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Abstract

Robust evidence of a negative relation between firm size and growth motivates widespread policy

support to small firms. However, the determinants of such dependence are poorly understood. We

investigate the role of product innovation as possible driving factor, using sales data for all firms in the

pharmaceutical industry. We find that the small firm-growth premium arises only for firms switching

products in their portfolio, and that such premium is driven by product innovation, either new-to-

world, which leads to larger impact of new products, or new-to-firm, which mitigates cannibalization.

We urge policy makers to prioritize innovation policies in supporting small firms.
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1. Introduction

Small firms are generally considered as a primary engine of job creation and economic growth by

the scientific community and policy makers (Birch, 1987; Davis et al., 1996; Neumark et al., 2011;

Haltiwanger et al., 2013). Moreover they can be major generators of innovation and new products, with

the potential for creating new industries (Bennett, 2014). For these reasons most governments and

international institutions safeguard small firms with special policy treatments, such as more lenient

regulations, tax and financial incentives, and programs in support of their growth and innovation

processes (see Bennett, 2014, for a discussion of small business policies). Recognising innovation

of small firms as a key driver of the renewal of the industrial structure and sustainable economic

growth, the European Commission actively supports their innovation capacity via a number of policy

instruments, with an allocated budget of 141.6 Euro millions under the Horizon 2020 Work Programme

for 2018-2020 (European Commission, 2018).

The economic relevance of small firms is corroborated by the quite regular finding that the growth

rate of firms decay with their size. Since the seminal contribution of Gibrat (Gibrat, 1931), a multitude

of empirical works has investigated the relation between firm size and growth (for surveys see Santarelli

et al., 2006; Coad, 2009). Gibrat postulated that the distribution of firm size should follow a lognormal

process, implying independence between firm growth and its size at the beginning of the period.

However the majority of empirical tests has rejected the Gibrat law, finding a negative dependence

(see inter alia Hall, 1987; Evans, 1987b,a; Dunne and Hughes, 1994; McPherson, 1996; Bottazzi and

Secchi, 2003; Yasuda, 2005; Calvo, 2006; Colombelli et al., 2013; Grazzi and Moschella, 2018; Arouri

et al., 2019), or that the law holds only for firms exceeding a “minimum efficient size” (see inter alia

Mansfield, 1962; Becchetti and Trovato, 2002; Geroski and Gugler, 2004; Cefis et al., 2006; Lotti et al.,

2009; Daunfeldt and Elert, 2013) or beyond the start-up age (Lotti et al., 2001, 2003; Lawless, 2014).

In spite of the abundant research and evidence available, the understanding of the relation between

firm size and growth is still limited in a key dimension. In fact, while the main focus of empirical

investigations has been on testing whether the law is supported by the data or not, much less attention

has been devoted to explore the mechanisms generating the recurrent negative dependence (Daunfeldt

and Elert, 2013; Sutton, 1997; Geroski, 1995). A better understanding of the growth drivers of small

firms appears crucial to inform policy makers about the most efficient levers to spur their growth.

In this paper we investigate the role of innovation as possible driver of the size-growth relationship

using the IQVIAS’s MIDAS international database, a unique data set which compiles sales figures for

the entire population of firms in the worldwide pharmaceutical industry. This data set has the notable

advantage of decomposing firm sales by products in its portfolio, which offers the unique opportunity

to directly measure the output of firm innovative activities and to quantify their contribution to

the sales growth path. This information is exploited to uncover the role of innovation, in particular
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through product switching, in the departure from the Gibrat law. The analysis is performed for the

population of 2,173 firms in 21 OECD countries that were active in the period 2002-2008. For this

group of firms we observe data for 84,183 products, of which 16,853 are launched and 23,253 are

phased out in the period considered.

Innovation, and product switching in particular, appear promising candidates to investigate the

size-growth relation. On the one hand, innovation efforts of small and large firms appear significantly

different in a number of dimensions (Cohen, 2010; Acs and Audretsch, 1990; Demirel and Mazzucato,

2012). It is generally thought that small firms tend to pursue more product and radical innovations,

while large firms focus more on process and incremental innovations (Klepper, 1996; Cohen and Klep-

per, 1996a,b; Rosen, 1991; Scherer, 1991). Moreover, while R&D expenditure grows monotonically,

often proportionally, with size, smaller firms are typically more productive in terms of number of

innovations per R&D and size (Cohen, 2010). Some scholars have maintained that R&D productivity

declines with size because smaller firms are more capable of innovating (Acs and Audretsch, 1990,

1991) or of generating more significant innovations (Baumol, 2002; Henderson, 1993). Therefore, since

innovation has been considered as a major determinant of firm growth, it might be possible that such

differences in innovative activities lead to a different growth-premium between small and large firms,

possibly accounting for a negative size-growth dependence. However, evidence on the role of inno-

vation in the growth differential by size is rather limited and mixed (Ahn et al., 2018; Demirel and

Mazzucato, 2012).

On the other hand, the economic relevance of product switching has been recently emphasized by

a growing body of research on multi-product firms. Product switching can have relevant implications

for the aggregate economy, such as contributing to a substantial share of aggregate output (Bernard

et al., 2010; Broda and Weinstein, 2010), magnifying the amplitude of economic fluctuations (Minniti

and Turino, 2013), and sustaining export growth in response to trade liberalization (Timoshenko,

2015). At the firm level, Argente et al. (2019) has recently shown that product flows and life cycle are

major determinants of firm growth. Specifically, they find for the US consumer goods sector that the

life cycle of products is rather short, and that firms can only grow by continuously adding products

whose sales can compensate for the rapid decline of previous products.

The pharmaceutical industry appears of particular interest for analysing the role of innovation in

the size-growth relation for a number of reasons. First, R&D investment rates are extraordinary high

(Scherer, 2010), and innovation is the major determinant of competitiveness and growth dynamics

in the sector, especially via either marginal or radical product innovation (Bottazzi et al., 2001).

Second, the division of innovative labour between small and large firms is highly pronounced, with

small firms, often biotech related, focusing on the more uncertain process of discovery of niche drugs,

and large firms focusing on the marketing and distribution around less innovative drugs (Mazzucato
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and Dosi, 2006; Demirel and Mazzucato, 2012).2 Third, the industry is characterized by quite low

levels of concentration and high heterogeneity in terms of firm size (Cefis et al., 2006), and in recent

decades small pharma firms have acquired growing importance in terms of diffusion (Demirel and

Mazzucato, 2012) and innovative role (Demirel and Mazzucato, 2012; Pammolli et al., 2011; Munos,

2009). Finally, existing tests of the Gibrat law for the pharmaceutical sector do not seem to detect

any peculiar pattern, that might excessively limit the representativeness of this sector for the purpose

of investigating the size-growth relation; in fact, in line with the general evidence, the Gibrat law is

found to hold for samples of large firms (Bottazzi et al., 2001; Cefis et al., 2006), while a negative

dependence emerges when smaller firms are included in the sample (Cefis et al., 2006; Demirel and

Mazzucato, 2012).

We analyze the contribution of innovation to the relation between firm size and growth by conduct-

ing three sets of econometric analyses. First, we test the Gibrat law by implementing an econometric

analysis capable to correct for a number of issues raised by previous work. The typical econometric

methodology employed by existing studies is well known to be vulnerable to endogeneity (Oliveira and

Fortunato, 2006; Colombelli et al., 2013) and firm exit bias (Mansfield, 1962; Evans, 1987b,a; Dunne

et al., 1989; Harhoff et al., 1998; Calvo, 2006; Corsino and Gabriele, 2010; Haltiwanger et al., 2013;

Grazzi and Moschella, 2018). In the present analysis, we account for both issues by combining Instru-

mental Variable dynamic panel estimators (Arellano and Bond, 1991) with the correction for sample

selection recommended by Wooldridge (2010) for panel data. Furthermore, data sets traditionally

employed to test the Gibrat law have often limited or no information on relevant predictors of firm

growth – notably age (Haltiwanger et al., 2013) and innovation (Coad, 2009) – therefore it might be

possible that higher growth of small firms is driven by the unobserved predictor rather than by small

size, with clearly different implications for policy. For example, sometimes the negative size-growth

relation disappears when age is controlled for, thus in this case the policy target should be on young

rather small firms (Haltiwanger et al., 2013). The data set employed in present analysis allows us

to control for age and innovation at the same time. As concerns innovation in particular, the data

set allows us to overcome drawbacks in the standard measurement approach by using information on

new products and molecules (Bottazzi et al., 2001; Kleinknecht et al., 2002; Hagedoorn and Cloodt,

2003; Corsino and Gabriele, 2010). Results of our best model suggest that a 1% rise in sales leads

to a growth penalty of 0.26 percentage points. This finding suggests that the typical counter-Gibrat

evidence of a negative size-growth dependence is robust to the proposed corrections.

The main goal of this paper is to investigate the influence of product switching on the size-growth

relation. By estimating two separate size-growth equations for firms with a stable portfolio of products

2Examples of less innovative drugs can be drugs with similar therapeutic properties to existing ones, or the so-called
“me too” drugs, which are almost identical to existing ones and can be used to extend the monopoly profits of old drugs
under a different name.
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and firms with flows in the portfolio, we find that the Gibrat law holds for the former, while a negative

dependence emerges for latter. We then decompose the growth rate of firms with variable portfolio

by the contribution of product flows and stable products, and estimate the relation of each growth

component with firm size. We find that, although firm size has no effect on the inflow, outflow, and

net flow rate in the number of products, smaller firms launch new products that are larger relatively to

existing products in the portfolio. For a given growth rate in the number of products, higher relative

sales of new products determine higher jumps in firm size, hence accounting for a negative dependence

between firm size and growth. In addition, we find that a negative size-dependence is still present

even if sales associated to product flows are removed from firm sales, in contrast with the Gibrat-like

behaviour observed for firms with stable portfolio. This evidence suggests that product inflows may

have an additional influence operating via externalities on existing products.

Therefore, we examine the relevance of innovation in the two channels through which a negative

size-growth dependence is generated. On the one hand, exploiting information on molecular profile,

national market, and brand status, we find that new products of small firms tend to be more innovative,

and that small firm product innovations contribute to explain the observed negative relation between

the market impact of new products and firm size. On the other hand, we find that small firm

new products are also more innovative with respect to firm existing products, and that the negative

dependence observed for stable products disappears once products that are substitutes of new ones

are excluded, indicating larger cannibalization effects for larger firms. Therefore, the present evidence

indicates that innovation is a key driver of the emergence of a negative size-growth relation, where

the small firm growth-premium is generated either by new-to-world innovation (OECD and Eurostat,

2018), in the form of larger market impact of new products, or by new-to-firm innovation (OECD and

Eurostat, 2018), in the form of less pronounced cannibalization by new products.

The paper is organized as follows. Section 2 takes stock of existing approaches used to test

the relation between firm size and growth, and to account for the negative dependence observed

recurrently. Section 3 describes the data and methods. Sections 4–6 present and discuss results.

Section 7 concludes. Additional evidence is reported in the Supplemental Material (SM).

2. Background

This Section provides an overview of the literature on the relation between firm size and growth

(Section 2.1), and the negative dependence recurrently observed (Section 2.2). Moreover, it discusses

the possible role of innovation in mediating this relation (Section 2.3).

2.1. Tests of the Gibrat law

The Gibrat law is typically tested by estimating a recursive log-linear equation of size, where the

interest is on the coefficient of lagged firm size. Estimation of such equation requires much care since
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estimates can be flawed by endogeneity and firm exit bias. Endogeneity bias may arise by failure to

control for relevant growth determinants that are related with size. Panel data methods have been

often used to get rid of this bias (Johansson, 2004; Heshmati, 2001; Van der Vennet, 2001; Del Monte

and Papagni, 2003; Bothner, 2005). Unfortunately in dynamic panel models lagged size is necessarily

correlated with the idiosyncratic error even after removing the firm fixed effect (Wooldridge, 2010),

but empirical applications have often neglected to take this into account. Few studies have employed

consistent Instrumental Variables (IV) dynamic panel estimators á la Arellano and Bond (1991) and

Arellano and Bover (1995) to correct for this source of endogeneity (Oliveira and Fortunato, 2006;

Ribeiro, 2007; Bigsten and Gebreeyesus, 2007; Corsino and Gabriele, 2010; Colombelli et al., 2013).

However, no one of these contributions have taken into account simultaneously the sample selection

bias arising by firm exit.

Sample selection bias may arise if firm exit is related to characteristics that influence growth as

well. This is likely to be case since small firms that have slow or negative growth are more likely to

disappear from the sample. After the early prominent contribution made by Mansfield (1962), several

studies have accounted for this sample selection bias. Five possible methods have been used in the

size-growth literature. First, maximum likelihood methods estimating a growth equation together

with a survival equation by Heckman (Harhoff et al., 1998; Lotti et al., 2006; Calvo, 2006; Lotti

et al., 2009) or Tobit models (Hall, 1987; Evans, 1987b,a; Dunne et al., 1989; Dunne and Hughes,

1994; Mata, 1994). Second, setting the growth rate of exiting firms equal to −100 (Mansfield, 1962;

Bigsten and Gebreeyesus, 2007). Third, comparisons between a group of only surviving firms and the

whole sample (Dunne et al., 1989; Bigsten and Gebreeyesus, 2007). Fourth, an ad-hoc definition of

growth rate (Davis et al., 1996; Haltiwanger et al., 2013; Lawless, 2014; Grazzi and Moschella, 2018).3

Fifth, the correction suggested by Wooldridge (2010) for panel models (Corsino and Gabriele, 2010).

Results point out that the negative size-growth dependence holds in most cases even after accounting

for sample selection. However, these studies have not corrected for endogeneity at the same time.4

Size-growth regressions typically include a parsimonious set of control variables reflecting the

perception that firm growth rates are to large extent random (Coad, 2009). The predictors of firm sales

growth that are considered most important, and hence most widely used in size-growth regressions,

are firm age and innovation. Unfortunately data sets employed to test this relationship often contain

limited or no information on these variables. Unavailability or poor measures of relevant growth

predictors may represent an additional cause of endogeneity, since higher growth of small firms might

3The growth rate has been defined to account for entry and exit as gi,t = (Si,t − Si,t−1)/Savgi,t , where Savgi,t =

0.5 ∗ (Si,t − Si,t−1). This measure is bounded between -2 (exit) and 2 (entry).
4Corsino and Gabriele (2010) use IV dynamic panel estimators and the Wooldridge correction for sample selection,

however the latter procedure is employed separately in combination with a standard OLS, since they do not find evidence
of unobserved heterogeneity.
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be driven by the unobserved predictor rather than by small size. For example, sometimes the negative

impact on growth disappears when firm age is controlled for, thus in this case the policy target should

be on young rather small firms (Haltiwanger et al., 2013). Since the role of young firms in fostering

aggregate growth has been increasingly emphasized (Schneider and Veugelers, 2010; Pellegrino et al.,

2012; Garćıa-Quevedo et al., 2014), it appears even more important to purge the size-growth relation

of the age contribution. A large number of studies find that firm sales growth decreases with age

(see inter alia Evans, 1987b,a; Dunne and Hughes, 1994; Geroski and Gugler, 2004; Yasuda, 2005;

Haltiwanger et al., 2013; Lawless, 2014; Grazzi and Moschella, 2018; Arouri et al., 2019). Although

there are few exceptions reporting a non-monotonic (Barron et al., 1994) or even positive relation

(Das, 1995), the negative relation between age and growth appears a quite robust finding.

As regards innovation, several theoretical contributions emphasize its importance for sales growth

(Aghion and Howitt, 1992; Geroski, 2000; Klette and Griliches, 2000; Klette and Kortum, 2004;

Geroski, 2005). While several empirical studies consistently report a positive effect of innovation on

sales growth (Mansfield, 1962; Scherer, 1965; Geroski and Machin, 1992; Geroski and Toker, 1996; Del

Monte and Papagni, 2003; Garćıa-Manjón and Romero-Merino, 2012; Colombelli et al., 2013; Segarra

and Teruel, 2014; Ahn et al., 2018), there also exists a non marginal body of evidence failing to report

the expected growth-premium. For example, some studies find a non significant (Geroski et al., 1997;

Freel, 2000; Bottazzi et al., 2001) or even negative relation (Coad and Guenther, 2014; Freel and

Robson, 2004), while other studies find that the relation depends on the type of firm (Coad et al.,

2016; Demirel and Mazzucato, 2012; Stam and Wennberg, 2009; Coad and Rao, 2008).

One reason why the empirical evidence on the effect of innovation on growth is less robust than

theoretical expectations may be related to difficulties in measuring innovation (Lööf and Heshmati,

2006; Coad, 2009). The two most popular measures employed, namely expenditure in R&D and

patent counts, have a number of drawbacks indeed (Kleinknecht, 1993; Kleinknecht et al., 2002;

Lööf and Heshmati, 2006; Coad, 2009; Corsino and Gabriele, 2010). R&D expenditure is only an

input of innovation and it may not strongly correlate with the actual innovation output. Moreover

the consistent time delay between R&D expenditure and the conversion of the investment into an

innovation makes it rather difficult to model its effect on growth. An additional problem can be the

under-counting of R&D in small firms (Kleinknecht, 1987). Patent count is a more direct measure of

the innovation output but it does not take into account differences in propensity to patent innovations,

which may depend on firm size (Brouwer and Kleinknecht, 1999). Moreover, patent count might be an

imperfect proxy of the economic impact of innovation as typically only a negligible share of patents has

substantial economic impact. A more suitable alternative to R&D expenditure and patent count is the

launch of new products (Kleinknecht et al., 2002; Hagedoorn and Cloodt, 2003; Corsino and Gabriele,

2010). In fact, marketed products are a direct measure of the innovation output and translate into
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a concrete cash-flow. Moreover, this definition is used to represent innovation in many theoretical

models of growth (Kalecki, 1945; Simon and Bonini, 1958; Fu et al., 2005; Bottazzi et al., 2001;

Growiec et al., 2008, 2018). Unfortunately information on new products is relatively rare in empirical

data used to test size-growth regressions and only a handful of studies were able to use this measure

(Roper, 1997; Calvo, 2006; Corsino and Gabriele, 2010; Colombelli et al., 2013; Coad and Guenther,

2014). Furthermore it is even more rare to have information to discriminate products on the extent

of their innovation (Bottazzi et al., 2001). Note that while the launch of new products can be a valid

proxy for product innovation, it does not capture process innovation. The role of process innovation

is beyond the scope of the present analysis.

Another possible limitation of size-growth regressions is the lack of controls for the firm technologi-

cal profile. For example, a large body of research has analysed the relation between firm diversification

and performance. Theoretical models and empirical investigations generally suggest that diversifica-

tion has a positive impact on firm growth, although the effect appears to revert for very high levels

of diversification, giving rise to an inverted U-shape relation (for surveys see Palich et al., 2000; Wan

et al., 2011). Despite the prominent role ascribed to diversification as determinant of firm growth, this

variable has been typically neglected in size-growth regressions. In addition, size-growth regressions

normally do not take into account technological change arising by a reallocation of resources across

technological domains, and not by innovation. Such form of technological change can reflect a more

efficient combination of resources and hence it might be a relevant predictor of firm growth (Nason

and Wiklund, 2018).

2.2. Explanations of the negative size-growth dependence

A number of rationales have been put forward in the literature to explain why smaller firms exhibit

higher growth rates. They generally ascribe the negative dependence to scale disadvantages that force

small firms to grow in order to reduce average costs and hence increase their likelihood to survive

(Strotman, 2007; Acs and Audretsch, 1990).

