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ABSTRACT

Wearable technology research has led to advancements in healthcare and athletic
performance. Devices range from one size fits all fitness trackers to custom fitted
devices with tailored algorithms. Because these devices are comfortable, discrete,
and pervasive in everyday life, custom solutions are created to fit specific needs. In
this dissertation, we investigate how wearable technology can advance research in
healthcare an athletic performance by designing wearable sensors, features,
algorithms, and intelligent feedback systems.

First, we present Magneto: a body mounted electromagnet-based sensing system
for joint motion analysis. Magneto uses the combination of an electromagnet and
magnetometer to remove environmental interference from a magnetic field reading.
We localized the electromagnet with respect to the magnetic field reader, allowing
us to apply Magneto in two pilot studies: measuring elbow angles and calculating
shoulder positions. We calculated elbow angles to the nearest 15� with 93.8%
accuracy, shoulder position in two-degrees of freedom with 96.9% accuracy.

Second, we present TracKnee: a sensing knee sleeve designed and fabricated to
unobtrusively measure knee angles using conductive fabric sensors. We propose
three models that can be used in succession to calculate knee angles from voltage.
We evaluated our models and our device by conducting a user study where we
collected 240 knee angles. Our results show that our model is 94.86% accurate to
the nearest 15th degree angle and that our average error per angle is 3.69�.

Third, we present ServesUp: a sensing shirt designed to monitor shoulder and
elbow motion during the volleyball serve using conductive fabric sensors. ServesUp
is comfortable, washable, and can be worn during and without impeding volleyball
play. We conducted a user study with ten volleyball players for a total of 1000
volleyball serves which were classified using a KNN with an accuracy of 89.2%.

Fourth, we present BreathEZ, the first smartwatch application that provides both
choking first aid instruction and real-time tactile and visual feedback on the
quality of the abdominal thrusts. We evaluated our application through two user
studies involving 20 subjects and 200 abdominal thrusts. The results of our study
show that BreathEZ achieves a classification accuracy of 90.9% for abdominal
thrusts and that BreathEZ was able to improve the quality of abdominal thrusts.

Finally, we present BBAid: the first smartwatch-based system that provides real
time feedback back blows while instructing the user on choking first aid. We
evaluated our application through two user studies involving 26 subjects and 260
back blow events. The results show that BBAid achieves a classification accuracy
of 93.75% for back blows and was able to improve the quality of back blows.
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Chapter 1

Introduction

Wearable technology is a categorization of electronic devices that are worn on the body.

These devices include but are not limited to devices embedded into clothing, implanted

in the body, and even smart tattoos and bandages applied to the skin. Key qualities of

these devices are that they are hands-free, can wirelessly communicate, and incorporate

microprocessors that allow for computing functionality. These qualities promote the rapid

growth in the number of devices worldwide from 526 million in 2016 to an expectation

of more than 1.1 billion in 2022 [40]. With the number of devices growing, their applica-

tions are ever-expanding and wearable technology is being leveraged to solve more specific

problems ranging from health and fitness tracking to augmented reality to communication.

In the past, a trip to the physicians’ o�ce was required for individuals to have their

overall health and well-being examined. Today, with the help of wearable technology, indi-

viduals can monitor their health from the comfort of their own home. The ability to collect

remote health data supports early diagnosis of disease, monitoring of the progression of an

illness, and more e�cient post-operative recovery. Athletes take this data a step further.

They optimize their training and resting periods to see the maximum improvements while

preventing overtraining and injuries. These devices can even apply directly to their sports,

giving feedback on the specific skills required. Overall, wearable technology is enabling

new avenues for advancement in healthcare and athletics.
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1.1 Problem Statements

In this dissertation, we investigate how wearable technology can advance research in

healthcare and athletic performance by designing wearable sensors, features, algorithms,

and intelligent feedback systems. Specifically, we answer three research questions:

RQ1: How can we design comfortable wearable sensors and devices that accurately sense

biometric data?

RQ2: How can we develop features and algorithms that accurately classify and quantify

the performance of a skill?

RQ3: How do we create intelligent feedback systems that promote an increase in the quality

of the performance of a skill?

1.1.1 Improving Wearable Device Development Methods and Materials

To answer our first research question, we created customized wearable devices called

SoftWear. These are soft wearable devices with sensors made from conductive fabric that

integrate seamlessly into clothing. To the wearer, these sensors are undetectable. Since

wires are rigid and uncomfortable, we replaced them with conductive thread. Further,

our garments are washable as the electronics are confined to a removable patch. They

even hold up to 200 washes in a washing machine. We leveraged our custom development

method and materials in two projects: TracKnee and ServesUp. TracKnee is a sensing

knee sleeve designed and fabricated to unobtrusively measure knee angles using a single

conductive fabric sensor. ServesUp is a sensing shirt designed to monitor shoulder and

elbow motion through the volleyball serve with four conductive fabric sensors that an

athlete can wear without impeding volleyball play.
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1.1.2 Enhancing Skill Classification and Quantification Through Mod-

eling and Machine Learning Techniques

To answer our second research question, we developed features and algorithms to clas-

sify and quantify skills. In this dissertation, we focus on skills performed in athletic and

choking first aid situations. In our joint angle sensing projects, Magneto and TracK-

nee, we developed mathematical models to derive joint angles from wearable sensor data.

In Magneto, we calculated elbow angles to the nearest 15� with 93.8% accuracy, shoul-

der position in two-degrees of freedom with 96.9% accuracy, and shoulder positions in

three-degrees of freedom with 75.8% accuracy. In TracKnee, we evaluated our models by

conducting a user study with six participants where we collected 240 ground truth angles

and sensor data from our TracKnee device. Our results show that our model is 94.86%

accurate to the nearest 15th degree angle and that our average error per angle is 3.69�.

In ServesUp, we classified serving motion given data from our sensing shirt using a KNN

with a classification accuracy of 89.2%. We evaluated our classifier by conducting a user

study with ten volleyball players. In our choking first aid projects, BreathEZ and BBAid,

we created features that represent abdominal thrusts and back blows and used machine

learning algorithms to classify the choking first aid skills. Then, we created metrics that

allowed us to quantify the quality of the performance of those skills.

1.1.3 Improving Skill Performance Using Intelligent Feedback System

To answer our third research question, we designed intelligent feedback systems that

provided essential data to the user in real-time and during post data collection analysis. In

our choking first aid projects, we developed a smartwatch application that demonstrated

real-time feedback on choking first aid performance to the user. We designed this applica-

tion to give choking first aid instructions, classify and analyze the performance of the skill,

and then provide feedback to the user in a way that is easy to understand. We leveraged

multiple methods of feedback including colors, text, and vibration. This allowed the user
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to make immediate changes that led to improved performance of choking first aid skills.

1.2 Contributions

The overall results of this dissertation advance the applications of wearable technology

in healthcare and athletic performance by designing wearable sensors, features, algorithms

and intelligent feedback systems.

Electromagnet-based Sensing System for Joint Motion Analysis. First, we

developed an electromagnet based wearable sensing system that localizes a magnet with-

out magnetic interference from the surrounding environment. Based on our results, we

leveraged this sensor data to monitor joint angles. Our main contributions are:

• We developed a method that removes environmental interference from a magnetic

field reading. We evaluated this method to show its performance when removing

the interference in three movement dimensions, in six environments, and with six

di↵erent cycling rates.

• We designed an algorithm that allows us to localize a magnet with respect to a

magnetic field reader. Our algorithm calculated orientation of the magnet with an

average error of 3.43� and distance from the reader to the magnet with an average

error of 2.34%.

• We conducted two pilot studies to evaluate Magneto: elbow angles and shoulder

position. We conducted a user study where we recorded 650 elbow angles from 13

participants in which we examined 12 di↵erent elbow angles for a total data set

of 650 angles. Overall, our method saw an accuracy of 93.82% when classifying

elbow angles to the nearest 15� angle and an average error of 2.52�. We modelled

the motion of the shoulder in two and three dimensional space. We calculated the

correct shoulder position (within 2.5 millimeters) in 96.87% of test cases in two

dimensional space and in 75.79% of test cases in three dimensional space.
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Conductive Fabric Sensor Based Knee Angle Monitor. Second, we explore

the use of conductive fabric as an accurate on body joint angle sensor. We target the

knee as it is a hinge joint and only displays one degree of motion. The results from this

study are promising and provide us with the ability to study more complicated joints. Our

contributions are summarized as follows:

• We propose three models that can be used in series to calculate knee angles from

voltage. First, we model change in length across the front of the knee to the knee

angle with respect to the height of an individual. Second, we model resistance of

the fabric to change in length of the conductive fabric. Third, we model voltage to

the resistance of the fabric.

• We designed and fabricated a wireless sensing knee sleeve to unobtrusively measure

knee angles called TracKnee. TracKnee utilizes a soft and stretchable conductive

fabric sensor to monitor knee angles. We designed it to be washable by making any

non-washable electronic components removable. We also designed to be easy to put

on and take o↵ so that it would be as easy for the user to wear as a non-sensing

knee sleeve.

• We conducted a user with six participants where we collected ground truth angles

and sensor data from our TracKnee device. To do this, we developed a data collection

application on an Android smartphone to collect and store the data.

• We evaluated our models on the user study data. Our results show that our model

is 94.86% accurate to the nearest 15th degree angle and that our average error per

angle is 3.69�.

Conductive Fabric Sensor Based Shoulder and Arm Motion Monitor. Third,

we examine how conductive fabric sensors can apply to a more complicated joint: the

shoulder. The results from this research work show that the three dimensional dynamic
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motion of the shoulder can be monitored by an array of conductive fabric sensors. Our

contributions are summarized as follows:

• We designed and implemented a wearable device, called the sensing shirt, with sen-

sors embedded into the fabric of a shirt to recognize volleyball serve in real time.

• We collected data using our shirt on 1000 serves collected from 10 volleyball players.

We developed a classifier that achieves 89% serve classification accuracy.

Choking First Aid Abdominal Thrust Monitoring Smartwatch. Fourth, we

examine the ability of smartwatches to be used as not only a monitoring device but also a

tool that can provide real-time feedback to the user during the abdominal thrust portion

of choking first aid. Our results show that our application not only improves the quality

of choking first aid skill performance but also the willingness of the user to perform the

skill. Our contributions may be summarized as follows:

• We introduce BreathEZ, a smartwatch application that improves choking first aid

by providing auditory and tactile feedback to the user and improves bystander per-

formance of abdominal thrusts as part of choking first aid.

• We conduct two user studies with the first comprised of 135 abdominal thrusts

from 13 individuals and the second comprised of 100 abdominal thrusts from 10

individuals. Short surveys were administered to gain insight on the viability of

using BreathEZ in real world scenarios.

• We present a model describing abdominal thrust performance using number and

quality of the abdominal thrusts which are used to coach the user while they are

performing choking first aid.

Choking First Aid Back Blow Monitoring Smartwatch. Fifth, we extended

our last research work to encompass an additional choking first aid skill: back blows.

Our results mirrored those of our last study and once again showed that out smartwatch
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application improved skill quality performance and willingness. Our contributions are

summarized as follows:

• We are the first to extract features from smartwatch accelerometer data and use it

to accurately classify back blows. We selected five features to describe a single back

blow. We feed these five features into a random forest classifier and see a 93.5%

accuracy.

• We are the first to provide insightful feedback to enhance back blow performance.

We calculate two metrics: quality and quantity of back blows that are used to provide

feedback. In our final user study, all of our participants experienced an increase in

performance while using BBAid.

• We propose and develop the first smartwatch application that incorporates our fea-

tures, classifier, and feedback to combat the bystander e↵ect. All of our participants

saw an increase in their willingness to perform choking first aid when using the given

choking first aid instructions.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 details the related

work on wearable technology and its application to healthcare and athletics. In Chapter

3, we present Magneto, a body mounted electromagnet-based sensing system for joint

motion analysis. In Chapter 4, we present TracKnee, a knee sleeve that measures knee

angles using a conductive fabric sensor. In Chapter 5, we present ServesUp, a smart shirt

that improves the volleyball serve. In Chapter 6, we present BreathEZ, a smartwatch

application that improves the abdominal thrust portion of choking first aid. In Chapter

7, we present BBAid, a smartwatch application that improves the back blow portion of

choking first aid. Finally, in Chapter 8, we summarize with plans for future work and our

conclusion.
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Chapter 2

Related Work

In this chapter, we discuss the related work for our research. Our related work is

broken into five categories. First, we discuss wearable technology research. Second, we

explore sensing using magnets. Third, we describe joint angle estimation using a variety of

wearable devices. Fourth, we consider athletics performance analysis using smart devices.

Fifth, we finish by examining first aid skill monitoring.

2.1 Wearable Technology Research

Enabling ubiquitous body motion tracking and modeling has received an increasing

amount of attention from the medical science and computing disciplines [174, 144, 47, 141,

200]. Medical science research is mainly conducted in a lab setting [193] but there is a push

to move data collection outside of the lab [155]. This will enable researchers to collect

more data in the real world which is important when treating diseases. For example,

in certain diseases, such as Parkinson’s Disease specific symptoms such as freezing of

gate and are di�cult to reproduce in lab conditions [15]. Ubiquitous monitoring will

enable the collection of more data on freezing of gate which can help to advance research

on Parkinson’s disease. In other diseases, such as Osteoarthritis, medical professionals

see benefits in monitoring patients outside of the clinic [151] but currently, this is not

widespread.
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Smart fabrics and e-textiles have enabled the production of wearable devices that are

flexible and thus comfortable when worn on the human body. Research into e-textiles

has made progress in fields such as sports, healthcare, and gaming [74]. Using e-textiles,

researchers have acquired signals such as the electrocardiogram (ECG) [189] and elec-

tromyogram (EMG) [173, 65, 152, 147]. Wearable e-textiles are also being used for touch-

sensitive buttons [194] and pressure sensors [94]. Accelerometers have been imported in

e-textiles to detect fall risks and monitor human activity recognition [122]. Large com-

panies are expanding their research to include e-textiles. For example, Project Jacquard

from Google is developing capacitive touch sensing textiles [158].

Conductive materials are being used to develop stretch, pressure, and bend sensors.

Gioberto et al. [75] developed a stitched stretch sensor made with conductive thread.

These sensors have been integrated into overalls to detect lower body posture [138] and

to measure the flexion of the knee and the hip [76, 73]. Huang et al. [98] invented a glove

using stretch sensors made from piezo-resistive yarn to take input from the user’s hand

gestures. Ashruf et al. [13] and Rothmaier et al. [167] have developed capacitive pressure

sensors with a matrix of conductive thread. Dunne et al. uses foam sensors to monitor

breathing, shoulder lift, and directional arm movement [59, 58]. Shyr et al. [175] used a

conducive webbing made of conductive and elastic yarn to determine the flexion angle of

the elbow. Bergmann et al. [19] used a flexible conductive polymer material that could

be attached to clothing to measure knee joint angles. Papi et al. [150] designed a pair

of smart leggings that used a conductive polymer strip to estimate the range of motion

of the knee. Gholami et al. [72] used a thermoplastic-based stretchable strain sensor to

gauge its ability to estimate knee flexion and simple tasks such as walking.

2.2 Sensing Using Magnets

Qu et al. [162] developed a wearable device to measure joint flexion and physical ac-

tivity using neodymium magnets. They tested their device on human subjects for knee
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motion and porcine subjects to monitor their physical activity. They tested several di↵er-

ent sizes, shapes, and strengths of magnets ranging from 1.6 cm in diameter circle magnets

to 10 cm by 1.3 cm by 0.6 cm bar magnets. Hullfish et al. [99] used a neodymium mag-

net and magnetometer combination to measure peak knee extension angles. They used

a 1.5” by 0.5” by 0.25” neodymium bar magnet. They were able to accurately measure

knee extension angles within 5� of the actual value. A challenge they encountered was

sensor saturation below 65�. They further measured peak knee flexion during walking and

averaged an RMSE of 10.1�. While both of these works were able to successfully use a

static magnetic field as the input for a sensor, they do not address the e↵ects of outside

magnetic fields. Since they use the magnetic field reading to calculate distance, they as-

sume that any change in magnetic field reading is a change in the distances between the

magnetometer and the magnet. To remove the influences of outside magnetic fields, the

magnetometer can be calibrated for a specific environment, but such calibration must be

done every time the environment changes. Our sensing device, Magneto, accounts for the

influence outside magnetic fields and is able to remove them without a↵ecting the signal

of our electromagnet.

Further, work has been done to attach magnets to the hand to monitor hand postures

and gestures. Ma et al. [125, 126] attached small magnets to each fingernail on a hand and

put magnetic sensors in a wristband. They used this sensor to calculate hand postures.

Keyes et al. [127] patented the use of magnetometer in a head-mounted display such as

smart glasses and a magnet mounted on a hand to classify gestures made with the hand.

Osman et al. [148] patented a method where they placed magnetic readers on the hand

and fingertips and three magnets on the wrist to compute the position of the fingertip.

Chen et al. [38] placed magnetometers on fingers and a magnet on the thumb to track

hand motion. These systems do not account for the influence of outside environmental

field while Magneto does.

Bonnet et al. [25] used on-body magnetic field sensors to accurately monitor and ana-

lyze human movements including sit-to-stand, trunk inclination, and absolute acceleration.
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Their sensor is limited by any rotation that occurs around the Earth’s magnetic field and

any outside magnetic interference degrades their performance. O’Donovan et al. [146]

uses magnetic sensors as well as inertial sensors to measure angles of the ankle. Since the

Earth’s magnetic field was used as a reference, their angle measurements would be limited

by orientation and location. Meina et al. [134] uses a permanent magnet to correct the

drift of readings from an IMU. Magnetometers and magnetometer arrays have been used

to locate and identify ferrous objects [130, 131]. These research works used the magnetic

field of the Earth as a reference point. While they use this as an asset their sensors are

still susceptible to magnetic interference from nearby ferrous objects.

2.3 Joint Angle Estimation

Joint angle estimation has been a focus of research in human motion tracking and

modeling and is commonly used in athletics. Commonly, wearable sensors are used for

monitoring of joint angles as they are small, durable, and can be worn outside of a lab.

The most prevalent sensing technology is the inertial movement unit (IMU) as it is small,

inexpensive, and widely tested [113, 41, 117, 118, 26, 61, 102, 66, 102, 69]. Wireless wear-

able ultrasonic sensors [161, 159, 160], optical sensors [183, 176, 109], liquid metal sen-

sors [135, 136], potentiometers [54], acoustic sensors [188], force sensitive resistors [177],

retractable string sensors [119], and galvanic coupling systems [39] are also used but they

are intrusive and not comfortable for long term wear. Flexible sensors have also been

used [197, 17] but even though they are small and flexible, they have hard edges that can-

not seamlessly integrate into clothing. Conductive textile sensors [198, 175] and flexible

conductive polymers [19, 150], solve this issue as there are not hard edges when integrated

into clothing. Additionally, wireless signals have been used in joint angle analysis. An-

derson et al. [6] and Qi et al. [161]used Ultra-Wideband (UWB) radios for mobile gait

analysis and to measure joint flexion and extension angles. In TracKnee and ServesUp,

we leverage these soft conductive textile sensors to provide insights in the forms of knee
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angle monitoring and serve classification.

2.4 Athletics Performance Analysis

Most researchers have attempted to detect human activities from accelerometer data [18,

114, 164, 88, 112, 137, 89, 186], physiological sensor [116, 153, 187], microphone [184], lo-

cation sensor [202] or other biometric data (e.g., electrocardiogram [156]). These wearable

sensors are used for human activity recognition systems [18, 164, 112, 89], in which the

sensors are located on a fixed body part. Sport-specific sensing research has also been

done mainly using IMMUs. IMMUs have been used for activity recognition in skate-

boarding [82, 83], snowboarding [81, 97], skiing [84], soccer [169], rugby [105], table ten-

nis [22, 21], basketball [143], and cricket [80]. One such work even targeted multiple

sports: soccer and field hockey [139]. Research into volleyball has been focused on injury

prevention and distinguishing the professional players from the amateurs. But to date,

sensing research in this sport has not been well explored. This can be explained by the

speed of the game or the di�culty of becoming familiar with volleyball at a high level.

Human activity recognition has been well explored in sports and daily life. In this section,

we will explore the research that has been done in sensing in volleyball and other sports

and human activity detection with wearable and E-textile sensors.

In volleyball, players can jump upwards of 300 times in a single volleyball match [16].

Since volleyball players execute a high number of jumps, it is common for them to expe-

rience overuse injuries [68]. To combat these injuries, Jarning et al. [103] attempted to

calculate jump frequency in volleyball players using an accelerometer. To do this, they

calculated two metrics: peak vertical acceleration and peak resultant acceleration. They

concluded that these measurements were not an applicable method for classifying jumps

in volleyball. Vert [195] is a device being used by amateur and professional volleyball

players alike to track the number of jumps, average height of jumps, and highest vertical

jump. A number of studies have been done to using the Vert device [27, 128, 178, 36] in
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which it was determined that the Vert device accurately calculated the number, height,

and jump load of volleyball players in controlled, practice, and game situations.

Kautz et al. [106] designed a system that classified ten skills that occur in beach

volleyball via wrist-worn acceleration sensors. They began by classifying when the ball

made contact with the player’s arm that wore the acceleration sensors. From this, they

were able to classify their set of skills using a DCNN (Deep Concurrent Neural Network)

with an accuracy of 83.2%. In their evaluation, they saw that the lowest classification

accuracy was on the block skill. This skill is frequently performed without the contact of

a ball and thus was not always classified correctly. While this work, makes a large step

forward in classifying many di↵erent volleyball skills, they are limited by the necessity

of a player contacting a volleyball with the arm in which the acceleration sensors are

worn. Many times in this sport, skills are performed without making contact with the

volleyball. In our work, ServesUp, is not limited by the player making contact with the

volleyball. Cuspinera et al. [48] detected beach volleyball serves and potentially classified

four common serve types using two accelerometers mounted on the wrist and hand. Their

results show that they were able to classify one type of serve given a single semi-professional

player’s data. They do not include a comprehensive evaluation of the other three types

of serves or data from players below the level of semi-professional. ServesUp also focuses

on the volleyball serve but our sensor are soft and flexible and do not impede the athlete

while playing volleyball.

2.5 First Aid Skill Monitoring

Smart devices make great tools for providing instructions and feedback for first aid

because they are readily available and easy to use. Gruernerbl et al. [86], Elliot et al. [182],

and Ahn et al. [1] developed applications for a smartwatch that provided real-time feedback

for CPR chest compressions. Their applications were meant to enhance the performance

of CPR chest compressions by measuring the frequency and depth of the compressions.
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They tested their applications on chest compressions performed on a CPR manikin. They

demonstrated that their application not only improves the user’s performance of CPR,

but it also increases the user’s potential for performing it. Gruernerbl et al showed that

a smartwatch feedback system provided a significant performance improvement on CPR

techniques. Ahn et al. showed that CPR related feedback via a smartwatch could provide

assistance with respect to the ideal range of chest compression depth, and this can easily

be applied to patients with out-of-hospital arrest by rescuers who wear smartwatches.

In BreathEZ and BBAid, we address choking first aid and show that our smartwatch

feedback applications improve not only the technique but also the likelihood that the user

will perform choking first aid.

Researchers have developed devices to aid in the performance of choking first aid.

