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Abstract

The progressive damage analysis of fibre-reinforced composite materials is a challenging task, especially
when complicated cracking scenarios arise due to the onset and progression of several damage mechanisms.
From a modelling point of view, a particularly complex failure scenario is the interaction between intralam-
inar and interlaminar cracks. This work proposes a novel framework accounting for this interaction through
the coupling of a nonlocal damage model based on the phase field approach for the intralaminar failure with
a cohesive zone model for the interlaminar one. The modular variational formalism of the method presented
leads to a very compact and efficient numerical strategy, which endows the fulfillment of the thermodynamic
consistency restrictions and provides a relatively simple basis for its finite element implementation due to the
preclusion of complex crack tracking procedures with standard element architectures. After addressing its
implementation in the context of the finite element method in a High Performance Computing environment,
the capabilities of the proposed formulation are explored through a numerical investigation of a cross-ply
laminate subjected to a 4-point bending configuration. The comparison of the numerical predictions against
the experimental observations demonstrates the reliability of the proposed framework for capturing the
delamination induced by matrix cracking failure scenario.
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1. Introduction

Long Fiber-Reinforced Composites (LFRC) laminates proportionate a well-suited option for light-weight
applications thanks to their excellent specific strength and stiffness ratios. The intricate and heterogeneous
internal arrangement of these materials provides their strengths but also hinds the prediction of their bearing
capacities. The principal reason that difficults the estimation of the bearing capacities is becouse the failure
process of a LFRC laminates can be driven by several damage mechanisms which, moreover, can interact
between them. For this reason, a Progressive Damage Analysis (PDA) is normally necessary to predict
under arbitrary loading conditions the bearing capacities of a LFRC structure. At the mesoscopic level, a
PDA of LFRC laminates needs to model the mechanical response of two clearly differentiated regions: the
intralaminar that refers to the region inside a ply and the interlaminar that refers to the region between two
adjacent plies, which is named interface.

In the context of Finite Element Method (FEM), a commonly-adopted strategy for performing PDFA
of LFRC on the mesoscopic level is to model the intralaminar and interlaminar regions independently.
Hence, different models are employed without a direct coupling between the failure events occurring in both
regions. Following this strategy, local Continuum Damage Models (CDMs) have been extensively used for
capturing the intralaminar damage mechanisms, namely: breaking and kinking of the fibers and cracking
of the matrix [I, 2, B, @]. In turn, Cohesive Zone Models (CZMs) have been successfully employed for
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describing the main interlaminar damage, the so-called interface debonding or delamination [5, 6] [7, §].
Despite the excellent results [9] [10, 11 [12], this strategy has some flaws that arise from the local character
of the models. On the one hand, the local CDMs suffer from localization problems due to the loss of the
ellipticity of the governing equations, which leads to mesh-dependent results [I3]. On the other hand, the
local character of formulations makes difficult the interchanges of information regarding the damage state
between both regions. This interchange can be essential to model complex failure scenarios, such as the case
of delamination induced by transverse cracks.

In the last decades, the Phase Field (PF) approach to brittle fracture has emerged as a reliable alternative
beyond the classical nonlocal CDMs for modeling progressive failure events without the aforementioned
localization issue. The PF approach, in essence, is a regularization strategy of the variational problem for
the brittle fracture proposed by Francfort and Marigo [14]. After the pioneering work of Bourdin et al.
[15, 16] and later of Miehe et al. [I7], the PF approach has been used to model the onset and progression of
different types of fractures: (i) brittle [18, 19, 20} 21], (ii) ductile [22| 23] 24} 25], (iii) hydraulic and hydrogen
driven [26] 27], (v) thermo-elastic—plastic [28, 29 B0], and (v) anisotropic behaviors [31], 32, [33], 34L [35] 36}, [37].

Despite the potential of PF approach, few works have addressed their application for modelling the
failure of composite materials. For instance, Reinoso et al. [38] successfully predicted the failure of thin-ply
laminates by combining the PF with a continuum shell theory. Later, Alessi and Fredi [25] proposed a
one-dimensional PF model to predict the failure of unidirectional hybrid laminates under uniaxial loading
conditions. Subsequently, Bleyer and Alessi [39] extended their approach to a multi-dimensional model
that employs several PFs to account for the failure induced by the fibre breaking and matrix cracking
separately. In line with the previous approach, Quintanas-Corominas et al. [40] presented a formulation to
model the anisotropic mechanical response of LFRC using a single damage-type variable. In this last study,
they demonstrated the capabilities of their formulation by making a comparison of the intralaminar and
translaminar failure predictions against the most common modeling approaches: LEFM, CDM, and CZM.

The existence of interfaces make difficult the employment of the PF approach via a physically sound
variational formalism. To overcome this issue, Paggi and Reinoso [41] recently presented an approach that
combines the PF approach for the bulk region with a CZM for the interface one. In this sense, they proposed
a physically consistent strategy to couple via the PF variable a tension cut-off interface behavior with the
damage state of the surrounding bulk region by reducing the apparent stiffness of the interface as the PF
increases. This hypothesis is suitable for relatively brittle interface behavior as they demonstrated in several
studies: (i) layered ceramics [42], @3], (ii) micro-mechanics of poly-crystalline [44], and (iii) micro-mechanics
of FRC [45).

This work aims to present a PF-CZM approach for modeling the interaction between the intralaminar and
interlaminar damage mechanisms, constituting an alternative to the classical CDM-CZM approaches [46].
The main innovative aspects herein presented are: (i) the usage of the PF model proposed by Quintanas-
Corominas et al. [40] for the intralaminar failure events and the CZM proposed by Turon et al. [47] for the
interlaminar one, (ii) the coupling strategy between both constitutive models via the PF variable, and (iii) the
numerical implementation in a high-performance computing (HPC) simulation code. Indeed, it is presented
a new interface model that attempts to provide a more general scenario for progressive damage model of
solids with internal interfaces suitable for brittle and cohesive responses. After addressing the verification
of the numerical implementation through mode-I and mode-II delamination tests, a thorough analysis of
a cross-ply LFRC laminate subjected to a 4-Point Bending Test (4PBT) configuration is performed. The
comparison between the numerical predictions and experimental observations demonstrate the capabilities
of the presented PF-CZM approach to capture the main behavior on such complex failure scenario as the
delamination induced by matrix cracking.

The manuscript is organized as follows. Section [2] briefly outlines the fundamental theoretical and
numerical aspects of the PF-CZM approach. The constitutive assumptions regarding the bulk and interface
regions are presented in Section[3] Section[]introduces the implementation and applicability of the proposed
formulation. In particular, the High Performance Computing (HPC) environment is environment employed
is outlined in Section[4.1] while, in Section[4.3] the numerical study of the 4PBT is conducted, demonstrating
predictive capabilities in very satisfactory agreement with the experimental observations. Finally, the main
conclusions are summarized in Section [l



2. Phase Field approach to fracture

This section outlines the fundamental aspects of the current modeling framework, In particular, the
present methodology is derived by taking the formulation of Paggi and Reinoso [41] as the fundamental
result, which sets the basis for the combination of the PF approach for bulk fracture with a consistent
interface formulation relying on the cohesive-like approach. Along these lines, the variational form of the
internal energy functional of a general cracked body with internal interfaces is described in Section 2.1} while
the weak and discrete form of the energy functional are summarized in Sections and respectively.

