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Abstract
Due to the interconnectedness offinancial entities, estimating certain key properties of a complex
financial system, including the implied level of systemic risk, requires detailed information about the
structure of the underlying network of dependencies. However, since data aboutfinancial linkages are
typically subject to confidentiality, network reconstruction techniques become necessary to infer both
the presence of connections and their intensity. Recently, several ‘horse races’have been conducted to
compare the performance of the availablefinancial network reconstructionmethods. These
comparisonswere based on arbitrarily chosenmetrics of similarity between the real network and its
reconstructed versions.Here we establish a generalizedmaximum-likelihood approach to rigorously
define and compareweighted reconstructionmethods. Our generalization uses themaximization of a
certain conditional entropy to solve the problem represented by the fact that the density-dependent
constraints required to reliably reconstruct the network are typically unobserved and, therefore,
cannot enter directly, as sufficient statistics, in the likelihood function. The resulting approach admits
as input any reconstructionmethod for the purely binary topology and, conditionally on the latter,
exploits the available partial information to infer linkweights.Wefind that themost reliablemethod is
obtained by ‘dressing’ the best-performing binarymethodwith an exponential distribution of link
weights having a properly density-corrected and link-specificmean value and propose two safe (i.e.
unbiased in the sense ofmaximum conditional entropy) variants of it.While the one namedCReMA is
perfectly general (as a particular case, it can place optimal weights on a network if the bare topology is
known), the one namedCReMB is recommended both in case of full uncertainty about the network
topology and if the existence of some links is certain. In these cases, theCReMB is faster and reproduces
empirical networkswith highest generalized likelihood among the considered competingmodels.

1. Introduction

Network reconstruction is an activefield of researchwithin the broader field of complex networks. In general,
network reconstruction consists in facing the double challenge of inferring both the bare topology (i.e. the
existence or absence of links) and themagnitude (i.e. theweight) of the existing links of a network forwhich only
aggregate or partial structural information is known. These two pieces of the puzzle (i.e. the ‘topology’ and the
‘weights’) represent equally important targets of the reconstruction problem, although reaching those targets
may require very different strategies. In general, the available pieces of information represent the constraints
guiding the entire reconstruction procedure. Depending on the nature of the available constraints, different
reconstruction scenariosmaterialize. The scenario considered in this paper is the one that is recurrently
encountered in the study offinancial and economic networks [1, 2].

Indeed, financial networks are a class of networks forwhich the reconstruction challenge is particularly
important. The estimation of systemic risk, the simulation offinancial contagion and the ‘stress testing’ of a
financial network in principle require the complete knowledge of the underlying network structure. If the
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description of this structure is naively simplified or reduced, then the outcome of those stress tests becomes
unreliable when taken as a proxy of what would happen on the real network in the same situation. Thismay
imply a severe underestimation of the level of systemic risk, as research conducted in the aftermath of the
2007–2008 crisis showed. In the typical situation forfinancial networks, the total numberN of nodes (e.g. the
number of banks in a given network of interbank lending) is known, but the number, intensity and position of
the links among those nodes is unknown because of confidentiality issues. Generally, one has access only to
node-specific information that is publicly available. For instance, frompublicly reported balance sheets one
knows the so-called ‘total assets’ (total value of what a bank owns, includingwhat it lent out to other banks in the
network) and ‘total liabilities’ (total value of what a bank owes to the external world, includingwhat it borrowed
fromother banks in the network) of each bank in an interbank system. Similar considerations apply to inter-firm
networks, where links represent typically unobservable individual transactions while the total purchases and
total sales of each of thefirms in the system considered aremore easily accessible. Onemore example, which is
relevant not strictly for the reconstruction problembut rather from amodeling point of view, is that of the
international trade network, where onewould like to obtain a goodmodel of international trade flows from
country-specific aggregate quantities such as the total imports and total exports of each country.

In all the examplesmentioned above, the pieces of node-specific information typically represent a good
proxy of themargins, i.e. the sums along columns and rows, of theweighted adjacencymatrixW* of the (in
general directed)network, whose entry wij*quantifies themagnitude of the link existing fromnode i to node j

(including =w 0ij* if no link is there). In the language of network science, these twomargins are called the out-

strength º å ¹s wi j i ij
out ** and the in-strength º å ¹s wi j i ji

in ** of node i, where the asterisk indicates the ‘true’ value,

i.e. the valuemeasured on the true networkW*, of those quantities. In general, one assumes that the fullmatrix

W* itself is unobservable, while si
out* and si

in* are (directly or indirectly)measurable for each node (i=1...N).
TheN-dimensional vectors


s out* and


s in* constructed fromall node strengths are called the out-strength

sequence and in-strength sequence, respectively. It is worth stressing here that the in- and out-strength sequences
represent a formofweighted constraints that can be imposed in the reconstruction procedure, because they
depend explicitly on themagnitude of the links in the network. As such, they do not contain direct information
about the binary topology of the network, such as the overall density of links, the number of links (i.e the degree)
of each node, etc. Thismakes the simultaneous inference of both the linkweights and the bare topology of the
network particularly challenging in this setting.

Irrespective of how the strength sequences are used in the reconstructionmethod, it is clear that there are
multiple (in fact, hugelymany) possible networks that are consistent with suchmargins. The essence of each
method lies in how this set of compatible networks is further restricted to produce the output networks. At one
extreme, there are greedymethods based on certain heuristics or ansatz that in the end produce a single possible
instance of the network. The problemwith these ‘deterministic’methods is that, by producing a single outcome,
they give zero probability to any other network, including (apart from sheer luck) the true unobserved network
W*. This implies that the likelihood of producing the real network given themodel is always zero. The success of
such deterministicmethods, as well as their comparisonwith competingmethods, has therefore to be assessed
via some arbitrarily chosenmetric of network similarity. At the other extreme, there aremaximally agnostic
methods designed to impose absolutely no other ansatz or heuristic besides the knowledge of the strengths
sequences, so that all the compatible networks are acceptedwith equal probability. This is the class of
(unconditional)maximum-entropymethods, that look for the probability distribution (in the space of weighted
networks)maximizing the entropy, subject to the imposed constraints. Research has shown that typical
networks sampled frommaximum-entropy ensembles of networks with given strength sequence are fully or
almost fully connected [3]. In light of the sparsity ofmost real-world networks, this is amajor limitation.

All the state-of-the-art reconstructionmethods are found somewhere in between the two extreme cases
described above. Among themethods proposed so far, some assume that the constraints concerning the binary
and theweighted network structure jointly determine the reconstruction output. An example providing an
excellent reconstruction of several real-worldweighted networks is the enhanced configurationmodel (ECM)
[3], defined by simultaneously constraining the nodes degrees and strengths. However the inaccessibility of
empirical degreesmakes thismethod inapplicable in the setting considered here. This has led to the introduction
of two-step algorithms [4, 5] that perform a preliminary estimation of node degrees to overcome the lack of
binary information. Othermethods consider theweights estimation step as completely unrelated to the binary
one [6, 7]. Examples includemethods that adjust the linkweights iteratively on top of some previously
determined topological structure (e.g. via the recipe firstly proposed in [8]), in such away to satisfy the strengths
constraints a posteriori. This kind of procedure, however, assigns weights deterministically, thus being unable to
provide confidence bounds accompanying theweight estimates [9] and basically giving zero probability to any
real-world network.
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In this paper, after reviewing the state-of-the-artmethods and discussing their performance, we develop a
theoretical framework that provides an analytical, unbiased3 (i.e. based on themaximization of a certain
conditional entropy)procedure to estimate theweighted structure of a network. Themaximization of the
conditional entropy generalizes the exponential randomgraph (ERG) formalism to situationswhere the
aggregate topological properties that effectively summarize the network topology are not directly observable and
cannot therefore enter as sufficient statistics into themodel (and in the ordinary likelihood function).
Information about the topological structure (either available ab initio or obtained by using any of the existing
algorithms for the purely binary reconstruction) is treated as prior information. Together with the available
weighted constraints, this prior information represents the input of our generalized reconstruction procedure.
The probability distribution describing linkweights is, then, determined bymaximizing a suitably defined
conditional entropy. This construction allows us to achieve an optimal compromise between the deterministic
and fully agnostic extremesmentioned above: while we allow themethod to incorporate a certain ansatz (both
for the purely binary structure and for theweights) that effectively restricts the set of compatible networks, we
stillmaximize a certain entropy in order to preserve the necessary indifference among configurations that have
the same ‘good’ properties, induced by the ansatz itself. Finally, the parameters of the conditionallymaximum-
entropy distribution are found bymaximizing a generalized likelihood function that depends on the probability
distribution over binary graphs implied by the binary reconstructionmethod. This last stepmakes theweight
distribution dependent, as it should, on the purely binary expected network properties.

