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Abstract:
Oil viscosity is an important factor in every project of the petroleum industry. These
processes can range from gas injection to oil reservoirs to comprehensive reservoir
simulation studies. Different experimental approaches have been proposed for measuring
oil viscosity. However, these methods are often time taking, cumbersome and at some
physical conditions, impossible. Therefore, development of predictive models for estimat-
ing this parameter is crucial. In this study, three new machine learning based models are
developed to estimate the oil viscosity. These approaches are genetic programing, k-nearest
neighbor (KNN) and linear discriminant analysis. Oil gravity and temperature were the
input parameters of the models. Various graphical and statistical error analyses were used
to measure the performance of the developed models. Also, comparison study between
the developed models and the well-known previously published models was conducted.
Moreover, trend analysis was performed to compare the predictions of the models with the
trend of experimental data. The results indicated that the developed models outperform all
of the previously published models by showing negligible prediction errors. Among the
developed models, the KNN model has the highest accuracy by showing an overall mean
absolute error of 8.54%. The results show that the new developed models in this study
can be potentially utilized in reservoir simulation packages of the petroleum industry.

1. Introduction
Oil consumption has significantly increased over the past

few decades as a result of industrialization. In addition, the
population growth and their need to energy is another reason
for the increase in oil consumption. PVT properties such as
viscosity, oil formation volume factor, and specific gravities
of oil and gas have an important role in different aspects of
petroleum engineering and fluid flow modeling (Khamehchi et
al., 2019, 2020). One of the main aspects of crude oil is oil
viscosity. Oil viscosity is a measure for the internal friction
factor of the fluid flow (Zhang et al., 2017). The accurate
value of viscosity is needed in various analyses in petroleum
engineering including studying the fluid properties (Ilieva et
al., 2016; Kleinhans et al., 2016), fluid flow (Abubakar et al.,
2015; Al-Sarkhi et al., 2016; Norouzi et al., 2017; Zhang et

al., 2017), mixing properties (Wen et al., 2016) and asphaltene
precipitation (Ilyin et al., 2016).

One method for estimating oil viscosity is conducting
experimental measurements, which is the most accurate ap-
proach. However, experiments are usually time consuming,
expensive and not applicable in some cases such as simulation
studies that need the estimation of the viscosity at different
conditions of pressure and temperature (Barati-Harooni and
Najafi-Marghmaleki, 2016; Hosseinifar and Jamshidi, 2016;
Ershadnia et al., 2020; Xu et al., 2020). By this definition, it
is very important to have an accurate model for determining
the oil viscosity. Generally, two different groups of the models
are used for estimating oil viscosity; one is based on the bulk
properties of fluid such as pressure, temperature, bulk density
(black oil) and the other one is based upon focusing on the
properties of the individual components of fluid such as the
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density of each component and composition. The first group
is called black oil modeling and the second group is known
as compositional modeling (Parsi et al., 2015; Sakthipriya et
al., 2015; Shetty et al., 2016). The first one is simpler and
faster than second one but the second one is more accurate.
Black oil models are more commonly used in different studies
of petroleum engineering (Mahdiani and Khamehchi, 2015a,
2015b). There are different studies that have tried to find a
model for estimating crude oil viscosity in the literature. Most
of these models are created by correlating a model with a
database of a specific type of oil from a specific field with
a specific range of thermodynamic parameters and it is clear
that how much it can be limiting. There is no guarantee that
the resulted model could be applicable for other oils at other
conditions out of the range of the used data for creating that
model. Pressure can have a large impact on the fluid state and
based on that the fluid can be categorized into two saturated
and under-saturated groups. The main effect of pressure on
fluid is the amount of gas that can be dissolved in that fluid
(Mahdiani and Khamehchi, 2016). An oil which does not have
any dissolved solution gas is called dead oil. Usually, the
behaviors of fluid properties for a fluid in saturated and under
saturated states are very different. As an example, in saturated
fluids, increasing pressure reduces the viscosity, while this
behavior is inverse in under saturated ones (Daridon et al.,
2016; Mahdiani and Kooti, 2016; Salehinia et al., 2016). As
mentioned before, the viscosity of an oil with no solution gas
(dead oil) is different than the viscosity of an oil with dissolved
soluble gas (live oil). However, live oil viscosity is related to
the viscosity of that oil with no solution gas. In other words,
the viscosity of live oil is a function of the viscosity of the
same oil in dead oil status (no dissolved gas). There are many
studies that focus on the viscosity of dead oil as discussed in
following paragraphs. Most of these studies have focused on
dead oil viscosity as a basis. In this study, the dead oil viscosity
is modeled too. In addition, in most studies, the resulted model
is a function of oil gravity and temperature, while in some
studies, molar mass and critical properties are considered as
the input of the models as well (Mehrotra, 1991; Svrcek and
Mehrotra, 1998; Hemmati-Sarapardeh et al., 2014; Dehaghani
and Badizad, 2016).

