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Inequalities concerning
the rate of growth of polynomials
involving the polar derivative

Abstract. This paper contains some results for algebraic polynomials in the
complex plane involving the polar derivative that are inspired by some classical
results of Bernstein. Obtained results yield the polar derivative analogues of
some inequalities giving estimates for the growth of derivative of lacunary
polynomials.

1. Introduction. Let P (z) =
∑n

v=0 avz
v be a polynomial of degree n in

the complex plane and P ′(z) be its derivative. The Bernstein inequality
that relates the norm of a polynomial to that of its derivative and its various
versions form a classical topic in analysis. One basic result is that if P (z)
is a polynomial of degree n, then on |z| = 1,

|P ′(z)| ≤ nmax
|z|=1

|P (z)|.(1.1)

The inequality (1.1) is a famous result due to Bernstein [3], who proved
it in 1912 and is best possible with the equality holding for polynomials
P (z) = λzn, λ being a complex number. Later, in 1930 (see [4]), Bernstein
revisited his inequality (1.1) and established a more general result: for two
polynomials P (z) and Q(z) with the degree of P (z) not exceeding that of
Q(z) and Q(z) 6= 0 for |z| > 1, the inequality |P (z)| ≤ |Q(z)| on the unit
circle |z| = 1 implies the inequality of their derivatives |P ′(z)| ≤ |Q′(z)| on
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|z| = 1. In fact, this inequality gives (1.1) in particular by taking Q(z) =
znmax|z|=1 |P (z)|.

These fundamental inequalities have been the starting point of a consid-
erable literature on polynomial approximations and over a period, various
versions and generalizations of these inequalities have been produced by in-
troducing restrictions on the zeros, the modulus of largest root, restrictions
on coefficients etc. If we restrict ourselves to the class of polynomials having
no zero in |z| < 1, then the inequality (1.1) can be sharpened. In fact, Erdös
conjectured and later Lax [10] proved that if P (z) 6= 0 in |z| < 1, then

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|.(1.2)

As an extension of (1.2), Malik [11] proved that if P (z) 6= 0 in |z| < k,
k ≥ 1, then

max
|z|=1

|P ′(z)| ≤ n

1 + k
max
|z|=1

|P (z)|.(1.3)

Bidkham and Dewan [5] obtained a generalization of (1.3) and proved that
if P (z) 6= 0 in |z| < k, k ≥ 1, then for 1 ≤ r ≤ k,

max
|z|=r
|P ′(z)| ≤ n(r + k)n−1

(1 + k)n
max
|z|=1

|P (z)|.(1.4)

By considering a more general class of polynomials P (z) = a0+
∑n

v=µ avz
v,

1 ≤ µ ≤ n, not vanishing in |z| < k, k ≥ 1, Aziz and Zargar [2] generalized
(1.4) and obtained for 0 < r ≤ R ≤ k,

max
|z|=R

|P ′(z)| ≤ nRµ−1(kµ +Rµ)
n
µ
−1

(kµ +Rµ)
n
µ

max
|z|=r
|P (z)|.(1.5)

Further as an improvement of (1.5), Aziz and Shah [1] proved under the
same hypothesis that

max
|z|=R

|P ′(z)| ≤ nRµ−1(kµ +Rµ)
n
µ
−1

(kµ +Rµ)
n
µ

{
max
|z|=r
|P (z)| − min

|z|=k
|P (z)|

}
,(1.6)

for 0 < r ≤ R ≤ k.
For a polynomial P (z) of degree n, we define

DαP (z) := nP (z) + (α− z)P ′(z),

the polar derivative of P (z) with respect to the point α. The polynomial
DαP (z) is of the degree at most n − 1 and it generalizes the ordinary de-
rivative in the following sense:

lim
α→∞

[
DαP (z)

α

]
= P ′(z),

uniformly with respect to z for |z| ≤ R, R > 0.
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Over the last four decades many different authors produced a large num-
ber of results and established various Bernstein type inequalities for poly-
nomials involving the polar derivative DαP (z) with various choices of P (z),
α and other parameters. The obtained inequalities generalize some known
results for ordinary derivatives and provide crucial tools in obtaining inverse
theorems in approximation theory. For the latest research and development
on this topic one can consult the papers [7,12–15,17]. Recently, Somsuwan
and Nakprasit [17] extended (1.6) for the case k ≥ 1 to the polar derivative
of P (z) and proved the following result.

