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Abstract

Due to the interconnectedness of financial entities, estimating certain key properties of a complex
financial system, including the implied level of systemic risk, requires detailed information about the
structure of the underlying network of dependencies. However, since data about financial linkages are
typically subject to confidentiality, network reconstruction techniques become necessary to infer both
the presence of connections and their intensity. Recently, several ‘horse races’ have been conducted to
compare the performance of the available financial network reconstruction methods. These
comparisons were based on arbitrarily chosen metrics of similarity between the real network and its
reconstructed versions. Here we establish a generalized maximum-likelihood approach to rigorously
define and compare weighted reconstruction methods. Our generalization uses the maximization ofa
certain conditional entropy to solve the problem represented by the fact that the density-dependent
constraints required to reliably reconstruct the network are typically unobserved and, therefore,
cannot enter directly, as sufficient statistics, in the likelihood function. The resulting approach admits
as input any reconstruction method for the purely binary topology and, conditionally on the latter,
exploits the available partial information to infer link weights. We find that the most reliable method is
obtained by ‘dressing’ the best-performing binary method with an exponential distribution of link
weights having a properly density-corrected and link-specific mean value and propose two safe (i.e.
unbiased in the sense of maximum conditional entropy) variants of it. While the one named CReM,, is
perfectly general (as a particular case, it can place optimal weights on a network if the bare topology is
known), the one named CReMp is recommended both in case of full uncertainty about the network
topology and if the existence of some links is certain. In these cases, the CReMp s faster and reproduces
empirical networks with highest generalized likelihood among the considered competing models.

1. Introduction

Network reconstruction is an active field of research within the broader field of complex networks. In general,
network reconstruction consists in facing the double challenge of inferring both the bare topology (i.e. the
existence or absence of links) and the magnitude (i.e. the weight) of the existing links of a network for which only
aggregate or partial structural information is known. These two pieces of the puzzle (i.e. the ‘topology’ and the
‘weights’) represent equally important targets of the reconstruction problem, although reaching those targets
may require very different strategies. In general, the available pieces of information represent the constraints
guiding the entire reconstruction procedure. Depending on the nature of the available constraints, different
reconstruction scenarios materialize. The scenario considered in this paper is the one that is recurrently
encountered in the study of financial and economic networks [ 1, 2].

Indeed, financial networks are a class of networks for which the reconstruction challenge is particularly
important. The estimation of systemic risk, the simulation of financial contagion and the ‘stress testing’ of a
financial network in principle require the complete knowledge of the underlying network structure. If the
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description of this structure is naively simplified or reduced, then the outcome of those stress tests becomes
unreliable when taken as a proxy of what would happen on the real network in the same situation. This may
imply a severe underestimation of the level of systemic risk, as research conducted in the aftermath of the
20072008 crisis showed. In the typical situation for financial networks, the total number N of nodes (e.g. the
number of banks in a given network of interbank lending) is known, but the number, intensity and position of
the links among those nodes is unknown because of confidentiality issues. Generally, one has access only to
node-specific information that is publicly available. For instance, from publicly reported balance sheets one
knows the so-called ‘total assets’ (total value of what a bank owns, including what it lent out to other banks in the
network) and ‘total liabilities’ (total value of what a bank owes to the external world, including what it borrowed
from other banks in the network) of each bank in an interbank system. Similar considerations apply to inter-firm
networks, where links represent typically unobservable individual transactions while the total purchases and
total sales of each of the firms in the system considered are more easily accessible. One more example, which is
relevant not strictly for the reconstruction problem but rather from a modeling point of view, is that of the
international trade network, where one would like to obtain a good model of international trade flows from
country-specific aggregate quantities such as the total imports and total exports of each country.

In all the examples mentioned above, the pieces of node-specific information typically represent a good
proxy of the margins, i.e. the sums along columns and rows, of the weighted adjacency matrix W* of the (in
general directed) network, whose entry mf quantifies the magnitude of the link existing from node i to node j

(including m;!‘ = 0Oifnolinkis there). In the language of network science, these two margins are called the out-

strength siO“t* =y jzimj‘ and the in-strength s,-in* = jiiw;f of node i, where the asterisk indicates the ‘true’ value,
i.e. the value measured on the true network W, of those quantities. In general, one assumes that the full matrix
W™ itself is unobservable, while si"“‘*
The N-dimensional vectors 5°*" and 5" constructed from all node strengths are called the out-strength
sequence and in-strength sequence, respectively. It is worth stressing here that the in- and out-strength sequences
represent a form of weighted constraints that can be imposed in the reconstruction procedure, because they
depend explicitly on the magnitude of the links in the network. As such, they do not contain direct information
about the binary topology of the network, such as the overall density of links, the number of links (i.e the degree)
of each node, etc. This makes the simultaneous inference of both the link weights and the bare topology of the
network particularly challenging in this setting.

Irrespective of how the strength sequences are used in the reconstruction method, it is clear that there are
multiple (in fact, hugely many) possible networks that are consistent with such margins. The essence of each
method lies in how this set of compatible networks is further restricted to produce the output networks. At one

and siin* are (directly or indirectly) measurable for eachnode (i = 1 ... N).

extreme, there are greedy methods based on certain heuristics or ansatz that in the end produce a single possible
instance of the network. The problem with these ‘deterministic’ methods is that, by producing a single outcome,
they give zero probability to any other network, including (apart from sheer luck) the true unobserved network
W*. This implies that the likelihood of producing the real network given the model is always zero. The success of
such deterministic methods, as well as their comparison with competing methods, has therefore to be assessed
via some arbitrarily chosen metric of network similarity. At the other extreme, there are maximally agnostic
methods designed to impose absolutely no other ansatz or heuristic besides the knowledge of the strengths
sequences, so that all the compatible networks are accepted with equal probability. This is the class of
(unconditional) maximum-entropy methods, that look for the probability distribution (in the space of weighted
networks) maximizing the entropy, subject to the imposed constraints. Research has shown that typical
networks sampled from maximum-entropy ensembles of networks with given strength sequence are fully or
almost fully connected [3]. In light of the sparsity of most real-world networks, this is a major limitation.

All the state-of-the-art reconstruction methods are found somewhere in between the two extreme cases
described above. Among the methods proposed so far, some assume that the constraints concerning the binary
and the weighted network structure jointly determine the reconstruction output. An example providing an
excellent reconstruction of several real-world weighted networks is the enhanced configuration model (ECM)
[3], defined by simultaneously constraining the nodes degrees and strengths. However the inaccessibility of
empirical degrees makes this method inapplicable in the setting considered here. This has led to the introduction
of two-step algorithms [4, 5] that perform a preliminary estimation of node degrees to overcome the lack of
binary information. Other methods consider the weights estimation step as completely unrelated to the binary
one [6, 7]. Examples include methods that adjust the link weights iteratively on top of some previously
determined topological structure (e.g. via the recipe firstly proposed in [8]), in such a way to satisfy the strengths
constraints a posteriori. This kind of procedure, however, assigns weights deterministically, thus being unable to
provide confidence bounds accompanying the weight estimates [9] and basically giving zero probability to any
real-world network.
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In this paper, after reviewing the state-of-the-art methods and discussing their performance, we develop a
theoretical framework that provides an analytical, unbiased’ (i.e. based on the maximization of a certain
conditional entropy) procedure to estimate the weighted structure of a network. The maximization of the
conditional entropy generalizes the exponential random graph (ERG) formalism to situations where the
aggregate topological properties that effectively summarize the network topology are not directly observable and
cannot therefore enter as sufficient statistics into the model (and in the ordinary likelihood function).
Information about the topological structure (either available ab initio or obtained by using any of the existing
algorithms for the purely binary reconstruction) is treated as prior information. Together with the available
weighted constraints, this prior information represents the input of our generalized reconstruction procedure.
The probability distribution describing link weights is, then, determined by maximizing a suitably defined
conditional entropy. This construction allows us to achieve an optimal compromise between the deterministic
and fully agnostic extremes mentioned above: while we allow the method to incorporate a certain ansatz (both
for the purely binary structure and for the weights) that effectively restricts the set of compatible networks, we
still maximize a certain entropy in order to preserve the necessary indifference among configurations that have
the same ‘good’ properties, induced by the ansatz itself. Finally, the parameters of the conditionally maximum-
entropy distribution are found by maximizing a generalized likelihood function that depends on the probability
distribution over binary graphs implied by the binary reconstruction method. This last step makes the weight
distribution dependent, as it should, on the purely binary expected network properties.

