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1. Introduction

1.1. Background

During the last decades, fractional order partial differential equations have gained a great attention
from many authors because of their wide applications in various disciplines such as physics, chemistry,
mechanics and so on. The fractional Laplacian (—A)® not only concerns Lévy fights in physics but also
arises in stochastic theory. These operators, well-known as the operators associated with symmetric
2s-stable Lévy processes, play an essential role to explore many different subjects on partial differential
equations. One of them is the study of semi-linear damped o-evolution equations

(1.1)

ug + (—A)%u + u(fA)‘;ut = f(u,uy, |D|*u), reR™ t>0,
U(07£L') = uO(x)v ut(ovx) = ul(m)v z e R",

where 0 > 1, § € [0, 0], for any p > 0, the nonlinearity f = f(u,us, |D|%u) with a € (0,0) and for the
Cauchy condltlons (ug, u1) belonging to suitable function spaces.

Let us begin introducing some previous results which state LP — L? decay estimates for solutions to
the following Cauchy problem for the o-evolution equations:

{utt + (—A)%u =0, xeR™ t >0, (12)

w(0,2) = up(x), u(0,2) = uy(x), x e R™,

for any 0 > 1. Namely, one of the most typical important problems of type (1.2) with o = 1,
the so-called classical free wave model, arises in many fields of applied sciences such as acoustics,
electromagnetics and fluid dynamics. It describes mechanical waves (e.g. vibrating string with n = 1,
vibrating membrane with n = 2, or vibrating elastic solid with n = 3) and light waves as well. In order
to derive LP — L? estimates, the main approach is the applications of method of stationary phase. In
particular, it is necessary to understand deeply about oscillating integrals with localized amplitudes
in different parts of the extended phase space. Without requiring for additional regularity of the data
and with considering the first data ug = 0, we want to address the readers to two pioneering papers
[59] and [64] in which solutions to (1.2) satisfy the following LP — L? decay estimate away from the
conjugate line:
Jut, zs < #7570 o,

where the point (; 1) belongs to the closed triangle with vertices P, = (3 + n%_l,% — n+1) Py, =

(3 - 45,3 - -5) and Py = (§ + 17,3 — —17). Here we notice that we define P, = (0,0) and
P; = (1,1) in the space dlmensmn n =1 or n = 2. After that, we are able to extend the admissible
range for (p,q) to get the LP — L9 estimates by using additional regularity of the data. The authors,

for examples, in the papers [50] and [65] obtained the following LP — L? estimate:

11"

Ju(t, Ve < @+ 0072 fug | g7y + (1 + D727 g |

where p € (1,00), s = (n— 1)|7 —1landr > [(n— 1)|% -1- 1]+. Quite recently, the authors in [25]
have developed this method to study (1.2) for any o > 1. By taking ug = 0, the following LP — L4
estimate holds:

1-2(1-1)
lu(t, Mo < 177G~ Jua 2,
foralll<p<q<oo,with%+%éland%fééo(%f%)or% é 1and i +"1<a(%+%).

Under additional regularity, the estimate

_n ,_l
Ju(t, Ve <t 5%~ (Juolle + tuolmg +t ua] o)

was derived in [25]. Moreover, the associated semi-linear Cauchy problem for (1.2) with the power
nonlinearity |ulP, p > 1, has been widely investigated among the mathematical community (see, for
example, [25, 30, 31, 33, 40, 41, 45, 66, 67, 68, 78, 80]).
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A second interesting model related to (1.1), namely that with ¢ = 1 and § = 0, is well-known as
the classical damped wave equation

u(0,2) = uo(x), u(0,2) = uy(x), r € R"™, (13)

{utt—Au-l-ut:O, rzeR" t>0,
By the aid of the damping term w;, in the papers [47] and [48] the author established LP — L4 decay
estimates on the conjugate line. Afterwards, the following LP? — L9 decay estimates away from the
conjugate line have been stated in [53]:

|07V u(t, )|, < 7 FEDTE (Jugl o + Jua]zn),

with 1 < p < ¢ < o0, where j, k > 0 are integers and for all space dimensions n > 2. Also, in the same
paper the precise interpolation of the diffusive structure as ¢ — oo has been discussed in the LP — L4
framework. Main goal of the cited papers is to apply the obtained LP — L? estimates to deal with the
corresponding Cauchy problem for semi-linear equations. Concerning the classical semi-linear damped
wave equation with nonlinearity term |u|P, the authors in [73] proved the global (in time) existence
of energy solutions for p > pp,;(n) =1+ %, the so-called Fujita exponent, and for p < -5 if n > 3.
Besides, they also indicated a blow-up result in the inverse case 1 < p < ppy;(n) which was improved
for 1 < p < ppyj(n) in the paper [79] by using the well-known test function method so far. For the
purpose of further considerations, there are numerous papers involving (1.3) with the nonlinearity
term |u[P~!u in the place of |ulP (see more [37, 38, 44, 54, 58]).

A third remarkable model which has widely studied in several recent papers, for instance, [7, 12,
52, 57] is the Cauchy problem for structurally damped wave equations

{utt — Au + u(—A) up = 0, reR™ t>0, (1.4)

w(0,2) = ug(z), w(0,2) =w(x), weR”,

with ¢ € (0,1]. In particular, in [57] the authors divided the phase space into two parts including
sufficiently small and sufficiently large frequencies in order to study Fourier multipliers with oscillations
in the representation of solutions to (1.4). More in detail, to do this, there appeared two main strategies
in [57]. They applied heavily radial symmetry combined with the theory of modified Bessel functions
(see also [26]) and took into considerations the connection to Fourier multipliers appearing for wave
models, respectively, for small frequencies and large frequencies. Consequently, having L' estimates
for oscillating integrals was to conclude the LP — L? estimates away from the conjugate line for solutions
o (1.4) in the distinct cases § = 1, 6 € (0, 1) and 6 € (3, 1) as follows:

lut,)ze <t Ittol\mﬂf1 " a1

futt, )| {t (2)(F-1DE—2( -<>||u0|\m+tl-[%}(%—n%—%(l-%)HUIHLP if ¢ € (0,1]
ull,-)Le <

¢ 5><1 =505 8 gy | e iftefl oo)
and
Jut, e < {t_i:zi(ffiﬁi]'(ﬁpffi_;‘*(l_”“l'ff(llwm1)1 e o1
25 #tls 25)7 2 =)+l 25) 7 if t e [1,0),
respectively, for all 1 < p < ¢ < o and 1 + % = . + 5. In the special case § = 1 related to

visco-elastic type damping, this model was considered more in detail in [69]. The author obtained
a potential decay estimate for solutions localized to low frequencies, whereas their high-frequency
part decays exponentially under the requirement of a suitable regularity for the data by application
of the Marcinkiewicz theorem (see, for example, [46, 75]) to related Fourier multipliers. Thereafter,
considering the case of semi-linear visco-elastic or structurally damped wave models the authors in
[12, 60] proved the global (in time) existence of small data energy solutions in low space dimensions
by using classical energy estimates, i.e. estimates on the base of L? norms. In addition, in [7] some
suitable high-frequency L? — L? estimates, with ¢ € (1, ), for solutions to (1.4) have been obtained
for 6 € (0, i) Meanwhile, in the remaining case o € [%, 1) the authors developed these estimates
relying on some techniques in [57]. Then, by the application of the achieved estimates some global
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(in time) existence results of small data Sobolev solutions were presented in [7] for “parabolic like
models” corresponding to (1.4) with & € (0, 3).
More recently, based on ideas from [57] the authors in [11] considered the following linear Cauchy
problem for (1.1):
{utt + (=A)u + p(—=A)us = 0, xeR" t >0, (15)

u(0,2) = uo(x), u(0,2) = uy(x), x e R™,

and concluded the following LP? — L9 estimate away from the conjugate line for solutions to (1.5) in
the case 0 > 1 and 6 = §:
Jutt, Mzo < 47507 fugll o + £175 07 fun | s

forall 1 < p < g < oandl+ % =14 %. The use of (L' n L) — L9 estimates to (1.5) with
q € (1,2], i.e. the mixing of additional L! regularity for the data on the basis of LY — LY estimates
was investigated in [11] to study semi-linear o-evolution models (1.1) with the nonlinearities |u|? and
|u¢|P in the case 6 = §. The effective tools that the authors applied were results from Harmonic
Analysis such as Gagliardo-Nirenberg inequality, the fractional powers rule and embeddings into L*
(see also [61]). Some classical versions of Gagliardo-Nirenberg inequality can be found, for example,
in [12, 35, 55]. Independently from [11, 57], another approach in [9] was to derive sharp L? — L?
estimates, with 1 < p < ¢ < o0, to (1.5) and some L? estimates for solutions and some of their
derivatives, with ¢ € (1,00), to (1.1) in the case ¢ € [0, §]. In particular, here the authors found an
explicit way to obtain these estimates for (1.5) by using the Mikhlin-Hérmander multiplier theorem
for kernels localized to high frequencies. Due to the lack of L' — L' estimates, they used two different
strategies to look for the global (in time) existence of small data Sobolev solutions to the semi-linear
models (1.1). On the one hand, they took account of additional L' n L® regularity in the first case
with 6 = §. Additional L" n L7 regularity, on the other hand, was replaced for any small 7 and large
q in the second case with 0 € (0, §). In [26] the authors mentioned some different interesting models
related to (1.5), namely those with o = 6 = 2, well-known as the visco-elastic damped plate models.
Here some decay estimates of the energy and qualitative properties of energy solutions were studied
as well.

Finally, let us mention briefly some known results to (1.5) with g = b(t), the so-called structurally
damped o-evolution equation with time-dependent dissipation. In the PhD thesis [42], the author
developed WKB analysis to derive an explicit representation formula based on Fourier multipliers for
solutions. Using the obtained presentation formula, he derived L? — L? decay estimates for energies of
higher order and LP — L? estimates on the conjugate line as well under some “effectiveness assumptions”
of the coefficient p = b(t). Moreover, some qualitative properties of energy solutions such as parabolic
effect and smoothing effect were explained in detail. In the paper [8], the authors have introduced
a complete classification distinguishing between effective damping and non-effective damping for the
model of interest b(t) = B(1 + ¢)* with 8 > 0 and a € (—1,1). Furthermore, they have verified
that in the former case the asymptotic profile of Sobolev solutions to (1.5) is the same as that to an
anomalous diffusion equation under a suitable choice of data. This means there appears the diffusion
phenomenon.

1.2. Main goals and structure of the thesis

In this thesis, we are going to study the following Cauchy problems for semi-linear damped o-evolution
models:

(1.6)

ue + (=A)7u + p(=A)°u; = f(u,ug, [D%u),  xzeR™, t>0,
u(0,2) = uo(x), u(0,2) = uy(x), x € R™,

with o0 > 1, > 0 and § € [0,0]. Here the function f(u,us,|D|*u) stands for the power nonlinearities
|u|P, |uP and ’|D|“u}p with a given number p > 1 and some constant a € (0,0). We are interested in
exploring two main models including o-evolution models with structural damping 6 € (0,0) and those
with visco-elastic damping 6 = o (or strong damping, see also [36, 39]) in the general cases o > 1.
The main goal of the present thesis is to prove the global (in time) existence of small data Sobolev
solutions to (1.6) from suitable function spaces basing on L4 spaces by using (L™ n L9) — L9 and
L7 — L7 estimates for solutions, with ¢ € (1,00) and m € [1,q), to the corresponding linear model
with vanishing right-hand side, i.e. the mixing of additional L™ regularity for the data on the basis of
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L9— L9 estimates. To establish desired results, we would like to investigate L' estimates for oscillating
integrals in the presentation of solutions to the linear problem by applying the theory of modified
Bessel functions and Faa di Bruno’s formula. Then, it is reasonable to derive LP — L9 estimates not
necessarily on the conjugate line for solutions to the linear problem, with 1 < p < g < 0, in the case of
structural damping § € (0,0). Unfortunately, this strategy fails in the cases of external damping § = 0
and visco-elastic type damping § = o. For this reason, we apply the Mikhlin-Hérmander multiplier
theorem for kernels localized to high frequencies to obtain LY — LY estimates, with ¢ € (1,0), for
solutions to the linear problem in the latter cases by assuming a suitable regularity for the data.
Having L? — L9 estimates after assuming additional L™ regularity for the data and some of modern
tools from Harmonic Analysis in [61] (see also [12, 35]) play a fundamental role to prove results for
the global (in time) existence of small data Sobolev solutions to (1.6). Throughout this thesis, we
recognize that the flexible choice of parameters o, §, m and ¢ not only brings some benefits to relax
the restrictions to the admissible exponents p but also affects our global (in time) existence results
remarkably.

For the case ¢ € (0, %), we want to underline that we intend to use different strategies allowing
no loss of decay and some loss of decay combined with loss of regularity to deal with (1.6). Loss
of reqularity (see, for example, [4, 9, 50, 59]) is a well-known phenomenon describing the effect that
the regularity of obtained solutions to semi-linear models is less than that of the initial data. This
phenomenon appearing in our global (in time) existence results is due to the singular behavior of
time-dependent coefficients in estimates for solutions to the linear model localized to high frequencies
as t — +0. However, we can compensate this difficulty by assuming higher regularity for the data.
Loss of decay is understood when decay rates in estimates for solutions to semi-linear models are worse
than those given for solutions to the corresponding linear model. Additional benefits of allowing loss
of decay (see [7]) are to show how the restrictions to the admissible exponents p could be relaxed.

For the remaining case 6 € (%, 0], compared to the regularity of the initial data we can see that
a loss of regularity of the obtained Sobolev solutions to (1.6) does not happen. More precisely, a
smoothing effect appears for some derivatives of solutions to the corresponding linear equation with
respect to the time variable. This brings some benefits in treament of the semi-linear equations (1.6).
Finally, we want to emphasize that the properties of solutions to (1.6) change completely from (0, §)
to (§,0]. Here we propose to distinguish between “parabolic like models” in the case 0 € (0, §) and
“-evolution like models” in the case ¢ € (§, 0] according to expected decay estimates.

The structure of this thesis is organized as follows: In Chapter 2 we follow the same approach from
the paper [57] with minor modifications in steps of proofs to conclude L? — L? estimates not necessarily
on the conjugate line for solutions to the linear problem, with 1 < p < ¢ < o, in the case § = 7.
Then, we may obtain (L™~ L%)— L% and L?— L9 estimates with ¢ € (1,0) and m € [1,¢). In Chapters
3 and 4 we develop some L! estimates relying on several techniques from [57] for oscillating integrals
in the presentation of Sobolev solutions to the corresponding linear model by using the theory of
modified Bessel functions combined with Faa di Bruno’s formula in the cases § € (0,§) and 0 € (5, 0),
respectively. We also derive L* estimates to conclude L" estimates for all r € [1, o0]. For this reason,
we state LP — L7 estimates not necessarily on the conjugate line, (L™ nL9) — L? and L?— L9 estimates,
with g € (1,00) and m € [1, q) for solutions to the linear model. The point in Chapters 3 and 4 is the
application of the Mikhlin-Hormander multiplier theorem for kernels localized to high frequencies to
obtain L? — L7 estimates, with ¢ € (1, 0), for solutions to the linear problem by assuming a suitable
regularity for the data in the cases § = 0 and § = o, respectively. Afterwards, in Chapters 5, 6 and
7 we investigate the global (in time) existence of small data solutions to the semi-linear models from
suitable function spaces basing on L? spaces including energy solutions, Sobolev solutions, energy
solutions with a suitable higher regularity and large regular solutions in the cases 6 = %, 0 € (0, %)
and d € (, 0], respectively. To do this, we apply (L™ n L?) — L9, L9 — L7 estimates from Chapters 2,
3, 4 and some tools from Harmonic Analysis such as the fractional Gagliardo-Nirenberg inequality, the
fractional Leibniz rule, the fractional chain rule, the fractional powers rule and the fractional Sobolev
embedding. The emphasis in Chapter 6 is on presenting in detail two used different strategies allowing
no loss of decay and some loss of decay combined with loss of regularity. In Chapter 8 we explain
some qualitative properties including Gevrey smoothing and propagation of singularities for energy
solutions to the linear problem. Finally, Chapter 9 is to devote to the proof of a blow-up result for
(1.6) with the nonlinearity |u|P, where o = 1 and ¢ € [0, 0) are assumed to be any fractional numbers,
by the application of a modified test function method.
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2. Linear structurally damped o-evolution

g

models with § = o

The main purpose of this chapter is to study linear structurally damped o-evolution models of the
form

ug + (—A)7u + ,u(—A)‘Sut =0, u(0,z)=up(x), u0,2)=mui(x) (2.1)

witho > 1, u > 0and § = £. This is a family of structurally damped o-evolution models in the special

2
case 0 = Z. Our goal is to obtain LY — L9 estimates for solutions to (2.1) by assuming additional L™
regularity for the data with m € [1,q), where ¢ € (1,00) is given.

To do this, let us explain our objectives and strategies as follows:

[NIS)

e By using the partial Fourier transformation we can reduce the partial differential equation to study
an ordinary differential equation parameterized by &.

e Due to different asymptotic behavior of the characteristic roots depending on u, we divide our
considerations into two sub-cases: p =2 and p # 2.

e The key tool is to use suitable LP estimates with p € [1,00] from [57] for the oscillating integrals in
the following form:

1372 (gl e 0 2, )] s

and
|57 (I 16 cos(eal€P20)) (8, ), |87 (€%  sin(cal€[*0) (£, )] -

e Then, by using Young’s convolution inequality we can conclude L™ — L% estimates with ¢ €
[1,00] and m € [1,q], L™ n L9 — L9 and L% — L? estimates with ¢ € (1,00) and m € [1,q) for
solutions to (2.1).

2.1. A first Cauchy problem for linear structurally damped
o-evolution models

Let us consider the following family of parameter-dependent Cauchy problems:

[N

ug + (—A)u+ pu(—A)zu; =0, wu(s,z) =0, w(s,z)=mui(x), (2.2)

where s > 0 is a fixed non-negative real parameter, ¢ > 0 and ¢ > 1. Thanks to the change of
variables t — t — s, we have here in mind the following Cauchy problem:

vie + (=A) 0+ pu(—=A)3v, =0, 0(0,z) =0, v:(0,z) = vy (). (2.3)

Using partial Fourier transformation to (2.3) we obtain the Cauchy problem for 9(¢, &) := §F(v(t, x))
and 01 () := §(v1(z))

Oet + plE|7De + €70 =0, 0(0,€) =0, 0(0,€) = 51(€). (2.4)

L™~ L?7— L% and L? — L7 estimates

In this section, we want to prove the following result.
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Theorem 2.1.1. Let ¢ € (1,0) be given and m € [1,q). Then, the solutions to (2.3) satisfy the
(L™ ~ L9) — L9 estimates

|07 1D 12t )], < (L + )50 =57y

meH{gaHJ—l)aH
and the LY — LY estimates

o101t o 5 (D' ol oo
Consequently, the solutions to (2.2) satisfy the (L™ n L9) — L9 estimates

|071D1%u(t, )|, < (1 +t— )70 =Ty |

meHgaijl)aH )
and the L1 — L9 estimates

Ha{|D|“ HLq S(I+t- 3) jHUIHHgaw—l)o]‘ra

where 1 —I— S == —|— f, j=0,1, for any a = 0 and for all dimensions n > 1.

Proof. Here we follow ideas from [11]. We divide our considerations into three sub-cases: p = 2,
pe (2,00) and p € (0,2).

Special case p = 2. We have a double root A1 2(§) = —|£]7. The solutions and their derivative in
time to (2.4) are, respectively,

B(t,€) = te 5 (9),
and
Be(t,€) = (1 —t]€]7)e” a1 (¢).
Transforming back to v(t,z) = F1(0(t,€)) there appear oscillating integrals estimated by using
Corollary 3 from [57].

Proposition 2.1.1. The estimate

n a

Hg*l(mae*dﬁlht)(t’ .)HLT < s (-1)—3%

holds for any o € (0,00), r € [1,0], t > 0 and for all dimensions n = 1. The numbers a and c are,
respectively, supposed to be non-negative and positive.

Due to Proposition 2.1.1 and by virtue of Young’s convolution inequality from Proposition B.1.1,
we conclude

[[D1%u(t, )] 0 = 87 (g1t e a1 () (2 -IILq
S t[37H (el e ) )] L [5G o
<t 50D % oy pm  for te [, oo),

and

[ID1%0(t, )], < 37 (g™t e ) (1] [ (el w )],
_ minfa.o})

<t [or] ggaere S 01l oy for t€(0,1],

These estimates imply

[1D1*u(t, )], < L+ 0" (1_%)_%“”1HLMQHga—a]+~

Analogously, in the further considerations we are not only interested in estimates for solutions but
also in their derivatives

[1DI*ve(t, )] o = |5 (1€1*De(t,€)) (1, )] o = [ (€1 — t1€]7)e I 51.(8)) (8, )] .0
< F Mg @ =g )e N @)L 18 (6(E)))
(||& (€] 17 (¢, )| L+t [F2 (gl oe 1817 t,-)HLy-)nlem

<t 50D oy pm  for t e [1,00),

rm

2
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and

o I (e e (OO0 | Y o (S IO I i (ST N

S ol g < loilleg  for e (0,1].
Hence, we derive the estimates
1 )—a
[1DI%0e(t, )] L0 < (L 4+ 875775 for | L g

Case p € (2,00). We have the roots

1
Al = §|§|U(—ui V2 —4).

The solutions to (2.4) are

w(t,€) = wy (€) = K (t, &) (€).

At — A2

We shall estimate the two terms I/(\l(t,f) and 6tf/{\1(t,§). Taking account of I/(\l(t,f) the Newton-
Leibniz formula implies

1
Ia(t,g) = tJ e%(fw(zefl)\/ﬂ)lwtdg.

0
The other interesting term is

)\16)‘1t _ )\26)\2t
AL — A2

_/“FVM — e (Pt /”V/‘ — 4~ Hlel” (w0t
2 2

O (1,€)

The application of Proposition 2.1.1 and Young’s convolution inequality from Proposition B.1.1 lead
to the following estimates:

[1DI"0(t, )0 = 1§ (61K (8, O508)) () o < 1§ (61K (8, 9)) (&) I5 @)
< tHg—l(J;) |§|ae%(—u+(29—1)\/u2_4)If\atde) (t")HLr HUlHL"”

1
<t| o (egret Corer VI | ds oo
0
< t[5 e 0, Lo € 0EODE o for ¢ [1,20),

where

c:= %(p—(29—1)\/u2—4) >

Moreover, we also get for ¢ € (0, 1]

1
— 2_4)>=>0.
(n—vn*—4) -

DN | =

[ID10(t, )] 0 < 1571 (€™ K (£,€)) ()] L 5 (€l 31 (€)]
< tng(J |§|min{a,a}e%(—u+(29—1)\/u2_‘4)IE\"td9> (t")HUH”lHH[a*“”
0 q

1
st ] J5t(jgmniemed CoreonIE 0 o],

< t“f‘{ |§|m1n{a 0} g—clél? t t7 . HL1 HleHga,aﬁ-

_ min{a,0}
St ol o

nga,(,] H£a70]+ .