Theorem A. If P (z) = a0 +
∑n

v=µ avz
v, 1 ≤ µ ≤ n, is a polynomial of

degree n having no zeros in |z| < k, k ≥ 1, then for every α ∈ C with
|α| ≥ R and 0 < r ≤ R ≤ k,

max
|z|=R

|DαP (z)| ≤
n

1 + s0

[
max
|z|=r
|P (z)|E0 −

{
E0 − (s0 + 1)

}
m

]
,(1.7)

where

E0 =

(
|α|
R

+ s0

)(
kµ +Rµ

kµ + rµ

)n
µ

,

s0 =

(
k

R

)µ+1

(µ
n

) |aµ|
|a0|−mRk

µ−1 + 1(µ
n

) |aµ|
R(|a0|−m)k

µ+1 + 1


and m = min|z|=k |P (z)|.
2. Main Results. The main aim of this paper is to prove a more general
result for the polar derivative of a polynomial which not only provides a
refinement and extension of Theorem A, but as a special case strengthens
inequality (1.6) as well. Our result and its consequences also give the po-
lar derivative analogues of some estimates for the growth of derivative of
lacunary polynomial.

Theorem 1. If P (z) = a0 +
∑n

v=µ avz
v, 1 ≤ µ ≤ n, is a polynomial of

degree n having no zeros in |z| < k, k > 0, then for 0 < r ≤ R ≤ k,
0 ≤ t ≤ 1 and for every α ∈ C with |α| ≥ R,

max
|z|=R

|DαP (z)| ≤
n

1 + st

[
max
|z|=r
|P (z)|Et −

{
Et − (st + 1)

}
tm

]
,(2.1)

where

Et =

(
|α|
R

+ st

)
exp

n R∫
r

Aςdς

 ,

st =

(
k

R

)µ+1

(µ
n

) |aµ|
|a0|−tmRk

µ−1 + 1(µ
n

) |aµ|
R(|a0|−tm)k

µ+1 + 1

 ,
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Aς =


(µ
n

) |aµ|
|a0|−tm ς

µ−1kµ+1 + ςµ

ςµ+1 +
(µ
n

) |aµ|
|a0|−tm(kµ+1ςµ + k2µς) + kµ+1


and m = min|z|=k |P (z)|.

Remark 1. Since P (z) 6= 0 in |z| < k, k > 0, the polynomial T (z) =
P (ςz) 6= 0 in |z| < k

ς , k
ς ≥ 1, where 0 < ς ≤ k. Hence applying inequality

(3.3) of Lemma 1 to T (z), we get for 0 ≤ t ≤ 1,

|aµ|ςµ

|a0| − tm

(
k

ς

)µ
≤ n

µ
,(2.2)

where

m = min
|z|= k

ς

|T (z)| = min
|z|= k

ς

|P (ςz)| = min
|z|=k

|P (z)|.

Now, (2.2) becomes (µ
n

) |aµ|kµ

|a0| − tm
≤ 1,

which is equivalent to

(2.3)

(µ
n

) |aµ|
|a0|−tm ς

µ−1kµ+1 + ςµ

ςµ+1 +
(µ
n

) |aµ|
|a0|−tm(kµ+1ςµ + k2µς) + kµ+1

≤ ςµ−1

ςµ + kµ
.

Integrating both sides of (2.3) with respect to ς from r to R, where 0 < r ≤
R ≤ k, we get

n

R∫
r

(µ
n

) |aµ|
|a0|−tm ς

µ−1kµ+1 + ςµ

ςµ+1 +
(µ
n

) |aµ|
|a0|−tm(kµ+1ςµ + k2µς) + kµ+1

dς ≤ n
R∫
r

ςµ−1

ςµ + kµ
dς,

which is equivalent to

(2.4) exp

{
n

R∫
r

Aςdς

}
≤
(
kµ +Rµ

kµ + rµ

)n
µ

.

