy performs profiling and hence incurs much less space
and time overheads.

3.3 Methodology

At a high level, RedSpy tracks values present in every storage location (registers and
memory) and checks if a newly generated value is same as the one that already existed at

28

1 int Temp(int a, int b){
2 int m = a * a;
3 int n = b * b;
4 int v1 = m - n;
5 c = a - b;
6 d = a + b;
7 v1 = c * d;
8 return v1;
9 }

Listing 3.2: Code example of temporal
value locality.

1 void Spat(){
2 int * a = new int[N];
3 int * b = new int[N];
4
5 for(i=0; i<N; ++i){
6 a[i] = i/2 + 1;
7 b[i] = Foo(a[i]);
8 }
9 }

Listing 3.3: Code example of spatial value
locality.

the same storage location. We relax the “same location” to “nearby ’locations’ and ‘same
value” to “approximately same” values. RedSpy uses Intel’s Pin dynamic-instrumentation
framework [75] to instrument binaries for runtime value tracking.

Listing 3.2 shows an example with temporal value locality. The values assigned to v1

at line 4 and 7 are the same because of the identity a ⇥ a � b ⇥ b == (a � b) ⇥ (a + b).
Thus, the value of v1 shows temporal locality, resulting in redundant computations at line
5-7. To identify temporal value locality, RedSpy inspects the value(s) generated by each
instruction instance, whether computations or data movement and compares the previous
value at the target location(s), whether memory or register, with the newly generated value.
If the two values are the same, then RedSpy flags such operation pairs as redundant. On
each instance of redundancy, RedSpy records the pair <previous calling context,

current calling context> into a table of redundancies. Associated with each context
pair is a frequency metric that records how often the same pair produces redundant values.
We describe the details of our metric later in this section. The context pairs with high
frequencies are the targets of optimization.

Relaxing the logic to detect approximation is conceptually straightforward: instead
of bitwise equivalence, RedSpy checks if the old and new values are within a threshold
percentage di↵erence. RedSpy applies the approximation only for floating-point compu-
tations since integer values may have other semantic meanings in a program, e.g., branch
decisions, switch tables, among others.

Challenges in identifying temporal value locality reside in handling complex instructions
such as SIMD in modern architectures, handling registers with aliases (e.g., EAX vs. AX in
x86), segregating floating-point computations from the rest, and maintaining a moderate
runtime overhead of the analysis. §3.4.1 details the techniques to address these challenges.

Listing 3.3 shows spatial value locality, where values computed for a[i] and a[i + 1]
(i = 0, 2, 4, ...) are always the same. Thus, the computation on a[i+ 1] at line 7 is always
redundant. To identify spatial value locality, RedSpy investigates the values stored in
a segment of memory, e.g., an array. After initialization or a series of intensive writes,
RedSpy compares the values of adjacent memory elements. If most of these values are
identical, then they exhibit the spatial locality. RedSpy also periodically checks register
contents for the uniqueness of its values. Relaxing to value approximation is similar to that
of temporal value locality, which checks whether the adjacent values are within a threshold
percentage di↵erence. §3.4.2 o↵ers more details of spatial value locality.

29

Exploiting Value Locality. RedSpy is a profiler, which only pinpoints locality. Ex-
ploiting value locality requires code transformation. If a redundancy is due to temporal
value locality, one can remove the computation that repeatedly produces the same or sim-
ilar values to the same storage location. If a redundancy is due to spatial value locality,
one can reuse the computation result from one array element to other elements, as SPMD
computation on di↵erent array elements is often the same. Redundancies captured at run-
time may be input specific or input agnostic. The application developer needs to make the
design choice on how to optimize the code. We show several examples of how we exploit
value locality in our case studies in §3.7.

Limitations: First, RedSpy does not distinguish optimizable vs. non-optimizable value
redundancies. RedSpy may have false positives where the values are accidentally identical.
However, we easily filter accidental value collisions by attributing redundancies to the
calling context pairs responsible for generating the last and current values. Thus, only
those contexts that frequently lead to redundancies are optimization candidates. Only a
handful of top contexts account for a vast majority of redundancy found in executions; it is
not worth exploring contexts that contribute to a small fraction of the overall redundancy.
Second, RedSpy detects only intra-thread redundancies. We can extend our analysis to
detect inter-thread redundancies by introducing extra synchronization in RedSpy analysis
routines for memory operations—required to ensure atomicity of analysis routines and
application code.

3.4 Detection of Value Redundancies

3.4.1 Temporal Redundancy

Temporal redundancy may occur both in registers and memory. Our implementation dif-
fers based on whether the target location of instruction is a register or the memory. For
example, the target location of a load instruction is a register; the target location of a
store instruction is the memory; the target location of a register-to-register computation
is a register. Furthermore, x86 poses other complex scenarios since the target location of
some computations can also be memory. We use the term “write” to mean generation of
a new value either into a register or memory. For example, loading a value from memory
into a register is a “register write”.

To flag an instance of a write as redundant, we need to instrument every instruction
and analyze the newly written value immediately after the instruction execution. Intel’s
Pin provides facilities to identify the register or e↵ective memory address along with the
size of the operation to its analysis routines and allows tools to instrument either before or
after any instruction. An inspection of the target location performed immediately after an
instruction would tell us the newly generated value at the target location. The challenge,
however, is in knowing the previous value at the same location. There are two possibilities
on how one can capture the previous value:

1. Option 1: Insert instrumentation before an instruction to capture the value just
before the instruction execution and store it in a temporary bu↵er, or

30

2. Option 2: Record the last written value of every location into a “shadow” memory
location.

Option 1 has relatively higher time overhead since it would instrument both before
(IPOINT BEFORE in Pin terminology) and after (IPOINT AFTER in Pin terminology) an
instruction but it has an O(1) space overhead. Option 2 has relatively lower time overhead
since it would instrument only after an instruction, but it has O(N) space overhead where
N is the number of unique storage bytes accessed in the program.

We use the best of both strategies. Since memory writes are relatively less frequent
compared to register writes but the amount of addressable memory is very large, we use
Option 1 when the target of a write is a memory location. Since register writes are very
frequent, and the number of registers is much smaller, we use Option 2 when the target of
a write is a register.

Memory Temporal Redundancy. As stated before, we insert instrumentation before
and after a memory write operation to identify redundancies. A complication with this
strategy is that for instructions that have the auto-increment/decrement [50] semantics, the
e↵ective address computed immediately after an instruction is not same as the one used
by the instruction. To be precise, Pin’s IARG MEMORYWRITE EA argument to an analysis
function when used with IPOINT AFTER location computes the e↵ective address after the
instruction, not the e↵ective address used by the instruction itself. Thus, our analysis
routine executed after an instruction would get an incorrect e↵ective address.

To make Option 1 work, we need to capture the e↵ective address e and the value v’ at
e before an instruction’s execution into a bu↵er, say b. With this information, the analysis
performed immediately after the instruction can compare the new value v at e with the
previous value v’ captured in b for the number of bytes that the instruction writes and
flag redundancy i↵ v=v’ (v⇡v’ for approximate computations).

A few rare instructions may update more than one memory location. To accommodate
multi-memory location updates, we dedicate multiple bu↵ers to remember the e↵ective
addresses and the old values. We dedicate eight such bu↵ers. In our experience, we have
never encountered any instruction updating more than four disjoint locations in the x86 64
architecture. The largest value written is 512 bytes in the fxsave instruction. Thus, the
total bu↵er size for all fields is ⇠4KB, which is much less compared to shadowing each
byte.

Register Temporal Redundancy. As stated before, we insert instrumentation only
after a register write operation to identify register-level redundancies. On most occasions,
RedSpy used the lightweight IARG REG VALUE argument-passing technique in Pin, which
presents the register value at runtime to an analysis function.

X86 architectures have aliased registers where di↵erent segments of a register can be
accessed via di↵erent register names. For example, the register AL is the lower 8 bits of AX,
AH is the higher 8 bits of AX, AX is the lower 16 bits of EAX, and EAX is the lower 32 bits
of RAX. If an instruction updates AL, it a↵ects the subsequent value read at AX, EAX, and
RAX, but it does not a↵ect the value read at AH. If an instruction updates AH, it a↵ects the
subsequent value read at AX, EAX, and RAX, but it does not a↵ect the value read at AL. If

31

an instruction updates AX, EAX, or RAX, it a↵ects the subsequent values read at AL, AH,

AX, EAX, and RAX.
To hold the previous values of registers, we dedicate shadow value registers equal in

number to the physical registers on the target processor. We handle register aliasing by
creating aliases in the shadow registers so as to mirror the exact aliasing present in the
physical registers. For example, we maintain only one real shadow register shadow A of
64 bits for the entire alias group AL, AH, AX, EAX, and RAX. The writes to AL, AX, EAX,

and RAX simply result in di↵erent sized writes into shadow A. Writes to AH is a special case
that writes to bits 8-15 of shadow A.

Value Approximation in Temporal Redundancy. To accommodate approximate
redundancy, we relax the strict “equal to” operation to “approximately equal to” for
floating-point operations. The approximation can be either ignoring a few lower-order
bits or allowing a threshold percentage accuracy. We implement the threshold-based ap-
proximation and set the accuracy to be 99% in our evaluation. The threshold is a user
tunable parameter.

On modern x86 processors, the floating-point operations can be performed either on
the x87 coprocessor or via the SIMD engine. The x87 coprocessor uses an 80-bit extended
precision representation whereas SIMD engines can work on either 32-bit single precision
or 64-bit double precision quantities. RedSpy uses XED [51] to decode an instruction and
classify it into an x87, single-precision, double-precision, or non-floating-point category.

If an instruction falls into the x87 category, we inspect the 80-bit registers that are the
target of an x87 instruction. We check the higher 16 bits (sign bit and exponent) for exact
equality and check the lower 64 bits (significand) to be within the threshold of accuracy.
Unfortunately, Pin does not allow reading non-general-purpose registers with its lightweight
IARG REG VALUE mechanism, hence RedSpy uses IARG REG CONST REFERENCE to read the
top of the x87 stack. A few x87 instructions operate on more than one register of the x87 co-
processor stack [50], which cannot even be read via IARG REG CONST REFERENCE in Pin. In
such situations, RedSpy resorts to using Pin’s heavyweight API PIN GetContextRegval.
Fortunately, the use of x87 instructions is rare on code-generated for modern x86 64 pro-
cessors.

If an instruction is a SIMD single-precision or double-precision category, RedSpy
fetches the generated 128-bit (XMM), 256-bit (YMM), or 512-bit (ZMM) values via Pin’s
IARG REG CONST REFERENCE argument passing. RedSpy, then compares the previously
stored value with the current value. For e�ciency, RedSpy uses SIMD for approximate
equality comparison, which involves a SIMD subtraction followed by a SIMD division.
Subsequently, RedSpy reports redundancies found in the constituent SIMD components
separately.

All through, we optimize the instrumentation for the common case and accomplish
all specialization with C++ template meta-programming and template specialization to
produce minimal instrumentation code tailored for each kind of instruction. This scheme
lowers runtime overhead.

Metric of Temporal Redundancy. RedSpy measures the volume of temporal redun-
dancy in an execution as the fraction of bytes that are redundantly produced to the total

32

bytes produced by the program. More specifically, if an instruction produces a value V of
length N bytes at its target location L (whether memory or register) and if and only if
the previous value (V 0) at L was already V , i.e., all N bytes match, then RedSpy treats
the currently produced value as a temporal redundancy of N bytes. If fewer than N bytes
match, then it is not considered as redundant. Intuitively, sub-write-size redundancy is
not actionable by the programmer. Note, however, that the previous value V 0 of N bytes
might have been generated by multiple shorter writes, a single write longer than N bytes,
or more commonly a single write of N bytes.

A redundant computation is usually cheaper than a redundant data movement. Fur-
thermore, the volume of data generated within registers is far more than the volume of
data moved between CPUs and memory. Hence, we classify the redundancy into load re-
dundancy, store redundancy, and register redundancy. RedSpy provisions for approximate
computation by allowing new values generated in floating-point (FP) operations to approx-
imately match the previously present values. RedSpy decomposes the redundancy into
“precise” vs. “approximate”. The definitions below show how redundancy is decomposed
into various categories:

R

precise

load

=

P
non-FP bytes redundantly loaded from memory

P
non-FP bytes loaded from memory

R

appx

load

=

P
FP bytes redundantly loaded from memory

P
FP bytes loaded from memory

R

precise

store

=

P
non-FP bytes redundantly written to memory

P
non-FP bytes written to memory

R

appx

store

=

P
FP bytes redundantly written to memory

P
FP bytes written to memory

R

precise

reg

=

P
non-FP bytes redundantly generated in registers

P
non-FP bytes generated in registers

R

appx

reg

=

P
FP bytes redundantly computed in registers

P
FP bytes computed in registers

Overall redundancy is:

R

total

=

P
bytes of value redundantly generated

P
bytes of value generated

In addition to measuring the volume of redundant data, RedSpy also computes the
fraction of instructions involved in redundant computations as below:

R

precise

ins

=

P
Non-FP dynamic instructions generating redundant value

P
Dynamic instructions executed

R

appx

ins

=

P
FP dynamic instructions generating redundant value

P
Dynamic instructions executed

3.4.2 Spatial Redundancy

Spatial value redundancy ensues when same values appear in the neighborhood of stor-
age locations. Spatial redundancy can also occur in memory or registers. Inspecting the
neighborhood on each write, however, is extremely expensive and creates noisy results.

33

Instead of automatically inspecting neighborhood locations on each write, we let the ap-
plication programmer insert “instrumentation hooks” that tell RedSpy when to inspect a
neighborhood of locations.

Spatial Redundancy in Memory. For spatial memory redundancy, RedSpy focuses
on array type elements. RedSpy knows the data object that any memory access belongs
to and the size of the entire object—this is captured by performing a binary analysis on
the static data present in the binary and intercepting memory allocation routines such
as malloc, calloc, realloc, posix memalign, and free for dynamically allocated data.
RedSpy, however, does not know the size of each array element, e.g., the size of a structure
and its fields in an array of structures. Without knowing the size of an element, it is not
possible to inspect the neighboring elements. RedSpy relies on explicit user instrumen-
tation to inform the starting address, stride, and size of an element whenever it wants to
check for spatial redundancy; the size of the entire array is not necessary. We recommend
inserting the hook at the end of a computation phase once all array elements are updated,
e.g., after initialization or after a time step.

RedSpy’s spatial analysis scans the entire array of elements and looks for the unique-
ness of the values in the array. RedSpy computes the redundancy in an array as the
fraction of the number of non-unique values to the total number of elements:

S =
Total elements � Unique elements

Total elements

After analysis, if S is above a set threshold (20% in our implementation), RedSpy
records and reports such redundancies. Similar to temporal redundancy metric, we decom-
pose S into precise and approximate redundancies.

Spatial Redundancy in Registers. For spatial register redundancy, RedSpy groups
architectural registers into general-purpose, floating-point, and SIMD. At user-chosen hook
points, RedSpy inspects each register group and computes redundancy in each group based
on the uniqueness of the values.

Approximating Spatial Redundancy. We provision for approximation in spatial re-
dundancies by relaxing our comparison to be within a threshold of accuracy from the base
value (99% in our experiments). The user hook is responsible for informing whether to per-
form an approximate comparison for memory locations and SIMD registers; floating-point
registers are always considered for approximate comparison.

3.5 Recording and Reporting Redundancy

In addition to identifying value redundancy, as a profiler, RedSpy needs to record the
provenance of redundancies. Showing the source lines and full calling contexts of the
previous write and the new write that overwrites it with (approximately) the same value
o↵ers detailed insights into diagnosing and understanding the causes of redundancies such

34

as algorithmic and data structure choice. We have found calling context to be very useful,
especially when redundancy manifests deep inside a common library (e.g., memset) called
from many call sites in a large code base. With this objective, RedSpy needs to capture
the full calling context on each write operation so that it can be used when a redundancy
may be detected subsequently. RedSpy uses CCTLib [18] for e�ciently collecting calling
contexts on every instruction and associates them with source code using the DWARF [4]
information. RedSpy can query for the calling context for every monitored instruction
instance and in return, it gets a four-byte ContextHandle from CCTLib.

Once a temporal redundancy happens, RedSpy records the pair of calling contexts
involved in the redundancy. The pair has two 32-bit components—the calling context of
the last write operation and the calling context of the current write operation. We maintain
a hash table where the key is a 64-bit context pair and the value is the redundancy metric—
bytes redundant in that context pair.

Attributing Memory-temporal Redundancies. RedSpy dedicates a shadow mem-
ory of four bytes for each memory byte the program touches and stores the current
ContextHandle obtained from CCTLib in the shadow memory. RedSpy uses a previ-
ously developed e�cient two-level page-table mapping strategy [20] to store and retrieve
the ContextHandle in a constant time. If a memory write instruction is found to be redun-
dant, RedSpy reports the context pair involved in the redundancy. With this logic, when-
ever a redundancy is found while writing n bytes to a memory address, say M , RedSpy
can immediately fetch the n previous contexts from shadow[M:M+n-1] that caused the for-
mation of the same value at the same location. Often, these n contexts are the same, which
allows us to specialize our code.

Attributing Register-temporal Redundancies. RedSpy dedicates a set of shadow
registers (shadow context registers) each of which maintains the calling context of the last
write to each register. Handling aliases in shadow context registers is more involved. We
treat AX, EAX, and RAX as single super register. We dedicate a single shadow context register
C
s

for a super group. We dedicate one shadow context register C
al

for AL and another
shadow context register C

ah

for AH. If an instruction writes to a super group register, then
RedSpy records the calling context in its corresponding shadow context register C

s

and
in addition it records the context in C

al

and C
ah

since updating a super register implicitly
updates the other two registers.

If an instruction writes to AL, then RedSpy records the calling context in its corre-
sponding shadow context register C

al

and in addition it records the context in C
s

since
updating AL implicitly updates the super registers (but not AH). If an instruction writes to
AH, then RedSpy records the calling context in its corresponding shadow context register
C
ah

and in addition it records the context in C
s

since updating AH implicitly updates the
super registers. Other aliased registers such as RBX, RCX, and RDX are handled in the
same way. With this logic, whenever a redundancy is found while writing to a register,
say R, the corresponding context stored in the shadow context register C

R

immediately
fetches the previous calling context that had created the same value at the same location.
We ignore special cases for multiple di↵erent writes combining to form a larger value that
becomes redundant since it incurs more bookkeeping and runtime overhead.

35

Attributing Memory-spatial Redundancies. If the spatial redundancy in a user-
chosen hook location is above a threshold, RedSpy records the location of redundancy
(the calling context of the hook location) and the data object that exhibits the redundancy
along with the number of bytes redundant. The data object will be the name for static
objects or the calling context of the allocation site for dynamically allocated objects.

Attributing Register-spatial Redundancies. If the register-spatial redundancy per-
centages in a register group is above a user-specified threshold (e.g., 20%) at a user specified
hook point, RedSpy records the redundancy percentages in each such register group and
associates them with the calling context of the hook point.

Sampling for Low Overhead. As a fine-grained analyzer, RedSpy has a relatively
high runtime overhead (80⇥ on average). RedSpy adopts a bursty sampling mechanism
to further reduce its overhead [119]. Bursty sampling involves continuous monitoring for a
certain number of instructions (WINDOW ENABLE) followed by not monitoring for a certain
(larger) number of instructions (WINDOW DISABLE) and repeating it over time. These two
thresholds are tunable. From our experiment, 1% sampling with WINDOW ENABLE=1 million
and WINDOW DISABLE=100 million yields a good balance between overhead and analysis
accuracy. With bursty sampling, RedSpy aggregates the redundancy found only when the
sampling is enabled. For example,

R̂precise

load

=
NX

i=0

P
non-FP bytes redundantly loaded in sample iP

non-FP bytes loaded in sample i

R̂precise

store

, R̂precise

reg

, R̂appx

load

, R̂appx

store

, R̂appx

reg

, R̂precise

ins

, and R̂appx

ins

are analogously defined. We
evaluate the sampling accuracy in the next section. Values are not carried over from one
interval to the next—shadow registers are cleared at the start of a new monitoring interval.

Start and end of sampling also serve as the points where RedSpy inspects the register
spatial redundancies without requiring a user hook.

Handling Parallel Programs. RedSpy works for both multi-threaded and multi-
processed executions. RedSpy monitors each thread and process individually without
introducing any synchronization and hence its analysis scales perfectly. A post-mortem
profile merging phase aggregates metrics in di↵erent calling contexts from di↵erent threads
and processes albeit retaining individual thread’s contribution to identify imbalance, if any.

Presentation. RedSpy apportions redundancy to its contributing context pairs. On
program termination, RedSpy sorts the redundancies accumulated in di↵erent context
pairs and presents them in the order of their contribution. Users, typically, need to inspect
only a top few (3-5) redundancy pairs to identify significant causes of ine�ciencies, if any.

36

Machines Intel-SandyBridge AMD Intel-Xeon-Phi IBM-POWER7

Processor Xeon E5-4650@2.7GHz Opteron 6168@1.6GHz Xeon Phi 3100@1.1GHz POWER7@3.5GHz
SMT x Cores 2 x 8 1 x 12 4 x 57 4 x 8

L1/L2/L3 Cache 32KB/256KB/20MB 64K/512K/10MB 32KB/512KB/NA 32K/256K/4MB
Memory 256GB DDR3 128GB DDR3 6GB GDDR5 256GB DDR3
Compiler gcc 4.8.5 -O3 PGO gcc 4.8.3 -O3 PGO icc 15.0.0 -O3 PGO xlc 13.1.0 -O2 PDF

Table 3.1: Machine configurations.

Program Precise Approximate

Fraction %redundancy Fraction %redundancy Over Total Bytes Written
Over Bytes Written by Precise
Ins

Over Bytes Written by Floating
Point Instructions

Program %reg
%loa

d %store %reg %load
%stor

e
Precise
Register

Precise
Load

Precise
Store

Approx
Register

Approx
Load

Approx
Store Register Load Store Register Load Store

bzip2 43.86 35.12 19.30 7.57 11.38 28.11 8.72 <0.1 <0.1 <0.1 <0.1 <0.1 4.5 <0.1 3.32 4.00 5.42 3.38 6.45 14.18
gcc 32.42 25.55 42.11 10.68 23.11 83.26 21.47 <0.1 <0.1 <0.1 0.9 <0.1 80.5 <0.1 3.46 5.90 35.06 3.46 7.54 46.19
mcf 29.49 52.91 17.61 2.46 7.04 37.87 6.80 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 3.72 6.67 0.73 5.10 24.60

hmmer 54.15 32.57 11.93 7.70 7.40 10.45 5.62 0.18 0.12 <0.1 6.5 <0.1 12.14 <0.1 4.17 2.41 1.25 4.23 4.62 4.61
libquantum 60.73 26.34 12.46 6.67 2.22 7.16 4.78 0.38 0.06 <0.1 7.24 0.06 19.88 <0.1 4.05 4.07 1.29 4.18

h264ref 47.57 38.79 11.41 8.74 12.58 13.73 6.45 0.1 <0.1 0.1 6.1 <0.1 39.5 <0.1 4.16 4.88 1.57 4.25 8.28 4.79
omnetpp 38.81 34.58 20.27 9.16 15.95 16.2 7.2 1.1 4.2 1.04 20.74 9.47 43.31 2.16 3.55 5.52 3.28 3.80 8.62 7.24 3.60 1.53 1.44

astar 62.905 32.1 4.905 12.61 14.94 9.87 8.27 0.1 <0.1 <0.1 1.3 <0.1 32.9 <0.1 7.93 4.80 7.94 9.67 1.49
xalancbmk 41 49.7 9.05 4.44 6.86 15.13 3.89 <0.1 0.15 <0.1 18.5 0.12 26.79 <0.1 1.82 3.41 1.37 1.82 5.40 6.73
SPEC-INT
GeoMean 44.3 35.4 14.1 7.1 9.5 18.2 7.2 0.2 0.3 0.3 5.4 0.4 24.5 2.2 4.06 4.33 7.80 3.74 6.33 12.67

bwaves 39.38 25.96 2.2 8.55 36.98 28.6 8.11 24.22 3.73 4.5 10.65 0.36 20.11 3.64 3.37 9.60 2.58 4.99 26.15 1.32 7.95 0.07 5.83
gamess 48.0 26.6 7.1 18.9 18.9 32.9 11.5 11.0 5.2 2.2 3.8 1.8 29.7 1.3 9.07 5.03 2.34 11.10 9.56 5.20 2.27 0.84 8.38

milc 52.7 9.8 4.2 0.9 2.8 8.5 1.7 21.4 8.5 3.4 2.5 1.7 25.8 2.3 0.71 1.84 4.52 1.61 1.00 11.54
zeusmp 55.0 13.8 5.0 41.2 48.6 53.9 31.2 20.3 4.4 1.4 7.4 2.2 23.2 2.4 22.66 6.71 2.70 1.50 30.70 11.18 2.84 5.76 0.73 2.95
gromacs 57.9 5.7 2.3 1.8 7.3 5.8 2.1 28.2 4.2 1.8 0.7 0.6 7.1 0.9 1.04 1.58 4.25 1.17 0.58 0.38 4.12

cactusADM 32.0 18.7 5.8 31.9 8.3 20.4 12.5 17.1 20.1 6.3 19.4 20.3 27.9 8.6 10.21 1.55 1.18 3.32 4.08 1.76 18.07 2.75 2.57 7.63 8.91 3.82
leslie3d 38.6 33.6 11.1 25.1 16.4 38.0 16.8 12.9 2.9 1.0 5.2 0.9 39.2 1.3 9.69 5.51 4.22 11.63 7.89 8.02 3.99 0.29 5.52
namd 55.3 8.2 2.0 2.6 0.5 3.6 1.7 24.7 7.5 2.3 1.3 3.5 47.3 2.2 1.44 1.09 2.20 0.32 1.41 0.93 2.36 15.32
soplex 43.0 30.5 6.8 11.4 38.2 30.0 9.1 9.0 8.8 2.0 8.2 7.9 10.7 2.2 4.90 11.65 2.04 6.10 23.92 3.62 3.73 3.66 1.18
povray 38.3 20.7 10.5 13.7 25.8 43.9 11.9 18.1 10.4 2.0 2.6 5.3 23.1 1.8 5.25 5.34 4.61 7.55 11.89 9.22 1.54 3.67 4.67
calculix 63.6 8.5 0.9 0.6 1.3 15.5 1.1 22.7 3.9 0.4 3.6 0.4 11.6 1.4 0.52 1.11 4.98 3.03 0.20 1.05

gemsFDTD 43.9 30.1 8.0 16.7 11.0 21.2 11.0 15.5 1.6 0.9 3.6 0.4 30.0 1.2 7.33 3.31 1.70 8.94 6.04 4.75 3.10 0.10 5.51
tonto 45.2 19.4 7.5 8.6 11.5 24.4 6.7 18.3 6.7 3.0 7.5 4.8 17.1 2.9 3.89 2.23 1.83 1.37 5.39 6.28 6.63 4.90 1.87 3.35
lbm 66.2 3.9 2.2 0.3 4.0 6.8 1.1 18.6 7.3 1.8 12.7 21.4 92.7 8.3 2.36 1.56 1.67 0.27 2.44 2.30 8.53 7.17 4.65
wrf 39.7 21.6 5.5 13.7 21.4 39.0 9.7 27.7 4.2 1.3 3.4 1.8 34.8 2.8 5.44 4.62 2.15 8.14 11.33 5.28 2.84 0.85 6.96

sphinx3 63.0 11.4 1.5 0.4 5.9 47.0 2.1 21.6 2.4 0.1 2.9 0.3 20.8 0.8 0.33 5.06 9.04 2.60 0.13 0.63
SPEC-FP
GeoMean 47.8 15.2 4.1 5.4 9.3 20.4 5.5 18.6 5.3 1.6 4.4 1.9 24.1 2.1 7.02 5.56 2.53 2.23 2.82 1.50 7.39 8.25 4.55 3.81 2.01 5.34

