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E D I T O R I A L

The case for preregistering all region of interest (ROI) analyses in 
neuroimaging research

Abstract
In neuroimaging studies, small sample sizes and the result-
ant reduced statistical power to detect effects that are not 
large, combined with inadequate analytic choices, concur 
to produce inflated or false-positive findings. To mitigate 
these issues, researchers often restrict analyses to specific 
brain areas, using the region of interest (ROI) approach. 
Crucially, ROI analysis assumes the a priori justified defi-
nition of the target region. Nonetheless, reports often lack 
details about where in the timeline, ranging from study 
conception to the data analysis and interpretation of find-
ings, were ROIs selected. Frequently, the rationale for ROI 
selection is vague or inadequately founded on the existing 
literature. These shortcomings have important implica-
tions for ROI-based studies, augmenting the risk that ob-
served effects are inflated or even false positives. Tools 
like preregistration and registered reports could address 
this problem, ensuring the validity of ROI-based studies. 
The benefits could be enhanced by additional practices 
such as selection of ROIs using quantitative methods (i.e., 
meta-analysis) and the sharing of whole-brain unthresh-
olded maps of effect size, as well as of binary ROIs, in 
publicly accessible repositories.

In the functional magnetic resonance imaging (fMRI) lit-
erature, false report probability (FRP), the probability 
that statistically significant findings are actually not true 
(Ioannidis,  2005), as well as the probability that reported 
effects are inflated (Ioannidis, 2008), are pervasive prob-
lems. These have been attributed to small sample sizes and 
resulting small statistical power to detect effects that are not 
large (Button et al., 2013), combined with selective report-
ing biases (Szucs & Ioannidis, 2017) and inadequate analytic 
choices (Eklund, Nichols, & Knutsson, 2016). fMRI studies 
often rely on whole-brain mass-univariate voxel-wise testing, 
paired with voxel- or cluster-wise corrections for multiple 

comparisons. Though voxel-wise corrections are more reli-
able in terms of controlling the false-positive rate, they have 
costs in reducing sensitivity (i.e., correctly identifying true 
effects). Conversely, many methods for cluster-wise correc-
tion still lead to inflated false-positive rates, that is, over the 
expected 5% (Eklund et  al.,  2016), though there is debate 
about the size of the inflation (Cox, Chen, Glen, Reynolds, 
& Taylor, 2017). The problem is further compounded when 
results from individual studies are used to estimate effects. 
Neuroimaging studies typically selectively report effects only 
for the subset of activated (i.e., statistically significant) vox-
els or clusters. Stringent multiple comparisons corrections 
leading to smaller p value thresholds combined with low 
statistical power imply that only voxels or clusters with high 
estimates will be statistically significant and consequently re-
ported (Ioannidis, 2008; Reddan, Lindquist, & Wager, 2017). 
Most methods for neuroimaging meta-analyses are based on 
data in published reports and hence risk further overestimat-
ing the true effect. Moreover, when brain activity is analyzed 
using multivariate methods (Haynes, 2015), the resultant es-
timates, for example for prediction accuracy, may be prob-
lematic as well. Specifically, it has been demonstrated that 
both the estimate (Varoquaux et al., 2017) and the related 
standard error (Varoquaux, 2018) can fluctuate depending on 
the analytic choices, particularly with small samples.

To balance study sensitivity while also reducing the num-
ber of comparisons performed, researchers can restrict the 
search for significant results within specific brain areas, using 
the so-called regions of interest (ROI) approach. This method 
is ubiquitous in the fMRI literature (Poldrack, 2007). For in-
stance, in an Activation Likelihood Meta-Analysis on specific 
phobia, we found that 28 out of 31 papers employed ROI ap-
proaches (Gentili, Messerotti Benvenuti, Lettieri, Costa, & 
Cecchetti, 2019). In principle, ROI analysis can be statistically 
appropriate and useful when the target brain region is defined 
a priori. Indeed, the approach requires that the ROI selection 
predates data exploration, and that its definition in terms of an-
atomical location is based on previous findings. Nonetheless, 
reports often lack details about when, in the timeline ranging 
from study conception to data analysis and interpretation of the 
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findings, have ROIs been selected. This ambiguity has crucial 
implications for ROI-based studies, as the ad hoc definition of 
ROIs, informed by the results of whole-brain voxel-wise analy-
ses, inflates the FRP and the reported effect size (Kriegeskorte, 
Simmons, Bellgowan, & Baker, 2009).