The traditional paradigm posits that market selection leads inefficient firms to decline and fail,

and efficient firms to grow and survive, promoting a long-run equilibrium where a core of firms have

reached the Minimum Efficient Size (MES) and prevalently exhibit a Gibrat-like behaviour (Lotti

et al., 2006, 2009; Daunfeldt and Elert, 2013; Rossi-Hansberg and Wright, 2007). This evolutionary

paradigm reconciles the wealth of evidence rejecting the Gibrat law with earlier supporting evidence

based on samples of well-established, mature and large firms (Lotti et al., 2009). It is also in line

with evidence that rejection is more likely to arise in industries with higher MES, where the scale

disadvantage is larger (Daunfeldt and Elert, 2013; Audretsch et al., 2004). The evolutionary account

has been theoretically rooted (Lotti and Santarelli, 2004; Lotti et al., 2009) in models of learning in
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which entrants are uncertain about their relative level of efficiency, and learn their growth potential

by observing their profit realization (Jovanovic, 1982; Ericson and Pakes, 1995; Audtretsch, 1995).

Cabral (1995) also demonstrated that the negative dependence arises in a model with sunk costs,

since higher likelihood to exit the market leads small entrants to invest in capacity more gradually,

which results in higher expected growth than larger entrants. In the model of Cabral (1995), an

alternative mechanism is represented by financial constrains of small entrants, since they should

become less and less binding after start-up age and hence lead small entrants to grow more rapidly.

2.3. The role of innovation in the size-growth relation

A problem with existing rationales of the negative size-growth dependence is that the economic

drivers of the underlying mechanisms are difficult to test empirically. In this paper we explore the

role of innovation, in particular product innovation, as a possible explanation of such dependence.

Innovation appears as a possible candidate since it is considered a major determinant of firm growth,

and innovative efforts of small and large firms differ significantly in a number of dimensions (Cohen,

2010; Acs and Audretsch, 1990; Demirel and Mazzucato, 2012). First, small and large firms generally

conduct different types of innovative activities. It is generally thought that small firms tend to

pursue more product and radical innovations, while large firms focus more on process and incremental

innovations (Klepper, 1996; Cohen and Klepper, 1996a,b; Rosen, 1991; Scherer, 1991). Different

types of innovations may have different implications for firm performance and growth (Cohen and

Klepper, 1996a; Gunday et al., 2011; Koellinger, 2008; Varis and Littunen, 2010; Atalay et al., 2013;

Bianchini et al., 2016; Guarascio and Tamagni, 2016; Pérez et al., 2019). While there exist some

evidence suggesting that product innovation outperforms process innovation (Cohen and Klepper,

1996a; Bianchini et al., 2016; Guarascio and Tamagni, 2016), or that radical innovation outperforms

incremental innovation (Rubera and Kirca, 2012) in terms of market impact, evidence on the relative

performance of different types of innovation is in general inconclusive.

Second, a large body of research on the relation between firm size and innovative performance has

documented a size-penalty in spawning innovations (for a survey see Cohen, 2010). A quite robust

finding in this literature is that R&D expenditure rises monotonically, in general proportionally,

with size among R&D performers. However several studies have reported that smaller firms are

more productive than larger firms in terms of number of innovations (patents, reported innovations,

new products or others) per R&D unit, and that they generate a disproportionately large share of

innovations relative to their size (Acs and Audretsch, 1987, 1998, 1990, 1991; Bound et al., 1984;

Pavitt et al., 1987; Cohen and Klepper, 1996a; Geroski, 1994; Graves and Langowitz, 1993; Lerner,

2006). Some scholars have maintained that R&D productivity declines with size because smaller firms

are more capable of innovating (Acs and Audretsch, 1990, 1991) or of generating more significant or
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breakthrough innovations (Baumol, 2002; Henderson, 1993).5

The literature has proposed a number of arguments to explain why small firms might be in an

advantageous position for undertaking innovative activities (see Cohen, 2010; Acs and Audretsch,

1990). These arguments generally refer to differences in the management structure of small and

large firms. The bureaucratic organization of large firms may limit undertaking of risky R&D, and

may hinder the performance of scientists, through excessive bureaucracy or lower managerial control.

Moreover, in large firms the incentives of scientists and entrepreneurs may be limited by their lower

ability to reap the benefits of their efforts or by the conservative attitude typical of large corporations

hierarchies.

Although a relevant strand of literature has pointed out a possible small firm innovative advantage,

existing evidence on the role of innovation in generating a sales growth differential by size is rather

limited and mixed. For example, while Hay and Kamshad (1994) report that investment in product

innovation is the most popular strategy for expansion used by Small-Medium Enterprise (SME) man-

agers in many industries, Freel and Robson (2004) find that product innovation (both incremental

and novel) has even a negative effect on sales growth for a sample of manufacturing SME.6 Moreover,

while Ahn et al. (2018) find that R&D expenditure has positive impact on sales growth for a sample

of SME, Demirel and Mazzucato (2012) find for the pharmaceutical sector that R&D expenditure has

positive impact on sales growth for a sample of large firms, but not significant impact for a sample of

small firms, unless they are persistent patentees. Daunfeldt and Elert (2013) test the hypothesis that

small firms in innovative sectors have higher growth than large firms, however they find no statistical

association between the R&D revenue share and the probability that the Gibrat law holds in the

sector.

3. Data and methods

3.1. Data

We make use of the MIDAS international database maintained by IQVIA,7 which contains detailed

sales data for the entire population of firms in the worldwide pharmaceutical market.8 This database

provides information on worldwide sales for each single pack of pharmaceutical products on a quarterly

5Cohen and Klepper (1996a,b) suggested that a declining R&D productivity might not reflect a relative inefficiency
of large firms: they proposed that it is efficient for larger firms to invest more in R&D because they can spread the fixed
cost over a higher level of output, hence earning higher profits per unit of R&D despite the R&D technology might have
diminishing returns.

6Freel and Robson (2004) find also that (incremental) process innovation has positive effect for service SME.
7IQVIA, formerly Quintiles and IMS Health, is a leading global information and technology services company,

that independently collects data on the sales and marketing of pharmaceutical products, by tracking prescription
pharmaceutical purchases made by hospitals and by retailers.

8Data are available for the following 21 countries: Austria, Belgium, Canada, Denmark, Finland, France, Germany,
Greece, Ireland, Italy, Japan, Latvia, Lithuania, Luxembourg, Netherlands, Poland, Portugal, Slovenia, Sweden, UK,
USA.
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basis. We base our analysis on yearly sales for the population of 2,173 firms that were active in the

period 2002-2008.9

The key advantage of this dataset is availability of identifiers for firms, products, and molecules.

These identifiers allow creating figures of firm sales and their decomposition by products, further dis-

criminating between products associated to new or existing molecules. Information on product allows

having a direct measure of the output of firm innovative activities and to quantify their contribution to

the firm growth path. Information on new molecules allows identifying products associated to major

innovations.

The data contain also information on the drug Anatomical Therapeutic Chemical (ATC) classes.

The ATC classification system divides drugs into different groups according to the organ or system on

which they act and/or their therapeutic and chemical characteristics.10 ATC classes can be exploited

to create measures of firm diversification and technological change.

An additional advantage of this data set is that firms going through mergers or acquisitions are

treated as if they were a unique entity from their birth and their sales data are consolidated retroac-

tively. This implies that abrupt jumps in size or disappearance from the sample associated to such

events are ruled out, which avoids possible measurement error in modeling the processes of growth as

well as exit from the market in the econometric analysis. This appears a significant advantage also in

light of the particular focus on innovation, because it is quite common to observe large pharmaceutical

companies buying out smaller innovative firms, especially in biotech.

3.2. Econometric model

The Gibrat law postulates that the growth rate of a firm should be independent of its size at

the beginning of the period. The starting point of the typical econometric approach is the following

equation:

ln(Si,t)− ln(Si,t−1) = βln(Si,t−1) +Xi,tδ + ωdtt + µi + ui,t (1)

where Si,t are firms yearly sales11, dtt are T − 1 year dummies, µi is the firm fixed effect, ui,t is an

idiosyncratic error term, and Xi,t is a matrix of regressors. The coefficient β is the “Gibrat coefficient”;

the Gibrat law holds only if β = 0.

9We consider aggregated yearly sales to avoid seasonality issues. For packs that are born or disappear within the
sample period, the four quarterly observations may not be all available in the year they are born or disappear, therefore
their corresponding yearly sales are set to missing to avoid spurious jumps.

10The system is articulated in the following five levels: (1) main anatomical group, (2) main therapeutic group, (3)
therapeutic/pharmacological subgroup, (4) chemical/therapeutic/pharmacological subgroup, (5) chemical substance.

11Firm growth has been typically measured by using indicators such as sales, employment, or assets. Consistently
with the majority of studies investigating the impact of innovation on firm growth, sales appears the most appropriate
indicator for our purpose of exploring the role of innovation in the size-growth relation (Colombelli et al., 2013).
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Equation 1 can be rewritten as

ln(Si,t) = β̃ln(Si,t−1) +Xi,tδ + ωdtt + µi + ui,t, (2)

where β̃ = 1 + β. Equation 2 makes it clear that estimating Equation 1 is equivalent to estimating a

dynamic equation of logarithmic sales with a lagged-dependent variable on the right-hand side. We

estimate Equation 2 but interpretation of parameters can be more easily recovered from Equation 1.

Estimates of parameters δ are to be interpreted as effects on the sales growth since are estimated in

Equation 2 for given ln(Si,t−1). Testing for β̃ = (>,<)1 in Equation 2 is equivalent to testing for

β = (>,<)0 in Equation 1.

3.3. Explanatory variables

The data used in the present analysis allows to create direct and meaningful measures for the most

important growth predictors, namely age and innovation. Additionally, it allows creating proxies for

the firm diversification strategy and technological change. In the rest of this section we discuss our

measurement approach.

We define the variable agei,t for firm i in year t as the age of its oldest product pack, making use

of the launch date. We include age dummies to capture possible non-monotonicity in the relation.

The data set allows to overcome several limitations in modeling the relation between innovation

and growth. First it contains information on products and hence we can measure innovation by

tracking flows of products. Namely we use the variable kin, defined as Kin
i,t/Ki,t−1 where Ki,t−1 is

the total number of products marketed in year t − 1 and Kin
i,t is the number of new products in t.

In order to take into account exhaustion of the economic impact of innovations, we also include the

variable kout, defined as Kout
i,t /Ki,t−1 where Kout

i,t is the number of products lost by the i− th firm in

year t. Another advantage of the data is availability of identifiers for molecules, which can be used

to discriminate new products on the basis of their innovative content. Therefore we create a third

innovation variable, newmoli,t, a dummy that discriminates between firms launching new products

with new-to-firm molecules (newmol = 1) and firms launching new products with molecules already

marketed by the firm (newmol = 0). Note that this indicator does not discriminate between molecules

already marketed by other firms and new-to-world molecules, while the latter are supposed to be more

radical and possibly more impactful innovations. An indicator for these specific molecules could not

be used as an explanatory variable in the econometric analysis because such innovations are observed

quite rarely (Bottazzi et al., 2001; Munos, 2009). Descriptive statistics on molecule-based innovations

by firm size will be presented in Section 5.

Finally, we exploit information on drug ATC classes to create additional regressors reflecting the

diversification strategy and the technological change of the firm. These measures are based on the
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first four digits of the ATC code, which correspond to the third level of the classification and indicate

the chemical, therapeutic or pharmacological subgroup of the drug. 687 classes are observed in the

data according to this definition. Decomposing firm sales by ATC classes of its drugs, we define the

principal ATC class of a firm as the class associated to the largest sales share.

In the present analysis we take diversification into account by creating the variable atcmaini,t,

defined as the share of firm sales associated to the firm principal ATC class. High levels of atcmaini,t

imply that firm sales are highly concentrated in a pharmaceutical class and hence the firm is considered

to have a low degree of diversification.

We proxy technological change by the variable atcDi,t, a dummy indicating whether the firm

principal ATC class changes from t − 1 to t. This variable captures the growth effect of a major

change in the firm technological profile. In general a major technological change may be associated

to significant innovations or products decline that can be reflected in the regressors kin, newmol,

and kout. However it may be also associated to redistribution of resources across pharmacological

classes. Therefore the purpose of this variable is to explain additional variation in growth arising by

technological change that might not be accounted for by changes in the product portfolio. Such form

of technological change can reflect a more efficient combination of resources and hence it might be a

relevant predictor of firm growth.

Table 1 provides summary statistics on the sample used in the analysis. Yearly sales Si,t are

expressed in British pounds of 2006. We notice that in the whole sample the average firm has 105.1

million sales, 33.4 products, a negative growth rate of 5.5%, it is around 35 years old, and it has a

1.8% likelihood to drop off the sample in a given year. Moreover we notice that there is a positive

trend in average sales over years although the average growth rates is always negative: this pattern is

likely driven by small firms dropping off the sample.

3.4. Estimation method

Estimation of Equation 2 requires much care because of the presence of the lagged dependent vari-

able on the right hand side, which may lead to endogeneity bias, and because some firms may drop out

of the sample during the reference period, possibly leading to selection bias. In this section we discuss

how we take into account potential endogeneity (Section 3.4.1) and firm exit bias (Section 3.4.2).

3.4.1. Endogeneity

In estimating the relation between firm growth and size there might be two possible sources of

endogeneity. First, right hand side variables may be correlated with the fixed effect µi. In dynamic

panel data this source of endogeneity arises necessarily because ln(Si,t−1) is positively correlated with

the fixed effect µi, and this correlation does not vanish as the number of cross sections or time periods

get larger (Bond, 2002). Standard results indicate an upward bias of pooled OLS estimates of β̃ in
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Equation 2 (Bond, 2002). This source of endogeneity is normally corrected for with panel data by

wiping out the fixed effects through ad hoc transformation of data, such as Fixed-Effects (FE) or

First Differences (FD) transformations. After data transformation, the estimand equation becomes

as follows:

s∗i,t = β̃s∗i,t−1 +X∗
i,tδ + u∗i,t, (3)

where the apex ∗ denotes transformed data. The typical panel approach consists in applying pooled

OLS to this equation.

A second source of endogeneity arises by applying pooled OLS to Equation 3, due to presence of

ln(Si,t−1) on the right hand side of Equation 2. In fact, the lagged dependent variable and the idiosyn-

cratic error term are necessarily correlated both in Equation 2 and in the transformed Equation 3.

In Equation 3, s∗i,t−1 and u∗i,t are correlated because concomitant values of si,. and ui,. are present

in s∗i,t−1 and u∗i,t, respectively (Bond, 2002). In the FE case, the estimation bias arising by such

correlation is invariably negative for β̃ > 0, and may become negligible only if T is relatively large,

which is not the typical case in micro panels (Nickell, 1981; Judson and Owen, 1999).12 Therefore, a

downward bias can be expected in FE estimates of β̃ in Equation 2 (Bond, 2002).

A way to get consistent estimates of Equation 2 is to apply Instrumental Variables (IV) methods to

the transformed Equation 3. In applying IV methods to the transformed equation it is more advanta-

geous to use the FD transformation because, unlike the FE transformation, FD does not introduce all

realizations of the error term series into the error term of the transformed equation in t (Anderson and

Hsiao, 1982). This condition, together with the assumptions of no autocorrelation in ui,t, implies that

lags of the dependent variable other than ln(Si,t−1) are orthogonal to u∗i,t in the transformed equation

and hence plausible IVs (Arellano and Bond, 1991; Bond, 2002). Under these conditions, ln(Si,t−2)

and ∆ln(Si,t−2), for example, are mathematically related to ∆ln(Si,t−1) =≡ ln(Si,t−1) − ln(Si,t−2)

but not to the error term ∆ui,t = ui,t−ui,t−1 in Equation 3, hence satisfying relevance and exogeneity

conditions for valid IV. Natural candidate IVs can be ln(Si,t−2), ∆ln(Si,t−2), ∆Xi,t−1 and further

lags of these variables (Arellano and Bond, 1991). Therefore, we estimate Equation 3 using the FD

transformation and employ either the two stage least squares (Anderson and Hsiao, 1982) or two-step

GMM estimator (Holtz-Eakin et al., 1988; Arellano and Bond, 1991). The following list of IVs is

used in estimation trading-off between explanatory power and time periods available for estimation:

∆ln(S−2), ∆ln(S−3), ∆ln(S−4). Since absence of autocorrelation is crucial for the validity of these

IVs, autocorrelation tests will be discussed and presented in the results section (Arellano and Bond,

12In the fixed effect case one has s∗i,t−1 = si,t−1 − 1
Ti−1

(si,1 + . . .+ si,t + . . .+ si,Ti
) and u∗i,t = ui,t − 1

Ti−1
(ui,2 +

. . .+ ui,t−1 + . . .+ ui,Ti
). The component − si,t

Ti−1
in s∗i,t−1 is correlated with ui,t in u∗i,t, and the component −ui,t−1

Ti−1

in u∗i,t is correlated with si,t−1 in s∗i,t−1. If Ti were large the component above would be negligible and the correlation
would disappear.
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1991). Note that if the error terms ui,t are correlated of order 1, then ln(Si,t−2) is correlated to ui,t−1

and hence to the FD errors u∗i,t = ui,t−ui,t−1, making it a potentially invalid IV. However, ln(Si,t−3),

∆ln(Si,t−3) and further lags would be still valid IVs, unless order-2 serial correlation is found, in

which case valid IVs would start from even longer lags (Bond, 2002).

3.4.2. Firm exit

A sample selection bias may arise in this setting if selection out of the sample depends on firm

characteristics influencing also the response variable, even after explanatory variables are controlled

for. In our case it is likely that firm exit depends on sales, age and innovation. We correct for

this source of bias by employing the two-step procedure recommended by Wooldridge for panel data

(Wooldridge, 2010, pp. 837). Following the terminology of Wooldridge, we will refer to this form of

sample selection as “attrition”. The procedure consists in estimating a sequence of selection probit

model for each time period t:13

P (Ii,t = 1|Wi,t, Ii,t−1 = 1) = Φ(Wi,tγt), t = 2 . . . T, (4)

where Ii,t is a selection indicator equal to 1 if (ln(Si,t), Xi,t) are observed in t, and Wi,t must contain

variables observed at time t for all units with Ii,t−1 = 1. Good candidates for Wi,t can be ln(Si,t−2),

Xi,t−1, and further lags of these. In fact, if Equation 2 is dynamically complete, ln(Si,t−2) and Xi,t−1

are orthogonal to ∆ui,t and hence can be valid instruments. We include in Wi,t the following variables:

ln(S−2), Age = 11− 20, Age = 21− 50, Age > 50, kin−1, kout−1 , kout−2 , ln(atcmain)−1. ln(S−2), kout−1 and

kout−2 can be included in Wi,t because they are not significant in Equation 2.

After estimating the selection probit for each year we compute the inverse Mills ratio λ̂i,t.
14 Inter-

actions between year dummies and the estimated inverse Mills ratio are then plugged in Equation 3

to estimate the following equation:

s∗i,t = β̃s∗i,t−1 +X∗
i,tδ + ρtλ̂i,tdtt + γdtt + u∗i,t. (5)

The FD transformation turns out to be particularly suitable in this case due to the sequential nature

of attrition (see Wooldridge, 2010, pp. 837). Equation 5 can be estimated by instrumental variables

on the selected sample. A simple test for attrition bias is a Wald test for ρt = 0 (∀t) in Equation 5. If

the null hypothesis of absence of attrition bias is rejected, λ̂i,tdtt need to be maintained in Equation 5.

Standard errors of parameters in Equation 5 are estimated by panel bootstrap method because the

13In this procedure attrition is treated as an absorbing state, so that once a firm drops out it will never re-enter the
sample.

14The inverse Mills ratio is defined as λ ≡ φ(c)
Φ(c)

where φ denotes the standard normal density function, and Φ is the

standard normal cumulative distribution function
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equation contains generated regressors (Wooldridge, 2010).

4. Results: the relation between size and growth

In this section we report estimates of Equation 2, which models the relation between firm size and

growth. Estimates are reported in Table 2. The first two models of Table 2 report pooled OLS and

FE estimates, which do not account for endogeneity of lagged sales. OLS and FE estimates must

be biased, however they are reported for a preliminary inspection of the reliability of IV estimators,

because they can indicate an upper (OLS) and lower (FE) threshold for consistent estimates of β̃.

