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Abstract 

PURPOSE: To determine the accuracy of predicted Energy Expenditure (EE) reported by a 

wrist-worn activity monitor compared to measured EE during both a long- and short-duration 

exercise. METHODS: In addition to a VO2max treadmill test, a running speed at 

approximately 70 - 75% of that VO2max was found during the first visit. The second and third 

visit was comprised of either a 30-minute or 10-minute run at the speed previously 

determined. A wrist activity monitor was worn and VO2 and EE were recorded by a 

metabolic cart. Pearson correlation, paired samples t-test, and repeated measures ANOVAs 

compared predicted and measured EE. An independent samples t-test determined significant 

differences in characteristics between fitness groups (p < 0.05). RESULTS: N = 25 (60% 

male). A significant correlation was found between predicted EE and measured EE for both 

short and long duration (p < 0.001). The repeated measures ANOVA determined the 

interactive effect of measurement mode and fitness level was significant. CONCLUSIONS: 

Overall, there is a strong correlation between criterion and predictive measurement, however, 

consumers should exercise caution when using predicted measures. 
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Chapter 1: Introduction 

Obesity was recognized by the American Medical Association as a disease in 2013 

(Sljivic and Gusenoff, 2019). Obesity is defined as an increase in both the amount and size of 

fat cells in the body that may negatively affect health (Kopelman, 2000). The American 

College of Sports Medicine (ACSM, 2018a) classifies someone who has a body mass index 

(BMI) ³ 30.0 kg/m2 as obese.  Despite recent efforts to control the obesity epidemic, in 2015-

2016, approximately 39.8% or 93.3 million U.S adults were considered obese (Hales, Carrol, 

Fryar, and Ogden, 2017). Obesity has been shown to increase an individual’s risk of all-cause 

mortality; incidence or mortality for chronic diseases, such as certain cancers and 

cardiovascular disease (CVD); and incidence of type 2 diabetes mellitus (T2DM) (ACSM, 

2018a). Mokdad et al. (1999) reported that those with a BMI greater than or equal to 40 

kg/m2 have seven times greater the risk of being diagnosed with diabetes, six times the risk 

for hypertension, and two times the risk of high cholesterol. Additionally, Thompson, 

Edelsberg, Colditz, Bird, and Oster (1999) found that risk for hypertension is two times 

greater and risk for T2DM is three times greater for moderately obese males than non-obese 

males, and life expectancy is reduced by one year. When looking at mortality records (1986-

2006), it was determined that approximately 18.2% of deaths of U.S adults were associated 

with increased BMI (Masters et al., 2013). Being obese led to 111,909 excess deaths 

compared to normal weight individuals in 2000 (Flegal, Graubard, and Williamson, 2005). In 

not only high resource, but low resource countries, the number of individuals considered 

obese is continually increasing. This rise in obesity is partially caused by a positive energy 

balance in which people are consuming more calories daily than they are expending. It is 
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crucial that research is continued to not only better understand the causes of obesity, but also 

to determine the best practices for treatment and prevention. 

Energy Imbalance  

One of the determinants of obesity includes an individual having a greater caloric 

input than caloric output, otherwise known as a positive energy balance (Wright and Aronne, 

2012). Energy balance is reached when an individual consumes and expends an equal 

number of calories. The total amount of energy that is expended by the body within a 24-

hour time period is referred to as total energy expenditure (TEE; Ndahimana and Kim, 2017). 

TEE for an individual is comprised of their resting energy expenditure (REE), thermic effect 

of food (TEF), and energy expenditure from activity (AEE). REE refers to the amount of 

energy necessary to maintain metabolic functions at rest. These functions include 

maintenance of body temperature and functioning organs (Ndahimana and Kim, 2017). An 

individual’s REE can be affected by gender, body temperature, age, decreased energy intake, 

genetics, body composition, and hormones. The TEF is the energy needed to digest, absorb, 

transport and metabolize food, store nutrients, and eliminate wastes (Ndahimana and Kim, 

2017). Finally, AEE refers to energy expended during activity. This can be highly variable 

from person to person and is affected by the intensity, duration, and frequency of the activity 

(Ndahimana and Kim, 2017). AEE relies on the assumption that because physical activity 

requires the contraction of skeletal muscle, that the larger amount of muscle that is used, the 

higher the EE is (Vanhees et al., 2005). 

Physical Activity to Promote Energy Expenditure  

Physical activity (PA) is defined by ACSM (2018b) as “any bodily movement 

produced by the contraction of skeletal muscles that results in a substantial increase in caloric 
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requirements over resting energy expenditure”. According to the Physical Activity Guidelines 

for Americans, adults should engage in at least 150 to 300 minutes of moderate-intensity or 

75 to 150 minutes of vigorous-intensity, aerobic physical activity a week (U.S. Department 

of Health and Human Services, 2018). Although there is substantial supportive evidence by 

ACSM, the Centers for Disease Control (CDC), the National Institute of Health (NIH), and 

the U.S. Surgeon General in the benefit of physical activity, it is estimated that 23% of adults 

and 81% of adolescents do not meet the physical activity guidelines (World Health 

Organization, 2019). Many studies have found a strong association between the prevalence of 

obesity and a sedentary lifestyle (Shields and Tremblay, 2008; Heinonen et al., 2013). A 

sedentary lifestyle refers to participation in activities that promote minimal movement and 

low energy expenditure (EE), such as TV viewing (Reilly, Penpraze, Hislop, Grant, and 

Paton, 2008). Shields and Tremblay (2008) found that 25% of men that had more sedentary 

lifestyles (³ 21 hrs/week of TV viewing) were categorized as obese, opposed to only 14% of 

those who were more active (£ 5 hrs/week of TV viewing).  

Self-Monitoring to Promote Physical Activity Adherence  

Overweight and obese individuals have reported weight maintenance and weight loss 

to be difficult tasks. Many who have had success with these tasks have credited their 

achievements to behavioral modification (Montesi et al., 2016). Included in this modification 

is an increase in physical activity levels. Self-monitoring has been shown to significantly 

increase physical activity in several populations (Cadmus-Bertram, Marcus, Patterson, 

Parker, and Morey, 2015; Ashe et al., 2015). Self-monitoring allows individuals to track their 

daily activity and receive real time feedback. Activity energy expenditure measurement is 

important to analyze the dose relationships between disease and physical activity levels and 
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to determine the benefits of different intensities and types of activities. Along with its three 

components, PA (and EE) can be assessed using both objective and subjective methods. Each 

method of assessing physical activity levels has strengths and limitations that make it 

practical for differing populations, activities, and settings.   

Methods of EE Measurement  

The criterion measures of EE include direct and indirect calorimetry and doubly 

labelled water (DLW). Subjective measures include self-report measures such as surveys or 

questionnaires, food and activity diaries, and direct observation. Objective measures include 

heart rate monitoring, pedometry, accelerometry, and wearable devices. Wearable devices 

refer to devices that provide real time feedback on physical activity variables such as steps, 

calories burned, and heart rate (Montoye, Mitrzyk and Molesky, 2017). Approximately 33% 

of the global population use a fitness tracking device to track their health, including calories 

in and calories out (Weinswig, 2017). It has been proposed that by 2021, the usage of 

wearable activity monitors will increase to one in every five people (Maslakovic, Johnson, 

and Jovin, 2017). Due to this increase in usage, it is important that the variables being 

estimated from these devices are accurate.  

Validity of Wearable Devices  

Validation studies have been done to determine the accuracy of the estimations 

provided by wearable activity monitors. Previous research has found that EE reported by 

wearable activity monitors is accurate during short duration exercise (Diaz et al., 2015; 

Reddy et al., 2018; Kendall, Bellovary, and Gothe, 2019; Dondzilla and Garner, 2016). 

However, when utilizing discontinuous, long-duration protocols, estimations were inaccurate 

(Shcherbina et al., 2017; Chowdhury, Western, Nightingale, Peacock, and Thompson, 2017). 
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There is currently no research validating these wearable devices during a continuous, long-

duration bout of exercise.   

Significance   

 Although there are studies aimed at validating the EE estimated by these devices, new 

technology is always developing. Currently, there is no research on the validity of the Fitbit® 

Inspire HR activity monitor. Additionally, there is no research on the EE estimate of wrist-

worn activity monitors during long-duration exercise or comparing the accuracy of the EE 

estimate of both a short- and long- duration protocol. Novel to this study is the comparison of 

EE measurement between moderate and high fit individuals at a relative intensity. Validation 

of new activity monitoring technology is important to inform consumers of any inconsistency 

in measurement. This research project will fill the gap in literature of accuracy of EE 

depending on duration of exercise and individual fitness level. 

Purpose of Study 

1. To examine the accuracy of the estimated energy expenditure using a Fitbit 

Inspire HR activity monitor during short- and long-duration exercise. 

2. To determine if the Fitbit Inspire HR activity monitor will accurately predict 

energy expenditure during short- and long-duration exercise for individuals with a 

moderate cardiorespiratory fitness level (VO2max in lower half of median split; ≤ 

65th percentile for VO2max). 

3. To determine if the Fitbit Inspire HR activity monitor will accurately predict 

energy expenditure during short- and long-duration exercise for individuals with a 

high cardiorespiratory fitness level (VO2max in upper half of median split; > 65th 

percentile for VO2max). 
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Hypotheses 

1. The Fitbit Inspire HR will not accurately predict energy expenditure during short- and 

long-duration exercise  

2. The Fitbit Inspire HR will accurately predict energy expenditure during short- and 

long-duration exercise for individuals with a moderate cardiorespiratory fitness level 

(low end of median split; ≤ 65th percentile for VO2max) 

3. The Fitbit Inspire HR will not accurately predict energy expenditure during short- and 

long-duration exercise for individuals with a high cardiorespiratory fitness level (high 

end of median split; > 65th percentile for VO2max) 

Definitions 

• Energy Expenditure: The amount of energy (kJ or kcal) needed to perform a specific 

task (i.e, digestion, resting body function, and physical activity; Vanhees et al., 2005). 