These estimates imply

(1Dt )y £ A+ 7D o] e
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The other estimates are

(D1 0e(t, )] o = 187 (€Dt ) (1) o = |87 (€KL (1 RO (2 )]
<[5 (lela K e, 5))( : ) i 5 @)
< ot (1gre e b0 0| o
#f5 (e MDY 6 e

Lm

< (I8 elem 97 e, )+ 157 el e, ) Yo
<t

A== oy | pm  for t e [1,00),

where

c1 = 1(/1—«//12—4) >0 and cg:

2

Moreover, we also derive for ¢ € (0, 1]

= - (u+Vu2—4)>0.

l\DM—l

[P vt )] 0 < [§ (K () (&) |51 (€)]
< ”g— (e—am (n—/n7=1)t )(t,.)HLlﬂleHg

N Hg—l(e—%w(w\/ﬁ)t)(t )

)

| Jotla
< (I3 @) g + 57 =8 @ ) ) ol < Tonl g
Hence, we may conclude
[ID1% 0t )] e 5 (147775 for | g

Case j1 € (0,2). The characteristic roots are
1, . ) 5
)\1,2=§|f\ (*,uiz 4*,u).
The solutions to (2.4) are

B(t,€) = sin (3 €7v/4 — 2t) e 417Gy 6)

[el7y/a— 12

The partial derivative in time is

Bu(t,6) = (cos (Glel7v/a — i2t) - ﬁsm( €17 V/A=1i2t) e e (¢),

We apply a modification of Lemma 5 from [57] to study the oscillating integrals

3 (e —alnl” cos(cq|n|” ))(t,x) and f_l(e_cl‘"lg sin(ca|n|”)) (¢, )

after carrying out the change of variables £ = nt’i. This yields the following result.

Proposition 2.1.2. For all positive c1, non-negative a and real ca # 0 the estimates

H&’fl(|§|“efcllgl2atcos(02|§|2°‘t ) t,- HLT < t3al ")7i’
57 (l7ee16 sinfeal>0)) (1, )], < 30,
hold for any a € (0,00), r € [1,0], t > 0 and for all dimensions n > 1.
Firstly, to estimate I/(\l(t, &) we apply

1
Ky(t,€) = tJ ot (Crio-1)y /a2 iel7t 4o

0
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Using this formula and Young’s convolution inequality from Proposition B.1.1 we conclude

FU@(©)]

Lr

[1DI"o(t, )0 = 187 (61K (6, OFE)) () o < 157 (€K (8,)) (¢, )]
< twg_l(fo |£|ae%(*u+i(2071)\/47u2)|§|Utd9> (t")HLr ||| L

1
st ] 5t (et ooV 0| o
Lr
<t 50D % uy|pm  for t e [1, 0).
Moreover, we also get for ¢ € (0, 1]

[ID1%0(t, )]0 < |8 (g™ Ky (8, 9) (8, )] [ (el 61(6))] .,

<tHg J ‘£|mm{a 0}62( n+i(20—1)4/4—p )|§\ td9> H HUIH S
H a—o
1
< tf Sfl(\ﬂmin{a,o}e%(*}L+i(2971)1/47H2)|E‘at) (t7)H d0|\v1|\ I
0 Lt Hy
nnn{a o}
S HUIHH[n ot = HleH[a o]t

Therefore, we derive

[|1D|*v(t L) 207075 oy

”Lq ~ ( LmﬁHLga*U]Jr'

Secondly, we are interested in the derivatives of solutions

[Pt ) o = 87 (112 (2 O) ()]

= 5 (11" (cos (5ler° 4—u2t)—\/%—usm( elV/A= pt) e b (6))
(

< ( cos (%|§|‘7 4 — ,u2t> - \/%7” sin ( |€]7v/4 — uzt))e_%“‘flot) (t,-)
<[5 @ ()] 1

57 (Iel" cos (5 lel7v/a— p2e) e 3 1] funf

+ 57 (It sin (Gl VA= p2e) 3 ()| o

SEEED ol for te [1,00),

A

and

IDIevatt g < 577 ((cos (Gleimv/a =) = —Essim (Gl VA=) o3 ) o

VA —p?
x |[FH(E1 0 (€))]

< H&‘l (cos (f|£|" 4— /ﬂt)e_%“'g‘ot) (t, )‘
HS (5111 —1€174/4 — u%)eiél“gldt) (¢, ')HLIHUI HHg

< |villge  for te (0,1].

I Hvl HHg

Hence, we conclude the estimates
[IDI" e, ) 0 < (14072775 ot L g

Summarizing, the proof to Theorem 2.1.1 is completed.

rm

La

Lr

7')

Ll
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L™ — L9 estimates
From the proof of Theorem 2.1.1 we have the following corollary.

Corollary 2.1.1. Let q € [1,00] be given and m € [1,q]. Then, the solutions to (2.3) satisfy the
L™ — L9 estimates

1 a

Ha{'Dr} HLq ~ tl_i( T _g_ijlHLmv

and the solutions to (2.2) satisfy the L™ — L7 estimates

1

[of 1 D] u(t t =) 70T g o,

HLq ~ (

1

where 1 + % =<+ f, j=0,1, for any a = 0 and for all dimensions n = 1.

2.2. A second Cauchy problem for linear structurally damped
o-evolution models

Let us turn to the following Cauchy problem:

[SS)

up + (—A)7u+ p(—=A)2u, =0, u(0,z) = ug(z), w(0,z) =0, (2.5)

where p > 0 and o > 1. Applying the partial Fourier transformation to (2.5) we obtain the Cauchy
problem for u(t,€) := F(u(t,z)) and ug(€) := F(ug(x)) as follows:

e + plé] 7 + €270 =0, @(0,€) = up(€), @(0,€) =0. (2.6)

L™ N L9— L9 and L9 — L9 estimates
In this section, we want to prove the following result.

Theorem 2.2.1. Let g € (1,0) be given and m € [1,q). Then, the solutions to (2.5) satisfy the
(L™ n L?) — L7 estimates

o 1DI*u(t, )] < (14075707 gl o

and the L1 — L9 estimates

[671D1%u(t, )] 1o < (1 +8)77 7 uo | gasie,
where 1 + 2= = + f, ji=0,1, for any a = 0 and for all dimensions n = 1.
Proof. Speczal case ;n = 2. The characteristic double root is Aj 2 = —|€|?. The representation of

solutions to (2.6) and their partial derivative in time are

a(t,€) = (14 t[¢]7)e” a5 (¢),

and .
Uu(t,€) = —t|¢[P7e 1™ a5(¢),

respectively. Using Young’s convolution inequality from Proposition B.1.1 and Proposition 2.1.1 we
obtain

[ID1u(t, )] = 187 (1617 + £1g17e” @) 2. )],
< I8 @+ 1) ) ()] L 18T @ )]
(I3 el e ) (e, )], + [l e e, )

<t 095 g m  for te[1,00),

A

o) ol

and
D1 u(t, )], < |5 (@ +1E1)e ) @ )] L 5 (1€ ()]

< (571 ) + ¢85 Uel 7T @] o ol sy < ol
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for t € (0,1]. These estimates imply
[ID1%u(t, )], < (1 4+ 87507075 Jug| pmang.

In the further considerations we are not only interested in estimates for solutions, but also in those
for their partial derivatives. For this reason we can proceed as follows:

D1 st ) 0 = I8 (€1 @, ) (8, )] o = ¢[FH (1172775 a5()) (¢, )
<t|F(E e T @8] L 18T @ (9))] m

<t 0= Yy pm  for te[1,m),

LT

and

[P et ) o < £[EH (1177 (1) [ (™ 70 ()]

= H’UJQHH;HU < HUOHH;L‘FU for t e (0, 1].

Hence, we derive the estimate

_n(p_1 _g_
< (1+t> s(1-3) 1Hu0HmeH“+f"

[1D1 e ()] =

Case p € (2,00). We have the roots
1
Al = §|§|U( —ptA/p?—4).

The solutions to (2.6) are

)\16k2t — )\26)\11&

At €) = S (€) = Ko (t, &) (€).

Taking account of the two terms I/('\O(t7 €) and ﬁtf/(\o(t, &) we re-write them as

)\16)\226 _ /\Qeklt

Ro(t,6) = = —3
TR = e (/ﬁr@) BAABE =4 e (u/i—a)
24/ p2 —4 24/ p2 —4 7
atKO(t,g) = 2 (6)\215 - e/\lt) = _)\1)\2K1(t7£) = _‘€|20K1(t3 5)7

AL — A2

where I/(\l(t, €) is denoted as in the treatment of the first Cauchy problem. Therefore, we get
1
Ko (t,6) = —t |£|2”J o3 (ur@o-DViE=1)lel"e gy
0

The application of Proposition 2.1.1 and Young’s convolution inequality from Proposition B.1.1 lead
to the following estimates:

[1D1u(t, ) 1 = 1§ (161" Kot )@ (€) () o < 57 (€1 Ko, ) )| 15 @ ()] .
< Hg—l (|£|a67%|€\"(u+\/u274)t) (t")”LTHUOHLm

N Hg—l (|§‘ae—%|f\a(ﬂ_\/ﬁ)t)(t, ')HLTHUOHL”
H371(|£|a6761|£‘6t)(u ')HLT + “371(|5|a6762‘§|”t)(t’ )HLT) [uo

St F0D Sy for te [1,00),

rLm

where

(n—~/p?—4)>0.

DO | =

(u+\/u—)>0 and o=

M\H
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2

Moreover, we may also derive for ¢ € (0, 1]

DI ) < [ (ot NN T GO
slg (et m)t) il

5 (VT ),

< (Hs;fl(efq\ﬂat)(t?,)“Ll + HS* efczlE\(7 t")HLl)HUOHHg < HUOHHg

ol g

These estimates imply

[ID1*u(t, )], < (1+1)7 50" )= * o] m s

As estimates for |D|*u we obtain
[1D et )] o = 371 (€1 (t,€)) (2] 0 = HS_l(|£|“6tl?o(t7£)%(£))(t,-)HLq
< [ (€10 Ko (1, 9)) (1), |8 @)
StHg_l(J |£‘a+206%(—H+(29—1)\/u2_4)|5\gtd9)(t’.)H o] £
0 Lr

Lm

<tf [ (oot (oran-nViE=D ) ] dg g
0

s tHgfl(|§|a+2ae—c|.gw HL |uollzm < t*;(lff)*%’lHuo

rm forte[l,00),

where

N

2

(b — (20— 1)\/u2 —4) > E(M—m) > i > 0.
Moreover, we also get for ¢ € (0, 1]
Dt 5[5 [ lered oV a) 0[5 ep w0
<t J [57 (lefed (v @o0VIE=NE ) 1| gl ggee

< FH(EP e @, ) ol e < ol rge

HLq

Hence, we may conclude

1

[1D1%ue(t, ) o < (1 +6) 7D 75 g oo

Case p € (0,2). The characteristic roots are

1 .
A2 = ilf\“(—uiwﬁl—ﬁﬂ)-
The solutions to (2.6) are

a(t,€) = (‘cos (Flel"v/a— t) + ﬁmn( 73/ gt e B iy ).

The partial derivative in time is

2[¢17

at(tvg) = /74—/1

sin (S [€l7V/a — pt) e 1" )
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Applying Proposition 2.1.2 and Young’s convolution inequality from Proposition B.1.1 we conclude

[ID1ult, )] 1.
—1{|¢|a Lo 2 Lo 2 sHIE|7t
=7 lere (cos (GlervVi= 1) + iy sin (lef" v/ =) ) MG ) 1),
1 1 -
o 5 o (A7) i (B )i )
x |[FH @6 (6)] pm
1 1, 1¢10
< |57 (161" cos (5lel VA= 2t)e 31 ) 0, o]
1 o
5 (Jg1sin (G161 VA= p2t) e B ) 00| o]
<t o095 ug|pm  for te[1,00),
and
1 -
DIu(t, ), = |57 ((cos (Flel7v/a = ) +\/%sm( elv/a—p2t) )e B 1))
- p?
x |31 (€1 @ (€))]
_ . _1,0¢l°
< 57 (cos (Gl VA= r20)e ) 0] ol
U e
b5 (sin (Gler VA=) et t)(t")Hp“”O”HS
< |luofme  for t e (0,1].
Therefore, we may conclude
[IDI*u(t, )], < (1 +1)" 7079 “ o] m s
For the partial derivatives of u; we obtain
P (e N ) B G (3) (O
La \/7# " lpa
— ato o -1 o 1~
<[5 (el sim (Glelv/a—e)e 34 10 5 @)
<t 705 Y ug|pm  for t e [1,00),
and
a : ]‘ o a O'/\
D1t ), < 57 (sin (Gl VA= p2t)e ) | 54 (€1t @(©))] 0
= HUOHH{‘;+0 S HuOHH{?+6 fOI‘ te (0, 1]
Hence, we may conclude the estimates
@ _n(]_1ly_a_
[1D1%ue(t, )] o < (1467507 g o oo
Summarizing, the proof of Theorem 2.2.1 is completed. O

L™ — L9 estimates
From the proof of Theorem 2.2.1 we have the following corollary.

Corollary 2.2.1. Let q € [1,0] be given and m € [1,q]. Then, the solutions to (2.5) satisfy the

L™ — L1 estimates
) 1y a_
lel1D1"ut, )|, < 750775 fugf pm

where 1 + % = % + f, i =0,1, for any a = 0 and for all dimensions n = 1.
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2.3. A third Cauchy problem for linear structurally damped
o-evolution models

In this section, let us consider the Cauchy problem for structurally damped o-evolution equations in
the form

U + (=A)u+ p(=A)2u, =0, u(0,2) = up(x), u(0,2) = uy(x), (2.7)

with ¢ > 1, p > 0. We may summarize the results from Sections 2.1 and 2.2 as follows:

L™ ~L?7— L% and L? — L7 estimates

Theorem 2.3.1. Let g € (1,0) and m € [1,q). Then, the solutions to (2.7) satisfy the (L™ n L9)— L1
estimates

j n_ly_a_g
|0l 1D u(t, )|, < A1 +1)~ s1=v)=3 JHuOHmeHgHa
_n(1_ly_a_
+(L+)t 507073 J||U1HLmﬁH(Ea+<j—1>a]+

and the L1 — L9 estimates

[t DI u(t, )| 0 = (1877 o] grgrse + (1 )7 | s g-nor+

where 1 + é = % + %, j=0,1, for any a = 0 and for all dimensions n = 1.

L™ — L7 estimates

Corollary 2.3.1. Let q € [1,0] be given and m € [1,q]. Then, the solutions to (2.7) satisfy the
L™ — L9 estimates

j —_n(_ly_a_ —_n(1_ly_a_,
[o7 1D u(t, )], < t75 07975 fug| o + 177 T TE T g | o,
where 1 + s = = + f, 7 =0,1, for any a = 0 and for all dimensions n > 1.

2.4. Comparison with known results

First, if we are interested in studying the special case of o = 1, in the paper [57] the authors obtained
L' estimates for oscillating integrals to conclude the following L™ — L7 estimates not necessarily on
the conjugate line for Sobolev solutions:
(11 Cn(1-1
Jutt, Ve < "0 fuofpm + 707 uy | o,

where 1 < m < ¢ < oo and 1+ é = % + % The decay rates for solutions produced from the results
in [57] are exactly the same as those in Corollary 2.3.1 with 0 =1 and a = j = 0.

In the paper [11], the authors investigated L' n LY — L4 estimates for solutions and some of their

derivatives as well in the case § = ¢ with additional L' regularity for the data as follows:

[Pt 144) 70 _%HUOHleHQ + (L) 7D g

HL‘Z ~ ( Llﬁnga*”]Jr?

1—-Ly_a__ _n(1_1ly_a
[ D] w2, 1+ 0770075 g 1 grave + (L+ 0707075 a1 g,

HLq ~

for all non-negative constants a. We see that these results coincide with those in Theorem 2.3.1 if we
choose the parameter m = 1.

Finally, we want to mention the paper [9] to emphasize some of recent estimates for solutions to
structurally damped o-evolution equations as follows:
<t (,( (*—*)4- ) ]HUOHL‘IO Tt ,,( (*—*)-&-a)-i—l—jHulHqu’

H(3{|D|“u(t, ')HL‘I

for any qo, ¢1 = 1, ¢ € [max{qo,q1},©], a = 0 and j € N. By choosing the values ¢qo = ¢1 = m
satisfying 1 <m < g¢g< o and 1+ é = % + %, we may conclude the following estimates:

< =3 (00=040) =y | 4¢3 (HO=Da) 1

Hag |D|au(t7 ) HLq ~

rLm.

These decay rates from the paper [9] are absolutely the same as those in Corollary 2.3.1.
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3. Linear structurally damped o-evolution

models with § € [0, §)

The main purpose of this chapter is to study linear structurally damped o-evolution models of the
form

up + (=8)7u+ p(—=A)u = 0, u(0,2) = ug(x), (0, 2) = uy(x) (3.1)
with ¢ > 1, 4 > 0 and § € [0,%). This is a family of structurally damped o-evolution models
interpolating between models with friction or exterior damping § = 0 and those with a special damping
d = §. Our goal is to obtain L? — L7 estimates for solutions to (3.1) by assuming additional L™
regularity for the data with m € [1,q), where ¢ € (1, 0) is given.

To do this, let us explain our objectives and strategies as follows:

e By using the partial Fourier transformation we can reduce the partial differential equation to study
an ordinary differential equation parameterized by &.

e Main difficulties that we will cope within the case 6 € (0,%) are to derive L' — L' estimates for
oscillating integrals appearing in the representation of solutions. For this reason, we will apply the
theory of modified Bessel funtions and Faa di Bruno’s formula.

e For the sake of the asymptotic behavior of the characteristic roots, we may obtain L™ estimates
for oscillating integrals. By an interpolation theorem, we also get L estimates with r € [1, 0] for
oscillating integrals.

e Applying Young’s convolution inequality we may conclude L™ —L? estimates with ¢ € [1,00] and m €
[1,q], L™ n LY — L7 and L7 — L7 estimates with ¢q € (1,00) and m € [1, q) for solutions to (3.1) in
the case 0 € (0, §).

e In the case § = 0 (friction or external damping): An analogous way as we did in the case ¢ € (0, §)
gives L™ — L7 estimates with ¢ € [1,00] and m € [1, ¢] for small frequencies. For large frequencies,
we will apply the Mikhlin- Hérmander multiplier theorem to get L? — LY estimates with ¢ € (1, 0).
Then, we may conclude L™ n L? — L9 and L? — L7 estimates with ¢ € (1,00) and m € [1,q) for
solutions to (3.1).

3.1. A first Cauchy problem for linear structurally damped
o-evolution models

Let us consider the following family of parameter-dependent Cauchy problems:
w4 (=A)7u+ p(=A)u, =0, u(s,x) =0, (s, x) =u(z), (3.2)

where s > 0 is a fixed non-negative real parameter, c > 1, > 0 and 0 € (0, §). Thanks to the change
of variables t — t — s, we have here in mind the following Cauchy problem:

v + (A0 4+ p(—A)Yu =0, v(0,2) =0, v(0,2)=vi(x). (3.3)

L™~ L7— L7 and L? — L7 estimates

In this section, we want to prove the following result.
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Theorem 3.1.1. Let § € (0,%) in (8.3), g € (1,00) and m € [1,q). Then, the energy solutions to

(3.8) satisfy the (L™ n L?) — L7 estimates

ot Mpe < 4LV o if te(0,1],
vL, - RN __n _1
PRl T T o ifte [1,0),
Do, < 4 EE e yeelo1,
LT (14 ) e e T oy | pmane i t e [1,0),
[oet, ) e < t=EHEDE D oy | o o ifte(0,1],
9 5 n 1 s
PO S (4 ) DS oy e ift e [1,00),

and the L1 — L9 estimates

ot e < {0 EE e ifte (0,1]

T @+ e ifte[1,00),

DFuel,, < {70 E Dl e 0.1)
AT e ifte [Le),

o, Mea 541 s b e 1]
Slan T e ifte o),

1_ 1,1 : :
where 1 + s=rTm and for all dimensions n = 1.
As a consequence of Theorem 3.1.1 we conclude the following result.

Theorem 3.1.2. Let 6 € (0,%) in (3.2), ¢ € (1,00) and m € [1,q). Then, the energy solutions to

(8.2) satisfy the (L™ n L) — LY estimates

D e L A
N ( )1 2(0—5)( *?)HulHLmﬁLq ’ift c [S + 1,00),
|||D\" H (t — 5)~CHEDGEE D |y | L Lo ifte(s,s+1],
P (1+¢ — 2y (1= 3)— 3055 |ui||pmare  ifte[s+1,0),
H | ( —HENE - 1)||U1HmeL‘1 ift € (S, s+ 1],
(% q
t L (1+¢ 1 sy (1- 1) =525 HUIHmeLq ifte [s +1, OO),

and the LY — L9 estimates
t—s)' Ot EDGEGE D uy | ifte (s,5 +1],
1+t—9)||ur|re ifte[s—+1,00),

(
Ju(t, )ze <
(
IDPutt, ), < { ¢~ O E Pl arte (s, +1)
T A4t =) T T e ifte [s+1,00),
(
(

(AR IZES {

and for all dimensions n = 1.

t—s)"CHEDG V=55 |uy|pa ifte (s, s+ 1],
1+t — )77 |ua| £ iftes+1,0),

11 1
wherel—l—az;—l—a

Using partial Fourier transformation to (3.3) we obtain the Cauchy problem for v(¢,€) := F(v(t, x))
and 01(§) := §(v1(z))

o+ pl€[*0 + €770 =0, 9(0,6) =0, 0,(0,€) =71 (8). (3-4)

We may choose without loss of generality ¢ = 1 in (3.3). The characteristic roots are

Mz = ha@) = 5 (— 16 £ gl — g,
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The solutions to (3.4) are presented by the following formula (here we assume A\; # Ag):

At Aot

B(t,€) = S 5(6) = Ka(t, B (€).

PR

Taking account of the cases of small and large frequencies separately we have
LA~ =[O0 Ay~ —[€25, A =g~ [€[20 for small [¢] € (0,47 7%),
2. Ao~ —[€2 £il€]7, A — g ~ €] for large [¢| € (477, 0).

Let xr = xx(|€]) with k = 1,2,3 be smooth cut-off functions having the following properties:

1 ifg <47, 1 if|¢] > 47,
xmmo={ e xam>={ el 2 g2

0 if |¢] 0 if [
and x2([¢]) = 1 — x1(I€]) — x3(I€])-

We note that x2(|¢]) = 1if 3775 < |¢] <377 and x2(|¢]) = 0if |€] <4777 or |¢| > 475 . Let
us now decompose the solutions to (3.3) into three parts localized separately to low, middle and high
frequencies, that is,

U(tv I) = Uxy (tax) + Uxs (t,:L') T Uy, (t,x),

where
UXk-(t?x) = 371 (Xk(|€|)6(ta 5)) with k = 1,2,3.

In order to estimate the L? norms of solutions in (3.3) with additional L™ regularity of the data,
we shall estimate the L" norms of general terms of the form §~!(K;(t,&)xx(|€])) (¢, z) with j = 0,1
and k = 1,2, 3, where

At Aot

)\16>\2t _ AQ@Alt
At — A2

€ — €

and a(t,g) = ﬁ

KO (ta 6) =
The proof of Theorem 3.1.1 is divided into several steps as follows:

L' estimates for small frequencies

Proposition 3.1.1. The estimates

57 (Ro(t.paleh) (), <1 and [ (KatOxalleh) (k)]0 < ¢
hold for all t > 0.