Remark 2. Note that for every r ≤ k, by Lemma 5, the inequality

max
|z|=r
|P (z)| ≥ tm

holds for every t with 0 ≤ t ≤ 1 and hence the function

n

1 + st

[
xmax
|z|=r
|P (z)| −

{
x− (st + 1)

}
tm

]
is a non-decreasing function of x. If we combine this fact with inequality
(2.4), we get the following generalization and extension of Theorem A.
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Corollary 1. If P (z) = a0 +
∑n

v=µ avz
v, 1 ≤ µ ≤ n, is a polynomial of

degree n having no zeros in |z| < k, k > 0, then for 0 < r ≤ R ≤ k,
0 ≤ t ≤ 1 and for every α ∈ C with |α| ≥ R,

(2.5) max
|z|=R

|DαP (z)| ≤
n

1 + st

[
E∗t max
|z|=r
|P (z)| −

{
E∗t − (st + 1)

}
tm

]
,

where E∗t =
(
|α|
R + st

)(
kµ+Rµ

kµ+rµ

)n
µ , m = min|z|=k |P (z)| and st is as defined

in Theorem 1.

Dividing both sides of (2.5) by |α| and letting |α| → ∞, we get the
following result.

Corollary 2. If P (z) = a0 +
∑n

v=µ avz
v, 1 ≤ µ ≤ n, is a polynomial of

degree n having no zeros in |z| < k, k > 0, then for 0 < r ≤ R ≤ k and
0 ≤ t ≤ 1, we get

max
|z|=R

|P ′(z)| ≤ n

R(1 + st)

(
kµ +Rµ

kµ + rµ

)n
µ
{
max
|z|=r
|P (z)| − tm

}
,

where m = min|z|=k |P (z)| and st is as defined in Theorem 1.

Remark 3. It is easy to see that

1

R(1 + st)
=

(µ
n

) |aµ|
|a0|−tmR

µ−1kµ+1 +Rµ

Rµ+1 +
(µ
n

) |aµ|
|a0|−tm(kµ+1Rµ + k2µR) + kµ+1

,

and since R ≤ k, if we put ς = R in (2.3), we get

(2.6)
1

R(1 + st)
≤ Rµ−1

Rµ + kµ
.

If we use the inequality (2.6) in Corollary 2, we get the following gener-
alization of (1.6).

Corollary 3. If P (z) = a0 +
∑n

v=µ avz
v, 1 ≤ µ ≤ n, is a polynomial of

degree n having no zeros in |z| < k, k > 0, then for 0 < r ≤ R ≤ k and
0 ≤ t ≤ 1, we get

max
|z|=R

|P ′(z)| ≤ nRµ−1(kµ +Rµ)
n
µ
−1

(kµ +Rµ)
n
µ

{
max
|z|=r
|P (z)| − tm

}
,(2.7)

where m = min|z|=k |P (z)|. Equality in (2.7) holds for P (z) = (zµ + kµ)
n
µ ,

where n is a multiple of µ.

Remark 4. Many other interesting results can be deduced from the above
results for different choices of the parameters. For example, if we divide
both sides of inequality (2.1) of Theorem 1 by |α|, let |α| → ∞ and take
t = 1, we get a result of Chanam and Dewan ([6], Theorem 2) and for
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r = R = 1 and t = 1, it implies a result of Dewan, Singh and Mir [7].
Further for t = 1, Corollary 3 reduces to (1.6).

3. Lemmas. We need the following lemmas to prove Theorem 1.

Lemma 1. If P (z) = a0+
∑n

v=µ avz
v, 1 ≤ µ ≤ n, is a polynomial of degree

n having no zeros in |z| < k, k ≥ 1, then for 0 ≤ t ≤ 1 and |z| = 1,

(3.1) |P ′(z)| ≤ n

1 +Bt

{
max
|z|=1

|P (z)| − tm
}
,

where

(3.2) Bt = kµ+1


(µ
n

) |aµ|
|a0|−tmk

µ−1 + 1(µ
n

) |aµ|
|a0|−tmk

µ+1 + 1

 ,

(3.3)
(µ
n

) |aµ|kµ

|a0| − tm
≤ 1

and m = min|z|=k |P (z)|.

Lemma 2. If P (z) = a0+
∑n

v=µ avz
v, 1 ≤ µ ≤ n, is a polynomial of degree

n having no zeros in |z| < k, k > 0, then for 0 < r ≤ R ≤ k and 0 ≤ t ≤ 1,

max
|z|=R

|P (z)| ≤ exp

(
n

R∫
r

Aςdς

)
max
|z|=r
|P (z)|+

{
1− exp

(
n

R∫
r

Aςdς

)}
tm,

where m = min|z|=k |P (z)| and Aς is as defined in Theorem 1.