OLS estimate is equal to 1.024 and significantly higher than 1, while FE estimate is equal to 0.798 and

significantly lower than 1; therefore the Gibrat law is rejected in both cases but in opposite direction.

Remark that a 95% confidence interval can be constructed by subtracting and adding to the coefficient

1.96 times the standard error.

The following models of Table 2 report IV dynamic panel estimates, either without or with cor-

rection for attrition. FD-2S and GMM estimates of β̃ without correction for attrition fall within

the OLS-FE interval (FD-2S=0.824, FD-GMM=0.862), as one would expect if the AR(1) model in

Equation 2 provides a good representation for St and FD-2S and GMM estimators are not subject

to any serious finite sample bias (Bond, 2002). Both point estimates are significantly lower than 1,

suggesting a negative relation between size and growth. The last two columns of the Table report 2S

and GMM estimates of Equation 5, where attrition is taken into account. After this correction, 2S

and GMM estimates of β̃ drop to 0.713 and 0.735, respectively, leading to an even stronger rejection

of the Gibrat’s hypothesis. This correction has a relevant impact on β̃ estimates, suggesting that size

is an important predictor of firm attrition. In fact, as it is showed in Table SM1 in Section SM2

reporting estimates of the yearly selection equation, ln(S−2) has a positive and strongly significant

impact on the firm survival probability. FD-GMM-ATT is selected as best model over FD-2S-ATT

because the GMM estimator is asymptotically efficient in the class of dynamic panel estimators (Ahn

and Schmidt, 1995; Arellano and Bover, 1995). However evidence that 2S and GMM estimates are

similar provides support to the robustness of our estimates.15

In IV dynamic panel estimation, diagnostic tests represent a particularly important toolkit to as-

sess models validity. In Table 3 we report several tests for the best model (FD-GMM-ATT). First, the

presence of attrition is confirmed by rejection of the Wald test of ρt = 0 (see Equation 5).16 Second,

15We also estimated models with a set of “GMM-style” instruments in line with the formal representation of the
difference GMM (Arellano and Bond, 1991) and system GMM (Arellano and Bover, 1995; Blundell and Bond, 1998)
estimators. These estimators can deliver gains in terms of sample size and efficiency at the cost of potential over-fitting
of endogenous variables due to instrument proliferation (Roodman, 2009). These models were not reported because
their diagnostics was outperformed by models with a more parsimonious set of instruments such as 2S and standard
GMM.

16This finding is corroborated by a further test we performed adding the lagged selection indicator Ii,t−1 to Equation 3
and estimating by fixed effects. A statistically significant coefficient of Ii,t−1 allowed us to reject the null hypothesis of
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the Arellano-Bond autocorrelation test (Arellano and Bond, 1991) suggests that the model does a

good job in removing autocorrelation. This statistic tests for autocorrelation in ui,t by testing for

lack of second-order autocorrelation in the FD residuals ∆ui,t. In fact, if errors are not autocorre-

lated in levels, negative AR(1) is expected in FD residuals because ui,t compare both in ∆ui,t and

∆ui,t−1, but AR(2) is certainly absent (Arellano and Bond, 1991). Indeed, Table 3 shows that AR(1)

is negative and significant as expected, but AR(2) is not significant, nor AR(3). This finding is crucial

for the validity of the identification strategy, since IVs exogeneity rests on the absence of autocorre-

lation. Third, the F-test of IVs in the first-stage regression is fairly large and significant suggesting

that IVs are strong.17 In addition, first-stage regression results show that IVs are highly significant

also individually. First-stage regression results for IV models in Table 2 are reported in Section SM3

(Table SM6) together with first-stage results for other IV models presented later. Fourth, the under-

identification test is highly significant suggesting rejection of the null hypothesis of IVs redundancy.

Fifth, the underidentification test remains significant even if redundancy is tested on the IVs individ-

ually. Sixth, the overidentification test is not significant with a very large p-value, suggesting that the

null hypothesis of IVs exogeneity cannot be rejected. Finally, evidence of IVs exogeneity holds even

if the overidentification test is carried out on IVs individually.

In light of results and diagnostics from our best model, we can conclude that the Gibrat hypothesis

is rejected in our data, supporting the typical negative size-growth relation. FD-GMM-ATT estimate

of β̃ reported in Table 2 suggests that a one-percent rise in sales of last year increases current sales

by 0.735% (C.I 5%: 0.632 − 0.837), ceteris paribus. The corresponding growth effect amounts to

(β̃ − 1) = −0.265, suggesting a penalty in the growth rate of 0.265 percentage points.

Coefficients of the other regressors are plausible in sign and magnitude. We find a negative age

effect as mostly observed is similar studies. Namely, the youngest age group (Age ≤ 10) has the

highest growth rate, although the effect size is similar across older groups, and significance is found

only in comparison with the age bracket 11 − 20. kin and kout have, respectively, a positive and

negative impact on growth. The impact of kin persist up to the first lag, while kout−1 was not significant

and hence excluded. newmol has a quite long-lasting positive effect on growth, with the strongest

impact one year later. Consistently with theoretical predictions, the positive impacts of kin and

newmol suggest that innovation enhances growth both by the quantity and quality of innovations,

while previous studies failed to report such effects. ln(atcmain) has negative coefficient, implying that

concentration (respectively diversification) is detrimental (respectively beneficial) to firm growth, as

no attrition (see Wooldridge, 2010, pp. 837).
17Note that the reported F-statistic is the Kleibergen-Paap statistic, which can be used to test for weak identification.

Weak identification arises when the excluded instruments are correlated with the endogenous regressors, but only weakly,
in which case estimators can perform poorly (Stock and Yogo, 2005). Stock and Yogo (2005) tabulated critical values
for weak identification tests. For our case, the critical values for 5% maximal IV relative bias and 10% maximal IV size
are, respectively, 13.91 and 22.30. Therefore, with F = 113.73 we can safely reject the null hypothesis that the IVs are
weak.
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consistent with a large body of evidence. Finally, atcD−1 has positive effect, confirming the theoretical

expectation that a technological change, as captured by a change in the firm major pharmaceutical

class, is beneficial to growth.

5. Results: the role of product flows in the relation between size and growth

In this section we explore the contribution of product flows to the departure from the Gibrat law

reported in the previous section. To this aim, we first decompose the sample in two sub-samples of

firms with either a stable portfolio of products or with a variable portfolio, and analyze the size-growth

relation in these two samples separately (Section 5.1). Then, we examine in more detail the channels

through which product flows may influence the size-growth relation (Section 5.2).

5.1. Firms with stable and variable portfolio of products: a comparison

The sample of firms with stable portfolio (SP) is defined by all firms with an invariant set of

products throughout the period under investigation. The sample of firms with variable portfolio (VP)

comprises the residual sample of firms experiencing at least one inflow or outflow. In Table 4 we report

estimates of the size-growth Equation 2 for these two sub-samples separately. For the SP sample, the

regressors kin, kout, newmol, and atcD are always equal to zero by construction, therefore they have

been removed from the list of controls. The set of instrumental variables (IV) is the same in both

cases and equal to the set used for the full sample. IV first-stage regression results are reported in

Section SM3 (Table SM7), and estimates of yearly selection equations are reported in Section SM2

(Tables SM2–SM3).

FD-GMM estimates of β̃ after controlling for attrition are respectively 0.685 for the VP sample,

and 0.904 for the SP sample. In the SP sample the Gibrat coefficient is somewhat larger and not even

significantly lower than 1, therefore the Gibrat’s hypothesis of independence between size and growth

cannot be rejected in this case. Conversely, the negative dependence is significant for VP firms and

stronger in magnitude with respect to the full sample. Diagnostic tests for FD-GMM-ATT models are

reported in the Supplemental Material (Table SM22). Diagnostics suggest that FD-GMM-ATT models

perform quite well in both cases. Only few concerns emerge with respect to the IV ∆ln(S−4): in the

SP sample, the IV is not significant in the first-stage equation (see Table SM7 in Section SM3) and

the redundancy test is not significant as well (p = 0.4); in the VP sample, the IV appears relevant but

the exogeneity test is close to rejection at the 5% significance level (p = 0.07). Since such limitations

might influence our results, the models were estimated also without this particular IV. Estimates are

reported in the Supplemental Material (Table SM15), together with diagnostic tests (Table SM23)

and first-stage results (Table SM8). FD-GMM-ATT estimates of β̃ change minimally (respectively,

from 0.904 to 0.915 and from 0.685 to 0.650) and the diagnostics works fine for both samples. Overall,

the key finding that the negative dependence holds only for VP firms appears robust.
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Since SP firms exhibit a Gibrat-like behaviour, while VP firms exhibit a counter-Gibrat behaviour,

products switching appears a key driver for the failure of the Gibrat law, and in particular for the

emergence of a negative size-growth relation. It is hence of interest to examine the characteristics

of these two groups of firms. Table 5 provides summary statistics for the two sub-samples together

with the full sample. Statistics show that, on average, SP firms are small (S = 1.4 millions) and

have typically one or few products (K = 1.5), while VP firms are large (S = 124.5 millions) and have

many products (K = 39.4). The former are also younger (21.1 vs 37.3 years), although well above

the start-up age, and have lower sales growth (−14.4% vs −3.8%) as well as higher exit rate (4.9% vs

1.2%). This evidence points out that the two types of firms do not correspond, and are even almost

opposite, to the prototypes that the traditional evolutionary paradigm has identified to explain the

Gibrat-like and counter-Gibrat evidence. According to this argument, the negative relation holds only

for small and less established firms that are forced to grow fast to avoid exit, but it disappears once

learning processes and market selection have generated a core of large, mature and well-established

firms (Lotti et al., 2006, 2009; Daunfeldt and Elert, 2013). Conversely, our findings suggest that a

Gibrat-like behaviour can be observed for small and slow growing firms, provided they keep a stable

product portfolio, and a counter-Gibrat behaviour can be observed for large, more mature and faster-

growing firms, provided they are active in product switching. Therefore, although our evidence does

not contradict the traditional paradigm, it points out the role of product flows as an alternative

mechanism underlying the emergence of a negative size-growth dependence.

5.2. Firms with variable portfolio: decomposing the growth effect of product flows

In this section we examine in more detail the channels through which product flows may lead to a

negative size-growth relation. Therefore, we restrict the analysis to the sample of firms with variable

portfolio, for which only such negative dependence appears to hold. This sample is also quantitatively

more relevant, accounting for almost 80% of all firms. The contribution of product flows is detected

by decomposing the firm growth rate in its constituents and studying how product flows can mediate

their relation with firm size.

The growth decomposition is operationalized by expressing firm size as S = K · S, where K is the

number of firm products, and S ≡ S/K are the average sales of firm products. With this definition,

the firm sales growth rate gS can be decomposed as gS = gK + gS , where gK is the growth rate of

K, and gS is the growth rate of S.18 This decomposition makes it clear that product flows can lead

smaller firms to grow faster in sales either by (i) higher growth in the number of products (gK), by

(ii) higher growth in product average sales (gS), or by a combination of (i) and (ii). In order to assess

18Since S = K · S, the sales growth rate gS ≡ ln(S)− ln(S−1) can be written as gS = ln(K · S)− ln(K−1 · S−1) =
ln(K)− ln(K−1) + ln(S)− ln(S−1) = gK + gS , where gK ≡ ln(K)− ln(K−1), and gS ≡ ln(S)− ln(S−1).
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the importance of the two possible channels, we analyse the relation between the two growth rates

and S. These analyses are discussed in turn in the rest of this Section.

First, we estimate a recursive model for K to test the effect of S on the growth rate of K. One can

think of this model as a size-growth equation similar to Equation 2, where K is used as a proxy for

size in place of S, and ln(S−1) is included in addition as control variable. Table 6 reports estimates

of the usual model variants. Lags of first-differences (FD) of the dependent variable are used as IVs

similarly to models for gS . However, ∆ln(K−2) was replaced by ∆ln(S−2) in this case because it did

not pass the exogeneity test, leading to the following list of IVs: ∆ln(K−3), ∆ln(K−4) ∆ln(S−2).

Results show that FD-2S and FD-GMM estimates of β̃ are significantly lower than 1 (FD-2S=0.695,

FD-GMM=0.748) and within the FE-OLS bounds (FE=0.625, OLS=0.944). After correcting for

attrition, these estimates change only modestly, in contrast to estimates of size-growth equations

in S. This result is consistent with the outcome of the attrition test, which provides no evidence of

attrition in this case (see tests for the FD-GMM-ATT model in Table SM24 in Section SM5). Absence

of attrition derives by the fact that K is a weak predictor of the firm survival probability, unlike S,

as suggested by estimates of the selection equations reported in Section SM2 (Table SM4). In fact,

we note that while ln(S−2) is always strongly significant, ln(K−2) is significant only in some years.

Since there is no evidence of attrition, the efficient FD-GMM model is considered as the best model

for the size-growth equation in K. The FD-GMM estimate suggests a negative dependence between

the growth rate and the number of products, similarly to the size-growth relation in sales. Turning

to the effect of size, the coefficient on ln(S−1) is not significantly different from 0, suggesting that

size does not influence the growth rate of K. It follows from this result that the negative dependence

between growth and size measured in firm sales does not appear to derive by a small firm advantage

in the growth rate of K. The validity of FD-GMM estimates is supported by the diagnostic tests

reported in Table SM24. See also Section SM3 (Table SM9) for IV first-stage regression results.

As a second piece of analysis, we examine the relation between firm size (S) and the growth in

the average size of firm products gS . If we consider a market where firms grow in K at a rate that

is independent of S, as found in the previous analysis, a negative size-growth dependence can be

generated by a declining size-profile of gS . In order to investigate the relation between S and gS , we

decompose gS making use of the following expression (see Section SM6 for the derivation):

gS = ln
(
egs∗ +Rinκin −Routκoutegs∗

)
− gK , (6)

where κin, κout, Rin, Rout, and gS∗ are defined as follows, omitting for simplicity the time subscript t:

(i) κin ≡ Kin/K−1 is the products inflow rate, where Kin is the number of new products marketed in

the current period that were not observed in the previous period; (ii) κout ≡ Kout/K−1 is the products
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outflow rate, where Kout is the number of products marketed in the previous period that are lost in

the current period; (iii) Rin ≡ S
in
/S−1 is the ratio between average sales of new (S

in
= Sin/Kin)

and existing products (S−1 = S−1/K−1), where Sin are the sales generated by new products in the

current period; (iv) Rout ≡ S
out
/S−1 is the ratio between average sales of lost (S

out
= Sout/Kout)

and existing products, where Sout are the sales generated in the previous period by lost products; (v)

gs∗ ≡ ln(S∗)−ln(S∗1) is the growth rate of sales generated by stable products, i.e. those products that

are observed both in the current and previous period, where S∗ = S − Sin, and S∗1 = S−1 − Sout19.

Equation 6 highlights the various channels through which product flows can contribute to gS and

hence firm growth. We make use of this decomposition to establish a relation between S and the

various components of gS and hence identify the channels that can lead to a negative size-growth

relation. The channels are identified analysing the derivative of gS with respect to S, shown in the

following equation:

gS,S =
egS∗ gS∗,S (1−Routκout) +Rin

S κ
in + κinS R

in − egS∗ (Rout
S κout + κoutS Rout)

egs∗ +Rinκin −Routκoutegs∗
− gK,S , (7)

where kinS , koutS , Rin
S , Rout

S , gS∗,S , and gK,S indicate derivatives with respect to S. From this equation

it is clear that a negative relation between gS and size (gS,S < 0) can be generated by a declining

size-profile of Rin (Rin
S < 0), κin (κinS < 0), and gs∗ (gS∗,S < 0), and by an increasing size-profile of

Rout (Rout
S < 0) and κout (κoutS < 0).20 In order to identify candidate explanations for the negative

size-growth dependence, we specify statistical models to estimate the five derivatives kinS , koutS , Rin
S ,

Rout
S , gS∗,S , by IV dynamic panel estimators. The derivative gK,S in Equation 7 was already estimated

to be equal to zero (see Table 6) and hence is not considered again here.

Table 7 reports FD-GMM estimates without and with correction for attrition of autoregressive

models for the following dependent variables: κin, κout, Rin, Rout, and gS∗ . κin, κout, Rin, and Rout

are expressed in logs, adding 1 to avoid loss of observations associated to zero inflows or outflows. In

models for κin and κout, the variable ln(K−1) is treated as endogenous, while in models for ln(1+Rin)

and ln(1 + Rout), the endogenous variables are ln(1 + Rin
−1) and ln(1 + Rout

−1 ), respectively. For gS∗ ,

ln(S−1) is used as an endogenous variable in place of ln(S∗1) because the two variables are highly

collinear. The coefficients associated to ln(S−1) in the various models are used to estimate the sign

19Note that S∗1 does not correspond to the lagged value of S∗, S∗
−1. In fact, while S∗1 represents sales generated in

t − 1 by products that are observed both in t and t − 1, S∗
−1 represents sales generated in t − 1 by products that are

observed both in t− 1 and t− 2. S∗1 is equivalent to S∗
−1 in case of no product flows.

20These conclusions are based on the following four results: (i) S, S−1, Kin, Kout, Sin, Sout, S∗, S∗1 are all
positive quantities because we are considering firms on the market (S > 0, S−1 > 0) which experience flows in products
(Kin > 0, Kout > 0), and a product exists so long as it generates positive sales (Sin > 0, Sout > 0); moreover S∗ and
S∗1 are positive if there exists at least one product observed both in the current and previous period, which is always
the case in our sample; (ii) κin, κout, Rin, Rout, egs∗ are positive by definition; (iii) the denominator of Equation 7
is necessarily positive because egs∗ + Rinκin − Routκoutegs∗ = S/S−1 > 0; (iv) (1 − Routκout) is positive because
(1−Routκout) = 1− Sout/S−1, and S−1 − Sout = S∗1 > 0, where S∗1 > 0 following (i).
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of the derivatives.

For κin and κout, attrition tests reported in Table 7 provide no evidence of attrition, similarly to

results for the growth rate of K (see Table 6), therefore we consider FD-GMM as our best model in

these cases. The coefficient of ln(S−1) is not significantly different from zero in either cases, suggesting

that the inflow rate as well as the outflow rate are not affected by firm size. This evidence is consistent

with the previous finding that S has no impact on gK . FD-GMM is chosen as best model also for

Rin and Rout, because no evidence of attrition is found in these cases either. Note, however, that

the attrition test is very close to rejection in both cases. FD-GMM estimates suggest that a 1%

increase in size leads to a % reduction in Rin of 0.129 · (1 + Rin)/Rin, and to a % increase in Rout

of 0.015 · (1 + Rout)/Rout, which correspond, respectively, to −0.78% and 0.46% if Rin and Rout are

evaluated at sample means (see Table 5). Both effects are statistically significant, however, while the

effect on Rin is strongly significant, the effect on Rout is close to the 5% threshold. Moreover, remark

that the effect on Rout becomes insignificant if attrition is taken into account, and that the attrition

test is very close to rejection (p = 0.055). Therefore, the effect on Rout appears quite weak overall.

Finally, FD-GMM-ATT is used as best model for gS∗ because the attrition test is strongly significant;

this model points out a negative effect of size on gS∗ . By considering best models in Table 7 altogether,

the usual diagnostic tests do not raise any concerns on their validity. These statistics are reported in

the Supplemental Material (Section SM5) together with the full set of model estimates (Section SM4),

selection regressions (Section SM2) and first-stage results (Section SM3).