There are various correlations for estimating oil viscosity
in literature. Some of the most important ones are Beal (1946),
Beggs et al. (1975), Glaso (1980), Labedi (1982, 1992),
Kaye (1985), Al-Khafaji et al. (1987), Khan et al. (1987),
Egbogah and Ng (1990), Kartoatmodjo and Sschmidt (1994),
Petrosky and Farshad (1995), Bennison (1998), Dutt (1998),
Elsharkawy and Alikhan (1999), Whitson and Brulé (2000),
Barrufeta and Dexheimerb (2004), Hossain et al. (2005),
Naseri et al. (2005), Omole and Deng (2009), Hemmati-
Sarapardeh et al. (2014, 2016) and Khamehchi et al. (2020).

Generally, the models for estimating crude oil viscosity
are divided into two main categories. Some such as Bennison
(1998), Dutt (1998) and Hossain et al. (2005) are applicable
only for heavy oils (in which oil API < 20) while other
models such as Beggs et al. (1975), Glaso (1980), Labedi
(1982, 1992), Khan et al. (1987), Petrosky and Farshad (1995),
Elsharkawy and Alikhan (1999), Barrufeta and Dexheimerb

(2004), Naseri et al. (2005) and Omole and Deng (2009) are
developed for light oils. Dutt (1998) used 250 data points from
different oil fields for estimating crude oil viscosity. In the
same year, Bennison (1998) created a model by fitting it to
experimental data points. Hossain et al. (2005) used the data
points of heavy oils with API gravity from 10 to 22.3 and
created a model for heavy oils. Beggs et al. (1975) developed
a model for light oils using 460 light oil data points. Glaso
(1980), created his model in 1980 based on the data of the
North Sea oils. Two years later in 1982, Labedi (1982) used
the data of Nigeria and Angola oils for creating his model.
He (Labedi, 1992) used the data of Libya oil in 1992 to
create a predictive model. Khan et al. (1987) used 75 data
points to create a model for Saudi Arabian oils. Elsharkawy
and Alikhan (1999) used the data of Middle East oils for
developing their model. Barrufeta and Dexheimerb (2004)
used a database to create a model for predicting crude oil
viscosity. Naseri et al. (2005) used Iranian oils for making
a model. Omole and Deng (2009) used the data of Nigerian
oil and used artificial neural network to create an intelligent
model. Hemmati-Sarapardeh et al. (2013) used 120 data points
to create a model for estimating crude oil viscosity. Later
in 2014 and 2016, Hemmati-Sarapardeh et al. (2014, 2016)
used various intelligent approaches for creating new models
for estimating crude oil viscosity. Li et al. (2018) used a JIT-
based extreme earning machine for predicting the oil viscos-
ity. Also, Talebkeikhah et al. (2020) using a compositional
modeling approach, created a mode to predict the viscosity
of various oils. Also, in this year Khamehchi et al. (2020),
using more than 1,000 datapoints, developed models using
various machine learning algorithms. Although their models
(simulated annealing programing (SAP), decision tree (DT),
and multilayer perceptron (MLP)) had good results, but they
did not try to reduce the dimensions of the data to make
their model more efficient. In addition, their database was
very dense, so it seemed for that kind of database k-nearest
neighbor (KNN) can make a very good model.

Most of the previous works suffer from limited applicable
range because they are applicable only in the range of the data
points in which they have been developed. In addition, those
data points were from a specific field and thus the created
model is accurate only for the same field. Here in this study,
the objective is finding a universal model for estimating light
and intermediate crude oils using the data bank of Hemmati-
Sarapardeh et al. (2014, 2016). This data bank was also used
by Khamechchi et al. (2020); however, we removed the outlier
data from this data bank to develop a better model. Because of
focusing on light and intermediate oils, considering only API
gravity and temperature for estimating viscosity is sufficient.