• Cardiorespiratory Fitness: The ability of the circulatory and respiratory system to 

supply oxygen during sustained physical activity (ACSM, 2018b) 

• Wearable Activity Monitor (WFT): Devices that provide real time feedback on 

physical activity variables such as steps, calories burned, and heart rate (Montoye et 

al., 2017). 

Limitations of the study 

A limitation of the study is a similar demographic of participants. Recruiting on a 

college campus made it difficult to recruit a diverse sample. Another limitation is that only 

one wrist-worn activity monitor was used. This doesn’t allow for comparison to other 

wearable devices. Lastly, participants will be uncontrolled before visits. This means that 
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there will be no control for food intake, caffeine ingestion, sleep, etc. before exercise. These 

are all factors that have been found to affect VO2 values.    

Strengths of the study 

One strength of this study was that all participants completed the short- and long-

duration protocol at an intensity of 70-75% of their measured VO2max. This allowed for all 

participants to exercise at a relative intensity. A second strength was the use of the Fitbit® 

Inspire HR activity monitor. This is a new device that has not yet been validated. Lastly, a 

long-duration exercise protocol was used. There is no previous research examining the 

validity of activity monitors during a continuous, long-duration exercise protocol. 
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Chapter 2: Review of Literature 

Criterion Measurement of Energy Expenditure  

 In all chemical reactions, there is heat exchanged between the object and the 

environment. Initial studies of these heat reactions aimed to measure this heat by observing 

the change in temperature. This heat exchange became known as “heat energy” and defined 

heat as the energy exchanged per unit of time between two systems (Kenny, Notley, and 

Gagnon, 2017). The measurement of heat energy is calorimetry and is measured by a 

calorimeter (Kenny et al, 2017). Over time, calorimetry has been divided into a direct and 

indirect measurement. The measurement of heat energy has been used to determine caloric 

output.  

Direct and Indirect Calorimetry. The earliest known study referenced for 

calorimetry was a study done by Robert Boyle in 1660. Boyle placed both mice and burning 

flames in separate sealed jars. He observed that as he removed air from the jars, the flame 

began to die out and the mice began to be inactive and dreary. When he returned air to the 

jar, the flame began to burn again, and the mouse became lively. This led to the finding that 

both fire and life were processes of combustion and that both life and fire were supported by 

air (Boyle, 1660).  

About eight years later, Mayrow, expanded on Boyle’s discovery and placed the 

sealed jars of mice in water (Ainslie, Reilly, and Westerterp, 2003). He observed that as the 

mice breathed, the jars changed placement in the water. He noticed that once 1/14th of the air 

in the jar was depleted, the mice died. From this study, it became known that air was 

composed of different parts and that only some parts of that air were actually used for 

respiration. Around this same time (1669), Richard Lower, cut open the thorax of a dog and 
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attached a device to control respiration. He observed that that blood returning to the heart 

was bright red, while the blood entering the lungs was of a purple color. He concluded this 

was due to the blood being mixed with inspired air (Lower, 1669; Karamanou, Tsoucalas, 

and Androutsos, 2013).  

In the late 1700’s, crucial advancements in the field of metabolism were made by 

French scientist Lavoisier and his assistant Laplace. In the winter of 1780, Lavoisier and 

Laplace engineered the calorimeter (Lavoisier and Laplace, 1780). Their calorimeter was 

made of sheet metal and was composed of an inner layer of ice and an outer layer of snow. In 

theory, they suspected they could place a hot object in the calorimeter, and it would cool, 

releasing heat and melting the ice. Lavoisier and Laplace used this instrument to test a theory 

of respiration. They placed guinea pigs in the calorimeter and observed that the heat from the 

guinea pig’s respiration, melted the inner layer of ice. They recorded the weight of the water, 

and by using the latent heat of ice, the heat absorbed, hence produced, was calculated 

(Underwood, 1943). They also estimated carbon dioxide (CO2) production by measuring the 

heat and CO2 produced by burning charcoal. This allowed them to estimate the amount of 

heat lost per unit of CO2 produced. This experiment resulted in the realization that heat was 

produced by the combustion of carbon but left the question of where heat was produced 

within the animal.  

Four years later, Lavoisier and his new assistant Seguin, continued Lavoisier’s 

research on respiration (Underwood, 1943). They used both animals and humans and placed 

them in chambers to measure oxygen consumption and carbon dioxide production. They 

placed animals in jars and used silk bags that were secured around the mouth and nose for 

humans (Lavoiser and Seguin, 1793). Their initial study consisted of placing a guinea pig in 
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a jar over water. He observed that “noxious” gas had to be removed and that vital air 

consumed was always the same. They also observed that guinea pigs consumed more oxygen 

after eating and during movement. Following animal experiments, they began studies on 

humans. (Karamanou et al., 2013). They used a mask attached to the face with a tube 

extending to a trough of a known amount of oxygen. This allowed Lavoisier to measure the 

amount of oxygen consumed by Seguin (Karamanou et al., 2013). By using this mask for 

various studies, they concluded that a person consumes more oxygen in lower temperatures, 

those at rest consume less oxygen than those standing or active, and more oxygen is 

consumed after a meal. Lavoisier was the first to suggest that an increase in heart rate is 

proportional to the work done and that oxygen consumption is affected by personal factors 

(Lavoiser and Seguin, 1793). From this collection of experiments, it was concluded how the 

physiological process of metabolism worked with respiration and dissipating heat 

(Karamanou et al., 2013). The process of analyzing oxygen consumption and carbon dioxide 

production led to the ability to quantify energy expenditure. This process later became known 

as indirect calorimetry.  

Over the next century, there were many advancements in indirect calorimetry. Cesav 

Mansuete Despretz and Pierre Louis Dulong (1824) designed a water bath calorimeter that 

determined temperature of a known water mass. Henrik Scharling designed a water-cooled 

calorimeter in 1849 that was used for large animals and humans. The same year, Henry 

Regnault and Jules Reiset designed and perfected a closed-circuit system that measured O2 

consumption and CO2 production (Poncet and Dahlberg, 2011; Mtaweh, et al., 2018). His 

calorimeter had a chamber in which a living animal was placed. There was a tube going to 

the chamber that supplied oxygen and a tube leaving the chamber that took expired air past 
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materials that would absorb CO2. From their studies, they concluded differences in oxygen 

transformation regarding food consumption (Poncet and Dahlberg, 2011).   

Around this same time, Carl von Voit and Max von Pettenkofer modified the 

calorimeter to allow for better quantification of O2 consumption and CO2 production (Kenny 

et al., 2017). They were able to determine amounts of carbon, nitrogen and O2 that were 

metabolized based on diet. They determined that in metabolism one of the three substrates, 

carbohydrates, fats or proteins were oxidized (Mtaweh et al., 2018). Shortly after in 1894, 

Rubner validated the use of indirect calorimetry against direct calorimetry. He placed dogs 

into a chamber and measured the thermal gradient to measure heat loss. The calorimeter had 

a Pettenkofer respirator attached that was able to measure the gas ratios. He found that 

between his direct measure of heat and the gas exchange there was only a 0.2% difference in 

energy expenditure (Kenny et al., 2017; Mtaweh et al., 2018). 

In 1901, Atwater, with the assistance of Rosa, Langworthy, and Benedict, designed a 

human calorimeter with a respiration chamber (Kenny et al., 2017). They called their design 

a respiration calorimeter and used it to further validate the relationship between direct and 

indirect calorimetry. The Atwater-Rosa calorimeter was used to measure the non-protein 

carbon in respiration and calculate the O2 absorbed for metabolism of fats and carbs (Mtaweh 

et al., 2018). These findings allowed for energy expenditure to be estimated by the 

respiratory quotient (RQ) rather than using nitrogen and carbon. It also allowed for the 

creation of standard formulas to be created on the caloric equivalents of O2 and CO2. It was 

Atwater who eventually coined this process as indirect calorimetry. Following this research, 

Benedict went on to create a smaller instrument for measuring oxygen called the “Benedict 

apparatus” in 1907. This device went on to be used in many hospitals for use in the clinical 
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setting and in studying metabolism in newborns (Benedict, 1919; Benedict and Talbot, 

1915), athletes (Benedict and Smith, 1915), vegetarians (Benedict and Roth, 1915), children 

(Benedict, 1919), men and women, and starving people (Benedict and Roth, 1918).   

Following the production of the Benedict apparatus, calorimetry began to be used 

more for metabolism. In 1910, Dubois and Veeder studied metabolism in those with diabetes 

using the Sage calorimeter, which allowed them to measure energy expenditure and heat loss 

over an extended period of time. While using the Sage calorimeter, they found an average 

error of 0.9% for heat loss, 0.6% for CO2 production, and 1.6% for O2 consumption (DuBois 

and Veeder, 1910). It was Dubois and colleagues who took the idea of indirect calorimetry 

and were able to standardize values at rest in both healthy and sick adult populations 

(Peabody, Meyer, and Dubois, 1916) and later in infants and children (Dubois, 1916). This 

became known as basal metabolic rate (BMR) or the energy used in a post absorptive state 

without movement (Peabody et al., 1916), In 1919, Benedict and his team validated a set of 

equations used to predict BMR in a group of 239 men and women. This equation became 

known has the Harris-Benedict equation and relies on the height, weight, and sex to predict 

BEE (Haugen, Chan, and Li, 2007). 