As it turns out, when link weights are treated as continuous random variables, their distribution—
conditional on the existence of the links themselves—is exponential, a result that can be used to further enhance
the performance of the best-performing methods available to date, providing them with a recipe to determine
confidence intervals for the weight estimates. While it is a well know result that the exponential distribution
follows from the maximization of the entropy subject to a constraint on the mean value, what is nontrivial here is
the determination of how the mean value itself should depend on a combination of certain empirically observed
regularities and, crucially, on the prior probability distribution of the bare topological projection of the network
implied by the binary reconstruction method chosen as input. As a byproduct, our generalized reconstruction
framework leads to a computationally simpler variant of our method, based on the solution of a single nonlinear
equation in place of several coupled, nonlinear equations as in some of the previous methods”.

The rest of the paper is organized as follows. In section 2 we review the state of the art of network
reconstruction methods and discuss their performance. We then describe our generalized ‘conditional
reconstruction method’ in detail, providing two different specifications of it. In section 3 we test the
performance of the method on real-world networks. In section 4 we discuss the results.

2. Methods

In what follows, we indicate a weighted adjacency matrix as W and its generic entry as w;;. Analogously, we
indicate the corresponding adjacency matrix as A and its entry as a; = ©(w;;), with ©(x) representing the
Heaviside step function, defined as O(x) = 1ifx > 0and O(x) = 0ifx < 0.

2.1.Network reconstruction methods: an overview of the state-of-the-art
The MaxEnt method: deterministic link weights on a complete graph. A traditional approach to network
reconstruction is the so-called MaxEnt method [10-12], defined by the maximization of the ‘entropy’

S(W) = =3, wj Inw;; under the constraints represented by the network weighted marginals, i.e.
* . inf . . < . > . . .
s = > wi, Viands® = jiiwﬁ, Vi. The resulting ‘maximum-entropy’ expression for w;; s easily found
tobe
* .k
Sput S!n
AME __ i j ..
Wi = o Vi, j (2.1)

with W* =3, 5,<°“t* =3, sl-i“*. The major drawback of the above model is the prediction of a fully connected
network with all positive link weights given by equation (2.1). Yet, the above expression often provides an
accurate estimation of the subset of realized (i.e. positive) real-world link weights. This fact will turn out useful

3 Throughout the paper, we use the term ‘unbiased’ as intended in the application of the maximum-entropy principle, i.e. when we refer to
outcomes that maximize the (conditional) entropy, so that the resulting probability distribution does not make arbitrary preferences
(corresponding to hidden or unjustified assumptions) among configurations that share the same values of certain target quantity.
Constrained maximum-entropy distributions produce maximally random outcomes given what is supported by the data used as constraints,
thereby ensuring unbiasedness. To avoid confusion with the meaning of the term ‘bias’ in statistics, we do not use the term in the sense of
‘biased parameter estimation’.

4 . . . . . .
Where appropriate, the interested reader will be redirected towards freely available codes to run all variants of our framework.




10P Publishing

New J. Phys. 22 (2020) 053053 F Parisi et al

Table 1. Overview of the reconstruction methods reviewed in [1]. The letter ‘P’ indicates that the considered estimation step is probabilistic
in nature while the letter ‘D’ indicates that it is deterministic. The log-likelihood is defined as in equation (2.2), i.e. In Q (W*).

Method Topology Weights Log-likelihood
MaxEnt (ME) [10, 11] D D —00
Minimum-density (MD) [13] D D —00
Copulaapproach [14] P D (IPF) —00
Drehmann and Tarashev [15] P D (IPF) —00
Montagnaand Lux [16] P D (IPF) —00
Mastromatteo etal [17] P D (IPF) —00
Gandy and Veraart [9] P D (MF) —00
dcGM [5] P D(ME) —00
MECAPM [18] P P (w;j € N) —00
Fitness-induced DECM [4] P P (w;j € N) —00
Hataj and Kok [7] P P €eR
Moussa [19] P p €R

later in our analysis. Ata fundamental level, the ultimate issue with this method is that, although the quantity
S(W) is referred to as ‘entropy’, actually the link weight w;; admits no natural interpretation as a probability
distribution over the entries of the matrix, contrary to what the definition of entropy would instead require. In
particular, S(W) is a function of a single matrix, rather than a function S (W) of a probability distribution over an
ensemble of realizations of the matrix, treated as a random variable )V that can take W as one of its possible
values with a certain probability (the approach that we introduce later will be based precisely on a proper entropy
S(WV) of this type, and particularly on a certain conditional version of it). This consideration immediately
questions the interpretation of equation (2.1) as a truly ‘maximum-entropy’ result. In fact, by producing a single
matrix as output, the method is actually a deterministic (i.e. a zero-entropy) one, rather than a probabilistic one
as proper maximum-entropy methods necessarily are.

Iterative proportional fitting: deterministic link weights on any graph. The search for nontrivial (i.e. sparser)
topological configurations still guaranteeing that the weighted marginals are satisfied has led to a plethora of
reconstruction methods. These models are described below; here we mention an aspect common to many of
them. Irrespective of the method used for the reconstruction of the binary topology, a popular way to assign link
weights on a non-complete (not fully connected) graph, while still matching the constraints given by the in- and
out-strength sequences, is the iterative proportional fitting (IPF) algorithm [8]. The IPF recipe assumes that the
network topology is given and iteratively ‘adjusts’ link weights until the constraints are satisfied [1, 8]. In the
special case when the network is fully connected, the IPF algorithm reduces to MaxEnt. Since the IPF algorithm
always yields a (unique) matrix satisfying the weighted marginals irrespective of the topological details’ of the
given underlying binary structure A, many researchers have focused on methods for improving the
reconstruction of the bare network topology, while considering the ‘link weight’ problem virtually solved and,
more importantly, decoupled from the ‘topology’ problem. As we argue later on, this consideration is incorrect.
Moreover, the IPF recipe suffers from two serious drawbacks, both imputable to the deterministic rule used to
assign weights to a given binary configuration. First, it cannot provide confidence bounds accompanying the
weight estimates. Second, the probability of reproducing any real-world weighted network is virtually zero, even
if the bare topology were known exactly.

Many horses and many races. Here we succintly describe the state-of-the-art reconstruction methods (the
‘horses’) that have been recently considered in various ‘horse races’ comparing the performance of different
methods over a number of real-world networks. These methods have been recently reviewed in [1] and are here
compactly collected in table 1. In order to unambiguously assess the performance of a given method, we
consider the probability (density) Q(W) of generating a given weighted graph W according to the method, and
use the corresponding log-likelihood

In Q(W*) = In[P(A*) Q(W*|A")]
= InP(A") + In Q(WHA%) (2.2)

as a score function quantifying how likely the structure of the specific real-world network W™ is reproduced by a
given algorithm. Notice that we have written Q(W) = P (A) Q(W|A) where P(A) is the probability of generating

> The only request about A is its irreducibility [ 1, 8].
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the bare topology A of W and Q (W]A) is the conditional probability of generating the weights of the network,
given its topology. Therefore P(A™) is a sort of purely binary likelihood.