The main method used in most of the previous studies
is based on simple regression. Because of that, these models
suffer from inaccuracy in estimating some data points and
inflexibility for changing their shape when their input database
is extended (Mahdiani and Khamehchi, 2014; Mahdiani and
Kooti, 2016). Here, first an extensive database from literature
is collected. This database contains the viscosity, API gravity
and temperature of medium to light oils. Using artificial intel-
ligence and heuristic methods is a powerful way to analyses



Mahdiani, M.R., et al. Advances in Geo-Energy Research 2020, 4(4): 435-447 437

complicated (Khamehchi and Mahdiani, 2017). Thus, in this
study, three intelligent methods, KNN, genetic programming
(GP) and linear discriminant analysis (LDA) are used to
develop flexible and accurate models for estimating crude
oil viscosity. These three algorithms are representative of
clustering and non-clustering algorithms. The resulted models
are accurate and flexible enough to widen their range of usage
by importing a more extended dataset. The accuracy of the
created models is measured using statistical and graphical error
analysis and their performance is compared with previously
introduced models. In addition, the trend prediction of the
models is compared with that of experimental data and the
effect of different parameters on the estimation error of models
is investigated.

2. Model description
In this work, by using three different intelligent modeling

methods, three models for estimating crude oil viscosity were
developed. For developing these models, the experimental
data of temperature, oil API gravity and their corresponding
viscosity were used; These data are collected from different
geological locations all over the world (Everett and Weinaug,
1955; Glaso, 1980; Miadonye et al., 1992; De Ghetto et al.,
1995; Degiorgis et al., 2001; Hossain et al., 2005; Naseri et
al., 2005; Al-Maamari et al., 2006; Croft and Patzek, 2009;
Naseri et al., 2012; Sadeghi et al., 2013; Alomair et al., 2014).
The statistical parameters of these data are shown in Table 1.
These modeling procedures are briefly explained here:

Table 1. The statistical parameters of the used data for developing the
models.

API T (K)
Max 50.00 42.04

Average 34.39 313.06

Median 35.10 310.93

Min 20.00 273.15

SD 5.38 19.84

2.1 K-nearest neighbor (KNN)

KNN algorithm is a pattern recognition methods that is
widely used in different scientific areas such as economics (Li
et al., 2016), mechanical engineering (Baraldi et al., 2016),
energy (Huang and Perry, 2016), and medical sciences (Chen
et al., 2015). It is known for its easy methodology, good
interpretation and its low computation time. This algorithm
works based on the assumption that points with similar inputs
have similar outputs. First, the points are classified into some
clusters based on their similar properties in n-dimensional
space. n is the number input parameters. Fig. 1 shows the
classification of patients based on their respiration affected by
a drug with various ratios of sodium to potassium based on

Fig. 1. Data classification; the points have three colors, the lighter color shows
the people with no effect, the medium color shows people with medium effect
and the dark color shows people with overdose (Larose, 2014).

their age (Tanveer et al., 2016; Xu, 2016). Then for a new
point, the k nearest points to that point are selected and are
analyzed to find the class which has the largest number of
points near the new point. Usually, k is a small number and
therefore, a hypercube can be assumed in which its center
is on the new point and it grows bigger and bigger until
k points fall inside it. Next, the points are counted and it
is determined from which cluster more points exist among
the points of the hypercube. Thus, the new point is assigned
to that cluster and its output is predicted using the method
of cluster prediction (Hu et al., 2020). Fig. 1 shows some
examples of new points and their classification based on their
distance to the members of clusters. The value of k has a great
effect on the KNN performance, especially when some noisy
points exist. Using heuristic methods to find the best k is an
effective approach for developing an efficient machine learning
model (Papadopoulos, 2006; Galdames, 2008; Mucherino et
al., 2009).

There are different functions for distance measuring. The
most common ones are Euclidean, Manhattan, and Minkowski
distances defined as follows:

Elucidean:

d =
√

∑(xi− yi)
2 (1)

Manhattan:

d = ∑ |xi− yi| (2)

Minkowski:

d =
(
∑ |xi− yi|p

) 1
p (3)

where xi and yi are the attributes of the two points. Also, p is a
real value between 1 and 2. For discrete values, the Hamming
distance is used as follows:

DH =
k
∑

i=1
|xi− yi|

x = y⇒ D = 0
x 6= y⇒ D = 1

(4)
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Fig. 2. A simple flowchart for the k-nearest neighbor modeling.
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Fig. 3. The MAPRE (%) of the developed KNN models with various number
of k.

in which D stands for distance and again xi and yi are the
attributes of the two points.

