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ABSTRACT 
 
In this work it is presented a numerical procedure for solving transient heat 
transfer problems in which the thermal diffusivity is strongly dependent on 
the temperature, with the aid of the Kirchhoff transformation associated to 
an usual finite difference approach. The first step consists of eliminating the 
nonlinear terms associated to the derivatives with respect to the position, by 
means of a Kirchhoff transformation, giving rise to a partial differential 
equation with only one nonlinear term (involving the coefficient of the 
derivative with respect to the time). The advance in time is carried out 
assuming the thermal diffusivity evaluated at a known temperature, giving 
rise to a semi-implicit scheme. Comparisons between this approach and the 
usual hypothesis are carried out in order to illustrate the effect of the 
dependence between the temperature and the thermal diffusivity. Some 
typical results are presented, based on the (6H-SiC) Silicon Carbide 
properties. 
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NOMENCLATURE 
 
c  specific heat   
( )f x  initial data 

k  thermal conductivity 
L  plate thickness 
q  heat generation per unit time and volume 
t  time 
T  absolute temperature 

BT  temperature at the boundary 

IT  initial temperature 

REFT  temperature of reference 
x  cartesian coordinate 
X  dimensionless cartesian coordinate 

 
Greek symbols 
 
α  thermal diffusivity 
α  thermal diffusivity of reference 
φ  auxiliary variable 
λ  ratio /α α  
ρ  mass density 
θ  dimensionless temperature 
τ  dimensionless time 

ω  Kirchhoff transformation 
nω  Kirchhoff transformation at nt  

iω  Kirchhoff transformation at ix  
Ω  body configuration 
∂Ω  the boundary of Ω  
 
INTRODUCTION 
 

The conduction heat transfer process in a rigid 
and opaque body at rest, represented here by the 
bounded open set Ω  with boundary ∂Ω , is a 
phenomenon whose mathematical description is very 
well known (Slattery, 1978; Incropera at al. 2007). 
The general governing equation may be written as 
 

( )Tc div k T q
t

ρ ∂
= ∇ +

∂
  (1) 

 
in which the quantities ρ , c  and k  depends on the 
temperature T .  

Despite of representing a classical issue, these 
conduction heat transfer problems are, usually, 
treated under hypotheses that, in some cases, lead to 
very imprecise simulations giving rise to non 
dependable results. 
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When a numerical simulation seems to be 
necessary, some hypotheses arise in order to simplify 
the simulation. In particular, it is usual to suppose 
constant thermal conductivity k  and constant 
thermal diffusivity α . 

In this work we shall consider Eq. (1) allowing 
that both the thermal conductivity and the thermal 
diffusivity may depend on the local temperature. 
These dependences give rise to nonlinearities. 

The nonlinearity arising from the dependence of 
the thermal conductivity on the temperature will be 
surpassed with the aid of a Kirchhoff transformation, 
which transforms the term ( )div k T∇  into a linear 
one substituting the temperature by a new unknown. 
In this way, the Kirchhoff transformation eliminates 
the nonlinearity associated to ( )div k T∇  (Arpaci, 
1966). 

Therefore, the only nonlinearity will be the one 
due to the thermal diffusivity α (which depends on 
the temperature). 

We shall consider Dirichlet boundary conditions 
(John, 1991). So, the problem focused in this work is 
mathematically represented by 
 

( ) , 0

, 0
, 0

Tc div k T q in t
t

T known on t
T known in t

ρ ∂
= ∇ + Ω >

∂
= ∂Ω >
= Ω =



 (2) 

 
In a Cartesian rectangular system of 

coordinates, Eq. (2) is represented by 
 

( )
( )
( )

,

, , , 0

, , , , 0

, , , , 0

T T T Tc k k k q
t x x y y z z

x y z t

T known x y z t

T known x y z t

ρ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   = + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

∈Ω >

= ∈∂Ω >

= ∈Ω =



 (3) 

 
At this point, naturally, a question arises: Why 

to take into account the influence of the temperature 
on the thermal conductivity and on the thermal 
diffusivity? 

In order to answer this question, let us consider 
a body that experiences large variations of 
temperature. For instance, let us consider a body 
made of silicon carbide. Silicon Carbide (SiC) is a 
semiconductor suitable for operating under high 
temperatures, especially when large temperature 
variations are present. If this body is heated from the 
ambient temperature until 2000 K , are the constant 
thermal  conductivity and the constant thermal 
diffusivity good assumptions? 

Part of the answer (for silicon carbide 6H-SiC) 
may be obtained from Figs. 1 and 2 below, in which 
it is easy to see the strong dependence of k  and α  
on the temperature (Nilsson et al., 1997). 