The first of these devices is outlined in a patent filed by Totman at Zoll Medical Cor-

poration [190] that describes a method to measure abdominal thrusts. In this patent, a

handheld device that uses accelerometers to determine the appropriate depth and speed of

the abdominal thrusts is described. This device targets first aid training, but they do not

have an extensive evaluation of how this device could improve user learning and perfor-

mance. In contrast, our system provides in-situ instruction and real-time feedback on the

quality of each set of abdominal thrusts. The second of these devices is the Dechoker [52]

which is a commercially available FDA Class I medical device. To use the device, the

operator inserts a plastic tube inside the mouth and places the mask on the face. When

tested on cadavers, this device did not cause injuries but it also did not remove the foreign

object in all cases. It is noted that this device may damage the soft tissues of the mouth,

lodge the foreign object deeper in the airway, cause mucosal injury and or negative pres-

sure pulmonary edema [53]. While this device could be helpful in choking emergencies,

there is not enough published data to understand the risks.

First aid skill retention is a known problem as many necessary skills are often forgotten

shortly after training [92, 60, 129]. Anderson et al. [7] determined how rapidly the trained

skills and knowledge decayed. They conducted a large study in which they tested the
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choking first aid skills of first responders in an industrial setting. They found that the

higher level an individual has been trained at, the less their knowledge and skills decay

over time. They also found that during this study choking skills were performed poorly

regardless of how long it had been since the participant was trained. To combat the skill

and knowledge decay, they recommend shortening the time between training sessions. It

is possible that our system can help with skill and knowledge decay. When needed in an

emergency situation, BreathEZ and BBAid can refresh user knowledge and help improve

the quality of the skill being performed. From this study [64], we see that bystander

first aid performance can be greatly improved when audio instructions are given through

a personal digital assistant (PDA). Their results show that the first group performed

significantly better than the second when giving emergency care. Similarly, in our research

work, we provide emergency care instruction but we take it a step further and provide live

feedback to the user on their performance of that care as well. Deploying our BreathEZ

and BBAid applications on a smartwatch instead of a handheld mobile device also allows

for hands-free use by the user.
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Chapter 3

Magneto: Joint Motion Analysis

Using an Electromagnet-Based

Sensing Method

3.1 Introduction

Joint angle analysis has been a major research focus in the field of body motion track-

ing and modeling because knowledge of joint angles can be used for preventing injuries,

decreasing rehabilitation time after injury, and accurate activity monitoring. Wearable

sensors are commonly used for monitoring body motion and joint angles due to the ad-

vantages provided by direct bodily contact. These sensors are often used to monitor

patient adherence to rehabilitation programs and assess patient recovery progress both

inside and outside of a medical facility. Any proposed sensor for joint monitoring must be

unobtrusive, accurate, and capable of accurately monitoring dynamic, fast-paced motions

in order to have e↵ective healthcare applications.
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Magnetic field sensors are a↵ordable, low power sensors that are incorporated into

many of the devices we use today including smartphones, smartwatches, and smart home

devices. They allow large scale sensing of the Earth’s magnetic field, magnetic anomalies,

orientation, and distance. They can also be combined with magnets to allow smaller scale

sensing, and have even been incorporated into wearable devices to track joint angles [162],

body motions [99], and gestures [127]. A drawback of these sensors is that they fall victim

to magnetic interference from the Earth’s magnetic field, the environment, and nearby

ferrous objects. Approaches used to protect a sensor from this magnetic interference

include but are not limited to: using a hardware shield, using a magnet that is strong

enough to eclipse all other fields, or using multiple magnetic sensors. In this work, we

address this drawback to improve upon joint angle tracking using this sensor.

In this chapter, we address the following research questions:

RQ1: How can we eliminate environmental interference from a magnetic field reading?

RQ2: How can we localize an electromagnet given a purified magnetic field reading?

RQ3: How do we use electromagnet localization to determine joint motion?

To answer our first research question, we developed a method to remove environmental

interference. First, we designed a small electromagnet that could produce a strong electro-

magnetic field. Then, we cycled the electromagnet between on and o↵ states, and recorded

the magnetic field strength in both states via a magnetometer. While the reading in both

states have environmental interference, the on state reading has the environment with the

magnetic field from the electromagnet, the o↵ state reading only has just the environment.

Comparing these two readings removes environmental interference, and provides a purified

magnetic field reading of the electromagnet.

To answer our second research question, we localized the electromagnet given the pu-

rified magnetic field reading. For any purified reading, there is a set of location and

orientation pairs that represent the possible locations of the electromagnet. To calculate
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these, we first discuss the relationship between the magnetometer reading and the orien-

tation of the magnet. Then, we explain how to calculate a single location and orientation

pair for the electromagnet. Finally, we discuss the entirety of the set of location and

orientation pairs for the electromagnet.

To answer our third research question, we conducted two pilot studies on human joint

angles and explored other applications in which Magneto can be used. First, we conducted

a user study consisting of 13 participants in which we examined 12 di↵erent elbow angles

for a total data set of 650 measured angles. We processed the data and calculated the

angles using a triangular representation and polynomial regression model. Second, we

modeled shoulder motion and applied Magneto to calculate three dimensional shoulder

positions. Finally, we discussed further applications for which Magneto can be used.

Research has been done into using magnets to measure body motion [162, 99, 126, 127,

148]. While these works have successfully measured body motion, they did not account for

the influence of environmental interference. This suggests that any change in the magnetic

field reading would be interpreted as a change in body motion. With Magneto, we are

able to remove the environmental interference and purify the electromagnetic signal so

that any change in the magnetic field reading results from a change in the localization of

the electromagnet. Additionally, magnetic field sensors have been used to sense motion

in a environment [25, 146, 131]. These sensors use the magnetic field of the Earth as a

reference point and are also susceptible to electromagnetic interference from nearby ferrous

objects. Magneto is also able to remove electromagnetic interference produced by such

objects.

Our contributions are summarized as follows:

1. We developed a method that removes environmental interference from a magnetic

field reading. We evaluated this method to show its performance when removing

the interference in three movement dimensions, in six environments, and with six

di↵erent cycling rates.
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2. We designed an algorithm that allows us to localize a magnet with respect to a

magnetic field reader. Our algorithm calculated orientation of the magnet with an

average error of 3.43� and distance from the reader to the magnet with an average

error of 2.34%.

3. We conducted two pilot studies to evaluate Magneto: elbow angles and shoulder

position. We conducted a user study where we recorded 650 elbow angles from 13

participants in which we examined 12 di↵erent elbow angles for a total data set

of 650 angles. Overall, our method saw an accuracy of 93.82% when classifying

elbow angles to the nearest 15� angle and an average error of 2.52�. We modelled

the motion of the shoulder in two and three dimensional space. We calculated the

correct shoulder position (within 2.5 millimeters) in 96.87% of test cases in two

dimensional space and in 75.79% of test cases in three dimensional space.

The remainder of this chapter is structured as follows: First, we introduce our Magneto

Hardware Design by explaining the components the construction of our electromagnet.

Second, we describe the method that we used to eliminate environmental interference.

Third, we explain the process that we use to localize the electromagnet with respect to

our magnetic field reader. Fourth, we describe the application scenarios that Magneto can

be used in and conduct two pilot studies. Finally, we discuss our Future Work and we

wrap up with our Conclusion.

3.2 Magneto Hardware Design

We designed our circuit for Magneto with two goals in mind. First, the device should be

small so that it can be used in many di↵erent scenarios including as an on-body wearable.

Second, the device should be capable of creating a strong and stable magnetic field so that

it can be measures at a distance. To accomplish these two goals we created the circuit

shown in Figure 3.1 with the following components:
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Figure 3.1: Circuit Diagram for Magneto

Electromagnet: We built our own electromagnet as the commercially available ones

were large and weak. To build this electromagnet, we the core of a 3.5 cm ferrite RF

choke [163] and 28 gauge magnet wire[166]. Ferrite cores provide electromagnets with an

increase in magnetic field strength, and our magnet wire has a very thin insulation coating

allowing us to wrap the wire around the RF choke more times in a smaller area. This

makes our electromagnet stronger while preserving the small surface area. To build our

electromagnet, we wound the magnet wire around the RF choke for many turns; a ”turn”

is defined as one full wrap of magnet wire around the core. Our resulting electromagnet

shown in Figure 3.1 has three layers where the first, second, and third layers have 74,

72, and 70 turns, respectively. The resulting electromagnet has 216 total turns and a

measured resistance of 1.3 ohms. In Section 4, we explain how we use these values to

calculate the strength of our electromagnet.

Microcontroller and Bluetooth Chip: To control our circuit, we chose the Bluno Beetle[24].

This device is currently the smallest bluetooth enabled Arduino on the market. This al-

lows us to save space while providing all of the functionality that we need for our circuit.

It outputs five volts which is important for the strength of the magnetic field of our
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electromagnet. This chip uses an ATmega328P processor and a CC2540 Bluetooth chip.

Power Supply: Our electromagnet requires at least a 5 volt power supply to create a

magnetic field strong enough to be read by our magnetometer. The Bluno Beetle requires

5 to 8 volts to function properly. We used a 400mAh lithium ion battery that only outputs

3.7 volts. To boost the 3.7 volts to 5 volts, we used a LiPower Boost Converter [181].

Resistor: We tailored the resistance in our circuit to accomplish two goals: protect

the Bluno microcontroller and prevent battery drain. We used a resistance of 3 ohms

combined with our electromagnet at 1.3 ohms. This gives us a total of 4.3 ohms. We then

measured our current to be .317 Amps which is tolerable for the Bluno microcontroller.

On a single charge, our battery would last for approximately one hour.

Transistor: We use a transistor as a switch in our circuit. This facilitates our ability to

turn the electromagnet on and o↵ at a specified rate while still powering the electromagnet

from the 5 volts. We could not use a digital pin from the Bluno as these output 3.3 volts.

These components are connected via wires and solder as shown in Figure 3.1. The

device is then put into small and flexible fabric pouch so that the wires are protected and

the electromagnet’s signal is not restricted. This allows for an unobstructed magnetic field

which will provide for a high quality reading as shown in the later sections of this chapter.

3.3 Elimination of Environmental Interference

A problem with using a magnet and magnetometer combination as a sensor is the

susceptibility to outside magnetic fields[37]. These magnetic fields include but are not

limited to the magnetic field of the earth [95], ferrous metal objects [120], and other

magnetized objects. These extraneous magnetic fields create a noisy signal that can make

it hard to distinguish the movement of a magnet from the change in surrounding magnetic

fields. To deal with this problem, we propose a method to eliminate the surrounding

environment’s magnetic field from the reading of the magnet. First, we will explain our

time cycle and cycling rate. Then, we will discuss the method we use to remove the
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magnetic field of the environment.

(a) Time Cycle of the Electromagnet (b) Average Calculation

Figure 3.2: Calculation of Time Cycle Features

Our signal is characterized by two states: ON and OFF. When the electromagnet is

ON, we read the combination of the magnetic field of the electromagnet and the magnetic

field of the surrounding environment. When the electromagnet is OFF, we only read the

magnetic field of the surrounding environment. These states are shown in Figure 3.2a.

Next, we define a time cycle, tcycle, that is the total time of a single ON state followed

by a single OFF state, as shown in Figure 3.2a. The total time spent in the ON state

equal to the total time spent in the OFF state within each tcycle. Then, we define the

electromagnet’s cycling rate to be the number of tcycle per second.

Figure 3.3: Averages and Environmental Noise Removal
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Then for every ON and OFF state there is a beginning and end. To find these points,

we calculate an average line as shown in Figure 3.2b. This average consists of the data

points in one time cycle. These data points are consecutive and evenly surround our

targeted average value. Next, we mark each time the magnetometer reading crosses the

average. The crosses are shown in Figure 3.2b. Then, we label the point before the cross

to be an end and the point after the cross to be a beginning. If the point is less than

the value of cross, we mark it as OFF. If the point is greater than the value of the cross,

we mark it as ON. Once, we have the beginning and end to each ON and OFF state, we

calculate the average to be our reading for that state. This is shown in Figure 3.3.

Then we proceed to eliminate the environmental reading from our signal. To do this

we take the average of the two OFF states that surround an ON state and subtract that

from the ON state. We will call this calculation M . It is shown in Figure 3.3. This is

done for all three axes: x, y, and z. In some cases, the magnetic field shows up in only

one or two of the axes. In these cases, we use the signal where the on and o↵ switches are

visible to set the ON and OFF starts and ends for the other axes.

3.3.1 Evaluation

We evaluate Magneto’s ability to remove the environmental magnetic field readings by

testing the following dimensions: orientation, movement, magnetic field interference, and

multiple environments. For these experiments, we set the electromagnet’s cycling rate

to 10Hz. We attached the electromagnet and the magnetometer to a board with eight

centimeters between them as this is within the range of magnetic field of our electromagnet.

This ensures that the distance and orientation of the electromagnet and magnetometer

are constant with respect to each other, so any changes in readings must come from the

manipulation of the board. So, any reading that the magnetometer picks up should be

filtered out by our environmental elimination algorithm.

Orientation Experiment: Each direction a magnetometer faces causes a di↵erent read-

ing. This is because the magnetometer reads the static but directional magnetic field
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Figure 3.4: Orientation Experiment

of the earth. To test this dimension, we placed the board containing the electromagnet

and magnetometer on an o�ce chair. Then, we spun the o�ce chair 360�. A single spin

takes about five seconds to complete and we stop the chair between spins. We repeated

this experiment five times and the results are shown in Figure 3.4. As you can see in

this figure, the magnetometer reads the spin of the chair. Since our electromagnet is not

moving in respect to the magnetometer, we can e↵ectively remove the spin read by the

magnetometer. This is shown by the Mx,My, and Mz readings that are all relatively flat,

showing no motion.

(a) Walking Path (b) Fast Turn

Figure 3.5: Movement Experiment

Movement Experiment: First, we tested how our sensor would react if it was facing dif-
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ferent direction in a single environment. Next, it is important to move the sensor around

in an environment. In this experiment, we vary the vertical and horizontal locations of

the magnet in an environment. We also vary the speed at which we move through the

environment. To test this dimension, we took our sensor attached to the board on a walk

outside. The path we took is shown in Figure 3.5a. We did this twice: once counter-

clockwise and once clockwise. Overall, it took approximately 25 minutes to complete both

loops. On this walk, we completed several tasks: fast walk, slow walk, fast turn, slow

turn, elevator, and stairs. We tested horizontal location and varying speeds with the fast

walk, slow walk, fast turn and slow turn. The fast walk averaged 5.6 miles per hour and

the slow walk averaged 3.4 miles per hour. We define a fast turn to be a sharp turn lasting

approximately two seconds while the slow turn was more gradual and occurred over nearly

20 seconds. We varied vertical locations and speeds by walking up stairs and riding in an

elevator.

Out of all of these tasks, we only saw a change in our Magneto reading during a fast

turn. During these turns saw a slope in the reading of on and o↵ state of the time cycle

as shown in Figure 3.5b. In the following sections, we see that increasing the cycling rate

will solve this problem. When more samples are taking the slope through the on and o↵

states will diminish so the reading can be more accurate. We also saw that the periodic

motions associated with walking were removed since they did not cause a motion between

our electromagnet and magnetometer. In all of the other tasks, we saw no change in our

Magneto reading once the environment was removed.

Magnetic Interference Experiment: Magnetic interference is a common problem that

e↵ects magnetometers. This interference causes the readings of the magnetometer to be

inconsistent and inaccurate. Most interference is caused by iron present in the surrounding

environment as it is a metal that can be magnetized. This interference can range from

small static magnetic fields to distortions in the Earth’s magnetic field. These distortions

can warp the magnetic field in that area. This means that as a magnetometer moves

through this field, we will read changes with our magnetometer. Because of this, the
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Figure 3.6: Magnetic Interference Experiment

distortion cannot be removed with a single calibration.

To test the removal of these distortions, we introduce a strong outside magnetic field

to our sensor. For this, we introduced a stack of neodymium magnets. Neodymium

magnets[110] are the strongest permanent magnets and are made from rare earth elements.

We start these magnets 30 cm away from the magnetometer. We then move these magnets

towards the magnetometer. The magnetometer reading is much larger than in the previous

experiment due to the neodymium magnets. Inside of 5 cm the magnetometer saturates

and it outputs error values. Even with the stronger magnetic field, we still see the on and

o↵ cycle of our electromagnet. This allows us to remove the reading of this magnet. We

show this by the Mx, My, and Mz readings in Figure 3.6. These readings are comparable

to what we see when there are not strong magnetic interferences. This shows that our

device continues to function for its intended purpose even in the presence of strong and

varied electromagnetic fields.

Multiple Environments: To ensure that our sensor could work in multiple types of

environments, in the experiments above, we chose a di↵erent locations. The orientation

experiment was completed in our research lab. Our lab is next to the geology lab which

produces a strong and static magnetic field. Our magnetometer reads the direction of the

lab as North when it is in fact Southeast. There is also a higher reading in our lab than
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(a) Outside (b) Lab (c) Gymnasium

(d) Hallway (e) Stairwell (f) Elevator

Figure 3.7: Environments Tested

what is expected from the Earth’s magnetic field. We completed our movement experi-

ment outside, in the elevator and in the stairwell and the Magnetic Interference experiment

inside of a gymnasium. The gymnasium provides a large amount of environmental inter-

ference as many of of the object contained in a gym are made from ferrous materials. For

example, many free weight are made from iron. These environments as well as their Gauss

readings are shown in Figure 3.7. We noticed no di↵erence in the final reading among all

of the environments even though each environment had a di↵erent static magnetic field.

Cycling Rate: In the experiments above, we used a cycling rate of 10 Hz. This is due

to the fact that it is very clear to see the ON and OFF states with the human eye when

we graphed our readings. To use our device in high speed dynamic movements we must

increase the cycling rate to get a clean reading on the movement. We tested the following

cycling rates: 10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, 100 Hz. We only tested up to a 100 Hz

cycling rate as our magnetometer samples at 220 Hz and that gave us approximately one
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Cycling Rate Mean Std Dev

10 Hz 0.0000 0.0121

20 Hz 0.0056 0.0157

30 HZ 0.0081 0.0183

40 HZ 0.0109 0.0211

50 HZ 0.0149 0.0372

100 HZ 0.0167 0.0533

Table 3.1: Cycling Rate Analysis

sample in each On and O↵ state. To understand if there is a degradation in the quality

of our reading we did two studies. First, we compared the calculation of the means of the

On and O↵ states using di↵erent cycling rates. Second, we looked at standard deviation

in the raw signal in the On and O↵ states using di↵erent cycling rates.

To compare the calculation of the means of the On and O↵ states using di↵erent cycling

rates, we recorded 100 time cycles at 10 Hz. We then calculated the means of the On and

O↵ periods using the number of expected data points in faster cycling rates. Then, we

calculated the di↵erence from the original mean. We show the average of the di↵erences in

the mean for all 100 time cycles in Table 3.1. As you can see, there is a small but steady

degradation in the signal as the cycling rate increases. Next, we ensured that a faster

cycling rate did not a↵ect edges of the On and O↵ states. To do this, we calculated the

standard deviation in the raw signal in the On and O↵ states using di↵erent cycling rates.

We recorded 100 cycles at each cycling rate. We show the results of this in Table, 3.1.

We saw that the standard deviation steadily increased as the cycling rate increased. With

further analysis into this data, we saw spikes in the beginning of the On and O↵ states.

We will discuss techniques to remove these spikes and to further increase the cycling rates

in the Future Work Section.
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3.4 Localization of the Electromagnet

For any reading recorded by the magnetometer, there is a set of location and orientation

pairs for the electromagnet. To calculate these, we first discuss the relationship between

the reading and the orientation. Then, we explain how to calculate a single location and

orientation pair of the electromagnet. Finally, we discuss the entirety of the set of location

and orientation pairs for the electromagnet.

3.4.1 Magnetic Field

Magnets are described as dipoles, with one end of a magnet being a north pole and the

other being a south pole. The opposite poles attract one another, and identical poles repel

each other. Electromagnets are magnets with adjustable strength that can be turned on

and o↵. A two dimensional representation of the magnetic field surrounding our magnet is

shown by the dotted blue lines in Figure 3.8a. The three dimensional representation would

show this same magnetic field rotated around the magnet. This means that rotating the

magnet would not change the magnetic field reading.
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Figure 3.8: The Relationship Between the Magnet and the Reader
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Magnetic fields around a magnet can be modeled given a magnet’s strength with the

assumption that a magnet is a perfect dipole. For any location around a magnet, we will

read a magnetic field (B) that will reflect the distance (r) and angle (✓N ) from the north

pole of the magnet. We show this in Figure 3.8a. Since magnetic fields depend heavily

on the angle ✓N , we will use polar coordinates to describe the magnetic field reading.

We will represent the direction from the magnet to the reader as r̂ and the direction

perpendicular to that as ✓̂ [49]. So, given a distance (r) and angle (✓N ), we can calculate

the magnetic field (B) at the location (r, ✓N ). µ0|m|
4⇡ is a constant that depends on the

materials and construction of the electromagnet. We can represent this with the following

polar equation:

B(r, ✓N ) =
µ0|m|
4⇡r3

⇣
2 cos ✓N r̂ + sin ✓N ✓̂

⌘
(3.1)

The description of the variables used in Equation 3.1 are shown in the following Table:

Variable Definition

B Magnetic field strength at the center of the core in Teslas

r Distance from the reader to the magnet

✓N Angle of the north of the magnet

µ0 Constant of magnetic permeability of free space: 4⇡ ⇤ 10�7

|m| Magnetic moment: current * area of a single turn * number of turns

r̂ Direction from the magnet to the reader

✓̂ Direction perpendicular to r̂

Table 3.2: Equation 3.1 Variable Definitions

For our purposes, we are given a magnetic field reading and want to calculate the

distance (r) and orientation (✓N ) of the magnet. We will explain these calculations with

the aid of Figure 3.8b. First, we put the reader at the origin of the coordinate system

of the reader. The reader reads a vector, B. Given this reading, we can calculate ✓B

which is the angle between vector B and the x axis. Then we assume the electromagnet is

somewhere on a line that goes through the origin. This is represented by line L in Figure

3.8b. ✓r will be the angle between line L and vector B which can be calculated by finding
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the angle between two vectors. Since we know that ✓r is the angle between B and r̂ in

Figure 3.8a, we can calculate the direction of the electromagnet’s north with the following

equation:

Figure 3.9: Ellipsoid of Location and Orientation Pairs

✓N = arctan(2tan✓r) (3.2)

✓N is the north for a magnet located anywhere on line l. Now that we know ✓N , we

calculate the electromagnet’s north with respect to the x axis. This will be represented

by ✓X , where

✓X = ✓N + ✓r + ✓B (3.3)

Then, we calculate the distance (r), via a derivation of Equation 3.1:

r = 3

s
µ0|m|
4⇡|B|(4cos

2✓N + sin2✓N )
1
2 (3.4)
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This gives us the distance away from the origin on line L where the magnet is located.

So, our magnet can be located in two locations denoted by the points on line L as shown

in Figure 3.8b. Then we repeat this for every possible line through the origin. This will

give us a set of location and orientation pairs around the reader in the shape of an ellipsoid

as shown in Figure 3.9. In this example, we show the ellipsoid given by magnetic field

pointed in the positive x direction on the same coordinate system as the reader. We will

discuss how to use this in the Application Scenarios Section.

Figure 3.10: Experimental Setup

3.4.2 Evaluation

We calculated two variables to localize our electromagnet with respect to a magne-

tometer: distance and orientation. In this evaluation, we will evaluate the accuracy of

the calculation of these variables. We setup our experiment with the magnet and the

magnetometer in a grid, as shown in Figure 3.10. We left the electromagnet in a single

location since the Shimmer Sensor is easier to move since it is housed in a case. This setup

is in the same pattern as Figure 3.8a where the reader moves around the electromagnet.

To perform this experiment, we created a grid in 5 cm by 5 cm blocks as shown in Figure
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3.10. The distance measurements are o↵set in the x axis by a half centimeter as the mag-

netometer location in the Shimmer Sensor is not directly in the center of the device. We

move the Shimmer Sensor to the center of each box for 30 seconds. We then randomly

selected ten individual samples from each 30 seconds for analysis. We also record the

ground truth values for our distance and orientation for that reading. These ground truth

values are shown in each box in Figure 3.10. We do not test the other three quadrants

around the magnet in this experiment as the distance calculations reflect over the x and

y axis and the angles reflect over the x.