Fig. 2 shows a flowchart for KNN algorithm. For select-
ing the most suitable number of neighbors (k), a sensitivity
analysis for k is done which is shown in Fig. 3. When k is
too small (lower than 10), the error of the model is very high.
By increasing the number of k from 0 to 10, the model error
decreases. After 10 to 100 the error decreases with slight slope
and some fluctuations. k = 100 gives the least error and after
100 error increases again.

Also, the internal parameters of the used KNN of the
current study are shown in Table 2.

Table 2. The internal parameters of the KNN model.

Parameters Value
NumNeighbors 100

NSMethods kd-tree

Distance euclidean

Bucket size 50

include ties 0

distance weight equal

break ties smallest

standardize data 1

type classification

mu [34.40, 313.22]

sigma [5.45, 20.12]

W 6.66E-04

+

*-

x 3 zy

Fig. 4. Schematic of a tree structure. Green shows nodes and red shows
terminals.

It should not be forgotten that before doing the calculations,
all parameters should be normalized. Output estimation is
performed after the classification of data points. One way
of doing that is using the weighted average method. In this
method, the points that are closer to the new point have a
higher effect on the output of that the new point. In this case,
the inverse of the distance can be considered as the weight
(Cios et al., 2007).

2.2 Genetic programming (GP)

Changing the optimization method to be applicable in
modeling is widely used in different problems (Mahdiani and
Khamehchi, 2014; Hien et al., 2020). A rigorous optimization
approach is genetic programing, which has been evolved from
genetic algorithm. GP is an evolutionary method for model-
ing various problems, which is extensively used in different
projects such as construction (Gandomi et al., 2016), mining
(Faradonbeh et al., 2016), and chemical engineering (Kaydani
et al., 2016). This algorithm is based on genetic algorithm,
but instead of applying to a series of points, it is applied
to a tree structure. A tree is a flexible structure that is used
in different areas such as math, engineering, etc. Here, tree
structure is used to represent the candidate models (equations)
of the problem. Fig. 4 shows a sample tree. As this figure
shows, a series of terminals (which can contain a variable or
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(a) (b)

Fig. 5. Operation on trees in GP. (a) mutation, (b) crossover (Poli et al., 2008).
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Fig. 6. Genetic programming flowchart.

a fixed value) are connected to nodes (which contain operators)
and the nodes are connected to other nodes until the structure
of the tree creates the equation (Mahdiani and Kooti, 2016).

Before utilizing GP, it is necessary to have some knowledge
about genetic algorithm. In genetic algorithm, first a ran-
dom possible population is created. This generation continues
until an individual (possible solution) with satisfying fitness
is found. In each generation, some individuals with better
finesses are selected and the others are omitted. In addition,
various operators are used for increasing the population such
as crossover and mutation. In crossover, two individuals are
mixed and a new solution is born, in which each part of it
belongs to one of the parent individuals (Affenzeller et al.,
2009; Chen, 2012). In GP, all of the mentioned operations are
applied to trees.

Other parts of GP are similar to genetic algorithm. Here,
crossover and mutation, which are slightly different from
genetic algorithm, are explained. Fig. 5(a) represents mutation
and crossover over trees. This figure shows one of the most
common types of mutations known as one-point mutation in
which one node is selected and its corresponding subtree is
replaced by a randomly generated subtree (Langdon, 2012).
Another operation applied to trees is crossover. There are
different kinds of crossovers, but the most common one is
subtree crossover. In this kind of crossover, two nodes of the
parents are selected randomly and then the subtree of one
parent is replaced with that of the other one (Langdon and
Poli, 2002). This is shown in Fig. 5(b). Finally, Fig. 6 shows
the flowchart of using GP in the study of this paper; also,
the internal parameters of the GP model of this paper are
illustrated in Table 3.

Table 3. The internal parameters of the GP model.

Parameter Values
Population size 300

Initial Population Generation Random

Initial Score Calculated by Fitness Function

Selection Function Tournament

Mutation Function Uniform

Crossover Function Scattered (Two parents)

Type of replacement elitist

Crossover Probability 0.7

Mutation Probability 0.05

Elite count 30

Hybrid No

Max generation 500

Max Stall generation 100

Function tolerance 1.00E-06

Fraction of constants in initial 0.5

Tree maximum depth 15

Maximum mute depth 10

Tree nodes functions 4 basic operator plus exponen-
tial and logarithm

Maximum nodes Inf
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Fig. 7. Two classes of points on a 2D plot (Trifonov and Lalyko, 2010).