2.1. Modeling hypotheses and variational formalism

As stated above, combining the PF and CZM methods for fracture in heterogeneous media was intuitively
motivated in different investigations [41] 48, 49]. Complying with this idea, we consider an arbitrary body in
the general Euclidean space of dimension N € [2, 3]. Restricting the analysis to the infinitesimal deformation
setting, the body occupies the domain B € RY with the external boundary denoted as 9B € RV~!, whose
outward normal unit vector is represented by n. As illustrated in Figure [l we postulate the existence of an
internal interface I3 in the system, and a discrete cracks network I, in the bulk. The material points within
the body are identified by the individual position vectors & € BB, whereas the displacement field is identified
by u(x,t). For convenience, we define the displacement jump at the interface as the relative displacement
between two homologous points, i.e. A = u} — u,, denoting the difference between the kinematic field
along the interface flanks I';" and I~ (Figure [1)). Finally, we assume that B is subjected to body forces
b as well as to boundary conditions in the form of prescribed displacements ( on 9B,,) and prescribed
tractions (£ on dB;). These boundary conditions are subjected to the Neumann-Dirichlet conditions, i.e.
0B, U 0B, = 0B and 0B, N 9B, = 0.

Discrete crack problem Diffuse crack problem

Detail A' - Interface - Cohesive Zone Model

Figure 1: Schematic representation of an arbitrary body with a discontinuity in the domain and an interface.

By establishing the variational approach to fracture as the point of departure of the current formulation,
it is postulated that the energy functional governing the fracture process of the system is given by
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M(u, ") = e (u, I') — Hege(u) (1)

Following Bourdin et al. [I5] and [41], the internal energy density functional I;,:(u, I") of the system
under consideration can be defined as the sum of elastic energy stored in the body Il and the energy
dissipated through the different potential mechanisms of fracture, i.e. bulk and interface fracture processes
in the current analysis. Based on these modeling assumptions, II;,,;(u, I') takes the particular form:

Hint(u7 F) = HB(u) + HF(F)r (2)

where TIg(u) is the energy storage function due to the deformation process of the body, and I' is the
union between the bulk and interface cracks are associated with the respectively fracture events, such that
I'=I'. UIj. Accordingly, the fracture energy of the system can be accounted for by adding the split of the
two corresponding counterparts:

Hint(u7F) = Hint(u, FC, Fl) = HB(U) + H[‘C(FC) + H[}(Fi) (3)

where Il and Il are the dissipated energies that stem from the cracking events within the bulk and the
debonding effects along the interfaces, respectively. Note that to evaluate the above expression, the topology
of the cracks network is required. This evaluation can be very challenging due to the complex crack paths
arising from the branching and coalescence phenomena, as well as the interaction with the cracks which
induces the debonding processes along the existing interfaces. As proposed in [41], evaluating such complex
crack patterns in heterogeneous media can be done by combining the PF approach within the bulk region
and the interface elements, relying on the concept of the cohesive zone at the prescribed interfaces. In
the continuation, the particular expression of the internal energy density is consistently derived but also
including two new features: (i) the use of the recent anisotropic PF method for bulk fracture proposed in
[40], and (i¢) the consideration of cohesive-like interface crack obeying to the bilinear traction-separation
law (TSL) [47).

2.1.1. Bulk region

The energy density of the bulk region II, includes the elastic energy stored for the body and the energy
required to create and propagate the bulk cracks. Within the context of long fiber reinforced composite
materials (LFRCs), these events are also known as intralaminar damage mechanisms [I, [4]. Considering the
energetic criterion proposed by Griffith [50], IT, can be defined as [I5]:

I, (u, I%) = Ts(u) + 117, (L) = / W, (e(w) dV + / G. S (4)
B\I" I

where W, is the specific elastic energy function and G. is the critical energy release rate of the bulk material.
The infinitesimal strain tensor e is the symmetric gradient of the displacement field (e := V*®u), which is
introduced here because ¥, is generally expressed with respect to the strain state.

The PF approach postulates that the discrete boundary representing a crack network I, can be smeared
over the domain B through the exploitation of the I'-convergence concept [51], allowing the definition of the
crack surface density functional v(¢, Vo) to be defined [I7]. This new functional is governed by the phase
field variable ¢ and its spatial gradient V¢, endowing the current approach with non-local character in the
spirit of gradient enhanced models [52]. Formally, the phase field variable ¢ accounts for the amount of
equivalent crack surface at a material point. Therefore, in line with continuum damage mechanics (CDM)
models, ¢ can be interpreted as the damage state of the material point tracking the stiffness degradation.
Following the notation introduced by Miehe et al. [I7], II;, reads:
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Iy (u, ) ~ Ty(u, 6) = / Ty (e(u), 6) AV + / Gor(6, V) dV (5)
B

B

where Uy, is the bulk free energy functional that takes into account the degradation of elastic energy within
the smearing transition zone that is characterized by ¢, i.e. between a pristine (¢ = 0) and a fully-damaged
(¢ = 1) state. It is worth mentioning that the expression of ¥}, depends on the material model, which is
presented in Section Note that fracture toughness in Eq. requires a simple modification following
[16] in order to prevent the overestimation of the released energy. This modification is performed via the use
of an effective energy release rate GSf that depends on the spatial discretization parameter (finite element
size), lo, and the phase field length scale, L, according to the expression: Gff = G, (1 — %).

Regarding the specialization of crack density functional for intralaminar failure in LFRCs, the modified
version of the Ambrosio-Tortorelli functional [5I] encompassing the anisotropic character at lamina level
proposed in [40] is herewith recalled:

16,90) = 5 (6% + Vo £79) (©

where L is a structural tensor that aligns the phase field with a preferred direction and ¢ is the so-called
length scale parameter of the PF method that controls the damage diffusion around the process region [32].
In the case of isotropic surface density, it is defined as £ = ¢2I, whereas for an anisotropic surface this yields
to £ = £3(n, ®n, + (I —n, ®ny,)), where n,, is the principal direction vector (coinciding with the fiber
direction in this work), and f is a factor governing the anisotropy [40]. As can be seen, the fracture energy
contribution in Eq. is integrated over B instead of I, eliminating the explicit need to compute the crack
surface topology.