(a) Orientation Results (b) Distance Results

Figure 3.11: Distance and Orientation Results

In this experiment, we process the data by removing the environment and the calcu-

lating the distance and orientation. As before, this gives us a set of data points in the

shape of an ellipsoid. When we compare our calculated distance and orientation to our

actual values, we assume we know the the line L that the magnet is on. This comparison

provides allows us to evaluate the accuracy of the set of distance and orientation pairs in

the ellipsoid. Due to the limitations of our sensor, if we do not know how the electromag-

net and reader move in relations to each other, then we do not know the actual location

of the sensor. But for these instances, we do have a range of distances for which the

electromagnet can be located in. First, we evaluated the calculation of the orientation of

the electromagnet. Overall, we have an average error per orientation calculation of 3.43�

with a standard deviation of 3.28�. We further evaluate this with the use of Figure 3.11a.
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The orientations with the biggest di↵erence in calculated value are the positions at which

the magnetometer is the furthest away from the electromagnet. Second, we examined the

distance between the electromagnet and the reader. We calculated the relative error of the

distance to be 2.34% with a standard deviation of 2.03%. As we can see in Figure3.11b,

the distance calculations are more accurate the closer the magnetometer is to the magnet.

This means that the stronger our electromagnet, the more accurate our distance and ori-

entation calculations will be at a distance. We will discuss ways to increase the strength

of our electromagnet in the Future Work Section.

3.5 Application Scenarios

Magneto can be used in many di↵erent application scenarios. The key metrics that we

compute are distance and orientation of the magnet, but to fully localize the magnet, we

must know how the magnet and reader move in respect to one another. This setup lends

itself to body motion application scenarios as we can set up our magnet and magnetometer

equidistant from a joint. Then, because we know the biomechanics of the joint, we can

calculate the exact localization of the magnet. This will allow us to monitor, joint angles,

speed of motion and even gestures.

In situations where there is not a central joint, we can still localize the magnet if there

is a restricted range of motion between the magnet and the reader. For example, over

the life time of a spring, it will stretch out until it is no longer useful. Magneto can be

used to determine the length of the spring as its length would change over time. This

would also hold true for strain sensors since in general these sensors stretch out. Magneto

could be used to sense the distance changed as the item wears out. Something of note is

that while our magnet or reader would need to be on the device, nothing would need to

physically connect them. So there would be free space so the Magneto would not interfere

with mechanisms of the device being measured.

To demonstrate how Magneto can be used in application scenarios, we conducted two
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pilot studies: elbow angles and shoulder position. Elbow angles occur in one degree of

motion while shoulder position occurs in three. First, we evaluated our calculation of elbow

angles in a user study with thirteen participants. Second, we examined the movement of

the shoulder and Magneto’s ability to calculate its position.

3.5.1 Elbow Angle Pilot Study

Figure 3.12: Elbow User Study Setup

We evaluated Magneto in an on-body scenario: elbow angles. In this scenario, we cal-

culated elbow angles from the distance between the electromagnet and the magnetometer.

First, we will describe the equipment that we use. Second, we will detail the parameters

of our study and the demographics of our participants. Then we will explain the process

used to calculate elbow angles from a magnetometer reading. Finally, we will evaluate our

elbow angle calculation results.

Equipment: To perform our user study, we collected data on participants’ elbow angles.

To do this, we collected magnetometer data that was influenced by our electromagnet’s

signal and ground truth angles. We used a Shimmer Sensor’s[33] magnetometer in con-

junction with their data collection application to record data. This application was run on

a Google Pixel 3 smartphone connected to the Shimmer Sensor via Bluetooth. We used a
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Medigauge digital goniometer[133], which is commonly used to measure joint angles and

is accurate to the nearest 0.5�, to measure our ground truth angles. We marked these

angles on a poster board to simplify the data recording process as shown in Figure 3.12.

This means that our participants only needed to touch the line on the board for each angle

instead of measuring each angle individually.

Parameters: When a participant arrived, we asked them to fill out a questionnaire. In

this questionnaire, we asked for the following statistics: age, gender, height, weight, and

for any details of past elbow injuries or surgeries. Then we asked the participants to put

on an elbow sleeve that contains our device and a Shimmer Sensor as shown in Figure

3.12. We positioned the sleeve so that the electromagnet is five centimeters below the

elbow crease and the Shimmer Sensor is five centimeters above. The magnet is positioned

lengthwise on the arm and the north is pointing towards the hand. Then, we positioned

the participant in front of the poster board with marked angles as shown in Figure 3.12.

We asked the participant to touch each of the marks with the outside of their hand for five

seconds. They repeated this five times on that arm and then did the same on the other

arm. The normal range of motion for an elbow is 0� at full extension and 130� at full

flexion [100]. We measured angles at 15� increments within the normal range of motion.

Demographics: In this study, we had seven female and six male participants for a

total of 13 participants. On average, the participants were 22.5 years of age with an age

range of 18 to 33 years. All participants were in the range of normal for their body mass

index (BMI). Everyone who participated in the study was free of elbow surgeries or recent

injuries.

Elbow Angle Calculation: Next, we processed the data to calculate an elbow angle, ✓.

We started with raw magnetometer values. First, we removed the environmental signal

by using the method in Subsection 3.3 as shown in Figure 3.14a. Then, we averaged the

data for the five seconds that the participants held each elbow angle so that we had one

reading per angle. Next, we calculated ellipsoid of distance and orientation pairs between

the electromagnet and the magnetometer by using the approach outlined in Subsection
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(a) Elbow Biomechanics (b) Elbow Angle Calculation

Figure 3.13: Elbow Angles

3.4. To reduce the possible outcomes we leverage the biomechanics of the elbow. We

limited the elbow to a single degree of motion. This means that the elbow will move

within a single plane. So we show the single plane from the ellipsoid in Figure 3.13a as

the blue arc with arrows. As the elbow bends, the electromagnet will move through the

distance and orientation pairs shown by the red arc and arrows in Figure 3.13a. In this

Figure, the arrows represent the orientation of the north of the electromagnet and the

arcs represents the strength of the magnetic field at that location. To calculate the exact

orientation and direction of the magnet, we look to see where the red and blue arcs and

arrows are identical. This gives us our location of the magnet. In our figure, this is shown

by the purple arrow coming from the magnet.

(a) Environment-less Elbow Angles (b) Angle Calculation Results

Figure 3.14: Elbow Angles Results
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Next, we calculated the distance from the magnet to the magnetometer in the method

that we described in Section 3.2. From this distance, we calculated the elbow angle using

the law of cosines on a triangle. We know the distance between the magnetometer and

the elbow crease; and the electromagnet and the elbow crease as we set these to five

centimeters on each side of the elbow crease. Since we know all three sides of the triangle,

we can calculate angle theta.

Results: We evaluated our elbow angle calculations on the 650 angles that we collected

in our user study. Overall, we saw a 93.82% accuracy when classifying elbows to the nearest

15� and an average error of 2.52�. We show our results in Figure 3.14b. In this figure,

we see that our angle calculations are much more accurate at the higher angles and that

the first three angles have a much lower accuracy. To understand why, we look to Figure

3.13b and see that there is not much di↵erence in the readings for angle 0�, 15�, and 30�.

This is due to the fact that biomechanically there is more change in distance at the in the

larger angles. If we remove these three angles from our overall accuracy, we see a 97.07%

accuracy and an average error of 1.95�.

3.5.2 Shoulder Position Pilot Study

In our Elbow Angle Application Scenario, we worked with one degree of motion. Now,

we will apply Magneto to the shoulder as it is the most mobile joint on the body. When

dealing with shoulder position, we work with three degrees of motion. This makes this

shoulder position more di�cult to determine. First, we will model the range of motion

of the shoulder. Second, we will combine that with the magnetometer’s position and

the magnetic field produced by the magnet on the shoulder. This allows us to localize

the magnet to identify the position of the shoulder joint. Finally, we will evaluate our

calculations.

Shoulder Motion: In Figure 3.15, we show the three degrees of motion that we will

examine. First, the arm can move side to side as shown in Figure 3.15a. We will define

this as Yaw. Second, the arm can be raised and lowered, as shown by Figure 3.15b. We
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(a) Yaw (✓) (b) Pitch ( ) (c) Roll(�)

Figure 3.15: Shoulder Movements

will define this as pitch. Finally, the arm can twist, as shown in Figure 3.15c. We will

define this as roll. All three degrees of motion can be combined, for example an arm can

roll backwards, move forwards, and be raised all at the same time.

Next, we will place the magnet and reader on the shoulder. We will define the origin

as the center of the rotator cu↵, so that when the arm moves, the origin is the center of

rotation in the shoulder. A person will face in the positive Y direction. The Z axis will be

the vertical. The X axis will run in parallel with the shoulders with the positive x direction

being away from the shoulder. This is shown in Figure 3.16. We will place the magnet

on the humerus, right below the deltoid, and define the position of the magnet as m with

m
0 being the unit vector in the magnet’s direction, and d being the distance between the

magnet and the center of the rotator cu↵. For our model, we will assume that the magnet

is always facing perpendicular to the humerus, and that it is always equidistant from the

center of the rotator cu↵. While these assumptions may not hold true due to di↵erences

in soft tissue, the model can be adjusted later to correct for any errors[201].

Shoulder Motion Model: In order to model the shoulder, we will use a rotational

coordinate system as pictured in the Figure 3.16 as it expresses both the rotation and

the location of the arm in relation to the shoulder. Yaw, the rotation around the Z axis

will be denoted as  which measures the movement of the arm side to side.  = 0 is in

the direction of the positive x axis, with a positive  in the forward direction. Pitch, the
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Figure 3.16: Shoulder Motion

angle formed by the arm and the positive Z axis, measures movement of the arm up and

down. This will be denoted by ✓. Roll is the action of twisting your arm, which will be

denoted by �. When � = 0 the palm faces down. Positive � is a forward rotation. We

can model the magnet’s location by the following equations of a sphere of radius d, where

mx, my, and mz are the x, y, and z coordinates of the magnet respectively because of the

assumption that the magnet is always equidistant from the center of the rotator cu↵. So,

we define mx, my, and mz as the following:

mx = d · cos · sin ✓ my = d · sin · sin ✓ mz = d · cos ✓ (3.5)

Next, we will model ✓N , the direction that the magnet is pointing at any possible

shoulder movement location. We will begin by modelling shoulder motion without roll,

we will call this ✓N0. During this model, we will set � = 0. Then we will add the motion

of roll, to have a full model of shoulder motion, which will be know as ✓N . On this model,

we will change �. This means that at each location, there are multiple directions of ✓N

as opposed to the elbow application scenario where there is only one direction at each

location, as shown in Figure 3.13a.

Since we know the magnet’s north is perpendicular to the position vector, we can

calculate the magnets north by rotating the position vector 90�(⇡2 radians) in the upwards
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direction. So, we know that ✓N0 is the same as the position vector at ✓ � ⇡
2 because

the magnet is rotated ⇡
2 radians in the ✓ direction from the position vector. Thus, the

following equations indicate the magnet’s direction such that � = 0, where ✓N0x, ✓N0y,

and ✓N0z are the vector components of ✓N0, in the x, y, and z directions respectively.

✓N0x = cos · sin(✓ � ⇡

2
) = � cos · cos ✓ (3.6)

✓N0y = sin · sin(✓ � ⇡

2
) = � sin · cos ✓

✓N0z = cos(✓ � ⇡

2
) = sin ✓

Figure 3.17: Direction of ✓N at Di↵erent Shoulder Locations

Next, to rotate ✓N in the � direction, we need to rotate it around the position vector.

Based on Rodrigues’ Rotation Formula[132], we can express ✓N = ✓N0 · cos� + (✓N0 ⇥

m̂) · sin�. The following equations indicate the magnet’s direction after being rotated �

radians, where ✓Nx, ✓Ny, and ✓Nz are the vector components of ✓N in the x, y, and z

directions respectively. This is shown in Figure 3.17.
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✓Nx = � cos · cos ✓ · cos�+ sin · sin� (3.7)

✓Ny = � sin · cos ✓ · cos�� cos · sin�

✓Nz = sin ✓ · cos�

Modeling Magnetic Readings: Now that we have modeled the magnet’s position and

orientation on the shoulder, we can model it’s e↵ect on the magnetometer at any shoulder

location. The coordinate system will remain the same for modeling the magnetic field as

for modeling the position and orientation of the magnet. The magnetometer will be located

on the shoulder blade, right below the spine of the scapula. Using the magnetometer’s

readin-

Figure 3.18: Intersection of Localization and Shoulder Motion Distance

gs as input, we can find the  , ✓, and �, such that the calculated B equals the magnetic
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field read by the magnetometer. We show the intersection of the calculated location of the

magnet given a magnetometer reading and the shoulder motion model in Figure 3.18. The

shoulder motion is represented by the blue half sphere and the locations of the magnet

give a reading are shown by the red ellipsoid. The intersection is in the shape of an ellipse

as shown by the black line in Figure 3.18. Then, we checked to see where the orientations

of the magnet align to determine the location of the magnet. This is similar to what was

done in Figure 3.13a except now we are in three dimension space with the arrows from

Figure 3.17. In this Figure, we see two possible orientation matches. While this allows us

to identify the position of the arm, we calculate more than a single solution.

One issue that arises with this model is that for some magnetic fields, there exists two

locations that will produce the same magnetometer reading. If we fix � to equal zero,

such that the shoulder does not rotate, then we only get one solution, however, this limits

the model significantly. On the other hand, if we know a previous position of the shoulder

and the motion of the arm, we would be able to determine a path of locations that would

allow us to distinguish between the two solutions.

Experimental Results: To put Magneto on the shoulder in a real world scenario, we

would need a stronger electromagnet, so we modelled the biomechanical angle data instead.

These results are used to analyze the number of positions that can be appropriate for a

single reading. Given a magnetometer reading that is within the motion of the shoulder.

From that reading, we calculated a shoulder location given the method outlined above.

We then calculated the ground truth angle of that reading. We then compared the ground

truth to the calculated angle to determine its accuracy.

We tested our model with and without roll. When we didn’t include roll, we accurately

computed the distance and direction given a magnetometer reading 96.87% of the time

on 256 shoulder positions. We considered our computation to be an accurate calculation

if it was within 2.5 millimeters from the ground truth location. The errors in our model

were due to two biomechanical points creating a similar magnetic field. These similarities

occurred when the Yaw was near 0�. While the magnetic fields at these two points were
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not exactly the same, they were close enough to confuse our algorithm. Enhancements can

be made in the future to produce better results at these points. When we included roll,

we accurately computed the distance and direction given a magnetometer reading 75.79%

of the time on 512 shoulder positions. In many of the situations where we calculated the

wrong location, we calculate the correct set of locations but chose the the wrong one. Our

algorithm chose the wrong location. In the future, modifications to our algorithm can be

made to increase this accuracy.

3.6 Discussion and Future Work

There are many things that can be explored in future work. New algorithms can be

examined for the elimination of the environment as well as for localizing the electromagnet.

In this section, we focus on the ways that we can expand the sensing capabilities of our

current electromagnet. First, we discuss how the strength of the electromagnet can be

increased so that we can expand the working area of our device. Second, we discuss

methods that can be used to increase the cycling rate. Third, we examined how we could

use multiple electromagnets with a single magnetometer.

3.6.1 Increasing the Strength of the Electromagnet

We created our own electromagnet in our lab using a choke and magnet wire. Our

magnet has a working range of up approximately 15 cm away from our magnetometer.

While this worked for our applications, it would be helpful to have a stronger magnet with

a larger range. To increase an electromagnets strength, you can increase the voltage to

the magnet or change the materials the magnet is created with. Our electromagnet runs

o↵ of five volts so it would be easy to increase the voltage by using a larger battery and

di↵erent microcontroller. We can also change out the material that we use to make the

electromagnet; for example, a ferrite core could replace the choke.
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When the strength of the electromagnet is increased it become susceptible to oversatu-

ration of the core. We experienced this when working with much higher voltage batteries.

This causes a peak in the beginning of each ON and OFF state. This would need to be

accounted for. A better core could also prevent oversaturation. A stronger magnet could

saturate the magnetometer causing error values to be given. In our lab, we experimented

with running our electromagnet o↵ of up to 24 volts. We saw oversaturation of the elec-

tromagnet and the magnetometer. While these factors can be accounted for, we did not

address them in this work.

3.6.2 Increasing the Cycling Rate

In this work, we were limited by out electromagnets sampling rate of 220 Hz. This

limited us to testing our magnetometer up to a cycling rate of 100 Hz. While we believe

that we can run our sensor with a higher cycling rate, this will need to be tested with

a di↵erent magnetometer. To increase the electromagnets cycling rate, we believe there

are other ways to cycle the electromagnet. In this chapter, we cycled the electromagnets

through on and o↵. Another method that could be used is flipping the polarity of the

electromagnet. This means that you switch the North and South poles of the magnet.

When you flip the polarity of the electromagnet, it demagnetizes at a faster rate than just

turning it o↵. This is a potential method that could be explored to increase the cycling

rate.

3.6.3 Multiple Electromagnets

Electromagnets of di↵erent strengths and frequencies can be investigated. This should

provide the ability to record data from multiple electromagnets using only one magne-

tometer. This will allow for the sensing of multiple joints at once. For example, we could

sense the motion of the shoulder and the elbow simultaneously with a strong enough elec-

tromagnet. Multiple electromagnets could even be used to sense parts of the body with

many small joints such as the hands and fingers.
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3.7 Conclusion

In this work, we presented Magneto: a sensing system for joint motion analysis. Mag-

neto uses the combination of an electromagnet and magnetometer to remove environmental

interference from magnetic field readings in a dynamically changing environment. Given

this purified reading, we localized the electromagnet with respect to the magnetic field

reader which allowed us to apply Magneto in two pilot studies: elbow angle and shoulder

position. We calculated elbow angles to the nearest 15� with 93.8% accuracy, calculated

shoulder positions in two-degrees of freedom with 96.9% accuracy, and calculated shoulder

positions in three-degrees of freedom with 75.8% accuracy.
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Chapter 4

TracKnee: Knee Angle

Measurement Using Stretchable

Conductive Fabric Sensors

4.1 Introduction

Knee injuries are prevalent among all demographics of the population and the treat-

ment of these injuries can be costly in recovery time and monetarily [124]. From 1999

to 2011, a study of more than 6.5 million knee injuries in the United States revealed

that nearly 50% of the knee injuries were sports-related with adolescents making up an

estimated 2.5 million sports-related knee injuries annually [70]. In the senior population,

knee injuries are common due to falling and diseases such as osteoarthritis. More than 14

million individuals su↵ered from osteoarthritis of the knee is 2007 and 2008 in the United

States [55]. Regardless of age and type of injury, a patients’ recovery from a knee injury

is based on their adherence to their assigned rehabilitation protocols [32, 31].

Technologies such as wearable devices can be used to help monitor the patients’ adher-

ence to their rehabilitation protocols. It can be used inside and outside of a clinical setting

to enhance a patient’s treatment plan [193, 104]. It can also be used to enhance and in-
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dividually tailor each patient’s protocol to best suit their needs [172]. Proper monitoring

and adherence to the prescribed protocols can be used to help decrease a patient’s recovery

time, their overall pain, and the cost of their treatment. Further, soft wearable flexible

sensors have been created to non-invasively record biometric data on patients [155].

Joint angle estimation is an important part of monitoring knee injury recovery [96].

Wearable sensors are frequently used for monitoring of joint angles. Many di↵erent sen-

sors have been used to accomplish this task including IMU’s [113, 41, 117], ultrasonic

sensors [161, 159, 160], optical sensors [183, 176, 109], liquid metal sensors [135, 136], po-

tentiometers [54], acoustic sensors [188] , force sensitive resistors [177], retractable string

sensors [119], galvanic coupling systems [39], and flex sensors [197, 17]. Soft, flexible,

wearable E-Textile sensors have also been used to monitor joint angles [175, 19, 150, 72].

In this chapter, we address the following research questions:

RQ1: How can we measure knee angles using stretchable conductive fabric?

RQ2: How can we design and fabricate a wearable device that tracks knee angles using

conductive stretchable fabric and is comfortable to wear?

RQ3: How accurately can we measure knee angles with our wearable device?

To answer our first research question, we develop three models to be used in succession.

First, we developed a model to calculate knee angles from the change of length across the

front of the knee. To do this, we run an experiment with ten individuals of varying

height in which we record the values for the change in length across the front of each of

their knees at four di↵erent angles. Then we develop an Ordinary Least Squared (OLS)

regression model that uses height and change in length across the front of the knee to

calculate knee angles. Second, we developed a model to calculate the change in the length

of conductive fabric from the resistance of the conductive fabric. To do this, we performed

an experiment in which we repeatedly stretched our conductive fabric to specific lengths

and recorded the resistance at each length. We then modeled this data with a third-degree
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polynomial regression. Third, we modeled voltage to the resistance of our fabric using a

voltage divider. Overall, using these models allowed us to measure knee angles using our

stretchable conductive fabric.

To answer our second research question, we designed and fabricated our TracKnee

device. Our TracKnee device had the following requirements: (1) It should be able to

collect data from the conductive fabric sensor and wirelessly send it to a collection location.

(2) It should be comfortable to wear and be easy to put on and take o↵. (3) It should be

washable and be able to be cleaned as needed. Our device consisted of two main parts

a control patch and the sensor sleeve. The control patch houses all the non-washable

electronic components needed to control the device and wirelessly connect to a smartphone

to send data. The sensor sleeve houses the conductive fabric sensor and conductive fabric

wiring allowing it to be washable.

To answer the third research question, we conducted a user study to collect TracKnee

sensor data and ground truth angles and used that data to evaluate our models. Our user

study consisted of ten participants and 240 knee angles. We collected TracKnee sensor

data and ground truth angles. Then we used our models to calculate the angle of the knee

from our TracKnee sensor data. We compared that angle to the ground truth angle to

evaluate. Overall, we saw an accuracy of 94.86% to classify our knee angles to the nearest

15th degree. The average error from the calculated angle to the ground truth is 3.69�.

Following this, we evaluated our prototypes battery life. The battery life was 18 minutes

and 50 seconds for a 40 mAh battery. Since the battery is removable, it can be replaced

when it is fully discharged or a larger battery can be used.

Measuring human body joint angles is receiving an increasing amount of attention

from the medical science and computing disciplines [174, 144, 47]. Since there is a growing

movement to collect human motion data outside of a lab setting [193, 155] researchers have

begun looking to more comfortable This enables researchers to collect more data in the real

world which is essential when treating diseases. Soft, flexible, wearable E-Textile sensors

allow for the comfort of the wearer while allowing still enabling the collection of critical
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biometric data. Our TracKnee prototype utilizes a soft conductive fabric to measure the

joint angle of the knee allowing for comfort during long term use.

Our contributions are summarized as follows:

• We propose three models that can be used in series to calculate knee angles from

voltage. First, we model change in length across the front of the knee to the knee

angle with respect to the height of an individual. Second, we model resistance of

the fabric to change in length of the conductive fabric. Third, we model voltage to

the resistance of the fabric.

• We designed and fabricated a wireless sensing knee sleeve to unobtrusively measure

knee angles called TracKnee. TracKnee utilizes a soft and stretchable conductive

fabric sensor to monitor knee angles. We designed it to be washable by making any

non-washable electronic components removable. We also designed to be easy to put

on and take o↵ so that it would be as easy for the user to wear as a non-sensing

knee sleeve.