Proof. Our approach is based on the paper [57]. In order to prove the above estimates for small
|€], we can apply the modified Bessel functions, carry out partial integrations and perform change of
variables. According to a modification of Proposition 4 and Proposition 5 in [57], we have to study
the three oscillating integrals

F MG (ED) (tx), TP A (€)) (tx),  F (M a(lED) (t ).
We obtain some auxiliary estimates for small frequencies as follows:

Lemma 3.1.1. The estimates

|57 (P2 (1€D) (¢, )]0 < 1,
137117 e xa (1€D) ()|, S 1
I3 1 (M (€)) (t, )]0 < 1

hold for all t > 0.



26 3. Linear structurally damped o-evolution models with ¢ € [0, 3)

Taking account of I/(\o(t, £€) by using the asymptotic behavior of the characteristic roots we estimate
as follows:

1571 (Ko, )xa(1€D) (&) 11 < I8 (1627 Xt (D) (8, )| o + 18 (M xa (1€D) (&) 0 < 1.

In order to estimate f/(\1(t7 €), we may re-write

1 1
Ki(t,€) =t f At =0t gy — geh! f f 2=t g,
0 0

Applying Young’s convolution inequality from Proposition B.1.1 allows the following conclusion:

57 (B (.0 (€D) () 5 0 j [57(eMtere 2ty e ) )] o

<t j 57t (M xatieh ) )

(P (Jg) ) (k)

de <t.
L Lt

Therefore, we may conclude the desired estimates in Proposition 3.1.1. O
Following the approach of the proof of Proposition 3.1.1 we may prove the following statements.
Lemma 3.1.2. The estimates

1 if te (0,1],
t=3  ifte[l,m),

1 ifte(0,1],

_ a+20—45 Azt '
”S 1(|£‘ +20—4 6)\ X1(|§|))(t’ )HLl < {t—zaa ifte [LOO)v

51 (117t (D) 6] < {

5" e D) e, ), < {tl e
hold for any non-negative number a.

Proposition 3.1.2. The estimates

1 ifte(0,1],
£ ifte[1,0),

t ifte(0,1],
T ifte[1,0),

|7 (I Ko (t, )x1 (1€D) (8, )] 1 < {

5 (" Rt xa(€D) (8] 2 < {

hold for any non-negative number a.

L' estimates for large frequencies

Proposition 3.1.3. The following estimates hold in R™:

—e+EDEHD  fte (0,1],
5 <Kotf>><s<ls|>><u->m{Z_ct yte ]

ifte[1,00),
H-HEDEG D fte (0,1],
|51 (Kt Oxa(1€D) (8 )] 1o < {e-a ifte(l,0),

where ¢ is a suitable positive constant.

In order to obtain the desired estimates for the norm of the Fourier multipliers localized to large
frequencies, we re-write

e -
—~ ; 1 X sin (\§| 1— mt)
Ko(t, &) = e 218 cos (|§\U 1— m’f) I B

e 206l /1= s
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and

n (|£|U 1- 4|€|21(7—4§ t)

|£‘U 1- 4|§‘215745

- 1 26 S
Ri(t,€) = emHler™

Hence, it seems to be reasonable to divide the proof into two steps. In the first step we derive
estimates for the oscillating integrals

5 (et ) )
and

§ (e cos(ealel7Dxs IE]) ) (1 ),

where 8 > 0, ¢; is a positive constant and co # 0 is a real constant. Then, we estimate the two
following oscillating integrals in the second step:

—1( —rlelt 25 8in(c2[€]7 f(I€])t) .
3 ( |§| ‘§|Uf(|£‘) X3(|§|))(t’ )

and

§ (7167 cos(ealgl” FIEDNa(IED ) (¢ @),

1
f(|§\):ql1—W-

Lemma 3.1.3. The following estimate holds in R™:

H%*l (601|525t|£2BSin(|C§2|f|mX3(|£))(t7 )‘

where = 0 and c is a suitable positive constant. Moreover, c¢1 is a positive constant and co # 0 is a
real constant.

where

<

{t—<2+[;]>(;5—1>+“2§‘3 ift e (0,1]
L1

e~ if te[1,),

Proof. We follow ideas from the proof of Proposition 4 in [57]. Many steps in our proof are similar
to those from Proposition 4 devoting to small frequencies, nevertheless we will present the proof in
detail to feel changes related to our interest for large frequencies. Let us divide the proof into two
cases: t € [1,00) and ¢ € (0,1]. First, in order to treat the first case ¢ € [1,0), we localize to small
|z| < 1. Then, we obtain immediately the exponential decay. For this reason, we assume now |z| = 1.
We introduce the function

1(t,) i= 57 (o€ sin(ealél" ) xa 1)) ().

Since the functions in the parenthesis are radially symmetric with respect to £, the inverse Fourier
transform is radially symmetric with respect to x, too. Using the modified Bessel functions we get

o0
I(t,z) = cf e—er¥typ28—0 SiH(CQTUt)Xg(’F)Tn_lj%_l(’I“|J?|)d’/‘. (3.5)
0

Let us consider odd spatial dimensions n = 2m+ 1, m > 1. By introducing the vector field X f(r) :=

d (Lf(r)) as in [57], we carry out m + 1 steps of partlal integration to obtain

dr
0
I(t,z) = ,Ln‘[ 0, (Xm (eiclrQatSin(CQTUt)Xg(T)T2ﬁ70+2m>) sin(r|z|)dr. (3.6)
|z[™ Jo

A standard calculation leads to

m j+1

Z Cik J pi+1—kgmerr® tak(Sln(C2T ) xs(r ))rw*"” sin(r|z|)dr

_|_
Msw

o0
cjk J 63 kemeir®’t (?kH(sin(czr”t)xg(r))rw_aﬂ sin(r|z|)dr
0

D= <
S

.

|
o
E

|
o

+
13
Mb

0
jk J o kg1t aqlf(SiH(CQTUt)Xg(T))T2ﬁ70+j71 sin(r|z|)dr
0

0

<.
Il
—
B
Il
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with some constants c;;. For this reason, we only need to study the integrals

o0
Iin(tx) = J (73“"“6_0”2% (?ff(sin(czr”t)xg(r)>r2ﬂ_"+j sin(r|z|)dr. (3.7)
0

Due to the large values of r, we can see that on the support of x3 and on the support of its derivatives
it holds

25 25 _
’aie cir t‘ <e ar tTl(25 1)tl,

! ( sin(CQT"t))(g(r)) ‘ < o=yl

for | =0,--- ,m. Hence, we imply for large r, j =0,--- ;m and k = 0,--- , j the estimates

a£+1—ke—c1r taf(SIH(CgTUﬂXg(T))TQB o+]‘ <e cir ttj+1r25(j+1)+k(0' 20)+28—1

on the support of x3 and on the support of its derivatives. By splitting of the integral (3.7) into two
parts, we get on the one hand

o o , 1 .
‘ J agﬁl—’“e—“?”t 6,]?(sin(czr”t)xg(r))r%_"ﬂ sin(r|x\)dr’ < —‘ B e~¢t (3.8)
0 X

for some constant ¢ > 0. On the other hand, we can carry out one more step of partial integration in
the remaining integral as follows:

Q0
‘ itk g—eir®t ok ( SiH(CQTUt)Xg(T))T2ﬁ70+j sin(’r|z|)dr‘

2

x

1 . L . _ . [c9)
< Tl 6£+1_k6_°”25t &’f(sm(ch"t)Xg(r))rQ’B 7+ cos(r|x|)
xT r:ﬁ
1 (* - . 1
+ Tl Or (@£+1_k6_clr26t 6’:?(sin(02r”t)xg(r))r2ﬂ_g+3) cos(r|m|)‘ dr < We_“ (3.9)
T T
for some constant ¢ > 0. Here we also note that for all j = 0,--- ,m and k = 0,--- ,j we have the
estimates

3 (aZJrlfkefclr%ta?lf ( sin(car®t)xa (T))T2ﬂfa+j) ‘ < o1ty 42, 20(j+1)+k(0—28)+25—2

Therefore, from (3.6) to (3.9) we have produced terms |z|~ (2% and |z|~("*1) which guarantee the
L' property in x. Summarizing, it implies for all ¢ € [1,00) and n = 2m + 1 the following estimates:

<e °  for some ¢ > 0.
Li(|z|=1)

57 (7 27 sin(ealél DxalE) ) (1)

Let us consider even spatial dimensions n = 2m,m > 1 in the first case t € [1,00). Carrying out
m — 1 steps of partial integration we obtain

c “ m— —C 7’25 : o o m—
I(t,m):WL X 1(6 U sin(egrt) xs (r)r2f o2 1) o(r|z|)dr

Q0
j —c1r?0t . o 2B—0o i+1 7
—Z|Wm2LaKe sin(ear ™ )xa(r)r2 = )17 i o

= mz (3.10)

Applying the first rule of the modified Bessel functions for i = 1 and the fifth rule for g = 0 from
Proposition B.3.2, after two more steps of partial integration we have

1 @ 25 -
In(t,x) = —Wﬁ Or (& (e_clr tSiH(CQTUt)Xg(T)T26_0>’I’)jo(’l"|$|)d7’. (3.11)
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Noting that for large r and all j = 0,--- ,m we have the inequality

< e—clr25ttj7,j(a—1)+25—o.

(73; (e_c”wt sin(czr”t)xg(r)rzﬁ_")

Hence, we get

ar<(‘}r(€_clrwt Sin(CQT )XB 2,8 U) )) —Clr26tt27,0'+2ﬁ—1

on the support of 3. Now using the estimate | Jo(s)| < Cs~2 for s > 1 we conclude

‘J —e1r?’t sin(cort)xs 25 ") o(r|z]) dr’
—e1r?0t,2 o4+28—1 1 2 * —c1r?t o+2B8-3 1 —ct
< e AT Tty B t e "ty 2dr < —e (3.12)
1 (a2t |z|2

for some constant ¢ > 0. Therefore, from (3.11) and (3.12) we have
[o(t, ) pr(zj=1) S € forall t € [1,00), and some constant ¢ > 0.

Let j € [1,m — 1] be an integer. By using again the first rule of the modified Bessel functions for
@ = 1 and the fifth rule for 4 = 0 from Proposition B.3.2 and carrying out partial integration, we may
re-write I;(t, z) in (3.10) as follows:

1

0
Ii(t,z) = —WJ; Or (63,“ (e_clr ot Sin(CQ’I"Ut)Xg(7“)7’2’(3_0)7“]+1)jo(T|!E|)d’f‘

- Q0
_ |xi]2m f 0, ((X (eiC”%t sin(cy"t)xg(r)rw*”)ro Jo(r|z|)dr
0
Applying an analogous treatment as we did for Iy = Iy(¢,x) implies
L (t, )Lt (jz)=1) < e forallte[l,0)and j=1,---,m—1,

where ¢ is a suitable positive constant. Therefore, we have the following desired estimates for all
€ [1,00) and n = 2m:

< e  for some constant ¢ > 0.
L(|z|>1)

57" (e g2 sin(ealelHxalg) ) (8.

Let us turn to the second case t € (0, 1]. By the change of variables £ = t*%n we get

§ (e PP sin(ealg T Ds (1€) ) (8 )

:t—%g—lca—cl\n |77|2/3 7 sin(ea|n|” ti=z )XS(t 25|77|))(tat_%$)-

|2(5

Hence, we have
57 (eI g2 sin(ealeDxa (1) ) &)
(e 25 sin (e |7 ) () ) (1)

For this reason, we only need to study the Fourier multipliers in the form

L’

H(t,w) = 5 (71 1257 sin(ean| =5 )xa (65 n]) ) (8, 2).
First, we localize to small |z| < 1. Then, we derive immediately

IH () (ej<1y St 7%

Therefore, we may conclude for || < 1 the estimates

57 (e g2 sinealel Dxa(lE) ) (1)

ol

st
L1 (J2|<1)
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We assume now |z| = 1. Using the modified Bessel functions we shall estimate

o0
H(t,x) = cJO e=err”’ p28—0o sin(corot! 725 )y (t_%r)r"_ljg,l(ﬂxbdr. (3.13)
Let us consider odd spatial dimensions n = 2m+ 1, m > 1. Then, carrying out m + 1 steps of partial

integration we re-write (3.13) as follows:

Q0
H(t,z) = @J O (Xm (@*CW% sjn(CﬂUtl*%)X?’(t*%r)rw*"*Qm)) sin(r|z|)dr
0

Z ‘ZJ—(; L 6?,“6_0”256;? ( sin(corot! % )Xg(t_"‘%sr)>
1<j+k<m+1, j, k=0
x I TR0 gin (7|2 |)dr. (3.14)

In order to estimate the function H = H(t,x), we use the following auxiliary estimates:

_ {e—m” if j =0,

~

]&ie‘cﬂﬂ 26, o5 (95 25 o5 i N o
e (p20-J + 2 D)y e 20 (1 4 20 if =1, m,

o

‘ - rotl— s if j =0,
’6£ sin(cy"”tl*%)‘ < e Lo e i j
ro It T 4 (ro 95 ) S oIt e (1 4 ot ) ifj=1,---,m.
From the above estimates we may derive
o rott T if k=0
Ok(sin cortiT s tay )) < - o 7
| sinlez Jxal ) roh =g (1 4 o= F)-l i k=1, m.

Hence, we have
i+1_—c1r2% Ak [ o o41—Z - j+k+28—0
0l e 6T(51n(027‘ t 28 )xs(tT 28 r) ) A

e~ 1 S p20 k201 (] 4 20 if k =0,
6761T25t17%7"25+2ﬂ71(1 + Tatlfﬁ)kjtjfl if k= 1,---,m,

<

where we also note that |¢] € [1,00), that is, 7 € [t25,00) and 7t~ 3 > 1. Now, let us devote to k = 0.
By splitting the integral in (3.14) into two parts, on the one hand we obtain the following estimate

1
for t357 < 7~
2z

ofal Y .
’ f 1m 63,“6_0“'26 sin(czr”tl_ﬁ)xg(t_%r)rﬁw_" Sin(r|x|)dr‘
t25

™
[

1-g (777 254281 261 e (1 1 =55
<t J;% r (14 r=)dr <t 72 (|x|25+25 + |x\25(j+1)+25) S (oo (3.15)
On the other hand, carrying out one more step of partial integration we derive
a0
[ e et ot )02 sin(rlal i
3al
1 ; - .
< — 8ﬁ+1e_c”"26 sin(cy‘"tl_ﬁ)Xg(t_%r)rﬁw—" cos(r|z|)
] =
1 (* . - .
+ Tl Or (agfle—m” sin(czr”tl_Té)xg(t_%r)rjwﬂ_“) cos(r|x\)‘dr
ofa]
1-2 (o
< t| 20 f 6—01T26T25+26—2(1 n r26)j+1dr
X iy
2|x
-2 el
ST (J 254262 J'OO e—c1r25T26(j+2)+2ﬁ—2dr)
| St 1
(e if25+2ﬂ7&1<t1_%( L ) 16
T £ E 1og(e + Ja) if20+28=1" x|z |z[20+28) '
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where we also note that

<efclr t1757¢26+23 2(1+T25)]+1

. 5 - .
. <6£+16761T2 sin(corot! s )X3(t7§7,)7,g+2670)

For k =1,--- ,m, after an analogous treatment as we did for k = 0, we get
Tl i1 —enr® o _L i+k+28—0 ; ¢k ta) (=55
‘Lég pitlemar™ ok (sm(czr"tl 25 ) x3(t ™2 7”))7“3+ +26 ”sm(r|x|)dr) S T (3.17)
and
© - 26 1 :
’ f Ittemar 6f<sin(cy‘"tl_ﬁ)Xg(t_ﬁr))r”k”ﬁ_" sin(r|z|)dr
el
1 1
i+ (A—75) R
j (|x|é * |x|26+2ﬂ)’ (3.18)

where we can see that

Or (51“676”126 or ( sin(cort! T35 )3 (tfilar)) Tj+k+2ﬁfcr) ’

<€761’I‘ tl 25+2[3 2(1+T0t1 )k+j

Hence, from (3.14) to (3.18) we have produced terms |z|~("+20+26) and |z|~("+2) which guarantee
the L' property in x. For this reason, we arrive for all ¢ € (0,1] and n = 2m + 1 at the following
estimates:

02['3

<t (m+2)(5—-1)+
L (|z|=1)

57 (e g sin(ealel Dxa)) ) 2. )

Let us consider even spatial dimensions n = 2m,m > 1. Carrying out m — 1 steps of partial
integration we re-write (3.13) as follows:

0
o) = W [ (e sin(ear e ()20 ) Gl

- Z \x|2m 2f 83 (7o sin(eart 5 xa (1)~ )od 1 Jo(rlal )

I

ST

ng
k’ﬁ

Using the first rule of the modified Bessel functions for 4 = 1 and the fifth rule for 4 = 0 from
Proposition B.3.2 and performing two more steps of partial integration we get

1 «© 2 - 1 ~
[To(t, z)| = W f Or (67, (675” ’ sin(cor?tt T2 )3 (tiﬁr)rw*(’)r) jg(r\x|)ldr.
0

We can see that for j = 1,--- ,m we have
02 (e sin(ear ™t =F s (47 )07 )| € T (L I (20 20

on the support of 3 (t*%'r) and on the support of its derivatives. Therefore, we may conclude

Or (6T (e‘cﬁ25 sin(czr"tl_z%)X3(t_2*16r)r2ﬂ_”) )’ < e pl=3 (1 + otz )(7“2‘5+2’B_1 + T2§_1).
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Since |Jo(s)| < C for s € [0,1] we obtain for t25 < |17‘ the estimates

1
J\fﬂl
1
125

Or (ar (676”25 sin(corott= 2 )Xg(f%T)TZB*") r) jo(r|x|) ‘dr

o [Tel 25 _ o _ . 1
St f e (1T rotl =25 ) 2P gy (smce r? <1 forr < ﬁ)
25 T

1
P ] P TaT
<t~ f PP e+ 207 f Loy
¢ t

25

_ o Tl _ _ t2(17% . _ _ o 1
< 121 55) f ) p2B-14o=20 gy 4 W (smce 2077 <175 forr > t25)
t25 €

- 1 1 - 1
2(1—-Z) 2(1-%%) ~
SRR (|x|a—26+25 + |x‘a+26) St 2|7 —20+25 (3.19)

jod 1
Moreover, we use |Jo(s)] < Cs™2 for s > 1 to conclude

Jio Or (8r (6_6”26 sin(cort! 725 )3 (t_%r)rw_”) r) Jo(r|z|) ’dr

[2]

I —cir?® o41—% 25+28—3% 262
< T e " (1477t "2 )(r 2 + 77 2)dr
=% ! $2(1=3%)
— f 7“2’87%(17“ + -1
1 ‘gj|2

_ o 1 2(1—2)
t2(1 26) _ 3 _ t 26 . — —Z
B Al Sp— (smce r20-r <! 25)
3 1 |x|§

A

A

pRO-g (L4 1 ) if o — 26+ 28~ 1
e [a]7—25¥28 3 s 1 1
E log(e + |z|) ifo—20+26=3 ||z [

Hence, from (3.19) and (3.20) we have produced terms |z|~("+3) and |z|~("+7=20+28) which guar-
antee the L' property in . Summarizing, we arrive at the estimate

1 o(t, )L (ejz1y < 2075 forall te (0,1].

Let j € [1,m — 1] be an integer. Then, repeating the above arguments we also derive for ¢ € (0, 1]

1L (t, ) a1y < tUTDE3),

Therefore, we have proved that for all ¢ € (0,1] and n = 2m the following estimates hold:

< = (mF)(F-1)+2532

LY(jz|=1)

57 (e g2 sin(ealel Dxa) ) 2. )

Summarizing, the proof of Lemma 3.1.3 is completed. O

Remark 3.1.1. In the proof of Lemma 3.1.3 we explained our considerations for n > 2. Nevertheless,
repeating the steps of the proof for odd spatial dimensions we conclude that the statements of this
lemma also hold for n = 1. Here in the latter case we notice that we only carry out partial integration
with no necessity to introduce the vector field X f(r) as we did in (3.6) and (3.14).

Following the proof of Lemma 3.1.3 we may conclude the following L' estimates, too.

Lemma 3.1.4. The following estimates hold in R™ for any n > 1:

57 (75116l cos(ealél”Exa (1€D)) (&)

_ t=CHEDGH V-5 it e (0,1],
2! e~ if te[1,0),

where = 0 and c is a suitable positive constant. Moreover, ¢1 is a positive constant and co # 0 is a
real constant.
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Remark 3.1.2. Here we want to underline that all the statements in Lemma 3.1.4 remain valid for
any 20 = —o.

Finally, we consider oscillating integrals with a more complicated oscillating integrand. We are
going to prove the following result.

Lemma 3.1.5. The following estimates hold in R™ for any n > 1:

- {t—(2+[3])(§5—1)+”2§5 if t € (0,1],
2N

7 (o )

et if t € [1,00),

1
f(lf\)ﬂ/l—W,

B = 0 and c is a suitable positive constant. Moreover, c1 is a positive constant and co # 0 is a real
constant.

where

Proof. The proof of this lemma is similar to that of Lemma 3.1.3. For this reason, we only present
the steps which are different. Then, we shall repeat some of the arguments as we did in the proof of
Lemma 3.1.3 to conclude the desired estimates.

First, let us consider |x| = 1 and t € [1,00). In order to obtain exponential decay estimates in both
cases of odd spatial dimensions n = 2m + 1 and even spatial dimensions n = 2m with m > 1, we shall
prove the following estimates on the support of x3(r) and on the support of its derivatives:

& (Sin (cy"f(r)t) K(o—1) 4k -
5T<T)‘$r t fork—1,~~,m

where
1
f(T) = 1 - 4,,«20'—45 :

Indeed, we shall apply Faa di Bruno’s formula as a main tool. We divide the proof of the above
estimates into several sub-steps as follows:

Step 1: Applying Proposition B.4.1 with h(s) = +/s and g(r) =1 — %r*2(”’25) we get

25| < Z g(r)z—(mit +mk)n< (0—28)— J) m;
1-mi+-+k-mp=k, m;=0
< Z r—2(0725)(ﬂ11+"'+mk)*k < rik (since % < 9(7") <1 for r = 1)

1-myi+--+kmgr=k, m; =0

An analogous treatment gives

af(%)’ <r % fork=1,-,m. (3.21)

Step 2:  Applying Proposition B.4.1 with h(s) = sin(cq ) and g(r) = r? f(r)t we obtain

k m;
|0 sin (CQT T)t)| < ‘ 2 sin (Cgr"f‘(r)t) (mi+-+mg) 1_[ (ai (Taf(T)t))
1 myi+--+kmip=k,m;=0 j=1
J

: 1 +1 mi

s T nen)
Imi+-+kmyp=k,m;=20 j=1 =0
k
1-myi+-+kmg=k,m; =0 j:1

> rR oyt < ghpk(o—1) (3.22)

Imyi+--+kmr=k,m;=0

A

A



34 3. Linear structurally damped o-evolution models with ¢ € [0, 3)

Hence, from (3.21) and (3.22) using the product rule for higher derivatives we may conclude

ok (Sin (cor? f(r)t)
’ f(r)
Neat, let us turn to the case |x| = 1 and t € (0,1]. In order to prove the desired estimates by using

similar ideas as in the proof of Lemma 3.1.3, we need to assert the following auxiliary estimates on
the support of Xg(t*%r) and on the support of its partial derivatives:

)‘ <thrRe=D for k=1, m

(sin (cor® f(r)tt

25 - o
))‘ St R ot m)E fork=1,---,m
f(r)

where

N =g

Indeed, we shall divide our proof into several sub-steps as follows:

og—28

Step 1:  Applying Proposition B.4.1 with h(s) = v/s and g(r) = 1 — 3¢5 r=2°=2%) we obtain

k

k l,(m 4+ dm ) 7} g—29 72(0’*25)*j "
’arf(rﬂ S‘ Z g(r)2 1 k n( 4t 5o
Lomy - tkemy =k, m; =0 i=1
o 3
< Z (t 22 T*Z(U*QKS))’"’“Jr =k (since 1 <g(r)<lforr>t 16)
1mi+-+k-mr=k,m; =0
< Tﬁk Z (t—%T)72(0726)(M1+-~-+mk)
1-mi+--+k-myp=k, m;=0

<srk (smce t7wr>1forr > t%)

In an analogous way we may derive the estimates
ak (L)’ < ,r—k? fOI' k =1.-.---.m. (323)
"N f(r)

Step 2:  Applying Proposition B.4.1 with h(s) = sin(cy s) and g(r) = r7 f(r)t' =% we derive
|<9,lf sin (cy‘“f(r)tl*%)’

S’ Z sin (CQTUf(T')t177 (o) H( %))mj‘

1mi+-+kmep=k, m;> j=1

Ea

< Z ﬁ(tlecl o— J+lfl)( ))
1-mi+--+kmr=k,m;=0 j=1
k
< Z H tl—z—a,,,a' j 7n] <t1_%’l“a k Z (tl—;—éro)ml-f-m-#—mk—l
1.mi+-+k-mp=k,m;=0 j=1 1my+-+kmy=k, m; >0
SHETE PR (L4 (o)) St SR (L S o) (3.24)

Hence, from (3.23) and (3.24) using the product rule for higher derivatives we may conclude

( (627"0]0( ) 25))‘ < tlfﬁrU*k(l +t1*%r0)k71 for k = 17 , M

f(r)
Summarizing, the proof of Lemma 3.1.5 is completed. O
Following the steps of the proof of Lemma 3.1.5 we may prove the following statement, too.