The above two lemmas are due to Mir and Dar [16].

Lemma 3. If P (z) is a polynomial of degree n, then on |z| = 1, we have

|P ′(z)|+ |Q′(z)| ≤ nmax
|z|=1

|P (z)|,

where Q(z) = znP (1z ).

The above lemma is a special case of a result due to Govil and Rahman [9].

Lemma 4. If P (z) = a0+
∑n

v=µ avz
v, 1 ≤ µ ≤ n, is a polynomial of degree

n having no zeros in |z| < k, k ≥ 1, then for every α ∈ C with |α| ≥ 1, and
0 ≤ t ≤ 1,

max
|z|=1

|DαP (z)| ≤
n

1 +Bt

{
(|α|+Bt)max

|z|=1
|P (z)| − (|α| − 1)tm

}
,(3.4)

where m = min|z|=k |P (z)| and Bt is defined by formula (3.2).
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Proof of Lemma 4. If Q(z) = znP (1z ), then it is easy to verify for |z| = 1,
that

|Q′(z)| = |nP (z)− zP ′(z)|.(3.5)

Also for every α ∈ C with |α| ≥ 1, we have

DαP (z) = nP (z) + (α− z)P ′(z).

Using this formula, equality (3.5) and Lemma 3 for |z| = 1 and |α| ≥ 1, we
obtain

(3.6)

|DαP (z)| ≤ |nP (z)− zP ′(z)|+ |α|||P ′(z)|
= |Q′(z)|+ |α||P ′(z)|
= |Q′(z)|+ |P ′(z)| − |P ′(z)|+ |α||P ′(z)|
≤ nmax

|z|=1
|P (z)|+ (|α| − 1)|P ′(z)|.

Inequality (3.6) in conjunction with (3.1) of Lemma 1 gives for |z| = 1 and
|α| ≥ 1,

|DαP (z)| ≤ nmax
|z|=1

|P (z)|+ (|α| − 1)

{
n

1 +Bt

(
max
|z|=1

|P (z)| − tm
)}

,

from which we can obtain (3.4). �

The following lemma is due to Gardner, Govil and Musukula [8].

Lemma 5. If P (z) =
∑n

v=0 avz
v is a polynomial of degree n having no zeros

in |z| < k, k > 0, then |P (z)| ≤ m for |z| ≤ k, where m = min|z|=k |P (z)|.

4. Proof of Theorem 1. Recall that P (z) 6= 0 in |z| < k, k > 0, the
polynomial T (z) = P (Rz), where 0 < R ≤ k, has no zero in |z| < k

R ,
k
R ≥ 1. Now applying inequality (3.4) of Lemma 4 to the polynomial T (z)
and noting that |α| ≥ R, we get

(4.1)

max
|z|=1
|D α

R
T (z)|

≤ n

1 + st

{(
|α|
R

+ st

)
max
|z|=1

|T (z)| −
(
|α|
R
− 1

)
t min
|z|= k

R

|T (z)|
}
,

where st is defined in Theorem 1.
We apply the relations

max
|z|=1

|D α
R
T (z)| = max

|z|=R
|DαP (z)|, max

|z|=1
|T (z)| = max

|z|=R
|P (z)|

and

min
|z|= k

R

|T (z)| = min
|z|=k

|P (z)| = m
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into (4.1) and obtain

(4.2) max
|z|=R

|DαP (z)| ≤
n

1 + st

{(
|α|
R

+ st

)
max
|z|=R

|P (z)| −
(
|α|
R
− 1

)
tm

}
.

From Lemma 2, we have for 0 < r ≤ R ≤ k and 0 ≤ t ≤ 1,

(4.3)

max
|z|=R

|P (z)| ≤ exp

(
n

R∫
r

Aςdς

)
max
|z|=r
|P (z)|

+

{
1− exp

(
n

R∫
r

Aςdς

)}
tm,

where Aς is defined in Theorem 1. Using (4.3) in (4.2), we obtain

max
|z|=R

|DαP (z)| ≤
n

1 + st

[
max
|z|=r
|P (z)|Et −

{
Et − (st + 1)

}
tm

]
,

where Et is defined in Theorem 1. This proves Theorem 1 completely. �
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