2.1.2. Interface region

The energy density of the interface II; accounts for the debonding process along the prescribed interfaces
of the system under study. This phenomenon is denominated as interlaminar damage in composite materials,
which is induced by micro-cracks at the fracture process zone [53]. Differing from the previous investigations
[42, [43, [4T], which employed a relatively simple tension cut-off interface formulation and whose coupling with
the PF method for bulk fracture regarded the modification of the interface apparent stiffness, the current
method encompasses the consideration of a bilinear TSL to account for the interface debonding according
to [53]. This interface model allows interlaminar failure to be triggered through a gradual stiffness reduction
upon failure initiation up to the complete decohesion. Therefore, the crack opening governs the damage
state at the interface, requiring the definition of an internal variable to ensure the irreversible condition of
the process. In this sense, II; can be defined as:

IL(I) ~ T1(A(u), §) = / Wi(A(u), 6, h) dS (7)

Iy

where W; is the specific interface energy function. The CZM is formulated according to the continuum
damage theory and, therefore, ¥; depends on a set of historical variables h. Finally, ¥; incorporates the
PF variable of the bulk as an additional argument, which is introduced in order to model the interaction
between the bulk and interface cracks. Both ¥; and interaction process are presented in Section [3.2)

2.1.3. Final variational form
Relying on the previous considerations in Eq. and , the internal energy functional of a cracked
body with interfaces is herein approximated as:



Mipe(u, I') & e (u, @) = / {\Ilb(s(u),qﬁ) + % (¢°+Vo- L:V(b)] dV + /\Ili(A(u),¢,h) ds  (8)
B i

Moreover, in the current framework, the active-passive decomposition of the bulk free energy density function
is used to account for a fracture-induced stress degradation via the volumetric-deviatoric decomposition [54]:

Uh(e,d) = (1= ¢)” + 1) Vact(€) + Ypas(€) (9)

where W, 4r and VU 45, are the active and passive parts, respectively, of the elastic free energy density;
and 7, stands for the residual stiffness parameter to prevent numerical issues. In line with [40], we herewith
adopt the previous decomposition in order to activate the driving forces for cracking evolution in the bulk
under tensile load conditions (Sect. . Thus, through the use of this decomposition, the phase field only
affects the so-called active term, allowing the crack closure under loading reversal to be modelled.

2.2. Weak form

Recalling the standard continuous Bubnov-Galerkin method [55], the two primary fields, u and ¢, are
extended with the corresponding admissible test function, du and d¢. Thus, the weak form of the governing
functional can be constructed by its first variation with respect to the primary fields mentioned above:

0 (u, du, ¢, 0¢) = 6l (u,0u, ¢, 6¢) — 0y (u), Vouel,, Vip eV, (10)

where 811, and 6Il.;; are respectively the internal and external variations. Here, V,, = {éu € H1\5u =
0on 0B,} and Vs = {6¢ € H'[§¢ = 0 on I.} are the functional spaces of the admissible test functions
[42, 21].

Focusing on the internal energy variation, this term can be split according to the variation of the primary
fields as:

STLis (1, 61, ¢, 6p) = OTIY , (u, 0u, @) + 6112, (u, ¢, 6¢), You € V,, Yi¢ € Vy. (11)

Complying with the infinitesimal strain setting as the modeling framework, the weak form of the variation
of the internal energy with respect to the displacement field reads as:

Ol ,(u,du, @) = /0'((;5) 1 0edV + /T((b) :0AdS, VoueV, (12)

B I

where o (¢) = 0.}, is the stress tensor which depends on the phase field variable via the so-called degradation
function g(¢) = (1 — ¢)? and de = Jue(du) is the variation of the strain tensor &; both are associated to
the bulk region. Similarly, 7(¢) = Oa¥; is the cohesive tractions and A = 9, A(du) is the variation of
the displacement jumps; both are associated with the interface region. It is worth noting that both stress
tensors, o and 7, formally depend on the displacement and phase fields as is denoted in the corresponding
terms.

In a similar way, the weak form resulting from the variation of the internal energy with respect to the
phase field renders

6H?’nt(u> ¢75¢) = / |:]:b6¢ +

B

% (o + V(d9) - [,V(b)} dV + /.E'&é dS, Vép eV, (13)
I
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where Fp, = 0, ¥, = —2(1 — ¢) W, and F; = 055 stand for the bulk and the interface contributions to the
energetic force that drives the phase field evolution, respectively. Note that F; is obtained assuming the
active-passive energy decomposition defined in Eq. @D After some algebraic manipulations, the variation
of the coupled functional associated with the phase field contribution can be rewritten as:

6TIZ,  (u, 6,66) = % / (6 —2(1 — $)H) 66 + V(60) - LVG] AV + / Fioods, VspeV,  (14)
B Iy

For isotropic crack density surfaces, the fracture toughness G, is a constant value, and therefore the cor-
responding expression can be evaluated without any further assumptions. Otherwise, for anisotropic crack
density surfaces, G. represents the nominal fracture toughness accounting for the current local mixed-mode
opening. At present, a particular expression for the evaluation of G. for mixed-mode fracture conditions is
not available and requires further research, which is a matter beyond the scope of the current study. In
addition, although this is still an open issue within the context of the PF method, assuming a constant
value of G, yields to predictions with very good accuracy in comparison with the experimental data as will
be reported in forthcoming sections.

_ In Eq. , H is a field variable that accounts for the historical value of the crack driving state function
D by setting:

S

H = max (258) with D* — wact (15)
s€{0,t} G./t
where s represents the fully story process and t is the current time step. Thus, this history field ensures
two conditions required to correctly model the evolution of a crack: (i) the irreversible condition preventing
healing effects and (i7) the positiveness of the crack driving force enforcing for fracture growth. In addition,
following Miehe et al [29], the dimensionless character of the crack driving force allows an elastic behavior
up to the onset of the failure to be included by setting a threshold D* = (U3 .¢/G. — 1,
Finally, the external energy variation can be written, in its most general form, as:

0 ept(u, du) = /b~(5udV—i— / t-dudsS (16)
B 9B.,

2.8. Discrete form

The finite element method (FEM) is used in the current work to solve the displacement-phase coupled field
problem. The interpolation of the continuum variables at the element level is performed in the isoparametric
space using the first-order Lagrangian shape functions. In this sense, the interpolation operator N is defined
as a matrix arranging the C°-continuous shape functions, N7 giving the required support to the node I of
the element. It must be pointed out that this operator can have a different expression depending on the
region and primary field.

In accordance with the isoparametric concept within FEM, firstly introduced by Irons [56], the spatial
approximation and the semi-discrete version of the residual vectors and consistent tangent matrices of the
two primary fields (u, ¢) are presented in the following.

2.8.1. Bulk region
The displacement and phase fields (u, ¢), as well as their variations (du, d¢) and their spatial gradients
(Vu, V@) are approximated at the element level as follows:

ux~Nd, Su~Nid, Vu=xBud (17)
O~ N, 6p~NID, Vo~Byd (18)
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where d and 0 are the vectors arranging the nodal values of the displacement and phase fields, respectively. In
turn, By is the strain-displacement kinematic operator and By is the compatibility operator with the spatial
derivatives of the shape functions corresponding to the phase field variable. As the particular expressions of
these operators can be found in Msekh et al. [57], they are omitted here for the sake of brevity.

2.8.2. Interface region

Complying with the formulation of an interface element, the displacement jumps vector (A) is expressed
in the local frame across the interface [568, [6] [53]. Therefore, the interpolation of A and its variation with
respect to the displacement field (§A) can be expressed at the element level as:

A %BAd, §A %BA(SCI (19)

where BA = R(d)A AL is the kinematic jump-displacement operator that approximates the nodal displace-
ment jump into the integration points of the middle plane of the interface. Here, L provides the difference
between the displacements of the upper and the lower interface points and R(d) rotates the integration
point value from the global to the local frame. Since R depends on d, this aspect induces a geometric
contribution in both the residual vector of the internal forces and the consistent tangent matrix, those cases
with large displacements should be accounted for [58]. Taking into account that for a small displacement
regime the geometric contribution can be neglected, in the current investigation, this effect has not been
considered to approximate the variation of the displacement jumps.