2.3 Linear discriminant analysis (LDA)

LDA is a method of pattern recognition and machine
learning, which finds a linear combination of features to relate
the inputs to outputs. It has been used in various area of
science such as chemistry (Abbruzzo et al., 2016), hydrology
(Close et al., 2016) and cereal science (Promchan et al., 2016).
Finding the correct weight of each part is very important and
is the learning part of this algorithm. LDA uses regression and
variance analysis to state the outputs as a linear combination of
the inputs. One of the main functions of LDA is to reduce the
dimension of the problem. LDA should decrease the dimension
of the problem such that the data can be classified separately
into various classes (McLachlan, 2004).

One example of classification is the two classes of data
points, which are in a two-dimensional (2D) sheet. The 2D
points can be projected to the horizontal or vertical axis to
make the problem one dimensional. However, the problem is
that one axis is completely ignored in that method in addition
to that the classes are not separated completely. Fig. 7 shows
a line that all of the points can be projected on that such that
none of the axes is ignored as well as the classes are separated
completely (Gnanadesikan, 1988).

The equation of the line can be found by some statistical
methods. Using the above procedure, the dimension of classes
is reduced as many as possible. The new points are projected to
the lower dimension to see their class and by using maximum
likelihood estimation (MLE), their output can be estimated
(Deng et al., 2011). Here, a method for finding the equation
of the line is explained:

As mentioned earlier, LDA is based on linear combination
of variables for separating the classes. For separating the
classes. For separating the classes, the following functions are
used:

Z = β1x1 +β2x2 + · · ·+βdxd (5)

S(β ) =
β

T
µ1−β

T
µ2

β
TCβ

(6)

S(β ) =
Z̄1− Z̄2

Variance of Zwithin groups
(7)

Knowing the score function, the objective is to find the
linear coefficient that maximizes the score by solving the
following equations:

Model coefficient:

β =C−1 (µ1−µ2) (8)

xi: data points attributes
Z: linear combination of predictors

Pooled covariance matrix:

C =
1

n1 +n2
(n1C1 +n2C2) (9)

where S(β ) is score function, β is linear model coefficient,
C1, C2 are covariance matrices, µ1, µ2 are mean vectors.

Next, the Mahalanobis distance between two groups is
calculated. If its value is more than three, it means that the
classification is good.

∆
2 = β

T (µ1−µ2) (10)

where ∆ is the Mahalanobis distance between two class.
A new point is classified into class C1 if:
Model coefficient:

β
T
(

x−
(

µ1 +µ2

2

))
> log

P(c1)

P(c2)
(11)

where β is coefficient vector, x is data vector, µ is Mean
vector, P is class probability.

Fig. 8 shows a flowchart for LDA. Table 4 shows the
internal parameters of LDA model of this study.

3. Results and discussion
In the current article, three machine-learning models (GP,

LDA and KNN) were developed to use oil API gravity and
temperature for predicting the oil viscosity. To achieve this
objective, a large databank covering different ranges of input
(oil API gravity and temperature) and output (oil viscosity)
parameters was collected from the literature. The data was

Table 4. The internal parameters of the LDA model.

Parameter Values
Discriminant Type diagonal linear

Type Classification

W 6.66E-04

Gamma 1

Delta 0

Sigma [9.97, 282.86]

Between Sigma [28.57, -6.79]

[-6.79, 375.13]

Delta Predictor [4.94, 6.47]

log det 7.94
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Table 5. Statistical parameters of the models in the train, test and total data set.

KNN GP LDA
MAPRE (%) 8.22 23.48 28.49

MPRE (%) 1.6 10.42 -10.06

Training set SD 0.02 0.35 0.18

RMSE, cP 2.33 64.96 26.16

Number of data 1,000 1,000 1,000

MAPRE (%) 9.12 23.15 30.93

MPRE (%) 2.15 10.42 -10.06

Test set SD 0.03 0.17 0.2

RMSE, cP 1.52 74.21 26.02

Number of data 433 433 433

MAPRE (%) 8.54 23.3 29.51

MPRE (%) 1.6 10.67 -10.94

All data SD 0.02 0.29 0.19

RMSE, cP 2.09 67.04 25.87

Number of data 1,433 1,433 1,433

Start

Input new point

Input: train data

Determine the similarity of 
the new point with classes

Use a linear combination of the models of 
different classes based on the similarity of 

the new point to previous classes

Return the model

Finish

Classify data to some classes 

Is the error of 
the model 
satisfying?