NWChem 28.0 38.7 5.7 7.5 4.7 24.1 6.7 12.0 5.2 10.5 10.3 1.4 88.7 7.5 2.10 1.82 1.37 1.24 9.31 2.90 3.50 7.67 4.46 0.28 41.95
Aprior 59.8 25.3 15.0 2.0 7.6 25.9 4.3 <0.1 <0.1 <0.1 10.0 <0.1 <0.1 <0.1 1.20 1.92 3.89 1.19 4.55 15.79

Bayesian 37.0 38.3 19.7 14.5 19.7 33.1 11.8 2.2 1.7 1.1 <0.1 <0.1 83.4 0.5 5.37 7.55 6.52 5.65 10.41 12.10
BIRCH 41.8 21.0 7.2 9.5 10.8 28.1 6.1 18.4 10.5 1.2 2.9 5.2 19.9 1.2 3.97 2.27 2.02 5.67 6.02 7.36 1.77 3.74 2.57
ECLAT 43.6 50.6 5.8 24.0 14.0 1.7 8.4 <0.1 <0.1 <0.1 1.6 <0.1 81.8 <0.1 10.46 7.08 10.46 8.81 0.23
HOP 41.6 22.3 4.4 5.0 45.3 41.6 10.2 25.1 5.7 1.0 0.6 3.3 54.1 2.2 2.08 10.10 1.83 3.05 31.87 3.35 0.47 2.58 11.04

Kmeans 67.4 17.0 1.2 4.0 3.6 44.0 4.0 8.8 4.9 0.6 0.2 3.4 35.7 1.1 2.70 3.15 2.76 6.00 0.12 2.92 5.10
ParETI 54.9 30.4 14.6 11.7 18.8 57.5 14.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 6.42 5.72 8.40 6.43 10.08 18.61

SVM-RFE 55.4 41.1 0.1 0.1 1.3 13.3 1.3 0.4 2.9 0.1 1.3 <0.1 45.6 0.1 0.06 1.29 0.89 0.15
ScalParC 52.6 20.0 15.9 9.0 16.2 44.0 11.3 9.4 2.0 <0.1 12.1 4.0 8.3 1.4 4.73 3.24 7.00 1.14 5.35 7.22 17.02

MineBench
GeoMean 49.6 27.7 4.8 4.7 10.4 23.9 6.6 5.7 3.8 0.6 1.9 3.9 37.3 0.7 4.34 4.96 4.43 1.19 9.31 4.39 8.65 8.90

backprop 44.4 41.4 1.2 32.6 3.6 79.8 9.2 11.6 1.4 <0.1 6.3 <0.1 23.3 1.4 14.47 1.49 16.64 1.98 2.56
hotspot 25.9 12.0 2.9 13.5 7.8 0.1 4.7 42.3 17.0 <0.1 4.7 35.2 <0.1 5.3 3.50 1.99 5.98 8.57 3.30 0.01
lavaMD 25.6 25.9 5.7 28.3 83.8 82.3 21.2 31.2 7.8 3.7 3.5 4.9 19.7 3.0 7.24 21.70 4.69 1.09 12.67 36.23 3.98 2.56 2.55 6.02

particlefilter 43.5 3.9 0.6 1.7 23.6 9.1 1.3 8.2 43.7 0.1 7.9 1.2 11.1 0.4 1.54 14.85 0.21 1.25 1.01 0.12
Rodinia

GeoMean 33.6 15.0 1.9 12.1 15.4 9.2 5.8 18.8 9.5 0.7 5.3 5.9 17.2 1.7 8.41 11.60 4.69 1.54 5.98 9.85 14.09 1.69
GeoMean 4.46 4.45 3.13 1.71 3.37 2.33

%
 R

ed
un

da
nc

y
O

ve
r T

ot
al

 P
re

cis
e

By
te

s
W

rit
te

n

0.00

15.00

30.00

45.00

60.00

bz
ip

2
gc

c
m

cf
hm

m
er

lib
qu

an
tu

m
h2

64
re

f
om

ne
tp

p
as

ta
r

xa
la

nc
bm

k
bw

av
es

ga
m

es
s

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
AD

M
le

sli
e3

d
na

m
d

so
pl

ex
po

vr
ay

ca
lcu

lix
ge

m
sF

DT
D

to
nt

o
lb

m wr
f

sp
hi

nx
3

NW
Ch

em
Ap

rio
r

Ba
ye

sia
n

BI
RC

H
EC

LA
T

HO
P

Km
ea

ns
Pa

rE
TI

SV
M

-R
FE

Sc
al

Pa
rC

ba
ck

pr
op

ho
ts

po
t

la
va

M
D

pa
rti

cle
filt

er
Register Load Store

Pe
rc

en
t R

ed
un

da
nc

y

0.00

11.25

22.50

33.75

45.00
bz

ip
2

gc
c

m
cf

hm
m

er
lib

qu
an

tu
m

h2
64

re
f

om
ne

tp
p

as
ta

r
xa

la
nc

bm
k

bw
av

es
ga

m
es

s
ze

us
m

p
gr

om
ac

s
ca

ct
us

AD
M

le
sli

e3
d

na
m

d
so

pl
ex

po
vr

ay
ge

m
sF

DT
D

to
nt

o
lb

m wr
f

NW
Ch

em
Ap

rio
r

Ba
ye

sia
n

BI
RC

H
EC

LA
T

HO
P

Km
ea

ns
Pa

rE
TI

Sc
al

Pa
rC

ba
ck

pr
op

ho
ts

po
t

la
va

M
D

G
eo

M
ea

n

Precise Register Precise Load Precise Store Approx Register Approx Load Approx Store

SPEC-INT SPEC-FP MineBench Rodinia

�1

Figure 3.1: Breakdown of redundant bytes written in di↵erent benchmark suites.

3.6 Experiments

We evaluateRedSpy on four platforms: Intel SandyBridge, AMD Opteron, Intel Xeon Phi,
and IBM POWER7. Table 3.1 shows the machine configurations and the compilers used.
We evaluate RedSpy on the following programs and benchmarks: SPEC CPU2006 [104]
integer and floating-point benchmarks, Rodinia [91] and MineBench [3] parallel benchmark
codes, and NWChem-6.3 [111] MPI computational chemistry code. For SPEC CPU2006 we
use the reference inputs; for Rodinia and MineBench, we use the default datasets released
with the suites. For NWChem, we use the QM-CC aug-cc-pvdz input, which spends
most cycles in computation. We use profile-guided optimization (PGO) as our baseline so
as to detect redundancies remaining only after applying any automatic optimization. An
exception is NWChem, which has a complicated build process; hence we use only -O3 for
NWChem. We use the same input(s) both for PGO training and testing.

We run every parallel program with four threads (or processes for NWChem) pinned to
cores on the same socket, and average the numbers across all threads (or processes). We do
not use the simultaneous multi-threading (SMT) feature. We collect the previously men-
tioned metrics and profiling overhead in these benchmarks. We also explore the sampling
accuracy on a subset of benchmarks.

Volume of Redundancy. Figure 3.1 shows the temporal redundancy observed in the
aforementioned benchmark suites on Intel SandyBridge machine compiled with gcc -O3

PGO. Each bar with di↵erent colors in the figure quantifies the value redundancy and
its decomposition in individual programs. The bar of GeoMean over all the benchmarks
reveals that among the total bytes written, 4.5% are redundant integer register writes, 4.5%

37

R̂reg
apprx Rload

apprx^ Rstore
apprx^ Rins

apprx^

^

Rins
precise^

Rstore
precise^Rload

precise^Rreg
precise^

Table2

Page 4

Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Program

Precise Approximate
Fraction %redundancy Fraction %redundancy

%reg %load %store %reg %load %store

bzip2 44 35 19 7.6 11 28 8.7 <0.1 <0.1 <0.1 <0.1 <0.1 4.5 <0.1
gcc 32 26 42 11 23 83 21 <0.1 <0.1 <0.1 0.9 <0.1 80 <0.1

29 53 18 2.5 7 38 6.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

54 33 12 7.7 7.4 10 5.6 0.2 0.1 <0.1 6.5 <0.1 12 <0.1

61 26 12 6.7 2.2 7.2 4.8 0.4 <0.1 <0.1 7.2 <0.1 20 <0.1

h264ref 48 39 11 8.7 13 14 6.5 0.1 <0.1 0.1 6.1 <0.1 40 <0.1

39 35 20 9.2 16 16 7.2 1.1 4.2 1 21 9.5 43 2.2

63 32 4.9 13 15 9.9 8.3 0.1 <0.1 <0.1 1.3 <0.1 33 <0.1

41 50 9.1 4.4 6.9 15 3.9 <0.1 0.15 <0.1 19 0.1 27 <0.1

-- -- -- 13 23 83 21 -- -- -- 21 9.5 80 2.2

39 26 2.2 8.6 37 29 8.1 24 3.7 4.5 11 0.4 20 3.6

48 27 7.1 19 19 33 11 11 5.2 2.2 3.8 1.8 30 1.3

milc 53 9.8 4.2 0.9 2.8 8.5 1.7 21 8.5 3.4 2.5 1.7 26 2.3

55 14 5 41 49 54 31 20 4.4 1.4 7.4 2.2 23 2.4

58 5.7 2.3 1.8 7.3 5.8 2.1 28 4.2 1.8 0.7 0.6 7.1 0.9

cactusADM 32 19 5.8 32 8.3 20 13 17 20 6.3 19 20 28 8.6
leslie3d 39 34 11 25 16 38 17 13 2.9 1 5.2 0.9 39 1.3

55 8.2 2 2.6 0.5 3.6 1.7 25 7.5 2.3 1.3 3.5 47 2.2

43 31 6.8 11 38 30 9.1 9 8.8 2 8.2 7.9 11 2.2

38 21 11 14 26 44 12 18 10 2 2.6 5.3 23 1.8

64 8.5 0.9 0.6 1.3 15 1.1 23 3.9 0.4 3.6 0.4 12 1.4

gemsFDTD 44 30 8 17 11 21 11 15 1.6 0.9 3.6 0.4 30 1.2

45 19 7.5 8.6 12 24 6.7 18 6.7 3 7.5 4.8 17 2.9

66 3.9 2.2 0.3 4 6.8 1.1 19 7.3 1.8 13 21 93 8.3

40 22 5.5 14 21 39 9.7 28 4.2 1.3 3.4 1.8 35 2.8

sphinx3 63 11 1.5 0.4 5.9 47 2.1 22 2.4 <0.1 2.9 0.3 21 <0.1

-- -- -- 41 49 54 31 -- -- -- 19 21 93 8.6

28 39 5.7 7.5 4.7 24 6.7 12 5.2 10 10 1.4 89 7.5

60 25 15 2 7.6 26 4.3 <0.1 <0.1 <0.1 10 <0.1 <0.1 <0.1

Bayesian 37 38 20 14 20 33 12 2.2 1.7 1.1 <0.1 <0.1 83 0.5
BIRCH 42 21 7.2 9.5 11 28 6.1 18 11 1.2 2.9 5.2 20 1.2
ECLAT 44 51 5.8 24 14 1.7 8.4 <0.1 <0.1 <0.1 1.6 <0.1 82 <0.1
HOP 42 22 4.4 5 45 42 10 25 5.7 1 0.6 <0.1 54 2.2

67 17 1.2 4 3.6 44 4 8.8 <0.1 0.6 0.2 <0.1 36 1.1

ParETI 55 30 15 12 19 57 14 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
SVM-RFE 55 41 0.1 0.1 1.3 13 1.3 0.4 <0.1 <0.1 1.3 <0.1 46 0.1

53 20 16 9 16 44 11 9.4 2 <0.1 12 4 <0.1 1.4

-- -- -- 24 45 57 14 -- -- -- 12 5.2 83 2.2

44 41 1.2 33 3.6 80 9.2 12 1.4 <0.1 6.3 <0.1 23 1.4

hotspot 26 12 2.9 13 7.8 0.1 4.7 42 17 <0.1 4.7 35 <0.1 5.3
lavaMD 26 26 5.7 28 84 82 21 31 7.8 3.7 3.5 4.9 20 3

43 3.9 0.6 1.7 24 9.1 1.3 8.2 44 0.1 7.9 1.2 11 0.4

-- -- -- 33 84 82 21 -- -- -- 7.9 35 23 5.3

All-MAX -- -- -- 41 84 83 31 -- -- -- 21 35 93 8.6

mcf

hmmer

libquantum

omnetpp

astar

xalancbmk

 SPEC-INT

MAX

bwaves

gamess

zeusmp

gromacs

namd

soplex

povray

calculix

tonto

lbm

wrf

 SPEC-FP

MAX

NWChem

Aprior

Kmeans

ScalParC

MineBench

MAX

backprop

particlefilter

 Rodinia

MAX

Table 3.2: Breakdown of temporal redundant bytes and redundant instructions in di↵erent
benchmark suites.

are redundant integer loads, 3% are redundant integer stores, 1.7% are redundant floating-
point register writes, 3.4% are redundant floating-point loads, and 2.3% are redundant
floating-point stores, resulting in the total value redundancy as high as 17%.

Table 3.2 further breaks down the temporal redundancy in categories. The volume
of temporal redundancy is classified into accurate (col 2-8) and approximate (col 9-15).
The Fraction column (col 2-4) under precise category shows the percentage breakdowns
of data generated within registers (col 2), loaded from memory (col 3), and stored to
memory (col 4) via non-floating-point operations. The Fraction column (col 9-11) un-
der approximate category analogously shows the breakdown for floating-point operations.
Column 5, 6, 7, and 8 respectively decompose the observed precise redundancies into
Rprecise

reg

, Rprecise

load

, Rprecise

store

, and Rprecise

ins

components. Column 12, 13, 14, and 15, respec-
tively, decompose the observed approximate redundancies into Rappx

reg

, Rappx

load

, Rappx

store

, and
Rappx

ins

components. Bold texts summarize the maximum redundancy observed in each
benchmark suite.

There are several benchmarks with a high volume of redundancies (e.g., gcc and
h264ref). For example, 83% Rprecise

store

in gcc is because of a repeated zero initialization
of a large array, which has been well studied elsewhere [20]. We observe that R

store

is often

38

Program
Overhead Redundancy

w/o w/ (w/o sampling) (w/ sampling)
sampling sampling R

total

R̂

total

bzip2 39⇥ 15⇥ 8.2% 8.4%
bwaves 82⇥ 20⇥ 17% 17%
zeusmp 65⇥ 8.4⇥ 31% 31%
gromace 71⇥ 6.6⇥ 1.6% 1.6%

cactusADM 105⇥ 8.6⇥ 13% 13%
backprop 55⇥ 25⇥ 7.4% 8.4%
lavaMD 279⇥ 74⇥ 6.6% 6.6%

particlefilter 167⇥ 68⇥ 0.8% 0.6%

Table 3.3: Comparing overhead and redundancy with sampling enabled and disabled.
The sampling covers 1% instructions.

higher than R
reg

and R
load

. R
ins

is always lower than the rest since this metric is com-
puted for all instructions without decomposing the contributions from di↵erent categories.
Rprecise is always higher than Rappx in SPEC CPU2006 integer benchmarks compared to
the floating-point benchmarks and vice-versa.

h264ref shows 13% load redundancy and 14% store redundancy; NWChem shows 89%
store redundancy. We investigate them in the next section. A few benchmarks show high
redundant loads; e.g., lavaMD has 26% data generation due to loads of which 84% are
redundant loads.

We do not report spatial redundancy because it depends on programmers choos-
ing their hook placement. In §3.7, we, however, show two case studies, Hotspot and
Particle filter, which have high spatial redundancy.

Sampling Accuracy. To assess the accuracy of bursty sampling technique adopted by
RedSpy, we selected eight representative benchmarks (bzip2, bwaves, zeusmp, gromaces,
cactusADM, backdrop, lavaMD, particlefilter). The benchmarks cover integer, floating
point, iterative, non-iterative, HPC, and non-HPC benchmarks with high and low redun-
dancies. We compare RedSpy’s redundancy volume with and without bursty sampling in
Table 3.3. At the previously mentioned 1% sampling rate, all these benchmarks show neg-
ligible variation from full monitoring. We have further analyzed pairs of redundancies that
RedSpy reports in both settings; the rank ordering of the top ten redundancy locations
is almost always the same. An exception is gromacs, which shows 50% variation in its
top contributors since (1) the total redundancy is very small, and (2) the top contributors
account for less than 1% redundancy. With this data, we infer that RedSpy’s bursty sam-
pling strategy does not lose accuracy in detecting and reporting value redundancies where
they matter.

RedSpy Overhead. Table 3.4 shows the space and time overhead of RedSpy on SPEC
CPU2006 benchmarks on the Intel SandyBridge platform. The average time and space
overheads are 12⇥ and 9⇥, respectively. Some benchmarks, e.g., gcc, su↵er from high
memory overhead, which is due to the high space overhead of CCTLib [18] for applications
that have a deep and large calling context tree. For most benchmarks with moderate call
chains, RedSpy incurs ⇠ 5⇥ memory overhead, on average. Time overhead is usually high
when (1) the redundancy is high since it results in more hash-table updates, or (2) the

39

Tbale5

Page 1

spec

401.bzip2 19 4.9

403.gcc 24 31

429.mcf 7.0 4.3

456.hmmer 12 22

462.libquantum 28 6.1

464.h264ref 30 11

471.omnetpp 13 10

473.astar 12 5

483.xalancbmk 27 40

410.bwaves 18 3.8

416.gamess 27 15

433.milc 6.9 7.1

434.zeusmp 14 7.7

435.gromacs 10 14

436.cactusADM10 5.7

437.leslie3d 12 5.9

444.namd 16 5.9

450.soplex 15 5.0

453.povray 29 58

454.calculix 16 11

459.gemsFDTD10 7.2

465.tonto 21 50

470.lbm 8.2 8.7

481.wrf 19 4.5

Program

b
z
ip

2

g
c
c

h
2
6

4
re

f

m
ilc

c
a

c
tu

s
A

D
M

le
s
lie

3
D

g
e
m

s
F

D
T

D

s
p

h
in

x
3

G
e
o
M
e
a
n

19 24 7 12 28 30 13 12 27 18 27 7 14 10 10 12 16 15 29 16 10 21 8 19 18 15

4.9 31 4 22 6 11 10 5 40 4 15 7 8 14 6 6 6 5 58 11 7 50 9 5 6 10

Program

b
z
ip

2

g
c
c

h
2
6

4
re

f

m
ilc

c
a

c
tu

s
A

D
M

le
s
lie

3
D

g
e
m

s
F

D
T

D

s
p

h
in

x
3

G
e
o
M
e
a
n

19 20 7 14 12 34 11 11 31 14 23 6 8 8 6 7 12 12 24 11 8 16 6 15 12 12

5.6 27 4 19 8 11 10 4 148 4 16 6 8 16 2 4 8 3 63 12 5 61 8 6 5 9

m
c
f

h
m

m
e

r

lib
q

u
a

n
tu

m

o
m

n
e
tp

p

a
s
ta

r

x
a

la
n
c
b

m
k

b
w

a
v
e
s

g
a
m

e
s
s

z
e

u
s
m

p

g
ro

m
a

c
e

n
a
m

d

s
o

p
le

x

p
o
v
ra

y

c
a

lc
u

lix

to
n

to

lb
m

w
rf

Time
Overhead

Space
Overhead

m
c
f

h
m

m
e

r

lib
q

u
a

n
tu

m

o
m

n
e
tp

p

a
s
ta

r

x
a

la
n
c
b

m
k

b
w

a
v
e
s

g
a
m

e
s
s

z
e

u
s
m

p

g
ro

m
a

c
e

n
a
m

d

s
o

p
le

x

p
o
v
ra

y

c
a

lc
u

lix

to
n

to

lb
m

w
rf

Time
Overhead

Space
Overhead

Table 3.4: RedSpy’s space and time overheads in the unit of times (⇥) on SPEC CPU2006
benchmarks.

Redundancy types Programs Problematic procedures:loops
Intel SandyBridge AMD Xeon Phi POWER 7
WS‡ PS‡ WS WS WS

Memory Temporal
464.h264ref mv-search.c:loop(394) 1.34⇥ 23% 1.36⇥ 1.26⇥ 1.27⇥
backprop bpnn adjust weights 1.01⇥ 13% 1.14⇥ 1.00⇥ 1.08⇥
NWChem⇤ tce mo2e trans.F:240 1.19⇥ 9% 1.53⇥ – –

Memory Spatial particlefilter particle filter.c:loop(487) 1.10⇥ 8% 1.04⇥ 1.01⇥ 1.05⇥
Register Temporal lavaMD kernel cpu.c:loop(117) 1.50⇥ 37% 1.64⇥ 1.34⇥ 2.72⇥

Spatial Approximation hotspot hotspot openmp.cpp:loop(44) 2.21⇥ 69% 2.19⇥ 1.16⇥ 1.63⇥
‡WS means whole-program speedup due to redundancy elimination while PS means whole-program power saving.
⇤
NWChem was run only on SandyBridge and AMD without PGO due to its highly complex and laborious installation procedure.

Table 3.5: Overview of performance improvement guided by RedSpy on di↵erent plat-
forms.

instruction mix has more SIMD or x87 instructions, which require heavyweight Pin APIs
to pass runtime values to RedSpy’s analysis routines.

3.7 Case Studies

In this section, we evaluate a few cases with high value redundancy seen in the previous
section, investigate the causes of redundancies, and optimize them. Table 4.3 overviews
the performance improvements after optimizing redundancies seen in several programs on
various platforms. For parallel programs (LavaMD, Backprop, Hotspot, and NWChem), we
show the improvements when the application is run with all cores on each machine. The
machine configurations are the same as shown in Table 3.1. As before, we use PGO for
the baseline code and also for the code after our manual transformations. The training set
used for PGO is the same input used for testing in all case studies. We do not apply PGO
to NWChem due to its complicated build process.

From Table 4.3, it is evident that RedSpy can guide exploiting value locality in various
programs yielding significant performance gains. In addition to time savings, Table 4.3
shows energy reduction (measured by RAPL [114] on Intel SandyBridge).

In the following subsections, we elaborate on how we employed RedSpy to identify
redundancies in these codes and also discuss our optimization techniques. At the end
of this section, we compare the ability of RedSpy with existing software-based redun-
dancy elimination techniques described in §3.2, including (1) DeadSpy [20], which identifies
dead stores, (2) RVN, which pinpoints redundant computation via symbolic execution, (3)
ParaProx [99], a compiler technique to identify approximate computing opportunities in
OpenCL codes, and (4) LLVM-ThinLTO [56], a link-time optimization technique across

40

movq 0x18(%rsp), %rdi: SetupFastFullPelSearch:mv-search.c:419

FastFullPelBlockMotionSearch:mv-search.c:963
BlockMotionSearch:mv-search.c:2615
PartitionMotionSearch:mv-search.c:3272
encode_one_macroblock:rdopt.c:3096
encode_one_slice:slice.c:253
code_a_picture:image.c:236
frame_picture:image.c:798
encode_one_frame:image.c:409
main:lencod.c:413

********************REDUNDANT WITH ***********************
movq 0x18(%rsp), %rdi: SetupFastFullPelSearch:mv-search.c:419

FastFullPelBlockMotionSearch:mv-search.c:963
BlockMotionSearch:mv-search.c:2615
PartitionMotionSearch:mv-search.c:3272
encode_one_macroblock:rdopt.c:3096
encode_one_slice:slice.c:253
code_a_picture:image.c:236
frame_picture:image.c:798
encode_one_frame:image.c:409
main:lencod.c:413

--

Figure 3.2: A redundancy pair reported in h264ref.

di↵erent compilation units.