As it turns out, when linkweights are treated as continuous randomvariables, their distribution—
conditional on the existence of the links themselves—is exponential, a result that can be used to further enhance
the performance of the best-performingmethods available to date, providing themwith a recipe to determine
confidence intervals for theweight estimates.While it is a well know result that the exponential distribution
follows from themaximization of the entropy subject to a constraint on themean value, what is nontrivial here is
the determination of how themean value itself should depend on a combination of certain empirically observed
regularities and, crucially, on the prior probability distribution of the bare topological projection of the network
implied by the binary reconstructionmethod chosen as input. As a byproduct, our generalized reconstruction
framework leads to a computationally simpler variant of ourmethod, based on the solution of a single nonlinear
equation in place of several coupled, nonlinear equations as in some of the previousmethods4.

The rest of the paper is organized as follows. In section 2we review the state of the art of network
reconstructionmethods and discuss their performance.We then describe our generalized ‘conditional
reconstructionmethod’ in detail, providing twodifferent specifications of it. In section 3we test the
performance of themethod on real-world networks. In section 4we discuss the results.

2.Methods

Inwhat follows, we indicate a weighted adjacencymatrix asW and its generic entry aswij. Analogously, we
indicate the corresponding adjacencymatrix asA and its entry as aij=Θ(wij), withΘ(x) representing the
Heaviside step function, defined asΘ(x)=1 if x>0 andΘ(x)=0 if x�0.

2.1. Network reconstructionmethods: an overview of the state-of-the-art
TheMaxEntmethod: deterministic link weights on a complete graph.A traditional approach to network
reconstruction is the so-calledMaxEntmethod [10–12], defined by themaximization of the ‘entropy’

( ) = -åS w wW lni j ij ij, under the constraints represented by the networkweightedmarginals, i.e.

= å "¹s w i,i j i ij
out ** and = å "¹s w i,i j i ji

in ** . The resulting ‘maximum-entropy’ expression forwij is easily found
to be

ˆ ( )= "w
s s

W
i j, , 2.1ij

i jME
out in

*

* *

with = å = åW s si i i i
out in* * *. Themajor drawback of the abovemodel is the prediction of a fully connected

networkwith all positive linkweights given by equation (2.1). Yet, the above expression often provides an
accurate estimation of the subset of realized (i.e. positive) real-world linkweights. This fact will turn out useful

3
Throughout the paper, we use the term ‘unbiased’ as intended in the application of themaximum-entropy principle, i.e. whenwe refer to

outcomes thatmaximize the (conditional) entropy, so that the resulting probability distribution does notmake arbitrary preferences
(corresponding to hidden or unjustified assumptions) among configurations that share the same values of certain target quantity.
Constrainedmaximum-entropy distributions producemaximally randomoutcomes givenwhat is supported by the data used as constraints,
thereby ensuring unbiasedness. To avoid confusionwith themeaning of the term ‘bias’ in statistics, we do not use the term in the sense of
‘biased parameter estimation’.
4
Where appropriate, the interested reader will be redirected towards freely available codes to run all variants of our framework.
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later in our analysis. At a fundamental level, the ultimate issuewith thismethod is that, although the quantity
S(W) is referred to as ‘entropy’, actually the linkweightwij admits no natural interpretation as a probability
distribution over the entries of thematrix, contrary towhat the definition of entropywould instead require. In
particular, S(W) is a function of a singlematrix, rather than a function ( )S of a probability distribution over an
ensemble of realizations of thematrix, treated as a randomvariable that can takeW as one of its possible
valueswith a certain probability (the approach thatwe introduce later will be based precisely on a proper entropy

( )S of this type, and particularly on a certain conditional version of it). This consideration immediately
questions the interpretation of equation (2.1) as a truly ‘maximum-entropy’ result. In fact, by producing a single
matrix as output, themethod is actually a deterministic (i.e. a zero-entropy) one, rather than a probabilistic one
as propermaximum-entropymethods necessarily are.

Iterative proportional fitting: deterministic linkweights on any graph.The search for nontrivial (i.e. sparser)
topological configurations still guaranteeing that theweightedmarginals are satisfied has led to a plethora of
reconstructionmethods. Thesemodels are described below; herewemention an aspect common tomany of
them. Irrespective of themethod used for the reconstruction of the binary topology, a popular way to assign link
weights on a non-complete (not fully connected) graph, while stillmatching the constraints given by the in- and
out-strength sequences, is the iterative proportional fitting (IPF) algorithm [8]. The IPF recipe assumes that the
network topology is given and iteratively ‘adjusts’ linkweights until the constraints are satisfied [1, 8]. In the
special case when the network is fully connected, the IPF algorithm reduces toMaxEnt. Since the IPF algorithm
always yields a (unique)matrix satisfying theweightedmarginals irrespective of the topological details5 of the
given underlying binary structureA, many researchers have focused onmethods for improving the
reconstruction of the bare network topology, while considering the ‘linkweight’ problem virtually solved and,
more importantly, decoupled from the ‘topology’ problem. Aswe argue later on, this consideration is incorrect.
Moreover, the IPF recipe suffers from two serious drawbacks, both imputable to the deterministic rule used to
assignweights to a given binary configuration. First, it cannot provide confidence bounds accompanying the
weight estimates. Second, the probability of reproducing any real-worldweighted network is virtually zero, even
if the bare topologywere known exactly.

Many horses andmany races.Herewe succintly describe the state-of-the-art reconstructionmethods (the
‘horses’) that have been recently considered in various ‘horse races’ comparing the performance of different
methods over a number of real-world networks. Thesemethods have been recently reviewed in [1] and are here
compactly collected in table 1. In order to unambiguously assess the performance of a givenmethod, we
consider the probability (density)Q(W) of generating a givenweighted graphW according to themethod, and
use the corresponding log-likelihood

( ) [ ( ) ( ∣ )]
( ) ( ∣ ) ( )

=
= +

Q P Q

P Q

W A W A

A W A

ln ln

ln ln 2.2

* * * *

* * *

as a score function quantifying how likely the structure of the specific real-world networkW* is reproduced by a
given algorithm.Notice that we havewritten ( ) ( ) ( ∣ )=Q P QW A W A where P(A) is the probability of generating

Table 1.Overview of the reconstructionmethods reviewed in [1]. The letter ‘P’ indicates that the considered estimation step is probabilistic
in nature while the letter ‘D’ indicates that it is deterministic. The log-likelihood is defined as in equation (2.2), i.e. ( )Q Wln * .

Method Topology Weights Log-likelihood

MaxEnt (ME) [10, 11] D D -¥
Minimum-density (MD) [13] D D -¥

Copula approach [14] P D (IPF) -¥
Drehmann andTarashev [15] P D (IPF) -¥
Montagna and Lux [16] P D (IPF) -¥
Mastromatteo et al [17] P D (IPF) -¥
Gandy andVeraart [9] P D (MF) -¥
dcGM [5] P D (ME) -¥

MECAPM [18] P P ( Î wij ) -¥

Fitness-inducedDECM [4] P P ( Î wij ) -¥

Hałaj andKok [7] P P Î
Moussa [19] P P Î

5
The only request aboutA is its irreducibility [1, 8].
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the bare topologyA ofW and ( ∣ )Q W A is the conditional probability of generating theweights of the network,
given its topology. Therefore P(A*) is a sort of purely binary likelihood.