The phase field across the interface is defined as the averaged value between the two homologous points
of the upper and bottom interface boundaries, i.e. ¢ = (¢ + ¢7)/2 [41]. Hence, the approximation of the
phase field (¢) and its variation (d¢) at the element level is given by

o~ B0, b6~ Byod (20)

where By, = N ng is a compatibility operator of the averaged phase field in which M is the average operator.
More details about the geometrical contribution as well as the particular form of the above operators can
be found in [58, [£9].

2.8.8. FFE residual vectors
The discrete version of the residual vectors of the displacement and phase fields are defined as:

R = [ Blo(¢)dv + [ BLr(¢)ds (21)
[
R, = % / (0= 201 = 0)H) N + BILVD| av + / B, , ds (22)
B I

In the first expression, Ré"t stands for the contribution of the internal forces in the out-of-balance force
residual of the displacement field. The complete expression including the contribution of body forces and
external traction, is given by

Rq =R — / NTbav — / NTtds (23)

B 0B



2.8.4. FE consistent tangent matrices
The consistent tangent matrices can be obtained by differentiating the residual vectors with respect to
the increment of the primary fields:

Kaq = / Bl C(¢)Bq dV + / BLD(¢)Ba dS (24)
B I
Koo = %/ [((1 +2)YH)NTN, + Bcha} av + /BDTFED s (25)
B I

where C = 0.0 and D = OaT are the nominal tangent operators of the bulk material and cohesive zone
model, respectively. In turn, F = 04F; is the tangent operator of the phase field driving force across the
interface with respect to the average phase field. Finally, the coupling matrices Kyq and Kgp are not derived
here because they are not necessary for the staggered solution scheme used in the numerical examples. It
is worth mentioning that the adoption of a staggered incremental-iterative scheme in conjunction with the
Newton—Raphson method is herewith adopted due to its robustness, being of especial interest in the current
investigation where several energy dissipation mechanisms can evolve simultaneously.

Remark 1. In the current approach the nominal tangent operators (C, D and F) are computed using the
Complex-Step Derivative Approximation (CSDA) [60], which is briefly summarized in This
approach is used with the aim of increasing the robustness in the face of the perturbation parameter, not the
accuracy of the approximation. In this sense, CSDA approximates the derivate at O(z?) like the classical
perturbation step approximation which is used, for instance, in [61] [47].

3. Constitutive material models

8.1. Bulk model

The constitutive model used to model the anisotropic behavior characteristic of LFRCs reproduces
the formulation proposed by Quintanas-Corominas et al. [40], and which is summarized in the sequel.
Accordingly, the complementary Gibbs free energy W* which is the dual form of the Helmholtz free energy,
for long fiber composite material can be expressed as (see [2], 28] for a more comprehensive treatment):

(26)

ey (61)? —4viarpr | (Pr)® | (7r)? | (70)?
YU(e) =VU*(o) = 3 ( oM + Er Gy Gro )

where &1,, pr, 7, and 7 identify the effective stress quantities, whose definitions are given by

_ . - 022 + 033 . = = - 1 = = —
oL=01, Pr=—13p 5 TL= (012)? + (613)2 and 7r = 5\/(022 — 033)2 4 4(23)?, (27)
where E7; is the Young’s modulus along the fiber direction, v15 stands for the longitudinal Poisson’s coeffi-
cient, G1o is the shear modulus and E7 and G are the transverse and shear modulus:

Es Eao

Br=—"2__ and Gr=-— 2,
T o0y M T T 21+ i)

(28)
where Ey5 is the Young’s modulus in-plane transverse to the fiber direction and 53 denotes the transverse
Poisson’s coefficient.

Recalling the modeling hypotheses of [40], the degradation of the specific bulk energy for fiber reinforced
composites within the context of the PF approach is given by
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(5, 0) = (1= 0)° + 1) Vit (6) + V30 (5) (29)

being
_ 1 ({(6L)* — 4v12GLPr pr): (Fp)2 ()2
we)=1 (¢ ey Pl | (0 (1) (30)
2 E11 ET GT G12
B 1 ({(61)% — dviaGipr)  (Br)°
bt =1 (4 -, o @1
2 F Er
Then, the effective compliance tensor in compact notation H (vector form) reads
M1 _ vz _ V12 0 0 0]
Ei1 Eq1 Eq1
1,1 1 1,1 1
: e re) gy g 00
~ p* (7= + = 0 0 0
G i ter) (32
do @ 0o . 0 0
sym. G%Q (1)
L Giz |

Based on the previous definitions, it is worth mentioning that the crack driving state function can be
associated with four different material directions that are in turn related to the following intralaminar
damage mechanisms: (11) fiber failure, (22/33) matrix failure, (12/13) shear in-plane and (23) transversal
shear failures. See Quintanas-Corominas et al. [40] for further details.

3.2. Interface model

The constitutive model herein envisaged for the interface region is based on the formulation proposed
by Turon et al. (TM) [53] 8, [47]. The principal differences of this interface formulation with respect to that
proposed by Paggi and Reinoso (PRM) [41] are: (¢) the post-peak behavior, (i7) the mixed-mode interaction,
and (7i7) the initiation criteria. Thus, while a cut-off upon failure is defined in the PRM, the TM sets a
softening law after reaching the maximum strength of the interface. Therefore, the PRM can be conceived
as a more suitable model for interfaces with moderately low fracture process zones, whereas the TM is
inherently formulated to capture the response of cohesive interfaces. Regarding the propagation criterion
under mixed-mode interaction, on the one hand, PRM used a standard quadratic one whereas, on the other
hand, TM employed the Benzeggagh and Kenane criterion [62].

Taking into account the aforementioned characteristics of the TM formulation, the coupling strategy
between the PF and CZM proposed herein differs from the one in the PRM. The current strategy assumes
that the damage state in the fracture process zone of a crack originated in the bulk region can induce
damage in the interface resulting in a loss of stiffness. Considering that the PF variable and the damage
state of the TM formulation represent the ratio of a cracked area at a material point, the coupling between
both approaches is performed through the integrity function m(A, ¢). In particular, this coupling function
has to be a continuous monotonically decreasing function defined between 1 (pristine material) and 0 (fully
damaged material). In a general manner, the coupling strategy herein proposed is expressed in terms
of the integrity functions associated with the displacement jump and PF fields, i.e. ma(A) and my(¢),
respectively. Assuming a complementary effect in the stiffness loss, the coupling function proposed for the
current framework is:

m(A,¢) =m(ma, my) = Mmame (33)

10



where ma is computed according to the TM formulation (see Algorithm and my to the following evolution
law:

my = (1—14)° (34)

where 74 is the PF damage threshold that is integrated over the time ¢ satisfying Kuhn-Tucker conditions
as:

Activation function: Fy=Hy—r1y (35)
0 if ¢ < dmin

Loading function: Hy = % if Gmin < @ < Pmax (36)
1 if ¢ 2> Pmax

Temporal integration: ry = Sg%ﬁ} [Hj] (37)

where ¢ is the averaged PF value at the integration point according to the interface element formulation
presented in Section [2.3

As can be appreciated in the previous expression, two limits, ¢pin and .y, control the initiation
and finalization of the coupling. By setting ¢min > 0, the degradation of the interface properties due to
the cracking of the bulk region is delayed which, in turn, precludes the driving of the PF from the very
beginning of the analysis. On the other hand, an upper limit for the coupling is established by setting
Gmax < 1. Moreover, it is also possible to model a brittle behavior of the interface due to the stiffness loss
in the bulk region by setting ¢min ~ dmax-

Remark 2. As described in Section the quantities of the primary fields are extrapolated into the mid-
plane of the interface region through an interface element technology. Hence, in the current approach, ¢
governing the interface constitutive model is the averaged quantity at the mid-plane of the interface region.