3.7.1 SPEC CPU2006 h264ref

h264ref is a reference implementation of the H.264 advanced video coding standard, a
sequential C code. RedSpy reports ⇠39% bytes are loaded from memory to registers, of
which 13% are redundant. Figure 3.2 shows the top pairs with calling contexts involved
in the load redundancy. Both contexts happen to be the same location. Listing 3.4 shows
function SetupFastFullPelSearch in file mv-search.c. This surrounding loop nest ac-
counts for 55% of the total running time.

The function pointer PelYline 11 is assigned to either Fastline16Y 11 or
UMVLine16Y 11. Both of these functions accept abs x, img height, and img width as
their arguments, whose values are loop invariants in the two-level loop nest from Line 417
to 420. Thus, at the call site on line 419, the same values are loaded for usage in the
callee resulting in a large number of redundant loads. In addition, there is significant store
redundancy because of the same values being written to the stack (not shown).

The compiler fails to eliminate this redundancy since the callee is invoked via a function
pointer and the callee routines are not present in the same file.

Despite the cache locality, the redundancy is expensive since most of the time is spent
in this loop nest. We eliminate the redundancy by inlining the function calls: we create two
loop nests each one with a direct function call instead of using function pointers and move
the target functions to the same compilation unit as their call site. This optimization
saves 45% cycles and reduces 44% instructions for this loop yielding a 1.34⇥ speedup
for the whole program on Intel SandyBridge. The optimization saves 23% power. The
improvements observed on other machines in shown in Table 4.3.

41

412 for (pos = 0; pos < max_pos; pos ++) {
413 ...
414 if (...) PelYline_11 = FastLine16Y_11;
415 else PelYline_11 = UMVLine16Y_11;
416
417 for (blky = 0; blky < 4; blky ++) {
418 for (y = 0; y < 4; y++) {
419 refptr = PelYline_11(ref_pic , abs_y++, abs_x , img_height , img_width);
420 ... } ... } ...}

Listing 3.4: Temporal redundancy in SetupFastFullPelSearch function in h264ref.

movapsx %xmm1, -0x20(%rax):dfill_:src/util/dfill.f:12
tce_mo2e_trans_:src/tce/tce_mo2e_trans.F:240
text:src/tce/tce_energy.F:1326
tce_energy_fragment_:src/tce/tce_energy_fragment.F:101

. . .
main:nwchem-6.3/src/nwchem.F:347

********************REDUNDANT WITH ***********************
movapsx %xmm1, -0x20(%rax):dfill_:src/util/dfill.f:12
tce_mo2e_trans_:src/tce/tce_mo2e_trans.F:240
text:src/tce/tce_energy.F:1326
tce_energy_fragment_:src/tce/tce_energy_fragment.F:101

. . .
main:nwchem-6.3/src/nwchem.F:347

--

Figure 3.3: A redundancy pair reported in NWChem.

3.7.2 NWChem

NWChem is a production computational chemistry package from Pacific Northwest Na-
tional Laboratory, which implements several quantum mechanics and molecular mechanics
methods. It is a six-million-line application written primarily in Fortran and C and paral-
lelized with MPI. RedSpy reports that over 50% of memory writes are redundant.

Listing 3.5 shows the high portion redundancy in routine tce mo2e trans with culprit
calling context pair in Figure 3.3. The top redundant memory writes occur in the function
call to dfill, which zeroes two arrays work1 and work2. RedSpy reports that most of
the redundancy was in initializing the work2 array.

Calls to redundant dfill repeat more than 200K times, resulting in redundantly writing
500GB data. By consulting NWChem developers, we identified that the bu↵er size was
larger than necessary, and the zero initialization was unnecessary, leading to the redundant
writes in the same location. Subsequently, NWChem developers eliminated the unnecessary
initialization from the code base. Table 4.3 shows the speedup of the execution is 1.53⇥
after optimization with the gcc compiler on our AMD platform.

3.7.3 Rodinia LavaMD

LavaMD is an OpenMP benchmark, which calculates particle potential and relocation be-
tween particles in a three-dimensional space. RedSpy identifies a loop nest, shown in
Listing 3.6, which accounts for more than 60% value redundancy in registers. Moreover,
this loop nest accounts for more than 90% of the total execution time. RedSpy pinpoints

42

238 c getting piece of atomic 2-e integrals
239 c zeroing ---
240 call dfill(work1 , 0.0d0 , dbl_mb(k_work1), 1)
241 call dfill(work2 , 0.0d0 , dbl_mb(k_work2), 1)

Listing 3.5: Temporal redundant memory writes in NWChem.

169 for (...)
170 for (...)
171 for (i=0; i<NUMBER_PAR_PER_BOX; i=i+1){
172 for (j=0; j<NUMBER_PAR_PER_BOX; j=j+1){
173 r2 = rA[i].v + rB[j].v - DOT(rA[i],rB[j]);
174 u2 = a2*r2;
175 vij= exp(-u2);
176 fs = 2.*vij;
177}}}}

Listing 3.6: Temporal redundant function call in lavaMD.

that the redundancy occurs at line 175, where frequently on consecutive invocations exp()
return the same value, which is written to the register holding vij. With further investi-
gation, we inferred that r2 is often assigned the same value at line 173. Since a2 is a loop
invariant, u2, which is derived from r2 often has the same value. Consequently, the code
keeps recomputing the expensive exponentiation of a value that infrequently changes in the
loop. The output of exp(), which is assigned to vij, shows a high fraction of redundancy.

To exploit this temporal value locality in registers, we transform the code by adding a
conditional check before line 173. If we find r2’s value has not changed from the previous
iteration, we reuse the value of vij computed from the previous iteration. This optimiza-
tion reduces the CPU cycles and instructions consumed in this loop nest by 33% and 35%
respectively resulting in a 1.50⇥ speedup and 37% energy saving for the entire program.

3.7.4 Rodinia Hotspot

Hotspot estimates processor temperatures based on architectural floorplan and simulated
power measurements. RedSpy identifies high approximate spatial value locality in a two-
dimensional array temp, which stores the temperature values of processor cell partitions.
This array updates the new cell temperatures based on the stencil computation with their
neighbor cells, as shown in Listing 3.7. We placed the instrumentation hook to inspect
the temp array outside the nested loop. The spatial redundancy introduced ⇠7⇥ runtime
overhead. RedSpy pinpoints that all the values in temp are approximately identical, with
less than 1% di↵erence between values in adjacent cells.

We employed an approximate computing technique to exploit the spatial value redun-
dancy observed in Hotspot. Instead of performing computation on all the cells of temp, we
perform computation on only the first and the middle element. Other cells simply reuse
the value computed for one representative element in their halves. The approximation
error, quantified by the mean relative error across all the cell values is less than 0.6%. This
approximation based on the spatial value locality yields a 2.21⇥ speedup and 69% energy
saving for the entire program.

43

44 for (r = 0; r < row; r++) {
45 for (c = 0; c < col; c++) {
46 ...
47 {
48 delta = (step / Cap) * (power[r*col+c] +
49 (temp[(r+1)*col+c]+temp[(r-1)*col+c]-2.0* temp[r*col+c]) / Ry +
50 (temp[r*col+c+1]+ temp[r*col+c-1] - 2.0* temp[r*col+c]) / Rx +
51 (amb_temp - temp[r*col+c]) / Rz);
52 }
53 result[r*col+c] =temp[r*col+c]+ delta;
54 }
55 }

Listing 3.7: Approximate spatial value locality in Hotspot.

321 for (j = 1; j <= ndelta; j++) {
322 for (k = 0; k <= nly; k++) {
323 new_dw = ((ETA * delta[j] * ly[k])+(MOMENTUM * oldw[k][j]));
324 w[k][j] += new_dw;
325 oldw[k][j] = new_dw;
326 }
327 }

Listing 3.8: Temporal redundant array updating in backprop.

3.7.5 Rodinia Backprop

Backprop implements backward propagation machine learning algorithm to trains the
weights of connecting nodes in a neural network. Backprop is an OpenMP program written
in C. The code in Listing 3.8 shows a top temporal store redundancy identified by RedSpy.
The redundancy happens when updating the value new dw at line 323. This nested loop is
accessed twice during the whole execution. During the first visit, the loop iterates 17 times
and populates new dw with non-zero values. However, during the second visit, the total
number of loop iterations is over one billion and this time new dw is always zero. Since
adding zero does not change value, the entire array w is always written with the same value
(redundancy at line 324).

To avoid redundancy, we execute the update of w[k][j] line 324 conditionally if and
only if new dw is non-zero. This optimization avoids a redundant load, a redundant addi-
tion, and a redundant store. Our optimization for this loop yields a small speedup (1.01⇥)
but nontrivial energy saving (13%) for the entire program on Intel SandyBridge. On the
AMD machine, this optimization yields a 1.14⇥ speedup for the whole program.

3.7.6 Rodinia Particlefilter

Particle filter estimates the location of a target object using a Bayesian method. It is an
OpenMP program written in C. RedSpy reports high spatial value locality of the array
xj and yj in Listing 3.9. We position the instrumentation hook after this loop, which
introduces <12⇥ runtime overhead. RedSpy detects that the index i computed at line
488 seldom changes in consecutive iterations; hence, many elements in xj or yj are assigned
to the same value.

To exploit this spatial value locality, we reuse the value of xj[j-1] for xj[j] if i

44

486 #pragma omp parallel for shared(CDF , Nparticles , xj , yj , u, arrayX , arrayY) private(
i, j)

487 for(j = 0; j < Nparticles; j++){
488 i = findIndex(CDF , Nparticles , u[j]);
489 if(i == -1)
490 i = Nparticles -1;
491 xj[j] = arrayX[i];
492 yj[j] = arrayY[i];
493 }

Listing 3.9: Spatial value locality in Particle filter.

Program
RedSpy vs. other tools

DeadSpy [20] RVN Paraprox [99] ThinLTO [56]

464.h264ref No No No Partial
NWChem Yes Yes No –
backprop No No No No
hotspot No No Yes No
lavaMD No Yes No No

particlefilter No No No No

Table 3.6: RedSpy vs. other tools: whether value redundancies identified by RedSpy
can be identified by other tools.

remains the same in these two adjacent iterations. This optimization saves the loads from
arrayX, which is randomly accessed over more than 9,000 elements. Hence, saving the
loads from this array reduces cache misses. This optimization yields a 1.10⇥ speedup for
the entire program.

3.7.7 Comparison with Other State-of-the-art Tools

Table 3.6 shows whether the redundancies detected byRedSpy could have been detected by
other state-of-the-art tools. DeadSpy and RVN can find redundancy if there are dead writes
or symbolic computational equivalence, respectively. DeadSpy can identify the NWChem
redundancy since it is a dead write in addition to a redundant write. RVN can identify the
redundancy in NWChem and lavaMD since they have a symbolic equivalence. ParaProx
can identify and exploit the approximate computing opportunity available in the OpenCL
version of hotspot, but not the OpenMP version.

Finally, we used LLVM ThinLTO [56] to assess whether link-time optimization (LTO)
could have eliminated any of the redundancies found by RedSpy. ThinLTO inlined the
indirect function call in 464.h264ref via PGO but introduced a condition check in the
loop body resulting in only 8% speedup. RedSpy continued to find redundancies at the
same place. Our hand-optimization cloned the loops and hoisted the condition check out
of the loops resulting in 45% speedup. All other redundancies are algorithmic in nature
and hence not exploitable by compilers even with a global view of the program. In fact, we
noticed that sometimes the redundancy fraction increased with ThinLTO; this is because
LTO can reduce the number of operations by eliminating some “language and abstraction
overheads” but cannot reduce redundant operations arising from algorithmic ine�ciencies.
Hence, the number of redundant operations relative to the total number of operations
increases [9].

45

Chapter 4

Watching for Software

Ine�ciencies with WITCH

4.1 Introduction

Large, layered, production software is complex due to a hierarchy of component libraries
and sophisticated control flow. Even the high-performance computing (HPC) software
achieves only 5-15% of peak performance on modern supercomputers [93, 31, 33]. Inef-
ficiencies inherent in complex software [20, 54, 117, 61, 102, 57, 108, 116] significantly
contribute to this abysmal performance. Software ine�ciencies may arise during design
(e.g., inappropriate choice of algorithms and data-structures), implementation (e.g., de-
velopers’ inattention to performance and use of heavyweight APIs), or translation (e.g.,
detrimental compiler optimizations and lack of tuning for an architecture).

Ine�ciencies, whatever their origin, often manifest as computations whose results may
not be used [13, 100], re-computation of already computed values, unnecessary data move-
ment [20, 62, 74, 77], and excessive synchronization [17, 110]. Ine�ciencies involving the
memory subsystem are particularly egregious because of limited bandwidth shared by mul-
tiple cores and high access latencies. Repeated initialization, register spill and restore on
hot paths, lack of inlining hot functions, missed optimization opportunities due to aliasing,
computing and storing already computed or sparingly changing values, and contention
and false sharing [40, 70, 73, 72] (in multi-threaded codes), are some of the common
prodigal uses of the memory subsystem. Although compiler literature is rich with op-
timization to eliminate ine�ciencies, in practice, layers of abstractions, dynamic libraries,
multi-lingual components, aggregate types, aliasing, and combinatorial explosion of ex-
ecution paths handicap optimizing compilers in delivering top application performance.
Additionally, algorithmic and data structural deficiencies also appear as useless memory
operations [20, 54, 117, 61, 102, 116].

Coarse-grained profilers such as VTune [49], HPCToolkit [5], gprof [39], Oracle Solaris
Studio [96], Oprofile [95], Perf [66], and CrayPAT [30] identify execution “hotspots”. They

46

1 void loop_regs_scan(struct loop *loop , ...){
2 ...
3 I last_set =(rtx *) xcalloc(regs ->num , sizeof (rtx));
4 /* Scan the loop , recording register usage */
5 for (each instruction in loop){
6 ...
7 if(GET_CODE (PATTERN (insn)) == SET || ...)
8 count_one_set (..., last_set ,...);
9 ...

10 if (end of basic block)
11 I memset(last_set ,0,regs ->num*sizeof(rtx));
12 } ... }

Listing 4.1: Dead stores in SPEC CPU2006 gcc due to an inappropriate data structure.
The function iterates over the basic blocks in a loop scanning for the registers used. Line 3
allocates and zero initializes a 16K-element 132KB array representing the virtual registers.
The loop body accesses only a few (< 2) array elements since basic blocks are typically
small. At the end of each basic block (Line 11) the code zero initializes the same array for
the use in the next basic block. Line 11 is repeatedly involved in dead stores.

attribute measurements such as CPU cycles, stalls, arithmetic intensity, and cache misses,
obtained from hardware performance monitoring units (PMUs) to the source code. On
the positive side, they introduce little runtime overhead and do not materially perturb
execution. On the negative side, hotspots fail to distinguish e�cient vs. ine�cient resource
usage. The SPEC CPU2006 [104] gcc code, shown in Listing 4.1, repeatedly zero initializes
a 132KB array, most of which is already zero. None of these profilers detects this as
wasted work. Ironically, a hotspot may have no further optimization scope (e.g., a highly
optimized linear algebra library); and conversely, a code region acclaimed by a profiler with
high arithmetic intensity (a goodness metric) may perform useless computations.

Fine-grained profilers such as DeadSpy [20], Toddler [88], Cachetor [87], and our previ-
ous works RVN, andRedSpy analyze dynamic instructions with specific objectives—detect
useless computation or data movement. They can identify ine�ciencies not detected by
coarse-grained profilers. In Listing 4.1, they can pinpoint the source code location that
re-initializes an already initialized array and quantify the wasted work. On the positive
side, they o↵er visibility into wasted work. On the negative side, they significantly slow
execution down (10-80⇥) and consume enormous (6-100⇥) extra memory.

Despite their e↵ectiveness, the high overhead of fine-grained ine�ciency detection tools
has blocked them from better scalibility. It is necessary to make such tools common enough
to run on large scale real applications.

We developed Witch—a lightweight ine�ciency-detection framework—to address this
issue. Witch combines the best of both worlds—low overhead of coarse-grained profilers
and ine�ciency detection of fine-grained profilers. Our key observation is that an important
class of ine�ciency detection schemes, explored previously via fine-grained profilers [20],
requires monitoring consecutive accesses to the same memory location. For example, de-
tecting repeated initialization—a dead write [20]—requires monitoring store after store
without an intervening load to the same location.

Witch samples addresses accessed by a program using hardware PMUs. Witch in-
tercepts the subsequent access(es) to the sampled memory locations using hardware debug
registers. The result is (1) the ability to observe consecutive accesses to the same memory
location to detect myriad ine�ciencies, and (2) no code or binary instrumentation and

47

hence low overhead. We show the benefit of this concept by building various ine�ciency-
detection tools (witchcraft) atop Witch. There are various challenges in making it prac-
tical, which we detail and address in Section 4.4 and 4.5.

The idea generalizes to detect other kinds of ine�ciencies—updating a location with a
value already present at the location (aka silent store [63, 62]) and loading an unchanged
value from memory that was previously loaded [8, 88, 103] (poor register usage). Sharing
addresses sampled by one thread with another thread enables building Witch-based tools
for multi-threaded programs. In this work, we restrict ourselves to describing the Witch
framework and three tools that detect ine�ciencies in a thread of execution. We make the
following contributions:

1. Develop a lightweight framework, Witch, suitable for a class of tools that requires
observing a program’s consecutive accesses to the same memory location.

2. Develop a sampling scheme to overcome hardware limitations, which works exceptionally
well in practice.

3. Develop ine�ciency-detection tools atop Witch, which are at least an order of mag-
nitude faster than the state-of-the-art exhaustive-instrumentation tools with the same
capabilities. Our tools require negligible extra memory.

4. Overcome practical challenges in implementing these tools and demonstrate the accuracy
of our tools in comparison with the state-of-the-art.

5. Demonstrate the utility of our tools on large code bases to pinpoint ine�ciencies and
show up to 10⇥ speedup.

4.2 Related Work and Motivation

There is a vast literature in detecting and eliminating software ine�ciencies. We
classify these techniques into hardware and software approaches. The hardware ap-
proaches [69, 68, 62, 63, 82, 81, 118] introduce new hardware components to detect and
eliminate computations whose results are never used or elide memory operations that do
not change the contents of their target memory cells. Our focus is on software approaches,
which do not need any hardware modification.

Classic compiler optimizations such as value numbering [98], constant propagation [115],
and common subexpression elimination [29] eliminate several ine�ciencies. Recently, static
analysis has been used in detecting performance bugs [94, 89]. Static analysis, typically,
su↵ers from limitations related to aliasing, optimization scope, and input and context
insensitivities. A thorough literature review of static analysis is not pertinent.

The dynamic analysis addresses the limitation of static analysis. Chabbi and Mellor-
Crummey [20] show that dead writes are a common symptom of myriad ine�ciencies. Their
tool, DeadSpy, tracks every memory operation to identify store operations that are never
loaded (dead) before a subsequent store (kill) to the same location. DeadSpy associates
pairs of instructions involved in a dead store (dead-kill pair) with their calling contexts and
source code locations to guide manual optimizations. Using DeadSpy, the authors identify

48

ine�ciencies arising from inappropriate data structure choice, optimization inhibiting code
shape, inattention to performance, and poor compiler code generation. They improve
the performance of several systems by eliminating dead writes. DeadSpy’s exhaustive
monitoring typically introduces more than 28⇥ slowdown and consumes more than 9⇥
extra memory on average.

Our previous works RVN, RedSpy detect CPU- and memory-bound ine�ciencies aris-
ing from redundant computation, missed inlining opportunities, layers of abstractions, and
redundant stores. With exhaustively monitoring, our tools incur 40-280⇥ runtime over-
head. By periodically enabling and disabling monitoring (bursty sampling [43]), we can
bring it down to a manageable 12⇥ slowdown and 9⇥ memory bloat.

Toddler [88] focuses on identifying repetitive memory load sequences across loop iter-
ations at the cost of 10⇥ slowdown. LDoctor [103] reduces Toddler’s overhead using a
combination of ad-hoc sampling and static analysis techniques. However, it only analyzes
a small number of suspicious loops identified by profiling, and hence does not work for
systematically detecting ine�ciencies in the whole program.

Unlike these approaches, Witch, without the need of any prior knowledge of the pro-
gram, monitors fully optimized native binaries and all their dynamic dependencies and
typically incurs negligible runtime overhead (< 5%) and memory overhead (< 5%). Witch
is the first lightweight measurement framework that employs PMUs and hardware debug
registers to detect program ine�ciencies. Neither the ine�ciency detection nor the use of
PMUs or debug registers is novel in itself, but their combined application is.

Tools Based on Hardware Debug Registers: Erickson et al. [34] use hardware debug
registers [55, 78] to detect data races in the Windows kernel. Jiang et al. [53] extend it to the
Linux. They sample memory access instructions and set watchpoints to detect conflicting
accesses. They use code breakpoints to intercept random instructions and use them to
monitor memory accesses for a time window. Liu et al. [71] developed DoubleTake, which
uses debug registers to identify bu↵er overflow, use after free, and memory leaks. Pesterev
et al. developed DProf [97], which combines PMU and hardware debug registers to capture
the data flow across runtime objects. DProf su↵ers from limited debug registers; it runs a
program multiple times to achieve higher coverage. These approaches focus on detecting
the presence or absence of a bug; they are not concerned with quantifying the frequency
of a bug or prioritizing the importance of a bug, which become necessary in performance
analysis tools. Witch addresses these quantification and attribution problems necessary
for performance tools.

Kasikci et al. [60] describe a spatially unbiased sampling scheme to trace cold code
for code coverage. In contrast, Witch develops a temporally unbiased sampling scheme
to monitor memory locations. Kasikci et al. dynamically rewrite the first instruction of
every basic block with the int 3 breakpoint instruction, which causes a trap; there is no
hardware limit on how many blocks they can monitor. Breakpoints set in hot code regions
drive their sampling, and they throttle too frequently trapping breakpoints. In contrast,
Witch does not modify the binary (not even at runtime), it uses the PMU as its sampling
engine, but it has to workaround the limited number of debug registers.

49

4.3 Background and Terminology

In this section, we present the background necessary to understand Witch. Expert readers
may skip this section.

Hardware Performance Monitoring Units (PMU): CPU’s PMUs o↵er a pro-
grammable way to count hardware events such as loads, stores, CPU cycles, etc. A PMU
can trigger an overflow interrupt once a threshold number of events accumulate. A pro-
filer, running in the address space of the monitored program, can handle the interrupt
and attribute the measurement “appropriately”. We refer to a PMU counter overflow as a
“sample”.

Intel SandyBridge and its successors support Precise Event-Based Sampling
(PEBS) [47]. A PMU captures a snapshot of the user-visible register state including the
program counter (PC) and the e↵ective address (EA) accessed by the instruction on an
event overflow. AMD Instruction-Based Sampling (IBS) [32] and PowerPC Marked Event
Sampling (MRK) [106] o↵er commensurate capabilities.

Hardware Debug Registers: Hardware debug registers [55, 78] enable trapping the
CPU execution for debugging when the PC reaches an address (breakpoint) or an instruc-
tion accesses a designated address (watchpoint). One can program debug registers with
di↵erent addresses, widths, and conditions that will cause the CPU to trap on reaching the
programmed conditions. Today’s x86 processors have four debug registers. If used for the
break-on-data-access (store, or load-or-store), on x86 processors, the trap occurs after the
instruction execution. Hence, if a store instruction results in a trap, the contents of the
target memory will contain the results of the store operation.

Linux Perf events: Linux o↵ers a standard interface to program and sample PMUs
using the perf event open system call [65] and the associated ioctl calls. The Linux
kernel can deliver a signal to the thread whose PMU event overflows. The user code
can mmap a circular bu↵er into which the kernel keeps appending the PMU data on each
sample. Linux 2.6.33 and its successors incorporate the debug registers in the perf event

interface, however, the support has several limitations, which we discuss and fix in our work.
We implement Witch on Intel processors with the PEBS facility. It is straightforward to
extend Witch to work on AMD with IBS and PowerPC with MRK.

Call Path Profiling: Call path profiling [41] is a profiling technique where runtime
events (e.g., cache misses) are attributed to the full call path seen at the time of the event.
Call path profiling o↵ers insightful details in complex applications with deep call chains.
The calling context of an event is a set of active procedure frames when the event happens.
A calling context begins at a process or thread entry function such as main and ends at
the instruction pointer (IP) of the instruction that triggers the event. The alternative,
flat profiling, merely attributes events to the leaf function involved in the event, which
introduces ambiguities when the same leaf function (e.g., memset) can be invoked from
multiple contexts.