Lemma 3.1.6. The following estimates hold in R™ for anyn = 1:

_ {HQHED(%U? if t € (0,1],
"~

57 (7141 g]2 cos (calel F(1EDExs D)) ()], <4, e [Loo),
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1
f(lf\):wl—wﬂ,

B = 0 and c is a suitable positive constant. Moreover, c1 is a positive constant and co # 0 is a real
constant.

where

Remark 3.1.3. Here we want to underline that all the statements in Lemma 3.1.6 remain valid for
any 20 = —o.

Proof of Proposition 3.1.3. In order to prove the first statement, we replace 8 = ¢ and 8 = 0, respec-
tively, in Lemmas 3.1.5 and 3.1.6. Then, plugging # = 0 in Lemma 3.1.5 we may conclude the second
statement. Therefore, this completes our proof. O

Following the approach of the proof of Proposition 3.1.3 we may prove the following statements.

Proposition 3.1.4. The following estimates hold in R™ for any n > 1:

o BN E V=% e (0,1],
|57 (€1 Ko(t, )xa(1€D) (8, )] 1 < {e“ the El,oix

e _ -OHEDEG D=5 ifte (0,1],
3 (161K (8, )x (D) (1) 10 < {_ ifte[1,00),

where ¢ is a suitable positive constant and for any non-negative number a.

Proof. In order to obtain estimates for the following norms of Fourier multipliers localized to large
frequencies:

I8 (1€l Kot ©)xs(1€D) (&) amd |37 (161" K (1 )xs (1€D) (1 )] 1

we can re-write

1 1
K, —3le*° o 1 128 sin ([€]74/1 — Wﬂt)
|§|0.K0(t’§) = e 2‘5' t|§|a COS (|€| 1 - Wﬂt) + e 2‘5' t‘§|a+25 = 7
2|§|U 1- Wﬂ

and

n (\§|‘7 1- 4‘§|210745t)

si

— 1 25 a
€17 K (1, €) = e 21 g] -
|£|G 1_4|£‘2o—45

By choosing the values 25 = a + 2§ and 28 = a in Lemma 3.1.5 and 3.1.6, respectively, we may
prove the first statement. Moreover, replacing 26 = a in Lemma 3.1.5 we may conclude the second
statement. This completes our proof. O

Remark 3.1.4. Here we want to underline that the first statement in Proposition 3.1.4 remains valid
for any a = —26.
Estimates for middle frequencies

Now let us turn to consider some estimates for Fourier multipliers localized to middle frequencies,
1 1

where 377-2 < || < 3925, Our goal is to derive exponential decay estimates for suitable localized

Fourier multipliers.

Proposition 3.1.5. The following estimates hold in R™ for anyn > 1:

|57 (161 Ko ¢, €)x2(1€D) (£, - HLl~ 2
|57 (I K1 (¢, €)x2(1€D) (¢t -

|57 (161 Ko(t, €)x2 (1)

|57 (1] (1, €)x2(1€D) (¢, )| e <

where ¢ is a suitable positive constant and for any non-negative number a.

£ e <

)
)
)
)

)@, )
N =
) ()
) (&)
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Proof. At first, with 37 < €] < 377 we use Cauchy’s integral formula to re-write the above
Fourier multipliers in the following form:

P 25 et
Ro(t. e = 5 (| e g ) aleD. (3.25)
Rt vl = 5 (| o geas) e (3.26)

where I' is a closed curve containing the two characteristic roots A; 2. We can see that A\; = Ay when
€] = 27 7% and {§ eR™ : ¢ = 2_0—125} is not a singular set because we may give equivalent
formulas as follows:

¢ t
Ko(t, &) = et — )\ge’\Qtf eM=22)sgs and Ky(t,8) = eA"‘tJ eM—A2)s g,
0 0

Therefore, it is reasonable to assume A; # 2. Since 37 < €] < 30326, this curve additionally
is contained in {z € C : Rez < —c}, where c¢ is a positive constant. In order to verify (3.25), we

express
(Z—|— |§|25)eZt (Z + |€|26)€zt )\2 ezt /\1 ezt

= =— - .
22+|f|262+|§‘20 (Z_)\l)(z_)\Q) )\1—)\22—)\1 )\1_)\22_)\2

For this reason, applying Cauchy’s integral formula we obtain

L(L (z + [£]*°)e dz)xg(\ﬂ)

2mi 22 4 |€]202 + |€]20

Ao 1 et )\ 1 et
DYDY (%L Z— A\ ) 2(1€D) + W (mﬁ 7Z_A2d2)><2(|€|)
)\2 )\1

“ o n el T emxmsn ~ Ko(t.&)xa(lg)).

Here we split the curve I' into two closed sub-curves separately I';y and I's containing A; and As,
respectively. In the same way we may conclude the relation (3.26). Now, taking account of estimates

for I/(%(t,f) we get

Rt nxalleh) = | el Rt el
- Y| (e R Oalei

where we use the following formula:

By induction argument, carrying out m steps of partial integration we derive

5 (161" Kot €)xa(1¢) 2 |2|a|& Lo (el Kot O 1€) ),

for any non-negative integer m and C is a suitable constant. Hence, we arrive at the following
estimates:

(61 Kot xa(gD)| < 27|57 (22 (g Ko t. OxaI€D) )|
< lal ™02 (1€1" Ko(t, x2(1€D) [ 1 2l

since 3777 < €] < 35775 . This estimate immediately implies

|5 (1€l Kot €)x2(IED) (£ )] 12 < e,
|57 (1] Kot ©)x2(1€D) (£, )] . < 7.
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In an analogous way, we may also conclude
Hg_l (|£|aK1 (t7 E)X2(|£|)> (tv ')“Ll S e_Ctv
|3 (1€ Ka (e, xa(ED) (8 )] o < €7
Summarizing, the proof of Proposition 3.1.5 is completed. O

From the statements of Proposition 3.1.1, Proposition 3.1.3 and Proposition 3.1.5 we may conclude

the following L' estimates.

Proposition 3.1.6. The following estimates hold in R™:

I3~ (Ko (t,9)(t, HLl = {

(B 0) e ), < {

t—C+EDEG D fte (0, 1],

1 if t € [1,00),
H-0+EDGEG-D fte (0,1],
t if te[1,0).

Finally, from the statements of Proposition 3.1.2, Proposition 3.1.4 and Proposition 3.1.5, we may

conclude the following L' estimates.

Proposition 3.1.7. The following estimates hold in R™:

5 (Rt ) (1 )], < {

|37 (1€ KL (£.€)) (¢, )] . ~{

for any non-negative number a.

L* estimates

~EHENE D% fte (0,

icE) ifte[l, o0
H-OHEDG D=5 ifte (0,1
) ifte[l,o

-

Proposition 3.1.8. The following estimates hold in R™:

|5 (Koxa(1€)) -, -)

e

137 (Koxs(1€D) ¢, )] .

|5 (K (leh) (¢

|5 (Kixs(le) (¢

’.)HL‘I

- =

- 1 if t e (0,1],
2D if te[1,0),

<t forallte (0,00),

T ifte [1,00),

¢ ifte(0,1],
< {tl

<t'7%  for allt e (0,0).

Proof. First let us turn to estimate the above terms for small frequencies. For the sake of the asymp-
totic behavior of the characteristic roots, we re-write K 1(t €) for small || as follows:

Ky (t,6) = et

1 _ e(}\g—)q)t
A1 — A2

Hence, we arrive at |K(t,&)| < te 1" for small |¢] to derive

SR @Ol 5| [ <R onend]

1
e12(0—8) _ t
stf e KT e g)e| < {tl_
0

n
PICs

;5)

1
_ et f e~ O/ =A€7t g
0

ifte (0
ifte[l,00

71]a
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Moreover, for small [¢| we can see that Ko(t, &) = =\ K (£,€) +e*t. Since |K; (t,€)| < te~I€7 ™7,

we get for small frequencies the estimate
|R_\O(t7§)| s (1 n t‘€|2(o__6))e_|€‘2(075)t S 6_C‘5I2(075)t

for some positive constant c. Therefore, we conclude
5 (Bl i) (t.2)] < | j e Ro(t, ) (€]

1 .
< f e—c|§‘2<075)t‘£|n—1d|§‘ < {1_ . lf te (Ov 1];
0

t7 2= if t e [1,00).
Let us turn to consider the term I/(\o(t,f) for large |£|. Thanks to the asymptotic behavior of the

characteristic roots, we may estimate

_1el26
Ale Aot — peit €l7e” T e

I e D <=z
[Rot s (leh] = | =5 —3o—xalleh| s B s e
Hence, we obtain
o~ o0 25 n
51 (Kot )xa(1€D) (1, 2)| < f eI e dle) < 7% for all ¢ € (0, 00).
1

Eventually, in order to estimate the term |F~! (If(\l (t,&)xs(/€])) (¢, z)] for all t € (0,0), we recall for
large values of || the relation

—~ _ e(A2—A1)t 1
Ki(t,€) = 6’\“571 )\e 3 = te)‘ltJ e~ OAlERT=El gy
1= A2 0

As a result, we may conclude

SR D)o 5| [ <R onalende st | e grag < oo

Summarizing, Proposition 3.1.8 is proved. O
From Proposition 3.1.5 and Proposition 3.1.8 the following statement follows immediately.

Proposition 3.1.9. The following estimates hold in R™:

t_% fte 0a17
|57 (Ko, ) (¢, )] e {tu the E1 og)

=% ifte(0,1],
|5 (Kt €) (¢, ILoo~{t1—2<;_5> theE oi).

Finally, following the approach of the proof of Proposition 3.1.8 we may prove the following state-
ments.

Proposition 3.1.10. The following estimates hold in R™:

A,

e _ 1 if te(
I (IE1* Kot O)xa(1€D) (8, )] o < {tm ifte o),

0
1

171 (1€]° Ko (t, €)xs(IED) (¢, )] . S t7755  for all t € (0,),
(0,1]
[

156" (1. O (1€D) (1 )] < {t e Olc)

I3 (€1 K (8, ©)xa(1€D) (1) oo S #1775 for all t € (0,00),

e ftell

for any non-negative number a.
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Proposition 3.1.11. The following estimates hold in R™:

= ifte (0,1],
__nta

t72@=5  gfte[l,00),

if t € (0,1],
oo ifte[l,0),

|57 (1€ Ko (£, ) (¢, )] 1. N{

1—

(€ B £) 5, < {

t

for any non-negative number a.

L" estimates

By applying an interpolation theorem, from the statements of Propositions 3.1.6 and 3.1.9 we may
conclude the following L" estimates.

Proposition 3.1.12. The following estimates hold in R™:

e, < [ e
0 ) Lr ~

e () ifte[l,00),
P-O+EDEF-DE-50-2)  ir1e (0,1],
(ST [ORIFMES {tl_zw"@(l—r) ifte[1,00),

for allr e [1,].

From the statements of Propositions 3.1.7 and 3.1.11, by applying an interpolation theorem we may
conclude the following L" estimates.

Proposition 3.1.13. The following estimates hold in R™:

t— (2+[77]) 25 1)1 25(1_

Rl
T
|
=2
~
~
~
m
—
=)
—
—

5 (€ Rt O) (8., < {

s (1= Rt ce if te[l,00),
i OHED(G D -5 (=D =5  ifte (0,1],
I (el B (8, €) (t.)] . < {tl—w"_a)(l—r)—w ifte[l,00),

for allr € [1,0] and any non-negative number a.

Proof of Theorem 3.1.1. In order to obtain (L™ n L9) — L9 estimates, we estimate the L? norm of
the low-frequency part of solutions by the L™ norm of the data, whereas their high-frequency and
middle-frequency parts are estimated by using L? — L9 estimates. Thanks to Proposition 3.1.2 and

Proposition 3.1.10, we derive
<{1 ) o if t e (0,1],
Sy 1y

—1 a1
HS (|f| KO(tag)Xl(K'))(tv’)‘ " sy (1 1) — 207y ifte[l,oo),
|

|37 (€1 K1 (t.€)xa (I€D) (2, )]

. if t € (0,1
s n 1 a
Lr tlf 2(0_5)(1*7)72(0—5) ifte [1,00),

for all » € [1,0] and any non-negative number a. Applying Young’s convolution inequality from
Proposition B.1.1 we have

[ (&) e < 371 (K1t Oxa (1€D) ()]

LT

tvi|m if t € (0, 1],
UIHLm < — o (1-1) .
2e=9) " ”Ul ”L’” ifte [1’ OO)’

and

[ (&) ze < 57 (K1 (8 )x2(1€D) (&) | palva o < e onflza for all e (0,00,
= OrEDGEGE D oy L if e (0,1],

s (81 5 5~ (Kltomua))(t,ouyvms{e_d”m”m el
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where c is a suitable positive constant. Hence, we may conclude
=0+ EDEE D vy | pmapa if t e (0,1],
Jo(t, o < N
(1 + t) 2(e=9%) T H’Ul LmALa ifte [ ,OO)
Analogously, we have
[ID70x, ()] Lo < I8 H(1€17 K (8 O)xa (1€D) (&, )| o Jor | £
t HleLm lf te (07 1],
S 1— 52 (1—-1)— 52 .
t 2= TP T oy e if t € [1,00),
and
[1D170, (8, )] o < I8 €17 Kt O)x2(1€D) (8 )| i [onll o < e Jon]lza for all ¢ € (0, 00),
—~ t=CHEDGEE Doy a  if te (0,1]
D|%v S K t’ t7 . v ¢ < P B
[ID17vxs (&) 0 < 8 (€17 K, O)xs(1€D) @& ) oo e {eCtvqu if t € [1,0),
where c is a suitable positive constant. Therefore, we may conclude
. t—C+5D(55 -1 L4 if t e (0,1],
[1D170(t, )] 0 = 1 gt (1-1)— .
(]. + t) 2(c—9) T 2(0—-9) ||1]1||anqu ifte [1, OO)
Now let us turn to estimate the norm |v:(¢,-)|pe. We rewrite
KL (1,€) = Ko(t,€) + (M1 + M) Ku (1, €) = Ko(t,€) — [ Ka (1, ).
Applying again Young’s convolution inequality from Proposition B.1.1 we get
|0evx, (£, )| La = ||{S’ H(Ko(t, &) — |§|25K1(t7§))X1(|§|)171(§))(t7 N
HS (Kot ©)xa(1€D) (¢, )] . + HS’l(IEIQ‘SKl(t,E)Xl(Ifl))(t-)HLT)HleLm
1+t ||’U1||Lm ifte(O,l],
(e () 4 e D775 )y pm it e (1, 00),
s ] if e (0,1],
)
e D7 oy | if te [1,00),
and
10svx, (£, ) |Le S (HS (Kolt, )xa(lEN) (1) 1 + Hﬁfl(\€I25K1(t’£)X2(|€D)(t,')HLl)HleLq
<Se CtHU1 e for all t € (0,00),
ooyt Yoo < ( (Kol ()6 e + 18 (PR O gl les
DG 4 = HEDGEGE D) oy e if te (0,1],
“Hlem if ¢ € [1, ),
t=CHEDGEE Y oy e if te (0,1],
B_CtH’UlHLq ifte [1, OO),
where c is a suitable positive constant. Therefore, we imply
t=C+EDGEG =D vy | pm oL if t € (0,1],
H'Ut( )HL" S 1— o (1-1)— 2
(1+t) 2(e—9) L 6”’[)1|LmﬁLq ifte [ ,OO).

Summarizing, the proof of Theorem 3.1.1 is completed.
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L™ — L7 estimates

From the proof of Theorem 3.1.1 and the statements of Proposition 3.1.13 we have the following
corollary.

Corollary 3.1.1. Let 6 € (0,%) in (3.3), q € [1,00] and m € [1,q]. Then, the energy solutions to

(8.3) satisfy the L™ — L7 estimates

=D (S - DE- 5
[ot Mee S § 1) n o2

L ifte (0,1],

72 )y [ ifte[1,00),
i BN D =350 =55 |y | pm  if t € (0,1],
|ID|7v(t, )] ., < {tl_Z(Una)(l—i)—z(gaa) . ifte[1,00),
= @HED G D=5 =D oy | pm  if t € (0,1],
lve (e < {tl_mu—i)—ﬂisvlm iftel,m),

and the energy solutions to (3.2) satisfy the L™ — L7 estimates

u(t, e < 4 C DT EVE DT EC Do it (5,5 4 1],
ul\t, - q .
MR =) e D) fuy | m iftels+1,0),
DI u(e, ], < { T E D E O e e (541
» "I e ( 8)1 P 5)(1 - o =5) HUI‘L’" ifte[s—i—l,oo),
gt e < 40 @D D350 D |uy | pm  if t € (5,5 + 1],
’ (t — 5)' " Tm D D77 g | o iftels+1,0),

% and for all dimensions n = 1.

1_ 1
wherel+5—;+

3.2. A second Cauchy problem for linear structurally damped
o-evolution models

Let us turn to the following Cauchy problem:
ug + (—A)7u + p(—A)°u; =0, w(0,z) = up(z), u(0,2) =0, (3.27)

where 0 > 1, u > 0 and 6 € (0, §).

L™~ L?7— L% and L? — L7 estimates

In this section, we are going to prove the following result.

Theorem 3.2.1. Let § € (07 %) in (3.27), g € (1,0) and m € [1,q). Then, the energy solutions to

(8.27) satisfy the (L™ n L) — L9 estimates

Hu(t )”L 3 {t(2+[g])(;1 Huo L™m™nLe Z'ft € (07 1]7

(148D g pmpra  if t € [1,00),

H|D|U H < t_(2+[%])(%_1)HUOHmeHg ift e (0,1],
N ~ _ n _1N_ [ed
La (1+1) o= (1= %)~ 305 “UOHLman ifte[l,0),

U0 PR L e e,
Sl A+ )T fugpm gy if e [1,00),
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and the LY — L9 estimates

HU< )H < t_(2+[%])(%_1)”u0HLq th € (Oa 1]7
LT < .
ol La iftell ),

IDPutt, ], < 45T E ol te (0,1],
IV )T gy it [1,o0),
ug(t e < 1TV E Doy if e (0.1],
Sl S ulmy  ifte[Loo),

where 1 + é = % + = and for all dimensions n = 1.

1
Proof. Applying the partial Fourier transformation to (3.27) we obtain the Cauchy problem for
a(t, &) := F(u(t,z)) and u(€) := F(uo(z)) as follows:

Ty + pl€*T + €770 =0, @(0,6) =uo(€), (0,6 =0. (3.28)

We may choose without loss of generality = 1 in (3.27). The characteristic roots are

Mz = Mal@) = 5 (- 1670 £ el — gfer).

The solutions to (3.28) are given by the following formula (here we assume A; # Ag):

)\16)\2t _ )\26)\1t

() = Ko(t. o).

u(t, §) =
Taking account of the cases of small and large frequencies separately we have
LA~ |60 Do~ —[€2, Ay = Ao~ [€[¥ for small [¢] € (0,477,
2. A2~ —[¢2 £il€]7, A — Ax ~ilé]7 for large || € (4777 | o0).

As in Section 3.1, we now decompose the solution to (3.27) into three parts localized separately to
low, middle and high frequencies, that is,

U(t, 93) = Uy, (ta ‘T) + Uy, (tv ‘T) t Uy, (ta :ZJ),

where
Uy, () = F (e (|€DAt,€)  with k=1,2,3.

In order to obtain (L™ n L?) — L? estimates, we estimate the L9 norm of the low-frequency part of
solutions by the L™ norm of the data, whereas their high-frequency and middle-frequency parts are
estimated by using L? — L? estimates. Thanks to Proposition 3.1.2 and Proposition 3.1.10, we derive

137 (1" Ko(t, €)xa (1) (£, )

)

1 if t € (0,1]
S n 1 a
L e (-9 ifte [1,00)
]

132 (1€1°Kr (8, €)xa (1€D) (2, -)

: ifte (0,1
< R e
Lr tlf o =5) (1*7)72(075) ifte []-7 OO)’

for all » € [1,00] and any non-negative number a. Applying Young’s convolution inequality from
Proposition B.1.1 we have

e (8. ) 20 € |87 (Kot xa (1€D) (1,-)]

H H’LLO Lm ifte (O, 1],
U 1
S N

Lm  ifte[1,00),

and

e (£ ) ze < [§7 (Kot )x2(I€D) ()] 2 ol e < €™ ug]lze  for all e (0,0),
t=CHEDEG ) ||| e if £ € (0,1],
e~ |uol| pa if t € [1,00),

s (8, ) [0 < |37 (Kot ©)xa(1€D) (& )] ol e < {
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where c is a suitable positive constant. Hence, we may conclude
u(t, e < 7TV E Dhug e it (0,1],
ul\t, - AN n
Pl a4 0@ D gl pmare ifte [1,00).
In an analogous way we derive
|ID]7uy, (t, )] 0 S |5 (\5|0K0(t Oxa(1€N) &, )| . luollLm
_ [ ol if e (0,11,
~ _ n 1_;)_ fed .
T D g i e [L,00),
and
[ID17ux, (8, )| o < HS*I(KI” o(t, O)x2(1€))) (&, )| 1 ol e < €™ Juols  for all ¢ € (0,00),
(D17t (8, ) 0 37 (ot x(1€D) ()] |8 (11 E()]
ol ””"M%*”||uonm ifte (0.1],
= e tluollz, if £ [1, ),
q
_ t7(2+[%])(2%71)”UOHHg if t € (0,1],
~ e_CtHUOHHg ifte [ , ),
where c is a suitable positive constant. Hence, we may conclude
pPutt ), < 40 A sl if £ € (0,1]
ult, - q ~ — .
L (1+t) 25 D75 ug | pm sy i E e [1,00).
Finally, let us turn to estimate the norm |u;(¢,-)|p«. We rewrite
0o (t,€) = —Nde kK (,€) = — |67 K (2, ).
Applying again Young’s convolution inequality from Proposition B.1.1 we get
[Ovu, (8, ) ze = [F7 (1127 Kt O)xa (1€D)a0(€)) (¢, ) o < [ (1P B (5 Oxa (1€D) (&) o ol e
tuo|Lm if t € (0,1],
S D g e if te [1, ),
tHUOHLm ifte (0,1],
pS —e B (1-1) 4 .
t 2= T T S |y pm  if € [1, 00),
and
[0ty (&, )|za < |§ (16127 K1 (8, E)x2(I€D) (¢, )| 11 wollLe S e ugllLa  for all £ € (0, 00),
Bt (8, Yo < [F (€17 KL (L )X (1€D) () 2 |57 (1€17T(6))] .
t=CHEDE D g 5, if e (0,1],
< q
T e uollga if ¢ € [1,0),
_ [ & D gy i te 0,1],
G_CtH’U,oHHg ifte [ s ),
where c is a suitable positive constant. Therefore, we may conclude
t—@+HIED(55 -1 HuO”meHcr if t € (0, 1],
Juat, ) 2o S o .
(1+t) 2(" ) 7 EHUQHLmﬁHG ifte [1700)
Summarizing, the proof of Theorem 3.2.1 is completed. O
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L™ — L7 estimates

From the proof of Theorem 3.2.1 and the statements of Proposition 3.1.13 we have the following
corollary.