In 1906, Douglas and Haldane, developed a semi-portable gas analyzer for field 

experiments. The analyzer was later improved by Douglas in 1911, making it more readily 

portable, and was able to be used during activities such as cycling, canoeing, and hiking. 

However, many areas of error have been found for the bag apparatus more recently, when 

compared to direct measures. Carter and Jeukendrup (2002) found that the Douglas bag 

resulted in significantly lower VCO2 values than more recent methods of gas analyzation. 

The Douglas bag was used to expand on maximal oxygen intake and the term oxygen debt.  
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In 1922, Archibald Hill and Hartley Lupton used the Douglas bag with a 

discontinuous incremental speed protocol to record values of O2 consumption and CO2 

production. This was the foundation for maximal oxygen consumption (VO2max) and it was 

the first instance in which it was determined that those of higher fitness had considerably 

higher O2 consumption during intense exercise (Hale, 2008). Additional methods of EE 

measurement have been created and validated using direct or indirect calorimetry as the 

criterion measurement.  

Doubly Labelled Water. The method of doubly labelled water (DLW) was 

developed in the mid-1900’s by Lifson and colleagues, but it wasn’t until the 1980’s that the 

technique was applied to humans. This method is non-invasive and causes little stress onto 

subjects. Because it is non-invasive, it has become the gold standard of EE measurement in 

free-living conditions (Westerterp, 2017). DLW eliminates the change in behavior seen with 

other methods of EE measurement such as wearable devices (Westerterp, 2017). In the DLW 

technique, a standardized amount of 2H218O and H2O are ingested. Energy expenditure (CO2 

production) is measured by calculating the difference in elimination rates of the two isotopes 

in urine, blood, or saliva.  

Schoeller and VanSanten (1982) published the first study validating DLW in humans. 

In their research, they compared the dietary intake plus the change in body stores to DLW in 

four adults (three males, one female). They found a difference in EE of 2 ± 6% between the 

two methods, successfully validating the technique in humans. In 1988, DLW was validated 

again against indirect calorimetry, using a respiratory chamber and differing doses of labelled 

water. Nine healthy, adult males remained in the chamber for 4 days and the difference in EE 
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ranged from 8 ± 9% for the low dose and 4 ± 5% for the high dose, hence further validating 

the method (Schoeller et al., 1986) 

Later research validated the use of DLW as a means for determining EE with an 

average error rate of 0-10%. Studies were done in different populations including adults 

(Seale, Rumpler, Conway, and Miles, 1990), infants (Roberts, Coward, Schlingenseipen, 

Nohria, and Lucas, 1986; Roberts et al, 1988; Jones et al., 1987), and lean and obese subjects 

(Ravussin, Harper, Rising, and Bogardus, 1991). In addition to validating REE, DLW had 

been validated in measuring EE during physical activity. These activities include biking 

(Westerterp, Saris, van Es, and ten Hoor, 1986), activities of high- and low-intensity 

(Westerterp, Brouns, and Saris, 1988), and occupational work (Singh et al., 1989).  

Due to the accuracy of the technique, DLW is frequently used as the method of EE 

measurement in field studies. DLW does have disadvantages that make in inapplicable for 

large population studies. Limitations of DLW include the expense of the isotopes that are 

used, the complexity of analysis, and that it is an estimation made from the measure of CO2 

production (Goran, Poehlman, and Johnson, 1995).  

Subjective Measures of Physical Activity  

Due to the ability of subjective measures of physical activity to be cost-efficient and 

useable for large population studies, they are a very common report of activity levels 

(Vanhees et al., 2005). Subjective measurements include any type of survey or questionnaire 

including: self-report, interview assisted, and diaries. However, these types of measurements 

can lead to highly inaccurate estimations of physical activity due to over reporting or 

inability to recall activity (Sallis and Saelens, 2000). Surveys and questionnaires rely on 

one’s ability to recall past activity and can include measures of mode, duration, and 
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frequency (Sylvia, Bernstein, Hubbard, and Keating, 2014). They can range in time frame 

and administration.  

Self-Report Questionnaires. One method of subjective measure is self-report 

questionnaires. In 2007, Maddison et al. compared results from the International Physical 

Activity Questionnaire (IPAQ) and the New Zealand Physical Activity Questionnaire 

(NZPAQ) to doubly labelled water. In 36 adults, they found an underestimation of physical 

activity of 27% with the IPAQ and 59% with the NZPAQ. However, Bonnefoy et al. (2001) 

looked at 10 different physical activity questionnaires and compared the results to DLW. 

They concluded that a few of the studied questionnaires showed validity in measuring PA 

levels, but that many did not.  

Food and Activity Diaries. Another common subjective measure of physical activity 

includes food and activity diaries (Sylvia et al., 2014). In diaries, individuals can recall 

activity as it occurs, rather than recalling it making diaries slightly more accurate (Sylvia et 

al., 2014). Bratteby, Sandhagen, Fan, and Samuelson (1997) compared a 7-day activity diary 

to doubly labelled water in adolescents. They found a mean difference of 1.2% between the 

diary and DLW and concluded that the activity diary method was a valid method of EE. 

Similarly, Koebnick et al. (2005) found a good correlation between energy intake recorded 

via a food log and EE by DLW.  

Direct Observation. The third most common subjective measurement type is direct 

observation. In direct observation, an individual observes and records physical activity 

(Sylvia et al.,2014; Vanhees et al., 2005). Direct observation is beneficial for children due to 

their lack of being able to recall activity and allows for direct details of the PA. Direct 

observation has been found to have a high level of agreement of PA levels between observers 
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(Sylvia et al., 2014). Puhl, Greaves, Hoyt, and Baranowski (1989) used a Children’s Activity 

Rating Scale (CARS) to classify energy expenditure in children during field observation. 

VO2s were taken to classify the activity as relative intensities. It was reported that the CARS 

observation was reliable in evaluating physical activity levels in children and that there was 

an 84% agreement among observers. Additionally, Bailey et al. (1995) used the modified 

fargo activity time sampling survey to record observations of children every three seconds 

for four-hour time blocks and then use VO2 to classify intensity. This led to a reliable method 

of PA classification and a strong agreement of 91% between observers coding of PA.  

Objective Measures of Physical Activity 

 Due to the reporting bias of subjective measures of physical activity, a more accurate 

measure of physical activity was needed (Troiana et al., 2008). It has been determined that 

objective measures of physical activity are more precise than subjective measures, due to 

them being able to recall all physical activity, not just the activity that an individual can 

remember. Objective measures are able to report on different areas of PA including 

frequency, intensity, time, and in some instances, even type of activity (Silfee et al., 2018). 

Heart rate (HR) monitoring, pedometers and accelerometers are three common forms of PA 

monitoring.  

Heart Rate Monitoring. Heart rate monitoring relies on the assumption that an 

individual’s heart rate increases linearly with intensity (O2 consumption; Andre and Wolf, 

2007). However, research has found that a calibration calculation is needed for heart rate to 

accurately report energy expenditure (Morio, Ritz, Verdier, and Montaurier, 1997; Racette, 

Schoeller, and Kushner, 1995; Schulz, Westerterp, and Bruck, 1989). HR measurements have 

been found to overestimate high intensity EE and underestimate low intensity EE (Lof, 
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Hannestad, Forsum, 2002). The lack of accuracy at low intensity is due to variation in heart 

rate due to individual factors such as caffeine intake, age, fitness level, temperature, nutrition, 

sleep, stress or illness (Andre and Wolf, 2007; Hills, Mokhtar, Byrne, 2014; Hettiarachchi, 

Hanoun, Nahavandi, and Nahavandi, 2019). HR monitors can be worn on the wrist, arm, and 

chest (Hettiarachchi et al., 2019). 

Polar® HR monitors are among the most popular brands of available devices. In a 

study by Hettiarachchi et al. (2019), the Polar® OH1 was validated against ECG during 

moderate- and high-intensity exercise. It was reported that the device had a mean bias of 

0.27-0.33 bpm, hence making it a valid measurement in both the lab and field setting for HR. 

In an additional study by Engstrom, Ottosson, Wohlfart, Grundstrom and Wisen (2012), the 

Polar® RS400 was validated using cycle ergometry. There was a significant correlation 

found between HR measured by the Polar® device and the ECG (mean difference = 0.7-4.3 

bpm). 

Chest strap HR monitors rely on electrocardiac sensors and have been validated 

against electrocardiograms (ECGs) for accurately reporting HR (Terbizan, Dolezal, and 

Albano, 2002; Engstrom et al., 2012). Wrist-worn devices use photoplethysmography (PPG) 

to monitor heart rate. This technology has been deemed valid to ECG (Temko, 2017) but has 

inconclusive findings based on how photosensitive an individual’s skin is and how much 

artifact there is during activity (Spierer, Rosen, Litman, and Fujii, 2015). HR monitors have 

then been validated for measuring EE against DLW in free-living conditions in healthy adults 

(Rafamantanantsoa et al., 2002; Schulz et al., 1989; Davidson, McNeill, Haggarty, Smith, 

and Franklin, 1997), those of different body masses (Racette et al., 1995; Lof et al., 2003), 
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and geriatric populations (Morio et al., 1997; Rothenberg, Bosaeus, Lernfelt, Landahl, Steen, 

1998).  

Limitations of chest strap HR monitors include comfortability and conductivity. 

While wrist worn monitors are smaller and more convenient, their accuracy is not as high as 

a chest worn device. In a free-living or non-lab setting, compliance of actually wearing the 

device is highly differential among subjects (Hettiarachchi et al., 2019). 