Upon looking at table 1, several classes of algorithms can be distinguished. A first group gathers the
algorithms whose estimation steps are both deterministic (notice that the purely deterministic version of the
minimum-density algorithm is considered here, i.e. the one used in the ‘horse race’ [20]). Since the deterministic
nature of an algorithm implies that the probability f;; that nodes iand jare connectedis f; € {0, 1}, the only
way to reproduce the actual topological structure A is implementing the rule fij =l a;‘ = land
[, =0 a; = 0. However, this prescription is viable only if the actual configuration is given, otherwise the
probability of reproducing its structure is P(A*) = 0, further impliying that In Q(W*) = —o0.

A second group gathers algorithms where the topological estimation step is indeed probabilistic while the recipe
for assigning link weights is deterministic: while the vast majority of such methods rests upon the IPF algorithm, the
density-corrected Gravity Model (dcGM) [5] method rests upon the MaxEnt prescription. The method proposed in [9],
instead, employs the maximum-flow (MF) algorithm to adjust weights. Even if these algorithms indeed allow for the
observed topological structure to be replicable (i.e. P(A™) > 0), they still assign weights in a deterministic fashion: this
implies that the actual configuration W* can be reproduced if and only if #;; = Wi}k, i.e. only in case the actual
configuration is given, otherwise Q (W*|A¥) = 0, again impliying In Q(W*) = —oco.

A third group gathers algorithms whose steps are both probabilistic. However, weights are assumed to be
natural numbers: hence, configurations with real weights—i.e. typical real-world networks—cannot, by
definition, be reproduced by such recipes.

The last two methods may, in principle, lead to recover the structure of a network with real-valued weights.
However, the method by Hataj and Kok induces a completely random topological structure, leading to a
probability of reproducing any observed A* that reads P(A*) = 2~ NV~
other hand, the method proposed by Moussa aims at reproducing a specific feature of several real-world
networks, i.e. a power-law degree distribution: as a consequence, it is optimized to reconstruct such a peculiar
topological feature and does not allow for generic degree distributions. Moreover, the method does not come
with a recipe for assigning the generated degrees to the different nodes.

A good horse on the binary trail: the dcGM. The above considerations imply that, as far as the simultaneous
reconstruction of both the topology and the weights is concerned, none of the current methods is satisfactory.
The remainder of the paper aims at introducing a viable and efficient method. The method will be designed in
such a way that any purely binary reconstruction method, i.e. any P(A), can be taken as input, while aiming at
placing link weights optimally. This will allow us to freely choose the binary method at the end. It is therefore
worthwhile to describe in some detail here the specific binary method that we will eventually select for our
analyses when putting the full method at work. Our choice is guided by the results of four independent tests
(‘horse races’) [20-23], that have found that, as far as the imputation of the overall binary topology of the
network is concerned, the dcGM [5] systematically outperforms competing methods. Quoting from the source

, rapidly vanishing as N grows. On the

references:

* ‘in presenting our results we face the challenge that some algorithms produce an ensemble of networks while others
produce a single matrix. This makes a straightforward comparison difficult. Fortunately, the Cimi method is the
clear winner between the ensemble methods’ [20] (note: ‘Cimi’ is the name given in [20] to the dcGM);

* ‘according to our analysis, reconstructing via fitness model outperforms the other methods when the same input
information is used’ [21] (note: ‘fitness model’ is the name given in [21] to the dcGM);

* ‘second, concerning the individual performance of each null model, we find that CM1, followed by CM2 and
MaxEntropy, has the closest behavior to the actual network overall. Since CM2 requires much less information than
CM1, we find that this makes CM2 more appealing for practical purposes’ [22] (note: ‘CM2’ is the name given in
[22] to the dcGM);

* ‘asan ‘off the shelf model in situations without exogenous information available, the density-corrected gravity
model (DC-GRAVITY) can be recommended because it is found to work well on the big sparse network as well as on
the small dense network with respect to the edge probabilities and the edge values |[... | Similarly, Gandy and Veraart
(2019) report that this model is performing very well in binary and valued reconstruction. Further, the model can be
extended towards the inclusion of exogenous information in a simple way’ [23] (note: ‘DC-GRAVITY’ is the name
givenin [22] to the dcGM).

The above results prompt us to select the binary part of the dcGM as the best candidate to be given as input to
the full method to be developed. The dcGM is defined by the simple Bernoulli prescription
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it pdcGM s
L wit P’J = 1+ zsPUtsin
ajj = P (2.3)

0 with 1 — p;CGM

(fori = j), where the only free parameter zis tuned to reproduce the actual link density of the network [5]. Itis
worth mentioning here that the dcGM takes the functional form of the connection probability from the binary
configuration model (BCM), i.e. the maximum-entropy model of binary graphs with given in- and out-degrees
for all nodes (see appendix). In the BCM, the parameters are Lagrange multipliers that control the in- and out-
degrees. In the dcGM, these parameters (that are unidentifiable, given the inaccessibility of the degrees) are
replaced by the observed values of the in- and out-strengths, respectively, up to the global proportionality
constant z. This is the so-called ‘fitness ansatz’, motivated by an empirical regularity showing the systematic
approximate proportionality between empirical strenghts and Lagrange multipliers coupled to the degrees [5].
More details are provided in the appendix.

2.2. A framework for conditional reconstruction
In the following, we aim at introducing a method overcoming the drawbacks affecting current weight
imputation recipes. Ideally, our recipe should satisfy the following requirements:

+ allowing for any probability distribution (over purely binary graphs) to be acceptable as input for the
preliminary topology reconstruction step (this requirement allows us to take any binary reconstruction
method as input—and clearly, to select a good one for practical purposes);

+ allowing for the generation of continuous weights (this requirement implies that the real unobserved network
will be generated with positive likelihood);

« satisfying the constraints that are usually imposed by the availability of limited information (i.e. the out- and
in-strength sequences {s°"'} ¥, and {5} N )).

As anticipated in the Introduction, these three postulates will be addressed by proposing a probabilistic
reconstruction method conditional on some prior binary information and constrained to reproduce the
aforementioned, weighted observables. In order to do so, we build upon the formalism proposed by the authors
of [24] who define a fully probabilistic procedure to separately constrain binary and weighted network
properties. In short, they introduced the continuous version of the ECM [3] and replaced the resulting
probability of the binary projection of the network with the one coming from the undirected binary
configuration model [25]. In such a way, the estimation of the probability coefficients controlling for the
presence of links is disentangled from the estimation step concerning link weights. Unfortunately, the
framework proposed in [24] cannot be directly used for network reconstruction as the information about the
degrees of nodes is practically never accessible.

3. Results

Before entering into the details of our method, let us briefly describe the formalism we adopt. In what follows, we
assume that A € A isarealization of the random variable .4; analogously, the weighted adjacency matrix

W € W instantiates the random variable JV. The probability mass function of the event A = A is denoted with
P(A), while Q(W/|A) is a conditional probability density function, for the variable }V taking the value W, given
theevent A = A.Notice that we are considering continuous (non-negative and real-valued) weights and that
Q(W]A) is non-zero only over the continuous set Wy, = {W: O(W) = A} of weighted matrices with binary
projection equal to A.