To summarize the results in Table 7 on size-effects included in gS,S (see equation 7), we can

conclude that the observed negative size-dependence of firm growth can be accounted for by a declining

size-profile of Rin and gS∗, and by an increasing, although moderately, size-profile of Rout. Rates

of product flows do not mediate this relation, instead. A declining size-profile of Rin means that

products launched by smaller firms have larger market impact relatively to the firm existing portfolio,

on average. Since larger market impact may be the result of more innovative products, this finding

suggests a possible crucial role of innovation in generating the negative dependence. However, a

declining size-profile of gS∗ points out also a channel arising by existing products. In fact, this finding

implies that products that are stably observed in two consecutive periods have higher average growth

if they are attached to smaller firms. Note that gS∗ is the net growth rate after removing sales jumps

and drops arising by product flows, and that such negative size-dependence was not observed for

stable portfolio firms throughout all the investigation period. Therefore, a possible explanation of this

finding is that product flows may generate an additional size-penalty via externalities on the existing

product portfolio, such as cannibalization effects. Finally, a moderately increasing size-profile of Rout

indicates that the small firm advantage in the impact of inflows can fade out at some point and even

be reversed at the end of the product life cycle.
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Overall, the findings presented in this section show that, while small and large firms grow similarly

in the number of products in their portfolio, small firms grow more in sales because the relative size of

products they launch generates larger relative changes. In addition to the growth-premium driven by

the initial market impact, new products may lead to a size-penalty also generating externalities on the

existing firm portfolio that are more detrimental to large firms. In the absence of product flows, these

mechanisms cannot operate and the departure from the Gibrat law disappears. Therefore, creation of

new products appears a key driver of the departure.

6. Results: Uncovering the role of product innovation in the negative size-growth de-

pendence

This Section presents and discusses evidence on the role of innovation via creation of new products

in explaining the documented negative size-growth dependence. Specifically, Section 6.1 investigates

the innovative content of new products, while Section 6.2 analyzes their influence on the firm existing

portfolio.

6.1. Negative size-dependence in the market impact of new products (Rin)

In order to ascertain whether small firm products may have larger market impact because they

are more innovative, we investigated the innovative profile of new products and its relation with firm

size. The focus of the analysis is on product innovation, which, following the OECD Oslo’s manual,

is defined as a “new or improved good or service that differs significantly from the firm’s previous

goods or services and that has been introduced on the market” (OECD and Eurostat, 2018). Only

new products produced as a result of a technological or knowledge advancement are considered as

product innovations, in the sense that they “can use new knowledge or technologies, or be based on

new uses or combinations of existing knowledge or technologies” (OECD and Eurostat, 2018). Finally,

only new products introducing a novelty on a worldwide scale are considered as product innovations.

To summarize, we define new-to-world product innovations (NWPI) as new products possessing the

attributes of novelty, advancement, and worldwide scope. The focus on NWPI is motivated by the

goal of mitigating the incidence of marketing-oriented innovations and to single out the role of R&D

efforts in the influence that innovation may have on the determination of the size-growth dependence.

Table 8 reports shares of innovations for the total sample of 16,852 products that are launched in

the reference period. Various types of innovations were identified using criteria based on molecular

profile, national market, and brand status. Two definitions of NWPI were specifically employed. Note

that the sample used to calculate these shares may become more specific when moving from the top

to the bottom of the Table. Table 8 reports also difference-in-means t-tests between small and large
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firms, where small firms are defined following the 10 million Euro threshold currently in use by the

European Commission (European Commission, 2003).21

The first and more restrictive definition of NWPI is based on novelty of molecular entities. On

top of Table 8 it is shown that 5.7% new products contain a new molecule for the worldwide market

(NMM), and that this share grows to 9.1% if one extend the definition to new molecule combinations,

that is combinations of existing molecules that have not been combined in that specific way yet. The

two types of innovation are considered together to define the first set of NWPI, i.e. those based

on new molecule combinations (NMC), where this definition comprises also NMM. The small-large

firm comparison shows that the share of NWPI defined in this way is significantly larger for small

firms (11.9% vis-á-vis 7.9%, t = −8.4). Therefore, when innovation is defined in a restrictive way,

it appears that small firms tend to launch innovative products more often. Moreover, note that the

mean-difference is particularly large for the most radical innovations, i.e. NMM (8.3% vis-á-vis 4.4%,

t = −10.19).

Moving down along Table 8, one can see statistics for the residual sample of new products based

on existing molecule combinations (EMC) on the worldwide market. The Table first reports the share

of new-to-firm molecules (NMF) and the share of products creating a new market (NMKT). NMF

products possess a molecular profile that has not been associated to any products commercialized

by the firm beforehand. NMKT products introduce a molecule mix for the first time in at least one

national market. Both innovations appear of interest to assess possible overlap between new and

existing products in the firm’s portfolio. The Table shows that small firms tend to launch NMF

products much more often than larger firms (67.3% vis-á-vis 53.3%, t = −16.32), but there are no

significant differences for NMKT products. The share of NMKT products is reported also for the sub-

samples of NMF and EMF products. The difference in the share of NMKT products is not statistically

significant for NMF, but small firms have a significantly larger share in the EMF sample, suggesting

greater market differentiation and hence reduced overlap with respect to existing products in their

portfolio.

A second definition of NWPI is considered by restricting the sample to only EMC-EMKT products.

In fact EMC-NMKT products may typically reflect commercial strategies to expand the market of a

given product, and hence they may not be the result of genuine innovation efforts. Conversely, EMC-

EMKT products are more likely to introduce some more tailored product variation to supply more

effectively a market segment already served by existing products. Within the sample of EMC-EMKT

products, NWPI are identified by branded (BRN) drugs, as opposite to generic unbranded (UBRN)

drugs. Brand-new products based on existing molecular mix may typically introduce modifications to

21Consistently with sales value being expressed in British pounds of 2006q1, the cutoff was converted using the average
exchange rate in this trimester, resulting in 6.862 million British pounds.

24



existing products, such as a new variant of the molecular entity with the potential for improved drug

efficacy or reduced side effects, superior formulation to promote patient compliance by reducing daily

administration, or new delivery method which can improve adherence or reduce side effects (Hong

et al., 2005; Song and Han, 2016). Such novelties might be the result of significant R&D efforts and

may generate substantial benefits for some consumers (Kappe, 2014). Conversely, generics are certified

drugs bio-equivalent to brand-name medicines that can enter the market when the patents of original

drugs expire, and hence do not introduce any product innovation. Generic drugs can be “unbranded

generics”, when marketed with the chemical name of the molecule, or “branded generics”, when the

company or a fantasy name is used (Garattini and Tediosi, 2005). Unbranded generics are identified

in the present data by comparing the molecule and product name string, while branded drugs are

identified residually.22 Note that the group of branded drugs comprises also branded generics, whose

name may differ to molecule’s name, and hence cannot be identified in the present data. However, the

share of branded generics is very low in many developed countries, notably in the US, the UK, France

and Canada, and it decreased in several countries over the 2000’s (Danzon and Furukawa, 2011);

therefore, such measurement error should influence the comparison only marginally. Table 8 shows

that, following this broader definition, the share of NWPI in the EMC-EMKT sample is equal to 46.3%.

Such innovations are much more frequent for small firms (56% vis-á-vis 41.9%, t = −12.84), suggesting

that small firms appear more innovative even when a more lenient definition of NWPI is employed. In

order to check for possible measurement error associated to the inclusion of branded generics among

EMC-EMKT-BRN innovations, we calculated shares also for a set of very large countries where such

drugs are nearly irrelevant, namely USA, UK, France and Canada (Danzon and Furukawa, 2011).

Even in this case the divergence between small and larger firms appears substantial (52.4% vis-á-vis

34.5%, t = −9.27). Table 8 shows also that small firms have higher NWPI shares for the NMF and

EMF sub-samples separately. Evidence of higher innovation intensity in the NMF sample, mostly in

comparison with the EMF sample, suggests that the small firm innovation advantage is not primarily

driven by product line extensions. Line extensions are a rather common commercial strategy to protect

a branded drug whose patent is close to expiry from generics competition by launch of a variant of

the lead drug (Ganuza et al., 2009); these products should appear as EMC-EMKT-BRN innovations

in the EMF sample.

Table 8 shows overall that the share of NWPI is larger in the sample of small firms, either when

innovation is defined in a restrictive (NMC) or in a broader way (EMC-EMKT-BRN). In particular,

by considering altogether the two types of innovations, the share of innovative products on the total

sample of new products is 42.3% for small firms against 32% for large firms. This difference in the

22Unbranded generics are identified by calculating the Levenshtein distance for any combination of string pairs within
the product and molecule names. A product is defined as unbranded generic if there exist at least one string pair with
a value of the distance lower than 0.5, where distance is normalized by the length of the longer string.
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innovative content of new products may contribute to the larger relative market impact of small firm

products and hence to the negative size-growth relation. This hypothesis was tested by estimating the

size-dependence of the relative size of new products (Rin) inclusive of such innovations only. Table 9

reports estimates of FD-GMM models (with and without attrition correction) for the two proposed

definitions of product innovations. The first two columns report estimates for the more substantial

innovations (NMC), and the next two columns for the definition that additionally includes new brand

drugs commercialized on existing markets (NMC & EMC-EMKT-BRN). Remind that EMC-NMKT

and EMC-EMKT-UBRN products are not included in these definitions because they are likely to reflect

marketing strategies and hence any possible size-dependence associated to these products would not

be driven by genuine product innovation. Results show that the coefficient of size is negative and

strongly significant in all models considered, similarly to the baseline definition of Rin including all

new products. Therefore, since the relative market impact of NWPI is inversely related to firm size,

we gather that NWPI contribute to explain the negative size-growth relation. Diagnostics tests for

best models in Table 9 are reported in the Supplemental Material (Table SM30), and do not raise

concerns on the validity of estimates.

Overall the evidence presented in this Section suggests that smaller firms tend to launch more

innovative products and that such innovations contribute to explain the larger market impact of small

firm products documented in Section 5.2 and hence the negative size-growth dependence.

6.2. Negative size-dependence in sales growth of stable products (gs∗)

This Section analyzes the influence of new products on the firm existing portfolio. The documented

declining size-profile of gS∗ , where S∗ is defined by products that are stably observed in two consecutive

periods, suggests that the negative size-growth dependence persists even when the initial impact of

inflows is netted out, which was found to be a major driver of such dependence. Such evidence

appears in contrast with the Gibrat-like behaviour observed for firms with stable portfolio. Therefore

it is possible that product flows generate an additional size-penalty via externalities on the existing

portfolio.

In the pharmaceutical sector, a typical externality may be cannibalization by new products. For

example, it is rather common for pharmaceutical firms to introduce product line extensions to fend off

competition on their branded drugs from generic producers (Hong et al., 2005; Ganuza et al., 2009).

This strategy can lead the extending firm to gain higher profits and price-setting power than what

would be achieved without the extension (Kadiyali et al., 1998; Kamien and Zang, 1999), however the

position of the brand-line in the long-term can be weakened if the share held by the lead product is

cannibalized by the extensions (Quelch and Kenny, 1994).

Some findings already presented in Table 8 (Section 6.1) show a significantly higher overlap be-

tween new and existing products for larger firms, hinting at possible differential cannibalization effects.
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First, larger firms have significantly lower share of molecule-based (NMC) product innovations (7.9%

vis-á-vis 11.9%, t = −8.4) and, among products with existing molecule combinations (EMC), a much

lower share of new-to-firm molecules (NMF) (53.3% vis-á-vis 67.3%, t = −16.32), suggesting higher

potential competition with products in the current portfolio. Second, larger firms tend to launch prod-

ucts with in-house molecule profile (EMC-EMF) less often on a new national market (NMKT) (36.2%

vis-á-vis 39.6%, t = −2.33), possibly exposing a larger share of their existing products to cannibaliza-

tion. Third, larger firms have a much lower share of branded products among those launched on an

existing market with in-house molecule profile (EMF-EMKT) (52.7% vis-á-vis 67.4%, t = −7.69), sug-

gesting again lower differentiation. However, note that such findings may also imply greater product

replacement rather than sales erosion, whereby only the latter mechanism is relevant for the analysis

of stable products.

The relation between firm size and cannibalization effects is tested by decomposing sales of stable

products (S∗) between product sales that might be exposed or might not be exposed to cannibalization

by new products. Exposure to cannibalization is inferred by the ATC code and the country where the

product is sold. Namely, a product is considered potentially cannibalized from a given year t onward

if a new product with same ATC code is launched in the same national market in t by the firm owning

the product. The ATC code allows extending the scope of potential cannibalization with respect to

molecule mix identity, because drugs with different chemical mix but similar therapeutic profile can

be also included in the definition. The level of the ATC classification considered for this analysis is the

fourth (ATC4), corresponding to the chemical, therapeutic or pharmacological subgroup and identified

by the first five digits. Such very fine level is chosen to restrict the sample of potential competitors

to very close substitutes, for which cannibalization should be mostly evident.23 According to these

definitions, products exposed to cannibalization account for 25.2% of the entire sales volume and

products not exposed account for 37.7%. The residual 37.1% is accounted for by products that either

flow in (17%) or out (20.1%) in the reference period, with a share of 7.3% corresponding to products

that might cannibalize existing products. Similarly to statistics on firm new molecules (NMF), the

share of new products with no ATC-overlap is much larger for small firms (48% vis-á-vis 26.5%,

t = −28), suggesting greater diversification of small firms also with this definition. We refer to these

products as new-to-firm product innovations (NFPI), as opposite to new-to-world product innovations

(NWPI) discussed in Section 6.1.

Table 10 reports FD-GMM estimates (with and without attrition correction) of size-growth equa-

tions for three definitions of S∗: (i) pooled sales aggregate of products exposed and non-exposed to

cannibalization, which is obtained removing sales associated to product inflows and outflows from

23For example, amoxicillin (J01CA04) belongs to the chemical subgroup Penicillins with extended spectrum (J01CA),
and hence is assumed substitute for other penicillines such as ampicillin, pivampicillin and others, but not for agents
among Beta-lactamase-sensitive penicillins (J01CE), such as benzylpenicillin and others.
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the definition used for Table 7, (ii) product sales exposed to cannibalization; (iii) product sales non-

exposed to cannibalization. Note that all these definitions are based on products that are consistently

observed for the entire period, unlike the definition used in Table 7. The first two columns of Table 10

show a negative effect of firm size on gS∗ based on aggregated sales, however the coefficient is not

significant in the FD-GMM model without correction for attrition. Since the attrition test provides

strong evidence of attrition (for diagnostic tests, see Table SM31 in the Supplemental Material), we

conclude that a negative size-growth relation persists even after removing product flow sales. However,

note that these effects appear weaker relative to Table SM20, as consistent with the impact of inflows

being washed out of the relation. For the cases where S∗ amounts to only exposed or non-exposed

products, the attrition test is not significant at 5%, therefore FD-GMM models are considered as

reference models. Coefficient estimates for firm size show a clear divergence between the two sales

components: while a strong negative relation is found for exposed products, the size-dependence dis-

appears for non-exposed ones. Diagnostics tests for best models reported in Table SM31 do not raise

significant concerns on the validity of estimates. On the one hand, this evidence suggests that the

Gibrat law holds even for firms with variable portfolio if only the stable component of their portfolio

is accounted for and sales volumes potentially exposed to cannibalization by new products are netted

out. This result is consistent with evidence that the Gibrat law holds for the sample of firms with

stable portfolio. On the other hand, this evidence corroborates the role of product innovation as a

major driver of the departure from the Gibrat law. In this case, a small firm growth-premium is driven

by smaller cannibalization effects as allowed by a higher rate of NFPI. In order to check robustness of

these results to the definition of cannibalization, the same analysis was repeated considering the third

level of the ATC classification (ATC3). By using ATC3 instead of ATC4, exposure to cannibalization

is extended to less closely substitutable products, but still in the same pharmacological or therapeu-

tical class.24 Results are reported in Table SM21 (see Section SM4 in the Supplementary Material)

and show very similar effects to the ones reported in Table 10.

Differences in cannibalization effects between small and large firms are illustrated also graphically

by Figure 1. The Figure shows a time-to-event analysis of product sales associated to inflows and to

existing products belonging to the same firm and ATC code, both before and after the inflow year. The

sample used for calculations comprises all firms launching new products in the same ATC code of their

own existing products. Product sales were normalized by subtracting the average sales of products

in same year, ATC code and age decile. Normalized product sales were averaged across combinations

of firm, year, and ATC code, and for each combination the timeline was re-scaled setting the origin

equal to the year of first inflow in the firm-ATC combination. Normalized product sales were then

24According to this definition, amoxicillin (J01CA04) is assumed substitute for other agents within the class J01C
(Beta-lactam antibacterials, penicillins) such as Beta-lactamase-sensitive penicillins, Beta-lactamase-resistant penicillins
(J01CF) and others, which were not substitutes with the ATC4-level definition.
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averaged across periods for inflows and existing products separately. Note that the cohort of inflows

has valid values only since period 0 onward, while existing products are exposed to cannibalization

only when the latter are observed. Similarly to estimates in Table 10, Figure 1 shows a clear divergence

between small and large firms in the relation between new and existing product sales. For large firms,

we observe a steep decline in normalized sales of existing products in the post-inflow period, which

appears in contrast with the dynamics in the pre-inflow period. Conversely, for small firms there do

not appear to be trend discontinuities between the pre- and post-inflow period. It is also interesting

to note that the normalized value of inflow product sales is always below the line of existing products

for larger firms, and always above for small firm. This evidence suggests that, for this particular

type of products, the difference in relative size of inflows between small and large firms documented

in Section 5.2 appears to persist even after the first year. Very similar patterns are observed also

when the ATC3 classification level is used in place of ATC4, supporting robustness of results (see

Figure SM5, Section SM4, in the Supplementary Material).

As a possible explanation for differential cannibalization effects between small and large firms, we

investigated the influence of expiry of drug patents. When the patent protection expires, competition

from generic manufacturers may cause a sharp decline in sales of the innovator’s drug, known as

“patent cliff” (Harrison, 2011), which might have perceptible consequences on firm sales, especially

for major blockbuster drugs (Song and Han, 2016). Innovator firms often try to mitigate the patent

cliff by launching variants of the lead drug near patent expiry, which may result in cannibalization.

The influence of patent expiry was analyzed by using US drug patent expiry dates retrieved from

the FDA Orange Book (U.S. Food and Drug Administration, 2019).25 The US appear a suitable case

study because generic competition is particularly fierce in this country, and hence the patent cliff

should be clearly detectable. We were able to match to our data 258 US patents with expiry date

within the period 1996-2008; the analysis is documented and discussed in details in the Supplemental

Material in Section SM1. Two main pieces of evidence can be gathered from this analysis. First,

patent expiries are unlikely to influence estimation of the size-growth relation in general. In fact,

although a sharp discontinuity can be clearly observed for products soon after expiry of their patent,

owner firms experience only a minor deviation from their growth trend, because these drugs account

for less than 6% of their sales. Moreover, patent expiries account for a minimal fraction of products

present on the US market, suggesting that such deviations should not have any meaningful impact on

the US market as a whole. Second, patent expiries do not appear to explain differential cannibalization

effects between small and large firms. Larger firms are found to experience lower deviation from their

growth trend, but the patent cliff associated to their drugs appear to be milder as well. So, while

25The list was received by the FDA upon formal request.
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it is possible that larger firms manage to mitigate the sales cliff through line extensions, there is no

evidence that such inflows come with higher cannibalization of the lead drug. In addition, note that

any possible influence of patent expiry on differential cannibalization should be quantitatively very

modest, because drugs near patent expiry account for a very small share of owning firm, at least for

the US case, while the share of sales exposed to cannibalization was estimated to be around one fourth

of the entire market.

7. Conclusions

In this paper we investigated the relation between firm size and growth using sales data for a panel

of pharmaceutical firms over the period 2002-2008. Existing studies have abundantly documented the

prevalence of a negative relation, in contrast with the independence assumption of the popular Gibrat

law. However, the literature has dedicated only limited attention to investigate the determinants of

this empirical regularity. Taking advantage of the possibility to decompose firm sales by the portfolio

of products, the major contribution of the present work was to explore the role of innovation, in

particular through product switching, as possible determinant of the departure from Gibrat law. The

analysis was performed in three steps. First, we tested the relation between firm size and growth by

employing an econometric approach capable to correct simultaneously for endogeneity and firm exit,

and found that the typical negative dependence holds even with these corrections.