Pedometers. Pedometers are small devices that use a spring to measure movement in 

the vertical plane. More often than not, pedometers are used to measure step counts and are 

usually worn on the hip (Vanhees et al., 2005). After having a measured step count, it can be 

converted to distance using stride length. Pedometers are best for measuring activity in the 

vertical plane such as walking and running (Sylvia et al., 2014; Tudor-Locke, Williams, Reis 

and Pluto, 2012) and are much more affordable than other monitoring devices (Tudor-Locke 

et al., 2012).  

Pedometer measurements are most commonly validated in the lab setting against 

direct observation. This means that an investigator will manually count steps and compare to 

the output of the device. This type of validation has been done in children (Nishikido et al. 

1982; Kilanowski, Consali, and Epstein, 1999) and adults (Hoodless, Stainer, Savic, Batin, 

Hawkins, and Cowley, 1994; Selin, Winkel, and Stockholm-MUSIC I study group, 1994; 

Bassett et al., 1996) in the laboratory/field setting.  

When looking at pedometers output compared to self-reported physical activity the 

findings are much more inconsistent. A study by Nishikido et al. (1982) reported that there 

was no significant correlation between mother’s and teacher’s report of PA levels of 

kindergarteners and the measurement from the pedometers. Similarly, Zahiri, Schmalzried, 
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Szuszczewicz, and Armstutz (1998) concluded that in a study of joint replacement patients, 

there was no significant correlation between the patient’s report of their own activity and the 

measurement from the pedometers. However, Edelman and Smits (1984) had 84 subjects 

wear a pedometer and keep an activity diary for 5 days. They reported a strong correlation 

between the diary and pedometer, finding the two to be useful to use together.  

Lastly, pedometers have been used to predict energy expenditure. This is done using 

regression equations with input of steps taken. When compared to the doubly labelled water 

method, multiple studies have reported no significant correlation with pedometers (Leenders, 

Sherman, Nagaraja, and Lawrence, 2001; Fogelholm et al., 1998). Studies have also 

compared EE estimated by pedometers to indirect calorimetry in the field setting, which have 

inconclusive results. Bassett et al. (2000) reported a nonsignificant correlation between 

indirect calorimetry and pedometry, while Eston, Rowlands, and Ingledew (1998) concluded 

a significant correlation, even suggesting pedometry be used for large population studies. 

Irimagawa and Imamiya (1993), looked at the relationship between HR EE and pedometry 

and found the two to be significantly correlated. Also looking at HR, Kashiwazaki, Inaoka, 

Tsuguyoshi, and Kondo (1986) found significant correlations in factory works while 

commuting, but no correlation when at home, signifying the use of pedometers to access 

activities such as walking, but not sedentary behavior. 

The ability of pedometers to report levels of physical activity is high, but results of 

EE aren’t as clear. Pedometers are an accepted device for measuring activity levels during 

movement, but are not suggested for EE for those that spend extended times in sedentary 

behavior. Additionally, pedometers only measure up and down, vertical activity, so it would 

not be suggested for measurement for an activity such as swimming or cycling. Pedometers 
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are also unable to measure characteristics of activity (duration, frequency, or intensity), they 

can cause behavioral shifts in subjects, and are unable to store large amount of data, limiting 

their ability to be used for all studies (Sylvia et al., 2014). 

Accelerometers. Within the last few decades, accelerometers have become 

increasingly more popular. Accelerometers are similar to pedometers, except they can be 

multiaxial, meaning they are able to measure movement in multiple planes (Vanhees et al., 

2005). Accelerometers do not use the spring mechanism that pedometers use, but a 

piezoelectric transducer and microprocessors. These mechanisms allow for magnitude and 

direction of acceleration to be measured and for those measurements to be converted into EE, 

activity type, intensity, and duration (Sylvia et al., 2014; Vanhees et al., 2005). Commonly, 

they are worn on the hip, around the waist, on the back, or more recently, around the wrist 

(Vanhelst et al., 2012). Accelerometers have become very popular due to their small size, 

their ability to store large amounts of data, and their ability to measure multiple 

characteristics of activity (i.e. frequency, intensity, time, type; Freedson and Miller, 2000; 

Sylvia et al., 2014; Vanhees et al., 2005).  

A review of 47 studies conducted in 2008 determined that the most commonly used 

accelerometer from 2006-2016 was the Actigraph® (Silfee et al., 20018). Accelerometry has 

been validated for predicting EE from physical activity using the golden standard of DLW. 

Assah et al. (2009) conducted a study comparing physical activity energy expenditure from a 

hip worn Actigraph® accelerometer to energy expenditure from DLW in 33 adults in a free-

living environment. Their results concluded that the physical activity energy expenditure 

(PAEE) from the accelerometer was significantly correlated to the PAEE from the DLW 

technique over 7-days. Similarly, Johansson, Rossander-Hulthen, Slinde, and Ekblom, (2006) 
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compared the MTI Actigraph® EE output to doubly labelled water. Twenty-seven subjects 

wore an accelerometer for 14 days. They concluded that there was no significant difference 

between the EE measured by the Actigraph® and the DLW.  

In the lab setting, accelerometers have been validated using indirect calorimetry. 

Kumahara et al. (2004) found the 24-hr TEE of 79 Japanese subjects using a room respiratory 

chamber. Additionally, subjects were wearing a Lifecorder® accelerometer. Subjects 

performed two 30-minute walking exercises on a treadmill. In an additional part to the study, 

10 men ran at three speeds and walked and six speeds for four minutes each. They concluded 

that the accelerometer was accurate when measuring energy expenditure during the activities, 

but significantly underestimated the EE when the subjects were sedentary. Similarly, 

Vanhelst et al. (2012) aimed to validate the Vivago® wrist-worn accelerometer against 

indirect calorimetry. Twenty-one subjects performed six, 10-minute periods of activity at 

differing intensities (sedentary, light, moderate, and vigorous). During activity, subjects wore 

a wrist accelerometer and were hooked to a metabolic cart. They reported a significant 

correlation between the accelerometer EE output and the oxygen consumption output.  

Many accelerometers have been validated against gold standards of EE measurement 

making them common devices for measuring PA. Despite their accuracy, accelerometers can 

be highly expensive, causing them to be impractical for large epidemiological studies (Sylvia 

et al., 2014). Additionally, they require researchers to be well-versed with technology and 

can cause subject reactivity in studies (Vanhees et al., 2005). Furthermore, accelerometers 

were found to be more accurate in determining PAL and EE when paired with an additional 

method of measurement (i.e. heart rate; Johansson et al., 2006; Brage et al., 2015; Chang, 

Lin, Ho, and Huang, 2010).  
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Wearable Fitness Technology. Following the realization that multiple methods of 

measurement together was most accurate for quantifying PA and the advancements in 

technology, multi-sensor devices were created and commercialized. Worldwide, the revenue 

from wearable fitness trackers (WTFs) was 2.57 billion dollars in 2018 and is projected to 

increase to 3.33 billion by 2022 (Liu, 2019b). Three of the highest selling WFTs are Fitbit®, 

Apple®, and Garmin® (Liu, 2019a). The most recent of these devices are able to record and 

report to users their steps, HR, and active minutes. Using these measures, these devices are 

pre-programmed with factory developed algorithms that can then estimate other measures 

such as energy expenditure, sleep stages, and intensity levels. These devices are then able to 

sync to smartphone applications or computers for users to access information across devices. 

(Liu, 2019a).  

The use of wearable fitness technology has been used as a behavioral modification for 

weight loss and weight maintenance. Several findings have concluded that the use of these 

devices in interventions has proved to be successful. For example, Cadmus-Bertram et al. 

(2015) recruited 51 inactive women and split them into a control group that received a basic 

pedometer and an experimental group that received a Fitbit® tracking device. All women 

were asked to participate in 150-minutes of moderate/vigorous physical activity (MVPA) per 

week. Upon completion of the intervention, the group that received the Fitbit® had 

significant increases in MVPA and steps taken, where the pedometer group did not. In a 

similar study done by Ashe et al. (2015), 25 participants were split into an intervention and 

control group. The control received group-based education while the intervention group 

received education, support, PA prescription, and a Fitbit® activity monitor. After six 

months of the intervention, the intervention group had significantly higher step counts/day, 
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greater weight loss, and reduced diastolic blood pressure than the control group. Due to the 

use of WFTs in behavior/lifestyle modification, being highly accurate is imperative. 

In the literature, validation studies on wearable devices can be divided into several 

categories based on protocol. Protocols include discontinuous-short protocols, discontinuous-

long protocols, and continuous-short duration protocols. Discontinuous refers to a protocol 

that is broken up into several bouts of exercise, while continuous is just one bout. Long-

duration refers to a protocol of 30 minutes or more, while short duration is anything less than 

30 minutes (Schmidt, Biwer, and Kalscheuer, 2001; Daley and Welch, 2004). Protocols also 

differ based on intensity. Some protocols consist of a set intensity or speed, while others 

allow participants to choose their own intensity.  

Discontinuous Protocol-Short Duration. A study by Diaz et al. (2015) compared the 

energy expenditure from two Fitbit™ One devices placed at the hip and torso and a wrist-

worn Fitbit™ Flex to indirect calorimetry. The protocol consisted of a discontinuous, four-

phase treadmill test of increasing intensity. Each phase was six minutes and a three-minute 

rest period was taken between each one.  They found a moderate agreement between the EE 

of the devices and indirect calorimetry. The torso placed Fitbit™ One, hip placed Fitbit™ 

One, and Fitbit™ Flex had a 9.7%-19.9%, 3.4-12.9%, and 24.5-83.4% error respectively. 