Apply the 
model on test 

data

No

No

Yes

Yes

Fig. 8. A flowchart for the linear discriminant analysis.

divided into two sections of testing and training sets. Table

2 to Table 4 shows the model parameters. Afterward, using
the three algorithms of GP, LDA and KNN three models
were developed. The details of internal parameters of these
algorithms and how these methods are used to create a model
are completely explained in model description section and its
sub-sections.

The statistical analysis of the testing and training data sets
are shown in Table 5. These results show that the developed
models can efficiently predict oil viscosity by showing a total
mean absolute percent relative error (MAPRE) %, standard
deviation (SD) and root mean square error (RMSE) of 8.54%,
0.02 cP and 2.09 cP for the KNN model, 23.48%, 0.35 and
64.96 cP for the GP model and 28.49%, 0.18 cP and 26.16
cP for the LDA model, respectively. In 3 model that has been
developed in this study, KNN has the best performance and
accuracy. Fig. 9 shows a 3-D scatter plot the experimental and
predicted by KNN viscosity, versus API and temperature.

Different statistical and graphical error analyzing methods
were employed to compare the accuracy of the developed
models and to compare them with the well-known previously
previous models.

The results of MAPRE% analysis for the developed models
as well as the previously published models are summarized
in Table 6. As this table shows, KNN model outperforms
the previously published models in predicting reservoir oil
viscosity. It can be observed in this table that Beggs et al.
(1975) and Glaso (1980) models are of the least accurate
models in estimating reservoir oil viscosity.

As it was mentioned earlier, graphical error analysis was
utilized to investigate the performance of the developed mod-
els. A graphical analysis of the MAPRE% of the created
models and the previously published models is illustrated
in Fig. 10. It is obvious that the KNN model has a better
performance than all of other models by showing the smallest
amount of error. The largest error belongs to the Glaso (1980),
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Table 6. Statistical analysis of different literature models in estimating crude oil viscosity.

Models MAPRE (%) MPRE (%) SD RMSE, cP
Beggs and Robinson 1,651.05 -1,643.47 444.13 595,573.92

Glaso 99.97 99.97 1 69.29

Bennison 88.84 84.8 0.91 40.32

Hossain 87.68 85.65 0.9 39.73

Labedi-Nigeria and Angol 41.49 -17.96 0.53 57.82

labedi-Libya 36.86 16.08 0.61 61.52

Hemmati-Sarapardeh 32.95 31.09 0.38 56.68

Kaye 32.78 21.08 0.55 543.62

Naseri 32.24 29.13 0.38 55.68

Petrosky 30.38 25.6 0.37 59.93

Egbogah and Ng 26.42 17.64 0.36 42.58

Elsharkawy 23.08 -6.93 0.4 321.41

Kartoatmodjo and Schimidt 22.81 15.12 0.29 48.69

Al-Khafaji 21.55 5.18 0.29 54.96

LSSVM 18.33 -35.01 11.18 24.65

SAP 18.16 3.91 0.06 24.92

DT 12.75 -1.81 0.08 28.31

MLP 21.01 -6.89 0.10 31.46

LDA 29.51 -10.94 0.19 25.87

KNN 8.54 1.6 0.02 3.35

GP 23.3 10.67 0.29 65.5
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Fig. 9. 3D scatter plot of viscosity predicted by KNN and measured experimental viscosity.
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Fig. 11. Cross plot of the experimental data versus different models estimations: (a) KNN, (b) GP, (c) LDA.
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Fig. 12. Trend analysis of the developed models in this paper: (a) KNN, (b) GP, (c) LDA.