Second, we compared the samples of firms with flows in the portfolio of products and with invariant

portfolio, and found that the negative dependence emerges only in the first sample, while a Gibrat-like

behaviour is observed in the second one. This evidence suggests that product inflows and outflows

may be a key driver of the departure from the Gibrat law. In order to dig into the influence of product

flows, we decomposed the growth rate of firms with variable portfolio by the contribution of product

flows and stable products, and studied the relation of the various components with firm size. We

found that, while size has no effect on the inflow, outflow, and net flow rate in the number of products

K, smaller firms launch new products that generate higher sales relatively to the average sales of

their existing portfolio. For a given growth rate of K, higher relative sales of new products determine

higher jumps in firm size, hence accounting for a negative dependence between firm size and growth.

In addition, a size-penalty was found even in the growth component associated to stable products,

obtained after removing product flow sales. This finding points out a violation of the Gibrat law also

for the stable component of firms with variable portfolio, in contrast with the Gibrat-like behaviour

observed for firms with stable portfolio.

Third, we investigated the role of product innovation as possible mediator of the two identified

channels. On the one hand, we identified new-to-world product innovations (NWPI) on the basis

of molecule entities, national markets, and brand status, and analyzed their contribution to the
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documented size-penalty in the market impact of inflows. Using either a restrictive or a more extensive

definition of NWPI, we found that the share of NWPI is significantly larger for small firms, and that

the relative market impact of new products is inversely related to firm size even when only such genuine

product innovations are considered. This evidence indicates that the innovative profile of small firm

new products contributes to explain the negative size-growth relation. On the other hand, we found

that small firms have also higher propensity to new-to-firm product innovations (NFPI), pointing

out lower risk of cannibalization of existing products. We tested cannibalization effects decomposing

sales volumes associated to stable products between products possibly exposed or non-exposed to

cannibalization, where exposure was defined by same Anatomical Therapeutic Chemical (ATC) class

of any new product. We found a strong negative relation for firm sales associated to exposed products,

suggesting that cannibalization effects are stronger for larger firms. Conversely, the size-dependence

disappears for non-exposed products, suggesting that the Gibrat law can hold even for firms with

variable portfolio if sales are isolated by the influence arising by product flows, either directly or via

cannibalization, similarly to firms with stable portfolio.

The present results indicate that product innovations are a key driver of the growth-premium of

small firms. This premium is generated either by new-to-world innovations, in the form of larger

relative size, or by new-to-firm innovations, in the form of lower cannibalization of existing products.

This evidence is in line with the typical division of innovative labour between small and large firms

in the pharmaceutical sector, where small firms focus on the more uncertain process of innovation

around niche drugs, and large firms on the marketing and distribution of less innovative or imitation

drugs (Mazzucato and Dosi, 2006; Demirel and Mazzucato, 2012). More in general, it is coherent

with previous studies that emphasized a relative advantage of small firms in conducting innovative

activities (see Acs and Audretsch, 1990, 1991, inter alia), and in performing product and radical

innovations (see Cohen and Klepper, 1996a,b, inter alia). The present results contribute also to the

literature on firm size and innovation by showing that the observed small firm innovative advantage

contributes to the growth differential between small and large firms. Furthermore, these results enrich

recent evidence provided by Argente et al. (2019) for the US consumer goods sector, who find that firm

growth can only be sustained by continuous addition of new products with sufficiently large market

impact. The present results complement this evidence pointing out that such source of growth may

taper off as the firm becomes larger.

Our results on the relation between cannibalization and firm size are relevant also for the literature

on multi-product firms and international trade. In this context, the risk of cannibalization effects

originating by portfolio expansion gives rise to strategic interactions that moderate firms reaction

to trade liberalization, with consequences on firm productivity, factor prices, and product variety

(Eckel and Neary, 2010; Feenstra and Ma, 2008). Evidence of a size-penalty in cannibalization may
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suggest that smaller firms are in a better position to internalize demand linkages between products

in their portfolio and to invest in product differentiation, possibly generating higher benefits in case

of exposure to open competition. We are not aware of any prior econometric study investigating the

relation between cannibalization and firm size.

The results of our analysis have clear policy implications. First, the finding that small firms have

higher growth rates than larger firms is often used to strengthen the case for policy support to small

firms. However, since previous studies reporting a negative size-growth relation did not investigate the

drivers of such dependence, they were unable to pinpoint the most efficient policy tool to spur small

firms growth. By uncovering the role of innovation in generating the small firm growth premium, our

results suggest that support to small firms should prioritize innovation policies. This policy receipt is

consistent with a body of evidence reporting that R&D tax incentives are more effective for smaller

firms (Sterlacchini and Venturini, 2019; Castellacci and Lie, 2015; Appelt et al., 2016). Furthermore

it bears support to the policy orientation of the European Commission, which allocates a significant

budget to enhance the innovation capacity of small firms.

As a second policy implication, the present analysis points out the importance of the measuring

approach to innovation. The launch of new products has been considered by previous literature as

a more suitable measure of innovation than alternative options (Kleinknecht et al., 2002; Hagedoorn

and Cloodt, 2003; Corsino and Gabriele, 2010), however only few studies analysing the size-growth

relation were able to use this information. Furthermore, to our knowledge, there are no studies that

have investigated the relation between firm size and innovative performance via the market impact

of new products or via cannibalization. As concerns the first measure of innovative performance,

evidence of a small firm proportional advantage in the impact of new products, rather than in the

portfolio growth, points out that omitting to take into account the market impact of innovations may

result in misleading conclusions about the relationship between firm size and innovative performance.

As concerns the second measure, failure to take into account externalities generated by new products

on the firm portfolio may lead to underestimate the small-firm advantage in innovation performance.

Therefore we recommend that innovation policies take into consideration, beyond the usual support

to R&D investment (Colombelli et al., 2013), also the output of innovations as well as their possible

cannibalization effects.

Finally, one has to bear in mind that results and implications of the present study are derived from

the analysis of a specific industrial sector, therefore their validity might depend on characteristics

that are specific to that industry. For example, a relative innovative advantage of small firms has

been traditionally linked to markets characterized by an entrepreneurial technological regime, where

innovations tend to come from knowledge that is not of a routine nature, as opposite to a routinized

technological regime, where large firms have an innovative advantage (see Audretsch and Fritsch,
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2002, and references therein). An entrepreneurial regime seems to prevail in industries that are highly

innovative (Acs and Audretsch, 1990) such as the pharmaceutical sector, therefore the results of the

present analysis might reflect the specific technological regime of this sector. Moreover, a relative

innovative advantage of small firms has been also associated to industries where innovations are more

saleable in disembodied form or prospects for rapid growth due to innovation are greater, which seems

to be the case of the pharmaceutical industry (Cohen and Klepper, 1996b). Future research might

investigate whether the small firm innovative premium found in our analysis applies to other industrial

contexts.
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Tables and Figures

Table 1: Summary statistics for the estimation sample. Means and standard deviations

Total 2002 2003 2004 2005 2006 2007 2008

S (millions) 105.1 89.8 93.8 101.0 107.5 111.0 112.8 117.3
(837.0) (726.0) (765.8) (821.2) (863.0) (874.0) (880.8) (899.6)

gS (%) -5.5 -8.3 -4.4 -7.6 -3.7 -8.0 -4.4 -2.2
(43.3) (45.4) (43.3) (44.6) (40.4) (41.1) (43.3) (44.6)

K 33.4 36.7 35.0 34.3 32.9 32.5 31.8 31.1
(100.9) (110.1) (105.0) (102.6) (99.3) (97.6) (96.7) (95.2)

gK (%) -1.6 0.9 -2.1 -1.9 -2.7 -2.7 -1.6 -1.2
(19.5) (18.5) (22.7) (18.2) (19.6) (20.2) (18.9) (18.0)

kin (%) 5.8 7.5 6.6 5.0 5.2 5.4 5.2 5.5
(20.8) (19.8) (36.0) (13.2) (17.1) (17.4) (17.8) (16.6)

kout (%) 5.5 4.8 6.0 5.4 6.0 6.2 5.1 5.0
(11.1) (9.9) (11.9) (10.6) (11.9) (12.0) (10.9) (10.4)

Rin (%) 16.8 19.1 20.6 17.8 16.4 14.1 15.5 14.5
(90.3) (99.6) (110.1) (86.8) (87.6) (107.4) (68.2) (64.2)

Rout (%) 2.8 1.9 2.1 4.5 2.5 4.4 2.1 2.1
(24.9) (12.6) (12.6) (50.7) (18.1) (28.8) (13.5) (12.7)

gS∗ (%) -6.4 -10.1 -6.0 -8.3 -4.6 -7.6 -5.3 -3.3
(41.9) (43.2) (41.5) (43.1) (38.9) (38.9) (43.2) (44.1)

S/K (millions) 1.5 0.9 1.3 1.4 1.6 1.8 1.7 1.8
(16.8) (6.7) (14.5) (16.3) (19.1) (21.6) (17.2) (17.7)

Age 34.8 34.6 34.2 34.5 34.7 35.2 35.2 35.1
(23.4) (22.5) (22.9) (23.1) (23.4) (23.6) (23.9) (24.1)

newmol (%) 25.5 29.0 26.4 26.5 26.1 25.1 23.8 21.9
(43.6) (45.4) (44.1) (44.1) (43.9) (43.4) (42.6) (41.3)

atcmain (%) 65.1 63.5 63.8 64.3 65.1 65.6 66.3 67.0
(29.8) (30.0) (29.9) (29.8) (29.9) (29.9) (29.8) (29.6)

atcd (%) 11.0 11.9 12.2 11.0 10.6 10.7 10.6 10.3
(31.4) (32.4) (32.8) (31.3) (30.8) (30.9) (30.8) (30.5)

Attrition (%) 1.8 2.1 2.7 1.6 2.7 1.8 1.6 0.0
(13.2) (14.5) (16.2) (12.6) (16.2) (13.4) (12.7) (0.0)

Obs. 12860 1724 1790 1805 1845 1852 1900 1944

Notes: S ≡ sales; gS ≡ ln(S) − ln(S−1); K ≡ number of products; gK ≡ ln(K) − ln(K−1); κin ≡ Kin/K−1, where

Kin is the number of new products; κout ≡ Kout/K−1, where Kout is the number of products lost; Rin ≡ S
in
/S−1,

where S
in ≡ Sin/Kin, Sin are the sales generated by new products, and S−1 ≡ S−1/K−1; Rout ≡ S

out
/S−1, where

S
out

= Sout/Kout, and Sout are the sales generated by products lost; gs∗ ≡ ln(S∗) − ln(S∗1) is the growth rate of
sales generated by stable products, i.e. products observed both in the current and previous period; newmol identifies
firms launching new products with new-to-the-firm molecule; atcmain is the share of sales generated by the main ATC
code; atcd identifies firms with a change in the main ATC code.
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Table 2: Size-Growth regressions

OLS FE FD-2S FD-GMM FD-2S-ATT FD-GMM-ATT

ln(S−1) 1.0238∗∗ 0.7984∗∗ 0.8237∗∗ 0.8615∗∗ 0.7127∗∗ 0.7345∗∗

(0.0017) (0.0133) (0.0491) (0.0439) (0.0540) (0.0523)
Age = 11− 20 −0.0119 −0.0615∗ −0.0883∗∗ −0.0877∗∗ −0.0790∗∗ −0.0786∗∗

(0.0151) (0.0264) (0.0295) (0.0294) (0.0290) (0.0294)
Age = 21− 50 0.0021 −0.0585 −0.0996∗ −0.0951∗ −0.0904 −0.0877

(0.0136) (0.0399) (0.0483) (0.0481) (0.0473) (0.0476)
Age > 50 −0.0336∗ −0.0206 −0.0944 −0.0901 −0.0898 −0.0874

(0.0142) (0.0468) (0.0551) (0.0550) (0.0536) (0.0542)
kin (%) 0.0016∗∗ 0.0010∗∗ 0.0010∗∗ 0.0011∗∗ 0.0010∗∗ 0.0010∗∗

(0.0005) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004)
kin−1 (%) 0.0013∗∗ 0.0008∗ 0.0008∗ 0.0008∗ 0.0007∗ 0.0008∗

(0.0005) (0.0004) (0.0003) (0.0003) (0.0003) (0.0003)
kout (%) −0.0063∗∗ −0.0032∗∗ −0.0025∗∗ −0.0024∗∗ −0.0029∗∗ −0.0029∗∗

(0.0005) (0.0006) (0.0005) (0.0005) (0.0005) (0.0005)
newmol 0.0322∗∗ 0.0296∗∗ 0.0285∗∗ 0.0282∗∗ 0.0301∗∗ 0.0299∗∗

(0.0110) (0.0107) (0.0101) (0.0101) (0.0098) (0.0099)
newmol−1 0.0552∗∗ 0.0662∗∗ 0.0567∗∗ 0.0546∗∗ 0.0609∗∗ 0.0597∗∗

(0.0111) (0.0116) (0.0106) (0.0105) (0.0103) (0.0103)
newmol−2 0.0138 0.0293∗∗ 0.0309∗∗ 0.0290∗∗ 0.0361∗∗ 0.0348∗∗

(0.0081) (0.0093) (0.0085) (0.0084) (0.0082) (0.0081)
ln(atcmain)−1 0.0064 −0.0767∗∗ −0.1411∗∗ −0.1448∗∗ −0.1243∗∗ −0.1271∗∗

(0.0073) (0.0261) (0.0358) (0.0357) (0.0333) (0.0343)
atcd−1 0.0416∗∗ 0.0269∗ 0.0353∗∗ 0.0332∗ 0.0307∗ 0.0294∗

(0.0128) (0.0132) (0.0131) (0.0130) (0.0120) (0.0123)
Year FE Yes Yes Yes Yes Yes Yes
Year FE × IMR No No No No Yes Yes

Obs. 12860 12860 12860 12860 12860 12860
Firms 2173 2173 2173 2173 2173 2173

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with 5000
replications , otherwise they are firm-clustered robust. In 2S and GMM models the variable ln(S−1) is instrumented

with the following IVs: ∆ln(S−2), ∆ln(S−3), ∆ln(S−4) . The reported coefficient on ln(S−1) is β̃; β̃ 6= 1 corresponds
to β 6= 0.
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Table 3: Diagnostic tests of FD-GMM-ATT estimates of size-growth equations (see Table 2)

Excluded Instruments (3): ∆ln(S−2), ∆ln(S−3), ∆ln(S−4)
1 Attrition: χ2(7) =58.7 (p =0.000)
2 Autocorrelation

AR(1): z =-6.6 (p =0.000)
AR(2): z =-1.1 (p =0.257)
AR(3): z =-1.3 (p =0.19)

3 IVs relevance (1st stage): F (3, 2172) =113.7 (p =0.000)
4 IVs underidentification (all) χ2(3) =184.2 (p =0.000)
5 IVs underidentification

IV: ∆ln(S−2) χ2(1) =151.5 (p =0.000)
IV: ∆ln(S−3) χ2(1) =21.7 (p =0.000)
IV: ∆ln(S−4) χ2(1) =6 (p =0.015)

6 IVs overidentification (all) χ2(2) =1.9 (p =0.383)
7 IVs overidentification

IV: ∆ln(S−2) χ2(1) =0.8 (p =0.384)
IV: ∆ln(S−3) χ2(1) =0.000 (p =0.991)
IV: ∆ln(S−4) χ2(1) =1.9 (p =0.169)

Notes:

1. Joint test of the null hypothesis that ρt = 0, ∀t, in Equation 5. Rejection confirms the presence of attrition
(Wooldridge, 2010).

2. Arellano-Bond autocorrelation test (AR). In order to test AR in the ui,t, the test considers the first-differenced
residuals u∗i,t. In fact, AR(1) is expected in first differences if ui,t are actually uncorrelated, so to check for AR(1)

in levels, one must look at AR(2) in differences (Arellano and Bond, 1991).
3. Test of the null hypothesis that the excluded instruments are jointly non-significant in the 1st-stage equation.

Rejection confirms that they are relevant.
4. The IVs underidentification test is an LM test of whether the excluded instruments are redundant, i.e. not

correlated with the endogenous regressor. Under the null hypothesis that the first-stage equation is underidenti-
fied, the matrix of reduced form coefficients on the L excluded instruments has rank=K-1 where K=number of
endogenous regressors. Under the null, the statistic is distributed as χ2 with degrees of freedom=(L-K+1). A
rejection of the null indicates that the matrix is full column rank, i.e., the model is identified.

5. Excluded instruments are individually redundant if the asymptotic efficiency of estimation is not improved by
using them. Rejection of the null indicates that the instrument is not redundant and hence it is a valid predictor
of the endogenous variable.

6. The IVs overidentification test is the Sargan-Hansen statistic testing exogeneity of instruments. Under the null
hypothesis the instruments are jointly valid, i.e., uncorrelated with the error term, and correctly excluded from the
estimated equation. Under the null, the test statistic is distributed as a χ2 in the number of (L-K) overidentifying
restrictions.

7. The tests report the Difference-in-Sargan C statistic testing the validity of individual instruments. The statistic
is computed as the difference of the Sargan-Hansen statistic of the equation with the smaller set of instruments
and the equation with the full set of instruments, i.e., including the instrument whose validity is tested. Under
the null hypothesis that the smaller set of instruments as well as the tested instrument are valid, the C statistic
is distributed as a χ2 in the number of instruments tested. Failure to reject the null suggests that the IV is valid.
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Table 5: Summary statistics for estimation samples. Means and standard deviations

Full sample Stable portfolio Variable portfolio

S (millions) 105.1 (837.0) 1.4 (8.0) 124.5 (910.6)
gS (%) -5.5 (43.3) -14.4 (53.3) -3.8 (40.9)
K 33.4 (100.9) 1.5 (1.6) 39.4 (108.8)
gK (%) -1.6 (19.5) 0.0 (0.0) -2.0 (21.3)
kin (%) 5.8 (20.8) 0.0 (0.0) 6.8 (22.5)
kout (%) 5.5 (11.1) 0.0 (0.0) 6.5 (11.8)
Rin (%) 16.8 (90.3) 0.0 (0.0) 19.9 (98.0)
Rout (%) 2.8 (24.9) 0.0 (0.0) 3.3 (27.1)
gS∗ (%) -6.4 (41.9) -14.3 (53.3) -4.9 (39.3)
S/K (millions) 1.5 (16.8) 1.1 (6.5) 1.6 (18.1)
Age 34.8 (23.4) 21.1 (15.5) 37.3 (23.7)
newmol (%) 25.5 (43.6) 0.0 (0.0) 30.2 (45.9)
atcmain (%) 65.1 (29.8) 94.9 (13.3) 59.6 (28.8)
atcd (%) 11.0 (31.4) 1.7 (13.0) 12.8 (33.4)
Attrition (%) 1.8 (13.2) 4.9 (21.7) 1.2 (10.8)
Nr. firms 2173 440 1733
Obs. 12860 2026 10834

Notes: See notes to Table 1
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Table 6: Size-Growth regressions. Sample of firms with variable portfolio. Dependent variable is
ln(K)

OLS FE FD-2S FD-GMM FD-2S-ATT FD-GMM-ATT

ln(S−1) 0.0190∗∗ 0.0851∗∗ 0.0274 0.0160 0.0245 0.0129
(0.0011) (0.0066) (0.0229) (0.0217) (0.0248) (0.0237)

ln(K−1) 0.9436∗∗ 0.6252∗∗ 0.6949∗∗ 0.7475∗∗ 0.7264∗∗ 0.7826∗∗

(0.0029) (0.0146) (0.1185) (0.1133) (0.1346) (0.1312)
Age = 11− 20 −0.0242∗∗ 0.0196 −0.0020 −0.0040 −0.0043 −0.0067

(0.0088) (0.0140) (0.0170) (0.0170) (0.0177) (0.0180)
Age = 21− 50 −0.0428∗∗ 0.0295 0.0191 0.0165 0.0162 0.0130

(0.0080) (0.0223) (0.0260) (0.0259) (0.0266) (0.0265)
Age > 50 −0.0570∗∗ 0.0378 0.0136 0.0097 0.0119 0.0076

(0.0081) (0.0266) (0.0294) (0.0292) (0.0300) (0.0300)
newmol−1 0.0465∗∗ 0.0249∗∗ −0.0703∗∗ −0.0773∗∗ −0.0744∗∗ −0.0819∗∗

(0.0044) (0.0047) (0.0164) (0.0157) (0.0184) (0.0181)
newmol−2 0.0197∗∗ 0.0074 −0.0450∗∗ −0.0492∗∗ −0.0481∗∗ −0.0527∗∗

(0.0046) (0.0052) (0.0114) (0.0110) (0.0127) (0.0126)
newmol−3 0.0092∗ 0.0076 −0.0148∗ −0.0163∗∗ −0.0161∗ −0.0178∗∗

(0.0046) (0.0048) (0.0063) (0.0062) (0.0069) (0.0069)
ln(atcmain)−1 −0.0531∗∗ −0.1130∗∗ 0.0228 0.0310 0.0281 0.0370

(0.0044) (0.0144) (0.0316) (0.0312) (0.0347) (0.0354)
atcd−1 −0.0445∗∗ −0.0309∗∗ −0.0135∗ −0.0125∗ −0.0134∗ −0.0123

(0.0068) (0.0066) (0.0063) (0.0063) (0.0064) (0.0064)
Year FE Yes Yes Yes Yes Yes Yes
Year FE × IMR No No No No Yes Yes

Obs. 10834 10834 10834 10834 10834 10834
Firms 1733 1733 1733 1733 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with 5000
replications , otherwise they are firm-clustered robust. In 2S and GMM models the variable ln(K−1) is instrumented
with the following IVs: ∆ln(K−3), ∆ln(K−4) ∆ln(S−2).
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Table 8: Innovative content of new products and small/large firm comparison. Small/large firms
identified by 10 million Euro sales cutoff (NM, EM: new/existing molecule; NMC, EMC: new/existing
molecule combination; NMKT, EMKT: new/existing market; NMF, EMF: firm new/existing molecule;
BRN, UBRN: branded/unbranded ; n.i.: not included in computation).