To illustrate the behavior associated to the proposed coupling, the equivalent cohesive traction is shown
in Figure [2| for an interface with the properties listed in Table [[] and ¢min = 0.2 and ¢min = 0.8 as coupling
limits. The colored lines in Figure [2b-c illustrates the degradation of the stiffness as the PF increases,
whereas the black line corresponds to the loading cycle depicted in Figure 2h. This cycle combines steps
in which the opening of the interface increases and the PF is kept fixed (A, C, and E), with others of in
which the opening is kept fixed and the PF increase (B and D). In the following, the black curve behavior
is analyzed in terms of the cohesive traction 7, mixed-mode equivalent opening A and PF ¢. In step A, the
cohesive traction increases according to the effective penalty stiffness due to the opening of the interface.
Then, in step B, the traction remains constant until the PF reaches the bottom limit ¢nin, after which the
cohesive traction decreases as a consequence of the damage growth. Note that, from the point of view of the
traction - opening law, this behavior is similar to a relaxation of the interface. In step C, the cohesive traction
increases according to the nominal penalty stiffness until reaching the corresponding critical opening. After
this point, the cohesive traction decreases due to the opening of the interface according to a nominal cohesive
law which has less available free energy density as consequence of the bulk damage. Moving to step D, the
cohesive traction decreases due to the increase of the PF up to the rupture of the interface, which happens
when the ¢ > ¢nax. Finally, in step E, the equivalent opening is increased without any effect on the cohesive
tractions, demonstrating the complete rupture of the interface.

The work-flow of the interface model accounting for the coupling between TM and PF is presented in Al-
gorithm [1] Nevertheless, it is worth mentioning that through the coupling herein proposed, the fundamental
hypotheses of TM are preserved. Therefore, for situations in which failure processes are confined to the
interface, we retrieved previous results obtained with such an interface model. To illustrate this claim, we
examine the accuracy of the TM for pure interface failure under mixed-mode fracture conditions in Section
[42] Moreover, for the sake of brevity, the specific details of the TM are herewith omitted and interested
readers are referred to [53, [8, 47].
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3.2.1. PF driving force and thermodynamic consistency

In this section, we outline the derivations of the PF driving force and the examination of the thermody-
namic consistency of the model in the following paragraphs. Recalling the coupling function herein derived,
the cohesive interface free energy density function of the TM model can be rewritten as:

\Iji(A; QJ)) = m(A; d))\Iji,ela (38)

where ¥; .1, = (A)TKA is the elastic energy stored in the interface. Here, K is the elastic stiffness matrix.
Note that the dependency of the integrity function with respect to the displacement jumps and PF is here
explicitly represented here to emphases the coupling strategy. Then, considering the previous expression
and the coupling functions given in Eqgs. (33)) - (37), the contribution of the interface to the driving force of
the PF is defined as:
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0 otherwise

if 0< <1
1 T’¢ (39)

where ma is the integrity function defined in the original TM formulation (see step 9 in Algorithm ,
whereas the partial derivatives accounting for the coupling herein proposed are given by:

8m¢ -
87"4) - 2(1 7'(;5) (40)
o 1 (41)

a¢ (Qbmax - ¢min)

It should be noted that for a fixed displacement jump and, therefore, a fixed ma and ¥ q,, the dissipated
energy by PF will be the free energy available because of — fol Fidep = maY; cla-

Algorithm 1 Work-flow for the interface model: cohesive zone model coupled with the phase field approach.

The input material properties are the mode-I and mode-II initial and final jumps (A, Ao, Are and Agge) as well as the
mode-I and mode-II penalty stiffness (K7 and K7p). In addition, the Benzeggagh and Kenane parameter 7 is also given as an
input property. It is worth mentioning that A, and A¢ can be defined using the fracture toughness and cohesive strength [9].
Here, rZ and rg are the maximum historical values of the damage threshold variable. Finally, the compact notation is herein
used, which means that for a 3D case {A} = {A1, Az, A3} T is the displacement jump, {7} = {71, 72,73} T is the tractions and
[K] = [I]{K11, K11, K1} is the penalty stiffness matrix, where [I] is the identity matrix.
Input: {A}, ¢, rZ, rg, material properties
Output: {7}, F;, ra, ¢
Compute mixed-mode dependent quantities:

Effective cohesive tractions: 7 = \/KIQIA% + KZA3 + K? <A3>i

Mixed-mode ratio: B = (K11A? + K11A2)/(7)?

Equivalent penalty stiffness: Kp = (1 — B)K1 + BK11

Equivalent onset jump: Ao = \/(KIA%O + (KA, — KIA%O)B")Kgl

Equivalent critical jump: A¢ = (K1AALe + (K11AroArie — KIAIOAIC)B")(KB)\O)’l

Equivalent jump: A = (KA} + KipA3 + Kp (As)?)(7) 7!

Compute the integrity function associated to the equivalent jump:

I

Activation function: Ha = min [1, max [O, ;‘:);\0 H

Historical threshold: rA = max [TZ7 HA}
TAAe
raret(1—ra)io
Compute the integrity function associated to the phase field:
10:  Activation function: Hg = min [1, max [0 MH

? ¢max —Pmin

9:  Integrity function: ma =1 —

11:  Historical threshold: ry = max [r(};, H¢]
12:  Integrity function: mgy = (1 — r¢)2

Compute the integrity function according to the coupling function:
13:  Integrity function: m = min [mA,m¢]

Compute cohesive tractions:
14:  Cohesive tractions: {7} = m[K]{A}

Compute phase field driving force:
15:  Elastic energy: ¥ o1, = %{A}T[K}{A}

~2(1-ry)

ma
16:  Phase field driving force: F; = Pmax—Pmin
0 otherwise

fela if 0<ry <1
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4. Numerical treatment and applications

This section briefly introduces the implementation of the proposed formulation in High Performance
Computing (HPC) environments, and demonstrates the predictive capabilities in a coupon-based composite
specimen.

4.1. HPC implementation and solution scheme

4.1.1. Basic architecture

The proposed model is programmed in the Alya system, which is a multi-physics code conceived for High
Performance Computing (HPC) environments, see for instance [4, 63], [64]. This code is written in Fortran
90/95 using a hybrid OpenMP/MPI strategy for efficient parallelization. Thus, the assembly procedure of
the right-hand side and the Jacobian matrix do not require communication between nodes. Otherwise, the
solution of the algebraic system is performed using built-in iterative solvers and pre-conditioners, which need
several communications during the matrix-vector products. In this last case, the MPI gather functions are
used, as described by Lohner et al. [65].

4.1.2. Solution scheme

The solution scheme used to compute the numerical predictions of the current coupled displacement-
phase field problem is summarized in Algorithm [2| Specifically, the global solution of the coupled problem
is obtained via a modified iterative procedure based on the alternate minimization of the two primary fields.
The particular modifications from standard staggered solution processes are introduced in the minimization
of the PF in order to preclude the necessity of using a bound-constrained optimization solver, which greatly
increases the computational costs of the solution procedure.