Upon looking at table 1, several classes of algorithms can be distinguished. Afirst group gathers the
algorithmswhose estimation steps are both deterministic (notice that the purely deterministic version of the
minimum-density algorithm is considered here, i.e. the one used in the ‘horse race’ [20]). Since the deterministic
nature of an algorithm implies that the probability fij that nodes i and j are connected is fijä{0, 1}, the only
way to reproduce the actual topological structureA* is implementing the rule ⟺= =f a1 1ij ij* and

⟺= =f a0 0ij ij* . However, this prescription is viable only if the actual configuration is given, otherwise the

probability of reproducing its structure isP(A*)=0, further impliying that ( )Q Wln * =-¥.
A secondgroupgathers algorithmswhere the topological estimation step is indeedprobabilisticwhile the recipe

for assigning linkweights is deterministic:while the vastmajority of suchmethods rests upon the IPF algorithm, the
density-correctedGravityModel (dcGM) [5]method rests upon theMaxEntprescription.Themethodproposed in [9],
instead, employs themaximum-flow (MF) algorithm to adjustweights. Even if these algorithms indeed allow for the
observed topological structure tobe replicable (i.e.P(A*)>0), they still assignweights in adeterministic fashion: this
implies that the actual configurationW* canbe reproduced if andonly if ˆ =w wij ij*, i.e. only in case the actual

configuration is given, otherwise ( ∣ ) =Q W A 0* * , again impliying ( ) = -¥Q Wln * .
A third group gathers algorithmswhose steps are both probabilistic. However, weights are assumed to be

natural numbers: hence, configurationswith realweights—i.e. typical real-world networks—cannot, by
definition, be reproduced by such recipes.

The last twomethodsmay, in principle, lead to recover the structure of a networkwith real-valuedweights.
However, themethod byHałaj andKok induces a completely random topological structure, leading to a
probability of reproducing any observedA* that reads P(A*)=2−N(N−1), rapidly vanishing asN grows.On the
other hand, themethod proposed byMoussa aims at reproducing a specific feature of several real-world
networks, i.e. a power-law degree distribution: as a consequence, it is optimized to reconstruct such a peculiar
topological feature and does not allow for generic degree distributions.Moreover, themethod does not come
with a recipe for assigning the generated degrees to the different nodes.

A good horse on the binary trail: the dcGM.The above considerations imply that, as far as the simultaneous
reconstruction of both the topology and theweights is concerned, none of the currentmethods is satisfactory.
The remainder of the paper aims at introducing a viable and efficientmethod. Themethodwill be designed in
such away that any purely binary reconstructionmethod, i.e. anyP(A), can be taken as input, while aiming at
placing linkweights optimally. This will allow us to freely choose the binarymethod at the end. It is therefore
worthwhile to describe in some detail here the specific binarymethod thatwewill eventually select for our
analyses when putting the fullmethod at work.Our choice is guided by the results of four independent tests
(‘horse races’) [20–23], that have found that, as far as the imputation of the overall binary topology of the
network is concerned, the dcGM [5] systematically outperforms competingmethods. Quoting from the source
references:

• ‘in presenting our results we face the challenge that some algorithms produce an ensemble of networks while others
produce a singlematrix. Thismakes a straightforward comparison difficult. Fortunately, the Cimimethod is the
clear winner between the ensemblemethods’ [20] (note: ‘Cimi’ is the name given in [20] to the dcGM);

• ‘according to our analysis, reconstructing via fitnessmodel outperforms the othermethods when the same input
information is used’ [21] (note: ‘fitnessmodel’ is the name given in [21] to the dcGM);

• ‘second, concerning the individual performance of each null model, we find that CM1, followed byCM2 and
MaxEntropy, has the closest behavior to the actual network overall. Since CM2 requires much less information than
CM1, we find that thismakes CM2more appealing for practical purposes’ [22] (note: ‘CM2’ is the name given in
[22] to the dcGM);

• ‘as an ‘off the shelf’model in situations without exogenous information available, the density-corrected gravity
model (DC-GRAVITY) can be recommended because it is found to workwell on the big sparse network as well as on
the small dense network with respect to the edge probabilities and the edge values [...] Similarly, Gandy andVeraart
(2019) report that thismodel is performing verywell in binary and valued reconstruction. Further, themodel can be
extended towards the inclusion of exogenous information in a simple way’ [23] (note: ‘DC-GRAVITY’ is the name
given in [22] to the dcGM).

The above results prompt us to select the binary part of the dcGMas the best candidate to be given as input to
the fullmethod to be developed. The dcGM is defined by the simple Bernoulli prescription

5
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⎧
⎨⎪
⎩⎪

( )=
=

-

+a
p

p

1 with

0 with 1
2.3ij

ij

zs s

zs s

ij

dcGM
1

dcGM

i j

i j

out in

out in

(for i¹j), where the only free parameter z is tuned to reproduce the actual link density of the network [5]. It is
worthmentioning here that the dcGM takes the functional formof the connection probability from the binary
configurationmodel (BCM), i.e. themaximum-entropymodel of binary graphswith given in- and out-degrees
for all nodes (see appendix). In the BCM, the parameters are Lagrangemultipliers that control the in- and out-
degrees. In the dcGM, these parameters (that are unidentifiable, given the inaccessibility of the degrees) are
replaced by the observed values of the in- and out-strengths, respectively, up to the global proportionality
constant z. This is the so-called ‘fitness ansatz’, motivated by an empirical regularity showing the systematic
approximate proportionality between empirical strenghts and Lagrangemultipliers coupled to the degrees [5].
More details are provided in the appendix.

2.2. A framework for conditional reconstruction
In the following, we aim at introducing amethod overcoming the drawbacks affecting current weight
imputation recipes. Ideally, our recipe should satisfy the following requirements:

• allowing for any probability distribution (over purely binary graphs) to be acceptable as input for the
preliminary topology reconstruction step (this requirement allows us to take any binary reconstruction
method as input—and clearly, to select a good one for practical purposes);

• allowing for the generation of continuousweights (this requirement implies that the real unobserved network
will be generatedwith positive likelihood);

• satisfying the constraints that are usually imposed by the availability of limited information (i.e. the out- and
in-strength sequences { } =si i

Nout
1 and { } =si i

Nin
1).

As anticipated in the Introduction, these three postulates will be addressed by proposing a probabilistic
reconstructionmethod conditional on some prior binary information and constrained to reproduce the
aforementioned, weighted observables. In order to do so, we build upon the formalismproposed by the authors
of [24]whodefine a fully probabilistic procedure to separately constrain binary andweighted network
properties. In short, they introduced the continuous version of the ECM [3] and replaced the resulting
probability of the binary projection of the networkwith the one coming from the undirected binary
configurationmodel [25]. In such away, the estimation of the probability coefficients controlling for the
presence of links is disentangled from the estimation step concerning linkweights. Unfortunately, the
framework proposed in [24] cannot be directly used for network reconstruction as the information about the
degrees of nodes is practically never accessible.

3. Results

Before entering into the details of ourmethod, let us briefly describe the formalismwe adopt. Inwhat follows, we
assume that Î A is a realization of the random variable; analogously, theweighted adjacencymatrix

Î W instantiates the random variable . The probabilitymass function of the event = A is denotedwith
P(A), while ( ∣ )Q W A is a conditional probability density function, for the variable taking the valueW, given
the event = A. Notice that we are considering continuous (non-negative and real-valued)weights and that

( ∣ )Q W A is non-zero only over the continuous set { ( ) }= Q = W W A:A ofweightedmatrices with binary
projection equal toA.