Preregistration of analyses, which requires researchers 
to commit to analytic steps without prior knowledge of the 
research outcomes, offers the opportunity to rigorously im-
plement the concept of a priori (Nosek, Ebersole, DeHaven, 
& Mellor, 2018). Specifically, the definition of the ROI can 
be preregistered in a publicly accessible registry, such as the 
Open Science Framework (https://osf.io/), following guide-
lines recently proposed by the Committee on Best Practice 
in Data Analysis and Sharing of the Organization for Human 
Brain Mapping (Nichols et  al.,  2017; COBIDAS), summa-
rized in a freely available document (https://osf.io/dvb2e/). 
The preregistration template unequivocally underscores the 
relevance of specifying the method used for ROI definition, 
the number of ROIs, and the modalities of analyzing brain ac-
tivity from each. The selection of ROIs is thus time-stamped, 
confirming that decisions about its selection predated data ac-
quisition or exploration. For studies using already collected, 
publicly available or shared datasets (e.g., Neuroimaging 
Analysis Replication and Prediction Study [NARPS]; 
Botvinik-Nezer et al., 2020), ROIs selection evidently can-
not predate data acquisition. In such cases, preregistration 
of ROI selection fosters analytic “decision independence” 
(i.e., the decision that led to the selection of the ROI is not 
a function of unrepeateable features of the dataset analyzed; 
Srivastava,  2018). Specifically, it ensures ROIs are chosen 
before any processing step is performed, thereby limiting the 
possibility of questionable research practices. Some transpar-
ently reported data exploration may be warranted to ensure 
the feasibility of the study, for example, checking whether 
functional acquisitions characterized by partial brain cover-
age can be adequate to test study hypotheses. Other relevant 
analytic decisions (e.g., exclusion of subjects due to exces-
sive movement) can be well-justified; however, it is crucial 
that they are not taken upon seeing results of interest.

P-hacking could take the form of choosing to report only 
a subset of ROI analyses out of a suite performed or, upon 
examining data, adding observations until the effect in an 
ROI becomes significant (Bruns & Ioannidis, 2016; Poldrack 
et  al.,  2017). If ROI definition is preregistered, researchers 
pursuing either of these approaches would at the very least 
need to be transparent, which might prompt critical peer-re-
view and eventually even discourage p-hacking. Importantly, 
even though preregistration requires relevant choices to be 
taken before data exploration, deviations from protocol are 
possible when transparently reported and justified. Readers 
and reviewers could then weigh in regarding the judiciousness 
of the deviations and, depending on their magnitude, findings 
could be presented as exploratory or non-preregistered.

Furthermore, theoretical grounding of the a priori ROI se-
lection may be problematic. For instance, in a meta-analysis 
on specific phobias, we showed that only 19 out of 31 studies 
explicitly justified the choice of ROI based on previous litera-
ture (Gentili et al., 2019). Frequently, the rationale supporting 
ROI selection is based on vague statements or on citing previ-
ous findings without motivating how these suggest an associ-
ation between a well-defined brain area and a specific mental 
process. Across the neuroimaging literature, it is unclear how 
many published papers rely on an adequate definition of ROIs 
(Hong, Yoo, Han, Wager, & Woo, 2019). Hypothetically, the 
choice of any ROI may be justified based on the existing lit-
erature, leading to a “garden of forking paths” of potential 
data-dependent analyses (Gelman & Loken, 2014). Using pre-
vious non-preregistered reports to inform a new ROI-based 
study has to accommodate the possibility that some reports 
may be based on data-dependent ROI selection. In this case, 
the definition of the ROI in the new study, even when pre-
registered, could be influenced by estimates that are inflated 
or false positives. Thus, resultant findings could contradict or 
fail to replicate previous ones. Researchers might worry about 
difficulties in publishing such findings and consequently be 
wary of preregistering ROI definitions. Addressing this prob-
lem requires a commitment from journals to publish negative 
or contradictory findings, as well as replication failures.

Selection of ROIs based on a meta-analysis rather than a 
single study could also help overcome the issue of previous 
estimates being inflated or false positives. In this scenario, 
the ROI definition is determined by the spatial consistency 
of results coming from multiple studies and, while true ef-
fects presumably converge in the same anatomical location, 
false-positive results should be randomly distributed through-
out the brain. Useful tools in this regard are represented by 
GingerALE (Müller et al., 2018) and Seed-based d Mapping 
(SDM; Albajes-Eizagirre, Solanes, Vieta, & Radua,  2019), 
which quantitatively aggregate neuroimaging findings, as well 
as by Neurosynth (Yarkoni, Poldrack, Nichols, Van Essen, & 
Wager, 2011) and NeuroQuery (Dockès et al., 2020), which es-
timate the association between voxels and terms semantically 
related to the study hypothesis or to functional areas of interest 
(e.g., fusiform face area). The definition of ROIs could also 
be based on inherently vague anatomical terms (e.g., medial 
prefrontal cortex) or it may refer to a large patch of the cortex 
(e.g., precise location within the Superior Frontal Gyrus; Hong 
et al., 2019). Interestingly, Neurosynth and Neuroquery can be 
used to precisely define anatomical ROIs, which have no clear 
boundaries or are typically not included in anatomical atlases, 
as the temporo-parietal junction (Lettieri et al., 2019).