Moreover, it is worth remarking that the requirement of using these type of solvers arises from the
irreversibly condition of the damage evolution imposed in the minimization of the PF in the bulk. Specifically,
the strategy herein used is a combination of a posterior projection of the solution used by Lancioni and
Royer-Carfagni [66] with a fixation of the solution for values close to 1, which is similar to that employed by
Bourdin et al. [I5]. In this sense, the solution of PF at the current time step is firstly obtained by solving
the unconstrained minimization problem, (step 6). Then, it is imposed that the current solution cannot be
smaller than the one at the beginning of the current time step (step 7). Finally, the projected solution of PF
is set to 1 wherever it is greater than a threshold value close to 1 (step 8). For the current work, this threshold
is considered as 0.95. As pointed out by Amor et al. [54], the posterior projection performed in (step 7)
ensures the irreversibly condition of the damage evolution, but it cannot guarantee that the solution found is
the global minimum of the constrained problem. However, according to their numerical experiments, there
is no significant difference between the results obtained using a bound-constrained optimization solver and
the posteriori strategy. Finally, it is worth mentioning that in the related literature, at present, there are
alternative solution schemes, such as the so-called over-relaxed alternate minimization proposed by Farrel
and Maurini [67] or the primal-dual active set method and predictor-corrector mesh adaptivity used by
Heister and coworkers [68], among many others. The numerical performance of these solution schemes with
respect to that proposed here, will be a matter of future investigations.

4.2. Verification examples: Mode I and II delamination tests

In this section, two simple simulations are performed to demonstrate that the proposed formulation
preserves the original qualities of the cohesive zone model to capture those failure cases driven purely by
delamination. The purpose of these tests also encompasses the assessment of the implementation of the
cohesive model proposed in [47] in HPC environments. In this sense, the specimen depicted in Figure [3[is
simulated considering a Double Cantilever Beam (DCB) configuration as well as an End-Notched Flexural
(ENF) one.

Regarding the material, the specimen consists of unidirectional carbon fiber reinforced plies, whose
material properties can be found in [47]. The specimen is discretized using a 2D structured mesh conformed
by 4-node isoparametric finite elements, which characteristic element size is 0.15x0.13 mm? at the bulk
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Algorithm 2 Solution scheme: quasi-alternate minimization with posteriori projection.
Let the subscript t and ¢t — 1 denote the quantities at the current and previous pseudo-time steps along the simulation,

respectively. Hence, (ut—1, ¢+—1) is the initial solution of the displacement and the phase field at the begginning of the current
time step before applying the Dirichlet-Neumman boundary conditions. Then, (u¢, ¢¢) is the solution of the primary fields
at the current time step, which is evaluated for a fixed tolerance smax and phase field threshold ¢¢nhreshold With the following
iterative procedure:
Input: ut—1, $t—1, Gthreshold, Smax
Output: u¢, ¢
1: Initialize (e,p) = (1,0)
2: Set (0@, ¢©) = (u_1, 1)
3: While s > spax do
Increase iteration counter: p =p + 1.
Compute u(® by the minimization of H(u(p_l), (j)(p_l)) subjected to boundary conditions at fixed ¢ .
Compute ¢(®) by the minimization of II(u?, $®~1) at fixed u.
Impose irreversibly condition by setting ¢(p) = ¢(0) wherever qﬁ(p) < qﬁ(o).

Impose fully damage condition by setting ¢ = 1 wherever ¢(®) > ¢ipreshold-
9:  Compute current residual: s = ||¢(p) — =1 ||Oo
10: Set (u¢, ¢¢) = (uP), ()

region and 0.15x0.001 mm? at the interface region. This leads to a domain formed by a mesh of 17,350
elements. Finally, the boundary conditions corresponding to each configuration are also illustrated in Figure

Bl
Width = 25.4 mm ---Interface § Pre-crack length
a
il - === s e
\
T X < 102 > (mm)
Double Cantilever Beam configuration End-Notched Flexural configuration
uy =0 Uy = U -
uy =0 l?f: Zo
Uy = UY uy =0 uy =0

Figure 3: Pure delamination tests: Geometry and boundary conditions for the DCB and ENF configurations.

The load versus displacement curve for the DCB and ENF predicted by the current framework and the
Linear Elastic Fracture Mechanics (LEFM) theory are shown in Figure As can be appreciated, both
predictions display an excellent agreement with respect to LEFM results. It should be pointed that for this
investigation several configurations with different (¢min,®max) have been investigated without any noticeable
differences in the corresponding response. In this analysis, the bulk region is not affected by the opening of
the interface thanks to the driving force that governs the increase of the PF in the proposed formulation is
not affected when the failure is driven purely by a delamination mechanism. Thus, it is expected that the
current framework can be used in those cases previously been analyzed with the original CZM.
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Figure 4: Pure delamination response curves: a) DCB and b) ENF configurations.

4.3. Representative application: 4-Points Bending test

In this section, a four-point bending test is investigated to show the capabilities of the current framework
to model the delamination induced by the cracking of the matrix. The specimen considered is a [904/07/904)
cross-ply laminate made from HTA /6376 carbon fiber reinforced plies, which was experimentally studied
by Mortell et al. [69]. The description of the geometric disposals and dimensions are depicted in Figure [5]
while the mechanical properties of the unidirectional ply and interface are listed in Table

Fi1 140 GPa Young’s modulus (fiber dir.)
FEao 10 GPa Young’s modulus (matrix dir.)
g G2 5.2 GPa Shear modulus
‘%0 V12 0.3 Poisson ratio
2 V13 0.42 Poisson ratio (isotropy plane)
=4 Yr 70 MPa Tensile transverse strength
5 et 1 PF post-peak control parameter
o 1.5 PF length scale (fiber dir.)
Efn 0.1 PF length scale (matrix dir.)
o T;r 70 MPa Cohesive strength: mode-I
1) o 110 MPa Cohesive strength: mode-II
¥ Gr 0.432 kJ/ m? Fracture toughness: mode-I
; Grr 1.002 kJ/m2 Fracture toughness: mode-II
E n 1.75 BK interpolation parameter
5 K 1.5-10° kN/mm?® Penalty stiffness: mode-I
= ‘f’jmn 0.1 PF-CZM coupling limits: min.
o Dlax 0.5 PF-CZM coupling limits: max.

T Assumed values.

Table 1: 4PBT material properties and input parameters [69} [70].

Regarding the computational method, the domain is approximated using a 2D structured mesh conformed
by 4-node isoparametrical finite elements whose characteristic element size is 0.05 x 0.05 mm? at the bulk
region and 0.05 x 0.001 mm? at the interface. This leads to a mesh of 124,800 elements and 374,400 degrees
of freedom. According to the experimental setup, the loading and support conditions can be applied by
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modeling the contact between the specimen and steel pins as performed by Reiner et al [70]. However, in the
current, application, the boundary conditions are applied as point displacements at the positions illustrated
in Figure 5] The loading is smoothly applied until a total vertical displacement of & = 6 mm is reached.