Input.OurConditional ReconstructionMethod (CReM) takes as inputP(A), i.e. the distribution over the
space of binary configurations: this is treated as prior information and can be computed by using any available
method. Clearly, given the superior performance of the dcGMas summarized above, wewill select that
particularmodel in our own analysis, but nonetheless wewant to keep themethod as general as possible by
allowing for any input P(A).Moreover, the CReM requires as input a set of weighted constraints ( )


C W

representing the available information about the system at hand. The observed numerical value of these

constraints will be denoted by


C*. The true, unobservedmatrix will be denotedwithW* and the associated

binary projectionwithA*. Clearly ( )
 

=C CW* *.
Output.The goal of theCReM is to derive the distribution over the ensemble of weighted configurations

conditional on the prior information concerning the binary ensemble. To this aim,we look for a functional form
of ( ∣ )Q W A such that ( ∣ ) =Q W A 0 for Ï W A and otherwisemaximizing the conditional entropy [26]
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( ∣ ) ( ) ( ∣ ) ( ∣ ) ( )òå= -
Î


 

S P Q QA W A W A Wlog d 3.1
A A

under the set of constraints

( ∣ ) ( )ò= " Î 


Q W A W A1 d , 3.2
A

( ) ( ∣ ) ( ) ( )òå aá ñ = = "a a a
Î 

C P Q C CA W A W Wd , 3.3
A A

*

(notice that ·á ñdenotes an average with respect toQ(W)). Equation (3.2) defines the normalization of the
conditional probability and ensures that the unconditional probability

( ) ( ) ( ∣ ) ( )å=
Î

Q P QW A W A 3.4
A

is also normalized as

( ) ( ) ( )ò òå åº = =
Î Î   

Q Q PW W W W Ad d 1;
A AA

equation (3.3), instead, sets the target values


C* of our constraints. The problemLagrangean can be, thus,
written as the following generalization of the Lagrangean valid in the unconditional case (see appendix A):

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ∣ )

( ) ( ∣ )

( ) ( ∣ ) ( ) ( )
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ò
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l
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 

 
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A W A W
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A

A
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A
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Differentiating with respect to ( ∣ )Q W A and equating the result to zero leads to

⎪

⎪

⎧
⎨
⎩

( ∣ ) ( )
( )





=
Î

Ï
l

l

l

- 


Q W A
W

W0
, 3.6Z A

A

e H W

A,

where ( ) ( ) l= ål a a aH CW W is theHamiltonian and ( ) 

ò=l
- l

Z We dH
A

W
,

A
is the partition function for

fixedA. Note that we have introduced the subscript

l to stress the dependence of the quantities on the Lagrange

multipliers. The explict functional formof ( ∣ )
lQ W A can be obtained only by further specifying the functional

formof the constraints as well.
Parameters estimation.The conditional probability distributiondefined in equation (3.6)depends on the vector

of unknownparameters

l: a recipe is, thus, needed to provide their numerical estimation. In alignmentwith

previous results [27–29], wenowextend themaximum-likelihood recipe to dealwith the conditional probability
distributionweare consideringhere. Indeed, sincewedonot have access to the empirical adjacencymatrixA*, it is
not possible for us to compute the usual likelihood function ( ∣ )

lQ W A* * as a functionof the parameters

l.However

we can goback to themore general problem fromwhich the usualmaximizationof the likelihoodderives, i.e. the
maximizationof the constrained entropy—in our case, the conditional expression (3.5)—andobtain a
corresponding generalized likelihood that requires only the available information about the network.

Let us define

l* as the value of the parameters for which the constraints are satisfied, that is

 
á ñ =C C* *. By

construction, the value

l* is such that the gradient of the Lagrangean  is zero. Importantly, in the appendix we

show that it is also the value thatmaximizes the generalized likelihood

( ) ( ) ( ) ( )


 ål = - á ñ -l l
Î




H P ZW A log , 3.7
A

A,*

where ⟨ ⟩*W indicates the unconditional ensemble average ofWwhen the desired constraints are satisfied. The
use of this notation is legitimate by the fact that throughout this studywewill consider linear constraints of the
form

( ) ( ) å l=l
¹

H wW , 3.8
j i

ij ij

so that ( ) lá ñ = å á ñ = á ñl l¹H w H Wj i ij ij . The definition (3.7) is justified by the relationship between likelihood
and entropy proved below. Let us focus on the expression of the conditional entropy defined in equation (3.1):
using equation (3.6)we can rearrange (and rename) it as

( ) ( )[ ] ( )


 ål = - -á ñ -l l
Î

S P H ZA log . 3.9
A

A A,
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By evaluating ( )

lS in


l*, we obtain

( ) ( )
( ) ( )

( ) ( )





 

 

l

l

= á ñ + å

= á ñ + å
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l l

l l

Î

Î







S H P Z

H P Z

A

W A

log

log

. 3.10

A A

A A

,

,

*

*

*

* *

* *

Notice that the starting point of our derivationwas the definition of conditional entropy involving two ensemble
averages, over both sets of binary configurations and linkweight assignments. After its evaluation in


l*, the

average over the set of linkweight assignments has reduced to a single term, i.e. ( ) á ñlH W ** , while the average
over the space of binary configurations has survived.

3.1. Constraining the strengths: theCReMAmodel
Let us now instantiate ourCReM framework for the set of constraints usually considered (and empirically
accessible) for the case of the reconstruction offinancial networks, i.e. the out- and in-strength sequences,

( ) = å "¹s w iW ,i j i ij
out and ( ) = å "¹s w iW ,i j i ji

in . Imposing these constraintsmeans introducing the
Hamiltonian

( ) [ ( ) ( )]
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b b
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= +

=
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which induces the partition function
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Using equation (3.6), we canwrite

( ∣ ) ( ∣ ) ( )=
= ¹

Q q w aW A 3.13
i

N

j i
ij ij ij

1

where ( ∣ )= = =q w a0 1 0ij ij and

⎪

⎧⎨
⎩( ∣ ) ( ) ( )

( )b b= = + >b b- +


q w a

w

w
1

e 0

0 0
3.14ij ij

i j
wout in

i j
out in

for each positive weightwij, showing that each pair-specific weight distribution conditional on the existence of
the link is exponential with parameter b b+i j

out in.
Now, in order to determine the values of the vectors of parameters


b

out
and


b

in
wemaximize the generalized

likelihood defined in equation (3.7), which reads

[ ( ) ( ) ]

( ) ( )

å

åå

b b

b b

=- +

+ +

=

= ¹

 s s

f

W W

log 3.15

i

N

i i i i

i

N

j i
ij i j

CReM
1

out out in in

1

out in

A

* *

where the quantity

( ) ( )åº = á ñ
Î

f P a aA 3.16ij ij ij
A

represents the expected value of aij over the ensemble of binary configurations, i.e. themarginal probability of a
directed edge existing fromnode i to node j in the reconstructed binary ensemble, irrespective of whether edges
are generated independently of each other by the binary reconstructionmethod. Thismakes our formulation
entirely general with respect to the binary reconstructionmethod taken as input, as wemade no assumption on
the structure ofP(A). In particular, the joint probability P(A) for all links in networkA collectively appearing
need not necessarily factorize as ( ) ( )=   -= ¹

-P f fA 1i
N

i j ij
a

ij
a

1
1ij ij as inmodels with independent edges. For

instance, in the case of themicrocanonical binary configurationmodel (defined by sharply constraining the
degrees),P(A) is the uniformdistribution over all graphswith the a given degree sequence and cannot be
factorized, as all links aremutually dependent through the sharp constraint. On the other hand, when the
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canonical binary configurationmodel is considered, P(A) factorizes and fij coincides with the connection
probability pij defining themodel itself (see also the appendix) [1]. Both variants of the binary configuration
model, as well as any other binary reconstructionmethod, can be taken as input into our conditional
reconstructionmethod by specifying the corresponding P(A). Note that, in cases where the explicit expression
forP(A) is not available, one can still sample this distribution by takingmultiple outputs of the binary
reconstructionmethod and replacing averages overP(A)with sample averages.

Now, differentiating equation (3.15)with respect to b i
out and b i

in yields the systemof 2N coupled equations

⎧
⎨
⎪⎪

⎩
⎪⎪

( )
á ñ = å = "

á ñ = å = "

b b

b b
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¹ +

s s i
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,

,
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i j i

f

i

i j i

f

i

out out

in in

ij

i j

ji

j i

out in

out in

*

*

where á ñ =
b b+

wij
fij

i j
out in and fij is taken as given—therefore excluded from the estimation procedure.