Reddy et al. (2018) used a similar short duration, discontinuous protocol. A Fitbit™ Charge 

2 and Garmin™ Vivosmart HR+ were compared to a portable COSMED analyzer. During 

the first visit, subjects completed either a maximal treadmill or cycling test followed by a free 

weight circuit composed of six different exercises for two set and eight repetitions. The 

second visit was composed of 28-minutes of ADLs broken into 3-minutes, with 5-minute 

breaks between each activity. After the ADLs, subjects participated in a 27-minute interval 
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training session that was 2 minutes of high intensity activity followed by 2 minutes of low 

intensity. EE from both the Fitbit™ and the Garmin™ were found to be significantly 

different from indirect calorimetry for all activities.  

Discontinuous Protocol: Long-Duration. Chowdhury et al. (2017) also used a 

discontinuous protocol to compare EE of the Microsoft™ Band, Apple™ Watch, Fitbit™ 

Charge HR, and Jawbone™ UP24 to indirect calorimetry. In the first 24-minute block of 

activity, four activities of daily living (ADL) were done for five minutes of duration each. 

Subjects then took a 10-15-minute break before continuing on with a 64-minute block of 

activity. The second protocol consisted of four ten-minute bouts of walking, jogging and 

cycling. Each activity was separated by a five-minute standing break. Following the visit, 

each subject took the device home and was asked to wear it for at least 36 hours. They found 

that the Apple™ Watch reported the most accurate EE. However, the Fitbit™ Charge HR 

was more accurate in the free-living protocol. Ultimately, none of the devices were strongly 

correlated to the research devices. Another study by Shcherbina et al. (2017) used a 

discontinuous protocol of long-duration. EE from an Apple™ Watch, Basis Peak™, Fitbit™ 

Surge, Microsoft™ Band, Mio™ Alpha 2, Pulse On™, and Samsung™ Gear S2 was 

compared to indirect calorimetry. During the study, subjects performed a 40-minute block of 

activity consisting of sitting for five minutes, walking for ten minutes, then transitioning to 

running for 10-minutes, resting for 1-minute, then transitioning to cycling for ten minutes. At 

the conclusion of the study, it was reported that no device had an error < 20% and the errors 

ranged from 27.4% (Fitbit™) to 92.6% (Pulse On™). All devices underestimated EE for 

both walking and running. 
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Continuous Protocol: Short-Duration. Kendall et al. (2019) looked at EE estimated 

by the Basis™ Watch, Fitbit™ Flex, Polar™ FT7, Jawbone™, Omron™ Pedometer, and 

Actigraph™ compared to indirect calorimetry. For the study, participants completed a 

maximal graded treadmill test consisted of a continuous protocol at a self-selected pace with 

gradually increasing grade of 2% every 2-minutes until exertion. They found that during 

maximal treadmill testing, all devices were significantly correlated with indirect calorimetry, 

but that correlations were stronger in lower fit individuals (lower intensities). Alike, 

Dondzilla and Garner (2016) also used a short duration protocol while comparing EE 

estimations of the Fitbit™ Charge and the Jabra™ Sport Plus wireless earbuds to indirect 

calorimetry. Subjects performed four 5-minute treadmill stages at varying intensities. Both 

devices were found to significantly underestimate EE, but when looking at individual stages, 

both devices were moderately correlated at moderate speeds. One last short duration study by 

Dooley, Golaszewski, and Bartholomew (2017) compared EE of the Apple™ Watch, 

Fitbit™ Charge HR, and the Garmin™ Forerunner 225 to gas analysis of the metabolic cart. 

Subjects performed 4-minute stages of light, moderate, and vigorous activity on a treadmill. 

Both the Apple Watch and the Garmin overestimated EE at all stages and had error ranges of 

14.07-210.84% and 30.77-155.05% respectively. The Fitbit™ Charge HR overestimated at 

all stages except vigorous and had an error range of (16.85-84.98%). 

Self-Selected Intensity. Stackpool, Porcari, Mikat, Gillette, and Foster (2015) allowed 

their subjects to self-select the intensity of the activities. When comparing the Nike™ 

FuelBand, Fitbit™ Ultra, Jawbone™ UP, BodyMedia™ Fit Core, and Adidas™ MiCoach to 

indirect calorimetry, a two-day protocol was used. The first visit was comprised of a 20-

minute walk, followed by a ten minute rest, and then a 20-minute run at self-selected paces. 



 

 26 

During the second visit, participants performed 20 minutes at a self-selected intensity on an 

elliptical and then a series of agility drills. It was reported that none of the wearable devices 

were accurate across all of the activities, however the Fitbit™ Ultra only estimated a 

significantly different EE for the agility drills. Similarly, Montoye et al. (2017) compared the 

EE estimated by the Fitbit™ Charge HR and the Hexoskin™ smart shirt against the Parvo™ 

medabolic cart. A protocol consisting of 14 exercises was used including 11 in the lab and 

three on a track. Participants were allowed to self-select paces within a range for each 

walking, jogging, and cycling activity as long as their pace remained constant throughout the 

activity. Each activity was performed for five minutes and participants were able to take a 

break after each activity. An overestimation of EE was reported for both the Fitbit™ (43.7%) 

and the Hexoskin™ (27.9%). Bai, Hibbing, Mantis, and Welk (2018) looked at the 

correlation between Apple™ Watch 1 and Fitbit™ Charge HR and the Oxycon Mobile. The 

study consisted of three different stage with a 5-minute break between each stage. The first 

stage was 25 minutes of sedentary behavior where participants were required to sit at a desk 

but were allowed to choose an activity such as reading or using a computer. Next, subjects 

were asked to walk or jog at a self-selected pace for 25 minutes on a treadmill. Subjects were 

able to change pace throughout the stage. The final stage was comprised of 25 minutes of 

ADLs. Subjects were given little direction and were able to choose from a number of 

activities. From this study, the mean error in the Charge was 32.9% and the Apple™ Watch 

was 15.2%. 

 Missing from these validation studies is a methodology utilizing a continuous, long-

duration exercise protocol. Additionally, to our knowledge, there is no research comparing 

the accuracy of wearable devices between a short- and long-duration protocol. It is important 
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to validate using this long-duration protocol because the recommended physical activity is 30 

minutes a day, 5 days per week, or 150 minutes of moderate-to-vigorous PA (ACSM, 

2018b). Individuals are likely to engage in 30-minute bouts of exercise to meet this 

requirement. Ensuring that estimates of EE reported by these monitors are accurate is crucial, 

so consumers are able to adjust caloric intake appropriately. This will assist in weight 

management and potentially increase weight loss or weight maintenance among users.  
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Chapter 3: Methods 

Participants 

Thirty-one adults from Eastern Michigan University and surrounding areas were 

recruited as a convenience, non-probability sample. Participants had to be between the ages 

of 18 and 35 and had to be able to run for at least 30 minutes. An informed consent was 

given prior to testing. Only those not considered at risk by the Physical Activity Readiness 

Questionnaire (American College of Sports Medicine, 2019) were able to participate in the 

study. Additionally, following Visit 1, subjects were assigned to a fitness group based on 

their cardiorespiratory fitness (CRF) level. To determine these groups, relative maximal 

oxygen consumption (VO2max (mL/kg/min)) was categorized based on percentile according to 

the ACSM guidelines. These percentiles are a method of standardization based on gender and 

age. A median split of this population was done, splitting participants at the 65th percentile. 

For this study those in the 65th percentile or below were considered moderately fit, while 

those above the 65th percentile were considered high fit. Individuals below the 35th percentile 

were excluded from the study. The rationale behind splitting subjects based on fitness level 

was to determine if the accuracy of energy expenditure varies based on CRF.  

Procedure 

Equipment for each visit included a FitBit™ Inspire HR activity monitor, True™ 

treadmill, Parvo™ metabolic cart, Polar™ heart rate monitor, Tanita™ BWB-800 scale, and 

Detecto™ stadiometer. Each participant completed three visits to the Eastern Michigan 

University Running Science Laboratory. Each visit was held at least 72 hours apart, but all 

three visits were completed within a two-week time period. Visits 2 and 3 consisted of either 

a short or long-duration running protocol. Whether the participant completed the long or 
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short duration protocol following the incremental maximal treadmill test was randomized and 

counterbalanced using a random number generator.  

A Fitbit™ Inspire HR activity monitor was worn by the participant in Visits 2 and 3. 

The Fitbit™ Inspire HR records steps taken, daily calorie expenditure, exercise calorie 

expenditure, heart rate, sleep stages, active minutes, pace, and distance traveled (Fitbit, 

2019). The Fitbit™ devices predicted EE with an algorithm that combines BMR using 

factors such as age, height, weight and sex and your daily activity with HR (Fitbit, 2019). 

Predicted calorie expenditure by the activity monitor during the exercise portion of each visit 

was taken and accuracy was compared to the energy expenditure from the Parvo™ metabolic 

cart. 

Visit 1: Incremental Graded Maximal Treadmill Test. During the first visit, a 

continuous, incremental maximal treadmill test protocol, adopted from Kendall (2019), was 

completed on a treadmill to determine VO2max. Oxygen consumption and carbon dioxide 

expiration was measured via indirect calorimetry using a Parvo™ metabolic cart. A 

mouthpiece and nose clip were worn to ensure accurate measurement of gas exchange. The 

metabolic analysis was measured breath by breath and aggregated to 15 seconds and the 

subjects VO2 (L/min and mL/kg/min), METS, and energy expenditure (kcals) were recorded. 

For the participant to reach maximal oxygen consumption, two of the three following criteria 

were met: (a) oxygen consumption leveled off despite increasing work rate (b) the respiratory 

exchange ratio (RER) was ³ 1.1 3 and (c) heart rate was no less than 15 beats below age-

predicated max (HRmax = 220 - age; Kline et al., 1987). 