• We conducted a user with six participants where we collected ground truth angles

and sensor data from our TracKnee device. To do this, we developed a data collection

application on an Android smartphone to collect and store the data.

• We evaluated our models on the user study data. Our results show that our model

is 94.86% accurate to the nearest 15th degree angle and that our average error per

angle is 3.69�.

The remainder of our chapter is organized as follows. First, in Section 4.2, we discuss

the three models that we propose to calculate knee angles. Next, in Section 4.3, we explain

how we designed our TracKnee prototype to be comfortable, washable, and unobtrusive.

Following that, we describe the data we collected and our methods for collection in Section

4.4. Then, in Section 4.5: Experimental Results, we evaluate models described in Section

4.2 with the data recorded in the 4.4. Finally, we draw our conclusions in our final section.
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4.2 Modeling

Overall, we show that we can model knee angles based on the stretch of our conductive

fabric. To do this, we need three models. First, we model the length across the front of

the knee to the angle of the knee with respect to di↵erent human heights. Second, we

model the length across the front of the knee to the resistance of our conductive fabric.

Third, we model the resistance to the voltage that we read as an output of our voltage

divider. These models can be used in a linear progression to calculate knee angles from

voltage.

Figure 4.1: Measured Knee Angles

4.2.1 Change in Length to Angle Model

From medicine, we know that the normal range of knee motion is �10� to 130� [2].

Extension of the knee is defined as the straightening motion of the knee that results in

an increase of the angle. Flexion of the knee is defined as the bending of the knee that

results in a decrease of the angle. Full extension and full flexion are the max values of

these motions. We illustrate these values in Figure 4.1. Between the full extension and

the full flexion, there are many angles. To modeling the change in the length across the

front of the knee and the angle of the knee, we measure the angle of the knee from full

52



flexion to full extension in increments of 45�. To collect these values across individuals of

varying height, we do the following experiment:

Figure 4.2: Change in Length for Knee Angles Adjusted for Height

Our experiment comprised of ten individuals recruited from the College of William

and Mary and the surrounding area. Their data is shown in Table 4.1. Their ages ranged

from 18 to 30 with a mean of 24.5. 5 males and 5 females participated in the study. They

all had healthy BMI’s with an average of 23.5. Our participants’ heights ranged from

4’11” to 6’6” with an average height of 5’9”. Two participants had had surgeries in the

past but they were more than ten years prior to this study. We started the study with

a questionnaire to determine the user’s age, gender, height, weight, and assessment of

any knee injuries or surgeries. Following this, we collected data on their knees. For each

knee, we collected their patella width, knee circumference, the max flexion angle, the max

extension angle, and the change in length across the front of the knee for the following

angles: max extension, 45�, 90�, max flexion. The angles of the knee that we measure are

shown in Figure 4.1. Patella width and knee circumference were measured with a cloth

tape measure while the max flexion angle and max extension angle were measured with

a digital goniometer. A goniometer is an instrument used to measure angles of joints on

the body. We show a goniometer in Figure 4.12. Change in length across the front of the
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knee for various knee angles was recorded using the goniometer and the tape measure. All

participants in our study were able to extend their knee to a full 180�.

Height
Change in Length Angle of Max Flex

0� 45� 90� Full Flex R Full Flex L Right Left

4’11” 0” 1” 1.625” 2.5” 2.25” 125� 119�

5’0” 0” 1.5” 2.25” 2.75” 3” 142� 148�

5’2” 0” 1.5” 2.25” 3” 3” 145� 143�

5’6” 0” 1.75” 2.5” 2.5” 3.5” 148� 146�

6’0” 0” 2” 3” 3.5” 3.5” 113� 115�

6’0” 0” 2” 3” 4” 4” 139� 137�

6’2” 0” 2.25” 3.5” 4.25” 4.5” 135� 140�

6’3” 0” 2.5” 3.75” 5” 5” 148� 148�

6’5” 0” 2.5” 4” 5.25” 5” 145� 140�

6’6” 0” 2.75” 4” 5.25” 5.25” 148� 145�

Table 4.1: Participant Knee Motion Statistics

From our data, we derived the following insight. The change in length across the front

of the knee is influenced by the height of the user. This can be explained by the underlying

skeletal structure for the taller participants naturally being larger. We examined this

insight by creating a graph, shown in Figure 4.2, that compares the height, knee angle,

and change in the length across the front of the knee of all of our participants. From this

graph, we conclude that the greater the height and knee angle, the greater the change in

the length. This is highlighted by looking at the change in the length for the max flexion

of our shortest and tallest participant. Our shortest participant is 59 inches tall with a

change in the length across the front of their knee of 2.4 for the right knee and 2.25” for

the left knee. Our tallest participant is 78 inches tall with a change in the length of 5.25”

for both knees. The di↵erence between their change in length at max flexion was 2.75”

for the right knee and 3” for the left. Looking further into their data, we see that the max

flexion for the change in length the length across the front of the knee for our shortest

participant was not even a 45� angle for our tallest participant.

To model this data, we created an Ordinary Least Squared (OLS) Regression using
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Figure 4.3: Change in Length to Angle model Adjusted for Height

Statsmodel [170]. We use height and change in length as parameters for the model. To

start, we have eight coe�cients and an intercept. We then train the model by removing

the coe�cient or intercept with the highest P value greater than the absolute value of its

t-statistic while checking that the Adjusted R-squared value is not drastically decreasing.

Once fully trained, the model has just three coe�cients. The model has an R-Squared

value of 99.3%. We graph this model in Figure 4.3. The model is as follows:

For L = Change in Length, H = Height, and A = Angle,

A = 148.948L+ 4.428L2 � 1.8651LH (4.1)

4.2.2 Resistance to Change in Length Model

In this project, we use Eonyx Conductive Stretchable Fabric [63]. This fabric shows

a change in resistance when it is stretched. In our project, we use an 8.5” by 2.25”

piece of fabric. To model the change in resistance as it is stretched, we performed the

following experiment. We connected a digital multimeter to each end of the fabric. We

then stretched the fabric four inches in total and recorded the resistance at each half of

an inch. We repeated this process ten times. The results of this are shown in Figure 4.4.
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Figure 4.4: Fabric Resistance to Stretch Distance

We used this data to create a third-degree polynomial regression model in Scikit-learn:

Machine Learning in Python [157]. This model has a Mean Absolute Error of 0.131, a

Mean Squared Error of 0.026, and a Root Mean Squared Error of 0.162. The model is

shown in Figure 4.4. The regression is as follows:

For R = Resistance and L = Change in Length,

L = �29.184 ⇤R3 + 282.126 ⇤R2 � 1005.642 ⇤R+ 1880.047 (4.2)

4.2.3 Voltage to Resistance Model

!" !#

$%& '" '()

Figure 4.5: Voltage Divider

Finally, we model the voltage to resistance. In our circuit, which will be discussed in

more detail in the following section: TracKnee Prototype Design, we use a voltage divider.

The voltage divider allowed us to read the resistance variation of the conductive fabric

sensor. In Figure 4.5, we show the setup of the circuit that we have employed in our
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(a) Close Up (b) Prototype Size (c) Patch Connection (d) Sensor Sleeve

Figure 4.6: TracKnee Prototype

device. We define, R1 = Fixed Resistor and R2 = Conductive Fabric. From this, we

can compute the resistance from the following equation:

R2 =
V1 ⇤R1

Vin � V1
(4.3)

As this inverse function equation presents, the larger the resistance of the conductive

fabric is, the smaller the voltage of V 1. Similarly, the smaller the resistance of the con-

ductive fabric, the larger the voltage of V 1. The fixed resistor that is chosen to be in the

middle of the variation of the resistance of conductive fabric. This allows us to calculate

the resistance of the conductive fabric sensor from the voltage read on the device.

4.3 TracKnee Prototype Design

There are two main parts to our TracKnee prototype. The first is the control patch,

which houses all of the non-washable electronic components. The second is the sensor

sleeve, which houses out fabric sensor. When the two parts are connected, we have a

full TracKnee prototype as shown in Figure 4.6a. As we were developing the TracKnee
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prototype, we kept the following requirements in mind: (1) The prototype should be able

to collect data from the sensor and wirelessly send it to a collection location. (2) The

prototype should be comfortable when worn and be easy to put on and take o↵. (3) The

prototype should be washable so that it can be cleaned when it gets dirty or sweaty. In

this section, we discuss the control patch, the sensor sleeve, how they come together to

form our TracKnee prototype, and the lessons we learned during development.

Figure 4.7: TracKnee Control Patch

4.3.1 Control Patch

The control patch houses all of our rigid electronic components. During the develop-

ment of the control patch, we addressed the following: (1) The control patch should be

as small as possible so that it goes unnoticed by the user. (2) Some of the components

contained in the control patch are not washable, so the control patch must be detachable

from the knee sleeve. In total, the patch is 3.5 inches wide by 2.5 inches tall. The control

patch is shown in Figure 4.7. In this subsection, we discuss the components used and the

process we used to fabricate the control patch.
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4.3.1.1 Components

The components contained in the control patch are the microcontroller and Bluetooth

chip combination, power supply, conductive thread wires, resistor, and snaps. We sewed

all of our components to a layer of headliner foam. This gives anyone wearing the device

some cushion from the rigid electronic components. In the following, we describe each of

the components:

Microcontroller and Bluetooth Chip: The microcontroller that we chose is a Bluno

Beetle [24]. We chose this because it is currently the smallest Arduino [10] based mi-

crocontroller with Bluetooth Low Energy. The Bluno Beetle features an ATmega328P

processor and a CC2540 Bluetooth chip. It also contains four analog pins which surpasses

our requirement of one analog pin.

Power Supply: The circuit is powered by a rechargeable 40 mAh lithium-ion battery.

This battery outputs 3.7 volts. Since the Bluno Beetle operates in the range of five to

eight volts, we use a LiPower Boost Converter [181] to boost the voltage of the battery

from 3.7 volts to five volts. This battery last for about 40 minutes.

Conductive Thread: We use Syscom Advanced Materials’ Amberstrand [185], a con-

ductive thread, instead of traditional wires to connect the electronic components of our

control patch. We chose this thread because it has a resistance of one ohm/foot and is

solderable. It is also soft and flexible, making it a good choice for wearable devices worn

on the body. Amberstrand fibers are made from Zylon which has very high in tensile

strength and is resistant to heat [191]. This makes it a good choice for conductive thread

wiring. The thread is coated in a combination of silver, copper, and nickel to make it

conductive.

resistor: We chose a 470 ohm resistor because it is in the middle of the range of

resistance values for the conductive fabric. This enhances the resolution of the data that

we read from the conductive fabric sensor.

Snaps: To make the TracKnee device washable, the control patch must be removable
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while allowing for easy reconnection to the sensors on the shirt. To accomplish this, we

used conductive nickel snaps to connect the control patch to the knee sleeve.
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Figure 4.8: Baby Lock Verve Sewing and Embroidery Machine

4.3.1.2 Fabrication

When fabricating the control patch, we designed it as small as possible. To accomplish

this, we used a sewing machine to sew the conductive thread into the control patch. This

allowed us to to get our conductive thread wires closer to each other, decreasing the space

being used. We describe our sewing machine setup and then the entire procedure used to

fabricate our control patch.

Our sewing machine is a Baby Lock Verve Sewing and Embroidery Machine [14]. We

show it in Figure 4.8. To sew conductive thread with our sewing machine, we chose

installed a Schemtez Metallic embroidery needle [168]. This needle has a longer eye that

gives us more room for it move around as we are sewing. This helps to prevent snags in

the thread. We found that it is easier to sew our conductive thread when it is wound into

a bobbin 1�. When we used a spool of conductive thread on the spool pin 2�, we found

that it came o↵ of the spool too fast and this would cause loose stitches to be sewn. For

our prototype, we found that it was best to use the standard zig-zag foot 3� that came
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with the machine. We chose the 1-03 stitch for the control patch as it is small and it sews

in a straight line 4�. We set the tension to four 5�. When sewing conductive thread we

go as slow as possible so that we can check the thread for potential snags. To do this,

we use the needle position button 6�. This button moves the needle into the up or down

position. Pushing this button twice is one stitch. For our circuit, we also need to be able

to sew sharp 90� corners. To do this, once you have reached the position in which you

would like to make a corner, you put the needle in the down position so that it is all the

way through the foam, lift the foot with the lever 7�, and turn the foam around the needle

until you reach the desired angle. We also embroidered a logo onto our control patch.

Because embroidery requires hooping the fabrics, this is done first.

Since our control patch has many di↵erent components, the procedure that we used

to fully fabricate it is as follows:

(1) Layout the circuit on the back of the headliner foam. Since the conductive thread

is in the bobbin we sewed with the bottom of the headliner foam facing upwards

(2) Draw out exactly where you want the wires to be. Once the circuit is live, the

conductive thread is live so there cannot be any overlap in the conductive thread.

This causes shorts in the circuit.

(3) Sew the conductive thread into the foam with the settings for the sewing machine as

described above. At the end of each conductive thread wire, you should leave about

an inch of thread. This makes it easier to attach and solder in later steps.

(4) Attach the snaps to the control patch making sure that there is contact between

the conductive thread and the snap. The thread can be secured with solder or tied

around the edge of the snap.

(5) Put the microchips in place. Pull the conductive thread through the correct pins on

the microchip. A needle threader helps with this.

(6) Solder the conductive thread to the microchips.
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(7) Cut o↵ the remaining conductive thread.

(8) Finish the edges of the conductive foam and cut o↵ any excess material.

4.3.2 Sensor Sleeve

The sensor sleeve contains only components that are washable so that it may be washed

in the case that it gets sweaty or dirty. The sensor sleeve should accomplish the following:

(1) The sleeve should not impede knee normal knee motion. (2) It should be comfortable

to wear and be easy to put on and take o↵. (3) It should only contain components that

can be washed. In this subsection, we discuss the components used and the process we

used to fabricate the control patch.

4.3.2.1 Components

The components contained in the sensor sleeve are the knee sleeve, conductive fabric,

conductive thread, and snaps. All of these components are washable in a washing machine.

We describe the components in the following:

Knee Sleeve: We chose the Crucial Compression Premium Knee Compression Sleeve [46]

as a base for our sensor sleeve. We chose this sleeve as it is easy to put on and have a

good reputation for not sliding down when worn.

Conductive Fabric: We used Eonyx Conductive Stretchable Fabric [63] for the devel-

opment of our knee sensor. We chose this fabric for the following reasons. It is coated in a

conductive polymer that gives it piezoresistive properties. This allows us to see a change in

resistance as the fabric is stretched. Additionally, the composition of the fabric is similar

to that of many athletic fabrics. It is made of 72% nylon and 28% spandex. Nylon is soft

and silky to the touch, quick drying, and mildew resistant. Spandex is breathable, quick

drying, and moisture wicking but it additionally provides an unrestricted range of motion

as it stretches with the motion of the user.
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Conductive Thread: Again, we use Syscom Advanced Materials’ Amberstrand [185] in

place of wires. This time, the thread is hand sewn.

Snaps: We also use snaps on the sensor sleeve. The snaps from the control patch

connect to these snaps when in use.

4.3.2.2 Fabrication

We could not use our sewing machine to assist with the fabrication of the sensing

sleeve as we cannot lay the knee sleeve flat to sew through it. Because of this, we hand

sew our conductive thread into the knee sleeve. To fabricate the sensor sleeve, we follow

the following steps.

(1) Attach the conductive fabric to the knee sleeve so that it is positioned down the

vertical midline of the kneecap. Secure it with spray adhesive.

(2) Attach the snaps so that they line up with the snaps on the control patch.

(3) Hand sew conductive thread in a zig-zag pattern from the top of the fabric to a snap.

Then sew from the bottom of the fabric to the second snap. To connect the thread

to the fabric, put a stitch through the fabric and tie it o↵. To connect to the snap,

feed the thread between the top and bottom of the snap and secure it with solder.

4.3.3 TracKnee Prototype

When we connect the control patch to the sensor sleeve, we have a full TracKnee

device. The circuit diagram for this device is shown in Figure 4.9. Our circuit utilizes a

voltage divider to incorporate our conductive fabric sensor. The voltage divider requires

two resistors: our conductive fabric sensor and the 470 ohm resistor. We connect the

resistor to ground and our fabric sensor to power. We read the voltage via analog pin

A2 on the Bluno Beetle. So, when the conductive fabric sensor stretches, the resistance
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Figure 4.9: Circuit diagram of TracKnee

decreases and the voltage read on A2 increases. As the fabric sensor returns to its original

length, the resistance increases and thus the voltage on A2 decreases.

4.3.4 Lessons Learned

Through the design process for our TracKnee prototype, we learned a few lessons. The

most important were the using fabric adhesives, choices of conductive thread and using

di↵erent stitch patterns in di↵erent fabrics.

We tried using 505 temporary fabric adhesive to help attach our conductive fabric to

our knee sleeve. This adhesive changes the resistance of the conductive fabric. When

applied lightly, we saw our resistance change from being near 100 kohms to almost 600

kohms. When applied heavily, the resistance jumped again to about 1100 kohms. While

there was still a readable change in resistance, we did not model nor study how this

adhesive a↵ects our conductive fabric sensor.

Initially, we chose a commonly used stainless steel conductive thread [180]. It had a

resistance of twenty-seven ohms/meter. While this thread was very smooth and did not

have issues with fraying, we were not able to accurately read the data coming from the

elbow sensor. To fix this, we replaced this thread with the Syscom Advanced Materials’

Amberstrand that had a lower resistance of one ohm/foot.
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Many stitch patterns can be used when sewing conductive thread. We tested two

main stitch patterns for sewing on stretchy material. The first is a straight stitch and the

second is a zig-zag stitch. When the fabric the stitches are sewn into is stretched, each

stitch reacts di↵erently. From these tests, we know that the straight stitch bunches in

two places while the zig-zag stitch stays in place. Thus, we learned to use a zig-zag stitch

when sewing into stretchy fabrics like our knee sleeve.

4.4 Data Collection

In this section, we evaluate our knee angle model by collecting data from human sub-

jects. This data collected consists of ground truth knee angles measured by a goniometer

and the data collected from our TracKnee device. Our target participants were between

18 and 35 years of age and were healthy without any major knee injuries or surgeries.

In this section, we discuss the equipment used in our study, the parameters, and the

demographics of our participants.

4.4.1 Equipment

To perform our data collection study, we need to collect statistics on each participant’s

knees, record the TracKnee device data, and record the ground truth angles. We used a

Medigauge digital goniometer [133] and a fabric tape measure to collect statistics on each

participant’s knee. We developed an android application and implemented it on a Google

Pixel 2 to record our TracKnee device data. We used a goniometer to measure the angles

and a camera to record the time in our application to measure the ground truth angles

and label them in our TracKnee data. Next, we discuss our application.

We developed an application to collect data from our TracKnee device. This appli-

cation is shown in Figure 4.10. Our application has four states: Initial State, BLE Scan

State, BLE Connected State, and Data Collection State. The states are shown in Figure

4.11. Next, we describe the application states.
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(a) Initial State (b) BLE Scan (c) BLE Connected (d) Data Collection

Figure 4.10: TracKnee Application

Initial State: When the application is launched, the user is shown the Initial State

(Figure 4.10a). This state has two main components: timestamp and Subject ID #. The

timestamp is displayed throughout the entire application. This is essential, as during our

user study, we recorded with the timestamp in view of the camera so that we can label

the ground truth. The Subject ID # is a field where the user can input the number that

is assigned to each subject participating in our study. Once this field has been completed,

the user can press the scan button to move the application into the second state: BLE

Scan State.

BLE Scan State: Once in the BLE Scan State, the application opens the activity that

scans for and displays nearby Bluetooth Low Energy devices as shown in Figure 4.10b.

The user should select Bluno from the displayed list of devices. Once a device has been

selected, the application displays either the BLE Connected State or the Initial State.

If the Bluetooth device is correctly connected and the application is receiving data, the

application moves to the third state: BLE Connected State. If the application does not

connect to the device, it returns to the Initial State.

We based our Bluetooth connection to our Bluno device o↵ of the BlunoBasicDemo [35]

from DFRobot. This demo connects a Bluno device to an Android application and fa-
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Figure 4.11: TracKnee Application States

cilitates the transmission of data between the two. The android application scans for

Bluetooth devices, allows the user to select a Bluno device, connects to that device, and

then allows the user to send and receive data. The Bluno is coded via Arduino to receive

data and send a copy of the received data back to the application.

BLE Connected State: In the BLE Connected State, shown in Figure 4.10c, the back-

ground of the TracKnee logo changes to green and the Scan button is renamed Connected.

During this state, if the Bluetooth device disconnects, the application returns to the Initial

State. If the wrong device was connected, the application still proceeds to the third state.

If the application connects to the wrong device, the user can press the Connected button

and the user is once again be presented with the BLE Device Scan State where they can

select the correct device. At this point, the application displays the Start Data Collection

button. This button is used in the final state.

Data Collection State: Once the device is correctly connected and the user is ready

to begin logging data, the Start Data Collection button is displayed. To start collecting
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Figure 4.12: User Study Setup

data, the user should press the Start Data Collection button. Once the button has been

pressed, the application proceeds to the fourth state and pop up a toast message to let

you know that data collection has started as shown in Figure 4.10d. The application logs

data to a .csv file. This file is named with the Subject ID # and the corresponding time.

The .csv consists of two values: timestamp and sensor.

4.4.2 Parameters

At the beginning of the study, we administered a pre-user study questionnaire. On the

questionnaire, we asked for the following statistics: age, gender, height, weight, and infor-

mation pertaining to previous knee injuries or surgeries. Next, we recorded the following

statistics about each of their knees: width of patella, circumference of their knee (taken

mid-patella), maximum flexion of their knee, maximum extension of their knee, change

in length from maximum extension to maximum flexion (CLEF value), distance from top

of kneecap to top of TracKnee device, and distance from bottom of kneecap to bottom

of TracKnee device. Following that, we asked the participants to put the device on their

right knee. Then, we connected the device to the data collection application and set up

the camera to record the study. Following this, we asked the participant to position their

knee to the following angles: 0�, 15�, 30�, 45�, 60�, 75�, 90�, 105�, 120�, and 135�. We
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used a goniometer to confirm the ground truth measurement of the angle of their knee.

We repeated this process once on the right knee and then twice on the left knee. Overall,

we recorded data for 240 knee angles.

Participant # Height
CLEF Max Extension Max Flexion

Right Left Right Left Right Left

1 4’11” 2.5” 2.25” 123� 120� �1� 0�

2 5’5” 3” 2.75” 147� 145� 0� 0�

3 5’6” 2.75” 2.5” 136� 126� �2� �4�

4 5’7” 3” 3.25” 123� 130� 0� �1�

5 6’0” 3.25” 3.25” 113� 116� �10� �8�

6 6’0” 4” 4.25” 139� 137� 0� 0�

Table 4.2: Participant Knee Range of Motion Statistics

4.4.3 Demographics

We recruited the participants in our study from the College of William and Mary and

the surrounding area. In total, we had six participants: three male and three female. On

average, our participants were 25.3 years of age with the youngest being 18 and the oldest

being 32. All participants were in the normal range for BMI with an average of 21.86.

The normal range for BMI is 18.5 to 25. Our participants were also free of major knee

surgeries and injuries.

We show the height, CLEF value, maximum flexion, and minimum flexion for each

participant in Table 4.2. In this table, we see that each participant’s height, maximum

flexion, and minimum flexion a↵ect the CLEF value of each knee. In general, the taller

the participant the higher the CLEF value but it is also a↵ected by how flexible each

individual is. The lower the maximum flexion angle, the higher the CLEF value. For

example, we had two 6’0” participants. The participant with the lower maximum flexion

angle had a higher CLEF value.
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4.5 Experiment Results

Figure 4.13: Comparison of Ground Truth Angle and Calculated Angle

We evaluate the model that we created in Section 4.2 on the data collected in Section

4.4. We removed three outliers from our dataset as the angle calculated by the model was

o↵ by over 30�. We show our ground truth angle and our calculated angle in Figure 4.13.