Input. Our Conditional Reconstruction Method (CReM) takes as input P(A), i.e. the distribution over the
space of binary configurations: this is treated as prior information and can be computed by using any available
method. Clearly, given the superior performance of the dcGM as summarized above, we will select that
particular model in our own analysis, but nonetheless we want to keep the method as general as possible by
allowing for any input P(A). Moreover, the CReM requires as input a set of weighted constraints C(W)
representing the available information about the system at hand. The observed numerical value of these
constraints will be denoted by C ¥, The true, unobserved matrix will be denoted with W* and the associated
binary projection with A*. Clearly C(W*) = C".

Output. The goal of the CReM is to derive the distribution over the ensemble of weighted configurations
conditional on the prior information concerning the binary ensemble. To this aim, we look for a functional form
of Q(W|A) such that Q(W|A) = 0 for W & W, and otherwise maximizing the conditional entropy [26]

6
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SOMA) = =3 P(A) fw Q(WIA)log Q(W|A)dW 3.1)

AcA

under the set of constraints

1:f Q(W|A)AW, VA € A (3.2)
Wa

(€)= X P@) [ QWIAC,(W)AW = C, Ya (3.3)
AcA Wa

(notice that (-) denotes an average with respect to Q(W)). Equation (3.2) defines the normalization of the
conditional probability and ensures that the unconditional probability

QW) = > P(A)Q(W|A) (3.4)
AcA
isalso normalized as
fw QW) AW = 3. fWA QW)dW = 3" P(A) = I

AcA AcA

equation (3.3), instead, sets the target values C* of our constraints. The problem Lagrangean can be, thus,
written as the following generalization of the Lagrangean valid in the unconditional case (see appendix A):

L=SWA)
+ Saen M(A)(l - fw Q(WIA)dW)

+ 5, Aa(c;f ~ Yaca PA) [ QWIAC, W) dW). (3.5)
A
Differentiating with respect to Q (W|A) and equating the result to zero leads to
< wew
Qi (WIA) = ! Zas ", (3.6)
(o W & Wy

where Hy (W) = Y A\, C, (W) is the Hamiltonian and Z, 5 = fW e W) dW is the partition function for
A

fixed A. Note that we have introduced the subscript X to stress the dependence of the quantities on the Lagrange
multipliers. The explict functional form of Q5 (W]A) can be obtained only by further specifying the functional
form of the constraints as well.

Parameters estimation. The conditional probability distribution defined in equation (3.6) depends on the vector
of unknown parameters Xa recipe is, thus, needed to provide their numerical estimation. In alignment with
previous results [27—-29], we now extend the maximum-likelihood recipe to deal with the conditional probability
distribution we are considering here. Indeed, since we do not have access to the empirical adjacency matrix A%, it is
not possible for us to compute the usual likelihood function Q5 (W*|A¥) as a function of the parameters X. However
we can go back to the more general problem from which the usual maximization of the likelihood derives, i.e. the
maximization of the constrained entropy—in our case, the conditional expression (3.5)—and obtain a
corresponding generalized likelihood that requires only the available information about the network.

Let us define X* as the value of the parameters for which the constraints are satisfied, that is (5 Y= c*. By
construction, the value X* is such that the gradient of the Lagrangean L is zero. Importantly, in the appendix we
show that it is also the value that maximizes the generalized likelihood

G = —Hx((W)*) = 3= P(A)logZy 5, (3.7)

AcA
where (W)* indicates the unconditional ensemble average of W when the desired constraints are satisfied. The
use of this notation is legitimate by the fact that throughout this study we will consider linear constraints of the
form
Hx(W) = > \ijwij, (3.8)
Jj=1

sothat (Hx) = 32, ;A (wi) = Hx((W)). The definition (3.7) is justified by the relationship between likelihood
and entropy proved below. Let us focus on the expression of the conditional entropy defined in equation (3.1):
using equation (3.6) we can rearrange (and rename) it as

SN = =37 P(A)[—(Hx)a — logZy 5. (3.9)
AcA
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By evaluating S(X) in ¥, we obtain

SN = (Hy) + Ypen P(A)logZ, 3+
= HX*(<W>*) + Ypen P(A)log Z, 5+
= —G(XN. (3.10)
Notice that the starting point of our derivation was the definition of conditional entropy involving two ensemble
averages, over both sets of binary configurations and link weight assignments. After its evaluation in \*, the

average over the set of link weight assignments has reduced to a single term, i.e. H;+((W)*), while the average
over the space of binary configurations has survived.

3.1. Constraining the strengths: the CReM4 model

Let us now instantiate our CReM framework for the set of constraints usually considered (and empirically
accessible) for the case of the reconstruction of financial networks, i.e. the out- and in-strength sequences,
sPUHW) = Zj¢ wij, Viand sii" (W) = > wiis V i. Imposing these constraints means introducing the
Hamiltonian

N . .
HW) =Y 65" (W) + 815" (W)]

i=1
N
= > > (B + BPwy, (3.11)
i=1j=i

which induces the partition function

N o0 out_; ain i
Zn=T] [j; o (58 +‘dj)w,jdwlj]

N 1 %ij
— - 1. (3.12)
1 [CHs

+ 67
Using equation (3.6), we can write
N
QWIA) = [T IT a;(wilay) (3.13)
i=1 j=i
where qij(w = 0Ola; = 1) = Oand

out in ,(ﬂ91|t+ﬁ;n)w
;o + - )e i w>0
qij(W|a1-j = 1) — (61 ﬂ] ) j
0 w <0

for each positive weight w;;, showing that each pair-specific weight distribution conditional on the existence of
the link is exponential with parameter 37" + 37 . N

Now, in order to determine the values of the vectors of parameters ( *"and (" we maximize the generalized
likelihood defined in equation (3.7), which reads

(3.14)

N
Geremy = — [P (W) B9 + 5™ (W) 3™

i=1

N
+ 30 flog(B + 5 (3.15)
i=1j=i
where the quantity
i = 2 PWay = (ay) (3.16)
AcA

represents the expected value of a;; over the ensemble of binary configurations, i.e. the marginal probability of a
directed edge existing from node i to node j in the reconstructed binary ensemble, irrespective of whether edges
are generated independently of each other by the binary reconstruction method. This makes our formulation
entirely general with respect to the binary reconstruction method taken as input, as we made no assumption on
the structure of P(A). In particular, the joint probability P(A) for all links in network A collectively appearing
need not necessarily factorize as P(A) = Hfi 1 i fi?"’ a - fi].)1 ~% as in models with independent edges. For
instance, in the case of the microcanonical binary configuration model (defined by sharply constraining the
degrees), P(A) is the uniform distribution over all graphs with the a given degree sequence and cannot be
factorized, as all links are mutually dependent through the sharp constraint. On the other hand, when the

8
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canonical binary configuration model is considered, P(A) factorizes and f;; coincides with the connection
probability p;; defining the model itself (see also the appendix) [1]. Both variants of the binary configuration
model, as well as any other binary reconstruction method, can be taken as input into our conditional
reconstruction method by specifying the corresponding P(A). Note that, in cases where the explicit expression
for P(A) is not available, one can still sample this distribution by taking multiple outputs of the binary
reconstruction method and replacing averages over P(A) with sample averages.

Now, differentiating equation (3.15) with respect to 39" and (! yields the system of 2N coupled equations

out\ _ Ji _ cout” H
<5i " > - Zj::iﬁqul+ gin =S > Vi
i . (3.17)
in ji in :
<Sl > = Z i gou m = Si oo VI
1 ]ilﬁj I+ 61’ 1
where (w;j) = m and f;; is taken as given—therefore excluded from the estimation procedure.
i j

In what follows, we consider explicitly the case where no entry of the empirical adjacency matrix A" is known,
so that all entries have to be dealt with probabilistically, in line with previous research in the field. However, an
important feature of our framework is that it can incorporate the knowledge of any set of entries of A™ as well.