Inwhat follows, we consider explicitly the case where no entry of the empirical adjacencymatrixA* is known,
so that all entries have to be dealt with probabilistically, in linewith previous research in the field.However, an
important feature of our framework is that it can incorporate the knowledge of any set of entries ofA* aswell.
Thismeans that, if we are certain about the presence ( =a 1ij* ) or absence ( =a 0ij* ) of certain edges, this
deterministic knowledgewill be reflected in the correspondingmarginal connection probability being =f aij ij*.
As an extreme example, let us consider the case inwhich all entries are known. In this case, we are led to the
maximally informative specification º " ¹f a i j,ij ij* further impliying that the system to be solved becomes

⎧
⎨
⎪⎪

⎩
⎪⎪

( )
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in in
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j i

out in

out in

* *

* *

As a final general observation beforemoving to specific results, wewould like to stress that the framework
defining theCReMAmodel admits, as a particular case, theDirected Enhanced ConfigurationModel (DECM), i.e.
the directed version of the continuous ECM [24]. Formore properties of the CReMAmodel, see also the
appendix. The code to run theCReMAmodel is freely available at [30].

3.2. Testing theCReMAmodel
Let us now explicitly test the effectiveness of theCReMAmodel in reproducing two real-world systems, i.e. the
World TradeWeb (WTW) in the year 1990 [31] and e-MID in the year 2010 [32] (see the same references for a
detailed description of the two data sets). In order to do so, we need to specify a functional form for the
coefficients { } =fij i j

N
, 1. As afirst choice, let us implement the recipe

( )º =
+

" ¹f p
zs s

zs s
i j

1
, 3.19ij ij

i j

i j

dcGM
out in

out in

that defines the dcGM.Upon solving the systemof equations (2.20), we obtain the numerical value of the

parameters

b

out
and


b

in
bymeans of whichwe can analytically compute the expectation of any quantity of

interest (via the so-called deltamethod, see also [28]). In particular, we have focused on (one of the four versions
of) the average nearest neighbors strength (ANNS) [33]

( )=
å

s
a s

k
3.20i

j ij j

i

out out
out

out

and on (one of the four versions of) theweighted clustering coefficient (WCC) [33]

( )
( )( ) ( )=

å å

-
¹ ¹

c
w w w

k k 1
; 3.21i

j i k i j ij jk ik

i i

out ,

out out

the comparison between the observed and the expected value of the quantities above is shown infigure 1 for both
systems. As a second choice, let us implement the deterministic recipe

( )º " ¹f a i j, 3.22ij ij*

whose effectiveness in reproducing the ANNS and theWCC is shown infigure 1 aswell. Notice that theWCC is
now reproducedmuchmore accurately, a result further confirming that binary constraints affects theweights
estimation aswell; on the other hand, the ANNS is perfectly reproduced: specifying the network topology and
theweightedmarginals is, in fact, enough to recover the observed values.
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3.3. Comparing binary reconstructionmethods
Aswe have seen, our framework allows for any probability distribution to be taken as input to address the
topology reconstruction step.Wemay, thus, askwhat is the best recipe to reconstruct a given real-world network
binary structure. In order to provide an answer, let us consider again the score function

( ) ( ) ( ∣ ) ( )= +Q P QW A W Aln ln ln 3.23* * * *

and focus on the addendum ( )P Aln * . Three prototypical distributions can be considered and compared:

• deterministic distribution: this choice implements themaximally informative position ( ) d=P A A A, * (see also
equation (3.22)) and is equivalent to assuming that the empirical adjacencymatrixA* is known;

• uniform probability distribution: this choice corresponds to themaximally uninformative position
( ) ( )= - -P A 2 N N 1* (i.e. º " ¹f i j,ij

1

2
);

• dcGMprobability distribution: this choice implements the recipe ( ) ( )=   -¹
-P f fA 1i j i ij

a
ij

a1ij ij*
* *, with

º = " ¹
+

f p i j,ij ij

zs s

zs s
dcGM

1

i j

i j

out in

out in defining the dcGM.

In order to test the performance of the three competingmodels above, let us invoke the Akaike Information
Criterion (AIC) [34] to select themodel with the best trade-off between accuracy and parsimony. TheAIC value
is defined as

( )= - kAIC 2 2 3.24m m m

for eachmodelm in the basket, with m indicating the log-likelihood value ofmodelm and km indicating the
number of parameters defining it (and to be estimated6). For the three alternatives abovewe have that

( ) ( )= -N NAIC 2 1 , 3.25deterministic

( ) ( )= -N NAIC 2 1 ln 2, 3.26uniform

( ) ( )= - AIC 2 1 , 3.27dcGM dcGM

wherewe have used the fact that the uniformmodel is non-parametric (i.e. kuniform=0) and is characterized by
the log-likelihood ( )= - - N N 1 ln 2uniform , while the deterministicmodel is characterized by a probability
P(A*)=1 (implying = 0deterministic ) and a number of parameters equal to kdeterministic=N(N− 1) (all off-
diagonal entries ofA* are separately specified).Moreover, we have added the comparisonwith the directed

Figure 1.Test of the effectiveness of theCReMAmodel in reproducing the average nearest neighbors strength (left panels) and the
weighted clustering coefficient (right panels) for theWorld TradeWeb in the year 1990 (top panels) and e-MID in the year 2010
(bottompanels). The chosen probability distributions for the binary estimation step are the one defining the density-correctedGravity
Model (red squares—see equation (3.19)) and the one defining the actual configuration (blue triangles—see equations (3.18)). The
latter choice perfectly recovers the observed values of the ANNS that lie on the identity line (drawn as a black, solid line); theWCC is
reproducedwith amuch higher accuracy as well.

6
Note that, sincewe assume from the beginning that the in- and out-strengths of all nodes are known independently of themodel used, we

do not count the strengths among themodel parameters.
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randomgraphmodel and the directed binary configurationmodel, respectively, defined by

( ) ( )= - AIC 2 1 , 3.28RGM DRGM

( ) ( )= - NAIC 2 2 , 3.29DBCM DBCM

whereDRGM = ( ( ) ) ( )+ - - -L p N N L pln 1 ln 1 ,with
( )

=
-

p L

N N 1
andDBCM = ( )å å ¹ a plni j i ij ij

DBCM+

( ) ( )- -a p1 ln 1ij ij
DBCM with = " ¹

+
p i j,ij

x y

x y
DBCM

1

i j

i j

[1]. The criterionprescribes toprefer themodelwhoseAIC

value isminimum.Upon looking atfigure 2, one realizes that theDRGMis apoorly-performing reconstructionmodel
when thenetwork linkdensity is close to0.5 as its performance cannotbedistinguished fromtheoneof theuniform
model.Whenconsidering very sparsenetworks, on theotherhand, knowing the linkdensitymeans adding anon-
trivial pieceof information, potentially reducing theuncertainty about a givennetwork structure to a large extent: this
seems indeed tobe the case for several temporal snapshots of eMID.On theotherhand, the comparisonwith the
DBCMconfirms that, in casedegreeswere known, they shouldbepreferred to thenecessarily less precisefitness ansatz:
however, as they arenever known, including theDBCMis amerely academic exercise7.Nevertheless, theprevious
analysis still conveys an importantmessage: the structureof real-worldnetworks is characterizedbya large amountof
redundancy, as evident bynoticing that theAICvalueof theDBCMismuch lower than theAICof the fully
deterministicmodel.Hence, the structureof complexnetworks can indeedby explainedbyonly constraining abunch
of statistics, as exemplifiedby thedegrees: however, since this kindof information is practically never accessible,we
need to resort to somekindof approximation—whenceourdefinitionof thedcGM.

The importance of employing amethod able to provide a reliable estimate of a network topology becomes
evident when considering the problemof quantifying systemic risk (see [1] and references therein). To this aim,
let us consider the triangular loops arising from various ‘risky’ triadicmotifs connected to the underestimation of
counterparty risk due to over-the-counter linkages in interbank networks [35]. An aggregatemeasure of
incidence of such patterns is quantified by

( )( ) ( )

( ) ( )
=

å å å

å å å
=¹ ¹

¹ ¹





w

w w w

a a a

w

N
3.30

i j i k i j ij jk ki

i j i k i j ij jk ki

,

,

i.e. the averageweight per loop.Notice that the expected value of such a quantity calls for the estimation of the
probability that nodes i, j and k establish a connection. For the sake of illustration, let us discuss the application
of either theMaxEntmethod or theminimum-densitymethod to provide such an estimation. As previously
discussed, the fully-connected topology output by theME leads to N N3, i.e. to overestimating the number
of cycles, in turn leading to an underestimation of systemic risk; on the other hand, the very sparse topology
output by theMD leads to ( )N O 1 , i.e. to underestimating the number of cycles, in turn leading to an
overestimation of systemic risk.