Corollary 3.2.1. Let § € (0,%) in (3.27), q € [1,0] and m € [1,q]. Then, the energy solutions to
(8.27) satisfy the L™ — L9 estimates

1

e, < {E VS DO D g it (0,1),
ul, - ~ n _1
" 00 g ifte1,%),

t_ 2(c—9)

n

t=CHEDEG D=5 =05 |y pm  if t € (0,1],

2 1707 g if te[1,0),

D, < {

o 1

PO BN S D F =5 0-DF |yolpm  ifte (0,1],
1

Jue(t;)ze < { =

T 1775 g om ifte

, 0),

where 1 + % = % + = and for all dimensions n = 1.

3.3. A third Cauchy problem for linear structurally damped
o-evolution models

In this section, let us consider the Cauchy problem for structurally damped o-evolution models in the
form

Ut + (_A)Uu + ILL(_A)éut = 07 u(O,m) = UO(J?), ut(07m) = Ul(-’E), (329)
with 0 > 1, p>0and ¢ € (0, §).
We may summarize the results from Sections 3.1 and 3.2 as follows:
L™ nL?— L% and L? — L7 estimates

Theorem 3.3.1. Let § € (0, %) in (3.29), g € (1,0) and m € [1,q). Then, the energy solutions to
(3.29) satisfy the (L™ n L) — L9 estimates

t=CHEDE =D g | pm o + 17 OHEDEG Dy g ape  if t e (0,1],

— n 1
[, )pe < < (1 +4)77=5 " ug| e o
n 1
+(1+ 1) 72 ) g || s ifte 1, ),
t—(2+[%1)(%—1>(Huo\lemH;; + Jut]Lmare) ift € (0,1],
—_n __(1-1y___o _
H|D|"u(t, ')HLq << (1+1) o= 1= 5) 3= HUJO”LmﬁH;’
n 1 el
+(1 4+ ) 7T T e i te [1,00),
t_(2+[%])(%—1)(HuOHLmﬁHg + Hulanqu) th € (07 1],
_ n _1y__95
Jug(t, Y zo < 4 (1 + 677D D77 ug | gy

n

+(1 +t)liz(c’*‘s)(17%)7%““1‘|me[1’1 thE [1700)7

and the L1 — L9 estimates

(e, Y < JE CTEVE D ol + S Dy te (0,1],
u\t,y )L = .
Juollza + (14 )fua | o if te L),
t=CHEDGEY (ug| gy + [ur] £a) ifte(0,1],

(0
DI|%u(t, - < . . :
IIDr7 et ). {<1+t> T fuolgg + (1+0) T e if b€ [1,00),
t—(2+[%])(%—1)(||u0”Hg + ||U1HL<1) if t e (0,1],
L+ )77 uolmy + (1 +6)' 777 ur|za it e[1,00),

Jus(t, ) za = {

where 1 + % = % + = and for all dimensions n = 1.

1
m
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We may prove similar estimates to those in Theorem 3.3.1. Namely for any a > 0, we have the
following further results.

Theorem 3.3.2. Let § € (O7 %) in (3.29), q € (1,00) and m € [1,q). Then, the Sobolev solutions to

(3.29) satisfy the (L™ n L) — L7 estimates

- CHEDE D g g
1-(1+[3D(55-D— ‘
[ID1ut, )], < Hii( j_ il gt fte(0.1],
La (1+t) 2(c—0) I3 2(a—5) HUOHLNLﬁHg
n 1 a
+(1 + t)1*2(cr—6) (1*?)72(0—5) ”'Ll,lHmeH[a,a]Jr th € [1, OO),
@R (51 (HuoHmeHw +|wifzmama) i te(0,1],

[IDI e (t, )], < 3 @+ 8) 7o (- Rt HUOHLMmH“*"

+(1 +t)' 2 7 (-3t lur|Lmams  if te[l,00),

and the L1 — L9 estimates

f(2+[%])(%*1>“u0||Hg + 1O+ ED G D =55 ||y | jiaors ifte(0,1],

D au t : S _ a — a .
DIt e =3 (1 4ty = g g + (1 4+ 07 ] oo el o)
q
|ID|*ue(t, )| £~ @HEDG D (Jlug | oo + a7 q) ifte(0,1],
Ut
Le (1+1t)” o8 [uwoll Fra+e.a + (1 +t) b= \|u1|\Ha if t € [1,00),

or any a = 0, where 1 + === + L and all dimensions n > 1.
f Yy m

Proof. In order to estimate some partial derivatives of solutions, we use a suitable regularity of the
data ug and u; depending on the order of a. Then, repeating an analogous treatment as we did in
the proofs of Theorems 3.1.1 and 3.2.1 we may conclude all the desired estimates. O

For space dimensions n > 2§ we obtain the following better estimates for solutions to (3.29).

Theorem 3.3.3. Let § € (07 %) in (3.29), g € (1,0) and m € [1,q). Then, the energy solutions to

(8.29) satisfy the (L™ n L) — L9 estimates

= +[ED(55-1) HUOHmeLq + ' OHBEDGE =D uy | pmare if t € (0,1],

lut, )Le 4 (1 +8) == qu
n+2(c—23) '
(1+t) B TCr G HulHmeLq ifte[1,00),
t— (2”%])(%’1)(\\“0\ LmaHy + | meLq) ifte(0,1],
_ n__ 1y o
H|D|Gu(t")HLq << (1+t) 20 5 (1=3)—25=5 HUO|L7"mHg
n+2(c—23) -
(14 )= DT Juy e i e [1,00),
t7(2+[ﬂ])(205 (HuOHmeHU —+ Hulanr\LQ) th c (0, 1]’
n+2(0—28) (1
et )za < 3 (14 8)7 5 D755 fug| g

n+2(s-25) (1

FA 4+ ) T |y

LmaLe  if t€[l,00),
and the LY — L1 estimates
(e, Yo < | T CTEVE D ol + £ EE D te (0,1],
T uollze + (1 + )] e ifte[l,0),
- t=CHEDGE D (g g + [Jua L) if t € (0,1],
H|D| U(t,)” q S — - 1— < -
L (1 +1)" 29 Juo|ag + (1 +1) 2 [ur|la  if te[l,00),
[t e < t*(2+[%])(6%71)(“u0”1{g + ||u1|\Lq6) ift e (0,1],
T+ )77 Juolmg + (L+ )7 ua[pe if t e [1,00),

where 1 + % = % + = and the constraint condition to the space dimension n > 24.

1
m
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Proof. For space dimensions n > 2§ we may improve the estimate for the norm

137 (K1t ) xa(1€D) ()] 0

in Proposition 3.1.8 to obtain a better estimate. Namely, because of the asymptotic behavior of the
characteristic roots, we obtain for small frequencies the following estimate:

e €TVt 4 gt

1§12

_o5 _|¢|2(e=5)
< ¢ 26—l t

Hence, we derive

s RO 5| [ <R onlehde

n+2(oc—28)

1
< f L e P O e )
0

for t large and under the restriction to the dimension n > 24. For this reason, it follows for any a > 0
the estimate

. ' t if t € (0,1],
”S (|£‘ Kl(t7£)xl(‘€|))(t7 )HLeo < {tl_n+22((2266))+a ifte [17OO>

Using again Proposition 3.1.2 and the remaining estimates in Proposition 3.1.8 we get

- _ 1 if ¢t € (0,1]
1 a B} )
|57 (Il Kot ©)xa (1€D) (¢, )] - = {t2(an5)(171~)2(oa6) if t € [1,00),
_ t if t € (0,1]
€1 K (¢ t,- < nt2(o—2 . . T
CCE T DTS W

for all r € [1,00] and any non-negative number a. Then, repeating an analogous approach to prove
the statements of Theorems 3.1.1 and 3.2.1 we may conclude all the desired estimates. O

L™ — L7 estimates

Corollary 3.3.1. Let § € (0,%) in (5.29), q € [1,0] and m € [1,q]. Then, the energy solutions to

(8.29) satisfy the L™ — L9 estimates

(- CHED(H-DE-$0-1)

)73 ‘UO|L71L
ot e 5 +t1( (H)[%])(%f Vi35 |luy | pm  if t € (0,1],
2@ ug [ pm
+' 77T ) fuy | ifte[1,),
t=CHBD(GH D5 -350-1) f%\|u0|
IDFut . < ne (H[%D(ﬁ V=30 F5|uy |  ifte (0,1],
VlLe 2 s ) -y | wol| £,m
+#!7 77 (170 73 |y | o if te1,0),
POHED (=D 35055 0| 1m
4t~ CHEDGE D350 D) |y 1w ift e (0,1],
lue(t, )] La < 2@ 1975 |y |
e D=7 |y [ ifte[1,0),

\

where 1 + % = % + = and for all dimensions n = 1.

1
m



3.4. Linear o-evolution models with friction or external damping 47

3.4. Linear o-evolution models with friction or external damping

The main purpose of this section is to study the o-evolution models with friction or external damping
in the following form:

ue + (=8)7u+u =0, u(0,2) =uo(x), u(0,2) = ur(x) (3.30)

with o > 1. Our goal is to obtain LY — L7 estimates for solutions to (3.30) assuming additional L™
regularity for the data with m € [1,q), where ¢ € (1,00) is given.

Using partial Fourier transformation to (3.30) we obtain the Cauchy problem for u(t, ) := F(u(t, x)),
1 (€) := F(up(z)) and @1 (£) := F(u1(z)) as follows:

Uy + U+ €70 =0, @(0,6) =up(€), w(0,€) =ui(6). (3.31)

The characteristic roots are
1
A2 = M) = 5( —1++/1- 4|€|2”)~

The solutions to (3.31) are presented by the following formula (here we assume A; # A):

)\16)\2t _ )\26>\1t 6/\1t _ e)\zt

it €) = S (o) + @1(¢) = Ro(t.a0(©) + Fa (9T (©)

Taking account of the cases of small and large frequencies separately we have

L Xip=M2(6) = 5(—1£4/1-4[¢f)
and \; ~_|§‘207 )\2"_17 A=A ~1 for |§|E(074_é)7

2. A2 = M2(8) = 5(— 1 iAo —1)

and Ao ~ —1+il€]7, A — Ao ~il€]7  for |¢] € (47, 0).
Let xx = xx(|€]) with & = 1,2,3 be smooth cut-off functions having the following properties:
)1 if [¢] <4 )1 if [¢]
) = {0 hisgs - {0 e
and x2([¢]) =1 = x1([€]) — xs(I€])-
1

We note that y2(|¢]) = 1if 377 < |€] < 37 and x2(|€]) = 0 if [¢] < 477 or || > 47. Let us
now decompose the solutions to (3.30) into three parts localized separately to low, middle and high
frequencies, that is,

al= al=

u(t, ) = Uy, (1, 2) + Uy, (8, @) + uy, (8, ),
where
uy, () = §7 (xe(lgDat, €)) - with k=1,2,3.
L™ — L9 estimates for small frequencies

Following the approach of the proof of Proposition 3.1.2 we obtain the following L' estimates for small
frequencies.

Proposition 3.4.1. The estimates

1 ifte(0,1],

37 (161" Ko, xa (1€D) (1) v < {t if te[l,00),
t if t e (0,1],

|57 (gl Ka(t, ©)xa (1ED) (t )] 1 < {tl—sz ifte 1)

hold for any non-negative number a.

Following the approach of the proof of Proposition 3.1.10 we obtain the following L* estimates for
small frequencies.
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Proposition 3.4.2. The following estimates hold in R™:

20 if te[1,00),

t ifte(0,1],
if t € [1,00),

Hg_l(\§|al/(\0(t,5)x1(|f|))(t, ')HLoo < {1n+a if t € (0,1],

|71 (1€ K (£, ©)xa (1ED) (¢, )] .o < {

for any non-negative number a.

By interpolation theorem, from the statements of Propositions 3.4.1 and 3.4.2 we may conclude the
following L™ estimates for small frequencies.

Proposition 3.4.3. The following estimates hold in R™:
15 (gl Kot )xa(1ED) (¢ )] 5 (14 1) 757170735,

Lr~

|37 (161K (8, xa (D) (1) . < (14 )12 0=z,

for all r € [1,0] and any non-negative number a.

Finally, we can conclude the following result.

Theorem 3.4.1. Let ¢ € [1,0] and m € [1,q]. Then, the Sobolev solutions to (3.30) satisfy the
L™ — L1 estimates

[1D1"uy, (¢
| 0e1 DIy, (¢

_n(1_1y__a ,L _1y__a
e S A+8)7F0TD7F Jug | pm + (14 )12 07075 fuy | pm,

e £ Q4O FOD " g + (14 0D
11 1
wherel—l—E:;—l—E and for all a = 0

Proof. In order to prove the first statement, we apply Young’s convolution inequality from Proposition
B.1.1 as we did in the proofs of Theorems 3.1.1 and 3.2.1 and use the statements in Proposition 3.4.3.
Taking account of some estimates related to derivative in time we note that

0 Ko(t,€) = =€ Ky (,€)  and 0, Ky (t,€) = Ko(t, &) — Ky (t,£).

Then, applying again Young’s convolution inequality from Proposition B.1.1 and Proposition 3.4.3,
we may conclude the second statement. Hence, the proof of Theorem 3.4.1 is completed. O

L% — L7 estimates for large frequencies

First we recall that the characteristic roots are

1

>\1,2 = )\1,2(5) = 5(* 144 4|§|20 - 1)

for large |£|. We re-write I/{\O(t,f) and I/(\l(t,g) as follows:

- . 1 _,sin (1/1€]27 — 11)
Ko(t,&) =e 2008( |§|2‘7—Zt>+e 2 ,
V 2/ - 1
Raitg = s WIS 40
1% =ec 2
N

Kt z) :=F e ~3 cos (\/WTt Uo )xs(I€]) )(t z

Ky(tr) = 5 (e ;o (\F xa(1€)) (¢ 2),
2,/|¢[2r — &

K (r0) = 5 (63 (W xalleh) (t.2)

and

Now we denote




3.4. Linear o-evolution models with friction or external damping 49

We shall prove the following results.
Proposition 3.4.4. The following estimates hold in R™:
HaJ|D|a cos t,

HLQ ~ _CtHUOHH;"‘*'J"’Ho;

Hag|D|aK5m 2% HLq = ’Ct||uo|\H(Ea+(j,1>a+50]+7

|6]| DI K5 (8, ), < e ol yras-vorsort

foranyt >0, a >0, integer j = 0 and a suitable positive constant c. Here we denote sy := na|f -z

According to view of the Mikhlin- Hérmander multiplier theorem in [9] and [49] and its applications
of the Fourier multipliers, in order to Theorem 3.4.2, we need to show the following auxiliary estimates.

Lemma 3.4.1. The following estimates hold in R™ for large |€|:

|621¢1*| < €271 for all a, (3.32)
02 1¢*7] < 1€ 71! for all @ and p € R, (3.33)

o2 (/Iepe — )| < Il for aita, (3.34)
oz (vl - Z)p’ < I€P71 for all & and p € R, (3.35)
g cos (« [|€]20 — it)‘ < (t+ dehyjgete=lol for all @ and t > 0, (3.36)
¢ sin (q [1€]2e — it)‘ < (t+ t|“|)|§|”‘“‘_‘“‘ for all a and t > 0, (3.37)

1\J 1 .
N A e S

for all a, for any j =0 and t > 0,

@?((\/E)Hsm (\/mtm < (1 +tlo)|g|U=Netelal=lel, (3.39)

for all a, for any j =0 and t > 0,

o¢ (Iel" (vl - i)] cos (/I — it))‘ < (1 + tlol)|g[priotolal=lal (3.40)

for all a, for anybeR, 5 =0 andt > 0,

oz (Iel* (vl - i)j_l sin (4/l¢f2” %t))’ < (14 tlol)|gprt=Deotolal=lal (3 47)

for all a, for anybeR, 5 =0 andt > 0.

Proof. In order to prove all statements in Lemma 3.4.1, we shall apply Lemma B.6.2 and Leibniz rule
for multivariable calculus. Indeed, we will indicate the proof of the above estimates as follows:

0 (3.32):  Applying Lemma B.6.2 with h(s) = s° and f(&) = |£|? we derive

|

ol = | 31 (eF )( > L (1g?) - a2+ (1))

Y1t FYeSa
Ivil+-+lvel=lal, vi[=1

Z |2k ( 3 |5|27|vl|+---+27m\)

Y1+ <a
Pyl lwel=lal, [vi[>1

]

< 2 ‘€|2(a—k)+2k—|a| < |§‘20—|a|.
k=1
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Lol

)

0 (3.33):  Applying Lemma B.6.2 with h(s) = sP and f(£) = |£|*? we have

||

ol | = | 2 h el ( > oL (1€P) -+ o (Ig*) )|

Y1t FVESo
[val+-+lvel=lal, [vi]=1

||

S 2 |£|2<7(p—k)< 2 |§‘20—|’Y1|+~»+20—|’Yk|>
k=1

Y1t FYVESo
[vil+-+vel=lal, [vil=1

||

< Z |§|20(p—k)+20k—\a\ < |§|2p0’—|o¢|.

o0 (3.34):  Applying Lemma B.6.2 with h(s) = s2 and f(¢) = |¢[>” — 1 we have

1+ Fesa
Pyalte+lvel=lal, [yl =1

|l

Z (|§|2a B 7)%%( Z |€|2o_\71‘+..‘+20_m‘)

= Vit FYeSo
Pyl tlvel=lal, vl >1

||
< 20_1 3k 20k—|a| < |¢|o—]a
< 3 (I = 2" ettt < pgpeiel.
k=1

E

To (3.35):  Applying Lemma B.6.2 with h(s) = s? and f(£) = 4/[€|>” — 1 we have

e

Sl D0 N @)

<o
\"/1\+ +|7k| lef, [vi|=1

o SR P a—

k=1 Y1+t <a
[yil+-+lvel=lel, |y [=1

la| —k
< 3 (e = ) e el
k=1

To (3.36):  Applying Lemma B.6.2 with h(s) = cos(st) and f(§) = 4/|£]?° — 5 we have

¢ cos (4 /€% — %t)’

(S D B @l Deae D)

Y +YEsSo
[val++lvel=lal, i =1

la|
(k) s L o=yt |+ o— il
St (1) 5 )

Y1+ <a
Pyl vl =lal, [vi[>1

o]

< Z tk|£|0k—|a| < (t + t|0¢\)|£|0\0¢\—\a\.

k=1

To (3.37):  In the same argument as we did in (3.36), we can conclude (3.37).

w(fer-Dl-|S (e - D0 T (e ) (er -
k=1

> 2
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To
To
To
To

3.38):

)
3.39):
)
)

Combining (3.35), (3.36) we can conclude (3.38) by using the Leibniz rule.
Combining (3.35),
3.40):  Combining (3.33),

3.41):

we can conclude (3.40) by using the Leibniz rule.

( )
( 3.37) we can conclude
( )
( )

( (3.38)

( (3.39) by using the Leibniz rule.

(3.38 (3.40)

Combining (3.33), (3.39) we can conclude (3.41) by using the Leibniz rule. O

Proof of Proposition 3.4.4. Firstly, taking account of estimates for K§°*(t, ) and some of its partial
derivatives we write

i ¢ . 1\J 1 . _
A DI Ko (1) = 57 (e Hel 70 (167 = 1) cos (/16127 = ) xa(EDIEI 0 T5(6) ) (1, ).

By choosing b = —jo — s in (3.40), we get

et (e =)' o (- 3)
< e (14t gm0 (lejet) I g emetjg mnali =il (fgge -ty T

where c is a suitable positive constant. By Proposition B.5.1, we may arrive at

(o),

< € o] garietso < € uoll yarirtoo-

[0/1D1 K5 (8, )| o < |3

Now in order to estimate K§™ and some of its partial derivatives, we will divide our considerations
into two cases. In the first case, if a + (j — 1)o + s¢ = 0, then we write

o IDI K (1, )

— g (g (M)“ sin (Mzﬁ)mam“ 10T (€)) (¢ ).

By choosing b = —(j — 1)o — sp in (3.41), we get

el (e - ) - 50)
S e L (S e I (S I

where c is a suitable positive constant. By Proposition B.5.1, we may conclude

(),

< €7Ct”U0HH;+(J’—1)<’+So <e CtHuOHH;‘*'(j_l)"*'SO'

”aJ‘DlaKsm 7')HL4 < e—ct

In the second case, if a + (j — 1)o + s¢ < 0, then we write

DKy tx) =5 (el (yle — 1) sin (i - 2 xa(e @) ().

By choosing b = a in (3.41), we get

a2 (jer (\/m)j_l sin (\/mt)) |
< —5(1+t\a\)|§‘a+(j—1)o(|§|0—1) ol < emetig “o(l¢l7 1)
< e=etfg| i3 (jg7=1) 71,

where c is a suitable positive constant. By Proposition B.5.1, we may arrive at

|67 1DI* K™ (8, )] o < € ol a-
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Therefore, we have shown the estimates

||67|D|aKém HLq ~ _Ct”UOHH{ga+(.1—1)a+so]+'

In the analogous argument, we may also conclude the following estimates

Jo1DI B (8, Y < € ol s s

Summarizing, the proof to Proposition 3.4.4 is completed. O

From the statements in Proposition 3.4.4 we obtain immediately the following result.

Theorem 3.4.2. Let g € (1,00). Then, the Sobolev solutions to (3.30) satisfy the LY — L1 estimates
H87|D|auX3 HLq <e ™ (HUOHH;“”“O + HulHngaﬂj—l)Hso]*)v
where sg = n0|7 — 7| foranyt >0, a >0, integer j = 0 and a suitable positive constant c.