50

CPU

DeadCraft: Dead write detection tool

Witch framework

Precise PMU
sample on a store

Monitor
load and store to M

Set RW watchpoint
on address M

Watchpoint trap
when accessing M

Record and report
dead write in
<Cwatch, Ctrap>

if trap was a store

Linux perf_events interface

1

3

4 5

6

7

Legend:
Signals
Calls

2

 <Calling context
Cwatch,

Address M,
AccessType=R/W>

<Calling context Ctrap,
Address M,

AccessType=R/W>

Unmodified Application

Figure 4.1: Detecting dead writes using Witch. The client, DeadCraft, subscribes to the
precise PMU store event with a desired sample period. 1

� PMU counter overflows triggering
an interrupt. 2

� Witch handles the signal, extracts the calling context (C
watch

) of the
interrupt and the address accessed (M), and o↵ers the triplet hC

watch

,M,AccessTypei to
DeadCraft. 3

� DeadCraft asks Witch to monitor subsequent load or store to M . 4
�

Witch sets a watchpoint to monitor M , and the execution continues 5
� Program accesses

M , which causes a CPU trap. 6
� Witch handles the trap signal, extracts the calling

context (C
trap

), and o↵ers the triplet hC
trap

,M,AccessTypei to DeadCraft. 7
� If the

AccessType is a store, DeadCraft infers a dead write and attributes it to hC
watch

, C
trap

i.

Terminology: A watchpoint is a software abstraction of a debug register to monitor a
data access. An address is monitored if we set a watchpoint at that address. A watchpoint
can be set to trap on write (W TRAP) or trap on read-or-write (RW TRAP). A watchpoint
exception (aka trigger) is a synchronous CPU trap caused when an instruction accesses
a monitored address. A PMU sample is a CPU interrupt caused when an event counter
overflows. Both PMU samples and watchpoint exceptions are handled via the Linux signals.

4.4 Methodology and Design

We want to answer the following questions: 1) Do consecutive store operations to a memory
location have an intervening load? 2) Do consecutive stores to a memory location store
the same value? 3) Do consecutive loads from a memory location load the same value? 4)
Is a cacheline accessed by one thread immediately accessed by another thread?
Summary: PMU samples that include the e↵ective address accessed in a sample provide
the knowledge of the addresses accessed in an execution. Given this e↵ective address,
a hardware debug register allows us to keep an eye on (watch) a location and recognize
what the program subsequently does to such location. Since the hardware can monitor a
small number of locations at a time, reservoir sampling [112] allows monitoring a subset of
previously seen addresses without any temporal bias. Finally, we scale the measurements
taken for a few monitored samples in a calling context to other unmonitored samples in
the same calling context; the scaling is based on the observation that the code behavior in
a calling context typically remains the same.

51

Details: Precise PMU samples drive Witch. Client tools subscribe to PMU events of
their choice. On each PMU sample, the client obtains the memory address M accessed
in the sample. Clients subscribe to a watchpoint at the sampled address in the signal
handler and continue their execution.1 When the program accesses M next time, a CPU
trap happens. Witch handles the watchpoint exception, captures information associated
with the trap, associates any information given by the client at the watchpoint subscribe
time, and gives control to the client tool for appropriate actions.

We use our dead store detection tool—DeadCraft, shown in Figure 4.1—as a running
example to illustrate our methodology. The ideas generalize to any tool built atop Witch.
A store followed by another store to the same address is an instance of a dead store. A store
followed by a load to the same address is not a dead store. A software instrumentation tool
such as DeadSpy [20] maintains a large shadow memory where it stores the last operation
performed on each byte of the original program. A write!write transition in a shadow
byte indicates an instance of a dead write.

DeadCraft mimics the behavior of DeadSpy but on a subset of addresses seen in PMU
samples. DeadCraft samples the PMU store events at a chosen frequency. Let the address
accessed in a PMU sample be M and let the calling context where the sample happens be
C
watch

. In the PMU overflow handler, Witch o↵ers the triplet hC
watch

,M,AccessTypei
to DeadCraft. DeadCraft memorizes the tuple and in-turn asks Witch to set a RW TRAP

watchpoint W at M . The normal execution continues. W traps when the program accesses
M next time; we defer discussing another sample happening before the trap to Section 4.4.1.
Let the address accessed in the trap be M and let its calling context be C

trap

. Witch
handles the trap and o↵ers the triplet hC

trap

,M,AccessTypei to DeadCraft. If a load
causes a trap, DeadCraft treats it as a useful operation and disables the watchpoint. If a
store causes a trap, however, DeadCraft infers the store seen in the context C

watch

as a
dead store. It attributes a “unit” of dead store to the calling context pair hC

watch

, C
trap

i.
Since dead stores can happen only on store instructions, and since every store instruc-

tion is sampled at a frequency proportional to its occurrence, transitively, we would detect
dead writes at a frequency proportional to their occurrence, if we had infinite debug reg-
isters.

4.4.1 Challenge with Samples Intervening Accesses

Hardware can monitor only a small number of addresses at a time since they have only a
handful of debug registers. The scenario of two accesses to the same memory separated
by a large distance, where many PMU samples occur in the intervening time, complicates
matters.

Consider the dead store example in Listing 4.2. Assume the loop index variables i and
j are in registers, the sampling period is 10K stores, and the number of debug register is
one. The first sample happens in the i loop when accessing array[10K]. DeadCraft sets a
watchpoint to monitor &array[10K] since a debug register is available. The second sample
happens when accessing array[20K]. Since the watchpoint armed for address &array[10K]
is still active, there is no room to monitor &array[20K].

1

A client may set a watchpoint at an address derived from the sampled address or any other address

instead of the sampled address itself.

52

1 for(int i = 1; i <= 100K; i++){
2 array[i] = 0;
3 }
4 for(int j = 1; j <= 100K; j++){
5 array[j] = j;
6 }

Listing 4.2: Long distance ine�ciencies: All (say 4) watchpoints will be armed when
sampling at 10K store in the first four samples taken in the i loop. A naive replacement
will not trigger a single watchpoint due to many samples taken in the i loop before reaching
the j loop. Witch ensures each sample equal probability to survive.

A naive “replace the oldest watchpoint” scheme cannot detect any dead stores in this
code. In such scheme, when the j loop begins, the only active watchpoint would be the
last sampled address &array[100K] in the i loop. The PMU continues delivering samples
in the j loop. At j=10K, the scheme replaces the last watchpoint on &array[100K] with
&array[10K], which would not be accessed again. At the end of the j loop not a single
watchpoint would have triggered, and hence no dead store detected. The same problem
exists for more than one debug register. A slightly smarter strategy is to flip a coin to
decide whether or not to set a watchpoint on a sample. This strategy fails because the
survival probability of an older sample becomes minuscule if a large number of samples
happen between consecutive accesses to the same location.

Monitoring a new sample may help detect a new, previously unseen problem whereas
continuing to monitor an old, already-armed address may help detect a problem separated
by many intervening operations. We should detect both. But, we do not know when in
the future a watchpoint may trap, if at all. Our solution strikes a balance between new
vs. old by being unbiased in choosing among the previously accessed addresses (reservoir
sampling [112]), and we rely on multiple such unbiased samples taken over a repetitive
execution to capture both scenarios. We first show our approach for a single debug register
and then generalize it for an arbitrary but finite number of debug registers.

On the first sample, S1, if the debug register is unarmed, Witch sets the watchpoint
with 1.0 probability. The second sample, S2, replaces the previously armed watchpoint
(sample S1) with 1/2 probability and installs itself. Thus, at the end of S2, both S1 and S2

have equal (1/2) probability of being monitored. The third sample, S3, replaces the previ-
ously armed watchpoint with 1/3 probability to install itself. Since the previously armed
watchpoint is S1 or S2 with 1/2 probability each, they each survive with 1/3 probability.
The kth sample S

k

since the last time a debug register was empty, replaces the previously
armed watchpoint with 1/k probability. The previously armed watchpoint could be any one
of {S1, S2, . . . , S

k�1} with 1/k�1 probability each. At the end of kth sample, the probability
of monitoring any sampled address S

i

, 1 i (k � 1) of the prior (k � 1) samples is:

Pr[monitoring Si] =Pr[Si survived in Sk�1]⇥ Pr[not retaining Sk]

=
1

k � 1
⇥

k � 1

k
=

1

k
= Pr[monitoring Sk]

Any time a watchpoint traps and the client chooses to disarm the watchpoint, and the
probability is reset to 1.0, which ensures that the immediately next sample is monitored.
Naturally, if every watchpoint triggers before the next sample, we will monitor every address
seen in every sample.

53

In a system with N debug registers, on a new sample, we populate any unused debug
register as long as we find one. If no debug register is freed up in a window of N consecutive
samples, there will be no room for the (N +1)th sample. We install the sample S

N+1 with
N/N+1 probability. If the choice is to install S

N+1, we randomly choose one of the N debug
registers and replace it with S

N+1. It follows that at the end of S
N+1, the probability of

monitoring any sample S
i

, 1 i N + 1, is N/N+1.
The sample S

k

, k > N , since the last time a debug register was empty, replaces one of
the surviving N samples with N/k probability. It follows that at the end of S

k

, every sample
has the same N/k probability of being monitored. Anytime when a watchpoint traps and
the client chooses to disarm the watchpoint, the probability resets to 1.0. Our technique
maintains only a count of previous samples—not a log of all previous samples—which needs
O(1) memory.

Adversary Sample: If a “never-again-to-be-accessed” address ↵ finds a place in a watch-
point, it can a↵ect the subsequent samples. If no watchpoint has triggered for H samples
when ↵ is sampled, the expected number of samples before ↵ will be replaced is 1.7H,
which follows from the sum of harmonic series. The number of debug registers does not
influence ↵.

The number of consecutive PMU samples that are not monitored form a “blindspot”
window; the longer the window is, the larger the probability of missing bugs. In our
experience, many software in practice often have very short windows. For example, in
the SPEC CPU2006 [104] reference benchmarks, on an Intel Haswell machine, we found
the largest blind-spot to be, typically, extremely small (< 0.02% of the total samples in a
program), and the worst case was 0.5% of the total samples in the mcf benchmark.

4.4.2 Challenges with Proportional Attribution

Consider the code in Listing 4.3. For brevity, line numbers represent contexts. 25% PMU
samples will be attributed to each of Line 3, 7, 8, and 11. If the outer loop executes
1K times and if the sampling period is 10K store operations, each of these lines will get
approximately 10K PMU samples. The number of sampled dead writes should be 10K for
each line pair h3, 11i, h11, 3i, h7, 8i, and h8, 7i. That is, 25% each. This expectation in
quantification is not preserved with our sampling scheme because of a mixture of sparse
monitoring (lines 3 and 11) and dense monitoring (lines 7 and 8). As soon as a watchpoint
traps on Line 7, a debug register frees up; every subsequent PMU sample in the k loop will
find a free debug register. Hence, there will be a disproportionately large number of dead
writes recorded for the line pairs h7, 8i and h8, 7i compared to rest.

We solve this problem with a context-sensitive approximation. The code behavior is
typically same in a calling context; hence, an observation made by monitoring an address
accessed in a calling context can approximately represent other unmonitored samples oc-
curring in the same calling context. If in a sequence of N samples occurring in a calling
context C, only one sample is monitored through a debug register, we scale the observation
made for the monitored sample by N to approximate the behavior of the remaining N � 1
unmonitored samples taken at C. In this scheme, in a sequence of ten PMU samples taken
at line 3, only one is monitored through a debug register, and that address leads to a dead

54

1 for(... many iterations ...){
2 for(int i = 1; i <= 100K; i++){
3 array[i] = 0;
4 }
5 // p and q alias to the same location
6 for(int k = 1; k <= 100K; k++){
7 *p = 0; // dead write
8 *q = 0;
9 }

10 for(int j = 1; j <= 100K; j++){
11 array[j] = 0;
12 }
13 }

Listing 4.3: 100K stores in the i loop are dead by the overwriting j loop, but only a
few watchpoints survive between these two loops. 100K writes to *p are also dead but
trigger many more watchpoints at *q. Witch applies a proportional attribution heuristic
by accounting the samples taken in a context.

write with line 11, we scale and record number of dead writes between lines h3, 11i as ten.
Implementation: Every PMU sample increments a metric µ(C) in the calling context

C where it happens. Another metric ⌘(C) catches up with µ(C) each time a watchpoint set
in C traps. Both metrics are initially zero. Assume we set a watchpointW in calling context
C
watch

, and it traps in a calling context, say C
trap

; C
trap

can be C
watch

.
�
µ(C)�⌘(C)

�
� 1

is the number of samples that W is representing. Assume the sampling period (threshold)
is P . If the trapping instruction is a store with M -bytes of overlap over the monitored
address range set in W , we approximate and attribute

�
µ(C) � ⌘(C)

�
⇥ P ⇥ M bytes of

“waste” to the ordered pair hC
watch

, C
trap

i. Conversely, if the trapping instruction is a load
with M -bytes of overlap over the monitored address range set in C

watch

, we approximate
and attribute

�
µ(C) � ⌘(C)

�
⇥ P ⇥M bytes of “use” to the ordered pair hC

watch

, C
trap

i.
In either case, we update ⌘(C) = µ(C). Both use and waste metrics are additive—they
accumulate overtime for the attributions happening in the same calling context pairs. Thus,
the total ine�ciency (dead-writes) is:

bD =

P
i

P
j waste in hCi, CjiP

i

P
j waste in hCi, Cji+

P
i

P
j use in hCi, Cji

(4.1)

The metric is similar to the “deadness” D metric described in [18]; instead of deriving
the metric by measuring every load and store, we are approximating. Equation 4.1 is
an optional feature available for the clients of Witch; not all clients need this kind of
proportional attribution.

In Listing 4.3, when a watchpoint traps for the first time on Line 11(= C
trap

), and if
there were 10 PMU samples accumulated at the source Line 3 (= C

watch

), we attribute
10 ⇥ 10K ⇥ 4 bytes = 400K bytes of dead writes to the line pair h3, 11i. This scheme
allows the dead writes metric to catchup with the PMU samples, resulting in proportional
attribution. Thus, even though we have very few watchpoints, we use PMU samples in
a context to approximate the dead writes in that context. If multiple watchpoints were
simultaneously set from the same calling context at di↵erent addresses, we proportionally
distribute the samples among them.

Figure 4.2 shows Witch’s attribution of dead writes in a more complex scenario, which
perfectly matches our expectation of 50%:33%:17% dead writes to a:b:x. Without pro-

55

Dead

Dead

Kill

Dead

Figure 4.2: a[] and b[] and x are involved in dead writes in 3:2:1 ratio (50%:33%:17%),
respectively. The sampling interval is 50K stores. Our proportional, context-sensitive
scheme apportions dead writes in near perfect ratio.

portional attribution, we noticed a biased attribution of 5%:2%:93%. With random sam-
pling, rather than our equal probability sampling, 100% samples get attributed to the line
pair h16, 17i.

4.4.3 Limitations

Witch employs Monte-Carlo experiments to approximately model real-world observations
and su↵ers from the limitations of any sampling system. Insu�cient samples can result in
overestimation or underestimation. Witch cannot monitor register-to-register operations.
Witch cannot hide the deficiencies of the underlying PMU used to drive its sampling: on
some Intel architectures, sporadically, the shadow sampling e↵ect [64, 90, 23] may hide a
short latency store behind a long latency store. This behavior can bias the samples to
favor long latency stores.

Witch can simultaneously monitor only as many memory locations as the number of
debug registers. This physical constraint often is not a problem in practice as we show
in our evaluation. However, an adversary may be able to construct a program where the
e↵ects of limited registers can be more pronounced.

56

Witch’s context-sensitive attribution is an optional feature available for its tools. It
approximates the behavior of one monitored sample in a context to many samples taken in
the same context. If very few monitored samples in a context are used to approximate the
behavior of a large number of samples with di↵erent traits in that context, it can result in
noticeable overestimation or underestimation.

Like any profiler, our tools detect only dynamic instances of ine�ciencies. False posi-
tives or false negatives can happen based on the kind of tools built atop Witch. A dead
write detection tool has false negatives (can miss dead writes in an execution) but it has no
false positives (all reported dead writes are dead writes). The performance benefit of using
debug registers overweighs the downside of a small number of potential false negatives.
Developer investigation or post-processing is necessary to make optimization choices—not
all reported ine�ciencies need be eliminated. Only high-frequency ine�ciency spots are
interesting; eliminating a long tail of insignificant ine�ciencies that do not add up to a
significant fraction is impractical and probably ine↵ective. Our investigation shows that
only a few calling contexts contribute to most of the measured ine�ciencies; for example,
in SPEC CPU2006 benchmarks, fewer than five contexts, typically, contributed to over
90% of dead writes.

4.5 Design and Implementation

We implement Witch in the open-source HPCToolkit [5] performance analysis tools suite.
HPCToolkit works on multi-lingual, multi-threaded, and multi-process, fully optimized
applications on multiple programming models such as MPI and OpenMP. On a PMU
sample, HPCToolkit’s profiler, hpcrun, walks the sampled thread’s call stack using an on-
the-fly binary analysis technique and attributes the measurements to the sampled call path.
hpcrun introduces negligible runtime overhead (⇠3%) and consumes only a few megabytes
of memory space for its metrics data when sampling at ⇠200 samples/second/thread [109].

PMU Sampling: Although the clients of Witch can sample any precise PMU event
to set a watchpoint, on Intel processors, typically, we use MEM UOPS RETIRED:ALL STORES

and MEM UOPS RETIRED:ALL LOADS to drive PMU sampling. These events o↵er the address
accessed in a sample.

Watchpoint Registration: Witch automatically discovers the number of hardware
debug registers supported on the platform. When a client wants to monitor an address,
Witch uses the Linux perf event interface to register a watchpoint event. The event is
a HW BREAKPOINT perf event (a PERF TYPE SOFTWARE event category). Witch registers a
signal handler to capture watchpoint exceptions that the Linux perf event interface raises
when the event overflows. Witch sets the sample period to 1 for its HW BREAKPOINT

events, which ensures that the trap signal is delivered immediately after accessing the
monitored address.

Precise PC of a Watchpoint: Some clients need the precise instruction pointer of
the instruction triggering the watchpoint, for example, to distinguish a load from a store

57

when a RW TRAP watchpoint triggers. The BREAKPOINT event in Linux perf event is not
a PMU event and hence the Intel PEBS support, which otherwise provides the precise
register state, is unavailable for a watchpoint. Although the watchpoint causes a trap
immediately after the instruction execution, the PC seen in the signal handler context
(contextPC) is one ahead of the actual PC (precisePC) that causes the trap. In the x86
variable instruction set ISA, it is non-trivial to derive the precisePC, even though it is just
one instruction before the contextPC. A software solution is to find the function enclosing
contextPC and disassemble every instruction till we reach the contextPC. This solution
may fail with linear disassembly due to 1) data embedded in instruction and 2) missing
function bounds [109]. Furthermore, it can be time-consuming if the function body is large.

Our solution depends on the Last Branch Record (LBR) facility [47] provided by Intel
Nehalem and its successors, which is exposed through the Linux perf event interface. LBR
tracks taken branches throughout CPU execution and continuously records the <from:to>
pairs of instruction pointers in a fixed-size in-CPU circular bu↵er. Witch exploits the
LBR facility by modifying the perf event implementation inside the Linux kernel. Linux
perf event already has the facility to construct the precise PC by disassembling the in-
structions starting from the “to” field of the last entry in the LBR until the disassembly
reaches the contextPC. Disassembling a basic block is “feather light” compared to full
function disassembly. We reuse this component with PERF TYPE SOFTWARE to construct
the precisePC when a watchpoint trap event happens. The kernel makes the precisePC

available to Witch’s watchpoint exception handler in the ring bu↵er associated with the
event on each watchpoint trap. This reduces ⇠5% runtime overhead.

Fast Watchpoint Replacement: Witch requires frequently disabling a watch-
point, closing all the kernel resources (perf event file descriptor and an mmaped ring
bu↵er) associated with the watchpoint, and recreating the same for another watch-
point. We enhance the kernel perf event ioctl interface with an additional flag
PERF EVENT IOC MODIFY ATTRIBUTES. This flag allows perf event users to update the ad-
dress and the access length associated with an already installed watchpoint. As a result,
the user code can continue to reuse all the kernel resources associated with the previous
perf event file descriptor. Although Witch is functionally correct without this support,
we found it useful to optimize this use case (⇠5% overhead reduction). This change is
being contributed to the Linux kernel as of this writing.

Stack Addresses: Clients of Witch may set a watchpoint on the stack in one function
that returns, and another function invocation may overwrite the previous stack frame.
Such situation will cause the watchpoint to trap, and Witch has no problem for such
normal call-return sequence. If there is a redundancy in a callee, e.g., write to a variable
in a callee that is frequent not read before returning to the caller, Witch can easily detect
it.

Setting a watchpoint on the application stack address has a corner case. On a PMU
sample, the profiler’s overflow signal handler, by default, shares the same stack as the
application thread. In Figure 4.3(a), assume M is the sampled stack address. Assume we set
a watchpoint at M. If the next PMU sample is taken with a shallower stack (Figure 4.3(b)),
and the signal stack frame overwrites M; it spuriously triggers the watchpoint. Similarly,

58

main()

A()

B()

Signal
Stack

addr M

main()

A()

Signal
Stack

addr M

addr N

main()

A()

B()

Alternate
Signal
Stack

addr M

St
ac

k
gr

ow
th

(a) (b)

PMU Sample
when accessing

address M

PMU Sample
when accessing

address N triggers
previously set

watchpoint at M

(c)

Application
stack

Dedicated
signal

stack for
PMU and

watchpoint
signals PMU Sample

when accessing
address M

trap
PMU

signal

PMU
signal PMU

signal

Shared application and signal stack

Figure 4.3: (a) A PMU sample happens in a deeper call stack when B() is accessing
address M; signal handler sets a watchpoint to monitor the address M. (b) A shallower
application call stack, function A(), triggers another PMU sample, the signal handler is
established in a location that overwrites M, triggering a spurious watchpoint. (c) An
alternate signal stack for PMU signal handler and watchpoint signal handler solves the
problem.

one watchpoint exception handler stack frame may trap another watchpoint.
We avoid this problem by establishing a separate signal-handler stack frame for both

PMU signal handler and watchpoint exception handler using the Linux sigaltstack fa-
cility [67]. The sigaltstack facility allows each thread in a process to define an alternate
signal stack in a user-designated memory region. We use alternate stack to handle PMU
and watchpoint signals as shown in Figure 4.3(c). All other signals continue to use the
default stack unless specified otherwise by the application.

4.6 Witchcraft: Client Tools of Witch

We have already discussed the dead store detection client in the previous sections as a
running example. In this section, we elaborate two more clients that use the Witch
framework to pinpoint di↵erent kinds of ine�ciencies.

4.6.1 SilentCraft: Silent Store Detection

Updating a location with a value already present at the location is a silent store. Silent
stores are useless since they do not change system state. Our prior work, RedSpy, shows
that useless computations that store their results into memory often show up as silent
stores. Here, we devise SilentCraft, a silent store detection client that mimics RedSpy.

SilentCraft samples PMU store events. On each PMU sample, SilentCraft re-
members the contents (value) of the memory location accessed in the sampled address.
SilentCraft, then, arms a W TRAP watchpoint W . SilentCraft disregards the loads that
may intervene between two store operations. Hence loads do not trigger a watchpoint

59

trap. SilentCraft also associates the calling context C
watch

of the sample point with the
watchpoint W .

The next store operation (say in context C
trap

), overlapping the same memory address,
triggers a watchpoint exception. SilentCraft obtains the precise PC and the address
accessed in the watchpoint from Witch and compares the current contents of the mem-
ory location with the previously recorded value. The comparison is limited to the bytes
that overlap between a) the sampled address and its access length and b) and trapped
address and its access length. If all overlapping bytes are same, SilentCraft marks the
calling context pair hC

watch

, C
trap

i with proportional units of silent stores. Proportionality
computation follows the previously discussed proportional attribution heuristic. To identify
opportunities for approximate computation, for the floating-point operations, SilentCraft
performs approximate equality check within a user-specified precision level. SilentCraft
infers that a datum is a floating-point value by disassembling the instruction accessing the
address.

SilentCraft quantifies the store redundancy bR in an execution analogous to DeadCraft
(Equation 4.1); two consecutive stores with unchanged values (approximately the same for
floating point values) contribute to the “waste” and contribute to the “use” otherwise.

4.6.2 LoadCraft: Load-after-load Detection

We developed a new tool—LoadCraft—that detects a load followed by another load from
the same location where the value remains unchanged between the two loads. It ignores
intervening stores to the same address that may change the value and revert it to the
original value before a load. Not all load-load redundancies can be eliminated. Since
machines have a small number of registers, they often spill values to memory to be read back
later. Unfavorable algorithms and data structures often show up as load-load redundancies
that shed light on domain-specific optimization opportunities.

LoadCraft samples PMU load events. The rest of the functionality is similar to that of
SilentCraft, except that it requests a watchpoint for load access on the monitored loca-
tion. Witch uses RW TRAP because x86 machines do not o↵er a trap-on-load watchpoint. If
a watchpoint triggers on a store operation, Witch merely drops it. LoadCraft quantifies
the load redundancy bL in an execution analogous to DeadCraft (Equation 4.1), where two
consecutive loads with (approximately) unchanged values contribute to the “waste” and
di↵erent values contribute to the “use”.

4.6.3 Witchcrafts on Multi-threading

Debug registers and PMUs are per CPU core and virtualized for each software thread. All
the previously discussed Witch tools work on multi-threaded codes; they, however, track
intra-thread ine�ciencies only. If a thread T1 configures a watchpoint at address M , a
trap occurs only in T1; other threads remain una↵ected whether they access M or not.
Sharing addresses accessed by one thread with another thread allows building several tools
for multi-threaded applications. Atop Witch, we have developed Feather [21]—a tool to
detect false sharing in parallel programs.