3.4. Further structuring themodel: theCReMBmodel
In the previous sections we have introduced a novel framework for network reconstruction that has led to the
definition of theCReMAmodel. Although thismodel provides an accurate reconstruction of real-world
economic andfinancial networks, its implementation still requires the resolution of 2N coupled nonlinear
equations.Moreover, as itmakes themaximally randomhypothesis about linkweights, given the empirical

Figure 2.Comparison between the binary likelihood functions for three prototypical distributions (the deterministic one, the uniform
one and the dcGMone), plus the two ones induced by the popular directed randomgraphmodel (DRGM) and the directed binary
configurationmodel (DBCM), for theWTW (across the years 1950–2000—left panel) and e-MID (across the years 1999–2011—right
panel). As theAkaike InformationCriterion certifies, theDRGM is an acceptable reconstructionmodel when considering very sparse
networks; on the other hand, the comparisonwith theDBCMconfirms that, in case degrees were known, they should be preferred to the
necessarily less-precise fitness ansatz. Since this kind of information is practically never accessible, we need to resort to some kind of
approximation: the effectiveness of the one defining the dcGM is confirmed by the evidence that the best binary applicablemodel is
precisely the dcGMone.

7
In this case, in fact, onewould have enough information to run theDECM—amodel that we have explicitly excluded fromour comparison

since completely unrealistic.
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in-strength and out-strength of all nodes, themodel does not allow to incorporate any further ansatz or
assumption about the empirical relationship between linkweights and the node strengths themselves.We now
ask ourselves if it is possible to simplify the computational requirements of theCReMAmodel, whilemore
flexibily constraining its randomness (again via entropymaximization) around a structured relationship that
captures some empirical regularity relating linkweights to the node strengths, thus improving the accuracy of
the reconstruction of theweighted network as awhole.

To this aim, let us now specify amodel potentially constraining thewhole set of expectedweights to given
values { }wij* , where in this case the asterisk denotes the ‘target’ value, which is not necessarily an observable one.
In order to do so, let us formally constrain the unconditional expected values of all linkweights, i.e. consider a
Hamiltonian reading ( ) b= å ¹H wW j i ij ij. The derivation is analogous to the previous case and leads to the
expression ( ∣ ) ( ∣ )= ¹Q q w aW A j i ij ij ij with ( ∣ )= = =q w a0 1 0ij ij ij and

( ∣ ) ( )b= = >b-q w a w1 e , 0 3.31ij ij ij ij
w

ijij ij

i.e. to a conditional pair-specificweight distribution, ( ∣ )=q w a 1ij ij ij , that is exponential with parameterβij.
Analogously, the generalized likelihood function can be expressed as

( )å åb b= - +
¹ ¹

 w f log 3.32
j i

ij ij
j i

ij ijCReMB
*

and differentiating it with respect toβij leads to the equations

( )
b

á ñ = = " ¹w
f

w i j, 3.33ij
ij

ij
ij*

that define theCReMBmodel.
Actual weights, however, can rarely be observed: hence, in order to implement theCReMBmodel, we need to

replace { } =wij i j
N
, 1* with a set of accessible quantities. To this aim, we look for an additional ansatz based on

empirical regularities relating linkweights to node strengths in the data. In particular, as we alreadymentioned
we notice that theMaxEntmodel introduced in equation (2.1)provides good estimates of the realized (i.e.
positive) linkweights (despite the impossibility of generating zero linkweights). Figure 3 shows the comparison
between the observed, positive weights of theWTW in the year 1990 [31] and e-MID in the year 2010 [32] and
two expectations: the ones coming from theCReMAmodel and the ones coming from theMaxEntmodel of
equation (2.1). One can see that theMaxEntmodel produces expectedweights that aremore narrowly scattered
around the empirical ones than theCReMAmodel. The calculation of the Pearson correlation coefficient
between the empirical and expectedweights from the twomodels confirms that the estimates coming from the
MaxEntmodel show a better agreement with the data (see caption offigure 3), throughout the considered time
intervals.

The reason for the improved estimate in theMaxEntmodel comes from the fact that theCReMAmodel
makes themaximally randomhypothesis about linkweights, based on the empirical values of the in- and out-
strenghts of nodes. Real data turn out to bemore structured than this completely random expectation, the
MaxEntmodel better capturing the structured relation. At the same time, while the originalMaxEntmodel
would assume the same positive expression (2.1) for all linkweights, the generalized framework used here allows
us to embed theMaxEnt estimate into a conditional expectation for the linkweight, given that the link is realized
with themarginal probability fij implied by the desired prior distribution P(A). This is easily done by replacing
the set of target expectedweights { } =wij i j

N
, 1* with theMaxEnt ansatz { ˆ } =wij i j

NME
, 1 given by equation (2.1) and

Figure 3.Comparison between the realized (positive) and the corresponding expected values of the linkweights for theWorld Trade
Web in the year 1990 [31] (left panel) and for e-MID in the year 2010 [32] (right panel). Two different kinds of expectationswere
considered: the ones coming from theCReMAmodel (red squares) and the ones provided by theMaxEntmodel (blue circles). The
figure shows that the expectedweights of the CReMBmodel are at least as good as those of theCReMAmodel, and generally evenmore
narrowly scattered along the identity line. This observation is confirmed by the calculation of the Pearson correlation coefficients
between realized and expected linkweights: such coefficients equal rCReMA;0.6, rCReMB;0.75 for theWorld TradeWeb and
rCReMA;0.44, rCReMB;0.5 for e-MID.
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inverting equation (3.33) tofind the corresponding tensor of coefficients b. This yields

ˆ
( )b = = " ¹

f

w

Wf

s s
i j, . 3.34ij

ij

ij

ij

i j
ME out in

Notice that this choice only requires, as input, the out- and in-strength sequences of the actual network: as a
consequence, the sufficient statistics for theCReMA andCReMBmodels coincide. Notice also that implementing
theCReMBmodel requires the resolution ofO(N2) decoupled equations.

Although the choice leading to equation (3.34) guarantees that non-negative strengths are preserved only in
case > " ¹f i j0,ij , in principle, one can set wij* equal to the outcome of any other deterministicmodel for the

linkweights (e.g. IPF), not only theMaxEnt one. This would relax the requirements about the connection
probability between nodes—hence allowing for zero-probability links as well—and ‘dress’ the chosenmodel
with aweight distribution centered around the same value generated by the deterministic implementation
(thereby turning the deterministicmodel into a probabilistic one). The code to run the version of theCReMB

model discussed here is freely available at [30].
For instance, wemay use amore refined recipe improving theMaxEnt ansatz to higher order. To explain this

point, we need to emphasize that theMaxEnt ansatz ˆ /= =w w s s Wij ij i j
ME out in* ** * introduced in equation (2.1)

has a disadvantage: it replicates the in- and out-strengths only if a self-loopwith intensity ˆ /=w s s Wii i i
ME out in ** * is

added to each node i. This is easy to see by summing ŵij
ME over i or j to produce the resulting sj

in* or si
out*,

respectively. In order to avoid adding self-loops, onemay iteratively ‘redistribute’ theweight /s s Wi i
out in ** * to all

the other links. This generates a sequence of improvedweights ˆ ˆ ( )= +w w wij ij ij
lME* for any desired order l of

approximation [36]. To this aim, at least two different recipes can be devised. The first one prescribes to

redistribute the terms /s s Wi i
out in ** * on a complete graphwith no self-loops via the IPF algorithm. In this way,

margins are correctly reproduced in the limit  ¥l , with the improvedweights reading ˆ ˆ ( )= + ¥w w wij ij ij
ME* :

ˆ ( )¥wij can be estimated numerically, according to the iterative recipe described in [1, 18]; although thefinal result
of this procedure achieves a refinedmatch to the enforcedmargins, itmakes themodel no longer under

complete analytical control. The second one prescribes to redistribute the terms /s s Wi i
out in ** * on a fully connected

matrix via the IPF algorithm, discard the diagonal terms and redistribute the latter ones in an iterative fashion; in
this way, the correction term is always under analytical control even if this second variant requires the explicit
generation of self loops to ensure thatmargins are reproduced at each iteration step: for example, the full
prescription of the secondmethod, at the second iteration, reads