In addition to the aforementioned numerical setup, two more aspects, which are related to the material
properties, must be considered:

e The first issue concerns the uniformity of the stress field that takes place along the length between
loading pins (span length) due to a constant moment region [69} [70]. From a numerical point of view,
this situation provokes the failure onset being able to initiated at any arbitrary location along the
span length because the PF will tend to simultaneous and homogeneous growth, only affected by the
round-off errors. In turn, this precludes the correct localization of the strain affecting the reliability of
the predictions. In this work, this limitation is originally overcome by defining a random field in the
finite element mesh affecting only the transverse strength. The correct application of any alternative
statistically-based distribution of the corresponding material strength can be considered in forthcoming
investigations. Nevertheless, to illustrate this issue of random field by accounting for and complying
with the objectives of the current work, a normal distribution with a coefficient of variance of 10% is
applied, see Figure [f]

e The second aspect concerns the sensitivity of the delamination onset close to the free-edges. It is
wellknown that the mismatch between the Poisson ratios of the plies infers a stress concentration at
the interfaces triggering delamination [(1I]. This issue can be prevented by increasing the fracture
toughness of the interface at the regions close to the free-edges as illustrated in Figure [}

Uy =1 Uy =T f Dist. between the loading pins (span length)
= Dist. between the supporting pins
A - § Free-edge prevented region
T y bl Y
B B
uy -0 N — - = = uy -0
y 5° 127 ’ 58
< > <>

«I-x 40 (mm)

Detail A: Laminate

Figure 5: 4PBT scheme: Geometry, boundary conditions and detail of the FE mesh with the random distribution. The nominal
strength at the elemental level is defined as Y7 = Ky Yy 7.

As a starting point of the analysis, the need for a coupling strategy between the PF and CZM approaches
to capture the delamination induced by matrix cracking is justified. For this purpose, the 4PBT is simulated
considering four different FE models, which are listed in Table [2] The fully elastic case is considered here
as a reference case, whereas the CZM one is used to illustrate that the delamination is only induced by
the transverse cracks. Figure [6la shows the reaction force at the supports as a function of the applied
displacement. From this figure, it can be seen that the curve predicted by the FEM model using only CZM
case does not differs from the fully elastic one. Otherwise, a change of slope is predicted by those FE models
that use the PF in the bulk region, indicating the onset of transverse cracks.

Focusing on the interaction of a transverse crack when it impinges the interface, it is observed that the
delamination onset only occurs in the FE model using the coupling strategy between the PF and CZM, see
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Figure [6}b. In the FE model without the coupling strategy, the PF grows parallel to the interface because
of the difference in the elastic properties between the 90 and 0 plies. In fact, this mismatch combined with
the impossibility of the stresses to relax induces an increase of the PF driving force close to the interface.
Moreover, it is noted that without the coupling strategy the crack density is lower than that corresponding
to the experimental observations. Therefore, based on this discussion, the coupling strategy becomes a
required feature in order to capture the experimental evidence which is characterized by a very complex
failure scenario combining intralaminar and interlaminar failure events.

ELASTIC WB Crack driving force (D*) 1‘-‘ ‘1
+ CZM ] ) ‘ [
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Figure 6: 4PBT results: a) vertical reaction - displacement curve predicted four approaches: (i) elastic, (ii) CZM, (iii) CZM
and PF without coupling and (iv) CZM and PF with coupling, b) fracture pattern around a transverse crack for approaches
(ii) - (iv). The gray-scale color map illustrates the crack driving force of the transverse cracks, the red color represents fully
damaged elements (i.e. wherever ¢ > 0.95) and in the blue-to-yellow colored map the interface debonding in accordance with
the integrity function m. Warping scale = 0.

Next, the influence of the G./¢ in Eq. is examined by comparing the stiffness loss in the load
direction as a function of the applied displacement for G./¢ = 0.5,1,5,10,100. The normalized curves are
plotted in Figure ma. Low values of G./¢ induce a more pronounced stiffness loss. This trend is because of
the contribution of interface in the driving force of the PF increases as G. /¢ decreases affecting the 0 plies. In
this sense, if G.// is fixed, it plays a role as a scale factor between both contributions: the bulk and interface.
To illustrate the affectation of the central plies, the PF across specimen thickness at the location of the first
transverse crack is plotted in Figure mb. Notice that the PF value in the 0 plies is lower as increases G //.
Another observation associated with this parameter is related to the onset of the delamination and the crack
density. It is observed that the interface debonding takes place prematurely for low values of G./¢. In turn,
a relaxation of the stress occurs precluding the onset of new transverse cracks. This observation is shown

Label Bulk  Interface Coupling
ELASTIC elastic elastic -
CZM elastic CZM -
PF-CZM PF CZM Ooff
PF-CZM (COU) PF CZM On

Table 2: 4PBT: FE models considered to justify the coupling strategy.
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in Figure [lc. As can be appreciated, no significant differences regarding the fracture pattern take places
for G./¢ > 5. Accordingly, in the following, the G./¢ = 10 case is analyzed by comparing the numerical
predictions against the experimental data.
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Figure 7: 4PBT results: study of G. /¢ influence for 0.5, 1, 5,10, 100: a) loss of vertical rigidity - normalized applied displacement,
b) PF through the specimen thickness, and c¢) crack pattern (PF). Warping scale = 0.

Compared with the experimental observations the failure sequence predicted is in agreement with the
one reported by Mortell et al. [69]. In the following, the curve predicted by the FE model with the coupling
strategy depicted in Figure[6]is taken as guideline with which to compare the results. In the first stage, the
curve displays a quasi-elastic evolution up to the onset of the cracking of the bottom plies. The average
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stress level at the span length of the outermost ply at first transverse crack initiation predicted (67.5 MPa),
which is in close agreement with the experimental findings. Analyzing the failure sequence, the transverse
cracking is provoked by a macro-crack that rapidly grows from the bottom edge of the 90 to the 0 plies
impinging the 0/90 interface with a micro-delamination, but not reaching the intralamina region of the
central 0 plies. After that, in the second stage, the slope of the curve decreases gradually due to the onset of
several transverse cracks across the span length. As expected, the new cracks are predicted to be initiated
at the center of the span between existing cracks. This is a direct consequence of the fact that it corresponds
to the location where the maximum stress occurs since it is outside the free-stress region, see Figure[§] Note
also that this relaxed zone is confined in the typical triangular zone [72] [73].

In line with the previous discussion, the number of transverse crack in which the crack length saturates
(6 cracks) and the total number of transverse cracks between the supporting pins at the end before the final
collapse (14 cracks) are in reasonable agreement with the experimental observations. In addition, the average
space between cracks at the end of the simulation (2.25 mm) is close to that recorded in the experiments.

Finally, the third stage commences with the coalescence of the micro-delaminations that debounds the
interface which, in turn, triggers the catastrophic collapse of the specimen. Table [3]lists the correlation be-
tween the experimental values and the numerical predictions using the proposed PF-CZM coupling method.

! uy W Crack driving force (D%)
@ Tiansverse crack (¢9>0.95)
@ /nterface debonding (m < 0.05)
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Figure 8: 4PBT results: Fracture pattern of the bottom 90 plies in the span-length region for different applied vertical
displacements. The gray-scale color palette illustrates the crack driving force of the transverse cracks, the purple color represents
the interface debonding (i.e. wherever m < 0.05) and the red color represents the transverse cracks (i.e. wherever ¢ > 0.95).
Warping scale = 0.