L% — L7 estimates for middle frequencies

Now let us turn to consider some estimates for middle frequencies, where 377 < |€] < 3. Our goal
is to derive the exponential decay for solutions and some of their derivatives to (3.30).

q

Theorem 3.4.3. Let g € [1,0]. Then, the Sobolev solutions to (3.30) satisfy the LY — L7 estimates
|07 1Dty (t, )] 1o S €7 (w0, ua) [
foranyt >0, a >0, integer j = 0 and a suitable positive constant c.

Proof. Indeed, following the proof of Proposition 3.1.5 we may arrive at the exponential decay for the
following estimates:

|37 (1€]207 Ko (t, €)x2 (1)) (¢, ) ;2 < e,
|5~ (el 9§K1(t,£)><2(|£|)) £, s et

Therefore, applying Young’s convolution inequality from Proposition B.1.1 we get

10711 %y (8, )] 1o < |81 (1€1°0] Ko (t, )x2(1€D) (E, )] . Jwoll o
+ 3120 K (2, €)x(1€1)) (£ )| e | s
< e (uo, u1)| -

Summarizing, the proof to Theorem 3.4.3 is completed. O

Finally, from the statements in Theorems 3.4.1, 3.4.2 and 3.4.3 we conclude the following result.

Theorem 3.4.4. Let g € (1,00) and m € [1,q). Then, the Sobolev solutions to (3.50) satisfy the
(L™ n L?) — L7 estimates

_1y_ a _n(1—1y_ a
H|D|a HL« < (1+t) ge(1=%)— 3% Hu0‘|LMmH;U+“ +(1+t)1 76 (1=3)— 3¢ HUIHmeH,ESD*'“_”ﬁ’

_1y_ a _n(1—_1y_ a
H‘D‘aut HLq < (1 + t) e (1=3%)— 25 HUO‘|anH;0+"+“ + (1 + t)l 76 (1=3)— 35 Hul HmeH;U'HI’
and the LY — L9 estimates

[1DI*u(t, )|, < (1 +18)" % HUOHH;M-G +(L+t) 72 H“lHHgswa—«f]“

[1D1w(t, ) 0 S (14 8) 73 o oo + (14675 ] oo e,

L and s —nalf—f
m

1
for any a =0, wherel—kf:;—k
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3.5. Comparison with known results

In this section, we explain some comparisons between the above obtained estimates and known results.

3.5.1. The case § € (0, %)

First if we are interested in studying the special case of o = 1 and & € (0, 1), in the paper [57] the
authors obtained L' estimates for oscillating integrals to conclude L™ — L9 estimates not necessarily
on the conjugate line for solution as follows:

= (3D (s -D7-350 )HUOHLertl[ s —D7=350-Duy|pm  if t e (0,1],
( ')HL‘? ~ 1y

£ 0D g | + 17 Dy

Lm if t € [1, 0),

where 1l <m<q¢g<oand 1+ % = % + % Here the authors took into considerations the connection
to Fourier multipliers appearing for wave models. The decay rates for solutions produced from the
results of [57] are somehow better than those in Corollary 3.3.1 with o = 1 and § € (0, 3). However,
these decay rates are almost the same if we consider the case of sufficiently large space dimensions n.

In the paper [11], the authors investigated L' n L? — L? estimates for solutions and some of their

derivatives as well in the case 6 € (0, $) with additional L' regularity for the data as follows:
Jult, )z < (L4 07T Jug|imre + (14 )77 lug | piq e,
_ n+20 _ n+20
||D[7u(t, N s A+ 3@ ugl prape + (1 + )11 g e,
_ _n44s  n+4s
lue(t, Mz < (L4+ 0735 uol e + (1485 fur 1Lz,

for all space dimensions n. Moreover, in [11] there are other sharper results under a restriction to the
space dimension. Namely, if n > 46, then the following L' n L? — L? estimates hold:

_ n _ n—44% .
lut, ez < (L+8)" T Juglprarz + (1 +1) 79 |ug|pinzz i 0> 49,
(L+1)" 5= lug| 1 Ar2 + log(e + ) [uill L1 AL if n = 44,

n el n o—4§
D17 u(t, ) 1 S (1 + 6T fug| i mme + (14 8)7 9 |uy|pange  ifn > 45,
n n—448
lue(t, )z < (1 +1)" 7@ Yugllpiamge + (14 8)7 300 Yug|piqpe  if n > 46.

We see that these results coincide with those in Theorem 3.3.1 if we only consider large ¢ under
the choice of parameters m = 1 and ¢ = 2 for all space dimensions n. Nevertheless, the authors
considered L' n L? — L? estimates by using Parseval’s formula. For this reason, some results in the
paper [11] with a restriction to the space dimensions n > 4§ are obviously somehow better than those
in Theorem 3.3.3 under the assumption of space dimensions n > 2.

Finally, we want to mention the paper [9] to emphasize some of recent estimates for solutions to
structurally damped o-evolution equations as follows:

51Dl s (8, )], < (1 + &)~ 7 (G =0a) =R

HLq ~

41+ )T (D) gy (3.42)

for any qo, q1 = 1, q € [max{qo, q1}, 0], a = 0, k € N provided that q% - é + “7726 > 0, and

Haf|D|au><3(t")HLq < 7ctt—n9((10,q)” 28 %(n(%—%)-‘r(lA-ko) HUO”L‘IO

+eiCtt_"a(q“q)05625_716( (r—3)tat(k— 1)‘7) |wt ] par (3.43)

for 1 < ¢; < g <o, j=0,1 with some positive constant ¢, where

1_ 1
5—6 lf2<q7

0(gj.q) =10 if ¢; < 2
%—% 1fq<2.
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By choosing the values g9 = g1 = m in (3.42) and g9 = ¢1 = ¢ in (3.43), respectively, we may
conclude the following estimates:

n

_ 1y, s
Lo+ (L+ ) 7@ 1m0+ |y |

(1-

_ n 1
Jty (8, ) Lo < (1 +8) 770 070 g

rm 9

p ,L(l,%),# _ n (17%)7 o—26
H|D| “x1(t» ')”Lq < (1 + t) 5(c—3) AT CE=T)) ”UOHLm + (1 + t) 5(c—3) )T 30=05) ||U1HLm7

__mn _(1-1y_ __mn _1y_o=2§
[0ty (8 ) pa < (14 8)7 20 7 g | pm 4 (1 4 £) 7200 O 755 gy | o,

and

o

s (8 ) 2o S et 573G D g | 1y 4 et a5 E D+ 55 oy | 1o,

o 1

[1D] 7wy, (¢, .)HLq < e—ctt*nﬁ*%\(ﬁfl)*%HuOHLq + e—ctt*nla*%\(%*l)HulnLq’

fod 1

|Gt (£, )| po S €™ a I E D=5 g | o 4 =572 E Dy | 1.

The authors of [9] found an explicit way to obtain LP — L9 estimates for solutions and some of their
partial derivatives by using the Mikhlin-Hérmander multiplier theorem for kernels localized to high
frequencies. Moreover, the choice of two entire numbers o € N\{0} and ¢ € N in [9] is important to
prove blow-up results. The decay rates from the paper [9] are almost the same as those in Theorem
3.3.1 if we consider the case of sufficiently large space dimensions n.

3.5.2. Thecase 6 =0

We can see that the decay rates from Theorem 3.4.4 are exactly the same as those from Propositions
4.1 and 4.2 in the paper [9].
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4. Linear structurally damped o-evolution
models with 0 € (3, 0]

The main purpose of this chapter is to study the linear structurally damped o-evolution models of
the form

ug + (—A)7u + p(—A)u; =0, w(0,2) = up(x), u(0,2) = up(z) (4.1)
with ¢ > 1, p > 0 and 6 € (%,0]. This is a family of structurally damped o-evolution models
interpolating between models with a special damping 6 = % and those with visco-elastic type damping
0 = o. Our goal is to obtain L9 — L9 estimates for solutions to (4.1) by assuming additional L™
regularity for the data with m € [1, q), where ¢ € (1,00) is given.

To do this, let us explain our objectives and strategies as follows:

e By using the partial Fourier transformation we can reduce the partial differential equation to study
an ordinary differential equation parameterized by &.

e Main difficulties that we will cope within the case § € (,0) are to derive L' — L' estimates for

oscillating integrals appearing in the representation of solutions. For this reason, we will apply the
theory of modified Bessel funtions and Faa di Bruno’s formula.

e For the sake of the asymptotic behavior of the characteristic roots, we may obtain L™ estimates
for oscillating integrals. By an interpolation theorem, we also get L estimates with r € [1, 0] for
oscillating integrals.

e Applying Young’s convolution inequality we may conclude L™ —L? estimates with ¢ € [1,00] and m €
[1,q], L™ n L9 — L? and L7 — L? estimates with ¢ € (1,00) and m € [1, ¢) for solutions to (4.1) in
the case 0 € (%,0).

e In the case § = o (visco-elastic damping): Following an analogous way as we did in the case
d € (§,0) implies L™ — L7 estimates with ¢ € [1,00] and m € [1, ¢] for small frequencies. For large
frequencies, we will apply the Mikhlin- Homander multiplier theorem to get LY — L9 estimates with
g € (1,00). Then, we may conclude L™ nL9— L% and L9— L9 estimates with ¢ € (1,00) and m € [1,q)
for solutions to (4.1).

4.1. A first Cauchy problem for linear structurally damped
o-evolution models

Let us consider the following family of parameter-dependent Cauchy problems:
g + (—A)7u + p(=A)u; =0, u(s,z) =0, wu(s,z) = u(z), (4.2)

where s > 0 is a fixed non-negative real parameter, c > 1, 4 > 0 and 6 € (%, o). Thanks to the change
of variables t — ¢t — s, we have here in mind the following Cauchy problem:

Vi + (=A)0 4+ p(—=A)°v, =0, v(0,2) =0, v(0,2) = vy (). (4.3)

L™~ L?7— L7 and L? — L7 estimates

In this section, we want to prove the following result.
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Theorem 4.1.1. Let § € (2,0) in (4.3), g € (1,00) and m € [1,q). Then, the energy solutions to
(4.3) satisfy the (L™ n L?) — L7 estimates

ot )]ze < (14 CHENO=E) 40
[IDI70(t, )], < (14 1) FOHEDO=5) 5500755 oy | 1
Joe(t, )|z < (L+ ) EHEDOE) 250D oy |,
[IDIu(t, )|, < (1+ ) EDA=R 30Dy | 1y,
and the L1 — LY estimates
Jo(t,)ze < (1+ ) FOFEDO=) oy | o,
[1D7v(t, )], s (1 + 1) FFEDO=) oy | 1,
Jor(t, e s 1+ 6)FFEDE=3) oy | o,
25 A+[5D(A-55)
9 1 )
[IDIPv(t, )], < (1 + H)UFHEDE=E) o | 1
where 1 + === + and for all dimensions n > 1.

As a consequence of Theorem 4.1.1 we may conclude the following theorem.

Theorem 4.1.2. Let 6 € ($,0) in (4.2), ¢ € (1,00) and m € [1,q). Then, the energy solutions to

(4.2) satisfy the (L™ n L%) — L7 estimates

H+(4[3D - %) 7 -3 (0—%

Jut,)ze < AL +t—5) P g | o
DI u(t, )| ., < (1+¢ $)MHHENA=55) 7 =35 0=~ 55 |y | L 1 o,
Jue(t,)|pa < (1 +¢— s><2+[%1><1*%>%*%<1*%>uulnmm,
[IDPou(t, )], < 1+t —s)FEDOA=F) -0+
and the LY — L7 estimates
Jut, s < 1+t — ) FOFEDO=F) oy, | 1,
[IDI7u(t, )], < (1 +t = s)FFEDO=E) oy | 1o,
Jug(t, )| < (1 4+t — 8)@HEDO=5) oy | 1,
(t,") ( )@

[IDI*u(t, Lt =) DO fuy | 1,

PES

where 1 < r < o0 satisfying 1 + = + % and for all dimensions n > 1.

Using partial Fourier transformation to (4.3) we obtain the Cauchy problem for 9(¢, &) := F(v(t, x))
and 01(¢) := §(v1(x))

Dot + €T, + (€770 =0, 8(0,€) =0, 0,(0,€) = 61(€).- (4.4)

We may choose without loss of generality = 1 in (4.3). The characteristic roots are

Mz = h2() = 5~ 167 £ 4/t — ajgfer).

The solutions to (4.4) are presented by the following formula (here we assume A\; # \s):

6)\1t _ €>\2t

S0 = Ky (t,€)a1(9).

u(t, &) =
Taking account of the cases of small and large frequencies separately we have

1o Ao~ =€ +€]7, A — Ao ~il¢]”  for small |¢] € (0,47 757),
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2. A~ —[€2E Ay~ —[€B, AL — X ~ €] for large |€] € (4757, 00).

Let xr = xx(|€]) with k = 1,2,3 be smooth cut-off functions having the following properties:

1 if 4 ms 1 if
xl<|§|>={ T"5: L X3(|§)={ ?5:

0 if |¢ 0 if [§
and x2 = 1 — x1(|¢]) — x3(€])-

We note that yo(|¢]) = 1if 3777 < [¢] < 3% and xo(|¢]) = 0 if |¢] <477+ or |¢| > 47+,
Let us now decompose the solutions to (4.3) into three parts localized separately to low, middle and
high frequencies, that is,
U(t’ '7;) = Uy, (t’ Ji) 1 Uy, (t7 I) t Uy, (t7 JU),
where
v (@) =8 (e (€DD(t,€)) - with k= 1,2,3.
In order to estimate the L? norms of solutions in (4.3) with additional L™ regularity of the data,

we shall estimate the L™ norms of general terms of the form 3_1(I/(\j(t,£)xk(|§\))(t,x) with j = 0,1
and k = 1,2, 3, where

o~ )\16)\2t _ )\2€A1t o 6/\1t _ e}\gt
Ko(t,6) = ————— d Ki(t,§) = ——.
o(t,€) M — an 1(t,€) A — Ay
The proof of Theorem 4.1.1 is divided into several steps as follows:
L' estimates for small frequencies
Proposition 4.1.1. The following estimates hold in R™:
1 1 if t € (0,1]
1 s 41y
|7 (Kot xa (1€ED) )] 2 = {t(2+[31)(1—§5) ift e [1,00),
1 t if t € (0,1]
1 P B
HS (Kl(t,f))a(\él))(t,~)HL1 S {t1+(1+[’5])(1—£s) if te[1,0).

To derive the desired estimates for the norm of the Fourier multipliers localized to small frequencies,
we write

= 1126 1 e sin (€]74/1 — L[¢[19-27¢)
Ko(t,&) = e 218 cos (|§|0 1— 1\@4572%) + ez l87g)20 1 ’
2|74 /1 — Z|£|46725

sin ([€7y/1 — Ljg[*o-271)

and

K (1,€) = e

€l74/1 — HleJeo—2

For this reason, we will split our proof into two steps. In the first step we derive L! estimates for
the following oscillating integrals:

“1( —er|€)?t) 28 Sin(c2]€]7E)
8 (e I e ) (1),

and

5 (=57 costealél v ) ) 1)

where 8 > 0, ¢; is a positive constant and co # 0 is a real constant. Then, in the second step we
estimate the following more structured oscillating integrals:

—1( g—erl€l*t 25510 (c2l€|7 £ (I€])t) "
57 € == e ey (€D (),




58 4. Linear structurally damped o-evolution models with § € (%,0]

and

5 (o€ €[22 cos (ealel” F(IEN) 1 (1€D) 1, 2).

1 —20
FUED = A1 = Lo

Lemma 4.1.1. The following estimates hold in R™ for anyn = 1:

t ifte(0,1],
< o—28
L1 ~ t(2+[%])(1_%)+ 25 th e [1700)7

where

Hg—1 (6_015|26t§|26m(|c§|§|m>(1(5|)) (t, )’

with B = 0. Here c1 is a positive and co # 0 is a real constant.

Proof. We follow ideas from the proofs of Proposition 4 in [57] and Lemma 3.1.3. Many steps in our
proof are similar to the proofs of these results. Hence, it is reasonable to present only the steps which
are different. Let us divide the proof into two cases: t € (0,1] and ¢ € [1,0). First, in order to treat
the case t € (0, 1], we localize to small || < 1. Then, we derive immediately for small values of |¢]

the estimate

<t 4.5
Lt (|z|<1) (4.5)

57" (eI 1€*= sin(ealel D1 1)) (8|

For this reason, we assume now |x| > 1. We introduce the function

I(t,2) = 5 (=207 sin(ealé) D (1€D)) (1, ).

Because the functions in the parenthesis are radial symmetric with respect to &, the inverse Fourier
transform is radial symmetric with respect to x, too. Applying the modified Bessel functions leads to

0
I(t,z) = CJ e ty2B—o sin(cy‘“t)xl(r)r"_ljg,l(r|x|) dr. (4.6)
0

Let us consider odd spatial dimensions n = 2m + 1,m > 1. We introduce the vector field X f(r) :=

d% (% f (r)) as in the proof of Proposition 4 in [57]. Then, carrying out m+ 1 steps of partial integration

we have
c

EE

I(t,x) = L o (X (e_clT%t sin(car?t)x1 (r)r?? =7 2™ ) sin(r|z|) dr. (4.7)

A standard calculation leads to the following presentation of the right-hand side of (4.7):
Jjt+1 o0

m
Cik 1k g 26 . _ -
I(t,z) = Z ﬁ . oIt I=hem ek (sin(eart) x1 (r))r*P 7 sin(r|z|) dr

m j 0
Cik .28 . B .
+ Z Z : f 01~ kemerm™ kL (sin(eart) x1 (r))r?P 7 sin(r|2|) dr

+ Z Z CJJJ‘ aﬁ_ke_clrwt@f(sin(czr"t)xl(7"))7‘25_‘”]_1 sin(r|z|) dr
with some constants c;i. Now, we estimate the integrals
* i1k 204 Ak 2 j
Lig(t,z) = .[0 oIt I=hem ek (sin(eart) x1 (1)) r? 7t sin(r|z|) dr. (4.8)

Because of small values of r, we notice that the following estimates hold on the support of x; and
on the support of its derivatives:

|ale*61T26t‘< 1 ifl =0,
" el =1, m,

‘&i(sm(czv“"t)xl(r))‘ <ot foralll=0,---,m.
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As a result, we obtain for small r, j = 0,--- ,m and k = 0,--- ,j the estimates
}a?JA‘Jrlfkefclr%talrc(Sin(czrot)xl(r))TQBfaJrj < p20+25-142
on the support of x; and on the support of its derivatives. We divide the integral (4.8) into two parts

to derive on the one hand

2

Al .
’ J 62,“_’“6_“’"2%65 (sin(car?t)xa (r))r®# 7% sin(r|z|) dr‘ < (4.9)
0

|x‘26'

On the other hand, we can carry out one more step of partial integration in estimating the remaining
integral as follows:

o0 o
’ J (ﬂ“_ke_"‘”zot@f ( sin(car?t)x1 (r))rw_”” sin(r|z|) dr‘
e

1. , ©
ST o3k gk (sin(eprTt)xa (r)) 128+ cos(rla)
x r:ﬁ
1 00 1k o2 Ak o 2B—o+j t2
tor ) e (ag e~ 3 (sin(crt)x1 () J) cos(r|z|))dr s (40
el
since 26 + 283 > o = 1. Here we also note that for all j =0,--- ,m and k =0,--- ,j we have

00 (2871 Fem e 1k (sin(ear e () P2 )| 5 22022

Hence, from (4.7) to (4.10) we have produced terms |z|~("*2% and |z|~("*1 which guarantee the

L! property in x to prove that for all ¢ € (0,1] and n = 2m + 1 the following estimates hold:

571 (o427 sin(calel"Oxa (D) ()| s o) < 2 (4.11)

Let us consider even spatial dimensions n = 2m, m > 1, in the first case t € (0,1]. Then, applying
the first rule for the modified Bessel functions for 4 = 1 and the fifth rule for g = 0 from Proposition
B.3.2, and repeating the above calculations as we did to get (4.11) we may conclude the following
estimates for n = 2m, m > 1:

5 (e 122 sin(ea €] 7)1 (1€D) (8 )] 1 ooy < £ (4.12)

Let us turn to the second case t € [1,00). Then, by the change of variables £ = t’Tlén as we did in
the proof of the case ¢t € (0,1] to Lemma 3.1.3 we will follow the steps of the proof of this lemma to
conclude the following estimates:

Hg_l (6—01|§\25t|§‘25—0 Sin(02|§|"t)xl(|§|)) (t, ')“Ll(\x\@) < t1—§’ (4.13)
and

5 (711427~ sin(es €] 78 xa (16) (£ )| 1 oy

) tm+2)(1=5)+ 552 iy = o 4 1, 4.14
~ t(m+1)(1—2%)+% if n =2m. ( ' )

Here we also note that |¢] € (0,1], that is, r € (0,425 ] and rt~25 < 1 which are useful in our proof.
Summarizing, from (4.5) and (4.11) to (4.14) the statements of Lemma 4.1.1 are proved. O

Remark 4.1.1. Let us explain the results for the case n = 1. We explained the proofs to Lemma 4.1.1
for n > 2 only. However, in the case n = 1 we only carry out partial integration with no need of the
support of the vector field X f(r) as we did in (4.7). Then, following the steps of our considerations
for odd spatial dimensions we may conclude that the statements of this lemma also hold for n = 1.

Following the proof of Lemma 4.1.1 we may prove the following L' estimate, too.
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Lemma 4.1.2. The following estimates hold in R™ for anyn > 1:

57 (7 gl cos(ealél”Exa (1€D)) (8, -)|

with = 0. Here ¢ is a positive and co # 0 is a real constant.

Finally, we consider oscillating integrals with more complicated oscillations in the integrand. We
are going to prove the following result.

Lemma 4.1.3. The following estimates hold in R™ for any n > 1:

B {t ifte(0,1],

O

tHEDA=F)+75 jft e [1, 00),

1 —20
FU1€D = oJ1 - §lels=2

and 8 = 0. Here c1 is a positive and co # 0 is a real constant.

where

Proof. We will follow the proof of Lemma 3.1.5. Hence, it is reasonable to present only the steps
which are different. Then, we shall repeat some of the arguments as we did in the proof of Lemma
4.1.1 to conclude the desired estimates.

First, let us consider |x| = 1 and t € (0,1]. To obtain the first desired estimate in both cases of
odd spatial dimensions n = 2m + 1 and even spatial dimensions n = 2m with m > 1, we assert the
following estimates on the support of x1(r) and on the support of its derivatives:

sin (cor f(r)t) o B
? (Tﬂ <rFt forallk=1,---,m,

where

1
f(r)=a/1- 17’45*2“.

Here Faa di Bruno’s formula comes into play for verifying all our estimates. We split the proof of
the above estimates into several sub-steps as follows:

Step 1:  Applying Proposition B.4.1 with h(s) = /s and g(r) = 1 — $r*2°=9) we have

k
1_(m cetm o M
|a7’ff(r)}g‘ Z g(r)2—(matme) n( 1,2(26-0)—j )
1-mi+-+k-mp=k,m;=0 =1
< Z r2(26—a)(m1+'“+mk)— < rk.