⎪
⎪

⎧
⎨
⎩

ˆ ˆ

ˆ
( )

( )

( )=
+ " ¹

" =
w

w w i j

w i j
, 3.35ij

ij ij

ij

ME 2

2
*

where ˆ ( )( ) /= åw s s s s W s sij i i j j k k k
2 out in out in out in** * * * * * . It is therefore up to the researcher tomake the optimal choice

between amore accurate and amore explicit version of themethod, depending on the situation. Since the IPF
algorithm cannot univocally determine away to redistribute weights (as we have seen, the answer provided by the
IPF algorithmdepends on howone chooses to decompose the constraints) herewe have decided to use themore
explicit recipe ˆ=w wij ij

ME* , provided its agreement with the empirical weights.
Let us now compare the effectiveness of the CReMA and theCReMBmodels in reproducing the two systems

under consideration. In order to carry out themost general comparison possible, let us consider again our
likelihood-based score function and focus on the second term, i.e. the proper conditional likelihood

( ) ( ∣ ) ( )

l = Q W Aln ; 3.36* *

wehave employed the symbol  since the expression of the conditional likelihood can be recovered by specifying
the binary probability distribution ( ) d=P A A A, * in the expression of the generalized likelihood, i.e.

equation (3.7). In this case, ( )

l quantifies the effectiveness of a givenmodel in reproducing theweighted

structure of a network given its topology.
The performance of theCReMA and theCReMBmodels is, then, evaluated by comparing their conditional

likelihood numerical values. The latter depend, respectively, on the parameters bCReMA
and b ;CReMB

thus, in

order to compare our twomodels, we first solve equations (2.20) and (3.34) (with º " ¹f p i j,ij ij
dcGM , to

capitalize on the result of the comparison between binary reconstruction algorithms) and then substitute
bCReMA
* and bCReMB

* back in equation (3.36).We also explicitly notice that the sufficient statistics for theCReMA

and theCReMBmodels coincide (they are, in fact, represented by the vectors of out- and in-strengths): hence,
the AIC test would yield the same ranking as the one obtained by just comparing the likelihood functions.

Results are shown infigure 4 that confirmwhat we expected from theCReMBmodel, i.e. a reconstruction
accuracy that is comparable with the one of theCReMAmodel but still achievable withmuch less computational
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effort (in the case of theWTW, however, an even better agreement obtainable by running theCReMBmodel can
be clearly appreciated).

Let us now compare theCReMA andCReMBmodels by calculating the percentage of real weights that fall
into the confidence intervals surrounding their estimates, by employing the same q−and q+ values (see figure 4
and the appendix for the details of the calculations): the CReMBmodel outperforms theCReMAmodel in
providing reliable estimates of actual weights. Notice that although the discrete versions of both the ECMand
theDECMcan provide error estimates, their computation ismuch easier within the novel, continuous
framework considered here.

4.Discussion

The extension of the ERG framework to account for conditional probability distributions aims atfilling a
methodological gap: defining a recipe for unbiased weight assessment, currentlymissingwithin the class of
network reconstructionmodels.

The vastmajority of the algorithms that have been proposed so far, in fact, combinemethodologically
different steps to estimate the purely topological network structure and the linkweights, potentially distorting
the entire procedure: as the derivation of our conditional reconstructionmethod proves, the topological
information (summed up by the set of coefficients { } =fij i j

N
, 1) affects the estimation of linkweights aswell—see

equations (2.20), (3.18), (3.33), etc.
These observations point out that afirst source of bias is encounteredwhenever a probabilistic recipe for

topological reconstruction is forced to output a single outcome instead of considering the entire ensemble of
admissible configurations. Indeed, (mis)using a probabilisticmethod by implementing it as a deterministic one
leads to an (arbitrary)privilege for a single configuration instead of correctly accounting for the entire support of
the probability distribution defining themethod itself. Since the expectation of any quantity of interest should be
taken over the entire set of admissible configurations, privileging a particular realized topologywill, in general,

Figure 4.Top panels: comparison between the conditional likelihood functions of theCReMA and theCReMBmodels (red squares
and blue circles, respectively), for theWTW (across the years 1950–2000—left panel) and e-MID (across the years 1999–2011—right
panel). The reconstruction accuracy obtainable by employing theCReMBmodel is comparable with the one obtainable by employing
the CReMAmodel; still, it is achievable withmuch less computational effort.Middle panels: percentage of observedweights that fall
into the confidence interval surrounding their estimate, for theWTW (left panel) and e-MID (right panel), in correspondence of the
values q+=q−=0.25. Bottompanels: performance of the CReMBmodel in reproducing theWCC, confirming that the precision
achievable by running the latter is larger than/equal to the one achievable by running the CReMAmodel (analogous results hold true
for theANNS). Identity is drawn as a black, solid line.
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lead to awrong estimate of the inspected properties. Such an ‘extreme’ choice is allowed onlywhen the number
of admissible configurations indeed reduces to one, i.e. only in the limiting case inwhich the network topology is
known exactly (i.e. = " ¹f a i j,ij ij* ).

A second source of bias is encounteredwhen linkweights are deterministically imposed via a recipe like the
IPF algorithm, again because of the non-maximum-entropy nature of any deterministic algorithm. As a result,
even in the extreme case inwhich all links of a given real-world network are known ab initio, the probability
density of reproducing theweighted networkwith IPF-assignedweights would still be zero. By contrast, our
calculations show that the correct procedure when all the topology is known is to assignweights probabilistically
using equation (3.14), with parameters fixed by equation (3.18).

Our framework overcomes both limitations. The proposedCReMA andCReMBmodels, in fact, are fully
probabilistic in nature and allow for the generation of network configurations characterized by continuous
weights. Remarkably, for what concerns the binary estimation step, only themarginal probability distributions
{ } =fij i j

N
, 1describing the behavior of the random variables { } =aij i j

N
, 1 are needed, a result that holds true

irrespectively from the algorithm employed to derive the set of coefficients above.
Although itmay be argued that the observations above hold true for the continuous version of theDECMas

well, let us notice that its applicability is limited by the amount of information required to solve it, i.e. the
knowledge of both the out- and in-degree sequences—a piece of information that is practically never accessible.
On amore practical level, the numerical resolution of theCReMA andCReMBmodels ismuch less costly than
the numerical resolution of theDECM.Moreover, our framework allows us to further simplify the problemof
finding a numerical solution of the systemof equations (2.20), by providing a recipe to solve rescaled versions of
it: such a recipe can be employed to simplify calculations whenever a solution of the system above cannot be
easily found at the considered scale (see also the appendix).

The comparison between our two competingmodels, then, reveals that the best performance is achieved by
theCReMB that is the clearwinner both in terms of accuracy and simplicity of implementation—as it does not
require the resolution of any systemof equations; evenmore so, each parameter of the CReMBmodel can be
computed independently from the others, thusmaking the entire procedure parallelizable. To sumup, in order
to achieve a fast and efficient reconstruction of weighted networks, we recommend the use of theCReMBmodel
both in case of full uncertainty about the network topology and if the existence of some links is certain.