Another interesting phenomenon observed in the experiments is regards delamination growth as as a
function of the horizontal location of the transverse crack associated with its triggering. Mortell et al.[69)]
found that the delamination grows more asymmetrically with respect to the transverse crack far from the
center of the specimen than close to it. Moreover, they observed that the preferred direction for the growth
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is away from the center of the span length. As can be appreciated in Figure 8 and Figure [J] this behavior
has been correctly captured by the current simulations.

Finally, it should be pointed that Mortell et al.[69] also observed that not all the transverse cracks initiate
micro-delamination. With the current numerical setup, this behavior is not captured because all transverse
cracks damage the interface when they impinge on it. This phenomenon could be modeled by defining a
random field for the PF couplings parameters. However, this is not a critical point in the current study.
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Figure 9: 4PBT results: Fracture pattern for an applied vertical displacement of 6 mm. The gray-scale color map illustrates the
crack driving force of the transverse cracks, whereas the red color represents a fully damage elements (i.e. wherever ¢ > 0.95).
Warping scale = 1.

5. Conclusions

In the present work, a novel PF-CZM numerical method has been developed to model the delamination
induced by matrix cracks in long fiber composite materials.

The current method is characterized by considering the anisotropic PF formulation for the intralaminar
damage proposed by Quintanas-Corominas et al. [40], which has been coupled with the cohesive zone model
formulation developed by Turon et al. [47]. For this purpose, an alternative coupling strategy between the
PF method and the CZM for heterogeneous media with respect to that outlined in [41] has been formulated
according to the fundamental aspects of both approaches. In particular, the integrity function of the CZM,
which defines the loss of interface rigidity, has been modified, considering of the role of the bulk PF variable
in the interface response through the definition of a suitable coupling function. The proposed framework
has been implemented in the Alya FE code [64].

Observation Experimental | Numerical Units
Onset of the first transverse crack’ 62 67.5 MPa
Transverse cracks saturation’ 0.7 0.5 crack/mm
Total number of cracks™ 15 14 -
Average space between cracks™ 2 2.25 mm

 Between the loading pins (span length).
* Between the supporting pins.

Table 3: 4PBT results: Quantitative comparison of the numerical predictions and the experimental observations found by
Mortell and co-workers [69] [70].
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The capabilities of the proposed formulation have been demonstrated by means of several examples
which included the verification of the current interface model in HPC environments and the simulation of
a 4-Points Bending Test. The obtained numerical predictions showed that the general trend regarding the
failure sequence was correctly captured by the proposed modeling method. Moreover, a direct comparison
with experimental observations demonstrated that the proposed framework was also capable of capturing
the onset and number of transverse cracks. Finally, the need for a coupling strategy between the CZM and
the PF approach to correctly capture the delamination induced by transverse cracking has been shown.

In light of the previous arguments, the formulation herein presented is expected to provide a suitable
modeling framework for other engineering problems concerning progressive failure analysis in long fiber com-
posite materials. Future developments might regard the extension of the current framework for performing
3-dimensional simulations of more complex loading scenarios, such as Double-Notched or Open Hole under
tensile loading, in conjunction with the incorporation of mesh-adaptive schemes as those proposed in [74] [75]
among others, in order to preserve the computational efficiency. In those cases, the approach here presented
could be combined with the proposal of Belyer and Alessi [39] to include several phase field variables,
achieving a better representation of the different failure mechanisms.
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Appendix A. Thermodynamic consistency

The thermodynamic consistency of the coupling proposed here is ensured by means of the Clausius-
Duhem inequality. Thus, the thermodynamic irreversible condition of the damage process holds if the rate
of energy dissipation is positive, i.e.

Y- D>0 (A1)

where Y is the thermodynamic forces vector conjugated to a set of internal damage variables D accounting
for the dissipative mechanisms. Considering the formulation herein proposed, two internal state variables
are defined to measure the damage threshold associated to the displacement and phase fields, which are
denoted by ra and rg, respectively. It is worth mentioning that the mixed-mode ratio does not affect the
damage state as demonstrated by [47] and therefore, it is not considered in the following derivations. Then,
the previous inequality can be expressed as:

Y = [7amA\I/i7 *8m¢ \I]i]T (AQ)
D = [ia, i) (A.3)
which, after some algebraic manipulations, is reduced to
amA . 8m¢ .
—Ui ala >0 A4
el (m¢ Grs AT ma are 7‘¢>) (A.4)

Recalling the demonstration presented by Turon et al. [47] and considering that m, > 0, the first term in
the parenthesis is always less than or equal to zero. Hence, the second term should be also less than or equal
to zero in order to ensure a positive rate of energy dissipation, i.e.
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me
T

Fg <0 (A.5)

ma

where, in light of the expressions summarized in Algorithm [1} it is postulated that

DA
=1- > A.
ma rpAc + (1 — T’D)AO 20 ( 6)
3m¢
=—-2(1—- < A.
e — —5(1—ry) <0 (A7)

At this point, the thermodynamic consistency of the proposed formulation holds thanks to the irreversibly
conditions imposed on the damage threshold associated to the phase field variable Eq. , i.e. stating that
7¢ > 0.

Appendix B. Complex-step derivative approximation

The Complex-Step Derivative Approximation (CSDA) is used in the current framework to obtain the
tangent operator of the material models [60]. When compared to the classical difference approximation,
CSDA is more robust than the perturbation parameter A, but it is also more expensive computationally..

Outlining the concept of CSDA, the derivative of a scalar function f can be approximated by perturbing
its argument z along the imaginary axis. Thus, the Taylor series expansion of the function around the
perturbation is expressed as:

f(x+ih) = f(z) +ihf'(z) + O(x?) (B.1)

where h is the perturbation and i2 = —1 is the imaginary unit number. Then, discarding the high order
terms O(z?), the first derivative can be approximated as:

f(z) =~ w (B.2)

where Im[e] is an operator that takes only the imaginary part of the argument. Note that, unlike the
traditional method, h can be very small thanks to the above operation is not being subjected to subtractive
cancellation [76]. However, the order of the approximation is the same, i.e. O(z?).

According to Tanaka and coworkers [77], this concept of CSDA can be extended to directional derivatives
of vector fields which, in turn, allows the method for the approximation of the tangent derivative of a material
model to be applied. For instance, considering a 2-dimensional analysis and adopting the Voigt notation,
the material tangent operator for the bulk region can be explicit represented as:

1 Im[Ull(E + ihé(ll))] Im[oll(s + ihé(gg)) Im[011(€ + ihé(lg))]
C=—~ 7 Im[O'QQ(E + ihé(ll))] Im[O'Qg(EJ + ihé(gg)) Im[agg(s + ihé(lg))] (B.3)
Im[012(€ + Zhé(ll))] Im[alg (E? + Zhé(gg)) IIH[012(€ + Zhé(lg))]

where €.;;) = {01:)01(j)  d205)02(j) 51(1)52@)}71 is the directional perturbation vectors and d;; is the Kro-
necker delta. In turn, the material operator for the cohesive zone model reads as:
po 97 1 [Imn(A+ihgay)] Im[r (A +ihgs)]

1 |[Im
= ~ — . . B.4
9A = i |Imlra(A +ihgay)] Tnlrs(A +ihg )] (B-4)

where g5y = {01:)01j)  02(:)02(j)}" -
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