60

4.6.4 Discussion

Developers can only reason about ine�ciencies at instruction, source line, or data-type
granularities. Hence, in all tools we discussed, if a dynamic instruction writes M bytes,
either all M bytes contribute to the ine�ciency metric or none. In the three tools we
developed, we made the following implementation decision: if the monitored element of
a SIMD instruction instance is found to be wasteful (useful), we approximate that all
elements in the SIMD instruction instance as wasteful (useful). Other tools are free to
make a di↵erent choice.

Currently, Witch is implemented to work on the native code such as C/C++/Fortran
applications. The basic idea extends to a managed language but requires runtime support
to map JIT-generated instruction to the source code.

4.6.5 Presentation

HPCToolkit maintains all sampled call paths in a compact calling context tree (CCT)
format [6]. HPCViewer, the graphical interface, enables navigating the CCT and the
corresponding source code ordered by the monitored metrics. A top-down view shows
a call path C starting from main to a leaf function with the breakdown of metrics at
each level. Witch tools discussed here need to attribute metrics to calling context pairs
hC

watch

, C
trap

i. Merely attributing a metric to two independent contexts loses the associa-
tion between two related contexts during postmortem inspection. To maintain a correlation
between a source context (e.g., dead) and target (killing) context, Witch appending a copy
of the target calling context to a source calling context. For example, if a store in context
main->A->B is overwritten by another store in context main->C->D, DeadCraft constructs
a synthetic calling context: main->A->B->KILLED BY->main->C->D. The dead write met-
rics will be attributed to the leaf of this call chain. These synthetic call chains make it easy
to visually navigate the CCT and focus on top redundancy pairs. Figure 4.2 in Section 4.4
depicts this scheme.

4.7 Evaluation

We evaluate Witch on a 2-socket, 18-core Intel Xeon E5-2699 v3 (Haswell) CPU
clocked at 2.30GHz running Linux 4.8.0. The machine has 128GB DDR3 RAM. Si-
multaneous multi-threading (SMT) facility is not used in our experiments. All exper-
iments use GCC v5.4.1 tools with -O3 and profile-guided optimization (PGO) to en-
sure the highest level of optimization. DeadCraft and SilentCraft use the PMU event
MEM UOPS RETIRED:ALL STORES whereas LoadCraft uses MEM UOPS RETIRED:ALL LOADS. In
our experiments, we use the nearest prime number for the shown sampling intervals, which
is the recommended method in PMU sampling. The raw data from our experiments are
available online [19].

Two aspects are critically important in evaluating Witch: accuracy and overhead
compared to the exhaustive instrumentation techniques. We use SPEC CPU2006 reference
benchmarks for this aspect of evaluation.

61

Accuracy: For accuracy, we need to answer three questions: (1) how accurate are the
results compared to exhaustive monitoring, (2) how does the accuracy vary with sampling
rates, and (3) how stable are the sampled results from one run to another.

The quantitative metric of dead writes is the percent of dead stores bD (bytes overwritten
without reading) as described in Equation 4.1, which we compare against the ground-truth
dead stores D from DeadSpy [20, 22]. We compare the percent of silent stores bR from
SilentCraft against the ground-truth exhaustive monitoring metric R from RedSpy. No
prior tool exists to compare against LoadCraft; hence we implemented an exhaustive load-
load value redundancy detection tool called LoadSpy. We compare the percent of silent
loads bL from LoadCraft against the ground-truth exhaustive monitoring metric L from
LoadSpy. RedSpy also performs redundancy detection in registers, which we disabled for
our evaluation. To assess the accuracy of our sampling clients against the ground-truth,
we disable the bursty sampling used by RedSpy. SilentCraft, LoadCraft, RedSpy, and
LoadSpy use 1% precision when comparing floating point values.

Figure 4.4 compares the total redundancies found by di↵erent sampling vs. exhaustive
monitoring tools. The error bars represent the metric values at di↵erent sampling rates
for Witch tools, i.e., 100K (high), 500K, 1M, 5M, 10M, and 100M (low) events per PMU
interrupt. Clearly, the sampling rate, when chosen with some care, does not significantly
a↵ect the results. The sampling tools are highly accurate in almost all cases. There are,
however, some exceptions. DeadCraft and SilentCraft on hmmer and calculix su↵er
from shadow sampling e↵ects [64, 90, 23], where high latency stores hide low latency
stores. GemsFDTD, perlbench, and zeusmp have many small ine�ciencies scattered all over
the code, leading to inaccuracies in SilentCraft. We ran each benchmark 10 times at
5M sampling rate (not shown) and the maximum standard deviations were 2.27%, 1.89%,
and 0.77% for DeadCraft, SilentCraft, and LoadCraft respectively, which proves the
run-to-run sampling stability.

lbm has ⇠100% silent stores and silent loads, but it has negligible dead stores. lbm is
a floating point code, which simulates incompressible fluids in 3D. One iteration updates
the values in an array that are loaded in the next iteration. The di↵erence between the
values produced in adjacent iterations is less than our predefined 1% threshold. Hence,
LoadCraft treats these loads as redundant ones. Similarly, SilentCraft treats the stores
to be approximately the same.

To assess the e↵ectiveness of reservoir sampling, we vary the number of debug registers
from one to four and compare the redundancy metrics against the ground truth. Figure 4.5
shows that the number of debug registers has little practical influence in DeadCraft on the
quality of results except h264ref, which shows better results with four debug registers. The
online compendium [19] corroborates this observation on SilentCraft and LoadCraft.

To assess the e↵ectiveness of our proportional attribution based on samples taken in a
context, we compared the accuracy with and without this feature at di↵erent sampling rates
and also with di↵erent number of debug registers with all three tools (not shown); we also
compared it against the ground truth. In general, the feature did not make significantly
positive or negative impact. GemsFDTD and perl were exceptions, where having the feature
improved the accuracy.

To further understand the accuracy, we compared the rank ordering and percentage
contribution of the top N redundancy pairs between DeadSpy and DeadCraft; we chose

62

Table 1

Pin 100M 10M 5M 1M 500K mean STDEV Pin 100M 10M 5M 1M 500K mean STDEV Pin 100M 10M 5M 1M 500K mean STDEV

astar-1 rivers.cfg 15.69 7.75 8.91 9.05 8.2 7.96 8.4 0.58 7.55 4.72 5.18 5.13 4.9 4.95 5.0 0.19 86.61 82.17 82.12 82.07 82.17 82.13 82.1 0.04

astar-2 BigLakes2048.cfg 17.08 7.97 10.55 9.08 9.37 9.16 9.2 0.92 10 6.74 8.55 7.34 8.87 8.63 8.0 0.93 87.57 81.55 79.59 80.2 80.16 80.19 80.3 0.72

bwaves 3.1 3.87 3.55 2.77 3.24 3.47 3.4 0.41 19.59 20.04 16.47 16.33 14.3 15.25 16.5 2.18 85.53 93.86 94.97 94.05 92.21 92.21 93.5 1.22

bzip2-1 chicken.jpg 30 16.95 18.02 16.2 17.97 18.95 19.57 18.1 1.28 8.83 10.25 14.19 14.15 13.5 13.11 13.0 1.62 65.52 66.95 62.45 62.35 63.13 63.13 63.6 1.91

bzip2-2 input.source 280 22.59 25.45 23.95 23.33 22.55 22.77 23.6 1.16 12.78 17.85 16.61 17.21 17.34 17.37 17.3 0.44 70.29 69.26 67.86 67.36 68.45 68.45 68.3 0.71

bzip2-3 text.html 280 18.28 20.59 19.18 18.73 18.62 18.54 19.1 0.85 15.87 21.13 22.71 22.25 23.21 22.83 22.4 0.80 77.18 70.11 72.56 71.12 71.63 71.63 71.4 0.89

bzip2-4 input.combined 200 21.97 21.28 22.59 22.82 22.85 22.16 22.3 0.65 12.53 20.64 16.35 16.95 16.68 17.28 17.6 1.74 69.91 67.7 67.49 67.79 68.06 68.32 67.9 0.32

bzip2-5 input.program 280 20.89 23.27 22.56 20.55 22.02 21.41 22.0 1.05 8.43 10 9.67 10.07 10.03 10.47 10.0 0.28 65.93 64.69 65.01 65.25 65.24 66.11 65.3 0.53

bzip2-6 liberty.jpg 30 13.34 8.82 10.08 10.54 10.81 10.93 10.2 0.86 21.41 28.99 32.2 32.67 32.97 32.54 31.9 1.64 74.93 77.83 74.85 74.75 74.88 74.88 75.4 1.34

cactusADM benchADM.par 0.2 0.11 0.14 0.13 0.2 0.22 0.2 0.05 25.95 20.97 19.93 22.18 17.58 17.59 19.7 2.05 75.39 80.4 80.47 79.73 79.94 79.94 80.1 0.32

calculix -i hyperviscoplastic 2.0 1.97 2.05 2.04 1.97 1.91 2.0 0.06 31.05 55.94 56.72 57.24 57.45 57.61 57.0 0.68 87.01 86.93 86.79 86.48 85.55 86.6 0.60

dealII 23 23.8 27.27 25.91 25.78 26.08 26.32 26.3 0.59 29.66 30.3 31.88 31.11 31.6 31.47 31.3 0.61 83.92 77.95 78.6 78.48 76.86 76.86 77.8 0.85

gamess-1 triazolium.config 6.59 8.78 7.19 7.47 7.2 7.11 7.6 0.70 40.94 44.29 43.84 44.54 44.38 44.78 44.4 0.35 70.88 79.64 81.77 82.52 82.74 83.08 82.0 1.38

gamess-2 h2ocu2+.gradient.config 11.81 14.75 12.7 13.72 13.73 13.56 13.7 0.73 29.87 37.19 48.52 46.88 46.81 45.34 44.9 4.48 78.43 84.8 86.22 86.67 85.7 85.7 85.8 0.70

gamess-3 cytosine.2.config 10.53 13.6 11.41 12 11.54 11.69 12.0 0.90 31.11 32.73 34.2 32.08 32.04 31.9 32.6 0.96 75.13 76.91 77.37 77.55 77.92 78.01 77.6 0.44

gcc-1 g23.i -o g23.s 66.47 72.97 74.82 75.02 75.34 75.25 74.7 0.98 85.71 84.06 84.83 83.16 83.83 83.56 83.9 0.62 84.62 87.4 81.96 83.58 82.46 82.46 83.6 2.22

gcc-2 scilab.i -o scilab.s 45.68 50.21 59 61.3 62.47 62.13 59.0 5.11 64.14 65.32 69.18 65.42 65.82 66.08 66.4 1.60 74.43 75.34 78.92 79.45 78.59 78.59 78.2 1.62

gcc-3 expr2.i -o expr2.s 78.04 86.25 84.66 84.75 85.15 85.42 85.2 0.64 89.42 88.88 89.57 90.52 90.44 90.38 90.0 0.71 83.03 76 82.23 80.47 81.36 81.36 80.3 2.47

gcc-4 expr.i -o expr.s 77.44 87.23 84.52 85.51 84.98 85.1 85.5 1.05 89.81 88.76 90.5 90.29 90.28 90.01 90.0 0.70 84.06 82.8 82.35 83.94 82.97 82.97 83.0 0.58

gcc-5 cp-decl.i -o cp-decl.s 75.48 84.18 86.93 86.56 86.19 86.15 86.0 1.07 88.14 88.18 91.02 90.44 89.5 89.69 89.8 1.07 81.97 88.69 82.26 81.73 83.77 82.27 83.7 2.87

gcc-6 166.i -o 166.s 65.58 78.74 78.01 78.17 78.75 78.25 78.4 0.34 83.24 82.31 85.13 84.15 84.65 84.29 84.1 1.07 81.88 76.69 79.79 81.77 81.15 80.43 80.0 1.98

gcc-7 200.i -o 200.s 49.8 72.35 66.27 66.12 67.17 67.03 67.8 2.59 69.75 69.29 70.17 73.39 71.73 71.69 71.3 1.58 78.11 84.07 78.46 79.29 78.41 79.03 79.9 2.39

gcc-8 s04.i -o s04.s 81.22 87.8 88.51 88.13 88.42 88.2 88.2 0.28 91.64 91.2 92.17 91.73 91.77 91.79 91.7 0.35 84.09 78.62 81.1 80.36 76.76 76.76 78.7 2.00

gcc-9 c-typeck.i -o c-typeck.s 83.29 87.62 89.07 88.69 89.09 89.06 88.7 0.63 91.31 93.63 92.04 92.03 92.03 91.85 92.3 0.74 81.13 81.67 80.66 81.11 81.34 81.34 81.2 0.37

GemsFDTD 2.4 0.65 0.49 0.54 0.78 0.48 0.6 0.13 25.3 33.08 33.72 36.44 46.36 49.33 39.8 7.54 76.15 76.72 79.95 83.25 93.9 93.9 85.5 7.97

gobmk-1 trevord.tst 26.8 25.66 27.12 27.26 27.39 26.8 0.70 31.6 31.72 31.5 31.7 31.8 31.7 0.12 67.36 67.48 66.7 67.22 67 67.2 0.31

gobmk-2 trevorc.tst 27.74 28.56 26.22 28.38 28.16 27.8 0.94 34.76 34.49 32.78 34.13 33.39 33.9 0.81 69.26 68.4 67.02 67.53 67.32 67.9 0.91

gobmk-3 13x13.tst 27.74 27.95 27.35 27.53 27.99 27.7 0.27 33.95 34.23 33.39 34.04 33.49 33.8 0.36 68.07 69.42 68.42 69.11 68.77 68.8 0.54

gobmk-4 score2.tst 39.42 36.63 37.04 36.72 36.85 37.3 1.18 39.92 42.48 39.51 40.02 40.05 40.4 1.18 80 77.87 77.84 77.72 77.66 78.2 1.00

gobmk-5 nngs.tst 27.14 27.17 27.16 27.06 27.03 27.1 0.06 30.7 32.47 31.47 31.82 31.93 31.7 0.65 67.97 67.36 68.53 68.07 68.11 68.0 0.42

gromacs -silent -deffnm gromacs -nice 02.2 2.65 2.96 2.98 2.93 2.95 2.9 0.14 9.89 8.98 8.5 8.22 8.49 8.2 8.5 0.31 59.43 58.98 58.44 58.2 57.67 58.61 58.4 0.49

h264ref-1 -d foreman_ref_encoder_baseline.cfg6.53 6.45 7.78 6.78 7.17 19.18 9.5 5.45 25.06 14.33 19.65 16.68 17.65 17.24 17.1 1.92 87.35 85.04 85.73 85.95 86.15 86.15 85.8 0.46

h264ref-2 -d foreman_ref_encoder_main.cfg39.84 42.64 42.2 42.17 42.18 43.17 42.5 0.44 87.02 86.47 86.77 87.18 87.09 86.89 86.9 0.28 92.76 92.62 91.71 91.43 91.69 91.53 91.8 0.47

h264ref-3 -d sss_encoder_main.cfg 41.4 43.91 43.73 43.61 45.98 45.74 44.6 1.16 89.82 89.41 90.37 90.01 90.11 90.05 90.0 0.35 92.93 93.25 93.37 93.16 93.23 93.2 0.16

hmmer-1 --fixed 0 --mean 500 --num 500000 --sd 350 --seed 0 retro.hmm67.9 28.27 28.36 28.49 28.25 27.54 28.2 0.37 37.84 19.81 19.54 20 19.7 19.8 19.8 0.17 91.44 72.36 72.07 71.85 72.26 72.26 72.2 0.20

hmmer-2 nph3.hmm swiss41 69.4 31.93 29.35 29.26 28.15 27.07 29.2 1.81 38.67 24.02 24.83 24.24 24.64 22.78 24.1 0.81 91.98 69.1 69.87 69.89 70.22 70.94 70.0 0.67

lbm 3000 reference.dat 0 0 100_100_130_ldc.of0.4 0.13 0.48 0.22 0.06 0 0.2 0.19 99.9 100 100 99.98 99.99 99.98 100.0 0.01 99.96 100 99.98 99.99 99.99 99.98 100.0 0.01

leslie3d 8.8 11 12.36 14.13 11.5 12.32 12.3 1.19 41.62 40.64 39.82 39.93 39.66 40.7 40.2 0.48 76.75 83.67 83.5 82.07 83.33 83.04 83.1 0.63

libquantum 1397 8 5.9 0.06 0.12 0.11 0.11 0.1 0.1 0.02 8.5 1.09 1.06 1.25 0.82 0.77 1.0 0.20 68.53 71.2 72.45 72.43 71.94 71.94 72.0 0.51

mcf inp.in 49.6 36.63 38.6 37.17 36.98 37.12 37.3 0.76 37.41 22.33 21.4 21.87 21.46 22.11 21.8 0.40 90.51 87.26 89.11 89.09 89.32 89.41 88.8 0.89

milc 9.6 15.57 15.25 14.37 11.06 19.02 15.1 2.85 18.18 14.49 17.34 20.99 9.58 18.47 16.2 4.36 71.13 73.89 76.51 76.7 83.39 77.15 77.5 3.52

namd --input namd.input --iterations 38 --output namd.out1.3 1.49 1.37 1.29 1.31 1.28 1.3 0.09 40.69 29.39 29.34 29.68 29.67 29.69 29.6 0.17 84.99 84.45 84.76 84.58 85 85.24 84.8 0.32

omnetpp omnetpp.ini 22.8 15.48 17.97 18.25 19.83 20.73 18.5 2.01 19.85 16.3 16.38 18.11 17.41 17.11 17.1 0.75 69.43 75.09 74.86 75.13 75.32 75.32 75.1 0.19

perlbench-1 -I./lib splitmail.pl 1600 12 26 16 450017.07 21.86 24.59 25.1 25.09 24.9 24.3 1.38 43 14.67 21.26 19.44 18.8 17.7 18.4 2.44 80.11 77.82 76.65 77.55 79.99 79.1 78.2 1.32

perlbench-2 -I./lib diffmail.pl 4 800 10 17 19 30017.6 17.86 20.61 24.75 28.11 29.62 24.2 4.95 49.41 34.05 30.43 33 27.81 31.6 31.4 2.42 71.83 75.88 74.66 74.57 74.57 74.3 1.49

perlbench-3 -I./lib checkspam.pl 2500 5 25 11 150 1 1 1 122.88 23.74 39.91 39.86 41.09 42.34 37.4 7.70 56.34 29.18 28.3 27.82 27.02 22.72 27.0 2.52 78.58 78.54 78.63 79.64 79.64 79.0 0.58

povray SPEC-benchmark-ref.ini 12.3 7.61 10.58 16.02 17.94 26.45 15.7 7.29 27.35 23.25 19.99 20.21 19.7 18.93 20.4 1.66 69.1 76.9 75.8 75.2 75.03 75.06 75.6 0.79

sjeng ref.txt 31.54 34.03 34.21 33.8 34.04 33.5 1.12 29.28 31.35 31.2 30.49 30.67 30.6 0.82 83.25 83.91 84.06 83.66 83.66 83.7 0.31

soplex-1 -s1 -e -m45000 pds-50.mps 37.48 38.04 37.7 37.27 37.18 36.67 37.4 0.52 41.03 38.13 39.88 40.62 40.19 40.85 39.9 1.08 80.07 77.99 77.53 77.6 77.81 78.2 1.06

soplex-2 -m3500 ref.mps 6.34 7.71 6.44 5.66 5.1 5.38 6.1 1.05 9.71 3.32 6.37 7.37 7.02 7.31 6.3 1.70 82.51 71.33 71.2 71.26 70.84 70.84 71.1 0.24

sphinx ctlfile . args.an4 16.5 19.24 18.06 18.45 18.67 18.6 18.6 0.43 45.78 45.65 45.18 45.19 41.52 40.84 43.7 2.30 94.82 96.92 96.89 97.05 97.04 97.04 97.0 0.08

tonto 5.8 2.69 2.88 2.65 2.8 2.94 2.8 0.12 29.98 18.72 20.2 20.16 20.37 20.37 20.0 0.70 71.4 75.17 74.7 74.82 75.16 75.89 75.1 0.46

wrf 15.5 13.1 12.61 12.64 13.36 12.8 12.9 0.32 38.94 40.1 39.47 39.48 39.58 37.47 39.2 1.01 79.04 78.52 79.69 79.24 79.35 79.5 79.3 0.45

Xalan -v t5.xml xalanc.xsl 9.12 10.11 11.61 13.22 -0.01 8.8 5.17 15.84 16.22 15.85 14.9 15.38 15.6 0.51 88.99 89.84 90.92 90.87 90.94 90.3 0.87

zeusmp 7.4 11.11 9.53 9.53 9.02 9.37 9.7 0.81 33.63 59.1 59.92 58.71 58.81 59.74 59.3 0.55 67.39 86.7 87.06 87.54 88.14 88.32 87.6 0.69

%
 D

ea
d

B
yt

es
0

18

36

54

72

90

as
ta

r-
1

as
ta

r-
2

bw
av

es
bz

ip
2-

1
bz

ip
2-

2
bz

ip
2-

3
bz

ip
2-

4
bz

ip
2-

5
bz

ip
2-

6
ca

ct
us

AD
M

ca
lc

ul
ix

de
al

II
ga

m
es

s-
1

ga
m

es
s-

2
ga

m
es

s-
3

gc
c-

1
gc

c-
2

gc
c-

3
gc

c-
4

gc
c-

5
gc

c-
6

gc
c-

7
gc

c-
8

gc
c-

9
G

em
sF

D
TD

go
bm

k-
1

go
bm

k-
2

go
bm

k-
3

go
bm

k-
4

go
bm

k-
5

gr
om

ac
s

h2
64

re
f-

1
h2

64
re

f-
2

h2
64

re
f-

3
hm

m
er

-1
hm

m
er

-2
lb

m
le

sl
ie

3d
lib

qu
an

tu
m

m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rlb
en

ch
-1

pe
rlb

en
ch

-2
pe

rlb
en

ch
-3

po
vr

ay
sj

en
g

so
pl

ex
-1

so
pl

ex
-2

sp
hi

nx
to

nt
o

w
rf

Xa
la

n
ze

us
m

p

DeadSpy (exhaustive)
DeadCraft (sampling)