The codes to run both theCReMA and theCReMB versions of ourmethod are freely available at [30].
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AppendixA. The relationship between entropy and likelihood

Standard case.Let us revise the relationship between Shannon entropy and likelihood in the standard case. The
maximization of Shannon entropy

( ) ( ) ( ) ( )òå= -
Î


 

S Q QW W Wlog d A.1
A A

under the set of constraints ( )


C W leads to recover the functional form [24]

( ) ( )
( )






=l
l

- l

Q
Z

W
e

A.2
H W

where ( ) ( ) l= ål a a aH CW W is a linear combination of the constraints and ( ) 

ò=l
- l

Z We dH W is the

partition function. Upon substituting ( )
lQ W into the Lagrangean function

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( )


òå ål m l= + - + - á ñ

a
a a a

Î

 
 

Q S Q C CW, 1 A.3
A A

*

(with ( ) ( )òá ñ = åa aÎ C Q CW WA
A

) one recovers the expression

( ( ) ) ( ) ( )
 

 ål l l= + = -l
a

a a l Q Z C Q W, log ln A.4* *

the last passage being valid for any graphW* such that ( )
 

=C CW ;* * in other words, the equation above states
that the Lagrangean functional is ‘minus’ the likelihood function of any graphW* onwhich the constraints

( )


C W* assume the values


C*.
Notice that in case the Lagrangean functional is evaluated in


l*, i.e. the parameters values ensuring that á ñ =lC C** , the result

( ( ) ) ( ) ( ) ( )
  

l l l= = - l Q S Q W, ln A.5* * * **

is recovered.
Conditional case.In case the functional

( ∣ ) ( ) ( ∣ ) ( ∣ ) ( )òå= -
Î


 

S P Q QA W A W A Wlog d A.6
A A

is, instead, considered, the expression ( ∣ )
( )


=l
l

l

-

Q W A
Z

e H W

A,
is recovered, with obviousmeaning of the symbols.

Upon substituting ( ∣ )
lQ W A into the Lagrangean function defined in equation (3.5) one recovers the expression

( ( ) ) ( ) ( ) ( )
  

å ål l l l= + = -l
a

a a
Î

 


Q P Z CA, log A.7
A

A, *

the last passage being valid for any graphW* such that ( )
  

á ñ = =C C CW* * *. Notice that in case the Lagrangean

functional is evaluated in

l*, i.e. the parameters values ensuring that

 á ñ =lC C** , the result

( ( ) ) ( ) ( ) ( ∣ ) ( ) ( )
   

ål l l l= = - á ñ = -l
Î

 


Q S P QA W A, ln A.8
A

* * * * **

is recovered.

Appendix B. The binary reconstruction step: derivingP(A)

The conditional reconstructionmethodworks for any choice ofP(A). Herewe derive two possible alternatives,
to be selected according to the available information. Thefirst possibility is deriving P(A) bymaximizing
Shannon entropy

( ) ( ) ( ) ( )å= -
Î




S P PA Alog , B.1
A

under the constraints represented by the out- and in-degree sequences { } =ki i
Nout

1, { } =ki i
Nin

1. This is theDBCM
model [1] inducing a probability reading

( ) ( ) ( )= -
¹

-P p pA 1 B.2
j i

ij
a

ij
a1ij ij

with =
+

pij

x x

x x1

i j

i j

out in

out in . Unfortunately, thismodel is not viable for network reconstruction as the information

about the degrees is practically never accessible. However, we can rest upon a certain approximately linear
empirical linear relation generally found between the strengths and the Lagrangemultipliers controlling for the
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degrees (i.e. »x s ai i
out out and »x s bi i

in in [5]) to define amore realisticmodel. This so-called ‘fitness ansatz’
leads to our secondmodel, whose linkage probability reads

( )=
+

p
zs s

zs s1
B.3ij

i j

i j

out in

out in

(having defined ºz ab ), with the parameter z tuned to reproduce the empirical link density:

á ñ = å = å =¹ ¹ +
L p Lj i ij j i

zs s

zs s1

i j

i j

out in

out in *. Equation (B.3) is the one characterizing the dcGM [5]. Other possible

choices forP(A) are discussed in [1].

AppendixC. Solving the rescaledCReMAproblem

Let us nowprove that our framework easily allows one tofind a solution of the systemof equations (2.20) in case
the sufficient statistics is rescaled, i.e. divided by an opportunely defined factor (e.g.κ). To this aim, let us
consider the rescaled system

⎧
⎨
⎪⎪

⎩
⎪⎪

( )
( ) ( ) ( )

( ) ( ) ( )

å = "

å = "

b k b k k

b k b k k

¹ +

¹ +

i

i

,

,
, C.1

j i

f s

j i

f s

ij

i j

i

ji

j i

i

out in

out

out in

in

*

*

where the symbols ( )

b k

out
and ( )


b ki

in
stress that the searched solutions are functions of the chosen rescaling

parameterκ. A solution of the system above reads

( ) ( )b k kb= " i, C.2i i
out out* *

( ) ( )b k kb= " i, C.3i i
in in* *

as it can be proven upon substituting it back into equations (C.1) and noticing that { }b =i
Nout

1
* and { }b =i

Nin
1

* are
solutions of the systemof equations (2.20). As our likelihoodmaximization problem admits a unique, global
maximum, the prescription above allows us to easily identify it. Such a recipe turns out to enhance the chance of
finding a solution to the systemof equations (2.20) by solving a related problem at amore convenient scale.

AppendixD. A ‘golden standard’ for reconstructionmodels

Let us notice that our framework allows us to define a sort of benchmark or ‘golden standard’ for reconstruction
models, defined by the assumptions that both the actual network topology and the entire set of weights are

accessible. Upon considering that b = " ¹i j,ij
f

w

ij

ij*
, implementing both assumptions leads to the conditional

probability distribution

( ∣ ) ( )= =
á ñ

= =- -
á ñq w a

f

w

a

w ew
1 e e

1
D.1ij ij ij

ij

ij

w ij

ij

w

ij

fij
wij

ij

aij
wij

ij*
* *

* *
*

further leading to

( ) ( ∣ ) ( )
{ } { }


å ål = = - - = - -
= =

 Q w L wW Aln 1 ln ln
a

ij
a

ij
1 1ij ij

* * * *

i.e. to themaximumvalue of the likelihood attainable by a canonicalmodel with local contraints, still preserving
the strengths.

Appendix E. Confidence intervals-based comparison of networkmodels

Both reconstructionmodels introduced in thismanuscript induce pair-specificweight distributions: this allows
a confidence interval to be defined around the expected value of each linkweight. Since the procedure described
below is valid for both theCReMA and theCReMBmodels, let us consider a generic exponential distribution
whose parameter isβij.

In order to analytically estimate the searched confidence interval [w−,w+], let us solve the equation

( )
∣

ò b =b
á = ñ

- -
-

w qe d E.1
w

w a

ij
w

ij

1ij ij
ij ij
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invertingwhichwe find the left boundw−; upon noticing that ∣á = ñ =
b

w a 1ij ij
1

ij
the result
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b b
= -

+
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+b
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w a

ij ij

1 1ij ij ij

is obtained. Analogously, the second equation to be solved is
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∣ò b =b

=á = ñ

- +
+

w qe d E.3
w w a

w

ij
w

ij
1ij ij

ij ij

leading to the result

[ ] [ ] ( )
∣

b b
= -

-
= -

-b
+

- á = ñ + - +
w

q qln e ln e
. E.4

w a

ij ij

1 1ij ij ij

Thus, upon fixing the desired confidence levels q−and q+, the confidence interval [w−,w+] accompanying
the estimation of the conditional expectedweight ∣á = ñw a 1ij ij is recovered. Generally speaking, such a
confidence interval is not symmetric, given the peculiar formof the underlying probability distribution (i.e. the
exponential one).

As the comparison shown infigure 4 reveals, theCReMBmodel outperforms theCReMAmodel in providing
reliable estimates of actual weights.

Appendix F.Deriving the continuousDECM

The continuousDECM is obtained bymaximizing the entropy ( )S in equation (A.1) under the constraints
represented by the out- and in-degree sequences and the out- and in-strength sequences:
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The continuousDECM is defined by a probability distribution reading ( )
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(dW stands for¹ wdj i ij, in the first passage)which finally leads to
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Aswe said in themain text, the CReMAmodel admits theDECMas a particular case. In fact

( ) ( ) ( )( )b b= + b b- +q w p e F.5ij ij ij i j
wDECM out in

i j ij
out in

for any positive weight andwith pij
DECM representing the probability that a link pointing from i to j exists. Indeed,

the functional forms of the expectedweights under theCReMA and theDECMmodels coincide aswell: in fact,

á ñ =
b b+

wij
p

DECM
ij

i j

DECM

out in , with ( )a a b b=p p , , ,ij ij i j i j
DECM DECM , the latter expression explicitly showing the joint
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role played by binary andweighted constraints in determining the topological structure of the network at hand
pij is, in fact, defined by the Lagrangemultipliers associatedwith both the out- and in-degrees and the out- and
in-strengths of nodes i and j.
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