The treadmill test protocol was comprised of two-minute stages. Participants 

performed a warm-up on the treadmill for 3 minutes at 3.0 mph and 0% grade. Following the 
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warm-up, the treadmill was set to a self-selected running pace, but remained at 0% grade for 

the first stage. The remainder of the test was conducted at this speed and every two minutes, 

the grade of the treadmill was increased by 2%. Participants were verbally encouraged to 

continue the test for as long as possible. Once the participant reached exhaustion, the test was 

concluded. The mouthpiece and nose clip were removed, and the metabolic analysis was 

completed by the Parvo™. The treadmill was returned to 0% grade and 2.5 mph and 

participants performed a cool down for five minutes or until HR fell below 120 bpm.  

The participant was given a ten-minute break following the cool down. During this 

time, the VO2max report from the metabolic cart was used to determine if a true max was 

reached. To meet the first criteria, the VO2 of the last two minutes was averaged and there 

was no more than a 2 ml/kg/min difference. For the second criteria to be met, the RER 

column was looked at and it was determined if the RER was over 1.1. For the last criteria to 

be met, the HR column was used to determine if the highest heart rate was less than 15 beats 

from the age-predicted max. If two of the three criteria are met, it was determined that the 

participant reached a true VO2max. Seventy to seventy-five percent of the participants VO2max 

was calculated using the following equations: (VO2max) x (0.70) and (VO2max) x (0.75). This 

value was used to determine the running speed to be used in the remaining visits.  

Following the 10-minute break, the running speed was found for the remaining two 

visits (70-75% of VO2max). Three minute stages were used to ensure steady state is reached. 

The participant completed a three minute warm up at 3.0 mph and then the treadmill speed 

was increased to 6.0mph for an additional three minute stage. The speed of the treadmill was 

increased or decreased by 0.5 mph for each three minute stage, until a steady state of seventy 

to seventy-five percent of the participants VO2max was reached. This speed was recorded for 
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use at future visits. The participant then completed a 3-minute cool down at 2.0 mph or until 

heart rate fell below 120bpm. Randomization was used to determine if the participant was to 

complete the long-duration or short duration protocol during visit two using a random 

number generator. 

Visit 2 or 3: Long-Duration. Participants returned to the lab at least 72 hours, but no 

longer than 2 weeks, after the previous visit. The long-duration protocol was completed at a 

moderate-to-vigorous intensity, determined by ACSM’s exercise guidelines, to be 70% to 

75%. This intensity (speed) was calculated from the previous visit’s maximal treadmill test. 

The participant was connected to the Parvo™ metabolic cart for the duration of the visit. 

Prior to the test, each subject’s characteristics (birthday, weight, height, and gender) were 

inputted into the Fitbit™ mobile app and the device was synced to the Fitbit™ mobile app 

using IOS 13 software. Participants then placed the Fitbit™ on their non-dominant arm, one 

to two fingers above their wrist (Fitbit, 2019). The treadmill was set to the speed found 

during the second half of the initial visit. Simultaneously, the activity monitor was set to the 

treadmill exercise setting, the Parvo™ metabolic cart test was started, and the subject began 

running. The participant continued to exercise at this intensity for thirty minutes. The Fitbit™ 

activity monitor and Parvo™ metabolic cart were both paused at the thirty-minute time stamp 

and the participant stepped to the sides of the treadmill. Following the exercise stage, the 

mouthpiece and Fitbit™ activity monitor were removed. The participant completed a three 

minute cooldown at 2.0 mph or until heart rate fell below 120 bpm. Energy expenditure was 

recorded from the metabolic cart text report and was taken from the Fitbit™ exercise report 

after the device was synced to the mobile app.  
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Visit 2 or 3: Short Duration. Participants returned to the lab at least 72 hours after 

the previous visit, but no longer than two weeks from the initial visit. The same protocol as 

the long-duration visit was used except the participant only continued to exercise at this 

intensity for ten minutes. Following the exercise stage, the mouth piece and Fitbit™ activity 

monitor were removed. The participant completed a 3-minute cooldown at 2.0 mph or until 

heart rate fell below 120 bpm. Energy expenditure was recorded from the metabolic cart text 

report and was taken from the Fitbit™ exercise report after the device was synced to the 

mobile app.  

Statistical Analysis  

Descriptive statistics were used to describe participants’ characteristics (gender, age, 

height, weight, VO2max, VO2max percentile rank, speed, and EE measurements) and were 

reported as mean (SD). Pearson correlations for short- and long-duration were used to assess 

group-level associations between measured EE (criterion measure) and predicted EE from 

the activity monitor. A paired samples t-test was performed to determine group differences in 

descriptive characteristics such as age, height, weight, VO2max, and running speed and 

between measured EE (criterion measure) and predicted EE from the activity monitor A 

repeated measures ANOVA was used to determine the interactive effect of measurement 

mode and duration on measured EE (criterion measure) and predicted EE from the activity 

monitor. A mixed-measures ANOVA was used to determine the interactive effect of 

measurement mode and fitness level on the of energy expenditure estimates from both the 

metabolic cart and Fitbit™ activity monitor. Bland-Altman plots were created to display 

levels of agreement between measurement modes. Statistical significance was determined at 
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a p-value of p < 0.05. All statistical analyses were performed using IBM SPSS statistical 

software version 26. 
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Chapter 4: Results 

Descriptive Characteristics 

Of the 31 participants that were recruited to participate in the study, 25 completed all 

three visits (81%). Four participants that did not return for all three visits and two participants 

who did not reach the criteria for VO2max were excluded from the study. Of these 25 

participants, the majority were male (60%) and the mean age was 23(5.0) years old. The 

average VO2max of the participants was 50.4(7.0) mL/kg/min. The average speed in which 

participants were running at 70-75% of their VO2max during both the short- and long-duration 

protocols was 6.8(0.8) mph. Characteristics of the sample can be found in Table 1. 

Descriptives are represented as mean(SD) or percentage. To create moderate- and high- 

fitness groups, each subject was assigned a percentile rank, according to ACSM. The sample 

was then split at the median VO2max percentile (65th percentile); those in the 65th percentile or 

below were considered moderately fit, while those above the 65th percentile were considered 

high fit.  

 

Table 1.  
Descriptive Characteristics 

 
Total Sample 

(N = 25) 
Moderate Fitness 

(N = 13) 
High Fitness 

(N = 12)  
Age (yrs) 23.0(5.0)  23.3(4.2) 22.2(5.4) 

Gender (% male) 60% 77% 42% 

Weight (kg) 74.2(13.9) 80.7(10.7) 67.2(13.9)* 

Height (cm) 173.5(9.0) 173.9(8.0) 172.9(10.7) 

VO2max (mL/kg/min) 50.4(7.0) 46.4(5.1) 54.8(6.2)** 
 
VO2 max percentile (%)  70th  55th 85th 

Speed (mph) 6.8(0.8) 6.4(0.5) 7.2(0.8)** 
Note. Mean (SD) or % and differences between groups (* significant at p < 0.05) (** significant at p < 
0.001). 
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Moderate v. High-Fit Group Differences 

The moderate fit group was comprised of 10 males and three females with an age of 

23.3(4.2) years, weight of 80.7(10.7) kg, height 173.9(8.0) cm, VO2max of 46.4(5.1) 

mL/kg/min, and running speed of 6.4(0.5) mph. The high fit group was comprised of five 

males and seven females with an age of 22.2(5.4) years, weight of 67.2(13.9) kg, height 

172.9(10.7) cm, VO2max of 54.8(6.2) mL/kg/min, and running speed of 7.2(0.8) mph. Group 

characteristics and differences are displayed in Table 1. An independent samples t-test 

determined group differences in these descriptive characteristics between the moderately-fit 

and high-fit groups. The independent samples t-test determined that there were significant 

differences in weight t(24) = 2.71, p = 0.013, VO2max t(24) = -3.75, p = 0.001, and speed 

t(24) = -3.45, p = 0.002. There was not a significant difference between groups for age (p = 

0.590) or height (p = 0.793).  

Measured v. Estimated Energy Expenditure  

Table 2 displays the average energy expenditure outputs for both measurement 

methods during both the short- and long-duration protocols for the entire sample. The mean 

difference in energy expenditure between the metabolic cart and the Fitbit activity monitor 

during the short duration exercise was 12.4(12.3) kcals. The mean difference in energy 

expenditure between the metabolic cart and the Fitbit activity monitor during the long-

duration exercise was 20.7(55.1) kcals. For the whole sample, the correlation between 

measured and estimated energy expenditure for the short duration run was R = .860 (p < 

0.001) and for the long-duration run was R = .785 (p < 0.001). A paired-samples t-test 

determined that during the short duration run, the average energy expenditure from the cart 

(126.8(23.6) kcals) was significantly greater than the average energy expenditure from the 
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Fitbit (114.4(23.0) kcals), t(24) = -5.041, p < 0.001. However, for the whole sample during 

the long-duration run, the average energy expenditure from the cart (398.8(75.7) kcals) was 

not significantly different from the average energy expenditure from the Fitbit (378.2(88.2) 

kcals), t(24) = -1.877, p = 0.073.  