 
 

Figure 1. Thermal conductivity of the Silicon 
Carbide (6H-SiC ) for temperatures from 250 K to 

2500 K . 
 

 
 

Figure 2. Thermal diffusivity of the Silicon 
Carbide (6H-SiC ) for temperatures from 250 K to 

2500 K . 
 
A LINEAR HEAT TRANSFER PROBLEM 
 

In order to illustrate the effect of the thermal 
diffusivity, let us consider the following problem (in 
which the thermal conductivity and the thermal 
diffusivity were assumed constant (Incropera et al, 
2007) 
 

( )

2

2

1 0

,   0   
,  0

B

T T x L
t x

T T at x and at x L
T f x for t

α
∂ ∂

= < <
∂ ∂
= = =

= =

 (4) 

 
whose (exact) solution is given by (Wylie, 1975) 
 

2

1
exp sinn B

n

n n xT A t T
L L
π πα

∞

=

    = − +         
∑  (5) 

 
in which 
 

( )( )
0

2 sin
L

n B
n xA f x T dx

L L
π = −  

 ∫  (6) 

 
This problem can be formulated in a dimensionless 
form with the aid of the following quantities 
 

2; ; B

B

T Tx tX and
L TL

α ατ θ λ
α

−
= = = =  (7) 
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Giving rise to the following problem 
 

( )

2

2

1 0 1

0,   0   1

,  0B

B

X
X

at X and at X
f LX T

for t
T

θ θ
λ τ
θ

θ

∂ ∂
= < <

∂ ∂
= = =

−
= =

 (8) 

 
in which α  is a reference diffusivity. 

In this case the solution is represented as 
 

( )( ) ( )2

1
exp sinn

n
a n n Xθ λ π τ π

∞

=

= −∑  (9) 

 
in which 
 

( ) ( )
1

0

2 sinB
n

B

f LX T
a n X dX

T
π

− 
=  

 
∫  (10) 

 
In Fig.3 we have the dimensionless temperature 

θ as a function of τ , for the points 1/ 2X =  and 
1/ 4X = , for several values of the thermal 

diffusivity, considering ( ) 2 Bf x T= . 
 

 

 
 

Figure 3. The temperature at 1/ 2X =  and at 
1/ 4X = , for six different values of the thermal 
diffusivity, as a function of the time. 

For a material with constant thermal diffusivity, 
the time needed for reaching a given temperature is 
inversely proportional to the thermal diffusivity. So, 
consider a material with thermal diffusivity varying 
from 0.00001α =  to 0.00050α = (in some system 
of units). In this case, depending on the choice of the 
constant value for the thermal diffusivity, we may 
find a time 50 times greater or 50 times smaller for 
reaching a given temperature. 

Nevertheless, this proportionality does not hold 
when the dependence between temperature and 
thermal diffusivity is strong. 

These arguments lend support for considering 
the dependence of properties like α  with the 
temperature. 
 
THE KIRCHHOFF TRANSFORMATION 
 

Let us introduce the Kirchhoff transformation as 
follows 
 

( ) ( )ˆ ˆ,
REF

T

T

k d k k Tω φ φ= =∫  (11) 

 
in which REFT  is a conveniently chosen temperature. 

With the above definition, Eq. (2) may be 
rewritten as 
 

( )

( )

( )

, 0

ˆ , 0

ˆ , 0

REF

REF

T

T

T

T

dTc div q in t
d t

k d known on t

k d known in t

ωρ ω
ω

ω φ φ

ω φ φ

∂
= ∇ + Ω >

∂

= = ∂Ω >

= = Ω =

∫

∫



 (12) 

 
From Eq. (11) we have that 
 

1dT
d kω

=  (13) 
 

 
and Eq. (12) becomes 
 

( )1 , 0

, 0
, 0

div q in t
t
known on t
known in t

ω ω
α
ω
ω

∂
= ∇ + Ω >

∂
= ∂Ω >
= Ω =



 (14) 

 
in which the thermal diffusivity depends on the 
temperature and, therefore, may be expressed as a 
function of ω . In other words, we have 
 

( ) ( )ˆ Tα α α ω= =   (15) 
 

In a Cartesian rectangular system of 
coordinates, Eq. (14) is represented by 
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( )

( )
( )

2 2 2

2 2 2

1 , , , , 0

, , , , 0

, , , , 0

q x y z t
t x y z
known x y z t

known x y z t

ω ω ω ω
α
ω

ω

∂ ∂ ∂ ∂
= + + + ∈Ω >

∂ ∂ ∂ ∂

= ∈∂Ω >

= ∈Ω =



 (16) 

 
For instance, the conductivity and the diffusivity 

of the Silicon Carbide are approximately given by 
(Nilsson et. al. 1997) 
 

( )

( )2

61100 , 2500 250 /
115

0.0146 , 2500 250 /
207

k K T K W mK
T

K T K m s
T

α

= ≥ ≥
−

= ≥ ≥
−

 (17) 