This means that, if we are certain about the presence (a; = 1) orabsence (a,-;’< = 0) of certain edges, this

deterministic knowledge will be reflected in the corresponding marginal connection probability being i = a; .

As an extreme example, let us consider the case in which all entries are known. In this case, we are led to the

maximally informative specification f; = aijf , Vi = j further impliying that the system to be solved becomes

<Sput> _ Z ”IT _ sput* Vi
1 - j(=1) ‘{;?ul i 8;“ ] >

. (3.18)
iny _ G iy

<5i > = Zj(i,') %3;”" T i_n =S , VL

As a final general observation before moving to specific results, we would like to stress that the framework
defining the CReM 4 model admits, as a particular case, the Directed Enhanced Configuration Model (DECM), i.e.
the directed version of the continuous ECM [24]. For more properties of the CReM 4 model, see also the
appendix. The code to run the CReM 4, model is freely available at [30].

3.2. Testing the CReM, model
Let us now explicitly test the effectiveness of the CReM 4 model in reproducing two real-world systems, i.e. the
World Trade Web (WTW) in the year 1990 [31] and e-MID in the year 2010 [32] (see the same references for a
detailed description of the two data sets). In order to do so, we need to specify a functional form for the
coefficients { f; }z: 1- As afirst choice, let us implement the recipe

out _in
frmploMm = Ly (3.19)

—>
1+ zs,»"“ts]‘-“

that defines the dcGM. Upon solving the system of equations (2.20), we obtain the numerical value of the
parameters (3 " and B " by means of which we can analytically compute the expectation of any quantity of
interest (via the so-called delta method, see also [28]). In particular, we have focused on (one of the four versions
of) the average nearest neighbors strength (ANNS) [33]
. gout
S_out/out _ Zj(l,]S] (3.20)

1 kput
1
and on (one of the four versions of) the weighted clustering coefficient (WCC) [33]
D) k(i) Wi Wik Wik

out _ : 3.21
Ci kiout(kiout o 1) ( )

the comparison between the observed and the expected value of the quantities above is shown in figure 1 for both
systems. As a second choice, let us implement the deterministic recipe

i =apVizj (3.22)
whose effectiveness in reproducing the ANNS and the WCCis shown in figure 1 as well. Notice that the WCCis
now reproduced much more accurately, a result further confirming that binary constraints affects the weights
estimation as well; on the other hand, the ANNS is perfectly reproduced: specifying the network topology and
the weighted marginals is, in fact, enough to recover the observed values.

9
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Figure 1. Test of the effectiveness of the CReM 4 model in reproducing the average nearest neighbors strength (left panels) and the
weighted clustering coefficient (right panels) for the World Trade Web in the year 1990 (top panels) and e-MID in the year 2010
(bottom panels). The chosen probability distributions for the binary estimation step are the one defining the density-corrected Gravity
Model (red squares—see equation (3.19)) and the one defining the actual configuration (blue triangles—see equations (3.18)). The
latter choice perfectly recovers the observed values of the ANNS that lie on the identity line (drawn as a black, solid line); the WCC is
reproduced with a much higher accuracy as well.

3.3. Comparing binary reconstruction methods

As we have seen, our framework allows for any probability distribution to be taken as input to address the
topology reconstruction step. We may, thus, ask what is the best recipe to reconstruct a given real-world network
binary structure. In order to provide an answer, let us consider again the score function

In Q(W*) = In P(A*) + In Q(W*|A¥) (3.23)

and focus on the addendum In P (A*). Three prototypical distributions can be considered and compared:

deterministic distribution: this choice implements the maximally informative position P(A) = 04 4+ (see also
equation (3.22)) and is equivalent to assuming that the empirical adjacency matrix A™ is known;

uniform probability distribution: this choice corresponds to the maximally uninformative position
P(&) = 27 NN=D(je. f; = % Vi =)

dcGM probability distribution: this choice implements the recipe P (A¥) = [T, I1;.; f: - fij)1 —aif, with
— ,dcGM s

P . .
fi = s = e Vi = j defining the dcGM.

out .in

In order to test the performance of the three competing models above, let us invoke the Akaike Information

Criterion (AIC) [34] to select the model with the best trade-off between accuracy and parsimony. The AIC value
is defined as

AIC,, = 2k — 2Lom (3.24)

for each model m in the basket, with £,, indicating the log-likelihood value of model 1 and k,,, indicating the
number of parameters defining it (and to be estimated®). For the three alternatives above we have that

AlCqeterministic = 2N (N — 1), (3.25)
AlCniform = 2N (N — l)ln 2, (3.26)
AlCycem = 2(1 — Lacgm)» (3.27)

where we have used the fact that the uniform model is non-parametric (i.e. kypitorm = 0) and is characterized by
the log-likelihood L niform = —N (N — 1)In 2, while the deterministic model is characterized by a probability
P(A™) = 1 (implying Lgeterministic = 0) and a number of parameters equal to kgeerminisic = NV — 1) (all off-
diagonal entries of A™ are separately specified). Moreover, we have added the comparison with the directed

6 . . . .
Note that, since we assume from the beginning that the in- and out-strengths of all nodes are known independently of the model used, we
do not count the strengths among the model parameters.
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Figure 2. Comparison between the binary likelihood functions for three prototypical distributions (the deterministic one, the uniform
one and the dcGM one), plus the two ones induced by the popular directed random graph model (DRGM) and the directed binary
configuration model (DBCM), for the WTW (across the years 1950-2000—Ieft panel) and e-MID (across the years 1999-2011—right
panel). As the Akaike Information Criterion certifies, the DRGM is an acceptable reconstruction model when considering very sparse
networks; on the other hand, the comparison with the DBCM confirms that, in case degrees were known, they should be preferred to the
necessarily less-precise fitness ansatz. Since this kind of information is practically never accessible, we need to resort to some kind of
approximation: the effectiveness of the one defining the dcGM is confirmed by the evidence that the best binary applicable model is
precisely the dcGM one.

random graph model and the directed binary configuration model, respectively, defined by
AlCpgm = 2(1 — Lprem)> (3.28)
AlCppem = 22N — Lpscwm)s (3.29)

where Lprav=LInp + N(N — 1) — L)In(1 — p),with p = mand Losem = %55 Inp* M +

(I — a;p)n(1 - pf BEM) with pl;) BCM — %, Vi = j[1]. The criterion prescribes to prefer the model whose AIC
i

value is minimum. Upon looking at figure 2, one realizes that the DRGM is a poorly-performing reconstruction model
when the network link density is close to 0.5 as its performance cannot be distinguished from the one of the uniform
model. When considering very sparse networks, on the other hand, knowing the link density means adding a non-
trivial piece of information, potentially reducing the uncertainty about a given network structure to a large extent: this
seems indeed to be the case for several temporal snapshots of eMID. On the other hand, the comparison with the
DBCM confirms that, in case degrees were known, they should be preferred to the necessarily less precise fitness ansatz:
however, as they are never known, including the DBCM is a merely academic exercise’. Nevertheless, the previous
analysis still conveys an important message: the structure of real-world networks is characterized by a large amount of
redundancy, as evident by noticing that the AIC value of the DBCM is much lower than the AIC of the fully
deterministic model. Hence, the structure of complex networks can indeed by explained by only constraining a bunch
of statistics, as exemplified by the degrees: however, since this kind of information is practically never accessible, we
need to resort to some kind of approximation—whence our definition of the dcGM.