EM NM

EMC NMC

NMKT EMKT

Count Mean t-test EMF NMF EMF NMF

All firms Large Small UBRN BRN UBRN BRN

Total products 16852 X X X X X X X X
Small firm 5409 0.321 X X X X X X X X
NMM 958 0.057 0.044 0.083 -10.19 X
NMC 1541 0.091 0.079 0.119 -8.40 X X
Only EMC
NMF 8827 0.577 0.533 0.673 -16.32 X X X n.i. n.i.
NMKT 5159 0.352 0.349 0.357 -0.88 X X n.i. n.i.
NMKT (NMF) 2946 0.339 0.339 0.339 0.00 n.i. X n.i. n.i. n.i. n.i.
NMKT (EMF) 2213 0.370 0.362 0.396 -2.33 X n.i. n.i. n.i. n.i. n.i.
Only EMC-EMKT
Branded 4405 0.463 0.419 0.560 -12.84 n.i. n.i. X X n.i. n.i.
Branded (NMF) 2288 0.398 0.333 0.513 -13.57 n.i. n.i. n.i. n.i. X n.i. n.i.
Branded (EMF) 2117 0.561 0.527 0.674 -7.69 n.i. n.i. X n.i. n.i. n.i. n.i.
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Table 9: Relation between firm size (S) and average sales ratio (Rin). Sample of firms with variable
portfolio. Dependent variable is ln(1+Rin), where Rin is defined by innovative products with varying
innovation extent: NMC, EMC: new/existing molecule combination; NMKT, EMKT: new/existing
market; BRN, UBRN: branded/unbranded

NMC NMC & EMC-EMKT-BRN

FD-GMM FD-GMM-ATT FD-GMM FD-GMM-ATT

ln(1 +Rin
−1) −0.0253 −0.0253 −0.0313 −0.0314

(0.0340) (0.0340) (0.0265) (0.0264)
ln(S−1) −0.0216∗∗ −0.0219∗∗ −0.0545∗∗ −0.0555∗∗

(0.0048) (0.0049) (0.0076) (0.0076)
ln(K−1) 0.0118 0.0102 0.0032 −0.0021

(0.0104) (0.0107) (0.0188) (0.0195)
Age = 11− 20 0.0138 0.0140 −0.0073 −0.0064

(0.0105) (0.0104) (0.0133) (0.0134)
Age = 21− 50 0.0156 0.0157 0.0144 0.0151

(0.0166) (0.0166) (0.0254) (0.0254)
Age > 50 0.0088 0.0087 −0.0088 −0.0085

(0.0227) (0.0227) (0.0360) (0.0360)
kin (%) 0.0003∗∗ 0.0002∗∗ 0.0007∗∗ 0.0007∗∗

(0.0001) (0.0001) (0.0003) (0.0003)
kin−1 (%) −0.0000 −0.0000 0.0001 0.0001

(0.0000) (0.0000) (0.0001) (0.0001)
kout (%) 0.0000 −0.0000 −0.0001 −0.0001

(0.0001) (0.0001) (0.0002) (0.0002)
ln(atcmain)−1 0.0380∗ 0.0382∗ 0.0596 0.0598

(0.0163) (0.0163) (0.0326) (0.0325)
atcd−1 −0.0130∗ −0.0131∗ −0.0353∗∗ −0.0354∗∗

(0.0062) (0.0062) (0.0106) (0.0106)
Year FE Yes Yes Yes Yes
Year FE × IMR No Yes No Yes

Obs. 10834 10834 10834 10834
Firms 1733 1733 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with 5000
replications , otherwise they are firm-clustered robust. The endogenous variable is instrumented with ∆ln(1 + Rin−2),

∆ln(1 +Rin−3) in all cases. See Table SM30 for diagnostics test.
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Table 10: Relation between firm size (S) and sales growth rate of stable products (observed in all
periods). Sample of firms with variable portfolio. Dependent variable is gS∗ , where product flows
have been removed from S∗. S∗ is also decomposed between products exposed and non-exposed to
cannibalization. Exposure is defined by same ATC4

Exposed & non-exposed Exposed Non-exposed

FD-GMM FD-GMM-ATT FD-GMM FD-GMM-ATT FD-GMM FD-GMM-ATT

ln(S−1) −0.1315 −0.2101∗ −0.5782∗∗ −0.5769∗∗ −0.0210 −0.0890
(0.0877) (0.1025) (0.1747) (0.1767) (0.0889) (0.1048)

Age = 11− 20 −0.0376 −0.0309 0.0511 0.0530 −0.0744 −0.0674
(0.0574) (0.0567) (0.1043) (0.1046) (0.0500) (0.0492)

Age = 21− 50 −0.0087 −0.0028 0.0169 0.0178 −0.0257 −0.0200
(0.0701) (0.0692) (0.1308) (0.1318) (0.0658) (0.0644)

Age > 50 −0.0399 −0.0355 0.0511 0.0474 −0.0579 −0.0526
(0.0761) (0.0752) (0.1398) (0.1413) (0.0726) (0.0712)

kin (%) −0.0002 −0.0002 −0.0002 −0.0002 −0.0002 −0.0002
(0.0002) (0.0002) (0.0006) (0.0006) (0.0002) (0.0002)

kin−1 (%) −0.0002 −0.0003 −0.0004 −0.0004 −0.0003 −0.0004
(0.0002) (0.0002) (0.0004) (0.0004) (0.0002) (0.0002)

kout (%) −0.0006 −0.0012∗ 0.0017 0.0012 −0.0011 −0.0016∗

(0.0006) (0.0006) (0.0016) (0.0017) (0.0006) (0.0006)
newmol 0.0220 0.0228 0.0197 0.0203 0.0236∗ 0.0242∗

(0.0142) (0.0141) (0.0221) (0.0221) (0.0120) (0.0118)
newmol−1 0.0187 0.0212 0.0269 0.0267 0.0142 0.0171

(0.0153) (0.0153) (0.0221) (0.0222) (0.0148) (0.0148)
newmol−2 0.0317∗ 0.0350∗ 0.0226 0.0222 0.0239 0.0270∗

(0.0141) (0.0141) (0.0233) (0.0234) (0.0133) (0.0133)
ln(atcmain)−1 −0.0897 −0.0754 0.0693 0.0691 −0.0705 −0.0604

(0.0473) (0.0464) (0.0766) (0.0765) (0.0486) (0.0476)
atcd−1 0.0374∗ 0.0347∗ 0.0268 0.0270 0.0412∗ 0.0385∗

(0.0172) (0.0169) (0.0261) (0.0261) (0.0163) (0.0161)
Year FE Yes Yes Yes Yes Yes Yes
Year FE × IMR No Yes No Yes No Yes

Obs. 9984 9984 4537 4537 9556 9556
Firms 1534 1534 656 656 1469 1469

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with
5000 replications , otherwise they are firm-clustered robust. The endogenous variable is instrumented with ∆ln(S−2)
in all cases. See Table SM31 for diagnostics test.
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Figure 1: Cannibalization effects between firm’s new and existing products in same ATC4 class.
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Supplemental Material: Uncovering the role of product innovation in the

relation between firm size and growth

The Supplemental Material (SM) reports the following additional analyses and results: impact

of drug patent expiry (SM1), attrition regressions (SM2), first-stage regressions (SM3), additional

estimates (SM4), diagnostic tests (SM5), and finally the derivation of Equation 6 (SM6).

SM1. Influence of drug patent expiry on drug and firm sales

This Section examines the influence of drug patent expiry on firm sales and its possible role in the

differential cannibalization effects observed between small and large firms. When the patent protection

expires, generic manufacturers enter the market with drugs that are equivalent to the originator’s drug,

but with a significantly lower price. This can cause a sharp decline in sales of the innovator drug soon

after the patent expiry, which is known as “patent cliff” (Harrison, 2011). Such patent cliff may have

perceptible effects on firm sales as well, especially for major blockbuster drugs (Song and Han, 2016).

Innovator firms often try to mitigate the patent cliff by launching variants of the lead drug near patent

expiry, which may result in cannibalization of the lead drug.

While the decline in sales and market share after patent expiry has been well documented for

several drugs (Ching, 2010), the dynamics of firm sales has received much less attention. We analyzed

the influence of patent expiry on firm sales by collecting expiry dates of patents for US drugs from the

FDA “Orange Book” (U.S. Food and Drug Administration, 2019). The US appear a valid case study

because generic competition is particularly fierce in this country, and hence any possible impact on

firm sales should be clearly detectable. We were able to match 258 US patents with expiry date within

the period 1996-2008.26 Figure SM1 reports the sales dynamics for the top selling products among

those with a minimum number of observations around expiry. A patent cliff around expiry year can

be clearly observed except in very few cases. Note that the cliff may appear with some delay because

generic products enter the market typically a few years after expiry, due to the time required to adopt

the manufacturing technology and to obtain approval for marketing (Ching, 2010). Moreover, the

period of time covered by a patent normally lasts 20 years, although such period can be extended or

shortened in some cases. Since these products are top seller drugs, the possible impact of patent cliff

on firm sales should be mostly evident. Figure SM2 reports the sales dynamics of owner firms of these

high selling products. In this case, it appears that patent expiry leads only a minority of firms to a

sharp discontinuity, and the remaining set of firms to a mild slowdown at most.

26For drugs with multiple patents over time, the earliest expiry date was considered.
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Figure SM1: Patent cliff of high seller US products with patent expiry date in 1996-2008
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Figure SM2: Sales of firms owning high seller US products with patent expiry date in 1996-2008
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Figure SM3: Average growth of US products with patent expiry date in 1996-2008 and average
growth of owning firms
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Figure SM4: Average growth of US products with patent expiry date in 1996-2008 and average
growth of owning firms
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If we look at the total sample of patent expiries, we note that in the year before patent expiry,

owner firms have 427 drugs and those near expiry account for only 5.8% of their sales on average. In

order to assess the overall impact of patent expiries on firm sales, we calculated the average growth

rate of firm sales by time to expiry. The growth dynamics is reported in Figure SM3. The growth

rate was calculated using the year before expiry as a reference to remove year effects. Figure SM3

shows that, firms owning a drug going through patent expiry experience only a minor deviation from

their trend. This is in clear contrast with the sharp discontinuity that can be clearly observed for

products. Therefore, it appears that firms owning such products can compensate rather well the

effects of competition from generic manufacturers. Since patent expiries occur for a negligible portion

of all products marketed in the period considered, the observed impact on firm sales is unlikely to

have any meaningful relevance for the US market as a whole. Furthermore, since the generics share

is particularly high in the US, this impact should not be any larger in other countries. Therefore, the

present evidence suggests overall that patent cliffs may have minimal influence on estimation of the

size-growth relation.

Similarly, it is quite unlikely that patent expiries may have a quantitatively relevant influence on

the differential cannibalization effect between small and large firms. This issue was investigated by

separating the sample of firms going through patent expiry between small and large firms, where the

former have been defined by all firms with an average sales value below the 25th percentile. Figure SM4

compares the growth dynamics of patented drugs and owning firms for the two samples. This Figures

points out a divergence after patent expiry in the growth trend of firm sales, with large firms being

minimally affected, and smaller firms exhibiting a decline. It is hence possible that larger firms manage

to mitigate the patent cliff by extensions of the brand-line, which may in turn cannibalize the lead

drug. However, since larger firms appear to attenuate to a greater extent also the patent cliff of the

lead drug, there is no evidence that they experience larger cannibalization effects.

SM2. Attrition regressions

4
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SM3. First-stage regression results

Table SM6: Size-Growth regressions. First-stage results (see Table 2). The endogenous variable is
ln(S−1).

FD-IV FD-IV-ATT

ln(S−2) 0.2564∗∗ 0.2429∗∗

(0.0176) (0.0179)
ln(S−3) 0.0912∗∗ 0.0802∗∗

(0.0166) (0.0167)
ln(S−4) 0.0435∗∗ 0.0385∗

(0.0158) (0.0157)
Age = 11− 20 −0.0099 −0.0049

(0.0210) (0.0212)
Age = 21− 50 −0.0311 −0.0266

(0.0426) (0.0424)
Age > 50 −0.0249 −0.0287

(0.0466) (0.0464)
kin (%) −0.0005∗∗ −0.0005∗∗

(0.0002) (0.0002)
kin−1 (%) −0.0000 −0.0000

(0.0002) (0.0002)
kout (%) −0.0007 −0.0010∗

(0.0004) (0.0004)
newmol −0.0028 −0.0029

(0.0073) (0.0072)
newmol−1 0.0266∗∗ 0.0260∗∗

(0.0087) (0.0086)
newmol−2 0.0450∗∗ 0.0444∗∗

(0.0072) (0.0072)
ln(atcmain)−1 0.0687 0.0786∗

(0.0373) (0.0370)
atcd−1 −0.0254∗ −0.0254∗

(0.0103) (0.0103)
Year FE Yes Yes
Year FE × IMR No Yes

Obs. 12860 12860
Firms 2173 2173

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with
5000 replications , otherwise they are firm-clustered robust.
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Table SM7: Size-Growth regressions. First-stage results (see Table 4). The endogenous variable is
ln(S−1).

Stable portfolio Variable portfolio
FD-IV FD-IV-ATT FD-IV FD-IV-ATT

ln(S−2) 0.1700∗∗ 0.1752∗∗ 0.2797∗∗ 0.2631∗∗

(0.0434) (0.0439) (0.0189) (0.0193)
ln(S−3) 0.1195∗∗ 0.1217∗∗ 0.0775∗∗ 0.0639∗∗

(0.0371) (0.0379) (0.0186) (0.0184)
ln(S−4) 0.0257 0.0299 0.0473∗∗ 0.0410∗

(0.0350) (0.0352) (0.0177) (0.0174)
Age = 11− 20 −0.0455 −0.0489 0.0091 0.0142

(0.0439) (0.0446) (0.0239) (0.0239)
Age = 21− 50 −0.0685 −0.0751 −0.0080 −0.0019

(0.0893) (0.0900) (0.0483) (0.0478)
Age > 50 −0.1884 −0.1921 0.0062 0.0049

(0.1147) (0.1154) (0.0520) (0.0516)
kin (%) −0.0004∗∗ −0.0004∗∗

(0.0002) (0.0002)
kin−1 (%) 0.0000 −0.0000

(0.0002) (0.0002)
kout (%) −0.0006 −0.0011∗∗

(0.0004) (0.0004)
newmol −0.0032 −0.0035

(0.0072) (0.0071)
newmol−1 0.0272∗∗ 0.0256∗∗

(0.0086) (0.0085)
newmol−2 0.0452∗∗ 0.0433∗∗

(0.0072) (0.0071)
ln(atcmain)−1 0.7049∗ 0.7056∗ 0.0587 0.0731∗

(0.3238) (0.3216) (0.0376) (0.0372)
atcd−1 −0.0248∗ −0.0249∗

(0.0104) (0.0104)
Year FE Yes Yes Yes Yes
Year FE × IMR No Yes No Yes

Obs. 2026 2026 10834 10834
Firms 440 440 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with
5000 replications , otherwise they are firm-clustered robust.
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Table SM8: Size-Growth regressions. First-stage results (see Table SM15).

Stable portfolio Variable portfolio
FD-IV FD-IV-ATT FD-IV FD-IV-ATT

ln(S−2) 0.1723∗∗ 0.1774∗∗ 0.2839∗∗ 0.2655∗∗

(0.0426) (0.0432) (0.0185) (0.0190)
ln(S−3) 0.1243∗∗ 0.1270∗∗ 0.0897∗∗ 0.0735∗∗

(0.0358) (0.0366) (0.0176) (0.0174)
Age = 11− 20 −0.0460 −0.0493 0.0122 0.0176

(0.0438) (0.0445) (0.0240) (0.0240)
Age = 21− 50 −0.0702 −0.0767 −0.0080 −0.0011

(0.0893) (0.0901) (0.0481) (0.0476)
Age > 50 −0.1885 −0.1922 0.0061 0.0055

(0.1147) (0.1154) (0.0519) (0.0515)
kin (%) −0.0004∗∗ −0.0004∗∗

(0.0002) (0.0002)
kin−1 (%) 0.0000 −0.0000

(0.0002) (0.0002)
kout (%) −0.0006 −0.0011∗∗

(0.0004) (0.0004)
newmol −0.0034 −0.0036

(0.0072) (0.0071)
newmol−1 0.0273∗∗ 0.0258∗∗

(0.0086) (0.0085)
newmol−2 0.0458∗∗ 0.0439∗∗

(0.0072) (0.0071)
ln(atcmain)−1 0.7017∗ 0.7017∗ 0.0549 0.0705

(0.3251) (0.3232) (0.0375) (0.0371)
atcd−1 −0.0258∗ −0.0258∗

(0.0104) (0.0104)
Year FE Yes Yes Yes Yes
Year FE × IMR No Yes No Yes

Obs. 2026 2026 10834 10834
Firms 440 440 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with
5000 replications , otherwise they are firm-clustered robust.
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Table SM9: Size-Growth regressions. First-stage results (see Table 6). The endogenous variable is
ln(K−1).