We evaluate the accuracy of the model that we created. To do this, we evaluated our

model’s ability to classify an angle correctly to the nearest 15, 12.5, 10, 7.5, and 5-degree

angle. Our results are shown in Table 4.3. Respectively, we see a 94.86% accuracy at the

nearest 15th degree, 84.11% at the nearest 12.5 degree, 70.09% at the nearest 10th degree,

53.27% at the nearest 7.5, and 38.79% at the nearest 5th degree. On average, overall, our

model experiences an error of 3.69�. These results are shown in Table 4.3. We further

analyzed our data by breaking down the accuracy by each participant. This can be seen

in Table 4.3. From this table, we can see that the shorter participants’ angles were more

accurate. In terms of average error, the shorter the participant the smaller the error.

In our study, we used a goniometer to collect ground truth angles. When used by

inexperienced individuals to measure elbow angles, goniometer readings can be o↵ by 8�

to 18� [23]. This can cause variability in the actual value of the ground truth angles that

we record. It is possible that this is the reason for the low accuracy of the nearest 5th
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and 7.5-degree angle. In future work, a more accurate ground truth measurement should

be acquired. This can be done by using a device such as Pasport Goniometer Sensor [154]

which achieves an accuracy of 2� before calibration. This sensor uses a cu↵ on the upper

arm and forearm with the sensor positioned at the hinge of the elbow.

Participant # Height
Accuracy Average Error

15 12.5 10 7.5 5

1 4’11” 94.44 86.11 80.56 63.89 41.67 3.29�

2 5’5” 94.29 88.57 77.14 60.00 40.00 3.34�

3 5’6” 100.00 80.55 66.67 58.33 50.00 3.35�

4 5’7” 91.67 83.33 72.22 52.78 41.66 3.79�

5 6’0” 94.44 83.33 69.44 47.22 33.33 3.99�

6 6’0” 94.29 82.86 54.29 37.14 25.71 4.42�

Overall 94.86 84.11 70.09 53.27 38.79 3.69�

Table 4.3: Model Accuracy by Participant

Figure 4.14: Voltage of Battery Over Time

We recorded the voltage while discharging the rechargeable 40 mAh lithium battery.

Figure 4.14 shows the discharging curve for the voltage change from 4.02 volts to 2.96 volts

in 38 minutes and 38 seconds. In this figure, we can see that the voltage decreased quickly

in the beginning and then stabilized from 3.90 volts to 3.40 volts. The average current

of the main circuit can be calculated by dividing the recorded discharging time and the
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power, 40 mAh. The average current is 62.45 mA. The current is within the tolerance

of our circuits and the microchip. We also calculated the charging time. To do this, we

recorded the time it took to charge the battery fully three times. The average time for

charging for the 40 mAh battery is 18 minutes and 50 seconds, which less than the half

time of discharging. Since our battery disconnects from our device, we can adjust the

capacity. For example, other options that are compatible with our device are 110 mAh,

400 mAh, and 850 mAh. The drawback with increasing the capacity is that the size of

the battery also increases. While the 110 mAh battery is only marginally larger than the

40 mAh, the 400 mAh and 850 mAh are more than double the size.

4.6 Conclusion

In this chapter, we proposed three models that can be used in succession to calculate

knee angles given a voltage reading. Given a voltage reading, we first calculate the change

in resistance of our conductive fabric, then its change in length, and finally the knee

angle. We present TracKnee a sensing knee sleeve made with a conductive fabric sensor

that unobtrusively measures knee angles. We created TracKnee device while keeping in

mind the comfort of the user. Because of this, we made sure the device was comfortable,

unobtrusive, and washable. We ran a user study in which we collected data on 240 knee

angles from six individuals. We used this data to calculate knee angles using our models.

Our results show that our model is 94.86% accurate to the nearest 15th degree angle and

that our average error per angle is 3.69�.
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Chapter 5

ServesUp: Using Wearables to

Improve the Volleyball Serve

5.1 Introduction

Watching and analyzing film is a key way to help a volleyball player improve their skills.

Video analysis for just one player during one game can take several hours [77]. With a

minimum of six players on an indoor court, it quickly becomes very time consuming for

a coach to watch film with all of their players. As teams get more competitive, they

generally carry more players. Many college level teams carry upwards of fifteen athletes

at the time. On average, ten players play per game. Work towards fully automatic

analysis can decrease the need to watch game film and allow the athlete to spend more

time actually improving their skills.

In volleyball, the serve is one of the most important skills. It is the first move of the

game and players or teams that cannot serve well do not find success in the sport. As

players become more skilled, their serve becomes more varied and specialized. The main

progressions of the volleyball serve are the float serve and the top spin serve which can be
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combined with a jump. This makes classification and evaluation of serves more di�cult.

In this chapter, we answer the following research questions:

RQ1: How can we accurately classify the volleyball serve using a wearable device?

RQ2: How do we design a wearable device that is comfortable and unobtrusive to wear

when playing volleyball?

To determine how accurately we can classify serves with our wearable device, we

perform a user study in which 1000 serves are performed. Then, we extract features

to describe a single serve from each of the sensors attached to the sensing shirt. Finally,

we feed these features in various classifiers. From this, we see a classification accuracy of

89%.

To understand how to design and create a comfortable and unobtrusive wearable device

that can be worn during volleyball play, we created a device that we call the sensing shirt.

This shirt can be worn as a normal athletic shirt would be worn. All the sensors are

made from fabric and all the wires are made of thread. Because there are no rigid sensing

devices on joints of the body it does not impede the movement of the athlete. The shirt

is as washable as all non-water soluble components are removable.

Sensing research into the sport of volleyball has just begun to be explored [106, 48, 103].

Research into volleyball has been focused on injury prevention and distinguishing the

professional players from the amateurs [16, 68]. Human activity recognition has been well

explored in sports and daily life [18, 114, 164, 88, 112]. Wearable and E-textile sensors

have made great advancement in recent years [74, 98, 76]. In this chapter, we combine

the advancements made in wearables with the research done into volleyball.

Our contributions are summarized as follows:

• We designed and implemented a wearable device, called the sensing shirt, with sen-

sors embedded into the fabric of a shirt to recognize volleyball serve in real time.
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• We collected data using our shirt on 1000 serves collected from 10 volleyball players.

We developed a classifier that achieves 89% serve classification accuracy.

The remainder of this chapter is structured as follows. First, we will discuss the design

of our sensing shirt prototype. Then, we will discuss our user study and results from it.

Finally, we will wrap up with a discussion of future work and summarize with a conclusion.

Figure 5.1: Sensing Shirt

5.2 Prototype Design: Sensing Shirt

We designed our sensing shirt such that it does not impede the player’s serve, is

comfortable to wear while playing volleyball, has enough battery life to make it through

a three-hour volleyball practice, and is durable enough to last through common volleyball

movements such as diving. The sensing shirt must also be washable as we expect the

players to sweat during practice. To make our shirt washable, we designed our shirt in

two parts: the control swatch and the sensor shirt. This allows separation so that the

rigid non-water soluble components are easily removed from the shirt.
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5.2.1 Control Swatch

The control swatch holds all of the rigid electronic components. It is not washable so

it is made to be detachable from the main shirt. In total, it is four inches long by five

inches wide and is attached in the upper middle back.

(a) The control swatch is attached to the upper
back by the six snaps.

(b) Non-washable components that is attached
by snaps to the upper back to the shirt.

Figure 5.2: Control Swatch and its Attachment Location

5.2.1.1 Components

The components are the microcontroller, Bluetooth chip, resistors, power supply booster,

and battery as shown in figure 5.2b. The controller is an Arduino Nano development

board [11] featuring an ATmega328P processor. Sensor readings are collected at 100 hz

and then transmitted to a mobile device by a SparkFun BlueSMiRF Silver [179]. The

sensing shirt is powered by a rechargeable 400 mA lithium battery. This battery outputs

3.7 volts. Since the Arduino Nano operates at five volts, we use a Lilypad LiPower mi-

crochip [181] to boost the voltage of the battery from 3.7 volts to five volts. This battery

last through a three-hour practice. All of the components are sewn onto a thin layer of

foam to give the user some cushion from the rigid electronic components. Because the

stitches go through both sides of foam, an insulating layer is attached to the back for the

control swatch to prevent any shorts from occurring.
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5.2.1.2 Connection

To make the sensing shirt washable, the control swatch must be removable while

allowing for easy reconnection to the sensors on the shirt. To accomplish this we used

conductive nickel snaps to connect the control swatch to the shirt and the sensors to the

microcontroller. For each sensor, we have a connection to ground and its analog pin. We

do this with the use of six snaps as shown in figure 5.2a. On the control swatch, we also

have a resistor for each sensor. These resistors connect to power and a corresponding

analog pin. We chose resistors that are between the minimum and maximum resistance

for each sensor. All four resistors used are 470 kohms.

5.2.1.3 Conductive Thread Wiring

We use Syscom Advanced Materials’ Amberstrand, a conductive thread [185], instead

of traditional wires to connect the electronic components of our control swatch. We chose

this thread because it has a resistance of one ohm/foot and is solderable. It is made from

Zylon, which is very high in tensile strength and is resistant to heat [191]. It is coated in

a combination of silver, copper, and nickel to make it conductive. To connect the thread

to the microcontroller and the Bluetooth chip, we knotted the thread around the pin and

then solder it in place. To connect the thread to the resistors, we shaped the end of the

resistors into a loop and cut o↵ the remaining portion. Then we sewed through the loop,

wrapped the conductive thread around the loop and tied it o↵. To connect the thread to

the snaps, we sewed a star pattern under where the snap would be connected. We then

popped the snap on over top of the conductive thread star. Any fraying of the thread can

be secured by solder.

5.2.2 Sensor Shirt

The sensor shirt contains only components that can be washed. Overall, it contains

the conductive fabric bend sensors, conductive thread wiring, and snaps to connect the
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control panel. We chose an Underarmour Coldgear shirt [192] as the base for our project

as it is skin tight and will stretch as elbow and shoulder move.

(a) Top of Shoulder Sensor (b) Underarm Sensor (c) Elbow Sensor

Figure 5.3: Sensor Placement Inside of Sensing Shirt

5.2.2.1 Conductive Fabric Bend Sensors

In our design, we wanted a shirt that monitors a volleyball player’s serve without

impeding the athlete in any way. To do this, we created our sensors from conductive

fabric. When the conductive fabric stretches, there is a change in the resistance of the

conducitve fabric. We chose EeonTex Conductive Stretchable Fabric [63] as it is made of a

blend of nylon and spandex, is coated with a conductive polymer, and has a resistance of

10E4 to 10E7 Ohm/sq ft. This fabric blend is similar to common athletic fabrics giving it

a similar feel and movement to athletic clothing. This fabric is also washable and does not

show any noticeable resistivity increase after thirty wash cycles. We attach the conductive

fabric on the inside of the shirt with a non-conductive fabric adhesive [57].

Our sensing shirt was designed to model two joints: the elbow and the shoulder. To

monitor the motions of these joints we must place the conductive fabric sensor in locations
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where it will be stretched. When the fabric is stretched a drop in resistance is observed. We

adjusted the length and width of each fabric sensor by its location in the shirt, resistance

change when stretched, and warp recovery. We will start by discussing the elbow sensor

and then we will discuss the shoulder sensors.

(a) Elbow Measurement Markings (b) Experimental Setup

Figure 5.4: Elbow Sensor Design

Elbow: The elbow is a hinge joint with a single degree of motion. To monitor this joint

we attach a single fabric sensor to the shirt on the back of the elbow. To size the sensor

correctly we consider the following factors: the size of the elbow and the warp recovery

and resistance change of the fabric at di↵erent lengths.

Fabric Length (inches) Number of Stretches

4 2

5 4

6 100

7 100

8 100

Table 5.1: Fabric Warping

To size the width of the sensor, we measured the author’s elbow. Their elbow was two

inches wide. This influences our length and width sizes for the fabric. For this sensor, we

do not exceed the width of the elbow. The sensor should also be wide enough that it will
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always cover the smallest point on the elbow, also known as the olecranon. Our author’s

olecranon measured one inch wide. To allow for some sensor movement, we set the fabric

width to one and a half inches.

To determine the length of the fabric, we first found a minimum and maximum length

for the elbow sensor. To determine the minimum, we measured the end of the author’s

elbow when bent and then added an inch to each side so that the sensor could be attached

to the arm. The end of the author’s elbow measure two inches in length and with the

added inch on each side, we had a minimum of four inches for the sensor. To determine

the maximum length of the sensor, we measured the original size of the piece of conductive

fabric. Because it was eight inches long at its longest, our maximum length for the sensor

was eight inches. To set the length from here, we looked at two factors: the warp recovery

and the change in resistance.

Figure 5.5: Resistance Change of Conductive Fabric for Elbow

To test the warp recovery, we must first know how far the fabric will need to be

stretched. To do this, we put two points of reference on the arm as shown in figure 5.4a.

Then, we straighten the arm and measure the distance between the points with a cloth

ruler. Next, we bend the elbow all the way and measure again. The di↵erence in the two

measurements was 2.125 inches. To test the warp recovery, we will repeatedly stretch our
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fabric 2.125 inches and measure the size it returns to. Once the fabric no longer returns to

its original dimension, we will record the number of stretches completed. If a piece of fabric

can be stretch one hundred times without warping, we will record one hundred stretches

and end the test there. We tested fabrics between the already determined minimum and

maximum length at one inch intervals. The results of this are shown in table 5.1. From

this table, we can easily tell that the four and five inch pieces of fabric warped almost

immediately while the six, seven, and eight inch pieces of fabrics could be stretched one

hundred times without any warping.

Figure 5.6: Resistance Change of Conductive Fabric for Shoulder

Following this, we tested the change in resistance of the di↵erent lengths of fabric.

For our pieces of fabric, we used the preset width of 1.5 inches. To test the change in

resistance, we tested fabrics between the already determined six inches and eight inches

at half inch intervals. We test these pieces of fabric across four di↵erent angles of the

elbow: 45 degrees, 90 degrees, 135 degrees, and 180 degrees. We calculate the distance

the fabric will have to stretch when it is at each angle by once again marking two points

of reference and measuring the distance with a fabric ruler. We measure the angle of the

elbow using a Goniometer [133]. We attached the leads from a multimeter to each end of

the piece of fabric and recorded the resistance as we stretched the fabric to the lengths

that correspond with our four tested angles. This is shown in figure 5.4b. We stretch each
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piece of fabric to each angle five times. We averaged the resistance and displayed it in

figure 5.5. From this graph, we can see that there is a smaller change in resistance for

the six and 6.5 inch piece of fabric. All pieces of fabric above a length of 6.5 inches have

a noticeable change in resistance. To maximize the comfortability of wearing the sensing

shirt, we decided to keep the sensors as small as possible. Because of this, we set the

length of our elbow sensor at seven inches. The final sensor is shown in figure 5.3c.

Shoulder: The shoulder, being a ball and socket joint has a more complicated move-

ment profile. Because of this, we will need more than one sensor to monitor all of the

motions. To place the sensors, we leveraged athletic training knowledge of the shoulder.

Our sensor location choices are influenced by a common method of applying Kinesio tape

to the shoulder [71]. We follow the tape locations as shown and attached a sensor on the

front and back of the shoulder. Since the sensors will be placed in close proximity, we

must limit the width of these sensors. We also measured the distance from the underarm

to the top of the shoulder on the author. This distance was 3.5 inches and since we needed

space for wiring, we left an inch of space on each side of the sensor. The space in the

middle would be shared by both sensors. These sensors are shown in figure 5.3a.

This allowed us to monitor the front and back movement of the shoulder joint but not

the up and down. To do that, we placed a sensor on the underarm. We measured across the

author’s underarm and it was four inches wide. This gives us the ability to place a wider

sensor than the elbow or the top of the shoulder. We chose a sensor width of 2.5 inches so

that we would still have 0.75 inches for wiring on each side of the sensor. To determine the

length of this sensor, we performed an experiment on the change in resistance in which

we tested fabric lengths between the six inches and eight inches at inch intervals. We

attached the leads from a multimeter to each end of the piece of fabric being tested and

recorded the resistance as we stretched the fabric to the lengths that correspond with our

four tested angles. The angles we tested where: 45 degrees, 90 degrees, 135 degrees, and

180 degrees. This is shown in figure 5.6. From this graph, we see that the eight inch long

piece of fabric has more change in resistance so we chose that length.
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(a) Straight and Zig-Zag Stitch (b) Connection Point

Figure 5.7: Stitch Patterns and Connections Points

5.2.2.2 Conductive Thread Wiring

To keep the shirt washable, flexible, and comfortable for the players to use, we forgo

wires in this project and instead use conductive thread. We chose Syscom Advanced

Materials’ Amberstrand as our conductive thread as it has a resistance of one ohm/foot

and is solderable. This thread is made from Zylon and is coated in a combination of silver,

copper, and nickel. To prevent the thread from breaking when the stretched, we sew it

into the fabric of the garment in a zig-zag pattern. When the thread is sewn into the

seams of the garment, it can be sewn in a straight line. The patterns of the stitches are

shown in figure 5.7a. To attach the thread to each sensor, we sew through the middle of

the end of each sensor and knot the thread at the end. This is shown in figure 5.7b.

5.2.3 Lessons Learned

Through the process of designing the prototype for the sensing shirt, we learned some

lessons. The most important were the choices of conductive thread, using di↵erent stitch

patterns in di↵erent fabrics, and how to appropriately create bridges and barrier layers to

prevent short circuits.
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5.2.3.1 Conductive Thread Choices

Originally, we chose a commonly used stainless steel conductive thread [180]. It had

a resistance of twenty-seven ohms/meter. While this thread was very smooth and did

not have frayed hairs, we were not able to accurately read the data coming from the

elbow sensor. To fix this, we replaced this thread with the Syscom Advanced Materials’

Amberstrand that had a lower resistance of one ohm/foot.

(a) Straight and zig-zag stitch af-
ter being stretched.

(b) Bridges are used to pre-
vent short circuits.

(c) Barrier layer to prevent short
circuits.

Figure 5.8: Lessons Learned

5.2.3.2 Conductive Thread Stitch Patterns

There are many stitch patterns that can be used when sewing conductive thread. The

two stitches we used in our prototype are a zig-zag pattern and a straight stitch. These

stitches are shown in figure 5.7a. In di↵erent types of fabrics, di↵erent stitches should be

used. In our project, we sewed through a thin foam and a stretchy shirt made of eighty-

seven percent Polyester and thirteen percent Elastane [192]. In the non-stretchy foam, a

straight stitch was used. In the stretchy shirt, we used a zig-zag pattern so that when

the shirt was stretched, the seams would stretch with it. In the beginning, we tested a

straight stitch in the shirt and individual stitches would pop up as shown in figure 5.8a.

This allowed for more short circuits to occur. Further, we learned that the seams in the
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Underarmour shirt were not a stretchy as the main fabric. Because of this, it was more

e↵ective to use a straight stitch when sewing through these.

5.2.3.3 Bridges and Barrier Layers

In some situations, crossing over an already made stitch is unavoidable. When this

happened, we used bridges and barrier layers to prevent two di↵erent conductive thread

wires from crossing and short circuits from happening. This happened repeatedly on the

control swatch between the Arduino nano, the Bluetooth chip, and the power booster. We

used three bridges to prevent short circuits as shown in figure 5.8b. To create a bridge,

we took an additional piece of foam, cut it down to the size of the needed stitch. From

there we stitched over the foam and pulled the stitch tight. This locked the bridge into

place. Since the back of the control swatch contained exposed conductive thread that

could create a short when attached to the sensing shirt ,we added a barrier layer. The

barrier layer is made of a non-conductive cotton. This prevents shorts from occurring

when the control swatch is connected. This layer is shown in figure 5.8c. In the final

prototype design, the layer of cotton fabric shown in the middle is sewn onto the back of

the control swatch.

5.3 User Study

In this section, we discuss the setup of our user study. We will detail the equipment

used, parameters followed, drills chosen, and the demographics of our subject.

5.3.1 Equipment

During our study, the participants wore the sensing shirt as they would normally wear

an athletic shirt. Beyond the sensing shirt, the participants were asked to dress as they

normally do when playing volleyball. We collected data from all four sensors in the shirt.

We sent this data over Bluetooth to a Google Pixel 2 [79]. During the data collection
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process, we took video of the participant’s serve for post analysis on an iPhone 6s [9]

recording 1080p video at thirty frames per second. In the gym, we also provided a cart of

volleyballs and a standard women’s height volleyball net with pads and antennas.

5.3.2 Parameters

We conducted our study in various gyms in the area surrounding our college. When

the participant arrived for the user study, they were handed a questionnaire. In this

questionnaire, we asked for a basic set of demographics: age, gender, height, and weight.

We also ask for statistics more specific to our wearable device: upper arm length, lower arm

length, and the distance from control swatch to the participant’s rotator cu↵. Additionally,

we ask the following free response questions:

1. For how many years have you played volleyball?

2. How frequently do you play?

3. What is the highest level of volleyball that you have played?

4. What position(s) do you play?

5. What kind of volleyball do you play? Grass, Beach, Indoor, Indoor Sand, Other

6. Which arm is your hitting arm? Right, Left, Ambidextrous

7. Do you own any smart fitness devices? Yes or No. If Yes, what devices?

8. Are there any smart fitness devices that you want to own? Yes or No. If Yes, what

devices?

Then we ask the participants to participate in four common volleyball drills that will

be discussed in the next subsection. Once the participant completes their volleyball drills,

they are given the following questionnaire:
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1. Does this device help you in any way? 1-very unhelpful 2 -unhelpful 3 -neutral

4-helpful 5-very helpful. Explain

2. How comfortable would you be wearing our device in a game or practice environ-

ment? 1-very unhelpful 2 -unhelpful 3 -neutral 4-helpful 5-very helpful. Explain

3. Any feedback on how to further improve this device?

4. Any other comments?

Figure 5.9: Progression of the Volleyball Serve

5.3.3 Demographics

We recruited our study participants from our college and surrounding volleyball com-

munities. Our user study consisted of ten participants with an age range of 19-35 and

an average age of 26.5 years. On average, the participants were 5’10” with a BMI of

18.5. All participants were female. They were all right hand dominant so that the current
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shirt would record their data. The participants had between 8 and 23 years of volleyball

experience and had played at the college to professional level.

5.4 Results

In our user study, we analyze a total of 1000 volleyball serves. The serves were recorded

via video camera and sensing shirt while the athlete served a ball from the service line of

an indoor court. The serve did not have to go over the net or in the court to count. We

had a volleyball coach manually label the frames of video data that include the serve. We

use the first serve on video and in the data to align the marked video ground truth with

the sensor data.

5.4.1 Serve Classification

Tossing Elbow High Contact Point Follow Through

Underarm Stretch Stretch Stretch

Elbow Stretch Stretch

Shoulder Front Stretch Stretch

Shoulder Back Stretch Stretch Stretch

Table 5.2: Sensor Stretch Progression During a Serve

When an serve is broken down into individual motions, it follows this process: First,

the elbow bends. Then, the hand is lifted above the head while the hand faces out. At

this point, an athlete’s form should look similar to the tossing portion of figure 5.9. Next,

the athlete starts to swing forward. During this, the elbow straightens and moves from

behind the athletes head to in front. Finally, the athlete finishes their serve during which

their hand and elbow drop back below the shoulder. In table 5.2, we show which sensor

stretches as an athlete progresses through the motions of the serve as shown in figure 5.9.