25 30 35 40 45
API

0

20

40

60

V
is

co
si

ty
 (

cp
)

KNN

T= 310.9 K

T= 322.04 K

Model
Measured
Model
Measured

25
0

10

20

30

40

50

V
is

co
si

ty
 (

cp
)

25
0

10

20

30

40

50

V
is

co
si

ty
 (

cp
)

T= 322.04 K

(a)

40

60

V
is

co
si

ty
 (

cp
)

25 30 35 40 45
API

0

20

40

60

V
is

co
si

ty
 (

cp
)

GP

T= 310.9 K

T= 322.04 K

Model
Measured
Model
Measured

25
0

20

40

60

V
is

co
si

ty
 (

cp
)

(b)

40

60

V
is

co
si

ty
 (

cp
)

25
0

20

40

60

V
is

co
si

ty
 (

cp
)

25 30 35 40 45
API

0

20

40

60

V
is

co
si

ty
 (

cp
)

LDA

T= 310.9 K

T= 322.04 K

Model
Measured
Model
Measured

(c)

Fig. 13. Different values of viscosity estimated by the different models developed in this paper versus experimental values: (a) KNN, (b) GP, (c) LDA.
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Table 7. Some sample viscosity estimations by the different models of this paper.

API T (K) Exp. Oil Viscosity (cP) KNN GP LDA
36.2 322.03889 3.77 3.77 3.424604 4.85

39 322.03889 2.696 2.653 2.438253 2.53

41.4 322.03889 2.175 2.259 1.824858 2.38

31 294.26111 13.258 13.258 13.85964 30

38.4 294.26111 5.366 4.014 5.346208 4.941

40.8 322.03889 1.741 1.741 1.962904 2.38

20.9 323.15 53.8 53.8 27.77395 42

31.2 322.03889 5.523 5.523 6.649256 8.9

29.3 310.92778 14.6 14.6 11.71741 30

Bennison (1998) and Hossain et al. (2005) models.
In the next step, the predicted data by the developed models

were plotted against the experimental data in the format of
cross plots as shown in Fig. 11 to assess the robustness of
each model. As can be observed, the KNN model shows the
closest cloud of data points to the unit slope line meaning that
this model’s predictions match the experimental data better
than the other models.

Error distribution was another graphical approach em-
ployed in this paper to evaluate the performance of the models.
The results of error distribution analysis based on temperature
are reported in Fig. 12. As can be seen, all of the intelligent
models illustrate a good performance by having a negligible
error trend over the chosen temperature zone. It can be seen
in this figure that the KNN model has the smallest error cloud
around the zero-error line. Also, this figure shows that this
model has a great performance at high temperatures as well
as low temperatures. The plots show that most of the data
points are located in the low temperature region (< 330K).

Finally, in order to get a better understanding of the models
predictions as well as to compare their results with the physical
real trend of data, the predicted and experimental viscosity
data as a function of oil gravity at two temperatures was
plotted in Fig. 13. As the experimental trends show, viscosity
decreases as the oil API increases. It can also be observed that
at a specific API, viscosity decreases with temperature. The
plots at higher oil APIs show that there is not a significant
change in viscosity when temperature changes. This means
that temperature has a larger impact on heavy oils as it eases
the movement of liquid molecules when they have less motion
compared to higher temperatures. Also, to be able to see the
exact number of each model predication, the prediction of
viscosity on some sample API and temperature is shown in
Table 7.

4. Conclusions
In this study, oil viscosity is modeled using three intelligent

models called discriminant analysis (LDA), KNN and GP. A
large data bank was collected from various sources of literature
to cover a wide range of oil gravity and temperature condi-
tions. The results of statistical and graphical error analysis

uncovered that the developed models outperform all of the pre-
viously published models for oil viscosity estimation. Among
the developed models, KNN was found to be the most accurate
model by showing a total mean absolute error of 8.54%. GP
was found to be the next model by showing an estimation
error of 23.48% followed by LDA with an error of 28.49%.
Error distribution curves showed that the models follow the
real trend of experimental data with no significant error over
a wide range of temperatures. Trend analysis illustrated that
the developed models follow the experimental data trend with
high accuracy over a wide range of API conditions. In addition,
cross plots of the models indicated that the models of this
paper can effectively and accurately predict oil viscosity.
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Whitson, C.H., Brulé, M.R. Phase Behavior. Texas, USA,
Society of Petroleum Engineers Inc., 2000.

Xu, Y. K-nearest neighbor-based weighted multi-class twin
support vector machine. Neurocomputing 2016, 205:
430-438.

Xu, Y., Ayala-Orozco, C., Chiang, P.-T., et al. Understanding
the role of iron (iii) tosylate on heavy oil viscosity
reduction. Fuel 2020, 274: 117808.

Zhang, J., Yuan, H., Zhao, J., et al. Viscosity estimation and
component identification for an oil-water emulsion with
the inversion method. Appl. Therm. Eng. 2017, 111: 759-
767.