�1

(a) Dead Store

Table 1

Pin 500K 1M 5M 10M 100M mean STDEV 500K 1M 5M 10M 100M mean STDEV 500K 1M 5M 10M 100M mean STDEV 500K 1M 5M 10M 100M mean STDEV Pin 500K 1M 5M 10M 100M mean STDEV 500K 1M 5M

astar-1 rivers.cfg 15.69 8.45 8.57 8.91 9.26 9.98 9.0 0.62 8.07 8.41 8.85 8.12 11.39 9.0 1.39 7.97 8.35 9.23 8.31 9.65 8.7 0.71 7.96 8.2 9.05 8.91 7.75 8.4 0.58 7.55 4.74 4.58 4.96 4.25 4.95 4.7 0.30 4.95 4.84 5

astar-2 BigLakes2048.cfg 17.08 9.93 9.66 10.11 9.61 8.59 9.6 0.59 9.42 9.75 9.47 10.18 11.01 10.0 0.66 9.08 9 9.78 9.31 11.28 9.7 0.94 9.16 9.37 9.08 10.55 7.97 9.2 0.92 10 8.28 8.16 7.96 8.39 9.23 8.4 0.49 8.43 8.24 8.65

bwaves 3.1 2.62 2.91 2.52 2.96 3.05 2.8 0.23 2.82 3.12 2.81 3.14 2.92 3.0 0.16 3.07 3.2 3.09 3.28 2.6 3.0 0.26 3.47 3.24 2.77 3.55 3.87 3.4 0.41 19.59 15.61 15.14 16.52 14.43 15.33 15.4 0.76 15.91 13.76 15.36

bzip2-1 chicken.jpg 30 16.95 18.49 17.93 17.53 14.91 15.8 16.9 1.51 19.07 18.89 18.11 17.04 14.76 17.6 1.77 19.49 19.79 18.44 14.39 11.78 16.8 3.53 19.57 18.95 17.97 16.2 18.02 18.1 1.28 8.83 13.66 13.94 14.29 13.21 9.71 13.0 1.86 13.29 13.98 14.01

bzip2-2 input.source 280 22.59 22.11 22.16 22.53 23.06 21.93 22.4 0.45 22.54 22.63 23.05 23 22.57 22.8 0.25 22.72 22.97 22.99 22.09 26.71 23.5 1.83 22.77 22.55 23.33 23.95 25.45 23.6 1.16 12.78 17.91 18.21 17.85 15.83 17.1 17.4 0.96 17.56 17.29 17.52

bzip2-3 text.html 280 18.28 17.46 17.68 17.47 17.32 18.93 17.8 0.66 17.78 18.33 19.25 19.48 20.35 19.0 1.01 18.16 18.16 19.16 18.55 20.19 18.8 0.86 18.54 18.62 18.73 19.18 20.59 19.1 0.85 15.87 23.06 23.35 22.2 21.59 23.32 22.7 0.78 23.09 23.27 21.2

bzip2-4 input.combined 200 21.97 21.41 21.18 22.02 20.58 19.62 21.0 0.91 21.72 22.37 22.67 24.18 26.53 23.5 1.92 22.1 22.34 22.19 23.09 24.06 22.8 0.83 22.16 22.85 22.82 22.59 21.28 22.3 0.65 12.53 17.58 17.88 16.54 16.73 15.45 16.8 0.96 17.44 16.69 16.66

bzip2-5 input.program 280 20.89 20.98 20.96 20.76 20.95 21.68 21.1 0.35 21.14 21.33 20.27 20.63 18.9 20.5 0.96 21.49 21.47 20.5 21.9 21.17 21.3 0.52 21.41 22.02 20.55 22.56 23.27 22.0 1.05 8.43 10.49 10.29 10.33 10.15 10.53 10.4 0.15 10.31 10.05 10.15

bzip2-6 liberty.jpg 30 13.34 10.03 9.97 10.61 10.19 12.89 10.7 1.23 10.56 10.83 9.79 9.59 7.57 9.7 1.28 10.56 11.02 9.63 10.45 8.02 9.9 1.18 10.93 10.81 10.54 10.08 8.82 10.2 0.86 21.41 33.36 32.51 33.6 33.44 33.16 33.2 0.42 32.53 32.27 32.3

cactusADM benchADM.par 0.2 0.15 0.1 0.12 0.13 0.05 0.1 0.04 0.18 0.15 0.12 0.11 0.23 0.2 0.05 0.2 0.13 0.11 0.16 0.05 0.1 0.06 0.22 0.2 0.13 0.14 0.11 0.2 0.05 25.95 16.09 19.94 21.16 19.1 19.46 19.2 1.88 18.79 19.88 21.29

calculix -i hyperviscoplastic 2.0 1.83 1.83 1.88 1.91 2.06 1.9 0.09 1.88 1.89 1.9 2 2.44 2.0 0.24 1.92 1.91 1.95 1.98 1.6 1.9 0.15 1.91 1.97 2.04 2.05 1.97 2.0 0.06 31.05 56.95 56.8 56.53 58.77 56.63 57.1 0.93 57.46 57.77 59.09

dealII 23 23.8 26.26 26.47 26.31 26.03 27.02 26.4 0.37 26.16 26.63 25.88 25.76 24.15 25.7 0.94 27.02 25.67 26.29 25.11 27.46 26.3 0.96 26.32 26.08 25.78 25.91 27.27 26.3 0.59 29.66 32.3 33.04 31.87 32.27 31.36 32.2 0.62 32.03 32.21 31.59

gamess-1 triazolium.config 6.59 7.09 6.98 7.22 6.87 8.65 7.4 0.73 7.18 7.21 7.08 6.83 6.41 6.9 0.33 7.01 7.14 7.14 6.93 5.96 6.8 0.50 7.11 7.2 7.47 7.19 8.78 7.6 0.70 40.94 44.66 44.66 44.66 44.53 43.45 44.4 0.53 44.66 44.43 44.39

gamess-2 h2ocu2+.gradient.config 11.81 13.64 13.56 13 14.8 12.19 13.4 0.96 13.8 13.23 13.46 14.39 11.96 13.4 0.90 13.6 13.87 12.95 12.81 13.67 13.4 0.47 13.56 13.73 13.72 12.7 14.75 13.7 0.73 29.87 45.76 46.31 48.45 45.24 44.44 46.0 1.51 45.77 45.92 45.05

gamess-3 cytosine.2.config 10.53 11.52 11.43 11.77 11.78 15.36 12.4 1.68 11.62 11.52 11.59 12.05 11.43 11.6 0.24 11.5 11.85 11.16 11.68 12.35 11.7 0.44 11.69 11.54 12 11.41 13.6 12.0 0.90 31.11 31.84 32.15 31.85 31.78 31.48 31.8 0.24 31.81 31.93 31.19

gcc-1 g23.i -o g23.s 66.47 75.08 74.83 74.43 74.98 74.05 74.7 0.43 75.27 74.96 75.58 75.48 78.99 76.1 1.66 75.47 75.51 75.37 75.57 71.37 74.7 1.84 75.25 75.34 75.02 74.82 72.97 74.7 0.98 85.71 83.55 85.66 84.3 84.73 81.53 84.0 1.55 83.54 83.99 84.07

gcc-2 scilab.i -o scilab.s 45.68 61.95 61.23 61.4 63.05 65.54 62.6 1.77 62.05 61.47 62.48 63.29 50.48 60.0 5.34 61.3 61.87 62.3 64.7 57.24 61.5 2.70 62.13 62.47 61.3 59 50.21 59.0 5.11 64.14 66.97 67.5 68.61 64.88 56.52 64.9 4.87 66.9 66.68 67.41

gcc-3 expr2.i -o expr2.s 78.04 85.84 85.47 85.27 84.31 88.09 85.8 1.40 85.92 85.77 85.71 85.05 82.82 85.1 1.29 86.29 85.68 84.88 85.17 87.75 86.0 1.14 85.42 85.15 84.75 84.66 86.25 85.2 0.64 89.42 90.84 90.91 90.24 90.79 89.52 90.5 0.59 90.61 90.68 90.08

gcc-4 expr.i -o expr.s 77.44 86.04 85.64 84.61 84.75 83.65 84.9 0.94 85.27 86.39 84.51 85.61 83.98 85.2 0.94 85.15 85.19 84.58 84.56 87.01 85.3 1.00 85.1 84.98 85.51 84.52 87.23 85.5 1.05 89.81 90.94 90.92 90.87 89.61 90.06 90.5 0.61 90.83 90.43 90.17

gcc-5 cp-decl.i -o cp-decl.s 75.48 86.77 86.47 86.61 85.73 86.25 86.4 0.40 86.43 86.39 85.84 86.33 87.8 86.6 0.73 86.98 85.88 86.23 85.87 87.64 86.5 0.77 86.15 86.19 86.56 86.93 84.18 86.0 1.07 88.14 90.26 90.45 89.23 90.24 87.11 89.5 1.40 89.57 89.69 89.73

gcc-6 166.i -o 166.s 65.58 79.39 79.32 77.73 77.34 81.06 79.0 1.49 78.96 78.49 78.96 77.6 76.29 78.1 1.13 78.63 78.78 77.39 75.86 77.53 77.6 1.18 78.25 78.75 78.17 78.01 78.74 78.4 0.34 83.24 85.24 84.87 82.96 83.98 83.85 84.2 0.90 84.22 85.11 84.42

gcc-7 200.i -o 200.s 49.8 66.64 66.46 66.25 65.56 67.96 66.6 0.88 66.28 66.65 65.86 65.22 64.67 65.7 0.80 66.57 66.97 66.37 66.45 63.55 66.0 1.38 67.03 67.17 66.12 66.27 72.35 67.8 2.59 69.75 73.47 72.72 73.15 72.59 72.83 73.0 0.36 72.03 72.6 73.36

gcc-8 s04.i -o s04.s 81.22 88.51 88.61 87.86 87.73 86.8 87.9 0.73 88.18 88.21 89.52 88.03 86.86 88.2 0.94 89.44 88.54 88.64 87.41 87.16 88.2 0.94 88.2 88.42 88.13 88.51 87.8 88.2 0.28 91.64 92.05 92.28 92.36 92.75 92.37 92.4 0.25 92.38 91.8 92.06

gcc-9 c-typeck.i -o c-typeck.s 83.29 89.6 89.44 89.3 89.03 89.32 89.3 0.21 89.23 89.52 88.82 88.87 91.68 89.6 1.18 89.53 89.33 89.21 88.65 92.07 89.8 1.33 89.06 89.09 88.69 89.07 87.62 88.7 0.63 91.31 92.95 92.56 92.46 92.54 91.72 92.4 0.45 92.44 92.06 91.84

GemsFDTD 2.4 0.63 0.39 0.22 0.32 0.62 0.4 0.18 0.45 0.59 0.31 0.48 0.5 0.5 0.10 0.55 0.55 0.37 0.57 0.59 0.5 0.09 0.48 0.78 0.54 0.49 0.65 0.6 0.13 25.3 36.6 33.76 33.17 29.21 30.83 32.7 2.84 35.1 34.66 34.65

gobmk-1 trevord.tst 26.7 27.46 27.15 28.32 25.65 27.1 0.98 26.63 26.71 27.46 27.7 29.29 27.6 1.07 27.12 27.19 27.33 27.84 28.43 27.6 0.55 27.39 27.26 27.12 25.66 26.8 26.8 0.70 31.4 30.98 32.68 31.7 34.22 32.2 1.29 31.59 31.44 32.07

gobmk-2 trevorc.tst 27.21 27.23 27.8 27.72 26.56 27.3 0.50 27.99 27.94 28.28 28.75 27.44 28.1 0.48 27.98 28.21 28.86 27.66 30.05 28.6 0.95 28.16 28.38 26.22 28.56 27.74 27.8 0.94 32.74 32.85 32.26 34.03 31.03 32.6 1.08 33.5 33.2 33.05

gobmk-3 13x13.tst 26.55 27.21 27.61 28.39 26.46 27.2 0.80 27.96 27.91 28.55 28.49 26.32 27.8 0.90 28.08 27.86 29.08 27.85 26.94 28.0 0.76 27.99 27.53 27.35 27.95 27.74 27.7 0.27 32.84 33.64 33.27 31.11 36.4 33.5 1.91 33.77 34.2 32.74

gobmk-4 score2.tst 36.97 36.9 36.09 36.42 32.87 35.9 1.70 36.67 36.56 35.89 38.29 38.88 37.3 1.26 36.64 36.92 37.78 37.24 37.73 37.3 0.50 36.85 36.72 37.04 36.63 39.42 37.3 1.18 40.51 40.47 39.94 39.22 36.91 39.4 1.49 40.27 40.22 41.12

gobmk-5 nngs.tst 26.83 26.89 26.98 27.27 24.44 26.5 1.15 26.92 26.68 27.23 26.75 27.23 27.0 0.26 27.14 26.89 26.75 27.35 26.25 26.9 0.42 27.03 27.06 27.16 27.17 27.14 27.1 0.06 31.68 31.72 30.87 31.66 28.88 31.0 1.22 31.45 31.5 30.99

gromacs -silent -deffnm gromacs -nice 02.2 3.17 2.94 2.93 2.85 3.13 3.0 0.14 2.87 2.9 2.95 2.75 2.65 2.8 0.12 2.93 2.99 3.21 3.03 2.7 3.0 0.18 2.95 2.93 2.98 2.96 2.65 2.9 0.14 9.89 8.65 8.61 8.75 8.27 8.84 8.6 0.22 8.68 8.67 8.71

h264ref-1 -d foreman_ref_encoder_baseline.cfg6.53 34.37 26.47 14.06 7.11 9.84 18.4 11.62 28.86 24.57 7.01 27.33 7.97 19.1 10.76 27 7.33 6.83 6.12 9.25 11.3 8.85 19.18 7.17 6.78 7.78 6.45 9.5 5.45 25.06 18 18.53 17.02 17.87 16.7 17.6 0.75 17.87 17 17.47

h264ref-2 -d foreman_ref_encoder_main.cfg39.84 42.57 42.27 42.62 42 46.72 43.2 1.96 42.39 42.76 42.2 41.48 46.13 43.0 1.81 42.97 42.99 40.37 43.76 40.18 42.1 1.66 43.17 42.18 42.17 42.2 42.64 42.5 0.44 87.02 88.1 87.69 87.14 86.45 86.49 87.2 0.73 86.9 86.85 86.88

h264ref-3 -d sss_encoder_main.cfg 41.4 46.15 44.52 44.06 43.71 45.68 44.8 1.05 45.98 46.27 44.69 43.78 44.86 45.1 1.01 46.23 45.79 44.03 43.83 42.21 44.4 1.62 45.74 45.98 43.61 43.73 43.91 44.6 1.16 89.82 90.43 90.46 89.99 90.12 90.85 90.4 0.34 90 90.04 89.94

hmmer-1 --fixed 0 --mean 500 --num 500000 --sd 350 --seed 0 retro.hmm67.9 30.62 27.98 29.86 30.08 29.38 29.6 1.00 48 28.64 28.73 28.9 28.82 32.6 8.60 25.57 29.15 28.55 29.8 30.23 28.7 1.84 27.54 28.25 28.49 28.36 28.27 28.2 0.37 37.84 19.76 18.99 19.45 19.47 18.64 19.3 0.44 19.26 18.93 19.58

hmmer-2 nph3.hmm swiss41 69.4 34.99 29.23 29.12 28.79 29.96 30.4 2.59 33.19 30.78 30.3 29.83 29.68 30.8 1.43 28.7 33.03 29.2 28.94 29.4 29.9 1.79 27.07 28.15 29.26 29.35 31.93 29.2 1.81 38.67 23.28 25.24 24.6 24.47 22.28 24.0 1.18 22.25 24.38 24.21

lbm 3000 reference.dat 0 0 100_100_130_ldc.of0.4 0.11 0.21 0.32 0.1 0.8 0.3 0.29 0.04 0.02 0.25 0.35 0.13 0.2 0.14 0.03 0 0.12 0.3 0.67 0.2 0.28 0 0.06 0.22 0.48 0.13 0.2 0.19 99.9 99.98 100 99.98 100 100 100.0 0.01 99.98 100 100

leslie3d 8.8 12.2 11.26 11.82 11.52 12.95 12.0 0.66 11.82 10.66 14.39 12.4 13.82 12.6 1.51 10.8 10.57 14.16 12.26 12.27 12.0 1.44 12.32 11.5 14.13 12.36 11 12.3 1.19 41.62 38.72 39.48 40.34 40.27 39.94 39.8 0.67 38.89 39.89 40.75

libquantum 1397 8 5.9 0.09 0.08 0.09 0.07 -0.01 0.1 0.04 0.11 0.08 0.08 0.12 0.06 0.1 0.02 0.09 0.1 0.1 0.11 0.06 0.1 0.02 0.1 0.11 0.11 0.12 0.06 0.1 0.02 8.5 0.63 0.64 0.66 0.87 1.09 0.8 0.20 0.69 0.71 1.01

mcf inp.in 49.6 37.42 36.77 36 37.32 34.37 36.4 1.26 37.5 37.73 35.5 37.19 35.93 36.8 0.99 37.43 37.34 37.92 37.77 35.76 37.2 0.86 37.12 36.98 37.17 38.6 36.63 37.3 0.76 37.41 22.54 21.34 21.6 21.36 18.68 21.1 1.44 21.53 21.4 21.49

milc 9.6 19.28 14.83 15.06 15.61 15.76 16.1 1.81 20.42 16.88 14.65 14.8 12.3 15.8 3.04 19.33 14.37 14.26 14.49 11.45 14.8 2.84 19.02 11.06 14.37 15.25 15.57 15.1 2.85 18.18 15.69 17.88 17.68 17.27 16.5 17.0 0.90 15.58 17.86 17.49

namd --input namd.input --iterations 38 --output namd.out1.3 1.27 1.27 1.2 1.35 1.4 1.3 0.08 1.29 1.29 1.22 1.37 1.24 1.3 0.06 1.27 1.3 1.32 1.47 1.46 1.4 0.09 1.28 1.31 1.29 1.37 1.49 1.3 0.09 40.69 29.54 29.58 29.71 29.29 29.55 29.5 0.15 29.73 29.51 29.53

omnetpp omnetpp.ini 22.8 19.81 18.57 17.71 16.8 18.18 18.2 1.11 20.26 19.55 17.1 17.52 16.74 18.2 1.57 19.91 19.31 17.33 17.79 18.46 18.6 1.06 20.73 19.83 18.25 17.97 15.48 18.5 2.01 19.85 16.73 16.72 16.57 16.64 16.21 16.6 0.21 17.06 17.25 17.19

perlbench-1 -I./lib splitmail.pl 1600 12 26 16 450017.07 24.76 25.67 27.41 25.34 27.2 26.1 1.17 26.09 25.65 25.98 27.7 24.7 26.0 1.08 27.73 17.02 26.2 24.36 28.23 24.7 4.55 24.9 25.09 25.1 24.59 21.86 24.3 1.38 43 21.25 21.08 20.64 20.02 23.04 21.2 1.13 17.33 17.67 20.49

perlbench-2 -I./lib diffmail.pl 4 800 10 17 19 30017.6 31.26 26.1 25.51 19.58 20.66 24.6 4.69 30.44 29.68 22.54 17.64 23.88 24.8 5.31 28.45 25.58 19.05 24.34 18.29 23.1 4.35 29.62 28.11 24.75 20.61 17.86 24.2 4.95 49.41 34.57 34.3 33.42 34.05 34.62 34.2 0.49 31.2 31.63 28.34

perlbench-3 -I./lib checkspam.pl 2500 5 25 11 150 1 1 1 122.88 31.7 40.69 40.21 27.41 25.61 33.1 7.05 37.34 41.59 40.81 27.53 26.21 34.7 7.34 42.92 40.68 40.3 34.51 20.99 35.9 8.88 42.34 41.09 39.86 39.91 23.74 37.4 7.70 56.34 33.22 32.45 33.64 32.76 32.66 32.9 0.48 27.93 28.24 27.18

povray SPEC-benchmark-ref.ini 12.3 25.4 20.43 12.63 18.03 9.52 17.2 6.29 28.99 18.07 14.92 10.14 10.21 16.5 7.76 26.56 23.12 16.52 12.41 10.93 17.9 6.76 26.45 17.94 16.02 10.58 7.61 15.7 7.29 27.35 19.25 20 19.56 19.49 19.53 19.6 0.27 19.13 19.6 19.91

sjeng ref.txt 34.24 33.78 34.1 33.21 33.31 33.7 0.46 33.65 33.32 33.86 33.12 35.52 33.9 0.95 34.32 33.79 34.41 34.02 33.87 34.1 0.27 34.04 33.8 34.21 34.03 31.54 33.5 1.12 30.37 30.65 30.38 31.39 30.44 30.6 0.43 30.41 30.85 30.81

soplex-1 -s1 -e -m45000 pds-50.mps 37.48 35.87 35.95 36.67 35.84 35.13 35.9 0.55 36.37 36.89 37.26 37.08 31.67 35.9 2.36 36.86 36.74 36.43 36.8 38.29 37.0 0.73 36.67 37.18 37.27 37.7 38.04 37.4 0.52 41.03 40.07 39.85 38.66 41.25 37.87 39.5 1.31 39.93 40.31 40.55

soplex-2 -m3500 ref.mps 6.34 5.07 5.08 5.08 5.2 4.21 4.9 0.40 4.91 5.33 5.05 4.61 3.32 4.6 0.78 5.4 5.29 5.56 5.53 4.87 5.3 0.28 5.38 5.1 5.66 6.44 7.71 6.1 1.05 9.71 6.16 7.73 7.53 6.98 8.35 7.4 0.83 7.67 7.58 7.08

sphinx ctlfile . args.an4 16.5 18.65 18.11 18.45 18.47 18.84 18.5 0.27 18.49 18.56 17.94 19.14 17.91 18.4 0.51 18.57 18.43 19.11 17.38 14.21 17.5 1.96 18.6 18.67 18.45 18.06 19.24 18.6 0.43 45.78 41.3 45.81 42.42 46.02 42.51 43.6 2.16 41.11 41.97 41.51

tonto 5.8 2.77 2.74 2.71 2.76 3 2.8 0.12 2.76 2.68 2.9 2.67 2.66 2.7 0.10 2.8 2.78 2.85 2.7 3.67 3.0 0.40 2.94 2.8 2.65 2.88 2.69 2.8 0.12 29.98 21.59 21.46 21.3 21.35 22.23 21.6 0.38 21.33 21.45 21.26

wrf 15.5 12.68 14.36 12.01 13.7 14.72 13.5 1.14 11.86 12.36 12.3 12.75 12.29 12.3 0.32 13.26 11.34 11.92 12.55 14.11 12.6 1.09 12.8 13.36 12.64 12.61 13.1 12.9 0.32 38.94 39.5 38.23 39.27 38.13 39 38.8 0.62 40.05 38.37 38.77

Xalan -v t5.xml xalanc.xsl 10.15 9.32 8.72 9.01 11.75 9.8 1.22 12.68 9.39 10.01 9.11 10.72 10.4 1.43 14.75 9.61 9.53 9.21 11.54 10.9 2.33 15.24 13.22 11.61 10.11 9.12 11.9 2.44 13.22 14.13 14.67 14.45 15.79 14.5 0.93 14.95 16.76 15.02

zeusmp 7.4 8.67 9.77 9.67 8.62 8.37 9.0 0.65 8.79 9.08 9 9.15 9.68 9.1 0.33 9.45 9.1 9.12 9.53 11.23 9.7 0.88 9.37 9.02 9.53 9.53 11.11 9.7 0.81 33.63 58.16 58.43 58.15 59.66 60.95 59.1 1.22 58.36 59.16 58.65

%
 S

ile
nt

 s
to

re
d

by
te

s

0

25

50

75

100

as
ta

r-
1

as
ta

r-
2

bw
av

es
bz

ip
2-

1
bz

ip
2-

2
bz

ip
2-

3
bz

ip
2-

4
bz

ip
2-

5
bz

ip
2-

6
ca

ct
us

AD
M

ca
lc

ul
ix

de
al

II
ga

m
es

s-
1

ga
m

es
s-

2
ga

m
es

s-
3

gc
c-

1
gc

c-
2

gc
c-

3
gc

c-
4

gc
c-

5
gc

c-
6

gc
c-

7
gc

c-
8

gc
c-

9
G

em
sF

D
TD

go
bm

k-
1

go
bm

k-
2

go
bm

k-
3

go
bm

k-
4

go
bm

k-
5

gr
om

ac
s

h2
64

re
f-

1
h2

64
re

f-
2

h2
64

re
f-

3
hm

m
er

-1
hm

m
er

-2
lb

m
le

sl
ie

3d
lib

qu
an

tu
m

m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rlb
en

ch
-1

pe
rlb

en
ch

-2
pe

rlb
en

ch
-3

po
vr

ay
sj

en
g

so
pl

ex
-1

so
pl

ex
-2

sp
hi

nx
to

nt
o

w
rf

Xa
la

n
ze

us
m

p

RedSpy (exhaustive)
SilentCraft (sampling)

%
 D

ea
d

B
yt

es

0

18

36

54

72

90

as
ta

r-
1

as
ta

r-
2

bw
av

es
bz

ip
2-

1
bz

ip
2-

2
bz

ip
2-

3
bz

ip
2-

4
bz

ip
2-

5
bz

ip
2-

6
ca

ct
us

AD
M

ca
lc

ul
ix

de
al

II
ga

m
es

s-
1

ga
m

es
s-

2
ga

m
es

s-
3

gc
c-

1
gc

c-
2

gc
c-

3
gc

c-
4

gc
c-

5
gc

c-
6

gc
c-

7
gc

c-
8

gc
c-

9
G

em
sF

D
TD

go
bm

k-
1

go
bm

k-
2

go
bm

k-
3

go
bm

k-
4

go
bm

k-
5

gr
om

ac
s

h2
64

re
f-

1
h2

64
re

f-
2

h2
64

re
f-

3
hm

m
er

-1
hm

m
er

-2
lb

m
le

sl
ie

3d
lib

qu
an

tu
m

m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rlb
en

ch
-1

pe
rlb

en
ch

-2
pe

rlb
en

ch
-3

po
vr

ay
sj

en
g

so
pl

ex
-1

so
pl

ex
-2

sp
hi

nx
to

nt
o

w
rf

Xa
la

n
ze

us
m

p

DeadSpy (exhaustive)
DeadCraft (sampling)

%
 S

ile
nt

 lo
ad

ed
 b

yt
es

0

25

50

75

100

as
ta

r-
1

as
ta

r-
2

bw
av

es
bz

ip
2-

1
bz

ip
2-

2
bz

ip
2-

3
bz

ip
2-

4
bz

ip
2-

5
bz

ip
2-

6
ca

ct
us

AD
M

ca
lc

ul
ix

de
al

II
ga

m
es

s-
1

ga
m

es
s-

2
ga

m
es

s-
3

gc
c-

1
gc

c-
2

gc
c-

3
gc

c-
4

gc
c-

5
gc

c-
6

gc
c-

7
gc

c-
8

gc
c-

9
G

em
sF

D
TD

go
bm

k-
1

go
bm

k-
2

go
bm

k-
3

go
bm

k-
4

go
bm

k-
5

gr
om

ac
s

h2
64

re
f-

1
h2

64
re

f-
2

h2
64

re
f-

3
hm

m
er

-1
hm

m
er

-2
lb

m
le

sl
ie

3d
lib

qu
an

tu
m

m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rlb
en

ch
-1

pe
rlb

en
ch

-2
pe

rlb
en

ch
-3

po
vr

ay
sj

en
g

so
pl

ex
-1

so
pl

ex
-2

sp
hi

nx
to

nt
o

w
rf

Xa
la

n
ze

us
m

p

LoadSpy (exhaustive) LoadCraft (sampling)

�1

(b) Silent Store

%
 S

ile
nt

 s
to

re
d

by
te

s

0

25

50

75

100

as
ta

r-
1

as
ta

r-
2

bw
av

es
bz

ip
2-

1
bz

ip
2-

2
bz

ip
2-

3
bz

ip
2-

4
bz

ip
2-

5
bz

ip
2-

6
ca

ct
us

AD
M

ca
lc

ul
ix

de
al

II
ga

m
es

s-
1

ga
m

es
s-

2
ga

m
es

s-
3

gc
c-

1
gc

c-
2

gc
c-

3
gc

c-
4

gc
c-

5
gc

c-
6

gc
c-

7
gc

c-
8

gc
c-

9
G

em
sF

D
TD

go
bm

k-
1

go
bm

k-
2

go
bm

k-
3

go
bm

k-
4

go
bm

k-
5

gr
om

ac
s

h2
64

re
f-

1
h2

64
re

f-
2

h2
64

re
f-

3
hm

m
er

-1
hm

m
er

-2
lb

m
le

sl
ie

3d
lib

qu
an

tu
m

m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rlb
en

ch
-1

pe
rlb

en
ch

-2
pe

rlb
en

ch
-3

po
vr

ay
sj

en
g

so
pl

ex
-1

so
pl

ex
-2

sp
hi

nx
to

nt
o

w
rf

Xa
la

n
ze

us
m

p

RedSpy (exhaustive)
SilentStore (sampling)

%
 S

ile
nt

 lo
ad

ed
 b

yt
es

0

25

50

75

100

as
ta

r-
1

as
ta

r-
2

bw
av

es
bz

ip
2-

1
bz

ip
2-

2
bz

ip
2-

3
bz

ip
2-

4
bz

ip
2-

5
bz

ip
2-

6
ca

ct
us

AD
M

ca
lc

ul
ix

de
al

II
ga

m
es

s-
1

ga
m

es
s-

2
ga

m
es

s-
3

gc
c-

1
gc

c-
2

gc
c-

3
gc

c-
4

gc
c-

5
gc

c-
6

gc
c-

7
gc

c-
8

gc
c-

9
G

em
sF

D
TD

go
bm

k-
1

go
bm

k-
2

go
bm

k-
3

go
bm

k-
4

go
bm

k-
5

gr
om

ac
s

h2
64

re
f-

1
h2

64
re

f-
2

h2
64

re
f-

3
hm

m
er

-1
hm

m
er

-2
lb

m
le

sl
ie

3d
lib

qu
an

tu
m

m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rlb
en

ch
-1

pe
rlb

en
ch

-2
pe

rlb
en

ch
-3

po
vr

ay
sj

en
g

so
pl

ex
-1

so
pl

ex
-2

sp
hi

nx
to

nt
o

w
rf

Xa
la

n
ze

us
m

p

LoadSpy (exhaustive) LoadCraft (sampling)

�2

(c) Silent Load

Figure 4.4: Witch tools vs. instrumentation tools on SPEC CPU2006. Error bars capture
di↵erent sampling rates. Ground truth instrumentation data is unavailable for gobmk,
sjeng, and Xalan since they ran out of memory. The benchmarks with multiple inputs
(e.g., bzip2) appear multiple times with di↵erent numerical su�xes.