As we can see in the figure, at the beginning of a serve, the underarm, elbow, and front

of the shoulder sensor are stretched. As the arm swings forward, the back of the shoulder
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stretches. When the ball is contacted, the elbow and front of the shoulder relax. As the

serve is completed and the athlete goes back to a resting position, the underarm and then

the shoulder back relax.

Figure 5.10: Sensing Shirt Readings for a Single Serve

We can compare these serve insights to the raw data read from our sensing shirt on a

serve. This is shown in figure 5.10. As a sensor is stretched, the resistance decreases. As

a sensor relaxes, its resistance increases. In figure 5.10, all sensors start in a relaxed state.

We marked the di↵erent phases of the serve as discussed on this figure. From this, we can

clearly see that the sensors that should intuitively be stretching in each phase are in fact

stretching.

5.4.1.1 Naive Serve Classifier

We built this classifier such that it could run locally on the sensing shirt. To build

our intuitive serve classifier, we need to know two pieces of information: when an serve

begins and the maximum length. From the analysis above, we know that a serve begins

with a stretch in the underarm, elbow, and shoulder front sensors. So, we will scan the

incoming underarm data for a reading that crosses a set threshold. We calculated this

threshold by taking the maximum value in k⌦ for the initial stretch for the dataset where

our participant was hitting against the wall. This threshold is set to 416 k⌦. Next,
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we calculated the size of our window for classification. The maximum serve length was

1.66 seconds. To account for the possibility of longer serves we round up the maximum

length to two seconds. To test this code on our dataset, we wrote a version in python and

compared its results to the ground truth. Overall, our naive classifier was 87.25% accurate

at classifying serves.

5.4.1.2 Weka Serve Classifiers

We classify serves using data from all four sensors on the sensing shirt. To do this, we

use a sliding window with a size of 2000 milliseconds that moves right by 1000 milliseconds

each time. We set the size to be 2000 milliseconds by calculating the maximum length of

a serve from our user study data.

Classifier Precision Recall F-Measure

Random Forest 84.5 84.5 84.5

Random Tree 86.9 86.7 86.8

SMO 87.5 87.9 87.1

Nearest Neighbor 89.1 89.3 89.0

Logistic 82.8 83.1 82.6

Table 5.3: Evaluation of Classifiers

We used the Weka Data Mining Software to create additional classifiers for serves. We

evaluated these classifiers on three metrics: precision, recall, and f-measure. The results

of the evaluation of these classifiers are shown in Table 7.1. From the results, we saw that

the nearest neighbor model outperformed the rest in all the metrics.

5.4.2 Results from Questionnaires

We administered a questionnaire before the participant participated in our user study

performed the requested volleyball skills. This questionnaire helped us to gauge the par-

ticipant’s volleyball experience and familiarity with wearable fitness devices. Here are the

results from that questionnaire. Our participant was very experienced and had played
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volleyball for fifteen years. She played two to three times a week on average at a semi-

professional level so her skills are still at a high level. She also plays four types of volleyball:

grass, beach, indoor, and indoor sand. She is interested in smart fitness devices and owns a

Polar Edge heart rate monitor and a Fitbit. She would like to own a VERT jump tracker.

After the participant performed the requested volleyball skills we gave her a second

questionnaire. This questionnaire allowed us to gauge the user’s experience with our

sensing shirt. The results are as follows. On a scale of one to five for helpfulness, she

rated the device as a four. Our participant was helped by the device because ”knowing

that I’m being monitored makes me think more about my form”. On a scale of one to five

for comfort with five being the most comfortable, our participant rated us a five stating

that it ”feels just like a normal athletic shirt”. She also gave us feedback on how to further

improve our sensing shirt. Her recommendation was to implement a version of the shirt

in a more heat friendly fabric instead of Underarmour ColdGear.

5.5 Discussion and Future Work

5.5.1 Evaluating the System on Other Volleyball Players

Our user study focused on a single semi-professional volleyball player with fifteen years

of experience playing volleyball. In future work, we plan to expand this study to multiple

volleyball players of many di↵erent positions and genders. To do this, we would need

to create sensing shirts in a range of sizes and in styles that suit both men and women.

Another expansion of this study will be to create a shirt that can monitor left handed

players and even ambidextrous players.

5.5.2 Sensing Shirt Upgrade

While we have a working prototype of the sensing shirt, we can still work to improve

the design. The sensing shirt can be improved in two main ways. First, we can shrink the
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size of the control swatch. Second, we can test out new kinds of fabric for more accurate

stretch sensors.

The control swatch on our sensing shirt has three separate microchips and a battery.

This can be reduced. The requirements for the swatch are Bluetooth connectivity, battery

power, and four analog ports. To shrink the size of the control swatch, we will look to

find microchips that combine functionality. One such microchip is the Bluno Beetle [24].

It is an Arduino based board that already incorporates Bluetooth technology and it has

four analog pins. Switching to this microchip will allow us to remove all of the wiring

between the Bluetooth chip and the Arduino Nano. This will remove about an inch and a

half of space from the right side of the control swatch, as shown in figure 5.2b. This chip

will also be replacing the Arduino Nano. The Nano is eighteen millimeters by forty-five

millimeters while the Bluno Beetle is twenty-nine millimeters by thirty-three millimeters.

Since these sizes are similar, and the Bluno has more functionality for our project, it is a

natural upgrade to the sensing shirt.

We chose EeonTex Conductive Stretchable Fabric [63] because it was readily available

and common to use with wearable technology projects. This fabric also feels similar to

athletic fabric so it is an obvious choice to use in our sensing shirt. But as wearable

technology advances, more stretchy conductive fabrics become available. In future work,

we will be exploring di↵erent conductive fabrics that can be used to increase the accuracy

of each sensor. It is even possible that we can use our stretch sensors to measure the angle

of each joint. We also use a spray fabric adhesive to connect the fabric to the shirt. More

secure connection methods should also be explored.

5.5.3 Other Applications for the Sensing Shirt

It is possible that our shirt could be used to monitor motions in other scenarios. The

easiest scenarios to expand to are monitoring other volleyball skills and monitoring motions

that are similar to the volleyball serves in other sports.

Our study focused on the volleyball serve but there are many other volleyball skills
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that can be monitored. Some volleyball skills such as passing and setting require both

hands/arms. To monitor these skills we would need to design a shirt that monitors both

arms instead of one. Designing a shirt that monitors both arms will also allow us to

improve our serve detector. We would be able to not only monitor the dominant hitting

arm but also the lead/tossing arm.

Our sensing shirt can also be extended to be used in other sports. The motion of

throwing is very similar to the volleyball serve. It should follow that we can use our

sensing shirt to monitor that motion. To test the sensing shirt’s capability of classifying

throwing, we can run a study with football and baseball players. Football quarterbacks and

baseball pitchers should be targeted for this study as they spend the most time perfecting

their throwing motion.

5.6 Conclusion

In this chapter, we presented a new sensing device that can be used to collect data

for volleyball serves. The sensing shirt is comfortable, unobtrusive, and washable. The

sensors are made from fabric and instead of wires, we use conductive thread. This allows

for the athlete to be able to perform as they would normally without being impeded by

the sensors. This makes it ideal for athletes who want to improve their skills. With our

sensing shirt, we collected data on 1000 volleyball serves from ten volleyball players. We

created a classifier for these serves that achieved 89% accuracy.
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Chapter 6

BreathEZ: Using Smartwatches to

Improve Choking First Aid

6.1 Introduction

According to the National Safety Council, choking is the fourth most likely cause of

unintentional injury death accounting for 4,800 deaths in 2015 [44]. Choking incidents

cause a medical condition known as cerebral hypoxia and is characterized by a lack of

oxygen to the brain and causes tissue damage and cell death in as little as four to six

minute [142]. Since the average emergency medical service (EMS) response time in the

US is 7.51 minutes, EMS services cannot be fully relied upon in choking incidents. The

quickest possible response would be from a bystander that has been trained in choking

first aid.

The rate of cardiopulmonary resuscitation (CPR) trained individuals in US counties

ranges from zero to fifteen percent [8] and standard CPR courses often include choking first

aid training. Even among those trained in CPR and choking first aid, many individuals

will not attempt to intervene during a choking incident due to a phenomenon colloquially

called the “bystander e↵ect”. The bystander e↵ect occurs when individuals in a group

believe that another onlooker must be more qualified than themselves to o↵er aid and so
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they refuse to intervene which often results in no aid being provided at all [50]. To help

combat this e↵ect, we hypothesize that many would be more comfortable and willing to

perform a life saving first aid procedure if they were to receive real-time guidance and

encouragement.

Ubiquitous computing devices such as the smartphone and smartwatch may provide an

ideal medium for delivering real-time, life saving first aid coaching to improve bystander

assistance. Current smart devices are equipped with an array of sensors (i.e. accelerom-

eter, gyroscope, etc.) which can be exploited to determine the quality of a bystander’s

performance of a particular first aid technique in order to provide instant feedback to

help and encourage them. Because smartwatches are unobtrusive, easy to use, and readily

available on the wrist, they may be particularly e↵ective tools to help bystanders perform

choking first aid.

We answer the following research questions in this chapter:

• How accurately can we classify abdominal thrusts?

• Does the assistance of a smartwatch application that provides live feedback to the

user increase the performance of the abdominal thrust portion of choking first aid?

• Does the assistance of a smartwatch application that provides live feedback to the

user increase an individual’s willingness to perform choking first aid?

To determine how accurately abdominal thrusts can be classified, we collected choking

first aid data and used a random forest to classify each abdominal thrust. We collected

data by performing three separate user studies, one of which consists of data collected

from only those with formal training in choking first aid. We then analyzed the data

using the Weka toolkit [91] and found that by using a random forest we could accurately

classify abdominal thrusts at a rate of 94.6%.

To understand if a smartwatch application that provides live feedback to the user in-

creases the performance of the abdominal thrust portion of choking first aid, we compared
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the performance of our participants based on whether they were given a smartwatch ap-

plication that provides feedback on choking first aid or shown a choking first aid tutorial

prior to being asked to perform choking first aid. To accomplish this we develop BreathEZ,

a smartwatch application that not only provides real time feedback to a user on choking

first aid, but also attempts to combat the bystander e↵ect and provide timely assistance

to an individual who is choking. To begin we asked each participant to give their best

e↵ort performing choking first aid. Then we split the participants of our final user study

into two groups, group 1 was given BreathEZ while group 2 was shown a video tutorial.

To quantify whether people are more willing to perform choking first aid with the use of

a smartwatch and decrease their fear of injuring the choking victim, we add questionnaires

to our user study. In these questionnaires we ask each participant to quantify their comfort

and willingness on a scale of one to five by administering a questionnaire before and

after they perform choking first aid. We compared how each group improved and found

that while both groups improved, group 1 saw greater improvement in their comfort,

willingness, and performance of choking first aid.

To date, a system that monitors and provides feedback on choking first aid has not been

developed. Abdominal thrusts combined with back blows is the recommended treatment

if someone is choking [3]. Zoll Medical corporation designed a handheld device for first

aid training using several accelerometers to monitor abdominal thrusts [190]. To improve

the performance of a CPR, Gruernerbl et al. [85] developed a smartwatch application that

provides live user feedback. Our BreathEZ smartwatch application combines these two

approaches by providing live feedback on the abdominal thrust portion of choking first aid.

It also goes beyond and provides recommended instructions for choking first aid. Other

types of first aid have also been improved with the use of smartwatches, smartphones, and

newly developed devices [171, 101, 123, 149]. An approach of using games to help improve

the performance of first aid has also been taken [34, 51].

Our contributions may be summarized as follows:
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• We introduce BreathEZ, a smartwatch application that improves choking first aid

by providing auditory and tactile feedback to the user and improves bystander per-

formance of abdominal thrusts as part of choking first aid.

• We conduct two user studies with the first comprised of 135 abdominal thrusts

from 13 individuals and the second comprised of 100 abdominal thrusts from 10

individuals. Short surveys were administered to gain insight on the viability of

using BreathEZ in real world scenarios.

• We present a model describing abdominal thrust performance using number and

quality of the abdominal thrusts which are used to coach the user while they are

performing choking first aid.

The remainder of this chapter is divided into six sections. We begin with a background

of choking first aid, a discussion of our pre-user study, and the feasibility of using a

smartwatch to assist in the performance of choking first aid. Following that we detail

our system design and the evaluation of that system, then continue on to our BreathEZ

application and the results of a user study in which it was used. Finally we discuss future

work and summarize with our conclusion.

6.2 Pre-User Study

To evaluate the usefulness and e↵ectiveness of our application, we performed a pre-user

study in which participants were asked to perform abdominal thrusts on a CPR training

manikin while wearing a Motorola 360 smartwatch. The CPR training manikin known as

the “Annie” training manikin [115], shown in Figure 6.1, is the standard training manikin

used in First Aid Training courses.
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6.2.1 Choking First Aid Background

Figure 6.1: CPR
Training Manikin

To prevent complications from choking incidents such as cere-

bral hypoxia, choking first aid should be administered immedi-

ately after the victim is confirmed to be choking and consent to

administer aid is given. From here we refer to the individual re-

ceiving choking first aid as the victim and the individual admin-

istering choking first aid as the first aid provider. The American

Red Cross recommends this treatment [3], which we quoted in

the following bullets, for choking victims who are conscious and

either standing or sitting:

• “After checking the scene and the victim, have someone call 911 and get consent to

perform first aid.”

• “Bend the victim forward at the waist and give five back blows between the shoulder

blades with the heel of one hand.”

• “Place a fist with the thumb side against the middle of the victim’s abdomen, just

above the navel. Cover your fist with your other hand. Give five quick, upward

abdominal thrusts.”

• “Continue sets of five back blows and five abdominal thrusts until the, object is forced

out, the victim can cough forcefully, breathe, or the person becomes unconscious.”

In this chapter, we focus on the abdominal thrust portion of choking first and discuss

back blows in the future work section. Abdominal thrusts are also known to many as the

“Heimlich Maneuver”. The “Heimlich Maneuver” was developed by Dr. Henry Heimlich

and was first published in 1979 [93].

The above recommended choking treatment is for adults and children large enough

that you can stand or kneel behind them. We do not address choking first aid for infants
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in our solution. We discuss the recommended treatment for infants in the related work

and how we can add this to our solution in discussion and future work.

6.2.2 Study Design

The study group participants were students recruited from the College of William and

Mary. No incentives were garnered by our participants for their participation in our study.

In total, we collected 105 recordings of abdominal thrusts from seven participants, three

female and four male. The average participant age was 21 with a standard deviation of 6.

Prior to this study, four participants had completed choking first aid training.

Pre-Study Questionnaire First, each user was asked to fill out a questionnaire with

the following questions:

1. Have you had abdominal thrust or Heimlich maneuver training? Yes or No. If yes,

why?

2. On a scale of 1-5, how comfortable are you performing abdominal thrusts?

3. Is the topic of the study (bystander abdominal thrusts) relevant for you personally?

Yes or No. If yes, why?

4. On a scale of 1-5, how willing are you to perform abdominal thrusts?

5. On a scale of 1-5, how familiar are you with a smartwatch?

We asked these questions to assess each participant’s previous experience with abdom-

inal thrust training and their willingness to perform abdominal thrusts.

Three Scenarios for Abdominal Thrusts Next, each study participant was asked to

perform abdominal thrust first aid in three di↵erent scenarios. We designed our scenarios

to test our users basic knowledge of abdominal thrusts and determine if their performance

and confidence improved when given instructions to follow. First we test their untrained
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knowledge of abdominal thrusts. Following this, we show them a tutorial and test their

performance again. Then we test their retention of the knowledge gained from the tutorial.

It takes each participant no more than ten minutes to complete the three scenarios. Each

participant performs five abdominal thrusts per scenario for a total of 15 abdominal thrusts

per individual per study.

1. Without training: In the first scenario, each participant was asked to perform ab-

dominal thrusts to the best of their ability without help from a video tutorial.

2. With the video tutorial: In the second scenario, each participant was shown a video

tutorial on the correct way to perform abdominal thrusts and was then asked to

perform abdominal thrusts.

3. With knowledge gained from training: In the third and final scenario, each partic-

ipant was again asked to perform abdominal thrusts without the aid of the video

tutorial.

Data Recording For our study, we chose to use a smartwatch as it is a consumer avail-

able device that allows the wearer to be hands free when performing first aid and will

also provide us with the ability to convey feedback to the user through the screen. We

recorded the accelerometer and gyroscope data from the smartwatch during the study

using WristSensors [108], an Android smartwatch application. The data was written to a

CSV file and stored on a connected Android smartphone. The average file size was 107

MB.

Post-Study Questionnaire Following these scenarios, the participant was asked to fill

out the following questionnaire:

1. Did the smartwatch irritate you? Yes or No. If yes, why?

100



Figure 6.2: Participant Willingness

2. On a scale of 1-5, how willing are you to perform abdominal thrusts using a smart-

watch with our app?

3. Did you feel that you performed abdominal thrusts better with the smartwatch? Yes

or No. If yes, why?

4. Would using the smartwatch with our app reduce your fear of injuring the person

you are performing abdominal thrust on? Yes or No. If yes, why?

5. If you had a smartwatch, would you install our app? Yes or No. If yes, why?

We use these questions to assess any changes in their comfort level and likelihood of

performing first aid on choking victims as well as their familiarity with smartwatches.

6.2.3 Results

With this user study, we gauge the e↵ectiveness of a smartwatch as a tool for assisting

in the performance of abdominal thrusts, if a smartwatch application would combat the

bystander e↵ect, and finally if it will increase a participant’s willingness to perform choking

first aid. Of our seven participants, six had no experience with smartwatches. After
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performing abdominal thrusts we surveyed all participants to determine if the smartwatch

was a cause for irritation. None of the participants reported irritation because of the

smartwatch and six of the seven participants would install a smartwatch application that

provided real time feedback during their performance of choking first aid if they owned a

smartwatch.

Figure 6.3: System Architecture for BreathEZ

We evaluated each participant’s comfort and willingness to perform abdominal thrusts

both with and without the aid of an instructional video and show the results in Figure

6.2. Here we see that no matter what level of training the participant came in with, no

participant was less willing to perform choking first aid and the mean level of willingness

increased by one. From this user study, we see that our participants are not only comfort-

able with using a smartwatch while performing choking first aid but also are more willing

to perform it. This shows that it is possible that a smartwatch application could help to

combat the bystander e↵ect and provide an individual with the knowledge and confidence

required to help save a life.
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6.3 System Design

In this section, we describe the design of BreathEZ. BreathEZ is a smartwatch appli-

cation that assists users in the performance of choking first aid by providing instructions

and feedback on abdominal thrusts. First, we discuss the System architecture. Then we

discuss each of the features we extract to detect an abdominal thrust event. Following this

we describe the metrics used to quantify how well our users performed each abdominal

thrust.

Figure 6.4: Abdominal Thrust Features

6.3.1 System Architecture

In order for BreathEZ to classify abdominal thrusts and provide feedback on choking

first aid, it must perform several tasks. First, BreathEZ must acquire data from the

smartwatch accelerometer. Next, the application extracts five features that will be used

to detect an abdominal thrust event. To detect this event, the features will be fed into

a random forest classifier and it will classify the event as either Abdominal Thrust (AT)

or Not Abdominal Thrust (NAT). Following this, for events classified as AT we calculate

two metrics: quality of thrusts and quantity of thrusts. These metrics allow us to provide
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feedback to the user.

6.3.2 Feature Extraction

We classify abdominal thrusts using accelerometer data from the Y axis. To do this, we

use a sliding window with a size of 1500 milliseconds that moves right by 750 milliseconds

each time. We set the size to be 1500 milliseconds by calculating the maximum length

of an abdominal thrust from our expert data to be 1000 millisecond and adding 50% to

give our non-experts some bu↵er room. Abdominal thrusts have a very distinct shape

due to the high maximum acceleration needed when performing a thrust. To model the

abdominal thrust we focus on this. An example of a single abdominal thrust with our

features labeled is shown in Figure 6.4.

To calculate our features, we define,

arg(xi) , i (6.1)

Then, on each sliding window, Input = [x1...xn], we calculate 5 features:

MaxAccel = max
i

(xi) (6.2)

MinLeft = max
xi2[x1,MaxAccel]

(�xi) (6.3)

MinRight = max
xi2(MaxAccel,xn]

(�xi) (6.4)

SlopeLeft =
MaxAccel +MinLeft

arg(MaxAccel)� arg(MinLeft)
(6.5)

SlopeRight =
MaxAccel +MinRight

arg(MinRight)� arg(MaxAccel)
(6.6)

6.3.3 Event Detection

We leveraged Weka Data Mining Software provided by the University of Waikato [91].

We fed the five features described above into the five standard data mining classifiers. We
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evaluated these classifiers on three metrics: precision, recall, and f-measure. The results

of the evaluation of these classifiers are shown in Table 7.1. From the results, we saw that

the random forest classifier outperformed the rest in all the metrics.

Classifier Precision Recall F-Measure

Random Forest 94.5 94.5 94.5

Random Tree 92.9 92.7 92.8

SMO 87.5 87.9 87.1

Nearest Neighbor 91.2 91.4 91.2

Logistic 88.8 89.1 88.6

Table 6.1: Classifier Evaluation

We evaluated our classifier using a data set combining both the expert and the pre-user

study data. Within this data set, we had a total of 105 abdominal thrust events. After we

partitioned the data we had a total of 853 windows to be classified as AT or NAT. Since

the data was partitioned into 1500 millisecond windows and we moved our sliding window

by 750 milliseconds, it is possible that a single abdominal thrust could fall in two di↵erent

windows. This caused some abdominal thrust events to be classified twice. Because of

this, we had a total of 194 windows whose ground truth is AT even though there were

only 105 abdominal thrust events recorded. We discuss how we handle the abdominal

thrusts that are repeated in two windows in the Quantity of Thrusts portion of the Metric

Calculation subsection.

6.3.4 Metric Calculation

To provide feedback to the user, we must calculate two metrics. First, we determined

the quality of abdominal thrusts by calculating a maximum acceleration from expert

data. Second, we counted the number of abdominal thrusts performed. This allowed us to

provide feedback to the user on their maximum acceleration after five abdominal thrusts

were performed.
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6.3.4.1 Quality of Thrusts

To the best of our knowledge, there is no known standard for the maximum acceleration

when performing abdominal thrusts. The goal of performing abdominal thrusts is to expel

the foreign object from the victims airway while attempting to prevent further injury to

the victim. Abdominal thrusts that have too low a maximum acceleration will not expel

the foreign object while those that have too high a maximum can cause injuries including

damage to internal organs and ribs [196, 67, 20]. Due to the lack of availability of a

recommended maximum acceleration, it can be di�cult for a first aid provider to gauge

these metrics and so to combat this, we asked six experts to perform abdominal thrusts

on the “Annie” [115] CPR manikin while we recorded their accelerometer data. The six

experts consisted of four CPR certified lifeguards and two CPR certified trainers. We

instructed each expert to perform five abdominal thrusts for a total training set of thirty

abdominal thrusts. The mean maximum acceleration for expert abdominal thrusts was

11.302 m/s2 with a standard deviation of 4.437 m/s2.

6.3.4.2 Quantity of Thrusts

For each window, we classified if an abdominal thrust had occurred. In the Event

Detection subsection, we discussed that a single abdominal thrust can appear in two

adjoining windows. To ensure that we did not count the same abdominal thrust twice, we

only count the abdominal thrusts such that

max(ATn)! = max(ATn�1) (6.7)

This allowed us to get an accurate count of abdominal thrusts so that we could provide

feedback after each fifth abdominal thrust.
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6.4 BreathEZ Application

We accomplish two goals with our BreathEZ application. First, we o↵er easy to follow

instructions for choking first aid and second, we provide feedback to the user on their

performance of the abdominal thrust portion of choking first aid. BreathEZ is implemented

on Android 8.0 Oreo. The smartphone application is approximately 3.5 MB and the

smartwatch application is about 9.5 MB. To make certain that feedback is provided to

the user in a timely manner, the functions that run the display, data processing, and

data logging are implemented in their own threads. When in use, BreathEZ samples the

accelerometer at 5 Hz.