The importance of employing a method able to provide a reliable estimate of a network topology becomes
evident when considering the problem of quantifying systemic risk (see [ 1] and references therein). To this aim,
let us consider the triangular loops arising from various ‘risky’ triadic motifs connected to the underestimation of
counterparty risk due to over-the-counter linkages in interbank networks [35]. An aggregate measure of
incidence of such patterns is quantified by

XX k=i Wi Wk wy,
W = =1 (3.30)
Z,‘Zj(;:,‘)Zk(ii)j)aijajkaki N,

i.e. the average weight per loop. Notice that the expected value of such a quantity calls for the estimation of the
probability that nodes i, j and k establish a connection. For the sake of illustration, let us discuss the application
of either the MaxEnt method or the minimum-density method to provide such an estimation. As previously
discussed, the fully-connected topology output by the ME leads to N, =~ N3, i.e. to overestimating the number
of cycles, in turn leading to an underestimation of systemic risk; on the other hand, the very sparse topology
outputbythe MDleads to N, =~ O(1),i.e. to underestimating the number of cycles, in turn leading to an
overestimation of systemic risk.

3.4. Further structuring the model: the CReM model

In the previous sections we have introduced a novel framework for network reconstruction that has led to the
definition of the CReM, model. Although this model provides an accurate reconstruction of real-world
economic and financial networks, its implementation still requires the resolution of 2N coupled nonlinear
equations. Moreover, as it makes the maximally random hypothesis about link weights, given the empirical

In this case, in fact, one would have enough information to run the DECM—a model that we have explicitly excluded from our comparison
since completely unrealistic.
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Figure 3. Comparison between the realized (positive) and the corresponding expected values of the link weights for the World Trade
Web in the year 1990 [31] (left panel) and for e-MID in the year 2010 [32] (right panel). Two different kinds of expectations were
considered: the ones coming from the CReM 4 model (red squares) and the ones provided by the MaxEnt model (blue circles). The
figure shows that the expected weights of the CReMp model are at least as good as those of the CReM 4, model, and generally even more
narrowly scattered along the identity line. This observation is confirmed by the calculation of the Pearson correlation coefficients
between realized and expected link weights: such coefficients equal 7crem, == 0.6, Tcremy = 0.75 for the World Trade Web and
feremy = 0.44, roremy = 0.5 for e-MID.

in-strength and out-strength of all nodes, the model does not allow to incorporate any further ansatz or
assumption about the empirical relationship between link weights and the node strengths themselves. We now
ask ourselves if it is possible to simplify the computational requirements of the CReM 4, model, while more
flexibily constraining its randomness (again via entropy maximization) around a structured relationship that
captures some empirical regularity relating link weights to the node strengths, thus improving the accuracy of
the reconstruction of the weighted network as a whole.

To this aim, let us now specify a model potentially constraining the whole set of expected weights to given
values {m}k}, where in this case the asterisk denotes the ‘target’ value, which is not necessarily an observable one.
In order to do so, let us formally constrain the unconditional expected values of all link weights, i.e. consider a
Hamiltonian reading H(W) = jiiﬁij w;;. The derivation is analogous to the previous case and leads to the
expression Q(W]A) = Hjii q (wijla;;) with qj; (wjj = Ola;; = 1) = Oand

qij(wijlaij =1) = ,Bije*ﬂifwff, wij > 0 (3.31)

i.e. to a conditional pair-specific weight distribution, q; (wjilaij = 1), thatis exponential with parameter 3;;.
Analogously, the generalized likelihood function can be expressed as
GereMs = —_, Wi + Zfl] log 3;; (3.32)
j=i j=i
and differentiating it with respect to 3;leads to the equations
5

(wy) = o= Wijf’
ij

Vi=j (3.33)
that define the CReM g model.

Actual weights, however, can rarely be observed: hence, in order to implement the CReM g model, we need to
replace {W,;|< } fjlj:l with a set of accessible quantities. To this aim, we look for an additional ansatz based on
empirical regularities relating link weights to node strengths in the data. In particular, as we already mentioned
we notice that the MaxEnt model introduced in equation (2.1) provides good estimates of the realized (i.e.
positive) link weights (despite the impossibility of generating zero link weights). Figure 3 shows the comparison
between the observed, positive weights of the WTW in the year 1990 [31] and e-MID in the year 2010 [32] and
two expectations: the ones coming from the CReM, model and the ones coming from the MaxEnt model of
equation (2.1). One can see that the MaxEnt model produces expected weights that are more narrowly scattered
around the empirical ones than the CReM 4 model. The calculation of the Pearson correlation coefficient
between the empirical and expected weights from the two models confirms that the estimates coming from the
MaxEnt model show a better agreement with the data (see caption of figure 3), throughout the considered time
intervals.

The reason for the improved estimate in the MaxEnt model comes from the fact that the CReM 4 model
makes the maximally random hypothesis about link weights, based on the empirical values of the in- and out-
strenghts of nodes. Real data turn out to be more structured than this completely random expectation, the
MaxEnt model better capturing the structured relation. At the same time, while the original MaxEnt model
would assume the same positive expression (2.1) for all link weights, the generalized framework used here allows
us to embed the MaxEnt estimate into a conditional expectation for the link weight, given that the link is realized
with the marginal probability f;;implied by the desired prior distribution P(A). This is easily done by replacing

the set of target expected weights {mf} zzl with the MaxEnt ansatz {Wi?/[E} fj»:l given by equation (2.1) and
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inverting equation (3.33) to find the corresponding tensor of coefficients 3. This yields

Lo
Bij= 0 = —2_, Vi=]. (3.34)
y 1/f{/l;\/lE Siout }n J

Notice that this choice only requires, as input, the out- and in-strength sequences of the actual network: as a
consequence, the sufficient statistics for the CReM 4 and CReMp models coincide. Notice also that implementing
the CReM model requires the resolution of O(N?) decoupled equations.

Although the choice leading to equation (3.34) guarantees that non-negative strengths are preserved only in
case fij > 0, Vi = j,in principle, one can set m?‘ equal to the outcome of any other deterministic model for the
link weights (e.g. IPF), not only the MaxEnt one. This would relax the requirements about the connection
probability between nodes—hence allowing for zero-probability links as well—and ‘dress’ the chosen model
with a weight distribution centered around the same value generated by the deterministic implementation
(thereby turning the deterministic model into a probabilistic one). The code to run the version of the CReMp
model discussed here is freely available at [30].

For instance, we may use a more refined recipe improving the MaxEnt ansatz to higher order. To explain this

point, we need to emphasize that the MaxEnt ansatz w = WJME =5 out’ "‘ /W¥*introduced in equatlon 2.1)
has a disadvantage: it replicates the in- and out-strengths only ifa self-loop with intensity Wi = s si‘n /WHis

E

. .. . A . . . i3
added to each node i. This is easy to see by summing wi?/l over i or j to produce the resulting s;" or sou

respectively. In order to avoid adding self-loops, one may iteratively ‘redistribute’ the weight si"m* s,»i“* /W*toall
the other links. This generates a sequence of improved weights w;k = Wé‘/m + Wél) for any desired order [ of
approximation [36]. To this aim, at least two different recipes can be devised. The first one prescribes to
redistribute the terms s;° st 1"/ W* on a complete graph with no self-loops via the IPF algorlthm In this way,
margins are correctly reproduced in thelimit/ — oo, with the improved weights reading wj; = W ME + W(OO)

("O) can be estimated numerically, according to the iterative recipe described in [1, 18]; although the final result
of this procedure achieves a refined match to the enforced margins, it makes the model no longer under
complete analytical control. The second one prescribes to redistribute the terms s; m /W* onafully connected
matrix via the IPF algorithm, discard the diagonal terms and redistribute the latter ones in an iterative fashion; in
this way, the correction term is always under analytical control even if this second variant requires the explicit
generation of selfloops to ensure that margins are reproduced at each iteration step: for example, the full
prescription of the second method, at the second iteration, reads

AME | ~(2) \j:_ -
=i (39)
Wy Vi=j

where W(z) =5’ s ief °“t st i/ (W™, sout n*). It is therefore up to the researcher to make the optimal choice
between amore accurate and amore explicit version of the method, depending on the situation. Since the IPF
algorithm cannot univocally determine a way to redistribute weights (as we have seen, the answer provided by the
IPF algorithm depends on how one chooses to decompose the constraints) here we have decided to use the more
explicit recipe w; ME provided its agreement with the empirical weights.