N to add up to 90% of redundancy observed in execution. No single metric su�ces to
compare this type of complex data. We used edit distance and set di↵erence of the top N
contexts and also compared weights at each position. Our measurements [19] show that
only a handful of context pairs account for the majority of redundancies and their rank
ordering and individual weights match the exhaustive monitoring.
Overhead: Table 4.1 shows the runtime slowdown and memory bloat of sampling vs.
exhaustive monitoring. Slowdown (memory bloat) is the ratio of the runtime (peak memory
usage) under monitoring to the runtime (peak memory usage) of the corresponding native
execution. We show the average values for the same benchmark with multiple inputs. We
used the sampling period of one in 5M stores and one in 10M loads (since loads are more
common), which we found to be highly e↵ective. Two critical things to observe about
the sampling tools are 1) their overheads are at least an order of magnitude less than the
exhaustive instrumentation tools, and 2) they introduce negligible overhead. Deep recursive
codes such as xalanbmk, sjeng, and gombk incur higher space and time overheads; and their
instrumentation counterparts do not run to completion. Recursive codes with ine�ciencies
(e.g., SilentCraft on gobmk and LoadCraft on xalanbmk) exacerbate memory bloat due

63

0

25

50

75

100

as
ta

r-
1

as
ta

r-
2

bw
av

es

bz
ip

2-
1

bz
ip

2-
2

bz
ip

2-
3

bz
ip

2-
4

bz
ip

2-
5

bz
ip

2-
6

ca
ct

us
…

ca
lc

ul
ix

de
al

II

ga
m

es
…

ga
m

es
…

ga
m

es
…

gc
c-

1

gc
c-

2

gc
c-

3

gc
c-

4

gc
c-

5

gc
c-

6

gc
c-

7

gc
c-

8

gc
c-

9

G
em

sF
…

go
bm

k-
1

go
bm

k-
2

go
bm

k-
3

go
bm

k-
4

go
bm

k-
5

gr
om

ac
s

h2
64

re
…

h2
64

re
…

h2
64

re
…

hm
m

er
-1

hm
m

er
-2

lb
m

le
sl

ie
3d

lib
qu

a…

m
cf

m
ilc

na
m

d

om
ne

tp
p

pe
rlb

e…

pe
rlb

e…

pe
rlb

e…

po
vr

ay

sj
en

g

so
pl

ex
-1

so
pl

ex
-2

sp
hi

nx

to
nt

o

w
rf

Xa
la

n

ze
us

m
p

%
 D

ea
d

by
te

s
DeadSpy (exhaustive)
DeadCraft (1 debug register)
DeadCraft (2 debug register)
DeadCraft (3 debug register)
DeadCraft (4 debug register)

Figure 4.5: Comparison of dead writes with di↵erent number of debug registers. Error
bars are for di↵erent (100K - 100M) sampling intervals.

Benchmark

as
ta

r

bw
av

es

bz
ip

2

ca
ct

us
A

D
M

ca
lc

ul
ix

de
al

II

ga
m

es
s

gc
c

G
em

sF
D

TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er

lb
m

le
sli

e3
d

lib
qu

an
tu

m

m
cf

m
ilc

na
m

d

om
ne

tp
p

pe
rl

be
nc

h

po
vr

ay

sj
en

g

so
pl

ex

sp
hi

nx
3

to
nt

o

w
rf

xa
la

nc
bm

k

ze
us

m
p

G
eo

M
ea

n

M
ed

ia
n

Original Time (second) 139 303 64 371 635 246 50 24 297 71 317 138 160 342 215 173 221 458 318 182 65 101 367 86 423 408 312 158 360
Original Memory Usage (MB) 232 875 562 664 118 795 22 459 831 30 16 38 16 411 125 95 1677 681 48 171 400 7 176 279 44 36 695 421 512

Dead
store

Slowdown
(times)

DeadSpy 22.65 31.70 32.32 29.93 33.40 54.70 40.00 43.57 26.36 - 26.95 59.67 52.01 28.86 31.70 27.87 21.69 14.61 22.18 37.80 71.91 71.13 - 26.45 26.16 34.85 24.60 - 19.95 32.48 30.82
DeadCraft 1.01 1.00 1.00 1.04 1.01 1.01 1.07 1.02 1.03 1.00 1.02 1.01 1.02 1.00 1.01 1.00 1.00 1.01 1.00 1.01 1.03 1.02 1.00 1.00 1.01 1.02 1.04 1.19 1.00 1.02 1.01

Memory
bloat

(times)

DeadSpy 6.47 6.40 6.27 5.84 8.53 14.70 8.20 32.26 6.12 - 9.80 11.93 20.65 6.06 6.25 9.49 6.00 6.26 6.55 6.84 45.75 38.66 - 17.54 7.48 16.76 6.70 - 6.03 9.87 7.16
DeadCraft 1.03 1.01 1.02 1.00 1.07 1.01 1.30 1.03 1.00 2.06 1.38 1.30 1.62 1.01 1.07 1.11 1.00 1.01 1.14 1.04 1.02 2.56 1.09 1.05 1.15 1.64 1.01 5.36 1.02 1.23 1.05

Silent
store

Slowdown
(times)

RedSpy 16.33 17.62 23.75 45.64 26.17 23.60 33.00 200.07 41.24 - 25.60 101.66 26.66 14.53 39.43 23.67 10.76 10.94 16.94 27.97 59.71 67.50 - 23.60 16.46 29.32 33.00 - 27.66 29.10 26.42
SilentCraft 1.01 1.01 1.00 1.05 1.01 1.00 1.05 1.03 1.02 1.00 1.02 1.02 1.03 1.00 1.01 1.03 1.00 1.00 1.02 1.01 1.04 1.03 1.00 1.02 1.00 1.01 1.04 1.13 1.00 1.02 1.01

Memory
bloat

(times)

RedSpy 5.35 5.42 5.26 5.06 8.24 12.50 9.80 34.84 5.22 - 10.08 9.95 15.57 5.15 5.46 6.35 5.08 5.31 5.97 6.42 67.76 51.87 - 3.73 6.53 17.33 5.90 - 5.20 8.58 6.16
SilentCraft 1.03 1.01 1.02 1.00 1.07 1.01 1.31 1.03 1.01 2.05 1.55 1.33 1.64 1.01 1.07 1.11 1.00 1.01 1.14 1.04 1.02 2.78 1.09 1.04 1.15 1.64 1.01 5.17 1.01 1.24 1.04

Silent
load

Slowdown
(times)

LoadSpy 30.00 87.70 53.00 123.00 75.30 81.30 100.00 51.80 69.60 - 39.80 185.00 95.30 15.10 98.60 36.80 26.90 26.90 46.10 36.00 82.00 156.00 - 31.20 60.10 54.10 81.90 - 51.00 58.66 57.10
LoadCraft 1.04 1.00 2.16 1.69 1.09 1.00 1.12 1.04 1.08 1.00 1.06 1.04 1.04 1.00 1.09 1.01 1.00 1.02 1.58 1.00 1.51 1.05 1.00 1.00 1.01 1.05 1.10 1.86 1.08 1.13 1.04

Memory
bloat

(times)

LoadSpy 6.80 6.50 4.00 5.90 8.49 14.40 12.00 50.10 6.30 - 12.60 18.40 23.90 6.20 4.90 50.20 6.09 6.40 6.80 8.20 184.001051.00 - 13.20 9.30 36.70 5.20 - 6.30 13.52 8.35
LoadCraft 1.03 1.01 1.03 1.00 1.08 1.01 1.36 1.03 1.01 2.01 1.43 1.36 1.64 1.01 1.07 1.11 1.00 1.01 1.13 1.04 1.02 3.55 1.14 1.05 1.19 1.87 1.02 24.93 1.02 1.33 1.05

Table 4.1: Runtime slowdown (⇥) and memory bloat (⇥) over native execution: Witch
(DeadCraft, SilentCraft, LoadCraft) vs. exhaustive monitoring tools (DeadSpy, RedSpy,
LoadSpy).

to large calling context trees. Codes with a very small memory footprint (e.g., povray)
show higher memory bloat because of some basic pre-allocated data structures used in our
tools.

LoadCraft has higher overhead compared to the other two tools since 1) loads are more
common than stores, 2) a high fraction of loading the same value leads to more watchpoint
traps and ine�ciency reporting cost, 3) most PMU samples find a free debug register and
incur the cost of arming it, and finally 4) LoadCraft sets the RW TRAP watchpoint (x86
does not support break on load watchpoint), which triggers a spurious exception on a
store. Table 4.2 shows the geometric mean and median of the slowdown and memory bloat
at di↵erent sampling periods in SPEC CPU2006.

4.8 Case Studies

The lightweight nature of Witch tools allowed us to apply it on an array of benchmark
suites—SPEC CPU2006 [104], SPEC OMP2012 [105], NERSC Trinity [86], Rodinia [91],
and STAMP [85] and full applications—NWChem [111], Ca↵e [52], GNU Binutils [38], and
Kallisto RNA sequencing [79]. Table 4.3 summarizes the new performance bugs found by
our tools (denoted by X prefix) and confirms previously found performance issues [20]. In
this section, we describe four case studies covering the analyses by the three Witch tools.

64

GeoMean
DeadCraft SilentCraft LoadCraft

Time
overhead

Space
Overhead

Time
overhead

Space
Overhead

Time
overhead

Space
Overhead

100M 1.01 1.11 1.01 1.11 1.07 1.14

10M 1.01 1.17 1.01 1.17 1.16 1.27

5M 1.02 1.21 1.02 1.22 1.21 1.35

1M 1.05 1.40 1.05 1.39 1.43 1.61

500K 1.08 1.50 1.08 1.50 1.74 1.74

GeoMean
/Median

DeadCraft SilentCraft LoadCraft

Slowdown
(times)

Memory bloat
(times)

Slowdown
(times)

Memory bloat
(times)

Slowdown
(times)

Memory bloat
(times)

100M 1.00/1.00 1.12/1.03 1.01/1.00 1.12/1.04 1.04/1.00 1.17/1.05

10M 1.01/1.01 1.19/1.05 1.01/1.00 1.19/1.04 1.13/1.04 1.33/1.05

5M 1.02/1.01 1.23/1.05 1.02/1.01 1.24/1.04 1.20/1.06 1.42/1.06

1M 1.05/1.03 1.40/1.05 1.06/1.03 1.39/1.04 1.48/1.27 1.66/1.07

500K 1.09/1.03 1.48/1.06 1.09/1.04 1.47/1.05 1.92/1.53 1.74/1.07

Table 4.2: Geomean and median of slowdown and memory bloat of Witch tools at
di↵erent sampling rates on SPEC CPU2006.

Benchmark Information Witch
WS⇤

program problem code Ine�ciencies (Client)

gcc [104] cselib.c:cselib init Poor data structure (DS) 1.33⇥
bzip2 [104] blocksort.c:mainGtU init Poor code generation#(DS) 1.07⇥
hmmer [104] fast algorithms.c:loop(119) No-vectorization (DS/SS) 1.28⇥
h264ref [104] mv-search.c:loop(394) Missed inlining (SL) 1.27⇥
Xpovray [104] csg.cpp:loop(248) Missed inlining (DS) 1.08⇥
XChombo [27] PolytropicPhysicsF.ChF:(434) Inattention to perf. (DS) 1.07⇥
Xbotsspar [105] sparselu.c:fwd Redundant computation (SL) 1.15⇥
Ximagick [105] magick e↵ect.c:loop(1482) Redundant computation (SL) 1.6⇥
XSMB [86] msgrate.c:cache invalidate Redundant computation (SL) 1.47⇥

backprop [91] bpnn adjust weights Redundant computation (SS) 1.20⇥
lavaMD [91] kernel cpu.c:loop(117) Redundant computation (SL) 1.66⇥

Xvacation [85] client.c:loop(198) Redundant computation (SL) 1.31⇥
NWChem-6.3 [111] tce mo2e trans.F(240) Useless initialization (DS/SS) 1.43⇥
XCa↵e-1.0 [52] pooling layer.cpp(289) Redundant computation (SS) 1.06⇥

XBinutils-2.27 [38] dwarf2.c(1561) Linear search algorithm (SL) 10⇥
XKallisto-0.43 [79] KmerHashTable.h(131) Poor hashing (SL) 4.1⇥
⇤
WS means whole-program speedup after problem elimination.

+
DS means dead store, SS means silent store, SL means silent load.

X newly found issues via Witch # used gcc-4.1.2

Table 4.3: Performance improvement guided by Witch.

4.8.1 NWChem-6.3

NWChem [111] is a production computational chemistry package, which implements several
quantum mechanics and molecular mechanics methods. NWChem consists of six million
lines of code written primarily in Fortran and C and parallelized with MPI [80]. We use
the QM-CC aug-cc-pvdz input and eight MPI processes in our studies.

DeadCraft reports that more than 60% of memory stores are dead. Figure 4.6 shows
the full calling contexts of the top (94% contribution to total dead writes) dead and killing
store pair in the call of function dfill, which zeroes the array work2. With the given input,
calls to dfill repeat more than 200K times, resulting in writing 500GB data that are never
used. With further analysis, we identified that the size of work2 was larger than necessary,
and the zero initialization was unnecessary, leading to the dead and killing writes in the
same location. We eliminate this unnecessary initialization, yielding a 1.43⇥ speedup. This
bug, which was hiding in the large code base, is now fixed. Witch incurs only 6% runtime
overhead whereas the fine-grained profiler, DeadSpy, incurs > 10⇥ slowdown identifying
the same problem.

65

join node

call path
of dead

call path
of kill

Figure 4.6: The pair of dead and kill stores with full contexts reported by Witch’s dead
store client.

1 for (int n = 0; n < top[0]->num(); ++n) {
2 for (int c = 0; c < channels_; ++c) {
3 for (int ph = 0; ph < pooled_height_; ++ph) {
4 for (int pw = 0; pw < pooled_width_; ++pw) {
5 ...
6 for (int h = hstart; h < hend; ++h) {
7 for (int w = wstart; w < wend; ++w) {
8 I bottom_diff[h * width_ + w] +=
9 top_diff[ph * pooled_width_ + pw] / pool_size;

10 }}}}
11 ...}}

Listing 4.4: Silent stores to array bottim diff in Ca↵e.

4.8.2 Ca↵e-1.0

We apply SilentCraft on the deep learning framework Ca↵e [52]. We study the OpenMP
C++ CPU version, which uses Intel MKL [48] to parallelize its computation kernels. We
use the CIFAR-10 dataset to train the CIFAR network with 0.9 momentum, 4e-3 weight
decay, 1e-3 learning rate, 128 batch size. We run Ca↵e with eight threads.

SilentCraft attributes 25% of total memory stores as redundant in a loop nest belong-
ing to a major computation kernel in pooling and normalization layers (Listing 4.4). The
memory stores to the array bottom diff (Line 8) account for 17% of total silent stores.
A large portion of elements in top diff are zeroes; hence the same values overwrite the
existing values in the same memory location of bottom diff. The iteration over all the
elements of bottom diff in the four-level nested loop amplifies the fraction of silent stores.
We optimize this code by introducing a check for the value in top diff. If it is a zero, we
bypass a division, an addition, and a memory store. This optimization speeds up the pool-
ing layer by 1.16⇥ the normalization layers by 1.34⇥. We observe 1.03⇥ speedup for the
entire program. We further relax the check for the absolute value in top diff with a small
delta 1e-7 rather than 0. If it is smaller, we bypass the computation for approximate re-

66

1 bfd_boolean lookup_address_in_function_table (struct comp_unit *unit , bfd_vma addr
, ...) {

2 ...
3 for (each_func = unit ->function_table; ...) {
4 for (arange = &each_func ->arange; ...) {
5 I if (addr >= arange ->low && addr < arange ->high){
6 if (! best_fit || ...) {
7 best_fit = each_func;
8 best_fit_len = arange ->high - arange ->low;
9 }}}}

10 . . .
11 }

Listing 4.5: Redundant loads in binutils-2.27 dwarf2.c file. Linear searches load same
the values from same locations.

sults. This optimization, with less than 2% accuracy loss, yields 1.16⇥ and 2.23⇥ speedups
for the pooling and normalization layers, respectively. The entire program obtains a 1.06⇥
speedup.

4.8.3 GNU Binutils-2.27

GNU Binutils [38] is a collection of binary tools used by many binary analysis tools such as
Pin [75] and command-line tools such as objdump [37]. Disassembling an object file contain-
ing many functions using objdump with -d -S -l flags (map assembly to symbol and source
lines) is unusually slow. We profile objdump in binutils-2.27 with LoadCraft by disas-
sembling the LULESH-2.0 [59] binary, which contains many functions. LoadCraft identifies
96% of the loads in the program as loading the same value from the same location. The top
contributor is the Line 5 (Listing 4.5) in the function lookup address in function table

with 70% redundant loads attributed to it. The function performs a linear scan over the
addresses covered by each line of each function, maintained as a linked list, looking for the
best match for a given address range.

When repeatedly called for di↵erent addresses in an object file containing many func-
tions linear search is a poor choice of algorithm. We replace the linked list with a sorted
array and perform a binary search over it. This solution speeds up the execution by 10⇥.
This problem is fixed in the latest binutils. Pinpointing that the code always loads the
same values from the same location raised a red flag, clearly indicating an algorithmic
deficiency.

4.8.4 SPEC OMP2012 367.imagick

SPEC OMP2012 367.imagick [105] is an OpenMP software to manipulate bitmap images.
With the ref input and eight threads, LoadCraft reports that more than 99% of total
memory loads are redundant and 85% of the redundant loads are associated with the loop
nests shown in Listing 4.6.

The loop body has six memory loads for di↵erent fields of pixel and kernel pixels.
Each of the loads is often redundant with a load in a prior iteration. We find that the
fields red, green, and blue of kernel pixels[u] are mostly zeros. For optimization, we
introduce a conditional check on kernel pixels[u]. If it is zero, we skip the computation,

67

1 for (y=0; y < (ssize_t) image ->rows; y++) {
2 for (x=0; x < (ssize_t) image ->columns; x++) {
3 for (v=0; v < (ssize_t) width; v++) {
4 for (u=0; u < (ssize_t) width; u++) {
5 I pixel.red +=(*k)*kernel_pixels[u].red;
6 I pixel.green +=(*k)*kernel_pixels[u]. green;
7 I pixel.blue +=(*k)*kernel_pixels[u].blue;
8 k++;
9 }}}}

Listing 4.6: Redundant loads to di↵erent fields of structure pixel and array kernel pixels

in 367.imagick

which saves a memory load from address k, a multiplication, and a memory load to the
field of pixel. This optimization yields a 1.6⇥ speedup.

4.8.5 Discussion on Other Optimizations

Many algorithmic deficiencies show up as useless loads and stores. While hotspots may
indicate where a large fraction of time is spent, they do not indicate the usefulness of the
work. Such defects stand out when profiled with our tools.

We presented a subset of programs where we found ine�ciencies using witchcraft.
Kallisto-0.43 [79] is an important RNA-sequencing software where LoadCraft found
more than 98% redundant loads. The problem was a large, linear-probing hash-table with
excessive hash collisions. We fixed Kallisto by reducing the load factor on the hash table
and gained 4.1⇥ speedup. Vacation is a STAMP [85] transactional memory benchmark,
where we found unnecessary calls to a hash-table lookup of an item that was already found
in the previous line of the code. Memoizing the result of the previous lookup resulted
in 1.3⇥ speedup. The results from our tools showed us that SPEC CPU2006 lbm is an
excellent candidate for approximate computing; we applied loop perforation [101] to lbm

and obtained 1.25x speedup with insignificant (7.7e-5%) accuracy loss.

68

Chapter 5

Conclusion

The hardware nowadays is developing quite fast. Softwares need to be e�cient at all scales
to take full use of the hardware resources. However, ine�ciencies arise due to various
causes. Unnecessary operation is typical representative among various ine�ciencies occur-
ring in the code level. Compilers which we rely on traditionally help to eliminate some
redundancies with static analysis which is not enough since compilers do optimizations
conservatively with limited view of scope. Classical runtime profiling tools focus on reveal-
ing how resources are used by using which lots of manual e↵orts are in need to root cause
ine�ciencies. Due to the severity of the problem and limitations of existing methodolo-
gies. This thesis states that new profiling techniques are in need to pinpoint where the
unnecessary operations happen.

This thesis includes three profilers, RVN, RedSpy and Witch exposing di↵erent kinds
of unnecessary operations from di↵erent points of view. RVN implements value numbering
technique at runtime and helps use to identify some significant computation redundancies
in several benchmarks. RedSpy is another fine-grained profiler exploring value locality
during program execution. Value locality occurs over time in same storage locations (tem-
poral) and in the neighborhood of a storage location (spatial). RedSpy can monitor data
manipulation in both memory and registers. RedSpy incorporates techniques to recognize
when floating-point values are approximately the same, thus o↵ering new venues to tune
code for approximate computations. Witch is the first lightweight resource wastage inves-
tigation framework in the market. Witch employs PMU sampling to get the first touch to
memory locations and then set hardware debug registers to monitor the sampled locations
with which, Witch is able to monitor consecutive memory accesses and explore useless
data manipulation. Atop Witch, ine�ciency-detection tools are build which are at least an
order of magnitude faster than the state-of-the-art exhaustive-instrumentation tools with
the same capabilities. Guided by RVN, RedSpy and Witch, with little e↵ort, we are able
to achieve great speedup in many important, complex codes bases unfamiliar to us. The
optimizations we applied are platform compatible and are demonstrated on several archi-
tectures. We further demonstrate the e↵ectiveness of our tools in several parallel software
projects that were subject of optimization for decades.

69

Thesis Confirmation This thesis proposes new profiling methodologies exposing di↵er-
ent kinds of unnecessary operations to improve the code quality of software. All the new
profilers work on executables fully optimized by compilers. Thus, problems reported by
these profilers are failed by compile time analysis. These new profilers are also able to de-
tect problematic code sections missed by state-of-the-art performance profilers like bwaves,
gcc and h264ref from spec 2006. More experiments were conducted and have demonstrated
that our new profilers are necessary and widely useful.

5.1 Innovation Highlights

All the three profilers included in this thesis are open-sourced. RVN and
RedSpy are available from https://github.com/CCTLib while Witch is available from
htttps://github.com/WitchTools/. Besides the three profilers, more key contributions are
summarized as follows.

Instrument with Sliding Window Monitoring every single instruction would blow up
the runtime and memory overhead significantly. RVN provides a sliding window imple-
mentation allowing one to tune instrumentation proportion. The higher the proportion,
the more comprehensive result, and the higher overhead. This instrumentation flexibility
allows users to customize the analysis.

Temporal and Spatial Value Locality RedSpy demonstrates the existence and sig-
nificance of value locality. Value locality happens when the same data has already present
at the same storage location (temporal locality) or adjacent locations (spatial locality).
Di↵erent from traditional instruction-based analysis, RedSpy looks into the ine�ciencies
through a completely new channel, the data’s point of view. With this new analysis mode,
RedSpy would be able to expose more ine�ciencies in the application where previous
works failed.

Approximation Checking for Floating Points When exploring value locality, in-
stead of checking whether “same” data are manipulated, RedSpy provides approximation
comparison for floating points data objects. In most approximation programming, result
with little variation (e.g. ⇠5%) is completely acceptable. By examining whether “similar”
data are frequently written to (or read from) the same (or adjacent) locations, one will ex-
port more opportunities in trading o↵ the accuracy for better performance. The similarity
can be adjusted based on how developers can tolerate the variation.

Monitoring Consecutive Accesses with Sampling In previous works, when one
needs to monitor the consecutive memory accesses, we either use instrumentation or tracing
both of which have non-ignorable overhead. Witch proposes a new approach that allows us
to monitor the consecutive memory accesses with negligible extra CPU and memory usage.
Witch combines the PMU and debug registers. PMU makes it possible to sample memory
accesses (get first access), and then debug register can be set to watch on the following-on
accesses to that sample (get second access). On top of this framework, di↵erent crafts

70

can be build to detect various unnecessary memory operations including dead write, silent
write, and silent load.