We displayed the instructions for choking first aid in a manner that is both user friendly

and intuitive. We designed our smartwatch screens to show both a summary of the current

screen’s instruction and a more detailed explanation below that can be scrolled through.

These screens are shown in Figure 7.5.

Figure 6.5: Instructional Screens

Once the user gets to the “5 Abdominal Thrusts” screen as shown in Figure 7.5, we

start to give the user feedback on their performance of abdominal thrusts. The user is

given tactile and auditory feedback as the smartwatch counts five abdominal thrusts to

let the user know that each abdominal thrust is classified and logged. Once the user has

completed their 5 thrusts and they swipe to the following screen, the user is given feedback
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on the performance of their abdominal thrusts by providing textual feedback and changing

the background color of the screen. The di↵erent feedback screens are shown in Figure

7.6.

Figure 6.6: Feedback Screens

6.5 Post-User Study

In order to evaluate BreathEZ, we performed a post-user study in which participants

were asked to answer two questionnaires and perform abdominal thrusts on a CPR training

manikin [115], shown in Figure 6.1 while wearing a Motorola 360 smartwatch.

6.5.1 Study Design

The study group consisted of participants recruited from the College of William and

Mary and surrounding area. No incentives were given for participation in our study.

Overall, we collected 229 recordings of abdominal thrusts from ten total participants, eight

female and two male. The average participant age was 35.4 with a standard deviation of

14.6. Prior to this study, four participants had completed choking first aid training.

Pre-Study Questionnaire First, we ask each participant to answer the following ques-

tions:
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1. Have you had choking first aid and/or Heimlich maneuver training? Yes or No. If

yes, why?

2. On a scale of 1-5, how comfortable are you performing the choking first aid?

3. Is the topic of the study (choking first aid) relevant for you personally? Yes or No.

Why?

4. On a scale of 1-5, how willing are you to perform choking first aid?

5. On a scale of 1-5, how familiar are you with smartwatches?

6. Which is your dominant hand? Right, Left, Ambidextrous

Two Scenarios for Choking First Aid We designed our two post-user study scenarios

to complement the pre-user study scenarios. These scenarios again tested the participants’

basic knowledge of abdominal thrusts and determined if their performance and confidence

improved. First, we tested their untrained knowledge of abdominal thrusts. We did not

instruct them on any aspects of choking first aid, just handed them the CPR manikin

and allowed them to give it their best e↵ort. Following this, we divided the participants

into two groups. Group 1 was shown a Red Cross tutorial video [5] and then asked to

once again perform choking first aid. Group 2 was instructed to use BreathEZ app. It

took each participant no more than ten minutes to complete the two scenarios. Each

participant performed a minimum of five abdominal thrusts per scenario for a minimum

of ten abdominal thrusts per individual per study.

1. Without training: In the first scenario, each participant was asked to perform ab-

dominal thrusts to the best of their ability without any help.

2. With the video tutorial or BreathEZ: In the second scenario, each participant was

either shown a Red Cross video tutorial [5] on the correct way to perform choking

first aid or instructed to use the BreathEZ app. If the participant was shown the
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Red Cross video tutorial, they were asked to once again perform choking first aid.

If the user was instructed to use the BreathEZ app, they were asked to follow the

in app instructions.

Data RecordingWe recorded the accelerometer and gyroscope data from the smartwatch

during the study using our BreathEZ application. The data recording service was run in

the background on the smartwatch and did not e↵ect the performance of the user facing

BreathEZ app. The data was written to a CSV file and stored on a connected Android

smartphone. The average file size was 237 MB.

Post-Study Questionnaire

After performing abdominal thrusts, the participant was asked to answer the following

questions:

1. Did the smartwatch irritate you? Yes or No. If yes, why?

2. (a) On a scale of 1-5, how willing are you to perform choking first aid using a

smartwatch with our app?

(b) On a scale of 1-5, how willing are you to perform choking first aid after watching

the Red Cross Video Tutorial?

3. (a) Did you feel that you performed choking first aid better with BreathEZ? Yes

or No. Why?

(b) Did you feel that you performed choking first aid better after watching the Red

Cross Tutorial Video? Yes or No. Why?

4. (a) Would using the smartwatch with our BreathEZ app reduce your fear of injuring

the person you are performing choking first aid on? Yes or No. Why?

(b) Did watching the Red Cross video tutorial reduce your fear of injuring the

person you are performing choking first aid on? Yes or No. Why?
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5. If you had a smartwatch, would you install our app? Yes or No. Why?

6. Any other comments?

Questions two through four are modified depending on which group the participant is

in. Group 1 received questions 2a, 3a, and 4a. Group 2 received questions 2b, 3b, and 4b.

Question five is only given to group 1.

6.5.2 Results

In this subsection we discuss the results of the user study and the questionnaires. First

we quantify the two main objectives of BreathEZ: to classify abdominal thrusts in real

time and provide feedback to the user. Following that we discuss how our participants

willingness and fear to perform choking first aid changed after using BreathEZ.

6.5.2.1 Classification of Abdominal Thrusts

The five participants in group 1 used the BreathEZ app in their user study. BreathEZ

classified each participant’s abdominal thrusts in real time and then gave them feedback

on how well they performed them. Each abdominal thrust classification was monitored by

the individual giving the study. On each possible classification of an abdominal thrust, the

individual would mark whether or not the application correctly classified the abdominal

thrust. Among the five participants there were 55 possible abdominal thrusts classifi-

cations and BreathEZ correctly classified 50 of them in real time.So BreathEZ correctly

classifies abdominal thrusts in real time 90.9% of the time. When BreathEZ did not clas-

sify an abdominal thrust correctly, it did not register an abdominal thrust. When this

happened, the participant had to perform an extra abdominal thrust to get to the feed-

back screen of the application. This is an issue that should be resolved in later versions of

the BreathEZ app. We will discuss this more in the Discussion and Future Work Section.
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6.5.2.2 Abdominal Thrust Performance Feedback

We recorded the feedback that each of our participants received after performing ab-

dominal thrusts while using the BreathEZ app. We show this feedback in Table 6.2. From

Table 6.2, we saw that four of the five participants improved from their first performance

of abdominal thrusts to their second. Of the four participants that improved their perfor-

mance, we saw three that received the feedback, “Too Soft”, after performing their first set

of abdominal thrusts. Participants 4 and 5 were able to increase their feedback to “Just

Right”. Participant 3 again received the feedback “Too Soft” but was able to raise their

max acceleration and get closer to the “Just Right” feedback. The final participant who

showed improvement was able to better his feedback from “Too Hard” to “Just Right”.

From this study we saw that after being given feedback, most of our participants were

able to improve their performance in abdominal thrusts.

The participant who did not improve their BreathEZ feedback, participant 5, began

with a “Just Right” feedback and moved to “Too Soft”. It is worth noting that this partic-

ipant was trained as an EMT-Basic and found the “CPR specific manakin is painful to do

abdominal thrusts at the appropriate force”. We used the CPR specific manakin for our

study, since after contacting two local fire stations, one hospital, and two CPR training

facilities in the nearby area we found that they only used the CPR specific manakin.

Participant # 1st Feedback 2nd Feedback

1 Just Right Too Soft

2 Too Hard Just Right

3 Too Soft Too Soft

4 Too Soft Just Right

5 Too Soft Just Right

Table 6.2: Group 1 Feedback

To understand how our users felt about their improvement in their performance we

included a question in the questionnaire for all ten participants. Of the five participants
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that were shown a tutorial video, we saw that three of five believe their performance

improved after being shown the tutorial video. A summary of their comments showed that

they found the instructions helpful but they still could not tell if they were performing

choking first aid correctly. More specifically their comments consisted of “instructions

helped, I had never heard of back blows”, “its good to know what to do”, and “I still don’t

know if I’m doing it right”. Of the five participants that were allowed to use BreathEZ,

we saw that all five found believed their performance improved. Their comments were

centered around the feedback they received saying that it was “helpful to have feedback”,

“it tells you what to do and that you are doing it right”, and “it helped to know how well

I was doing”. One participant even commented on their personal improvement by saying

“it told me to thrust harder and I was able to get a just right the second time”.

6.5.2.3 Willingness and Fear

To combat the bystander e↵ect, we focus on two factors. The first is our participants’

perceived willingness to perform choking first aid. The second is the fear of injuring

the victim of choking while performing choking first aid. To gauge this, we asked three

questions relating to this in our pre and post questionnaires.

We began by asking all participants to rate their willingness to perform choking first

aid on a scale of one to five before and after training was given. These results are shown in

Figure 6.7. On average, before any training was given, the average willingness was 2.4 out

of 5.0. After each participant performed choking first aid, we questioned them again to

understand any changes. Those who were asked to watch a tutorial video, participants 2-6,

had an average willingness of 2.8. Those who were asked to use BreathEZ, participants 1

and 7-10, had an average willingness of 4.2. From this we can clearly see that while each

average willingness increased, those who were asked to use BreathEZ had a much higher

increase in willingness.

After performing choking first aid, we asked participants if their fear of injuring a

choking victim had decreased. Of those who were asked to watch a video tutorial, three
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Figure 6.7: Post-User Study Willingness

of five said that their fear had not been reduced, citing that they were not sure that they

could perform choking first aid correctly. More specifically the commented “I feel slightly

better now that I know what I’m doing”, “I don’t want to hurt anyone”, and “What if I

do it wrong”. Of those who were asked to use BreathEZ, all five participants responded

that their fear had been lessened. A summary of their comments is as follows: “I would

be less scared because it would tell me if I was thrusting too hard”, “it told me I was in

the just right zone”, and “it made me more confident in my skills”.

6.6 Discussion and Future Work

6.6.1 Angle of Abdominal Thrusts

To create a better abdominal thrust feedback system for the user, the angle of the

abdominal thrust can be measured. This is essential because the angle of the abdominal

thrust contributes to the expulsion of the foreign object [87]. This feedback should be

given before the user begins administering the abdominal thrusts to ensure that the best

care is provided. The BreathEZ app should incorporate this by guiding the user to the

correct angle with either verbal or tactile feedback. This will allow for a more complete
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BreathEZ system.

6.6.2 Feedback After Each Abdominal Thrust

In the current implementation of the BreathEZ application, the user only receives

feedback after all five abdominal thrusts are complete. For a more complete user experi-

ence, two factors should be considered. First, it can be beneficial to the user to receive

feedback on their abdominal thrusts performance after each abdominal thrust. This can

be implemented by developing a training mode and/or giving the user access to analytics

after performing choking first aid. Second, it may not take all five abdominal thrusts to

expel the foreign object. If this is the case the user should be able to either manually

move on from the abdominal thrusts portion of BreathEZ and/or BreathEZ should time

out after a set threshold of time if it has not registered the performance of any abdominal

thrusts.

6.6.3 Back Blows

Choking first aid requires the first aid provider to be able to perform two maneuvers:

back blows and abdominal thrusts. In our solution, we only address abdominal thrusts.

”Back blows are given with the heel of your hand between the victim’s shoulder blades” [3].

If the first aid provider wears a smartwatch on the wrist of the hand that they are delivering

back blows, it is possible that we can also detect, classify, and give feedback on these

motions. Kautz et al. [107] are able to detect sports motions based on sensing an impact

between a sports ball and a hand or arm by having the subject wear an accelerometer on

their wrist. Here we will be tackling a similar challenge by attempting to sense the impact

between a subject’s hand and the back of a manikin. To provide feedback on the back

blows portion of choking first aid, we can measure the max acceleration to determine if

the first aid provider is within a range of the average max acceleration data collected from

experts.
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6.6.4 Choking First Aid for Infants

We focus on choking first aid for adults but choking first aid procedures for infants

should also be addressed. The American red cross recommends this treatment [4], which

we quoted in the following bullets, for infants who cannot cough, cry, or breathe:

• “After checking the scene and the victim, have someone call 911 and get consent to

perform first aid.”

• “Give firm back blows with the heel of one hand between the infant’s shoulder

blades.”

• “Give five chest thrusts. Place two or three fingers in the center of the infant’s chest

just below the nipple line and compress the breastbone about one and half inches.

Make sure to support the head and neck securely when giving back blows and chest

thrusts. Keep the head lower than the chest.”

• “Continue sets of five back blows and five chest thrusts until the object is forced

out, infant can cough forcefully, cry or breathe, infant becomes unconscious.”

A complete choking first aid application should also address this scenario. At this point,

our app does not address this scenario but the movements described can be monitored.

Back blows can be monitored as described above but the max acceleration should be set

by expert data where back blows are performed on an infant manakin. To monitor the

chest thrusts, we look to Gruenerbl et al. [85] as chest thrusts for infants are similar to

measuring the depth and frequency of CPR chest compression.

6.7 Conclusion

In this chapter we presented BreathEZ, the first smartwatch application that classifies

and provides feedback in real time on choking first aid. BreathEZ identifies abdominal
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thrusts, measures the peak acceleration, and provides feedback on the quality of the ab-

dominal thrust to the user. This application is shown to not only increase the user’s

performance of choking first aid, but to also combat the bystander e↵ect by increasing

a user’s willingness to perform choking first aid and decreasing their fear of injuring a

choking victim. This is important because choking leads to nearly 5,000 deaths per year

in the US. While EMS response is optimal for the victim, it does not always occur in less

than six minutes and within that time frame brain damage can occur. Using BreathEZ to

help combat the bystander e↵ect and increase the quality of performance of choking first

aid can help to bring the number deaths due to choking down.
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Chapter 7

BBAid: Using Smartwatches to

Improve Back Blows

7.1 Introduction

In the event of a choking emergency, the flow of oxygen must be restored to the body

or hypoxia will begin to occur. Hypoxia is a condition in which the supply of oxygen in

the body is insu�cient to sustain normal bodily functions. Within a few minutes, this can

cause irreparable damage to an individual’s brain, vital organs, and nervous system [142].

Within six to eight minutes of the onset of hypoxia, it is likely that organ systems will

fail and brain death will occur. In a study of the local choking incidents in the San Diego

County Medical Examiner’s database, there were 19 incidents that occurred in restaurants

in adults over a ten year period. Of the 19 incidents, there was only one attempt by a

bystander to perform choking first aid [56]. In the US, choking accounted for 4,800 deaths

in 2015 and 5,051 deaths in 2017 making it the fourth leading cause of unintentional injury

death according to the National Safety Council’s 2015 and 2017 Injury Facts [43, 44].

Basic choking first aid training courses are readily available at community centers,

hospitals, colleges, some workplaces, and even online. Many first aid training courses

include a module on choking first aid and the percentage of trained individuals in US
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counties varies between zero and fifteen [8]. This training prepares bystanders to react to

and provide immediate treatment to a choking victim. When choking first aid is performed,

there is a 66% chance the victim will survive [28]. One barrier to a choking victim receiving

non-EMS aid is a psychological phenomenon known as the “bystander e↵ect”. This e↵ect

presents itself when individuals who are in a group environment do not help someone in

need of aid because of the belief that someone else in that group is more qualified than

they are. In the end, it is likely that no one will intervene as the entire group believes

that there is someone more qualified to help [50].

In this chapter, we answer the following research questions:

RQ1: How can we accurately classify back blows with a wearable device?

RQ2: What kind of feedback should we provide to enhance the performance of back

blows?

RQ3: How do we combat the bystander e↵ect?

To determine how accurately we can classify back blows with a wearable device we

perform a user study in which 109 back blows were performed by ten participants. Then,

we extract five features to describe a single back blow from the Z-Axis of smartwatch

accelerometer data and feed it into a random forest classifier. From this, we see a classi-

fication accuracy of 93.5%.

To understand what kind of feedback we should provide to enhance back blows, we

calculated two metrics, developed a smartwatch application called BBAid, and conducted

a user study. First, we calculated two metrics: the quality and quantity of back blows.

These metrics are then added to the feedback system in the BBAid application. BBAid

not only provides instructions on how to perform choking first but also provides feedback

to the user on how well they performed back blows. Then we perform a user study in

which our participants filled out two questionnaires and performed choking first aid. In

this user study, our participants were split into two groups: Group 1 was given a video

tutorial and Group 2 was instructed to use the BBAid application.
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To understand if BBAid can help to combat the bystander e↵ect, we asked our par-

ticipants to answer questions about willingness, comfort, and fear of performing choking

first aid on a choking victim. We compared our participant’s responses to these questions

based on their randomly selected group, previous knowledge, and choking first aid back-

ground. We found that all of our participants regardless of group, previous knowledge, or

skill were more willing and comfortable with performing choking first aid after receiving

training.

When someone is choking, the American Red Cross [3] recommends a series of back

blows and abdominal thrusts. To the best of our knowledge, to date, a system for the

back blow portion of choking first aid scenarios that provides instructions and feedback has

not been developed. Watson and Zhou [199] developed an application for the abdominal

thrust portion. Zoll Medical Corporation [190] and Dechoker LLC [52] developed devices

that could be used in choking first aid scenarios. Zoll Medical Corporation solely focuses

on the abdominal thrusts and does not consider back blows. Dechoker LLC takes a new

approach to choking first aid that does not involve abdominal thrusts or back blows. CPR

feedback on smartwatches and other devices has been developed and is being deployed

into training facilities [182, 86, 1]. Frequently, choking first aid is taught in CPR first aid

courses which gives us the opportunity to leverage the systems already in place in training

facilities. First aid skill retention is a known problem [92, 60, 129] and it has also been

shown that choking first aid skills decline more rapidly than others [7]. We address this

decline in skills and knowledge by providing feedback and instructions at the time choking

first aid would need to be performed.

Our contributions are summarized as follows:

• We are the first to extract features from smartwatch accelerometer data and use it

to accurately classify back blows. We selected five features to describe a single back

blow. We feed these five features into a random forest classifier and see a 93.5%

accuracy.
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• We are the first to provide insightful feedback to enhance back blow performance.

We calculate two metrics: quality and quantity of back blows that are used to provide

feedback. In our final user study, all of our participants experienced an increase in

performance while using BBAid.

• We propose and develop the first smartwatch application that incorporates our fea-

tures, classifier, and feedback to combat the bystander e↵ect. All of our participants

saw an increase in their willingness to perform choking first aid when using the given

choking first aid instructions.

The remainder of this chapter is structured as follows. First, we will discuss our and

preliminary study with a background on choking first aid. Second, we will discuss and

evaluate our system design and BBAid. Then we will describe our Post-User Study and our

results from it. Finally, we will wrap up with a discussion of future work and summarize

with a conclusion.

7.2 Preliminary Study

We want to evaluate whether a smartwatch application that provides feedback will

improve choking first aid. To do this, we performed a user study where we asked our

participants to wear a smartwatch and to perform choking first aid on a CPR training

manikin. Based on the above, we formulated the following study questions:

SQ1: What is the user awareness of proper choking first aid?

SQ2: How does user awareness improve with the addition of live feedback?

7.2.1 Study Setup

First, we will provide a background on choking first aid. We follow the method rec-

ommended by the American Red Cross. We continue by describing our user study in
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terms of the equipment used, the parameters of the study, and the demographics of our

participants.

Choking First Aid Background: The American Red Cross recommends the following

quoted treatment for choking victims [3]:

• “After checking the scene and the victim, have someone call 911 and get consent to

perform first aid.”

• “Bend the victim forward at the waist and give five back blows between the shoulder

blades with the heel of one hand.”

• “Place a fist with the thumb side against the middle of the victim’s abdomen, just

above the navel. Cover your fist with your other hand. Give five quick, upward

abdominal thrusts.”

• “Continue sets of five back blows and five abdominal thrusts until the object is forced

out, the victim can cough forcefully, breathe, or the person becomes unconscious.”

Equipment: The smartwatch application used to collect accelerometer data was imple-

mented on a Motorola 360 smartwatch [140]. This application was connected to a Google

Pixel smartphone [78] where the data files were stored. We tested a preliminary mechanism

for choking first aid where we observed the participants’ response to real-time feedback

during abdominal thrusts [199].To provide feedback, we used a threshold based method

on smartwatch accelerometer data to detect participant thrust strength. We provide no

feedback for back blows.

Parameters: Our study began with a simple questionnaire in which we gauge each

participant’s knowledge, willingness to perform choking first aid, and their familiarity with

smartwatches. Then we asked each user to wear a Motorola 360 smartwatch and perform

choking first aid on a CPR manikin [115], shown in Figure 6.1 that was shown in the

previous Chapter. During this part of the study, we randomly split the participants into

two groups. Group 1 was shown an educational video from the American Red Cross [5].
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Group 2 was given a smartwatch application that provided choking first aid instructions

and included our preliminary mechanism for real-time feedback on abdominal thrusts.

Following this, we gave each participant a follow-up questionnaire to determine if their

willingness to perform choking first aid and comfort with a smartwatch had changed as

well as a free response question for any additional feedback they had. Ground truth for this

study is collected by having a researcher who is observing the study log the time at which

each back blow started. Ground truth labels were back blow and not back blow. In this

study, motions that were classified as not back blows include abdominal thrusts, picking

up and putting do the manikin, repositioning the manikin, any actions or adjustments

made between back blows or abdominal thrusts.

Demographics: We recruited the participants in our study from the College of William

and Mary and the surrounding area. In total, we had ten participants. Of our participants,

eight were female and two were male. In terms of age, on average, the participants were

35.4 with a standard deviation of 14.6. Prior to this study, only four participants had

some form of first aid training.

7.2.2 Study Results

We asked our participants two questions regarding smartwatches. The first question

was “On a scale of 1-5, how familiar are you with smartwatches?”. The second question was

“Did the smartwatch irritate you? Yes or No. If yes, why?”. We asked these questions to

determine how familiar our users were with a smartwatch and if it could potentially irritate

them when performing choking first aid maneuvers. On a scale of 1-5, our participants

averaged a 1.8 in terms of smartwatch familiarity with a standard deviation of 1.3. Since

our subjects are not highly familiar with smartwatches, it follows that if they do well

with the application it should be easy for new adopters to use. Only one of our ten

participants found the smartwatch to be irritating stating that “It was a bit big”. From

this, we conclude that a smartwatch will make a good tool for choking first aid as it is not

irritating to users.
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Figure 7.1: Willingness to Perform Choking First Aid

We compare our participants’ willingness to perform choking first aid before and after

performing choking first aid. Before beginning, we asked our participants to rate their

willingness to perform on a scale of one to five. We repeated this question after they

had performed choking first aid and these results are shown in Figure 7.1. Participants

one through five were shown the Red Cross video and participants six through ten were

given the smartwatch app. From this figure, we clearly see that those who received the

application had a greater increase in willingness to perform choking first aid. On average

the participants who were shown the video had a willingness increase of 2.8 while those

who were given the application had a feedback increase of 4.2.

Part of our study included a short survey in which the user could provide open-ended

answers to questions. Of our ten participants, four mentioned back blows. More specifi-

cally, their comments were as follows:

• “The instructions helped. I had never heard of back blows.”

• “Please add feedback on the back blows as well.”

• “You should also tell me when I am doing back blows correctly.”
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• “I only knew of the Heimlich maneuver before... thanks for informing me about back

blows.”

These comments fall into two categories: a lack of knowledge about back blows and request

for a feedback system similar to the one used for abdominal thrusts. The existence and

combination of these two deficiencies demonstrates that the users feel the need for live

feedback to help improve their performance.

We also look to see whether our participants’ performance of abdominal thrusts im-

proved with the addition of feedback. All five participants saw improvements in the

performance of abdominal thrusts. Feedback for back blows was not given in this study.