FD-IV FD-IV-ATT

ln(K−3) 0.0388∗∗ 0.0389∗∗

(0.0148) (0.0151)
ln(K−4) 0.0453∗∗ 0.0423∗∗

(0.0114) (0.0113)
ln(S−2) 0.0754∗∗ 0.0705∗∗

(0.0080) (0.0082)
ln(S−1) 0.1191∗∗ 0.1181∗∗

(0.0088) (0.0088)
Age = 11− 20 0.0323∗ 0.0341∗

(0.0133) (0.0134)
Age = 21− 50 0.0142 0.0173

(0.0209) (0.0209)
Age > 50 0.0118 0.0132

(0.0241) (0.0241)
newmol−1 0.1331∗∗ 0.1329∗∗

(0.0058) (0.0058)
newmol−2 0.0921∗∗ 0.0922∗∗

(0.0056) (0.0056)
newmol−3 0.0407∗∗ 0.0405∗∗

(0.0042) (0.0042)
ln(atcmain)−1 −0.2170∗∗ −0.2147∗∗

(0.0175) (0.0174)
atcd−1 0.0028 0.0024

(0.0040) (0.0040)
Year FE Yes Yes
Year FE × IMR No Yes

Obs. 10834 10834
Firms 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with
5000 replications , otherwise they are firm-clustered robust.
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Table SM10: Relation between firm size (S) and products inflow rate. Sample of firms with variable
portfolio. First-stage results (see Table SM16). The endogenous variable is ln(K−1).

FD-IV FD-IV-ATT

ln(K−3) 0.0388∗∗ 0.0389∗∗

(0.0148) (0.0151)
ln(K−4) 0.0453∗∗ 0.0423∗∗

(0.0114) (0.0113)
ln(S−2) 0.0754∗∗ 0.0705∗∗

(0.0080) (0.0082)
ln(S−1) 0.1191∗∗ 0.1181∗∗

(0.0088) (0.0088)
Age = 11− 20 0.0323∗ 0.0341∗

(0.0133) (0.0134)
Age = 21− 50 0.0142 0.0173

(0.0209) (0.0209)
Age > 50 0.0118 0.0132

(0.0241) (0.0241)
newmol−1 0.1331∗∗ 0.1329∗∗

(0.0058) (0.0058)
newmol−2 0.0921∗∗ 0.0922∗∗

(0.0056) (0.0056)
newmol−3 0.0407∗∗ 0.0405∗∗

(0.0042) (0.0042)
ln(atcmain)−1 −0.2170∗∗ −0.2147∗∗

(0.0175) (0.0174)
atcd−1 0.0028 0.0024

(0.0040) (0.0040)
Year FE Yes Yes
Year FE × IMR No Yes

Obs. 10834 10834
Firms 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with
5000 replications , otherwise they are firm-clustered robust.

Table SM11: Size-Growth regressions. First-stage results (see Table SM17). The endogenous
variable is ln(K−1).

FD-IV FD-IV-ATT

ln(K−3) 0.0637∗∗ 0.0595∗∗

(0.0152) (0.0154)
ln(S−1) 0.1419∗∗ 0.1377∗∗

(0.0088) (0.0089)
Age = 11− 20 0.0318∗ 0.0361∗∗

(0.0135) (0.0136)
Age = 21− 50 0.0065 0.0127

(0.0214) (0.0213)
Age > 50 0.0029 0.0060

(0.0246) (0.0244)
newmol−1 0.1292∗∗ 0.1294∗∗

(0.0057) (0.0057)
newmol−2 0.0889∗∗ 0.0892∗∗

(0.0056) (0.0056)
newmol−3 0.0349∗∗ 0.0353∗∗

(0.0040) (0.0040)
ln(atcmain)−1 −0.2305∗∗ −0.2255∗∗

(0.0179) (0.0177)
atcd−1 0.0019 0.0014

(0.0040) (0.0040)
Year FE Yes Yes
Year FE × IMR No Yes

Obs. 10834 10834
Firms 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with
5000 replications , otherwise they are firm-clustered robust.
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Table SM12: Relation between firm size (S) and average sales ratio - new vs existing products.
Sample of firms with variable portfolio. First-stage results (see Table SM18). The endogenous variable
is ln(1 +Rin

−1).

FD-IV FD-IV-ATT

ln(1 +Rin
−2) −0.6347∗∗ −0.6348∗∗

(0.0157) (0.0157)
ln(1 +Rin

−3) −0.2938∗∗ −0.2937∗∗

(0.0116) (0.0116)
ln(S−1) 0.1111∗∗ 0.1118∗∗

(0.0118) (0.0119)
ln(K−1) −0.0081 −0.0045

(0.0211) (0.0214)
Age = 11− 20 −0.0098 −0.0104

(0.0169) (0.0170)
Age = 21− 50 −0.0342 −0.0349

(0.0300) (0.0301)
Age > 50 −0.0353 −0.0353

(0.0370) (0.0370)
kin (%) −0.0002 −0.0002

(0.0001) (0.0001)
kin−1 (%) 0.0003 0.0003

(0.0002) (0.0002)
kout (%) 0.0001 0.0001

(0.0002) (0.0002)
newmol −0.0073 −0.0076

(0.0078) (0.0078)
newmol−1 0.1493∗∗ 0.1486∗∗

(0.0104) (0.0104)
newmol−2 0.0725∗∗ 0.0721∗∗

(0.0084) (0.0084)
ln(atcmain)−1 −0.1279∗∗ −0.1285∗∗

(0.0364) (0.0364)
atcd−1 0.0562∗∗ 0.0562∗∗

(0.0101) (0.0101)
Year FE Yes Yes
Year FE × IMR No Yes

Obs. 10834 10834
Firms 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with
5000 replications , otherwise they are firm-clustered robust.
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Table SM13: Relation between firm size (S) and average sales ratio - old vs existing products.
Sample of firms with variable portfolio. First-stage results (see Table SM19). The endogenous variable
is ln(1 +Rout

−1 ).

FD-IV FD-IV-ATT

ln(1 +Rout
−2 ) −0.6821∗∗ −0.6800∗∗

(0.0218) (0.0218)
ln(1 +Rout

−3 ) −0.3496∗∗ −0.3482∗∗

(0.0232) (0.0232)
ln(S−1) −0.0446∗∗ −0.0451∗∗

(0.0071) (0.0072)
ln(K−1) −0.0462∗∗ −0.0520∗∗

(0.0107) (0.0106)
Age = 11− 20 0.0115 0.0124

(0.0081) (0.0080)
Age = 21− 50 0.0103 0.0118

(0.0136) (0.0136)
Age > 50 0.0055 0.0072

(0.0180) (0.0180)
kin (%) −0.0002∗∗ −0.0002∗∗

(0.0001) (0.0001)
kin−1 (%) 0.0000 0.0000

(0.0000) (0.0000)
kout (%) −0.0010∗∗ −0.0010∗∗

(0.0001) (0.0001)
newmol 0.0005 0.0006

(0.0028) (0.0028)
newmol−1 0.0042 0.0048

(0.0032) (0.0032)
newmol−2 0.0044 0.0048

(0.0027) (0.0026)
ln(atcmain)−1 0.0757∗∗ 0.0756∗∗

(0.0132) (0.0131)
atcd−1 0.0185∗∗ 0.0183∗∗

(0.0041) (0.0041)
Year FE Yes Yes
Year FE × IMR No Yes

Obs. 10834 10834
Firms 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with
5000 replications , otherwise they are firm-clustered robust.
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Table SM14: Relation between firm size (S) and sales growth rate of stable products. Sample
of firms with variable portfolio. First-stage results (see Table SM20). The endogenous variable is
ln(S−1).

FD-IV FD-IV-ATT

ln(S−2) 0.2839∗∗ 0.2655∗∗

(0.0185) (0.0190)
ln(S−3) 0.0897∗∗ 0.0735∗∗

(0.0176) (0.0174)
Age = 11− 20 0.0122 0.0176

(0.0240) (0.0240)
Age = 21− 50 −0.0080 −0.0011

(0.0481) (0.0476)
Age > 50 0.0061 0.0055

(0.0519) (0.0515)
kin (%) −0.0004∗∗ −0.0004∗∗

(0.0002) (0.0002)
kin−1 (%) 0.0000 −0.0000

(0.0002) (0.0002)
kout (%) −0.0006 −0.0011∗∗

(0.0004) (0.0004)
newmol −0.0034 −0.0036

(0.0072) (0.0071)
newmol−1 0.0273∗∗ 0.0258∗∗

(0.0086) (0.0085)
newmol−2 0.0458∗∗ 0.0439∗∗

(0.0072) (0.0071)
ln(atcmain)−1 0.0549 0.0705

(0.0375) (0.0371)
atcd−1 −0.0258∗ −0.0258∗

(0.0104) (0.0104)
Year FE Yes Yes
Year FE × IMR No Yes

Obs. 10834 10834
Firms 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with
5000 replications , otherwise they are firm-clustered robust.
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SM4. Additional results
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Table SM16: Relation between firm size (S) and products inflow rate. Sample of firms with variable
portfolio. Dependent variable is ln(1 + kin)

OLS FE FD-2S FD-GMM FD-2S-ATT FD-GMM-ATT

ln(S−1) 0.0039∗∗ 0.0207∗∗ −0.0159 −0.0119 −0.0151 −0.0109
(0.0006) (0.0039) (0.0107) (0.0103) (0.0112) (0.0110)

ln(K−1) −0.0162∗∗ −0.1244∗∗ −0.0220 −0.0405 −0.0261 −0.0469
(0.0020) (0.0123) (0.0563) (0.0548) (0.0626) (0.0628)

Age = 11− 20 −0.0221∗∗ −0.0037 −0.0128 −0.0125 −0.0122 −0.0119
(0.0059) (0.0089) (0.0123) (0.0123) (0.0126) (0.0129)

Age = 21− 50 −0.0318∗∗ −0.0066 −0.0028 −0.0026 −0.0031 −0.0030
(0.0054) (0.0134) (0.0165) (0.0165) (0.0167) (0.0173)

Age > 50 −0.0422∗∗ −0.0120 −0.0051 −0.0036 −0.0053 −0.0040
(0.0054) (0.0159) (0.0194) (0.0194) (0.0195) (0.0196)

newmol−1 0.0287∗∗ −0.0062∗ −0.0994∗∗ −0.0961∗∗ −0.0989∗∗ −0.0953∗∗

(0.0028) (0.0031) (0.0091) (0.0088) (0.0098) (0.0096)
newmol−2 0.0157∗∗ −0.0103∗∗ −0.0615∗∗ −0.0602∗∗ −0.0613∗∗ −0.0598∗∗

(0.0029) (0.0031) (0.0063) (0.0062) (0.0068) (0.0067)
newmol−3 0.0084∗∗ −0.0079∗∗ −0.0249∗∗ −0.0242∗∗ −0.0247∗∗ −0.0239∗∗

(0.0027) (0.0029) (0.0037) (0.0036) (0.0039) (0.0038)
ln(atcmain)−1 −0.0004 −0.0058 0.0606∗∗ 0.0556∗∗ 0.0593∗∗ 0.0538∗∗

(0.0022) (0.0067) (0.0172) (0.0169) (0.0182) (0.0178)
atcd−1 0.0032 −0.0044 −0.0060 −0.0058 −0.0060 −0.0058

(0.0031) (0.0033) (0.0034) (0.0034) (0.0034) (0.0033)
Year FE Yes Yes Yes Yes Yes Yes
Year FE × IMR No No No No Yes Yes

Obs. 10834 10834 10834 10834 10834 10834
Firms 1733 1733 1733 1733 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with 5000
replications , otherwise they are firm-clustered robust. In 2S and GMM models the variable ln(K−1) is instrumented
with the following IVs: ∆ln(K−3), ∆ln(K−4) ∆ln(S−2).

Table SM17: Relation between firm size (S) and products outflow rate. Sample of firms with
variable portfolio. Dependent variable is ln(1 + kout)

OLS FE FD-2S FD-GMM FD-2S-ATT FD-GMM-ATT

ln(S−1) −0.0095∗∗ −0.0375∗∗ −0.0093 −0.0093 −0.0069 −0.0069
(0.0005) (0.0030) (0.0161) (0.0161) (0.0230) (0.0230)

ln(K−1) 0.0304∗∗ 0.1529∗∗ 0.0541 0.0541 0.0264 0.0264
(0.0012) (0.0067) (0.1028) (0.1028) (0.1560) (0.1560)

Age = 11− 20 −0.0011 −0.0134∗ −0.0035 −0.0035 −0.0008 −0.0008
(0.0038) (0.0062) (0.0092) (0.0092) (0.0111) (0.0111)

Age = 21− 50 0.0042 −0.0158 −0.0111 −0.0111 −0.0086 −0.0086
(0.0034) (0.0105) (0.0149) (0.0149) (0.0161) (0.0161)

Age > 50 0.0082∗ −0.0254∗ −0.0126 −0.0126 −0.0114 −0.0114
(0.0036) (0.0124) (0.0163) (0.0163) (0.0174) (0.0174)

newmol−1 −0.0103∗∗ −0.0187∗∗ −0.0051 −0.0051 −0.0014 −0.0014
(0.0020) (0.0022) (0.0132) (0.0132) (0.0200) (0.0200)

newmol−2 −0.0021 −0.0108∗∗ −0.0021 −0.0021 0.0005 0.0005
(0.0021) (0.0024) (0.0092) (0.0092) (0.0136) (0.0136)

newmol−3 −0.0008 −0.0104∗∗ −0.0035 −0.0035 −0.0024 −0.0024
(0.0022) (0.0021) (0.0046) (0.0046) (0.0065) (0.0065)

ln(atcmain)−1 0.0355∗∗ 0.0633∗∗ −0.0001 −0.0001 −0.0047 −0.0047
(0.0022) (0.0065) (0.0257) (0.0257) (0.0375) (0.0375)

atcd−1 0.0288∗∗ 0.0142∗∗ 0.0030 0.0030 0.0028 0.0028
(0.0032) (0.0030) (0.0032) (0.0032) (0.0034) (0.0034)

Year FE Yes Yes Yes Yes Yes Yes
Year FE × IMR No No No No Yes Yes

Obs. 10834 10834 10834 10834 10834 10834
Firms 1733 1733 1733 1733 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with 5000
replications , otherwise they are firm-clustered robust. In 2S and GMM models the variable ln(K−1) is instrumented
with the following IVs: ∆ln(K−3) .
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Table SM18: Relation between firm size (S) and average sales ratio - new vs existing products.
Sample of firms with variable portfolio. Dependent variable is ln(1 +Rin)

OLS FE FD-2SLS FD-GMM FD-2SLS-ATTFD-GMM-ATT

ln(1 +Rin
−1) 0.1267∗∗ −0.1063∗∗ −0.0132 −0.0015 −0.0140 −0.0022

(0.0168) (0.0159) (0.0311) (0.0294) (0.0320) (0.0280)
ln(S−1) −0.0048∗∗ −0.0642∗∗ −0.1290∗∗ −0.1288∗∗ −0.1309∗∗ −0.1307∗∗

(0.0011) (0.0084) (0.0133) (0.0133) (0.0137) (0.0138)
ln(K−1) 0.0201∗∗ 0.0471∗∗ 0.0866∗∗ 0.0875∗∗ 0.0743∗∗ 0.0750∗∗

(0.0040) (0.0143) (0.0233) (0.0233) (0.0250) (0.0250)
Age = 11− 20 −0.0061 −0.0021 −0.0077 −0.0082 −0.0058 −0.0063

(0.0091) (0.0142) (0.0197) (0.0197) (0.0199) (0.0203)
Age = 21− 50 0.0015 0.0082 −0.0060 −0.0039 −0.0038 −0.0016

(0.0082) (0.0339) (0.0332) (0.0332) (0.0338) (0.0334)
Age > 50 −0.0383∗∗ 0.0333 −0.0131 −0.0076 −0.0123 −0.0067

(0.0090) (0.0390) (0.0434) (0.0432) (0.0435) (0.0429)
kin (%) 0.0009∗ 0.0007∗ 0.0007∗ 0.0007∗ 0.0007∗ 0.0007∗

(0.0004) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
kin−1 (%) 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
kout (%) 0.0001 −0.0002 −0.0005 −0.0005 −0.0006 −0.0006∗

(0.0002) (0.0002) (0.0003) (0.0003) (0.0003) (0.0003)
newmol 0.1911∗∗ 0.1734∗∗ 0.1728∗∗ 0.1728∗∗ 0.1731∗∗ 0.1731∗∗

(0.0107) (0.0112) (0.0123) (0.0123) (0.0124) (0.0124)
newmol−1 −0.0073 0.0187∗ 0.0072 0.0044 0.0083 0.0055

(0.0084) (0.0088) (0.0105) (0.0102) (0.0105) (0.0097)
newmol−2 0.0037 −0.0060 0.0052 0.0049 0.0058 0.0056

(0.0074) (0.0080) (0.0092) (0.0092) (0.0092) (0.0091)
ln(atcmain)−1 −0.0280∗∗ −0.0120 0.1232∗∗ 0.1299∗∗ 0.1239∗∗ 0.1306∗∗

(0.0087) (0.0246) (0.0399) (0.0395) (0.0404) (0.0353)
atcd−1 −0.0059 −0.0285∗∗ −0.0498∗∗ −0.0483∗∗ −0.0499∗∗ −0.0484∗∗

(0.0093) (0.0108) (0.0117) (0.0116) (0.0120) (0.0118)
Year FE Yes Yes Yes Yes Yes Yes
Year FE × IMR No No No No Yes Yes

Obs. 10834 10834 10834 10834 10834 10834
Firms 1733 1733 1733 1733 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with
5000 replications , otherwise they are firm-clustered robust. In 2SLS and GMM models the variable ln(1 + Rin−1) is

instrumented with the following IVs: ∆ln(1 +Rin−2), ∆ln(1 +Rin−3) .
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Table SM19: Relation between firm size (S) and average sales ratio - old vs existing products.
Sample of firms with variable portfolio. Dependent variable is ln(1 +Rout)

OLS FE FD-2S FD-GMM FD-2S-ATT FD-GMM-ATT

ln(1 +Rout
−1 ) 0.0432∗∗ −0.1265∗∗ 0.0006 −0.0053 0.0007 −0.0055

(0.0134) (0.0123) (0.0274) (0.0246) (0.0272) (0.0263)
ln(S−1) −0.0040∗∗ −0.0051 0.0144 0.0148∗ 0.0129 0.0133

(0.0005) (0.0036) (0.0074) (0.0074) (0.0073) (0.0073)
ln(K−1) 0.0049∗∗ −0.0020 −0.0175 −0.0185 −0.0245∗ −0.0256∗

(0.0015) (0.0060) (0.0103) (0.0101) (0.0104) (0.0102)
Age = 11− 20 −0.0030 0.0019 0.0092 0.0099 0.0108 0.0115

(0.0039) (0.0065) (0.0115) (0.0114) (0.0113) (0.0115)
Age = 21− 50 −0.0063 −0.0018 0.0109 0.0115 0.0129 0.0134

(0.0033) (0.0097) (0.0149) (0.0149) (0.0147) (0.0149)
Age > 50 −0.0139∗∗ −0.0056 0.0076 0.0082 0.0080 0.0086

(0.0036) (0.0127) (0.0180) (0.0180) (0.0180) (0.0182)
kin (%) 0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
kin−1 (%) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
kout (%) 0.0031∗∗ 0.0030∗∗ 0.0033∗∗ 0.0033∗∗ 0.0033∗∗ 0.0033∗∗

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
newmol −0.0051∗ −0.0015 −0.0021 −0.0020 −0.0020 −0.0019

(0.0023) (0.0029) (0.0031) (0.0031) (0.0031) (0.0031)
newmol−1 −0.0044 −0.0015 −0.0018 −0.0019 −0.0013 −0.0014

(0.0026) (0.0026) (0.0029) (0.0029) (0.0029) (0.0029)
newmol−2 −0.0035 −0.0000 −0.0009 −0.0007 −0.0006 −0.0004

(0.0024) (0.0029) (0.0037) (0.0036) (0.0037) (0.0037)
ln(atcmain)−1 −0.0194∗∗ −0.0447∗∗ −0.1020∗∗ −0.1014∗∗ −0.1011∗∗ −0.1004∗∗