Letus now compare the effectiveness of the CReM 4, and the CReMz models in reproducing the two systems
under consideration. In order to carry out the most general comparison possible, let us consider again our
likelihood-based score function and focus on the second term, i.e. the proper conditional likelihood

G = In Q(W*|A"); (3.36)

we have employed the symbol G since the expression of the conditional likelihood can be recovered by specifying
the binary probability distribution P(A) = 6, s+ in the expression of the generalized likelihood, i.e.

equation (3.7). In this case, g quantifies the effectiveness of a given model in reproducing the weighted
structure of a network given its topology.

The performance of the CReM 4, and the CReMz models is, then, evaluated by comparing their conditional
likelihood numerical values. The latter depend, respectively, on the parameters Bcgem, and Bcrem,s thus, in
;CGM Vi=j,to
capitalize on the result of the comparison between binary reconstruction algorrthms) and then substitute
ﬂéReMA and ,BéReMB back in equation (3.36). We also explicitly notice that the sufficient statistics for the CReM4
and the CReMp models coincide (they are, in fact, represented by the vectors of out- and in-strengths): hence,
the AIC test would yield the same ranking as the one obtained by just comparing the likelihood functions.

Results are shown in figure 4 that confirm what we expected from the CReM model, i.e. a reconstruction
accuracy that is comparable with the one of the CReM 4 model but still achievable with much less computational

order to compare our two models, we first solve equations (2.20) and (3.34) (with f
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Figure 4. Top panels: comparison between the conditional likelihood functions of the CReM4 and the CReMz models (red squares
and blue circles, respectively), for the WTW (across the years 1950—2000—TIeft panel) and e-MID (across the years 1999-2011—right
panel). The reconstruction accuracy obtainable by employing the CReM 3 model is comparable with the one obtainable by employing
the CReM, model; still, it is achievable with much less computational effort. Middle panels: percentage of observed weights that fall
into the confidence interval surrounding their estimate, for the WTW (left panel) and e-MID (right panel), in correspondence of the
values g* = g~ = 0.25. Bottom panels: performance of the CReMz model in reproducing the WCC, confirming that the precision
achievable by running the latter is larger than/equal to the one achievable by running the CReM, model (analogous results hold true
for the ANNS). Identity is drawn as a black, solid line.

effort (in the case of the WTW, however, an even better agreement obtainable by running the CReM g model can
be clearly appreciated).

Let us now compare the CReM, and CReMp models by calculating the percentage of real weights that fall
into the confidence intervals surrounding their estimates, by employing the same g~ and q* values (see figure 4
and the appendix for the details of the calculations): the CReM model outperforms the CReM 4 model in
providing reliable estimates of actual weights. Notice that although the discrete versions of both the ECM and
the DECM can provide error estimates, their computation is much easier within the novel, continuous
framework considered here.

4, Discussion

The extension of the ERG framework to account for conditional probability distributions aims at filling a
methodological gap: defining a recipe for unbiased weight assessment, currently missing within the class of
network reconstruction models.

The vast majority of the algorithms that have been proposed so far, in fact, combine methodologically
different steps to estimate the purely topological network structure and the link weights, potentially distorting
the entire procedure: as the derivation of our conditional reconstruction method proves, the topological
information (summed up by the set of coefficients { f; f\]’: 1) affects the estimation of link weights as well—see
equations (2.20), (3.18), (3.33), etc.

These observations point out that a first source of bias is encountered whenever a probabilistic recipe for
topological reconstruction is forced to output a single outcome instead of considering the entire ensemble of
admissible configurations. Indeed, (mis)using a probabilistic method by implementing it as a deterministic one
leads to an (arbitrary) privilege for a single configuration instead of correctly accounting for the entire support of
the probability distribution defining the method itself. Since the expectation of any quantity of interest should be
taken over the entire set of admissible configurations, privileging a particular realized topology will, in general,
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lead to a wrong estimate of the inspected properties. Such an ‘extreme’ choice is allowed only when the number
of admissible configurations indeed reduces to one, i.e. only in the limiting case in which the network topology is
known exactly (i.e. f; = a;, Vi = j).

A second source of bias is encountered when link weights are deterministically imposed via a recipe like the
IPF algorithm, again because of the non-maximum-entropy nature of any deterministic algorithm. As a result,
even in the extreme case in which alllinks of a given real-world network are known ab initio, the probability
density of reproducing the weighted network with IPF-assigned weights would still be zero. By contrast, our
calculations show that the correct procedure when all the topology is known is to assign weights probabilistically
using equation (3.14), with parameters fixed by equation (3.18).

Our framework overcomes both limitations. The proposed CReM 4 and CReMp models, in fact, are fully
probabilistic in nature and allow for the generation of network configurations characterized by continuous
weights. Remarkably, for what concerns the binary estimation step, only the marginal probability distributions
{ fij}fj»:l describing the behavior of the random variables {a;; }fg:l are needed, a result that holds true
irrespectively from the algorithm employed to derive the set of coefficients above.

Although it may be argued that the observations above hold true for the continuous version of the DECM as
well, let us notice that its applicability is limited by the amount of information required to solve it, i.e. the
knowledge of both the out- and in-degree sequences—a piece of information that is practically never accessible.
On a more practical level, the numerical resolution of the CReM 4 and CReMp models is much less costly than
the numerical resolution of the DECM. Moreover, our framework allows us to further simplify the problem of
finding a numerical solution of the system of equations (2.20), by providing a recipe to solve rescaled versions of
it: such arecipe can be employed to simplify calculations whenever a solution of the system above cannot be
easily found at the considered scale (see also the appendix).

The comparison between our two competing models, then, reveals that the best performance is achieved by
the CReMp that is the clear winner both in terms of accuracy and simplicity of implementation—as it does not
require the resolution of any system of equations; even more so, each parameter of the CReMp model can be
computed independently from the others, thus making the entire procedure parallelizable. To sum up, in order
to achieve a fast and efficient reconstruction of weighted networks, we recommend the use of the CReM g model
both in case of full uncertainty about the network topology and if the existence of some links is certain.

The codes to run both the CReM 4 and the CReMp versions of our method are freely available at [30].
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Appendix A. The relationship between entropy and likelihood

Standard case. Let us revise the relationship between Shannon entropy and likelihood in the standard case. The
maximization of Shannon entropy

SW) =-% f Q(W)log Q(W)dwW (A1)
AcA
under the set of constraints C (W) leads to recover the functional form [24]
e Hi(W)
Qx(W) = (A.2)
Z3

where Hx (W) = Y, A\, C,(W)isalinear combination of the constraints and Zy = fW e W) W is the
partition function. Upon substituting Q5 (W) into the Lagrangean function

L@, /\)—S(W)+u[1 > Q(W))+Z/\( ~ (Ca) (A3)

A€A
(with (Co) = Ypca f Q(W)C,(W)) one recovers the expression

LQX), X) =logZs + Y AC = —InQx(W¥) (A4)
the last passage being valid for any graph W* such that C (W*) = C ¥, in other words, the equation above states
that the Lagrangean functional is ‘minus’ the likelihood function of any graph W* on which the constraints
C (W*) assume the values .