 

Bland-Altman plots indicated the differences between the metabolic cart (criterion) 

and Fitbit activity monitor (y-axis) against average energy expenditure (x-axis). Figures 1 

and 2 present these differences with limits of agreement for the 10-minute run duration and 

30-minute run duration, respectively. A positive value of mean difference indicates an 

underestimation of Fitbit activity monitor compared to the criterion measurement. A negative 

value of mean difference, therefore, indicates and overestimation by the activity monitor 

compared to the criterion measurement. These differences and the range between the upper 

and lower limits of agreement are important in determining the validity of the consumer 

grade device. The larger the limits of agreement, the less accurate the WFT is. The mean 

difference in energy expenditure between the metabolic cart and Fitbit activity monitor 

during the short duration run was 12.4 kcals and the mean difference in energy expenditure 

between the metabolic cart and Fitbit activity monitor during the long-duration run was 20.7 

kcals. The 10-minute run displayed more narrow limits of agreement (48.3 kcals or 40% of 

AEE) compared to the 30-minute run (216 kcals or 56% of AEE). Figure 1. indicates that 

Table 2.  
Average Energy Expenditure Estimates from Metabolic Cart and Fitbit 

Short Duration Run (10-minute) Long-duration Run (30-minute) 
Metabolic Cart 

(measured 
kcals) 

Fitbit Inspire HR 
(estimated kcals) 

Metabolic Cart 
(measured kcals) 

Fitbit Inspire HR  
(estimated kcals) 

126.8(23.6) 114.4(23.0) 398.8(75.7) 378.2(88.2) 
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individuals who expended more kcals during the 10-minute run tended to display larger 

measurement error.  

 

 

Figure 1. 10-minute run measurement agreement.  

 

Figure 2. 30-minute run measurement agreement. 

 
Short v. Long-Duration  

 A 2 (method) x 2 (duration) repeated-measures ANOVA revealed that for the whole 

sample, the main effects of measurement mode and exercise duration on energy expenditure 
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were significant (p = 0.018; p < 0.001). The interactive effect of exercise duration and 

measurement mode on estimated energy expenditure was not significant (p = 0.385). Thus, 

differences in energy expenditure estimates from the two measurement modes were not 

influenced by run duration for the whole sample. Figure 3 represents the differences in mean 

between measurement mode for both run durations.  

 

Figure 3. Short duration (1) v. long-duration (2) measurement error.  
 
Moderate v. High Fitness  

For the short duration run, a paired samples t-tests revealed that during the short 

duration protocol there were no significant differences in energy expenditure in the 

moderately fit group (p = 0.054), but that there were significant differences in energy 

expenditure in the high fit group (p < 0.001). A 2 (method) x 2 (fitness level) mixed-measure 

ANOVA revealed that the main effect of measurement mode was significant (p < 0.001) 

while the main effect of fitness level was not significant (p = 0.078). The interactive effect of 
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fitness level and measurement mode on estimated energy expenditure was significant (p = 

0.006). Thus, differences in energy expenditure estimates from the two measurement modes 

were influenced by fitness level. Figure 4 represents the differences in means between 

measurement mode for both the moderate and high fit groups. 

 

Figure 4. Short duration, moderate v. high fitness measurement error. 
 

For the long-duration run, a 2 (method) x 2 (fitness level) mixed-measure ANOVA 

revealed that the main effects of measurement mode and fitness level were significant (p = 

0.021; p = 0.020 respectively). The interactive effect of fitness level and measurement mode 

on estimated energy expenditure was significant (p = 0.001). Thus, differences in energy 

expenditure estimates from the two measurement modes were influenced by fitness level. A 

paired samples t-tests revealed that during the long-duration protocol there were no 

significant differences in energy expenditure in the moderately fit group (p = 0.310), but that 

there were significant differences in energy expenditure in the high fit group (p = 0.003). 
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Figure 5 represents the differences in means between measurement mode for both the 

moderate and high fit groups. 

 

Figure 5. Long-duration, moderate v. high fitness measurement error. 

 

Table 3 represents the mean difference, lower area of agreement, and upper area of 

agreement for each of the four groups (moderate fitness-short duration, high fitness-short 

duration, moderate fitness-long-duration, and high fitness-long-duration). 

Table 3.  
Energy Expenditure Estimation Error Based on Run Duration and Fitness Level  

 Mean Difference Lower Area of 
Agreement 

Upper Area of 
Agreement 

Short Duration- 
Moderate Fitness 6.2 -13.6 26 

Short Duration – 
High Fitness 19.2 -1.1 39.4 

Long-duration- 
Moderate Fitness -11.2 -83.2 60.8 

Long-duration – 
High Fitness 55.3 -38.9 149.4 



 

 41 

Chapter 5: Discussion 

The current study aimed to determine if the Fitbit™ Inspire HR is valid in estimating 

energy expenditure during both long and short duration exercise at a moderate to vigorous 

intensity (70-75% of VO2max) compared to a criterion measure (Parvo™ metabolic cart). The 

secondary aim of this study was to determine if accuracy of energy expenditure estimates 

differed based on an individual’s cardiorespiratory fitness level. It was hypothesized that the 

activity monitor would not be accurate in predicting overall energy expenditure during both 

the short- and long-durations of exercise. It was also hypothesized that the activity monitor 

would be accurate in predicting energy expenditure during both exercise durations for 

moderate fit individuals, but not for high fit individuals. To our knowledge, this is the first 

study to compare energy expenditure prediction accuracy during short- and long-duration 

exercise using the Fitbit™ Inspire HR activity monitor.  

Estimated v. Criterion Energy Expenditure 

The results of this study revealed strong correlations between the Fitbit activity 

monitor and criterion measurement for the short duration protocol (R = 0.860, p < 0.001). 

Despite this strong correlation, the t-test reported significant differences between the two 

methods of energy expenditure measurement (p < 0.001) during the short duration run. 

Energy expenditure during this protocol was underestimated by the Fitbit activity monitor. A 

study conducted by Kendall et al. (2019), reported similar results. They determined that 

during an exercise bout (~10 minutes) of increasing intensity, the Fitbit activity monitor had 

a strong correlation with indirect calorimetry (R = 0.807). Additionally, like the current 

study, Kendall et al. (2019) reported an overall underestimation of energy expenditure by the 

activity monitor. Dondzilla and Garner (2016) also reported an underestimation of energy 
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expenditure, but moderate correlations for the Fitbit activity monitor. The Bland-Altman 

plots visually displayed the larger margin of error during the 10-minute exercise bout (Figure 

1). As the average energy expenditure increased for an individual during the 10-minute bout, 

so did the measurement error. Thus, those individuals that expended higher amounts of 

energy showed larger discrepancies between the criterion and predicted EE measurements. 

Similar to the short duration protocol, a moderate correlation was found in 

measurement method during the long-duration protocol (R = 0.785, p < 0.001). However, the 

t-test did not find any significant differences in the measurement methods (p = 0.073). These 

results are contradicted by the literature. In a previous study of long-duration, subjects 

performed 10-minute bouts of four different exercises of differing intensities (Chowdhury et 

al., 2017). Across intensities, a mean absolute percent error (MAPE) of 36 ± 22 was reported 

and the study concluded that the Fitbit activity monitor was not equivalent to research grade 

devices. Similarly, Shcherbina et al. (2017) utilized a 40-minute protocol transitioning 

between walking, running and cycling. Their results concluded a percent error of 27.4% for 

the Fitbit activity monitor and found significant underestimation of EE by the device 

compared to indirect calorimetry. The current study may have resulted in significant 

correlations due to the exercise bout being the same intensity throughout. Starting and 

stopping the devices during transitions between multiple forms (i.e., sedentary, running, 

cycling) of activity of differing intensities (i.e., light, moderate, vigorous) allows for more 

room for error in recording energy expenditure estimates.  

Run Durations Effect on Energy Expenditure 

Independently, the main effects of measurement mode and run duration on energy 

expenditure were significant (p = 0.018, p < 0.001). We expect run duration to have a 
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significant impact on energy expenditure because as time progresses, energy expenditure 

continues to increase. The interactive effect of measurement method and run duration, 

however, was not significant (p = 0.385). This means that the error in energy expenditure was 

not different depending on run duration. To our knowledge, this is the first study to examine 

the differences in prediction accuracy between a short- and long-duration protocol. Seeing no 

difference in error between the two durations allows us to conduct shorter activity protocols 

and generalize it to a longer duration of activity. Being able to do this would allow more 

participants to be tested, resulting in larger studies that can ensure accurate results.  

Fitness Level’s Effect on Energy Expenditure 

Independently, the main effects of measurement mode and fitness level on energy 

expenditure were significant (p < 0.05). The interactive effect of fitness level and 

measurement mode on energy expenditure was also found to be significant (p = 0.001). This 

means that the differences in energy expenditure error were dependent on fitness level. 

Figures 4 and 5 display theses errors. The high-fitness group saw much larger errors in 

energy expenditure between the Fitbit and the metabolic cart with the Fitbit significantly 

underestimating energy expenditure during both the short- and long-duration exercise for 

these individuals. These results are similar to a previous study by Kendall et al. (2019) that 

reported a much stronger correlation between a Fitbit activity monitor and indirect 

calorimetry in low fit individuals (R = 0.934) than high fit individuals (R = 0.791). Kendall et 

al. (2019) attributed this difference to activity monitors being unable to account for EE 

adjustments due to incline treadmill running or running intensities. However, in our study, 

participants all ran at the same intensity for the duration of the protocol. Thus, it can be 
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assumed that differences in the estimation error may be due to the activity monitor’s 

algorithm for energy expenditure.  

Factors Included in Fitbit’s EE Algorithm 

According to the help section found on Fitbit.com, the energy expenditure algorithm 

combines factors such as BMR (calculated using height, weight, age and sex), activity data 

(step counts and distance), and HR to calculate calories burned daily and during physical 

activity. To improve accuracy, Fitbit™ suggests placing the activity monitor into the 

appropriate exercise mode, signifying the use of exercise mode in the algorithm as well. 

Table 4. displays the differences in descriptive characteristics between the high- and 

moderately- fit groups. When comparing these characteristics three factors were significantly 

different (weight, VO2 max, and speed of runs). We can assume that the differences in 

accuracy of energy expenditure estimation between the two groups could be due, in part, to 

these differences.  