(0.0026) (0.0096) (0.0149) (0.0148) (0.0148) (0.0147)
atcd−1 0.0132∗∗ 0.0049 −0.0097 −0.0096 −0.0096 −0.0095

(0.0038) (0.0044) (0.0055) (0.0055) (0.0055) (0.0053)
Year FE Yes Yes Yes Yes Yes Yes
Year FE × IMR No No No No Yes Yes

Obs. 10834 10834 10834 10834 10834 10834
Firms 1733 1733 1733 1733 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with 5000
replications , otherwise they are firm-clustered robust. In 2S and GMM models the variable ln(1+Rout−1 ) is instrumented

with the following IVs: ∆ln(1 +Rout−2 ), ∆ln(1 +Rout−3 ) .
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Table SM20: Relation between firm size (S) and sales growth rate of stable products. Sample of
firms with variable portfolio. Dependent variable is gS∗

OLS FE FD-2S FD-GMM FD-2S-ATT FD-GMM-ATT

ln(S−1) 0.0209∗∗ −0.1698∗∗ −0.1965∗∗ −0.2006∗∗ −0.3162∗∗ −0.3301∗∗

(0.0019) (0.0139) (0.0530) (0.0511) (0.0552) (0.0542)
Age = 11− 20 −0.0390∗ −0.0618∗ −0.0642∗ −0.0645∗ −0.0499 −0.0510

(0.0169) (0.0295) (0.0318) (0.0318) (0.0316) (0.0316)
Age = 21− 50 −0.0107 −0.0536 −0.0629 −0.0636 −0.0463 −0.0496

(0.0150) (0.0429) (0.0528) (0.0527) (0.0508) (0.0488)
Age > 50 −0.0481∗∗ −0.0272 −0.0754 −0.0760 −0.0630 −0.0658

(0.0156) (0.0492) (0.0592) (0.0592) (0.0574) (0.0553)
kin (%) −0.0001 −0.0004∗ −0.0004 −0.0004∗ −0.0005∗ −0.0005∗

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
kin−1 (%) 0.0013∗∗ 0.0010∗ 0.0009∗ 0.0009∗ 0.0009∗ 0.0009∗

(0.0005) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004)
kout (%) −0.0036∗∗ 0.0000 0.0009 0.0009 0.0002 0.0001

(0.0005) (0.0006) (0.0006) (0.0006) (0.0006) (0.0005)
newmol −0.0007 −0.0039 −0.0052 −0.0053 −0.0042 −0.0044

(0.0086) (0.0095) (0.0091) (0.0091) (0.0090) (0.0089)
newmol−1 0.0528∗∗ 0.0613∗∗ 0.0520∗∗ 0.0520∗∗ 0.0553∗∗ 0.0553∗∗

(0.0105) (0.0119) (0.0117) (0.0117) (0.0116) (0.0114)
newmol−2 0.0138 0.0305∗∗ 0.0340∗∗ 0.0337∗∗ 0.0385∗∗ 0.0377∗∗

(0.0077) (0.0091) (0.0091) (0.0091) (0.0089) (0.0088)
ln(atcmain)−1 0.0027 −0.1010∗∗ −0.2580∗∗ −0.2568∗∗ −0.2347∗∗ −0.2310∗∗

(0.0071) (0.0245) (0.0365) (0.0363) (0.0345) (0.0331)
atcd−1 0.0416∗∗ 0.0384∗∗ 0.0443∗∗ 0.0447∗∗ 0.0396∗∗ 0.0404∗∗

(0.0122) (0.0128) (0.0131) (0.0130) (0.0122) (0.0120)
Year FE Yes Yes Yes Yes Yes Yes
Year FE × IMR No No No No Yes Yes

Obs. 10834 10834 10834 10834 10834 10834
Firms 1733 1733 1733 1733 1733 1733

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with 5000
replications , otherwise they are firm-clustered robust. In 2S and GMM models the variable ln(S−1) is instrumented
with the following IVs: ∆ln(S−2), ∆ln(S−3) .
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Table SM21: Relation between firm size (S) and sales growth rate of stable products (observed in
all periods). Sample of firms with variable portfolio. Dependent variable is gS∗ , where product flows
have been removed from S∗. S∗ is also decomposed between products exposed and non-exposed to
cannibalization. Exposure is defined by same ATC3

Exposed & non-exposed Exposed Non-exposed

FD-GMM FD-GMM-ATT FD-GMM FD-GMM-ATT FD-GMM FD-GMM-ATT

ln(S−1) −0.1315 −0.2101∗ −0.4567∗∗ −0.4630∗∗ −0.0309 −0.1000
(0.0877) (0.1025) (0.1658) (0.1652) (0.0888) (0.1052)

Age = 11− 20 −0.0376 −0.0309 0.0165 0.0193 −0.0664 −0.0587
(0.0574) (0.0567) (0.0994) (0.0994) (0.0514) (0.0505)

Age = 21− 50 −0.0087 −0.0028 −0.0006 0.0040 −0.0338 −0.0272
(0.0701) (0.0692) (0.1186) (0.1195) (0.0683) (0.0668)

Age > 50 −0.0399 −0.0355 0.0367 0.0375 −0.0646 −0.0585
(0.0761) (0.0752) (0.1268) (0.1281) (0.0749) (0.0734)

kin (%) −0.0002 −0.0002 −0.0001 −0.0000 −0.0001 −0.0001
(0.0002) (0.0002) (0.0006) (0.0006) (0.0002) (0.0002)

kin−1 (%) −0.0002 −0.0003 −0.0004 −0.0004 −0.0003 −0.0004
(0.0002) (0.0002) (0.0004) (0.0004) (0.0002) (0.0003)

kout (%) −0.0006 −0.0012∗ 0.0008 0.0004 −0.0011 −0.0015∗

(0.0006) (0.0006) (0.0015) (0.0015) (0.0006) (0.0006)
newmol 0.0220 0.0228 0.0177 0.0185 0.0232 0.0238∗

(0.0142) (0.0141) (0.0212) (0.0213) (0.0119) (0.0117)
newmol−1 0.0187 0.0212 0.0199 0.0202 0.0126 0.0154

(0.0153) (0.0153) (0.0195) (0.0195) (0.0153) (0.0153)
newmol−2 0.0317∗ 0.0350∗ 0.0288 0.0289 0.0213 0.0245

(0.0141) (0.0141) (0.0217) (0.0218) (0.0133) (0.0133)
ln(atcmain)−1 −0.0897 −0.0754 0.0510 0.0517 −0.0748 −0.0639

(0.0473) (0.0464) (0.0659) (0.0658) (0.0502) (0.0494)
atcd−1 0.0374∗ 0.0347∗ 0.0096 0.0099 0.0396∗ 0.0370∗

(0.0172) (0.0169) (0.0216) (0.0216) (0.0166) (0.0163)
Year FE Yes Yes Yes Yes Yes Yes
Year FE × IMR No Yes No Yes No Yes

Obs. 9984 9984 4840 4840 9449 9449
Firms 1534 1534 700 700 1453 1453

Notes: * significant 5%, ** significant 1%. In models correcting for attrition, standard errors are bootstrapped with
5000 replications , otherwise they are firm-clustered robust. The endogenous variable is instrumented with ∆ln(S−2)
in all cases. See Table SM32 for diagnostics test.

Figure SM5: Cannibalization effects between firm’s new and existing products in same ATC3 class.

(a) Large firms
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SM5. Diagnostic tests of IV model estimates

Table SM22: Diagnostic tests of FD-GMM-ATT estimates of size-growth equations (see Table 4)

Stable portfolio Variable portfolio
Excluded Instruments: ∆ln(S−2), ∆ln(S−3), ∆ln(S−4) ∆ln(S−2), ∆ln(S−3), ∆ln(S−4)

1 Attrition: χ2(7) =23.3 (p =0.002) χ2(7) =36.6 (p =0.000)
2 Autocorrelation

AR(1): z =-3.9 (p =0.000) z =-5 (p =0.000)
AR(2): z =0.1 (p =0.902) z =-1.3 (p =0.191)
AR(3): z =0.6 (p =0.527) z =-1.6 (p =0.112)

3 IVs relevance (1st stage): F (3, 439) =11.9 (p =0.000) F (3, 1732) =108.9 (p =0.000)
4 IVs underidentification (all) χ2(3) =22.4 (p =0.000) χ2(3) =175 (p =0.000)
5 IVs underidentification

IV: ∆ln(S−2) χ2(1) =13.9 (p =0.000) χ2(1) =151.4 (p =0.000)
IV: ∆ln(S−3) χ2(1) =9.7 (p =0.002) χ2(1) =11.4 (p =0.001)
IV: ∆ln(S−4) χ2(1) =0.7 (p =0.396) χ2(1) =5.6 (p =0.018)

6 IVs overidentification (all) χ2(2) =0.3 (p =0.844) χ2(2) =3.6 (p =0.169)
7 IVs overidentification

IV: ∆ln(S−2) χ2(1) =0.3 (p =0.569) χ2(1) =2.1 (p =0.151)
IV: ∆ln(S−3) χ2(1) =0.3 (p =0.586) χ2(1) =0.1 (p =0.776)
IV: ∆ln(S−4) χ2(1) =0.000 (p =0.888) χ2(1) =3.2 (p =0.071)

Notes: See Notes to Table 3.

Table SM23: Diagnostic tests of FD-GMM-ATT estimates of size-growth equations (see Table SM15)

Stable portfolio Variable portfolio
Excluded Instruments: ∆ln(S−2), ∆ln(S−3) ∆ln(S−2), ∆ln(S−3)

1 Attrition: χ2(7) =22 (p =0.003) χ2(7) =40.1 (p =0.000)
2 Autocorrelation

AR(1): z =-3.5 (p =0.000) z =-4.5 (p =0.000)
AR(2): z =0.1 (p =0.915) z =-1.1 (p =0.268)
AR(3): z =0.6 (p =0.526) z =-1.5 (p =0.144)

3 IVs relevance (1st stage): F (2, 439) =15.5 (p =0.000) F (2, 1732) =142.6 (p =0.000)
4 IVs underidentification (all) χ2(2) =20.7 (p =0.000) χ2(2) =163.3 (p =0.000)
5 IVs underidentification

IV: ∆ln(S−2) χ2(1) =14.7 (p =0.000) χ2(1) =160 (p =0.000)
IV: ∆ln(S−3) χ2(1) =11.2 (p =0.001) χ2(1) =17 (p =0.000)

6 IVs overidentification (all) χ2(1) =0.3 (p =0.573) χ2(1) =0.3 (p =0.577)
7 IVs overidentification

IV: ∆ln(S−2) . .
IV: ∆ln(S−3) . .

Notes: See Notes to Table 3. Remark that the overidentification test for individual IVs cannot be performed in this
case, because with only two instruments the equation without the tested instrument is just-identified.
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Table SM24: Diagnostic tests of FD-GMM estimates of size-growth equations in K (see Table 6)

Excluded Instruments (3): ∆ln(K−3), ∆ln(K−4) ∆ln(S−2)
1 Attrition: χ2(7) =6.3 (p =0.506)
2 Autocorrelation

AR(1): z =-5.5 (p =0.000)
AR(2): z =-1.3 (p =0.188)
AR(3): z =-1.6 (p =0.109)

3 IVs relevance (1st stage): F (3, 1732) =45.1 (p =0.000)
4 IVs underidentification (all) χ2(3) =105.3 (p =0.000)
5 IVs underidentification

IV: ∆ln(K−3) χ2(1) =7.3 (p =0.007)
IV: ∆ln(K−4) χ2(1) =16 (p =0.000)
IV: ∆ln(S−2) χ2(1) =74.5 (p =0.000)

6 IVs overidentification (all) χ2(2) =2.6 (p =0.27)
7 IVs overidentification

IV: ∆ln(K−3) χ2(1) =0.4 (p =0.544)
IV: ∆ln(K−4) χ2(1) =1.9 (p =0.168)
IV: ∆ln(S−2) χ2(1) =2.3 (p =0.133)

Notes: See Notes to Table 3.

Table SM25: Diagnostic tests of FD-GMM estimates of models for inflow rate (see Table SM16)

Excluded Instruments (3): ∆ln(K−3), ∆ln(K−4) ∆ln(S−2)
1 Attrition: χ2(7) =5.1 (p =0.642)
2 Autocorrelation

AR(1): z =-7.8 (p =0.000)
AR(2): z =-0.3 (p =0.73)
AR(3): z =-1.6 (p =0.121)

3 IVs relevance (1st stage): F (3, 1732) =45.1 (p =0.000)
4 IVs underidentification (all) χ2(3) =105.3 (p =0.000)
5 IVs underidentification

IV: ∆ln(K−3) χ2(1) =7.3 (p =0.007)
IV: ∆ln(K−4) χ2(1) =16 (p =0.000)
IV: ∆ln(S−2) χ2(1) =74.5 (p =0.000)

6 IVs overidentification (all) χ2(2) =2.1 (p =0.345)
7 IVs overidentification

IV: ∆ln(K−3) χ2(1) =2 (p =0.162)
IV: ∆ln(K−4) χ2(1) =0.4 (p =0.55)
IV: ∆ln(S−2) χ2(1) =1.8 (p =0.177)

Notes: See Notes to Table 3.

Table SM26: Diagnostic tests of FD-GMM estimates of models for outflow rate (see Table SM17)

Excluded Instruments (1): ∆ln(K−3)
1 Attrition: χ2(7) =4.5 (p =0.715)
2 Autocorrelation

AR(1): z =-5.3 (p =0.000)
AR(2): z =-0.8 (p =0.422)
AR(3): z =-1.6 (p =0.111)

3 IVs relevance (1st stage): F (1, 1732) =17.5 (p =0.000)
4 IVs underidentification (all) χ2(1) =18.8 (p =0.000)
5 IVs underidentification

IV: ∆ln(K−3) .
6 IVs overidentification (all) .
7 IVs overidentification

IV: ∆ln(K−3) .

Notes: See Notes to Table 3. Remark that the overidentification test cannot be performed in this case, because the
model is just-identified.
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Table SM27: Diagnostic tests of FD-GMM estimates of models for average sales ratio - new vs
existing products (see Table SM18)

Excluded Instruments (2): ∆ln(1 +Rin
−2), ∆ln(1 +Rin

−3)
1 Attrition: χ2(7) =13.6 (p =0.06)
2 Autocorrelation

AR(1): z =-12.3 (p =0.000)
AR(2): z =0.000 (p =0.993)
AR(3): z =-0.4 (p =0.681)

3 IVs relevance (1st stage): F (2, 1732) =937.8 (p =0.000)
4 IVs underidentification (all) χ2(2) =217.9 (p =0.000)
5 IVs underidentification

IV: ∆ln(1 +Rin
−2) χ2(1) =204.6 (p =0.000)

IV: ∆ln(1 +Rin
−3) χ2(1) =192.9 (p =0.000)

6 IVs overidentification (all) χ2(1) =1.4 (p =0.242)
7 IVs overidentification

IV: ∆ln(1 +Rin
−2) .

IV: ∆ln(1 +Rin
−3) .

Notes: See Notes to Table 3. Remark that the overidentification test for individual IVs cannot be performed in this
case, because with only two instruments the equation without the tested instrument is just-identified.
Table SM28: Diagnostic tests of FD-GMM estimates of models for average sales ratio - old vs
existing products (see Table SM19)

Excluded Instruments (2): ∆ln(1 +Rout
−2 ), ∆ln(1 +Rout

−3 )
1 Attrition: χ2(7) =13.8 (p =0.055)
2 Autocorrelation

AR(1): z =-6.8 (p =0.000)
AR(2): z =-1.4 (p =0.176)
AR(3): z =0.8 (p =0.419)

3 IVs relevance (1st stage): F (2, 1732) =491.2 (p =0.000)
4 IVs underidentification (all) χ2(2) =69.9 (p =0.000)
5 IVs underidentification

IV: ∆ln(1 +Rout
−2 ) χ2(1) =69.2 (p =0.000)

IV: ∆ln(1 +Rout
−3 ) χ2(1) =54.1 (p =0.000)

6 IVs overidentification (all) χ2(1) =0.2 (p =0.624)
7 IVs overidentification

IV: ∆ln(1 +Rout
−2 ) .

IV: ∆ln(1 +Rout
−3 ) .

Notes: See Notes to Table 3. Remark that the overidentification test for individual IVs cannot be performed in this
case, because with only two instruments the equation without the tested instrument is just-identified.
Table SM29: Diagnostic tests of FD-GMM-ATT estimates of models for sales growth rate of stable
products (see Table SM20)

Excluded Instruments (2): ∆ln(S−2), ∆ln(S−3)
1 Attrition: χ2(7) =52.5 (p =0.000)
2 Autocorrelation

AR(1): z =-5.9 (p =0.000)
AR(2): z =0.9 (p =0.392)
AR(3): z =-1.5 (p =0.141)

3 IVs relevance (1st stage): F (2, 1732) =142.6 (p =0.000)
4 IVs underidentification (all) χ2(2) =163.3 (p =0.000)
5 IVs underidentification

IV: ∆ln(S−2) χ2(1) =160 (p =0.000)
IV: ∆ln(S−3) χ2(1) =17 (p =0.000)

6 IVs overidentification (all) χ2(1) =0.7 (p =0.399)
7 IVs overidentification

IV: ∆ln(S−2) .
IV: ∆ln(S−3) .

Notes: See Notes to Table 3. Remark that the overidentification test for individual IVs cannot be performed in this
case, because with only two instruments the equation without the tested instrument is just-identified.
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Table SM30: Diagnostic tests of model estimates for average sales ratio - new vs existing products
(see Table 9)

NMC NMC & EMC-EMKT-BRN
Estimator: FD-GMM FD-GMM-ATT
Excluded Instruments: ∆ln(1 +Rin

−2), ∆ln(1 +Rin
−3) ∆ln(1 +Rin

−2), ∆ln(1 +Rin
−3)

1 Attrition: χ2(7) =7.9 (p =0.343) χ2(7) =20.9 (p =0.004)
2 Autocorrelation

AR(1): z =-7.5 (p =0.000) z =-10.2 (p =0.000)
AR(2): z =1 (p =0.334) z =1.2 (p =0.214)
AR(3): z =-0.2 (p =0.867) z =-1.5 (p =0.122)

3 IVs relevance (1st stage): F (2, 1732) =445.4 (p =0.000) F (2, 1732) =922.8 (p =0.000)
4 IVs underidentification (all) χ2(2) =67.4 (p =0.000) χ2(2) =142.5 (p =0.000)
5 IVs underidentification

IV: ∆ln(1 +Rin
−2) χ2(1) =66.8 (p =0.000) χ2(1) =141.3 (p =0.000)

IV: ∆ln(1 +Rin
−3) χ2(1) =63 (p =0.000) χ2(1) =128.4 (p =0.000)

6 IVs overidentification (all) χ2(1) =2.3 (p =0.132) χ2(1) =0.5 (p =0.487)
7 IVs overidentification

IV: ∆ln(1 +Rin
−2) . .

IV: ∆ln(1 +Rin
−3) . .

Notes: See Notes to Table 3. Remark that the overidentification test for individual IVs cannot be performed in this
case, because with only two instruments the equation without the tested instrument is just-identified.
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SM6. Derivation of Equation 6

Equation 6 is derived as follows:

gS =ln
(
S
)
− ln

(
S−1

)
= ln

(
S/K

S−1/K−1

)
= ln (S/S−1)− gK =

= ln

(
(S−1 − Sout) egS∗ + Sin

S−1

)
− gK = ln

(
egS∗ +

Sin

S−1
− Sout

S−1
egS∗

)
− gK

= ln

(
egS∗ +

Sin

S−1

Kin

Kin

K−1

K−1
− Sout

S−1

Kout

Kout

K−1

K−1
egS∗

)
− gK

= ln
(
egs∗ +Rinκin −Routκoutegs∗

)
− gK ,

where we made use of the following equality: S = S∗ +Sin = S∗1egS∗ +Sin = (S−1−Sout)egS∗ +Sin.
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