Lmy4-+k-mp=k,m;=0

Here we used 2 < g(r) < 1 for r < 1. In the same way we derive

(91?(%)’ <sr T fork=1,---,m. (4.15)

Step 2:  Applying Proposition B.4.1 with h(s) = sin(cg s) and g(r) = 77 f(r)t we get

k m,
}6f sin (cor? f(r)t)| < ’ 2 sin (cor? f(r)t) (mattmy) 1_[ (@i (r"f(r)t))

1-my+-+kmp=Fk,m;=0

& .
S m IS eom)”
Imi+-+kmp=k,m;20 j=1 =0

k
1I-myi+-+kmp=k,m;=0 j:1

> r k(o) e < o hy, (4.16)

1-mi+-+kmp=k, m; =0

A

A
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Therefore, from (4.15) and (4.16) using the product rule for higher derivatives we may conclude

ok (sin (car? f(r)t)
gk (22 \2 IV
" f(r)

Next, let us turn to consider |z| = 1 and t € [1,00). To derive the desired estimates by using similar

ideas as in the proof of Lemma 4.1.1, we shall prove the following auxiliary estimates on the support
1
of x1(t725r) and on the support of its partial derivatives:

)’Sr"_kt fork=1,---,m.

sin (cor? f(r)t'=2s)
T

)‘ St R ot for k=1,--- ,m,

where

flr)= \/1 — %t%”ﬂ(%*").

Step 1: Applying Proposition B.4.1 with h(s) = /s and g(r) =1 — %tc’}% r2(26-9) we get

k
k i- 4ot 1 o-25 2(265—g)—i\
]arf(r)|s‘ 3 g(r)3—(m mk)ﬂ(_it 20 5(25-0) -]
Lyt kemg =k, m; >0 j=1
< 2 (t“jf‘s T2(2§—0'))m1+'“+mkr_k
1my+-+k-mi=k, m; =0
<rk Z (t—%r>2(25—0)(m1+~-+mk) <7k,

1-mi+--+k-mp=k,m; =0

Here we used % < g(r) <1 and t—25r <1forr<tz. An analogous treatment leads to

1
ok (—)‘ <r* fork=1,-,m. (4.17)
f(r)
Step 2: Repeating the proof as we did in Lemma 3.1.5 we have the following estimates:

|08 sin (cor® f(r)t'=55) | < ¢4~ Fp R (1 4 41 Fpo) T (4.18)

Therefore, from (4.17) and (4.18) using the product rule for higher derivatives we may conclude

sin (cor? f(r)tt=2s)
0

Summarizing, Lemma 4.1.3 is proved. O

)‘ < tl—%ra—k(l +t1—%,r0)k_1 fork=1,---,m.

Following the steps of the proof of Lemma 4.1.3 we may conclude the following statement, too.

Lemma 4.1.4. The following estimates hold in R™ for any n > 1:

- 1 ift e (0,1],
Lt~

57 (e8P cos (calél”FUEDOIED) &), = 4 orzni- 2 iprc . eo)

1 —20
FUEND = A1 = lg]2

and 8 > 0. Here c1 is a positive and co # 0 is a real constant.

where

Proof of Proposition 4.1.1. In order to prove the first statement, we replace 8 = ¢ and 8 = 0, respec-
tively, in Lemmas 4.1.3 and 4.1.4. Then, plugging # = 0 in Lemma 4.1.3 we may conclude the second
statement. Therefore, this completes our proof. O

Following the approach of the proof of Proposition 4.1.1 we may prove the following statements.
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Proposition 4.1.2. The following estimates hold in R™:

e 1 fte (0,1
3 (1€l Kot )xa(1€D) (t: )] 10 = {tm[ 5D0-)=3 Zztiélog)
N y ft e (0,1],
[3 (g1 Ka e xa (D) (8] 2 < {twﬂw“— = Ztil"g)’

for any non-negative number a.

Proof. To derive the desired estimates for the norm of the Fourier multipliers localized to small
frequencies, we write

_ 2 i : sin (|17 /1 — [¢[-271)
€1 Ro(t,€) = e ] cos (J¢170 [1 = lefi9-20t) + e d1El Pt gjoras : :
! 20¢|7y/1 = e

and

n (€71 = Hlgl*o-21)
71— dlglo—>

By choosing the values 25 = a + 2§ and 28 = a in Lemma 4.1.3 and 4.1.4, respectively, we may
conclude the first statement. Then, plugging 25 = a in Lemma 4.1.3 we may conclude the second
statement. Therefore, this completes our proof. O

PRt €) = e HeP g
1\Y =e€ ‘£|

L' estimates for large frequencies

Proposition 4.1.3. The estimates

[57 (Kot Ox3(1€D) (8, )|, <1 and  |F7H(Ku(t. xa(1€D) ()], <t
hold for all t > 0.

Proof. Our approach is based on the paper [57]. In order to prove the above estimates for large
|€], we can apply the modified Bessel functions, carry out partial integrations and perform change of
variables. According to a modification of the proof from Lemma 16 to Lemma 20 in [57], we have to
study the three oscillating integrals

(P2 Mg (1E)) (), FH(IEPT M s (1€) (¢ x),  F (M xs(€]) (o).

Hence, we obtain the following results.

Lemma 4.1.5. The estimates

|57 (P2 Mt (1€D) (¢, )] 11 < 1,
[ (1P xa (€)1 )| 1 < 1
|37 (M xa(leD) ()], S 1

hold for all t > 0.

Then, repeating the proof of Proposition 3.1.1 we may conclude the desired estimates in Proposition
4.1.3. O

Following the approach of the proof of Proposition 4.1.3 we may prove the following statements.

Lemma 4.1.6. The estimates

a

T (R (13 [ A
|71 (g2 e s (1€D) (8] . s 7%,
[ (1€l e s (1€D) (&) o S 7

hold for all t > 0 and any non-negative number a.
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Proposition 4.1.4. The estimates

t72e  ifte(0,1],
t 325 if t € [1,0),

|

5 (1" Ro (s 0xs(€D) (8] 2 < {

e ti= s ift e (0,1],
5 (11 s (6 na(€D) 0, ). < {t() e

hold for any non-negative number a.

Estimates for middle frequencies

Now let us turn to consider some estimates for Fourier multipliers localized to middle frequencies,
1 1

where 37 %-7 < [¢] < 3%5-7. Then, following the proof of Proposition 3.1.5 we may arrive at the

exponential decay for the following norms.

Proposition 4.1.5. The following estimates hold in R™ for anyn > 1:
[k (|§|aK0 (t, Ox2(1ED) &, ) o < e
I3~ 1(|§|CLK1 (t, )x2(I€D) ()] ;2 s e,
[k (|§|GK0 (t, x2(1€)) (¢, - HLoc _Ct7
[37 (1€ B (1, )xa(1€D) (8, o S €,

where ¢ is a suitable positive constant and for any non-negative number a.

)
)

From the statements of Proposition 4.1.1, Proposition 4.1.3 and Proposition 4.1.5 we may conclude
the following L' estimates.

Proposition 4.1.6. The following estimates hold in R™:

1 if t € (0,1],
|57 (Ko(t,€)) (¢, |L1~{t(2+[ $D0-5)  ifte[1,:),

' ift € (0,1],
HS (K1 t f)) HLI ~ {tl-‘r(l-‘r[ 5D(1—35) the [1700)

Finally, from the statements of Proposition 4.1.2, Proposition 4.1.4 and Proposition 4.1.5 we may
conclude the following L' estimates.

Proposition 4.1.7. The following estimates hold in R™:

B t 2(c-9) fte (Oa 1]7
|57 (6" Ko(t, ) ¢ )| 0 < {t(u[ NA-F5)- 5% the [1,00),

B t1—3s if t e (0,1],
|57 (e Kt ) &) < {t1+<1+[g]>(1>2‘3 iftel,0),

for any non-negative number a.

L* estimates
Proposition 4.1.8. The following estimates hold in R™:

1 ift e (0,1],

|31 (Ko(t, ) x1(1€D) (8, )] . < {t—;z ifte[1,0),

I3 (Ko(t, )xa(1€)) (1, )] ;. S 7T for all t € (0,00),

{t ifte(0,1],

B E D) e < S e o)

A

|31 (L (8, €)x3(1€D) (8, )| o S 720D for all t e (0,00).
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Proof. First let us consider estimates for small frequencies. For the sake of the asymptotic behavior
of the characteristic roots, we re-write K, 1(t, &) as follows:
At Aot 1— e()\Z*)\l)t

Py et _ pA2 1 . 5
K+ (t _ _ At =t Altf —10+/4|[27 —[&]* tdo
1( 56) )\1 _ )\2 € A] _ )\2 € 0 €

Hence, we arrive at |I/(\1(t,§)| < te~ 1€t for small |€] to derive
SR ae) ol < || e Rieon i

b t if t e (0,1],
sof etrgriag <, S0
0 ift e [1,0).

Taking account of l/(\()(t7§) for small frequencies, thanks to the asymptotic behavior of the charac-
teristic roots we estimate
)\16)\2t )\26>\1t
- [ e

25
< e~ lE7°t
A2

|Ko(t,€)

Therefore, we conclude
5 Batt. naeD) ) = | [ =Rt

1 .
< J ISP gl < {1 e (o,1],
0 t72 i

if t € [1,0).
Let us turn to consider the term I/(Z(t,f) for large |£|. We get

Aa—A 1
f/{:(t,f) = eklt# = te/\ltJ‘ 6_9 ‘5'46_4|£‘2”td9.
1 — N2 0

As a result, we estimate | K (¢, €)| < te” €™t for large |¢| to conclude

11 (K (£, €) s |£|)}<tf TP e gie) < 7 for all £ e (0, ).

Finally, in order to estimate the term |F~! (I/(\o (t,)x3(€])) (¢, z)|, we can see that

Ko(t,€) = =M K (t,€) + et

2(0‘—5)t

Since | K (t,€)| < te~ el , we find for large [¢|

|Ko(t,6)] < (1 + t¢|20D)em eVt < pmeleP 0t

for some positive constants c¢. Hence, we obtain

|5—1(I?0(t,§)><3(|§|))(t,x)| sj el e tgig| < T for all t e (0, 0).
1

Summarizing, Proposition 4.1.8 is proved. O
From Proposition 4.1.5 and Propostition 4.1.8 we may conclude the following statement.
Proposition 4.1.9. The following estimates hold in R™:
e ifte (0,1],
t=35 ift e [1,00),

T ifte (0,1],
|37 (E1(t.9) (¢ )] o {tl—;& ifte [l o).

5 (Rt ) ()], ~{
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Finally, following the approach of the proof of Proposition 4.1.8 we may prove the following state-
ments.

Proposition 4.1.10. The following estimates hold in R™:

{1 ifte(0,1],

n+a

=% ifte[l,00),

|37 (€1 Kot )x1 (1€D) (1 )] . <

131 (1€1° Ko (t, €)xs(€)) (¢, )] ;.o S 7T for all t € (0,0),

e t ifte (0,1],
[37 (el B, )xa (D) ¢ )] . {tl—za i;tiEl,og),

o~ _ _n+a
|37 (€1 K (8, )xs(1€D) (8 )] o ST 7T for all t € (0, 00),
for any non-negative number a.

Proposition 4.1.11. The following estimates hold in R™:

I (1€1" Ko (t,)) (1. )]0 < {t_i(fa‘” if te(0,1]

= iftell, )
) o ifte (0,1],
[37 (1€ Ea (1, ) (1) 1.0 ~{tw+a ifte[l,o),

for any non-negative number a.

L™ estimates

By an interpolation theorem, from the statements of Propositions 4.1.6 and 4.1.9 we may conclude
the following statement.

Proposition 4.1.12. The following estimates hold in R™:

(1-1) :
eI if t e (0,1],
57 (Kot )5 )], = {t(2+[ EDO-5)1-350-2)  ifte[1,00),

A5y (1-3) if te (0,1],
|37 (K1, 0) (1), < {t1+(1+[ D0-5)7-%0-3) it e [1,00),
for all r € [1,00].

From the statements of Propositions 4.1.7 and 4.1.11, by applying an interpolation theorem we may
conclude the following statement.

Proposition 4.1.13. The following estimates hold in R™:

_ e -9 - ift € (0,1]
—1 a . < P
3 (le1* Kot ) ¢ ) = {tm[;])(lfa LH0-Df e[l 00),
(RO < AE T T ifte(0.1],
B (el Ratt )Mo = 4 prvavsna-gt-50-D-5  irre 1o,

for all r € [1,0] and any non-negative number a.

Proof of Theorem 4.1.1. In order to obtain (L™ n L?) — L? estimates, we estimate the L? norm of the
low-frequency part of solutions by the L™ norm of the data, whereas their high-frequency part are
estimated on LY — L? basis. Thanks to Proposition 4.1.2 and Proposition 4.1.10, we derive

if t e (0,1],
if t € [1, 0),

—~ 1
|5 (el Kot xa(1ED) (& )] . = {t(2+[3])(1—§'5 loma-b)-g
P ' if £ € (0,1],
51 (€1 Rt 01 1€D) ()], < {MH - B0-D-5 el

25 26
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for all r € [1,00] and any non-negative number a. Applying Young’s convolution inequality from
Proposition B.1.1 we derive

tH’Ul‘Lm ifte (0, 1],
[oga (£, ) [2e < [F (KLt Ox1(6)) (&) oo < {t1+(1+["])(1—)—25(1— oz i £ € [1,00),
and
[ogs (£, )20 < [ (KLt Ox2(1€D) (E ) o lor 2o < e ur]za for all ¢ € (0,00),

(K1 (t,€) X3(|§\))(t, ')Hy”leLq <Stlvi|pe forall ¢ e (0,00),
where ¢ is a suitable positive constant. Hence, we may conclude

H’U(t, ')HLq < (1 + t)1+(1+[g])(l_L ;_25(1 )H’Ul HLanq for all t e (0, OO)

[oxa () e < |3~

Analogously, we derive

H|D|UUX1 (ta ')”Lq S Hg—l (|€|0K1 (t7 g)xl(g))(t’ )
t ||'U1 Lm ifte (O, 1],
S OO 8- 0D 5 gy [ if te [1, 00),

pelvilze

and
[1D170ss (8, )] 0 < [§7 (€17 K (1) x2(I€D) (8, )| palor 2o < e wn]lze for all t e (0,0),
N1D17 0y, (8, )] 10 < |5 (1617 KLt )X (1ED) (8 )] 2 on | s

1—.2 .
<t e i O] e (0,00),
A2 oy e if £ e [1,00)

where c is a suitable positive constant. Hence, we may conclude

[IDI7w(t ”Lq < (14 )N 1=55) 555 (1— 7755 ||luy | pmare  for all t € (0,00).

In the same way we also obtain

H|D|26 (1 + t>( +[5 ])(1_7)7_%(1_%)H/UlHL”m,qu for all t e (0,00).

HLq ~
Now let us turn to estimate for the term |vy(¢,-)|L«. We rewrite

atK1<t75> = K0<t7§) + ()‘1 + )\Q)Kl(taf) = Ko(t,f) - |§|26[/€1(t7£)

Applying again Young’s convolution inequality from Proposition B.1.1 we get

0o, (& e = |57 ((Ko(t,€) = €7 Ki(t,)xa (1) A (€) (1)

< (\ (Rolt, 1 (1€D) () + 157 (6 Ka (8. 0xa (€D) (0, )] . oo
1 +t HleLm ifte (07 1]a
(R EDO=F) =501 0 B0 F) 50D oy g if t e [1, 00),
‘UlﬂLm ifte (Oa 1]7
$EHBDA=F) = H =D |y if t € [1,00),

and

Jovos () e < (157 (Bolt. Oxa(1€D) (1) o + 5 (€K (1 xa(€D) (&) 1 ) o s

<e Ct“'Ul |« for all ¢ € (0,00),

Jovxs () ee < (157 (Kot Oxa(1D) (1) o + 5 (€K xs (D) (&) 1 ) o s

a if t € (0,1
HleLl,L eIy forallte (0,00),
(1+t757)|vrfa  ifte (1, 00)

A

where c is a suitable positive constant. Therefore, we may imply
lve(t, )| pa < (1+ 6)CHEDO=F) v =2350=9) |y | pm o for all ¢ € (0,00).

Summarizing, the proof of Theorem 4.1.1 is completed. O
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L™ — L7 estimates

From the proof of Theorem 4.1.1 and the statements of Proposition 4.1.13 we have the following
corollary.

Corollary 4.1.1. Let § € ($,0) in (4.3), q € [1,0] and m € [1,q]. Then, the energy solutions to
(4.3) satisfy the L™ — L7 estimates

—__n (11 .
TRV L 1 e ifte(0,1],
' M DO r -3 (-7) mod
t iz ifte(l,0),
#1725 1=~ 2655 |y | e ifte(0,1],

led

P OHEDA=F5) 3 =35 1=0) =55 |y | pm  if £ € [1,0),

A

» ),

[1D17v(, ). < {

A= (=155 vr |

rm th € (0

t : q S n o1 n 1
e ()l {t@ﬂz])(lzs)r25(1T)|1)1|Lm iftell
gL T e pte 1],
La ~ [1

20
IDFo {OHBDO= ) =501 |y 1 ift € [1,00),

v1]
and the energy solutions to (4.2) satisfy the L™ — L7 estimates

~ 75 =) g || o ifte(s,s+1],
HO4ED=5) 335 0= |y o  if €[5+ 1,00),

t—s
lut, )|rs < {
t—s

=35 (=9~ 50555 |uy | o ifte(s,s+1],

t—s
DI|%u(t, - <
”| 7ult, )HLq ~ { t—s 1+(1+[%])(1—%)%—%(1—%)—%HulHLm ifte[s+1,00),

n 5
lue(t, ) e < t—s l—m(l—%)—mHmHLm ifte(s,s+1],
" 7~ n o n
t L t—s)HEDA=55) i =55 (=D) |y [ pm  ift €[5+ 1,00),
loon _(1-1)_ & _
H|D|25u(t )H cJt=s 3o (1=2) =55 s | e ifte(s,s+ 1],
T (= ) EDO ) S O D e if e [s 4 1,00),

where 1 + % = % + = and for all dimensionsn > 1.

1
m

4.2. A second Cauchy problem for linear structurally damped
o-evolution models

Let us turn to the following Cauchy problem:
wg + (=A)7u+ p(—A)°u; =0, u(0,2) =ug(x), u(0,x)=0, (4.19)

where 0 > 1, p >0 and 0 € (£,0).

L™~ L?7— L7 and L? — L7 estimates

In this section, we want to prove the following result.

Theorem 4.2.1. Let § € (%,O’) in (4.19), q € (1,0) be given and m € [1,q). Then, the energy

solutions to (4.19) satisfy the (L™ n L9) — LY estimates

lu(t, e < (1 + ) @FEDO=5) 5 =300y 1o,

CHEDA=55) 5 =35 (1=3)= 5 ||y

)
) L"LmHga
n _oy)yl_n_1y_o
L DO D25 0D F g,
)

<1+t (2+[%])(1*%)%*%(1*%)71HUOHLTMH?7
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and the LY — L9 estimates

Jut, )ze < (1+ ) ETEVETE) g o,
[ID17u(t, )], < (1 + ) EVOE =5 g g

e (t, ) La < (1 + t)(“[%])“_%)_%\Iuo||H2<a—s>,
[IDPu(t, )], < (1 +6)FHEDVOE " g a5,

where 1 + é = % + — and for all dimensions n.

1
m
Proof. Applying the partial Fourier transformation to (4.19) we obtain the Cauchy problem for
a(t, &) := F(u(t,z)) and up(€) := F(uo(z)) as follows:

Goe + pl€)Pa, + €770 =0, G(0,€) =U(€), @(0,€) =0 (4.20)

We may choose without loss of generality =1 in (4.19). The characteristic roots are

Mz = hal@) = 5 (- 16 £ el — igfee).

The solutions to (4.20) are presented by the following formula (here we assume A; # A):

)\16)‘2t _ )\26)\1t

W) = Kot 9w (©)

u(t, &) =
Taking account of the cases of small and large frequencies separately we have
Lo Ao~ =% +4dl€]7, A — Ao ~il¢]7  for small [¢] € (0,3*ﬁ),
2. A1 ~ _|§|2(a—6)’ Ay ~ _|£|267 A — Ao ~ ‘£|26 for large |¢| € (Bﬁmo),

As in Section 4.1, we now decompose the solution to (4.19) into three parts localized separately to
low, middle and high frequencies, that is,

u(t7 l‘) = Uy, (ta JJ) + Uy, (ta J}) T+ Uy, (t7 Z‘),

where
Uy, (tz) = F (€))L, €))  with k =1,2,3.

In order to obtain the (L™ n L?) — L estimates, we estimate the L? norm of the low-frequency part
of solutions by the L™ norm of the data, whereas their high-frequency and middle-frequency parts
are estimated on L? — L? basis. Thanks to Proposition 4.1.2 and Proposition 4.1.10, we derive

e 1 if t € (0,1],
”8: 1(|§| KO(t,g)Xl(KD)(t, ')HL’“ < {t(z_,_[g])(l_a 1_1(1_%)_2& ifte [1700)7

25/ r 26

PN t if t € (0,1],
HS (|§| K1(t,§)X1(|§|)) HLT ~ {t1+(1+[ ])(I_L ,_L(l_%)_i ifte [1,00),

25 26

for all r € [1,00] and any non-negative number a. Applying Young’s convolution inequality from
Proposition B.1.1 we derive

i, (8, ) 2o < |37 (Kot )x1 (1€D) (£, )]

ol < luol Lm if t € (0,1],
Lr OIS 4+ 3D A= 5)1 =35 (0= |ug | m i t € [1,0),

and

sy (£, ) 2o < [F 1 (Kot €)x2(I€) (2, N i lwollze S Juollze < e uofre  for all ¢ € (0,0),
s (8, )20 S |57 (Kot ©)xs(1€D) ()| lwoll o S Juolza  for all ¢ € (0, 00),
where c is a suitable positive constant. Hence, we may conclude

lu(t, )| pe < (14 6)CTEDO=5) 5350 yo | pm e for all ¢ € (0, 0).
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In an analogous way we derive
D17y, (t)] 10 <[5 (117 Ko, xa (1€D) &) ol
- {Iuolm i t e (0,1],

t@HEDA=5) 2 =35 =)= 55 ||| pm  if ¢ € [1,00),

and
D17 () < 157 (117 Kot x2(1D) () o Juole < = ugllza— for all ¢ € (0, 0),
[1DI7 s (8 )] o < [ (ot xa(1€D) (1) 3 (1€1786(9)) (2. )] 1
S lluoll gy < uolag — for all ¢ & (0,0),
where c is a suitable positive constant. Hence, we may conclude

1Dl u(t

1

14 ¢)@HEDO=F) =35 (=)= 55 ||

HM < ( rmamg  forall t e (0,00).
After the same treatment we also obtain

D u(t, )|, < (1 + @ EDOE 50Dy s for all £ € (0, 0).
Now let us turn to estimate for the norm |ju:(t, )| ra. We rewrite

OKo(t,8) = —MAoKi (1,€) = |67 Ky (£, ).
Applying again Young’s convolution inequality from Proposition B.1.1 we get
et (8, ) o = |8 (1€127 K, xa (€T () (t ) o < 5 (16127 Ka(t, xa (1€D) )|
{t o) if ¢ € (0,1],
S AFEDO= ) s A= =5 | o if £ € [1, 00),

m

el

and
[Getrs (8, ze < | H(1EP7 K (8, €)x2(1€D)) (1 )] 2 [uol o < e uolza  for all t € (0,00),
[Grtra (8, e < |F (1P K1t Ox3(1€D) &, )] 1 |F (€120 (6)) |

- HUOHH%: 8) if t € (0,1],
to7= ‘SHUoHHz(a s ifte[l,0),

< HUOHHE(”*M < ||UOHH§(675) for all ¢ € (0, 00),

where ¢ is a suitable positive constant. Therefore, we may conclude

o)1

Jue(t, )| po < 1+ O)FOFEDA=F)r =3 0=0=F |y | oo s for all t € (0,0).