 
So, let us consider the following relationships 
 

,

,

Ak T B
T B

A T B
T B

α

= >
−

= >
−

 (18) 

 
In such cases we have 
 

( )

ln

ln exp

exp

REF

T

REFT

REF REF

REF

A T Bd A
B T B

T B T B
T B A T B A

T B T B
A

ω φ
φ

ω ω

ω

  −
= = ⇒  − −   
 − −  = ⇒ = ⇒   − −   

 = + −  
 

∫

 (19) 

 
and, so, 
 

( ) ( )exp /REF

A
B B T B A

α
ω

=
− + −

 (20) 

 
For the Silicon Carbide we have, assuming 

250REFT K=  
 

11561100 ln
135

Tω  −  =     
 (21) 

 
And 
 

0.0146 0.0146
20792 135exp

61100
T

α
ω

= =
− − +  

 

 
(22) 

 
Eq. (3) and Eq. (9) represent the same problem. 

Nevertheless, Eq. (9) has only one nonlinearity and 
does not involve any numerical approximation for the 
thermal conductivity. The dependence of the thermal 
conductivity on the temperature is embedded in the 
new unknown ω . 

Eq. (15) is illustrated in Fig. 4. 
 

 
 

Figure 4. Thermal diffusivity of the Silicon Carbide 
as a function of the Kirchhoff Transformation. 

 
A SEMI-IMPLICIT ALGORITHM 
 

The use of the Kirchhoff transformation enables 
us to advance from time nt  to time 1nt +  considering 
the term ( )div k T∇  evaluated at the time 1nt + . The 

only quantity evaluated at the time nt  will be the 
thermal diffusivityα .  

This semi-implicit algorithm for advancing from 
nt  to 1nt +  can be summarized as follows 

 

( )
1

1

1

n n
n

n

n

n

div q in
t
known on

known in

ω ω ω
α

ω

ω

+
+

+

−
= ∇ + Ω  ∆

= ∂Ω

= Ω



 (23) 

 
in which the superscript n  indicates that the quantity 
is evaluated at the time nt . 

In Eq. (23) nα  depends on nω . So, the 
approximation at 1nt +  is obtained from a linear 
problem. 

In a Cartesian rectangular system of 
coordinates, Eq. (23) is represented by 
 

( )

( )
( )

11 2

2

1 12 2
1

2 2

1

,   , ,

, , ,

, , ,

nn n

n

n n
n

n

n

t x

q x y z
y y

known x y z

known x y z

ω ω ω
α

ω ω

ω

ω

++

+ +

+

+

 − ∂
= + ∆ ∂ 

   ∂ ∂
+ + + ∈Ω   ∂ ∂   

= ∈∂Ω

= ∈Ω


 (24) 

 
AN ONE DIMENSIONAL EXAMPLE 
 

In order to illustrate the proposed procedure and 
the effect of the thermal diffusivity, let us consider 
the following one dimensional problem 
 

, 0 , 0

, 0      , 0
, 0 , 0

B

I

T Tc k q x L t
t x x

T T at x and at x L t
T T x L t

ρ ∂ ∂ ∂ = + < < > ∂ ∂ ∂ 
= = = >
= < < =



 
(25) 
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in which it was assumed that q  is a known function. 
With the aid of the Kirchhoff transformation, Eq. (25) 
becomes 
 

2

2

1 , 0 , 0

, 0      , 0
, 0 , 0

B

I

q x L t
t x

at x and at x L t
x L t

ω ω
α
ω ω
ω ω

∂ ∂
= + < < >

∂ ∂
= = = >
= < < =



 (26) 

 
in which Bω  and Iω  are obtained from BT  and IT  
with the aid of Eq.(12). 

The steady-state solution of this problem is well 
known (Holman, 1976), and given by 

 
22

, 0
2 B

qL x x x L
L L

ω ω
  = − + < <     



 (27) 

 
or, if we consider Eq.(18) with REF BT T= , 
 

22

exp ,    0
2B

T B qL x x x L
T B A L L

  −   = − < <    −    

  (28) 

 
Combining Eq. (26) with Eq.(24) we have 

 
11 2

1
2

1

0

, 0

, 0      

, 0

nn n
n

n

n
B

I

q x L
t x

at x and at x L
x L

ω ω ω
α

ω ω

ω ω

++
+

+

 − ∂
= + < < ∆ ∂ 

= = =

= < <



 
(29) 

 
Denoting by n

iω  the approximation for ω  at the 
time nt  at the position ix , in which 
 

( )
1 0

1 ,
1

, 0

i

n n

Lx i x x
N

t t t t+

= − ∆ ∆ =
−

= + ∆ =
 (30) 

 
we have the following finite difference equations 
 

( )

1

1 1 1
11 1

2

1

0

2
, 2,3, 4,..., 1

,   1      

, 2,3, 4,..., 1

n n
i i

n

n n n
ni i i
i

n
B

I

t

q i N
x

for i and for i N
i N

ω ω
α
ω ω ω

ω ω

ω ω

+

+ + +
++ −

+

−
=

∆
− +

= + = −
∆

= = =

= = −

  (31) 

 
Eq. (31) represents, for each 0n ≥ , a linear 

system whose unknowns are 1n
iω
+ ( 2,3,..., 1i N= − ). 