Following our hypothesis that the addition of feedback improves performance, only one

participant improved in the performance of back blows. The common issue in the per-

formance of abdominal thrusts and back blows is that the participant does not provide

enough force when performing the maneuvers. We saw that providing feedback helps the

participant to increase the force provided for abdominal thrusts. It follows that this will

also be the case for back blows.

7.3 System Design

In this section, we describe the design of BBAid, an Android smartwatch application

that assists the user in their performance of choking first aid by providing them with

instructions and feedback on their performance. We begin by describing the features

used, then we explain how we use those features to detect a back blow event. Finally, we

show how we calculate the metrics we use to provide feedback on the user’s performance

of back blows.

7.3.1 System Architecture

Here, we describe the pipeline for the classification and quality metric calculation of

the back blow portion of choking first aid. First, we must acquire accelerometer data from
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Figure 7.2: System Architecture of BBAid

a smartwatch accelerometer. Next, we extract 5 features that will be used in our classifier

to classify an event as either a Back Blow (BB) or Not Back Blow (NBB). Finally, we

define and calculate two metrics that are the basis for the feedback provided to the user.

Figure 7.3: Back Blow Features
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7.3.2 Feature Extraction

In Figure 7.3 we show an example of a single back blow event. As seen in the figure,

back blows have a very distinct shape due to the nature of the change in direction of the

acceleration. To classify back blows, we use accelerometer data in the Z-axis. If the Z-axis

acceleration exceeded a threshold, Ethreshold, the next local minimum is sought. Ethreshold

is defined as the maximum of the acceleration peaks of the ground truth data collected in

the Preliminary Study. The value of Ethreshold is 3.083. We then draw a window of size

.85 seconds equally spaced around the minimum. The size of the window is determined

by the size of the longest back blow from the training data collected in the Preliminary

Study with an additional 50% of that time added. In Figure 7.3, we label the features we

calculate as follows:

First, we define:

arg(xi) , i (7.1)

Then, on each sliding window, Input = [x1...xn], we calculate 5 features:

MinAccel = min
i
(xi) (7.2)

MaxLeft = min
xi2[x1,MinAccel]

(�xi) (7.3)

MaxRight = min
xi2(MinAccel,xn]

(�xi) (7.4)

SlopeLeft =
MinAccel +MaxLeft

arg(MinAccel)� arg(MaxLeft)
(7.5)

SlopeRight =
MinAccel +MaxRight

arg(MaxRight)� arg(MinAccel)
(7.6)

7.3.3 Event Detection

To detect each back blow event we fed our five features that are described above into

several classifiers that were successfully used in other sensing-based activity classification
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Classifier Precision Recall E↵ort

Random Forest 93.5 93.5 low

Random Tree 91.4 91.4 low

SMO 93.7 93.5 mid

K - Nearest Neighbor 93.5 93.5 high

Logistic 90.9 90.9 low

Table 7.1: Evaluation of Multiple Classifiers

research [30, 29, 45, 42]. These classifiers were random tree, random forest, SMO (Sequen-

tial minimal optimization), KNN (K-Nearest Neighbor), and Logistic Regression. To test

these classifiers, we leveraged the Weka Data Mining Software provided by the University

of Waikatao [91]. We evaluated these classifiers on three metrics: precision, recall, and

the e↵ort it takes to run the classifier and the results of our evaluation are shown in Table

7.1. From these results, three of the five classifiers outperformed the rest in terms of pre-

cision and recall: Random Forest, SMO, and KNN. These classifier exhibit high precision

and high recall meaning that these algorithms return a high number of correctly classified

back blow instances. Since we had high precision and recall for three algorithms, we also

evaluated them on the amount of e↵ort it takes to train and use each algorithm. This

is shown in the e↵ort column in figure 7.1. We chose random forest for use in BBAid

because it exhibits the highest precision and recall while being in the low e↵ort category.

We evaluated our classifiers using the Preliminary Study data. In this data set, we have

a total of 109 back blow events.

7.3.4 Metric Calculation

We calculate two metrics to gauge user performance of back blows: quantity of back

blows and quality of back blows. First, we determine the quality of back blows by com-

paring the minimum acceleration of each user’s back blows to the average minimum ac-

celeration of our expert data. Second, we calculate the number of back blows by keeping

a running total of the number of back blows performed.

128



Figure 7.4: Comparison of Expert and Participant Back Blow Accelerations

When performing back blows it is important for the user to provide enough accelera-

tion to e↵ectively dislodge the object. Due to the lack of availability of a recommended

acceleration for an individual back blow, we asked five experts to perform back blows

on a provided “Annie” CPR manikin [115] while we recorded their accelerometer data.

The five experts consisted of three CPR certified lifeguards and two emergency medical

technicians (EMT). We instructed each expert to perform ten back blows for a total of

fifty back blows. The mean minimum acceleration was -14.63 with a standard deviation

of 2.591. There were three outliers in the data set that were removed. The minimum

acceleration was -17.02 and the max acceleration was -12.32. We compare the expert data

to the data collected in the preliminary user study and show this in a histogram in figure

7.4. In this figure, it is easy to see the di↵erence between the expert and participant data.

The expert data falls mostly between -12 and -18 while the participant data is further

spread out from three to -20.
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(a) (b) (c) (d)

Figure 7.5: BBAid Instructional Screens

7.4 BBAid Application

BBAid provides two functions. First, it provides simple, clear, and concise easy instruc-

tions for choking first aid. Second, it provides feedback to the user on their performance of

the back blows. BBAid is implemented on Android 8.0 Oreo. The smartphone application

is approximately 4.3 MB and the smartwatch application is about 3.5 MB. BBAid samples

the accelerometer and gyroscope at a rate of 5 Hz. The display, data processing, and data

logging are implemented in their own threads so that feedback is provided to the user in

real-time.

7.4.1 Instructions

Instructions for BBAid must be clear and concise because of the limited space available

on smartwatch screens. Our instructions must also be simple and easy to understand for

the user. Because of this, we designed our smartwatch screens to show both a title and

description. The title is an overall summary of the current screen’s instruction. The

description is a more detailed explanation. When a user first opens BBAid, they are

greeted with a welcome screen shown in Figure 7.5a. Following this, the application gives

instructions based on the Red Cross recommended choking first aid procedure [3]. To
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navigate through the pages, the user swipes left as they are finished with each screen to

proceed.

The first step in the Red Cross procedure is to alert the EMS services. The first

instructional screen in BBAid, shown in Figure 7.5b, titled “Call 9-1-1” reminds the user

to “Send someone to call 9-1-1”. Next, it is important to begin first aid maneuvers. The

Red Cross recommends beginning with 5 back blows, following with 5 abdominal thrusts,

and then repeating that process until the foreign object is either expelled or the person

becomes unconscious. Illustrating this, the next two screens shown in Figure 7.5c and

Figure 7.5d give an overview of the maneuver to be performed along with a more detailed

description. For back blows, BBAid displays “5 Back Blows” with a description of “Lean

person forward and give 5 back blows with the heel of your hand”. For abdominal thrusts,

it displayed “5 Ab Thrusts” with a description of “Place the thumb side of your fist just

above the navel. Grab your fist with your other hand. Give 5 quick, upward abdominal

thrusts”. Altogether these instructional screens give the user reminders for the correct

way to perform choking first aid as a whole.

(a) (b) (c) (d)

Figure 7.6: BBAid Feedback Screens
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7.4.2 Feedback

BBAid utilizes three types of feedback that can be given through a smartwatch: tactile,

auditory, and visual. When the user swipes left to move on from the back blow instruc-

tional screen, they are shown the first feedback screen. This screen is shown in Figure 7.6a

and counts the number of back blows that the user has performed. For each logged back

blow, the smartwatch provides tactile feedback in the form of a 150 millisecond vibration

and a beep sound on smartwatch devices with a speaker. Once the user has completed

and logged five back blows, BBAid averages the minimum acceleration of the five back

blows and show the user one of three force feedback screens.

We break the feedback into three options: too soft, too hard, and just right. We based

the colors used for each screen on the stoplight coding method [90]. The stoplight coding

method has been shown to be e↵ective at promoting understanding of the meaning of the

information presented [12, 111, 165]. The stoplight coding method is a method that maps

red to stop, yellow to caution, and green to go. We use this method in a similar mapping.

When the back blow average is too soft we provide the user with the yellow screen shown

in Figure 7.6b. When the back blow average is too hard we provide the user with the red

screen shown in Figure 7.6d. When the back blow average is just right we provide the

user with a green screen shown in Figure 7.6c.

We use the data collected from the experts to set the thresholds for each option. In

this case, we removed the three outliers from the data set. This leaves us with a maximum

of -12.329 and a minimum of -17.026. We used these values as the max and minimum for

our just right option. All values lesser than -17.026 will be classified as too hard and all

values greater than -12.329 will be classified as too soft.

7.5 User Study

In this section, we evaluate BBAid and its e↵ects on our participants’ performance of

back blows and their willingness to perform choking first aid. To do this we performed a
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user study in which we asked our participants to answer two questionnaires and perform

choking first aid on a manikin. Given this, we formulate the following study questions:

SQ1: How does real-time feedback on back blows improve the user’s performance and

technique?

SQ2: Can our application combat the bystander e↵ect in relation to choking first aid?

7.5.1 Study Setup

In the study setup, we first give a background of choking first aid. Then, we describe

the equipment we use in this user study. Next, we will discuss the parameters of the study.

Finally, we will discuss the demographics of our participants.

Choking First Aid Background: We followed the same recommended treatment in this

user study as we followed in the Preliminary Study. This is the American Red Cross

recommended treatment for victims of choking [3]. We quote the method as follows:

• “After checking the scene and the victim, have someone call 911 and get consent to

perform first aid.”

• “Bend the victim forward at the waist and give five back blows between the shoulder

blades with the heel of one hand.”

• “Place a fist with the thumb side against the middle of the victim’s abdomen, just

above the navel. Cover your fist with your other hand. Give five quick, upward

abdominal thrusts.”

• ‘Continue sets of five back blows and five abdominal thrusts until the object is forced

out, the victim can cough forcefully, breathe, or the person becomes unconscious.”

Equipment: During our study, participants wore an LG Urbane [121] Android smart-

watch on the wrist of the hand that they would use to perform back blows. We collected
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accelerometer and gyroscope data from the smartwatch and sent these measurements wire-

lessly over Bluetooth to a Google Pixel Android Smartphone [78]. Our study also required

the user to perform choking first aid procedures on a first aid manikin. While there are

many first aid manikins to choose from, we selected the “Annie” CPR manikin [115] as it

is readily available at most first aid training facilities.

(a) Pre-User Study (b) Video Post-User Study (c) BBAid Post-User Study

Figure 7.7: User Study Questionnaires

Parameters: We conducted our study in a lab setting. When our participants entered

the lab, they were asked to fill out some demographical information and a Pre-Study Ques-

tionnaire. The questionnaire is shown in Figure 7.7a. With this questionnaire, we attempt

to gauge each participant’s base knowledge of choking first aid and their willingness to

perform it. Following this, we began the portion of the user study in which the partici-

pants performed choking first aid. Each participant was given two scenarios. In Scenario

1, we asked the participant to use any previous knowledge to perform choking first aid

on the manikin. For Scenario 2, we randomly divided our participants into two groups.

Group 1 served as our control group and was shown this training video [5] provided by

the American Red Cross. Group 2 was instructed to open the BBAid application on the

smartwatch and follow the instructions provided in the app. Finally, all participants were

asked to fill out a Post-Study Questionnaire to gauge how their willingness to and fear
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of performing choking first aid changed. Group 1 was asked to fill out the questionnaire

shown in Figure 7.7b and Group 2 was asked to fill out the questionnaire shown in Figure

7.7c.

Demographics: We recruited our study participants from the College of William and

Mary and the surrounding areas. Our user study consisted of 16 participants: 12 male

and 4 female. On average the participants were 28 years old with a standard deviation of

4.6 years. Overall our participants had an average BMI of 25.53 and a standard deviation

of 4.5. All participants were right-handed. Prior to this study, only two participants had

first aid training.

7.5.2 Study Results

7.5.2.1 Back Blow Classification

In this study, there were 80 possible real-time back blow classifications for BBAid to

make. Of those 80 possible classifications, BBAid classified 75 in real-time achieving a

classification accuracy of 93.75%. Of the five that were not correctly classified, three were

recognized after a few seconds of lag time and two were not recognized. Post analysis of

the two unclassified back blow events revealed that these back blows did not reach the

maximum acceleration required by the application.

7.5.2.2 User Performance

We compared our two groups in terms of three metrics from the post-training sce-

nario: simulating calling 9-1-1, manikin position, and max acceleration on their abdominal

thrusts. We show the correct manikin position in Figure 7.8. For Group 1, we saw that

two individuals simulated calling 9-1-1, six participants held the manikin horizontally, and

only one made it to the recommended back blow acceleration. For Group 2, we saw that

eight individuals simulated calling 9-1-1, eight participants held the manikin horizontally,
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and only six made it to the recommended back blow acceleration. These results are shown

in the Scenario 2 column of Table 7.2.

Scenario 1 Scenario 2

Group # 9-1-1 MP Max Accel 9-1-1 MP Max Accel

1 3 1 1 2 6 1

2 1 1 0 8 8 6

Table 7.2: Participant Performance

Figure 7.8: Correct Manikin Position

We also compared each group’s improvement between the first and second scenario.

In Group 1, we saw that one less participant simulated calling 9-1-1, five additional par-

ticipants positioned the manikin correctly and no additional participants were within the

recommended maximum acceleration range after video training. In Group 2, we saw that

seven additional participants simulated calling 9-1-1, seven additional participants posi-

tioned the manikin correctly and six additional participants were in the recommended

maximum acceleration range when using BBAid. These results are shown in Table 7.2.

In our Post-Study Questionnaires, we asked each of our participants if they believed

they had performed choking first aid better with either the tutorial video or BBAid and
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why. This was asked in question three of both Post-Study Questionnaires shown in Figures

7.7b and 7.7c. In Group 1, seven participants believed that they performed choking first

aid better. In Group 2, all eight participants believed that they performed choking first

aid better. We also opened up this question for a free response as to why they felt they had

performed better or worse. Overall, Group 1’s responses were centered around instructions

and reminders of what they knew before. More specifically:

• “Because there were details I had forgotten from when I was trained.”

• “Clear and concise directions on what to do.”

• “I now know the correct way to perform the back blows and abdominal thrusts.”

In summary, Group 2’s responses reflect the feedback they received for back blows. More

specifically:

• “The feedback helped. I was able to adjust to it.”

• “The feedback helped me get to a green screen. I feel like I could save someone.”

• “Easy to follow instructions. Feedback is a great addition”

7.5.2.3 User Knowledge

In our study, two participants had prior first aid training. The first was trained and

certified as a basic level emergency medical technician (EMT-B) from 2009 through 2012.

The second was certified as a lifeguard in 2007 and in American Red Cross first aid in

2012. Both of these participants were randomly assigned to Group 1. The EMT-B trained

participant was the only participant in Group 1 to make it to the recommended maximum

acceleration. This participant correctly performed all of the metrics we measured except

they did not position the manikin correctly in the first scenario. The American Red Cross

first aid trained participant did simulate calling 9-1-1 pre and post-training but they

did not reach the recommended max acceleration in either scenario and did not position
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the dummy correctly in the first. From this, we see that previous training can improve

performance in a choking first aid scenario but even those with training can use a reminder

of the correct choking first aid procedure.

Of our sixteen participants, four did not attempt to perform first aid on the manikin

in Scenario 1. These participants did not take the step to simulate calling 9-1-1 or even

approach the manikin because they were not comfortable and lacked a basic knowledge

of first aid. When randomly divided into groups, three of these were in Group 1 and one

was in Group 2. Of those in Group 1, after the training video, none of the three simu-

lated calling 9-1-1, two positioned the manikin correctly, and none got to the recommend

acceleration. The participant in Group 2 simulated calling 9-1-1, positioned the manikin

correctly, and made it to the recommended acceleration. This suggests that since BBAid

provides instructions in real-time there is less chance for a step to be forgotten. Since

BBAid provides feedback to the user as they perform back blows, our participants with-

out any prior training were able to perform at the recommended maximum acceleration.

This suggests that real-time feedback can help even those that have not been trained for

an emergency situation.

Figure 7.9: Choking First Aid Willingness
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7.5.2.4 User Feedback

To combat the bystander e↵ect in respect to choking first aid, we gauge how our users

felt about performing back blows prior to and after training. We do this with questions

numbers two and four in the Pre-Study Questionnaire 7.7a and question numbers two

and four in the Post-Study Questionnaires 7.7b and 7.7c. First, we will address user

willingness, followed by their comfort and fear level when performing choking first aid.

Comfort and Willingness: We asked our participants how willing they were to perform

choking first aid before and after their training. We show the results per participant of

these questions in Figure 7.9. From this figure, we see that regardless of their group, most

individuals ranked highly on willingness and were more willing to perform choking first

aid after being trained. Since both groups receive instructions on how to perform choking

first aid, we conclude that information is the key to making our participants more willing

to perform choking first aid.

We also asked how comfortable our participants were if they had to perform choking

first aid prior to their training. Overall, our participants had an average comfort level of

2.2 out of 5. We had two participants with prior first aid training. Their comfort levels

were a four and five out of five. The average comfort level for our untrained participants

was 1.86 out of 5. Here we saw that our participants with training were much more

comfortable with performing choking first aid than those who did not.

Fear: We survey our participants to see if they were fearful of injuring a choking victim

after being trained by the video or the application. Of our sixteen participants, fourteen

responded that they were not fearful. Their free response is as follows:

• “BBAid gave me more confidence in what I was doing because I know I am applying

the right amount of force.”

• “I had no idea what I was doing but with your app I got to the point where I was

doing it right .”
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• “By watching the video I know the right way to perform the choking first aid. Thus,

I am not afraid about it.”

The two participants that were fearful of injuring a choking victim had these responses

to our free response question:

• “I had prior training and the video didn’t teach me anything I didn’t know.”

• “Isn’t it possible to break their ribs?”

7.6 Discussion and Future Work

7.6.1 Abdominal Thrusts

According to the American Red Cross recommended choking first aid procedure [3],

there are two maneuvers to be performed on a choking victim: back blows and abdominal

thrusts. Abdominal thrusts are described as: “Place a fist with the thumb side against

the middle of the victim’s abdomen, just above the navel. Cover your fist with your other

hand. Give five quick, upward abdominal thrusts” [3]. In this chapter, we only address

back blows but to provide a complete choking first aid feedback application abdominal

thrusts must also be addressed. Providing feedback on abdominal thrusts presents their

own challenges as the force of impact, angle of thrust, and number of thrusts should be

taken into account.

7.6.2 First Aid Training

Our application was mainly tested on individuals who had not had formal training

in first aid. To see what e↵ect BBAid would have on previously trained individuals it is

necessary to complete a study where they are the targeted participants. During this study,

it would be important to note if they were current on their certification, how long it had

been since their training, and their current knowledge level. In our study, we saw that

previously trained individuals did not perform every step recommended by the American

140



Red Cross, for example calling 9-1-1. Because of this, it is important to see how just those

who train perform with the aid of the BBAid application.

7.7 Conclusion

In this chapter, we present BBAid: a novel Android smartwatch application for the im-

provement of choking first aid. Our application classifies and provides real-time feedback

on the back blow portion of choking first aid using the data from a smartwatch accelerom-

eter. Our application increases the user’s performance of the back blows by providing

instructions and feedback. BBAid combats the bystander e↵ect by increasing user com-

fort and willingness to perform choking first aid. It also gives the user more confidence by

decreasing their fear of injuring a choking victim. BBAid achieves a classification accuracy

of 93.75% for back blows in real-time. Following the classification, BBAid analyzes the

back blow and provides feedback on its quality. Because of this feedback, our participants

are able to perform back blows within the recommended range 75% of the time.
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Chapter 8

Conclusion and Future Work

This dissertation presented four projects contributing to the advancement of wearable

technology research in healthcare and athletic performance.

First, we presented Magneto: a sensing system for joint motion analysis. Magneto

uses the combination of an electromagnet and magnetometer to remove environmental

interference from magnetic field readings in a dynamically changing environment. Given

this purified reading, we localized the electromagnet with respect to the magnetic field

reader which allowed us to apply Magneto in two pilot studies: elbow angle and shoulder

position. We calculated elbow angles to the nearest 15� with 93.8% accuracy, calculated

shoulder positions in two-degrees of freedom with 96.9% accuracy, and calculated shoulder

positions in three-degrees of freedom with 75.8% accuracy.

Second, we presented TracKnee a smart sensing knee sleeve that calculates knee an-

gles via a conductive fabric sensor. This project demonstrated the ability for wearable

technology to be soft and comfortable and functional. The sensor on the knee sleeve was

created using conductive fabric and all wiring was done using conductive thread. We ran

a user study using our knee sleeve in which we collected data on 240 knee angles from

six individuals. We used this data to calculate knee angles using our models. Our results

show that our model is 94.86% accurate to the nearest 15th degree angle and that our

average error per angle is 3.69�.
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Third, we evaluate a system named ServesUp that will improve the volleyball serve

and present the future directions for the project. We designed a sensing shirt that is

comfortable, unobtrusive, and washable. The sensors sewn into the shirt are made from

fabric and instead of wires, we use conductive thread. This allows for the athlete to be able

to perform as they would normally without being impeded by the sensors. This makes it

ideal for athletes who want to improve their skills. With our sensing shirt, we collected

data on 250 serves from a semi-professional volleyball player.

Finally, we presented two solutions for choking first aid: BreathEZ and BBAid. These

solutions monitored abdominal thrusts and back blows via smartwatch applications and

provided actionable insights to the user to increase their skill quality performance. Our

findings show that our smartwatch applications combat the bystander e↵ect by increasing

user willingness and comfort when performing choking first aid skills. We also show that

using our applications leads to enhanced performance of the choking first aid skill. With

increased participation and enhanced performance, we believe that our applications can

increase the chances of a favorable outcome in an emergency situation.

For future work, we are considering the following research directions:

• Sports Performance

A natural application for wearable technology is the field of sports performance. This

field brings many challenges to the creation of wearable devices and their feedback

systems. A device must be unobtrusive, impact-resistant, and comfortable to wear

so that it does not impede an athlete’s motion. Since many actions in sport are fast-

paced, the device must provide high-quality data so that actions can be accurately

sensed. Sports data provides unique opportunities for analysis as the data can be

analyzed for the individual and the team as a whole. Actionable insights should be

tailored to helping each player improve their game and to help the team win.

• Wearable Sensors Upgrade

143



As applications for wearable technology continue to evolve, the quality of the sen-

sors should as well. Wearable sensors need to be soft, flexible and be able to stretch

with body movement. They should not impede any movement made by the wearer

or cause injury if the wearer were to land on the device. Advancements in Ma-

terials Science has brought us new conductive materials. These materials, such as

graphene[145] and carbon nanotubes[62], should be considered when developing new

wearable sensors. Fabric can be coated with these materials to make it conductive

while still retaining the comfort of regular clothing.

• Long-term Direction: Integration into Everyday Life

Wearable technology, in the long term, should be integrated into the daily life of

the wearer. Wearables should integrate seamlessly into the daily life of the wearer.

When the wearer is getting ready for their day, they should be able to don their

clothing as normal without thinking about the wearables integrated into them. The

clothing with integrated sensors should not fit or feel di↵erent from their regular

clothing. Data from these wearable devices will be recorded and sent to whatever

parties that are approved for access. For example, biometric data can be sent to

healthcare professionals for long term monitoring of health. Any anomalies in their

data could be flagged or analyzed. This can lead to early diagnosis of health issues

or even prevention of them entirely.
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