Basal Metabolic Rate. Most commonly BMR equations use variables such as height, 

weight, age, and sex to predict resting energy expenditure. In our sample, the high-fit group 

had a significantly lower weight than the moderately fit group. However, the height and age 

were not significantly different. Typically, trained individuals tend to have a higher 

percentage of fat-free mass (i.e., muscle and bone tissue and water). One major factor 

determining BMR has been shown to be fat-free mass (Sjodin et al., 1996; Haff and Weijs, 

2014).  

Some of the most popular prediction equations for BMR have been validated using 

healthy, adult individuals (Harris and Benedict, 1918; Mifflin et al., 1990; Owen et al., 1987; 

Owen et al., 1986; Food and Agricultural Organization, World Health Organization, United 
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Nations University, 1985). When using these equations to predict BMR in different 

population, they have been shown to be inaccurate. A study by Sjodin et al. (1996) 

researched differences in BMR between athletes and non-athletes and determined that 

athletes had a significantly higher BMR than estimated calculations. More recently, Haaf and 

Weijs (2014) compared the BMR of recreational athletes determined by indirect calorimetry 

to 12 equations for predicting energy expenditure. They determined that some of the most 

widely used equations for estimating EE showed less than 50% accuracy, but their developed 

equations based on FFM were much more accurate.   

In this study, the high-fit group not only had a significantly lower weight than the 

moderately fit group but had a significantly higher VO2max (54.8 mL/kg/min). This value 

classified them as more fit than the average population (ACSM, 2018d). Knowing this, it can 

be assumed that the general prediction equations used in the general public may not be as 

accurate for their fitness levels and weight status. This would cause the high-fit group to have 

a lower estimated BMR to include in the calorie expenditure estimation from the Fitbit™ 

activity monitor, causing an underestimation of physical activity caloric expenditure.  

Physical Activity Data. The Fitbit™ Inspire HR activity monitor collects physical activity 

data such as distance travelled using step count and stride length. According to Fitbit (2019) 

stride length is predetermined by the device using an individual’s height and sex. However, if 

a user does multiple outdoor runs using a GPS to track distance, a stride length is calculated 

using those distances and step counts. Although step counts and distance travelled were not 

factors examined in our work, previous studies have been done to validate these variables.  

A study by Wahl, Duking, Droszez, Wahl, and Mester (2017) aimed to validate 

eleven wearable devices for both step counts and distance travelled during treadmill exercise 
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at varying intensities. They found that compared to direct observation, step counts by the 

devices were valid and displayed a MAPE of < 2%. However, the estimated distance 

travelled resulted in a MAPE of 1.3-29.9% and a significant underestimation of distance 

travelled at higher velocities (MAPE = -18.1-58.3%). Similarly, Haung, Xu, Yu, and Shull 

(2016) validated a number of devices during treadmill walking of increasing velocities. The 

reported that the majority of devices were valid in reporting step counts across all speeds. 

When reporting on distance travelled, they found a significant underestimation of distance 

travelled at faster walking speeds for most devices (including three Fitbit monitors).  

It has been suggested that this inaccuracy in distance estimation could be due to the 

device using inaccurate stride lengths (Takacs et al., 2014). In our current work, significantly 

faster speeds were utilized by the high-fit group (Table 3). If an underestimation of distance 

travelled at faster speeds is utilized in the algorithm, this could result in an underestimation 

of caloric expenditure predicted by the device.  

Heart Rate. The third variable used in the Fitbit™ algorithm for caloric expenditure 

is heart rate data. The Fitbit™ devices uses PurePulse™ technology to detect changes in 

blood volume and determine heart rate (bpm; Fitbit, 2020). Like step count and distance, 

heart rate data was not validated in this work, however previous research has found strong 

correlations between the HR from wrist worn devices and criterion measures such as Polar™ 

HR straps. 

Bai et al. (2018) compared the HR from the Fitbit™ Charge HR to the Polar™ HR 

strap during sedentary, aerobic, and stimulated free-living activities. They reported a strong 

correlation between HR from the Fitbit™ and Polar™ monitor with an error range from -0.2 

- 2.3% across the three activity types. Similarly, Shcherbina et al. (2018) reported strong 



 

 47 

correlation between seven wrist worn devices and a 12-lead electrocardiogram (ECG) during 

walking, running, and cycling. Across all devices and activities, error ranged from 0.9 - 

9.0%.  

Assuming our data was in line with the previous literature, HR would have been 

accurate for use in the algorithm. It is known that trained individuals have significantly lower 

heart rates at rest (Achten and Jeukendrup, 2003) and during submaximal exercise (Achten 

and Jeukendrup, 2003). When working at the same intensity, high-fit individuals will have a 

lower heart rate than those of a lower fitness level. In our study, all subjects completed the 

short- and long-duration running protocols at 70 - 75% of their determined VO2max. Subjects 

in the high-fit group would not have had to work as hard as those in the moderately fit group 

to continue at this intensity. If the device recorded a lower heart rate value for the high-fit 

subjects, this would result in a lower energy expenditure estimation. However, this factor 

may not have contributed to the underestimation of EE by the Fitbit™ due to the linear 

relationship between HR and EE resulting in the assumption that a lower HR is associated 

with a lower caloric output (Keytel et al., 2005).  

Strengths and Limitations  

Strengths of this study included the use of continuous long-duration protocol, new 

technology that has not yet been reported on, and using a relative intensity of exercise (70 - 

75% VO2max) for all participants. To our knowledge, in the literature, there are no studies 

validating the energy expenditure predicted from wearable activity monitors during an 

exercise bout of 30 minutes of exercise. Previous validations studies look at exercise ranging 

in duration from 3 to 20 minutes. Additionally, no other studies compare measurement error 

of a short duration protocol to a long-duration protocol. A wearable device that was released 
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to the public in March 2019 was utilized in this study. Validation of new technology allow 

for us to determine improvement in factors estimated by wearable devices. Lastly, all 

subjects completed both protocols at the same intensity. Rather than choosing a set speed or 

allowing subjects to self-select a pace, each participant ran at 70-75% of their VO2max. This 

lets us generalize our findings to moderate-to-vigorous exercise as determined by ACSM 

(2018d). Additionally, in order to determine this relative intensity for each participant, we 

were able to determine VO2max. Finding VO2max allowed us to compare the measurement 

error between individuals of differing fitness levels. This allowed us to identify discrepancies 

in the measurement accuracy between moderate and high fit subjects.  

Limitations of this study include a small sample size of relatively similar 

characteristics, the use of a single activity monitor, and the lack of control prior to laboratory 

visits. Subjects were recruited as a convenience sample from Eastern Michigan University’s 

campus. We only accepted subjects between the ages of 18 - 35, which limited our sample. 

The fitness level of our subjects were similar, with only four participant’s VO2max values 

falling below the 50th percentile (fair) and only seven falling below the 60th percentile (good) 

according to ACSM’s guidelines. Only one consumer grade device was used in this study. 

Larger studies are able to validate multiple devices against a criterion method and make 

suggestions on which devices may be more accurate than others. Lastly, our participants 

were uncontrolled before visits.  It is known that factors such as food intake, caffeine, and 

exercise can influence exercise performance and VO2 (Chowdury et al., 2017). Not asking 

participants to abstain from these factors could have an influence on performance 

measurements.  
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It is also important to note the complexity of energy expenditure. Energy expenditure 

varies greatly depending on the individual. Physiological factors such as fitness level, body 

composition, gender, economy, etc., along with environmental factors such as temperature, 

food intake, hydration, etc., all play a role in caloric output at rest and during physical 

activity. Not being able to control for all factors only allows us a glimpse into the validity of 

energy expenditure estimation by these wearable devices.  

Future research 

Future research should focus on increasing the number of devices validated to include 

other wearable consumer grade devices such as models manufactured by Apple™ and 

Garmin™. Given how rapidly technology is developed, newer Fitbit™ models should be 

included in these studies. Comparing multiple devices to the criterion measurement mode 

would produce results of energy expenditure estimation during long-duration exercise across 

devices. Doing this gives us a better understanding of which devices underestimate or 

overestimate energy expenditure and why that may be. Comparing estimations across devices 

from the same manufacturer would determine if energy expenditure algorithms are 

improving as technology develops. Additionally, future research should incorporate larger 

sample sizes with a larger range of fitness levels. Although, we were able to split our sample 

into a moderate and low fitness level, with only four subjects under the 50th percentile, we 

were unable to fully determine measurement differences between a low-, moderate-, and 

high-fitness group. Having larger groups can give us more confidence that group differences 

exist. Lastly, other factors (i.e., heart rate, stride length, distance) should be recorded during 

the exercise protocols. This would allow us to determine which factors in the algorithms may 

be causing inaccurate estimates to be produced. Recording additional factors would also let 
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us determine differences in fitness groups. By determining significant differences in these 

factors, it may allow for assumptions to be made about why these algorithms are more 

accurate for certain populations.  

Conclusion 

In conclusion, consumers should be cautious when using the Fitbit Inspire HR to 

determine caloric output. Significant differences were reported between measurement modes 

(metabolic cart v. Fitbit™) in all cases, except when looking at the full sample during the 

long-duration run. Those of higher fitness levels should take these estimations with a higher 

degree of caution due to the greater error seen when comparing these groups to those of a 

more moderate fitness level. Future studies should aim to validate additional devices in high 

fit individuals to determine which brands of activity monitors are more applicable to which 

subgroup of the population. The usage of wearable monitors should not be discredited, 

however, due to their ability to increase adherence to physical activity regimens (Cadmus-

Bertram et al., 2015). 
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