Notice that in case the Lagrangean functional is evaluated in \*, i.e. the parameters values ensuring that

-

(Cx*) = C*, theresult
LA, X = 5(X) = ~In QW) (A5)

isrecovered.
Conditional case. In case the functional

SOMA) = -3 P(A) f Q(W]A)log Q(W[A)dW (A.6)

AcA

.. . . —HzW) | . . .
is, instead, considered, the expression Q3 (W]A) = £ — is recovered, with obvious meaning of the symbols.

Upon substituting Q5 (W]A) into the Lagrangean function defined in equation (3.5) one recovers the expression
LQM), N = 3 P(W)logZy 5 + 2 Co=-GN (A7)
AcA
the last passage being valid for any graph W* such that (C ) = C(W*) = C* . Notice that in case the Lagrangean
functional is evaluated in X¥, i.e. the parameters values ensuring that (Cx*) = C ¥, the result
LQAD, X =AY = = 37 PWh Qp(W)¥1A) = —G(X) (A8)
AcA

isrecovered.

Appendix B. The binary reconstruction step: deriving P(A)

The conditional reconstruction method works for any choice of P(A). Here we derive two possible alternatives,
to be selected according to the available information. The first possibility is deriving P(A) by maximizing
Shannon entropy

S(A) = =) P(A)logP(A), (B.1)

AcA

under the constraints represented by the out- and in-degree sequences {k°™} N, {k;"} ¥_,. This is the DBCM
model [1]inducing a probability reading

P(A) = H Pi?ij(l - p,‘j )1_‘1’7 (B.2)

j=i
xou( m

1 + xou(xln
about the degrees is practically never accessible. However, we can rest upon a certain approximately linear
empirical linear relation generally found between the strengths and the Lagrange multipliers controlling for the

with p; = Unfortunately, this model is not viable for network reconstruction as the information
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degrees (i.e. x?™ ~ s?" a and x/™ ~ s"\/b [5]) to define a more realistic model. This so-called ‘fitness ansatz’
leads to our second model, whose linkage probability reads
zsP%sin

— P
pl] - 1+ ZSiOUtSJi'n (B3)

(having defined z = Jab), with the parameter z tuned to reproduce the empirical link density:
(L) =X P = 2je 11-2:257"5“]‘5'" = L*. Equation (B.3) is the one characterizing the dcGM [5]. Other possible
choices for P(A) are discussedjin [1].

Appendix C. Solving the rescaled CReM 4 problem

Let us now prove that our framework easily allows one to find a solution of the system of equations (2.20) in case
the sufficient statistics is rescaled, i.e. divided by an opportunely defined factor (e.g. k). To this aim, let us
consider the rescaled system

Sy =
(1) B (k) + /3;-"(5') ok
f in* ’ (Cl)
ji _ s .
Zj(ti) ﬂ]'?m(n‘)+,ff§-"(l~i) P Vl

—out =i . . .
where the symbols (3 *(k)and ﬂim (k) stress that the searched solutions are functions of the chosen rescaling
parameter x. A solution of the system above reads

B (k) = KB, Vi (C2)

B k) = kBT, Vi (C3)
as it can be proven upon substituting it back into equations (C.1) and noticing that { 3"}, and {3}, are
solutions of the system of equations (2.20). As our likelihood maximization problem admits a unique, global

maximum, the prescription above allows us to easily identify it. Such a recipe turns out to enhance the chance of
finding a solution to the system of equations (2.20) by solving a related problem at a more convenient scale.

Appendix D. A ‘golden standard’ for reconstruction models

Let us notice that our framework allows us to define a sort of benchmark or ‘golden standard’ for reconstruction
models, defined by the assumptions that both the actual network topology and the entire set of weights are

accessible. Upon considering that §;; = %, Vi = j,implementing both assumptions leads to the conditional
i

probability distribution

f," ,ﬂw% aij 0 1

qi-(wl-’fl aj=1)=——e il = —-e [ i — (D.1)
! (wij Wi ew;

further leading to
G =mQWHAH = > (-1 —lnw)H=-L— > Inw}

{a;=1} {aj=1}
i.e. to the maximum value of the likelihood attainable by a canonical model with local contraints, still preserving
the strengths.

Appendix E. Confidence intervals-based comparison of network models

Both reconstruction models introduced in this manuscript induce pair-specific weight distributions: this allows
a confidence interval to be defined around the expected value of each link weight. Since the procedure described
below is valid for both the CReM 4 and the CReM z models, let us consider a generic exponential distribution
whose parameter is 3j;.

In order to analytically estimate the searched confidence interval [w™, w7, let us solve the equation

w

(wijla;=1)
f Y ﬁijefﬁfjw’:"dwij =q (E.1)

17



10P Publishing

New J. Phys. 22 (2020) 053053 F Parisi et al

inverting which we find the left bound w™; upon noticing that (wjla; = 1) = 5% the result

Infe it~ 4 g7 In[e”! +q7]

W= — (E.2)
6lj ﬁij
is obtained. Analogously, the second equation to be solved is
W+
f ﬁije_ﬂijwvdwij = q+ (E3)
= (wjla;j=1)
leading to the result
W+ = — ln[e_ﬂ"]<w’j|aij:1> _ q+] = — ln[e_l _ q+] . (E4)
Bij Bij

Thus, upon fixing the desired confidence levels g and g, the confidence interval [w~, w*] accompanying
the estimation of the conditional expected weight (wjjla; = 1) is recovered. Generally speaking, such a
confidence interval is not symmetric, given the peculiar form of the underlying probability distribution (i.e. the
exponential one).

As the comparison shown in figure 4 reveals, the CReMp model outperforms the CReM 4 model in providing
reliable estimates of actual weights.

Appendix F. Deriving the continuous DECM

The continuous DECM is obtained by maximizing the entropy S (VV) in equation (A.1) under the constraints
represented by the out- and in-degree sequences and the out- and in-strength sequences:

(") = Saca [, QUK (W)dW = ke

(k") = Saen [ QMK W)W = ki
3 N (E.1)
<5i0ut> — ZAeA fw Q(W)SiOUt(W) dw — Siout*

(M = Syen fw QW)si™(W)dW = sjn*.

efH (W)
where

The continuous DECM is defined by a probability distribution reading Q(W) =
HW) = > [(a" + aMHOwy) + (3" + 8w (F.2)

j=i

and

N
A

0 t in Qout | ain
— H f [6(Wij —0) + G(Wij)] e~ (@ +a)Olwyl— (37" +5; )W’deij
0

j=i

- 11 [1 s earan [

b out__gin
e~ B+ dw;
j=i 0

ef(af’“l+aij")
= H 1+ out in (F3)
ji B+ By

(dW stands for [[;_.; dw;;, in the first passage) which finally leads to

(x out x]@n )(—)(w,j) ef(ﬂ?“Uﬁﬂ;")wU

QW) =[] g;(w) = : . — (F.4)
]1;[1 A ]131 14+ xioutx}n/(ﬂ?ut 4 ﬂ}n)
As we said in the main text, the CReM 4 model admits the DECM as a particular case. In fact
Q5 (wi) = p "M (B + B)e G (E.5)

for any positive weight and with pPEM representing the probability that a link pointing from i to j exists. Indeed,

ij
the functional forms of the expected weights under the CReM 4 and the DECM models coincide as well: in fact,

DECM c c
DECM DECM
(OZ,',

(Wij)pECM = af’z—W"With p; =P, a;j, Bi» 3;), thelatter expression explicitly showing the joint
B 4 3
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role played by binary and weighted constraints in determining the topological structure of the network at hand
Ppijis, in fact, defined by the Lagrange multipliers associated with both the out- and in-degrees and the out- and
in-strengths of nodes i and j.
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