This system may be conveniently rewritten as 
 

( ) ( ) ( ) ( )
( )

2 21 1 1
1 11

2

1

0

,
2

2,3,4,..., 1
,   1      

, 2,3, 4,..., 1

n n n n n n
i i i in

i n

n
B

I

t q t x x

x t
i N

for i and for i N
i N

ω ω α α ω
ω

α

ω ω

ω ω

+ + +
+ −+

+

+ ∆ + ∆ ∆ + ∆
=

∆ + ∆

= −

= = =

= = −



 (32) 

 
Figure 5 presents the temperature as a function 

of the time at the position / 0.5x L = , obtained with 
0q = , for three constant values of α  and for α  

given by Eq.(20). 
 

 
 

Figure 5. Temperature versus dimensionless time 
 at / 0.5x L = . The bold line was obtained with 

variable thermal diffusivity. 
 
The bold curve was obtained taking into account 

the dependence between the thermal conductivity and 
the temperature. The quantity α  is the thermal 
diffusivity of the Silicon Carbide at 
500K ( 20.00005 /m s ). The maximum and the 
minimum thermal diffusivities within the range 
250 2500K T K< <  are, respectively, 20.00034 /m s  
and 20.000006 /m s . 

Fig. 6 presents the temperature as a function of 
the time at the position / 0.25x L = . 

In Fig. 5 and in Fig. 6 we have 250BT K=  and 
2000IT K= .  

 

 
 

Figure 6. Temperature versus dimensionless time 
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 at / 0.25x L = . The bold line was obtained with 
variable thermal diffusivity. 

 

 
 

Figure 7. Temperature versus position for four 
different times. The line with dots shows the result 

obtained with variable thermal diffusivity. 
 

In Fig.7 the considered thermal diffusivities are 
the same of Figs. 5 and 6. It is remarkable the 
different behavior in the case of variable thermal 
diffusivity.  

Figures. 8 and 9 presents the temperature as a 
function of the time for three constant thermal 
diffusivities and for the diffusivity obtained from 
Eq,(22). In both we have an internal heat generation 
and the boundary temperature is equal to the initial 
one. In Fig.8 the position is / 0.5x L = while in Fig.9 
the position is / 0.25x L = . The bold line 
corresponds to Eq.(22). 
 

 
 

Figure 8. Temperature versus dimensionless time 
at / 0.5x L = . The bold line represents the result 
obtained accounting for the dependence between 

thermal diffusivity and temperature. 

 
 

Figure 9. Temperature versus dimensionless time 
at / 0.25x L = . The bold line represents the result 
obtained accounting for the dependence between 

thermal diffusivity and temperature. 
 

The results presented in previous figures 
consider a constant internal heat generation. The 
initial and boundary temperature are the same.  

Fig. 10 is similar to Fig. 8, but involves a time 
dependent internal heat source. 

These figures illustrate the importance of 
accounting for the dependence between the thermal 
diffusivity and the temperature.  
 

 
 

Figure 10. Temperature versus dimensionless time 
at / 0.5x L = . 

 
The bold line was obtained accounting for the 

dependence between thermal diffusivity and 
temperature. There is a time dependent heat source. 
 
CONCLUSIONS 
 

In this work, it was presented a protocol for 
simulating transient heat transfer problems taking 
into account the dependence of the thermal 
conductivity and of the thermal diffusivity with the 
temperature. The Silicon Carbide, which is a material 
widely employed when high temperatures and high 
temperature variations are present, was selected for 
carrying out numerical simulations. 

The proposed semi-implicit algorithm, used for 
numerical simulations by means of a finite difference 
scheme, behaved well and seems to be a good choice 
for this kind of problem. 



Ciência/Science Gama et al. A Note on Transient Heat Transfer Problems… 
 

EngenhariaTérmica (Thermal Engineering), Vol. 19 • No. 1 • June 2020 • p. 89-95 95 
 

All the presented results employed a 
(dimensionless) time increment 0.001τ∆ =  and 101 
nodes in the x  direction. The same simulations were 
carried out with 501 nodes and with 0.0005τ∆ = , 
presenting variations less than 0.002%. 

It is to be highlighted that both the thermal 
conductivity and the thermal diffusivity were treated 
as temperature-dependent. 

From the presented figures it is easy to see that 
a constant thermal diffusivity hypothesis can suggest 
an unrealistic time for reaching a given temperature. 
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