New Linux Kernel Patch to Better Support Debug Registers System calls are
provided to open, set, close the debug registers. In Witch, we need to frequently reset
the debug registers to monitor new coming samples. With existing support, we have
to close the debug register first and then reopen it to watch on new memory locations.
Massive closing/reopening would introduce significant overhead which is non transparent
in sampling based analysis. Witchmodifies the Linux kernel and adds support for resetting
the debug registers online without closing and reopening it.

5.2 Research Highlights

Our paper “RVN: Pinpointing Redundant Computations” got accepted by PACT’15. Pa-
per “RedSpy: Exploring Value Locality in Software” was published in ASPLOS’17 and
nominated as the best paper candidate. Paper “Watching for Software Ine�ciencies with
Witch” got accepted by ASPLOS’18 and is nominated to ACM SIGs for CACM Research
Highlights.

71

Bibliography

[1] CCTLib. https://github.com/CCTLib/.

[2] Intel Pin. https://software.intel.com/en-us/articles/

pin-a-dynamic-binary-instrumentation-tool.

[3] NU-MineBench suite. http://cucis.ece.northwestern.edu/projects/DMS/

MineBench.html.

[4] The DWARF Debugging Standard. http://www.dwarfstd.org.

[5] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. HPCToolkit: Tools for Performance Analysis of
Optimized Parallel Programs. Concurrency Computation : Practice Expererience,
22(6):685–701, April 2010.

[6] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware per-
formance counters with flow and context sensitive profiling. In SIGPLAN Conference
on Programming Language Design and Implementation, pages 85–96, NY, NY, USA,
1997. ACM.

[7] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat,
Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites, Mark T.
Vandevoorde, Carl A. Waldspurger, and William E. Weihl. Continuous
Profiling: Where Have All the Cycles Gone? ACM Trans. Comput. Syst., 15(4):357–
390, November 1997.

[8] R. Barik and V. Sarkar. Interprocedural Load Elimination for Dynamic Opti-
mization of Parallel Programs. In 2009 18th International Conference on Parallel
Architectures and Compilation Techniques, pages 41–52, Sept 2009.

[9] G. B. Bell, K. M. Lepak, and M. H. Lipasti. Characterization of Silent Stores.
In Proceedings 2000 International Conference on Parallel Architectures and Compi-
lation Techniques (Cat. No.PR00622), pages 133–144, 2000.

[10] P. Briggs, K. D. Cooper, and L. T. Simpson. Value numbering. Software–
Practice and Experience, 27(6):701–724, June 1997.

72

[11] Preston Briggs and Keith D. Cooper. E↵ective Partial Redundancy Elim-
ination. In Proceedings of the ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation, pages 159–170, 1994.

[12] M. Burrows, Ú Erlingsson, S-T. A. Leung, M. T. Vandevoorde, C. A.
Waldspurger, K. Walker, and W. E. Weihl. E�cient and Flexible Value
Sampling. In Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS IX, pages
160–167, New York, NY, USA, 2000. ACM.

[13] J. Adam Butts and Guri Sohi. Dynamic Dead-instruction Detection and Elimi-
nation. In Proceedings of the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 199–210, 2002.

[14] Brad Calder, Peter Feller, and Alan Eustace. Value profiling. In Proceed-
ings of the 30th Annual ACM/IEEE International Symposium on Microarchitecture,
MICRO 30, pages 259–269, Washington, DC, USA, 1997. IEEE Computer Society.

[15] Brad Calder, Peter Feller, and Alan Eustace. Value Profiling and Opti-
mization. Journal of Instruction Level Parallelism, 1, 1999.

[16] Steve Carr and Ken Kennedy. Scalar Replacement in the Presence of Condi-
tional Control Flow. Software Practice and Experience, 24:51–77, 1992.

[17] Milind Chabbi, Wim Lavrijsen, Wibe de Jong, Koushik Sen, John Mellor-
Crummey, and Costin Iancu. Barrier Elision for Production Parallel Programs.
In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2015, pages 109–119, New York, NY, USA, 2015.
ACM.

[18] Milind Chabbi, Xu Liu, and John Mellor-Crummey. Call Paths for Pin Tools.
In Proceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization, pages 76:76–76:86, 2014.

[19] Milind Chabbi, Xu Liu, and Shasha Wen. WitchTools. https://github.com/
WitchTools/Witch.git, 2017.

[20] Milind Chabbi and John Mellor-Crummey. DeadSpy: a tool to pinpoint pro-
gram ine�ciencies. In Proceedings of the 10th International Symposium on Code
Generation and Optimization, pages 124–134, 2012.

[21] Milind Chabbi, Shasha Wen, and Xu Liu. Featherlight On-the-fly False Sharing
Detection. In Proceedings of the 23th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2018, New York, NY, USA, 2018. ACM.

[22] Milind Chabbi, Shasha Wen, Xu Liu, et al. CCTLib. https://github.com/
CCTLib/CCTLib, 2014.

[23] Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao, Vinodha
Ramasamy, Paul Yuan, Wenguang Chen, and Weimin Zheng. Taming

73

Hardware Event Samples for FDO Compilation. In Proceedings of the 8th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO
’10, pages 42–52, New York, NY, USA, 2010. ACM.

[24] Fred Chow, Sun Chan, Robert Kennedy, Shin-Ming Liu, Raymond Lo,
and Peng Tu. A New Algorithm for Partial Redundancy Elimination Based on
SSA Form. In Proceedings of the ACM SIGPLAN 1997 Conference on Programming
Language Design and Implementation, PLDI ’97, pages 273–286, 1997.

[25] Eui-Young Chung, Luca Benini, and Giovanni De Micheli. Energy E�-
cient Source Code Transformation based on Value Profiling. In PROC. INTER-
NATIONAL WORKSHOP ON COMPILERS AND OPERATING SYSTEMS FOR
LOW POWER, 2000.

[26] Cliff Click. Global code motion/global value numbering. In Proceedings of the
ACM SIGPLAN 1995 Conference on Programming Language Design and Implemen-
tation, pages 246–257, 1995.

[27] P Colella, DT Graves, ND Keen, TJ Ligocki, DF Martin,
PW Mc-Corquodale, D Modiano, PO Schwartz, TD Sternberg, and
B Van Straalen. Chombo Software Package for AMR Applications - Design Docu-
ment. Lawrence Berkeley National Laboratory Technical Report LBNL-6616E, 2013.

[28] Keith Cooper, Jason Eckhardt, and Ken Kennedy. Redundancy elimination
revisited. In Proceedings of the 17th International Conference on Parallel architec-
tures and compilation techniques, pages 12–21, 2008.

[29] Steven J Deitz, Bradford L Chamberlain, and Lawrence Snyder. Elim-
inating redundancies in sum-of-product array computations. In Proceedings of the
15th International Conference on Supercomputing, pages 65–77, 2001.

[30] Luiz DeRose, Bill Homer, Dean Johnson, Steve Kaufmann, and Heidi
Poxon. Cray performance analysis tools. In Tools for High Performance Computing,
pages 191–199. Springer Berlin Heidelberg, 2008.

[31] Jack Dongarra and Michael A Heroux. Toward a new metric for ranking high
performance computing systems. Sandia Report, SAND2013-4744, 312:150, 2013.

[32] Paul J. Drongowski. Instruction-Based Sampling: A New Performance Analysis
Technique for AMD Family 10h Processors. https://pdfs.semanticscholar.org/
5219/4b43b8385ce39b2b08ecd409c753e0efafe5.pdf, November 2007.

[33] Ryusuke Egawa, Kazuhiko Komatsu, Shintaro Momose, Yoko Isobe, Aki-
hiro Musa, Hiroyuki Takizawa, and Hiroaki Kobayashi. Potential of a mod-
ern vector supercomputer for practical applications: performance evaluation of sx-
ace. The Journal of Supercomputing, Mar 2017.

[34] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk
Olynyk. E↵ective Data-race Detection for the Kernel. In Proceedings of the 9th

74

USENIX Conference on Operating Systems Design and Implementation, OSDI’10,
pages 151–162, Berkeley, CA, USA, 2010. USENIX Association.

[35] Peter T. Feller. Value Profiling for Instructions and Memory Locations. Master
dissertation, 1998.

[36] Mary F. Fernández. Simple and E↵ective Link-time Optimization of Modula-3
Programs. In Proceedings of the ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation, PLDI ’95, pages 103–115, New York, NY,
USA, 1995. ACM.

[37] Free Software Foundation. objdump. https://sourceware.org/binutils/

docs/binutils/objdump.html, 2017.

[38] GNU. GNU Binutils. https://www.gnu.org/software/binutils/, 2014. Septem-
ber 2014.

[39] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. Gprof:
A call graph execution profiler. In Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction, pages 120–126, New York, NY, USA, 1982. ACM Press.

[40] Stephan M. Günther and Josef Weidendorfer. Assessing cache false sharing
e↵ects by dynamic binary instrumentation. In WBIA ’09: Proceedings of the Work-
shop on Binary Instrumentation and Applications, pages 26–33, New York, NY, USA,
2009. ACM.

[41] Robert J. Hall. Call Path Profiling. In Proceedings of the 14th International
Conference on Software Engineering, ICSE ’92, pages 296–306, New York, NY, USA,
1992. ACM.

[42] Sylvain Henry, Hugo Bolloré, and Emmanuel Oseret. Towards the Gener-
alization of Value Profiling for High-Performance Application Optimization. http:

//sylvain-henry.info/home/files/papers/shenry_2015_vprof.pdf.

[43] M. Hirzel and T. Chilimbi. Bursty tracing: A framework for low overhead tem-
poral profiling. In ACM Workshop on Feedback-Directed and Dynamic Optimization,
pages 117–226. ACM, 2001.

[44] Justin Holewinski, Louis-Noël Pouchet, and P. Sadayappan. High-
performance Code Generation for Stencil Computations on GPU Architectures. In
Proceedings of the 26th ACM International Conference on Supercomputing, pages
311–320, 2012.

[45] Robert Hundt, Easwaran Raman, Martin Thuresson, and Neil Vach-
harajani. MAO–An extensible micro-architectural optimizer. In Proceedings of
the 9th Annual IEEE/ACM International Symposium on Code Generation and Op-
timization, pages 1–10, 2011.

[46] DOE Accelerated Strategic Computing Initiative. Sweep3D bench-
mark code. http://www.llnl.gov/asci_benchmarks/asci/limited/sweep3d/

asci_sweep3d.html.

75

[47] Intel. Intel Microarchitecture Codename Nehalem Performance Monitoring Unit
Programming Guide. https://software.intel.com/sites/default/files/m/5/

2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf, 2010.

[48] Intel. Intel Math Kernel Library (MKL). https://software.intel.com/en-us/

intel-mkl, 2015.

[49] Intel. Intel VTune. https://software.intel.com/en-us/

intel-vtune-amplifier-xe, 2017.

[50] Intel Corp. Intel 64 and IA-32 Architectures Software Developers
Manual. http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-software-developer-manual-325462.pdf.

[51] Intel Corp. Intel X86 Encoder Decoder Software Library. https://software.

intel.com/en-us/articles/xed-x86-encoder-decoder-software-library.

[52] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Dar-
rell. Ca↵e: Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[53] Yunyun Jiang, Yi Yang, Tian Xiao, Tianwei Sheng, and Wenguang Chen.
DRDDR: A Lightweight Method to Detect Data Races in Linux Kernel. The Journal
of Supercomputing, 72(4):1645–1659, April 2016.

[54] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu.
Understanding and Detecting Real-world Performance Bugs. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’12, pages 77–88, New York, NY, USA, 2012. ACM.

[55] Mark Scott Johnson. Some Requirements for Architectural Support of Software
Debugging. In Proceedings of the First International Symposium on Architectural
Support for Programming Languages and Operating Systems, ASPLOS I, pages 140–
148, New York, NY, USA, 1982. ACM.

[56] Teresa. Johnson, Mehdi. Amini, and Xinliang David Li. ThinLTO: Scalable
and Incremental LTO. In Proceedings of International Symposium on Code Genera-
tion and Optimization, Austin, Texas, USA, 2017.

[57] Milan Jovic, Andrea Adamoli, and Matthias Hauswirth. Catch me if you
can: Performance bug detection in the wild. In Proceedings of the 2011 ACM Inter-
national Conference on Object Oriented Programming Systems Languages and Ap-
plications, OOPSLA ’11, pages 155–170, New York, NY, USA, 2011. ACM.

[58] Takahiro Kamio and Hidehiko Masahura. A Value Profiler for Assisting
Object-Oriented Program Specialization. In Proceedings of Workshop on New Ap-
proaches to Software Construction, 2004.

76

[59] Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L. Chamberlain,
Jonathan Cohen, Zachary DeVito, Riyaz Haque, Dan Laney, Edward
Luke, Felix Wang, David Richards, Martin Schulz, and Charles Still.
Exploring traditional and emerging parallel programming models using a proxy ap-
plication. In 27th IEEE International Parallel & Distributed Processing Symposium
(IEEE IPDPS 2013), Boston, USA, May 2013.

[60] Baris Kasikci, Thomas Ball, George Candea, John Erickson, and
Madanlal Musuvathi. E�cient tracing of cold code via bias-free sampling. In Pro-
ceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference,
USENIX ATC’14, pages 243–254, Berkeley, CA, USA, 2014. USENIX Association.

[61] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud,
James W. Anderson, and Ranjit Jhala. Finding Latent Performance Bugs in
Systems Implementations. In Proceedings of the Eighteenth ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, FSE ’10, pages 17–26,
New York, NY, USA, 2010. ACM.

[62] K. M. Lepak and M. H. Lipasti. On the Value Locality of Store Instructions. In
Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat.
No.RS00201), pages 182–191, Jun 2000.

[63] Kevin M. Lepak and Mikko H. Lipasti. Silent Stores for Free. In Proceedings of
the 33rd Annual ACM/IEEE International Symposium on Microarchitecture, MICRO
33, pages 22–31, New York, NY, USA, 2000. ACM.

[64] Levinthal, David. Performance Analysis Guide for Intel Core i7 Processor and
Intel Xeon 5500 processors, Version 1.0. https://software.intel.com/sites/

products/collateral/hpc/vtune/performance_analysis_guide.pdf, 2009.

[65] Linux. perf event open - Linux man page. https://linux.die.net/man/2/perf_

event_open, 2012.

[66] Linux. Linux perf tool. https://perf.wiki.kernel.org/index.php/Main_Page,
2015.

[67] Linux. SIGALTSTACK. http://man7.org/linux/man-pages/man2/

sigaltstack.2.html, 2017.

[68] Mikko H. Lipasti and John Paul Shen. Exceeding the Dataflow Limit via Value
Prediction. In Proceedings of the 29th Annual ACM/IEEE International Symposium
on Microarchitecture, MICRO 29, pages 226–237, Washington, DC, USA, 1996. IEEE
Computer Society.

[69] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. Value
Locality and Load Value Prediction. In Proceedings of the Seventh International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS VII, pages 138–147, New York, NY, USA, 1996. ACM.

77

[70] Chien-Lung Liu. False Sharing Analysis for Multithreaded Programs. Master’s
thesis, National Chung Cheng University, July 2009.

[71] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. DoubleTake:
Fast and Precise Error Detection via Evidence-based Dynamic Analysis. In Proceed-
ings of the 38th International Conference on Software Engineering, ICSE ’16, pages
911–922, New York, NY, USA, 2016. ACM.

[72] Tongping Liu and Xu Liu. Cheetah: Detecting False Sharing E�ciently and
E↵ectively. In Proceedings of the 2016 International Symposium on Code Generation
and Optimization, CGO ’16, pages 1–11, New York, NY, USA, 2016. ACM.

[73] Tongping Liu, Chen Tian, Hu Ziang, and Emery D. Berger. Predator: Pre-
dictive False Sharing Detection. In Proceedings of 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP’14, New York, NY,
USA, 2014. ACM.

[74] X. Liu and J. Mellor-Crummey. Pinpointing data locality bottlenecks with
low overhead. In 2013 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 183–193, April 2013.

[75] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: Building Customized Program Analysis Tools with Dynamic In-
strumentation. In Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’05, pages 190–200, New York,
NY, USA, 2005. ACM.

[76] YuLong Luo and GuangMing Tan. Optimizing stencil code via locality of compu-
tation. In Proceedings of the 23rd International Conference on Parallel Architectures
and Compilation, pages 477–478, 2014.

[77] Gabriel Marin and John Mellor-Crummey. Pinpointing and Exploiting Op-
portunities for Enhancing Data Reuse. In IEEE Intl. Symposium on Performance
Analysis of Systems and Software, ISPASS ’08, pages 115–126, Washington, DC,
USA, 2008. IEEE Computer Society.

[78] R. E. McLear, D. M. Scheibelhut, and E. Tammaru. Guidelines for Creating
a Debuggable Processor. In Proceedings of the First International Symposium on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
I, pages 100–106, New York, NY, USA, 1982. ACM.

[79] Pall Melsted, Harold Pimentel, and Lior Pachter. Near-optimal RNA-Seq
quantification. https://github.com/makaho/kallisto, 2014.

[80] Message Passing Interface Forum. MPI-2: Extensions to the Message Passing Inter-
face Standard, 1997.

78

[81] Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Na-
talie Enright Jerger. Doppelganger: A Cache for Approximate Computing. In
Proceedings of the 48th International Symposium on Microarchitecture, MICRO-48,
pages 50–61, New York, NY, USA, 2015. ACM.

[82] Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. Load Value
Approximation. In Proceedings of the 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO-47, pages 127–139, Washington, DC, USA, 2014.
IEEE Computer Society.

[83] Jack Mostow and Donald Cohen. Automating Program Speedup by Deciding
What to Cache. In Proceedings of the 9th International Joint Conference on Artificial
Intelligence - Volume 1, IJCAI’85, pages 165–172, San Francisco, CA, USA, 1985.
Morgan Kaufmann Publishers Inc.

[84] Robert Muth, Scott A. Watterson, and Saumya K. Debray. Code Special-
ization Based on Value Profiles. In Proceedings of the 7th International Symposium
on Static Analysis, SAS ’00, pages 340–359, London, UK, UK, 2000. Springer-Verlag.

[85] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M. Michael, and
Hisanobu Tomari. Quantitative Comparison of Hardware Transactional Memory
for Blue Gene/Q, zEnterprise EC12, Intel Core, and POWER8. In Proceedings of the
42Nd Annual International Symposium on Computer Architecture, ISCA ’15, pages
144–157, New York, NY, USA, 2015. ACM.

[86] NERSC. NERSC-8 / Trinity Benchmarks. http://www.nersc.gov/users/

computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/

nersc-8-trinity-benchmarks/, 2016.

[87] Khanh Nguyen and Guoqing Xu. Cachetor: Detecting Cacheable Data to Re-
move Bloat. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 268–278, New York, NY, USA, 2013. ACM.

[88] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler: Detecting performance
problems via similar memory-access patterns. In 2013 35th International Conference
on Software Engineering (ICSE), pages 562–571, May 2013.

[89] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. Caramel: De-
tecting and fixing performance problems that have non-intrusive fixes. In Proceedings
of the 37th International Conference on Software Engineering - Volume 1, ICSE ’15,
pages 902–912, Piscataway, NJ, USA, 2015. IEEE Press.

[90] Andrzej Nowak, Ahmad Yasin, Avi Mendelson, and Willy Zwaenepoel.
Establishing a Base of Trust with Performance Counters for Enterprise Workloads. In
Proceedings of the 2015 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC ’15, pages 541–548, Berkeley, CA, USA, 2015. USENIX Association.

[91] University of Virginia. Rodinia benchmark suite. http://www.cs.

virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_

Compute-Intensive_Applications_with_Accelerators, 2015.

79

[92] Taewook Oh, Hanjun Kim, Nick P. Johnson, Jae W. Lee, and David I.
August. Practical Automatic Loop Specialization. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 419–430, New York, NY, USA, 2013. ACM.

[93] Leonid Oliker, Andrew Canning, Jonathan Carter, John Shalf, and
Stphane Ethier. Scientific Application Performance on Leading Scalar and Vector
Supercomputing Platforms. International Journal of High Performance Computing
Applications, 2006.

[94] Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymptotic
performance bugs in collection traversals. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’15, pages
369–378, New York, NY, USA, 2015. ACM.

[95] OProfile development team. OProfile. http://oprofile.sourceforge.net,
2008.

[96] Oracle. Oracle Solaris Studio. http://www.oracle.com/technetwork/

server-storage/solarisstudio/overview/index.html, 2017.

[97] Aleksey Pesterev, Nickolai Zeldovich, and Robert T. Morris. Locating
Cache Performance Bottlenecks Using Data Profiling. In Proceedings of the 5th Eu-
ropean Conference on Computer Systems, EuroSys ’10, pages 335–348, New York,
NY, USA, 2010. ACM.

[98] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbers
and Redundant Computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 12–27, 1988.

[99] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott
Mahlke. Paraprox: Pattern-based Approximation for Data Parallel Applications.
In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’14, pages 35–50, New
York, NY, USA, 2014. ACM.

[100] John S. Seng and Dean M. Tullsen. Architecture-level power optimization—
what are the limits? J. Instruction-Level Parallelism, 7, 2005.

[101] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and
Martin Rinard. Managing Performance vs. Accuracy Trade-o↵s with Loop Perfo-
ration. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ESEC/FSE ’11, pages 124–134,
New York, NY, USA, 2011. ACM.

[102] Connie U. Smith and Lloyd G. Williams. Software Performance Antipatterns.
In Proceedings of the 2Nd International Workshop on Software and Performance,
WOSP ’00, pages 127–136, New York, NY, USA, 2000. ACM.

80

[103] L. Song and S. Lu. Performance Diagnosis for Ine�cient Loops. In 2017 39th
International Conference on Software Engineering (ICSE), May 2017.

[104] SPEC Corporation. SPEC CPU2006 benchmark suite. http://www.spec.org/

cpu2006, 2007. 3 November 2007.

[105] SPEC Corporation. SPEC OMP2012 benchmark suite. https://www.spec.org/
omp2012/, 2015. May 2015.

[106] M. Srinivas, B. Sinharoy, R. J. Eickemeyer, R. Raghavan, S. Kunkel,
T. Chen, W. Maron, D. Flemming, A. Blanchard, P. Seshadri, J. W.
Kellington, A. Mericas, A. E. Petruski, V. R. Indukuru, and S. Reyes.
IBM POWER7 performance modeling, verification, and evaluation. IBM JRD,
55(3):4:1–4:19, May-June 2011.

[107] Standard Performance Evaluation Corporation. SPEC CPU2000 bench-
mark suite. http://www.spec.org/cpu2000/. 29 April 2005.

[108] C. Stewart, K. Shen, A. Iyengar, and J. Yin. EntomoModel: Understanding
and Avoiding Performance Anomaly Manifestations. In 2010 IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommunica-
tion Systems, pages 3–13, Aug 2010.

[109] Nathan R. Tallent, John Mellor-Crummey, and Michael W. Fagan. Bi-
nary analysis for measurement and attribution of program performance. In Proceed-
ings of the 2009 ACM PLDI, pages 441–452, NY, NY, USA, 2009. ACM.

[110] Nathan R. Tallent, John M. Mellor-Crummey, and Allan Porterfield.
Analyzing Lock Contention in Multithreaded Applications. In Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’10, pages 269–280, New York, NY, USA, 2010. ACM.

[111] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma,
H.J.J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, and W.A.
de Jong. NWChem: A comprehensive and scalable open-source solution for large
scale molecular simulations. Computer Physics Communications, 181(9):1477 – 1489,
2010.

[112] Jeffrey S. Vitter. Random Sampling with a Reservoir. ACM Trans. Math. Softw.,
11(1):37–57, March 1985.

[113] Scott A. Watterson and Saumya K. Debray. Goal-Directed Value Profiling.
In Proceedings of the 10th International Conference on Compiler Construction, CC
’01, pages 319–333, London, UK, UK, 2001. Springer-Verlag.

[114] Vince Weaver. Reading RAPL energy measurements from linux. http://web.

eece.maine.edu/~vweaver/projects/rapl/.

[115] Mark N. Wegman and F. Kenneth Zadeck. Constant Propagation with Con-
ditional Branches. ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(2):181–210, April 1991.

81

[116] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith
Schonberg, and Gary Sevitsky. Finding Low-utility Data Structures. In Pro-
ceedings of the 31st ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’10, pages 174–186, New York, NY, USA, 2010. ACM.

[117] Cong Yan, Alvin Cheung, Junwen Yang, and Shan Lu. Understanding
Database Performance Ine�ciencies in Real-world Web Applications. In Proceed-
ings of the 2017 ACM on Conference on Information and Knowledge Management,
CIKM ’17, pages 1299–1308, New York, NY, USA, 2017. ACM.

[118] Amir Yazdanbakhsh, Gennady Pekhimenko, Bradley Thwaites, Hadi Es-
maeilzadeh, Onur Mutlu, and Todd C Mowry. RFVP: Rollback-free Value
Prediction with Safe-to-approximate Loads. ACM Transactions on Architecture and
Code Optimization (TACO), 12(4):62, 2016.

[119] Yutao Zhong and Wentao Chang. Sampling-based program locality approxima-
tion. In Proceedings of the 7th International Symposium on Memory Management,
pages 91–100, 2008.

82

	Pinpointing Software Inefficiencies With Profiling
	Recommended Citation

	tmp.1598406842.pdf.tDV4K