Will preregistration improve the quality of ROI selection? As 
long as the researchers’ integrity and openness to being wrong 
are assumed, we believe it will. Conversely, preregistration could 
be thwarted or gamed (Yamada, 2018). In principle, a researcher 
could acquire and analyze the data, obtain voxel-wise results, 
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select the ROI according to the whole-brain statistical maps and 
subsequently "preregister" the analytic pipeline as if it were a pri-
ori. However, proceeding in this way involves substantial effort, 
heightened attention to avoid mismatches among specific de-
scriptive details, such as recruitment and analysis times, as well as 
careful curation of any shared dataset to modify timestamps. More 
importantly, it also implies the researcher's willingness to deceive 
and act dishonestly. Therefore, preregistration per se does not guar-
antee protection against false-positive or inflated estimates due to 
ad hoc ROI selection and hypothesizing after results are known 
(i.e., harking; Poldrack et al., 2017), but it makes these less likely.

To further limit the possibility of producing inflated or 
false-positive results, researchers can opt for a registered re-
port (RR; Chambers, 2013), a particular type of preregistered 
article, in which the methods are peer-reviewed even before 
any data is acquired (stage I submission). Indeed, if imple-
mented correctly (Hardwicke & Ioannidis, 2018), RRs could 
ensure the validity of ROI studies and help prevent question-
able research practices, as reviewers are heavily involved in 
the evaluation of the rationale, study hypotheses and, con-
sequently, in the ROI selection. Moreover, RRs guarantee 
publication if the approved protocol is followed, thereby as-
suaging concerns about difficulties in publishing negative or 
contradictory findings. It is conceivable that, depending on 
the rationale of the stage I RR, reviewers might themselves 
suggest specific ROIs to be tested. Even in the extreme case 
of a highly motivated and dishonest researcher having already 
collected and analyzed the data, "conveniently" defined the 
ROI depending on whole-brain results, and then submitted 
the stage I RR, it is very unlikely that this methodological 
section, including ROI selection criteria, will be left unre-
vised. This is even more unlikely if the rationale for the ROI is 
weak, vague or not well grounded in the scientific literature. 
Hence, RRs are a promising tool to reduce FRP and inflation 
of true effects in the neuroimaging literature, especially when 
ROI-based analyses are involved. They could also potentially 
be more resilient to scientific misconduct compared to pre-
registration, provided stage I protocols are publicly archived 
as read-only, time-stamped versions, which has not always 
been the case so far (Hardwicke & Ioannidis, 2018).

In summary, to enhance reproducibility and ensure the 
validity of findings, we suggest that mass-univariate and 
multivariate ROI-based MRI studies adhere to the following 
recommendations:

1.	 Preregistration in a publicly accessible repository of the 
study design, methodology, and statistical analysis pipe-
line, including details about ROIs selection. Particularly, 
researchers should clearly and thoroughly report meth-
ods employed for ROI definition and the theoretical 
background underlying their choice. The authors should 
also share the ROI as a standard space binary mask in 
publicly available repositories;

2.	 ROI selection based on quantitative methods (i.e., meta-
analysis) is preferred;

3.	 Performing and reporting an exploratory whole-brain 
analysis and providing voxel-wise unthresholded maps of 
the effect size, even when negative results are obtained. In 
this regard, data should be released following FAIR prin-
ciples (Findable, Accessible, Interoperable and Reusable; 
Wilkinson et  al.,  2016). Specifically, in the neuroimag-
ing field, the use of web-based repositories as NeuroVault 
(http://neuro​vault.org; Gorgolewski et al., 2015) ensures 
that unthresholded maps are not lost and remain acces-
sible to the entire community. In addition, organizing data 
and meta-data following the brain imaging data structure 
(BIDS) standard (Gorgolewski et al., 2017) and the neuro-
imaging data model (NIDM) format (Keator et al., 2013) 
could help in increasing reusability of resources.
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