Summarizing, the proof of Theorem 4.2.1 is completed. O

L™ — L9 estimates
From the proof of Theorem 4.2.1 and the statements of Proposition 4.1.13 we have the following
corollary.

Corollary 4.2.1. Let § € ($,0) in (4.19), g € [1,0] and m € [1,q]. Then, the energy solutions to
(4.19) satisfy the L™ — L9 estimates

__n (11 .
. Ype < 157000 ol ifte (0,1],
VBTSN =) E- 350Dy e if t € [1, 0),

T 5)(1 ey m if t 0,1
IDI7utt g0 < 4o o AR
tCHEDO=5) 7= FH 0= =55 g pm  if t € [1,00),
Jue(t, )| e < 177 (07 g | if te(0,1],
PO D=2 F 0D =% |y if e [1,00),
1 .
IDPoute ), < T ol ioe(01)
L t@+IEDA-55) s 35 (1-1)— 1”u0HL’" if te[l,00),
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where 1 + % = % + — and for all dimensions n > 1.

1
4.3. A third Cauchy problem for linear structurally damped
o-evolution models

In this section, let us consider the Cauchy problem for structurally damped o-evolution models in the
form

uge + (—A)7u + ,u(—A)éut =0, u(0,2)=ug(z), u(0,z)=1uy(zx), (4.21)

with o > 1, p>0and é € (§,0).
We may summarize the results from Sections 4.1 and 4.2 as follows:

L™ ~L?7— L% and L? — L7 estimates

Theorem 4.3.1. Let 6 € (2,0) in (4.21), g € (1,00) and m € [1,q). Then, the energy solutions to
(4.21) satisfy the (L™ n L) — L9 estimates

Ju(t, ) ps < 1+ ¢)FFEDA-FH)r—350-2) \UoHLanq

led

+(1 +t)1+(1+[§])( —35)7—35(1- Hul |Lm AL,
IDIu(t, )], < (1 +6E+EDI- B850 >-%Huo\|wz{g

+ (14 ) OHEDO=5) 5 =35 0= 55 |y | o 14,
n _L ,_L _1y_ao
et Yo < (14 ) FOHEDO=E)n =450 5HuoHLmH§<°*5>

+ (14 )CHEDO=) 750D oy | L 1o,
[IDFu(t, )], < (1 4+ HEHEDA= &) =070 1HUOHmeH25

+ (1 440D E g5

L™m™ALY,

and the LY — L9 estimates

v

Jut, M zo s 1+ OCTEDOE Jug o + (14 )+ OHEDO= 5 | 1,
[IDIu(t, )] 0 < (1 4+ OCHEDO=E) 55 fug g + (1 + )T EDOE) g | 1,

et Yo S (14 8)CFEVOE T g | sy + (1 + ) CHEDOE) g | 1,
DPPu(t, )| 1 < (14 CHEDO=E g a5 + (1 -+ £) FEDO5) fay | 1,

where 1 + é = % + % and for all dimensions n = 1.
For space dimensions n > o, we obtain the following better estimates for solutions to (4.21):

Theorem 4.3.2. Let § € ($,0) in (4.21), g € (1,00) and m € [1,q). Then, the energy solutions to
(4.21) satisfy the (L™ n L) — L9 estimates

lu(t, e < (1 + ) @HEDA=F) i —30-3)
+ (1 + ) EDO=5)m =554 5|y || o s

Uo \ LmALae

—_1y_ <o
[ID17u(t, )] 4 T Jug| g
+ (1 + ) EDA=) 235D | o o,
Jue(t, Yze < (146 EHEDOE 50D S fug o

+ (1 +¢)@*EDO=55 a5l )HUIHmean

< (1+)@HEDA=F) 7 =55 (0=0) =1 |

[IDPutt, )]0 <

rm ﬁH25
q

+ (1 4+ )CtEDO=5)m =35 0=D= 155 |y | pn s a,
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and the LY — LY estimates

lu(t, e < (1+6)CFEDO=3) g | o + (1 4 ) HOFEDO=55) 4y | o,
DIt )] < (14 DO~ g + (1 4+) DO,

Jue(t, )| e < (1 +¢)CHEDO=5)=5% HUOHngfM + (1 +1)CBEDO) |y | 1o,
|IDPuft, - Ny s+ t)FLED 2L"‘)_lﬂuoHHgé + (14 ) 0FEDO) oy | o,

where 1 + % = % + % and the constraint condition to the space dimension n > o.
Proof. With space dimensions n > ¢ we may improve the estimate for

|57 (KLt Ox1(1€D) (¢, )] 1.

in Proposition 4.1.8 to obtain a better estimate. Namely, because of the asymptotic behaviour of the
characteristic roots, we obtain for small frequencies the following estimate:

KL (8, )] < [¢]oe e,

Hence, we derive

S o)l 5| [ R onende] < f IR erooale| < 1

for t large and under the restriction to the dimension n > o. For this reason, it follows for any a > 0
the estimate

t if t € (0,1],

if t e [1,0).

|57 (€1 K1 (8, )xa (1€D) (8 )] .o < {

Using again Proposition 4.1.2 and the remaining estimates in Proposition 4.1.8 we get

_ —~ 1 if t € (0,1]
1 a . [ B
87 (el Kol 021 (€D) &) < {t(2+[21)(12“5 P00 ifte[l,00),
U ¢ if t € (0,1],
I3 (el Bt O)xa(1€D) &, ) < {t(2+[g])(1—§; e (== % if e [1,0),

for all r € [1,0] and any non-negative number a. Then, repeating an analogous approach to prove
Theorems 4.1.1 and 4.2.1 we may conlude all the statements in Theorem 4.3.2. O

We may prove similar estimates to those in Theorem 4.3.2. Namely for any a > 0, we have the
following further results.

Theorem 4.3.3. Let § € (%,0) in (4.21), g € (1,00) and m € [1,q). Then, the Sobolev solutions to

(4.21) satisfy the (L™ n L) — L7 estimates

[[D17u(t, )], < (1 + 1) EHEDO=E) = d5 D55 g | g
1+(14+[2D)(1—-& )i _—n(1—1y_a
+ (L O DO SO0 s
—gyio 1 M
[1DIuet, )] 0 < (1 +H)HEDO=F) =507 ol g g 2009

lod

+ (1 + ) CHEDA=F) T35 0D~ 55 uy | Lo 1 1,
q
and the L1 — LY estimates

H|D|a (14 t)HEDO-F)—35 luollsra + (1 + H)HAFIEDA=55) =35 | gy |

HLq ~ H£a725]+ )

a+2((r 5)

[ID|"ue(t, )], < (1 +1)PHEDO=5)- ol ya+2o—s) + (1 + ) CHEDO=55)735 |luy | g

for any a = 0, where 1 + ==~ + % and all dimensions n > 1.

Proof. In order to estimate some of derivatives of solutions we use a suitable regularity of data ug
and u; depending on the order of a. Then, repeating an analogous treatment as we did in the proofs
of Theorem 4.1.1 and Theorem 4.2.1 we may conlude all the statements in Theorem 4.3.3. O
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L™ — L7 estimates

Corollary 4.3.1. Let § € ($,0) in (4.21), g € [1,0] and m € [1,q]. Then, the energy solutions to

(4.21) satisfy the L™ — L1 estimates

m + e

Ju(t, e < § t2HEDO=E)7=35 =D o

e OFEDA=F5) 2 =35 (1= D) |y || pom ifte[l,0),

L ifte(0,1],

=35 (1) g = us

m ’Lf te (0, 1],

£~ 3 1) 730 |y o + £ T 1) T |y
$EHED=5) E- 35 0-D~F5 |y | pm

o1

A OB DA=55) 2 =35 1= 55 | uy || pm ift e [1,00),

A

H\D\”u(t, ')HLq

#3075 g | o+ £ TE D DTS g e ift € (0,1],
Jue(t, )| pa S < $1HA+FEDA=35) 3 =35 1=~ % |y | pm
HtCHEDA=35) =350 |y || ifte[1,00),

n

e 755 gy g + ¢ T AT g e if e (0, 1],

) n _oc\1_n(q_1y_
|IDIPut, )|, < { tCHEDO=5) 5 =3 0=y fom
+tAHED =57 =35 1=3) |y || o if t € [1,00),
where 1 + % = % + % and for all dimensions n = 1.

4.4. Linear visco-elastic damped o-evolution models

The main purpose of this section is to study visco-elastic damped o-evolution models in the following
form:
uge + (—A)7u+ (=A)u =0, u(0,z) =up(x), u(0,x)=m1u(x) (4.22)

with ¢ = 1. Our goal is to obtain L9 — L7 estimates for solutions to (4.22) assuming additional L™
regularity for the data with m € [1, ¢), where ¢ € (1,0) is given.

Using partial Fourier transformation to (4.22) we obtain the Cauchy problem for u(t, ) := F(u(t, x)),
(&) := F(up(x)) and w1 (&) := F(uy(x)) as follows:

e + €770, + [€]*70 =0, @(0,€) =To(€), @(0,€) = ur(§). (4.23)

The characteristic roots are
1 (e
Mz =€) = 5 (— €77 £ Ve — 4.

The solutions to (4.23) are presented by the following formula (here we assume A; # A2):

At Aot

)\16)\2t _ )\2€>\1t
AL — A2

€ — €

g (O = Kot 9(6) + K1, ()

u(t,§) = uo(§) +

Taking account of the cases of small and large frequencies separately we have

Lo A = A1a(€) = =5 (€77 F in/4l€]>7 — [€47)

and Ao ~ —|€[27 +i[€]7, A — Ay ~if¢]7 for |¢] € (0,47 7),

2. Mg = A12(8) = —5 (16177 T V/I€[* — 4]¢)?)
and A; ~ —1, Ay~ —[€[%, A — g~ [€]2 for [¢] € (47, 00).

Let xx = xx(|€]) with k = 1,2, 3 be smooth cut-off functions having the following properties:
1 ifle <47, 1 if|¢] > 47,
) = {0 IR T(C IS S

and x2([¢) = 1 = xa(€]) — xa([€])-
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We note that x2(|¢]) = 1if 377 < |€] < 37 and xo(|€]) = 0 if [¢] < 477 or |§] > 47. Let us
now decompose the solutions to (4.22) into three parts localized separately to low, middle and high
frequencies, that is,

u(t7 x) = Uy, (t7 l‘) + Uy, (ta J}) + Uy, (ta x),

where
uy, () = § (xe(lgDat, €)) - with k=1,2,3.
L™ — L9 estimates for small frequencies

Following the approach of the proof of Lemma 4.1.3 we can see that the result in Lemma 4.1.3 still
holds in the case § = 0. Therefore, we obtain the following L! estimates for small frequencies.

Proposition 4.4.1. The following estimates hold in R™:

e 1 ifte (0,1],
I3 (¢ Ko(t,)x1(1€D) (¢, )] 11 < {t;(%[’g])z‘b ifte[l,0),
I t ifte (0,1],
HS 1(|5\ Kl(tvg)XI(‘gD)(tv‘)”Ll S {t;(3+[§])—2‘2 ifte[l,0),

for any non-negative number a.

Following the approach of the proof of Proposition 4.1.8 we obtain the following L® estimates for
small frequencies.

Proposition 4.4.2. The following estimates hold in R™:

) S 1 f t 0,1],
3 (1€l Ko (t. ©)xa (1€D) ¢ )] .. < {t—"gt“ Z:ti ELOO]%

¢ if t € (0,1],
nta

t1="%  ifte[l,0),

5 ("Rt (D) 8]0 {

for any non-negative number a.

By an interpolation theorem, from the statements of Propositions 4.4.1 and 4.4.2 we may conclude
the following L" estimates for small frequencies.

Proposition 4.4.3. The following estimates hold in R™:

_ o 1 if t e (0,1],
HS" 1(‘£| KO(ta €)X1(|£|))(t7 )‘ Lr b3 {t%(g.»,.[g])i—z’;(l—i)—;g zft c El’ OO]),

e ¢ ifte(0,1],
I (€1 KL (8, )xa (1ED) &), = {t1+é(1+[g])3‘_£7(1_}‘)_;! ifte El,oi),

for all r € [1,0] and any non-negative number a.
Finally, we may conclude the following result.

Theorem 4.4.1. Let ¢ € [1,0] and m € [1,q]. Then, the Sobolev solutions to (4.22) satisfy the
L™ — L9 estimates

[1DI s, (8, )] o S (14 8)2EHED 2 =2 070755

1

|00 D)%y, (£,)] 10 < (1 4+ 8)2AFED T3 A== 55 ||

1 n

Lo+ (14 ) 2O ED =32 (=057 |y

Lm 3

L+ (1+ t)%(2+[%])%f%(1f%)f% |

L’"L’
1_1, 1
wherel—l—a—;—ka and for all a = 0.

Proof. In order to prove the first statement, we apply Young’s convolution inequality from Proposition
B.1.1 as we did in the proof of Theorems 4.1.1 and 4.2.1 and use the statements in Proposition 4.4.3.
Taking account of some estimates related to the partial derivative in time of solutions we note that

OKo(t,€) = —[€ Ky (t,€) and O Ki(1,€) = Ko(t,€) — |€7 Ky (t,€).

Then, applying again Young’s convolution inequality from Proposition B.1.1 and Proposition 4.4.3,
we may conclude the second statement. Hence, the proof of Theorem 4.4.1 is completed. O
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L7 — L7 estimates for large frequencies

First, we can re-write the characteristic roots as follows:

Ai(€) = =1 —~(€) and Aao(§) = —[€]*7 + 1+ (&), (4.24)

where

1) = =1+ (55 ) and g(s) = L (1 05) 2. (4.25)

4
€12

Now, we introduce the following abbreviations:

M) RGN
Kyt = 57 (L2 Bl (o) Ko =5 (T T @na(e) o).
M (O BWEY

Ki(ta) =57 TOxa(lE)) (1), KF(rw) =5 (5

O @) . 0)

A1(§) = A2(8)
We shall prove the following results.
Proposition 4.4.4. Let g € (1,0). Then, the following estimates hold:

”ag‘D‘aKé tv'
”ag‘D‘aKg t7'

Lo < e uolly,

<e

HLq — Huoanzaj—zﬁaﬁ )

(t,-)

(t,-)

Hai ‘D‘aKll (t7 ')HLq < e_CtHul ||H£“_2”]+ )
[ DI K3 (4] o € € ygaes oo
foranyt >0, a =0, integer j = 0 and a suitable positive constant c.

Proposition 4.4.5. Let ¢ =1 or oo. Let us assume o > 1. Then, the following estimates hold:

|6/ 1DI*Kg (¢, )] o < e luol g,
2

”ai‘DlaKO t7 :

A

HLq e_CtHUOHHEGH[aﬁ]M

HLG g e_CtHul HH,Ea7"]+ 9

(t)
(t.)
|ofID1 K1 (2, )
(t)

H@”DPK t,- HLq < eictHul HHgajJr[a—a]*v
for anyt >0, a =0, integer j = 0 and a suitable positive constant c.

According to the application of the Mikhlin-Hoérmander multiplier theorem (see also [9, 49]) for
Fourier multipliers from Proposition B.5.1, in order to prove Proposition 4.4.4, we shall show the

following auxiliary estimates.

Lemma 4.4.1. The following estimates hold in R™ for sufficiently large ||:

0g161727| < g7 for all a, (4.26)
|8g|§|2p"} < \§|2p"7|a| for all a and p € R, (4.27)
4

oo (W)‘ €| —20—|a| for all |a| = 1, and ’g(m%)‘ <1, (4.28)
0gy(&)] < €177 for all a, (4.29)
!(9?)\2 )| < 12771l for all o (4.30)
oM (O] < €721 for all || = 1, and |Ai(€)| < 1, (4.31)

2 (€)= 22(6) 7| < I for att a, (4.32)
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|og N (& ©] < 1€ ol for all andj 0, (4.33)
|og M(& )| < |§\ ol for all a and j > (4.34)
2 (€A ()] < €271 for all a, for anybeR and j =0 4.35

3 5(
|(3?(|§\b)\{(§))| < |§|b*|°‘| for all o, for any be R and j = 0, (4.36)
|0g (e©1)] < emt|¢| 7l (4.37)
for all a and t > 0, where c is a suitable positive constant,
|0g (eM©O1)] < emt|g| e (4.38)
for all a and t > 0, where c is a suitable positive constant,
o ()\1(5) etal §)t>\J< )|£‘b)‘ 7ct‘€|20'j+b7207|a\ (439)
¢ A1) = A2(8) s
for all a, for any be R, j =0 and t > 0, where ¢ is a suitable positive constant,
0% (eAz(f)tA%(fﬂﬂb)‘ < efct|§|2crj+b72of‘oé‘ (440)
A(€) — A2(8)
for all a, for any be R, j =0 and t > 0, where ¢ is a suitable positive constant,
aa(Az(ﬁ)e*l(“%{(ﬁ)li\b)‘ < e<tgpple (4.41)
: A1(§) — A2(8) -
for all a, for anybe R, j =0 and t > 0, where c is a suitable positive constant,
AL(&)tyJ b
aa(e © /\1(£)|€| )‘ < e—Ct|§|b—20—|O¢| (4.42)

A1L(€) = A2(8)

for all a, for anybe R, j =0 and t > 0, where ¢ is a suitable positive constant.

Proof. In order to prove all statements in Lemma 4.4.1, we shall apply Lemma B.6.2 and Leibniz rule
of the multivariable calculus. Indeed, we will indicate the proof of the above estimates as follows:

To (4.26):  Applying Lemma B.6.2 with h(s) = s~ and f(¢) = |£]? we derive

||

oglel=2| = | 210 (e )( ) o (16) -+~ o (1g?))|

eSS
\71\+ +|“/k| lal, [yil=1

||

<) |§I2(*"*’“)( 3 |£‘zfm|+...+27m\)
k=1

Y1t esa
[yal+-+ve|=lal, [v:[=1

||

< Z |§|2(707k)+2k7|a| < |§|7207|a|.
k=1

In an analogous way, we may conclude ’6?|§|2"’ < |€jPeled.
o (4.27):  Applying Lemma B.6.2 with h(s) = s? and f(£) = |£]?? we have

|

B 2, b el ( > L (1gP) -+ o (1))

Y1t tyesa
[yil+ e+ lvel=lel, 1y |=1

||

< 2 |£|2U(p*k)< 2 |£‘2U*"Yl‘+"'+20’*|7k|)
k=1

Y1t FyesSa
[yal++lyvel=lal, [vi|=1

o]
< Z |£|2U(p—k)+20kr—\oc\ < ‘§|2pa—|a|.
k=1
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0 (4.28):  Applying Lemma B.6.2 with h(s) = g(s) and f(&) = 4/¢|72° we have

o )| = | Z () (D @) )

1+ +yp<a
[yil+-+yel=lal, v =1

< }: (1——4é—)7k7%< }: |§rﬂd—Wﬂ—~~20—wm)

1%
Vit vesSa
[val+-+ykl=lal, |vi[=1

1 ||

o 20 _ —k—3 _1

Z <|§| 4) |§| —20k—|a| < Z |£|2cr_ ) —k 2|€|o'—\oz\
k=

\a\

1§12

(67 =) Flepriel 5 jg el

b
\ |

o (4.29), (4.30) and (4.31): These statements are immediately followed by (4.28) and the

expression of the characteristic roots by the function v = (§).

0 (4.32):  Applying Lemma B.6.2 with A(s) = L and f(£) = A1(£) — X2(€) we get

2 (&) = 2(0) |

laf
= ( AP ((€) - AQ(E))( > 0 (M (&) = Aa2(8)) - - a2 (M (6) - /\2(5))>‘

= e 2l el 1

laf
<] 3 (u© —xa0) > efprtre2oton)|

k=1 Y1+t VeSS

|-+l =lal, [y =1

o
< 2 |£|20(—k—1)+20k—\a\ < ‘£|—2U—|a|.

k=1

To (4.33):  Applying Lemma B.6.2 with h(s) = s/ and f(£) = A\2(€) we obtain

LGRS DIICHE) I QD W A CHO) R PR )]

Y1t FvRSa
ol el 2ol T 51

< ’ 2 (A2(£))j*k( 2 |£|207h1\+-~+207\7k\)’

14+ <a

k=1 Y
[y1 [+ +vel=]al, [vi[=1
|
20(j—k)+20k— 207—
< Z |§‘ o(j—k)+20k—|qf < |£‘ oj—lal
k=1

To (4.34): By the same arguments as we did in (4.33), we may conclude (4.34) by using (4.31).

To (4.35):  Using the Leibniz rule we obtain

!aﬁ ‘f| )\j ‘ 2 < )a“/ |§| 0a v )\J ‘< Z |§|b |7||£|201 lol+Il < ‘£|20'j+b la|

y<a y<a

To (4.36):  In the same way to verify (4.35), we may conclude (4.36) by using (4.34).
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o (4.37):  Applying Lemma B.6.2 with h(s) = e and f(£) = \2(€) we have

|ex|

e =[S0 B ) ()]

Y1t FYRSQ
[yal+-+vel|=lal, v =1

||

< 2 tke,\z(i)t( Z |£‘2a—\71\+-~+2a—|w|)

k=1 Y1t tYVESa
[yal+e+lvel=lal, [vi|=1

o] o i
< 3 (o) e E e (sinee 2ot < L)

k=1
< eiCt|§|7|°‘|, where c is a suitable positive constant.

To (4.38):  Applying Lemma B.6.2 with h(s) = e** and f(£) = A1 (£) we have

ogem @] = | X n (@) ( 2 % () +-2 (n()

k=1 7+t YesSa
m\+ +|ka 1B, lvil=1

< Z tke)‘l(g)t( Z ‘§|f20*\71\*-~*207\w|)

k=1 Y14y <a
[yil+-+vel=lal; v =1

|

< ). tFetg 2okl (since M (€) < —1)

k=1
< (¢4 e g1 < 61+ g1l et gl

< e ¢|71ol where ¢ is a suitable positive constant.

o (4.39) and (4.40): Combining (4.27), (4.31) to (4.33) and (4.35) to (4.37) we may conclude
(4.39) and (4.40) by using the Leibniz rule.

To (4.41) and (4.42):  Combining (4.27), (4.30), (4.32), (4.36) and (4.38) we may conclude (4.41)
and (4.42) by using the Leibniz rule. O

Proof of Proposition 4.4.4. First, taking account of the estimates for K2(t,z) and some of its partial
derivatives we will divide our considerations into two cases. In the first case, if 20 — 20 + a > 0, then
we write

) A A2(§)t NI 20—20] ) .
ol|D|I*K§(t, x) = 571( 1(5)6)\1(6) _2()21?) JX3(|§|)\§|20]72U+auo(f)>(t,x).

By choosing b = 20 — 2075 in (4.39), we get for all a the estimates

o /\1(5)6)\2(5)t/\j(€)|§|20720j —ct|¢|—|af
v e R AL

where c is a suitable positive constant. By Proposition B.5.1, we may conclude

Ha] |D|QKO 7CtHu0HH§gj—20‘+a. (4.43)

Mea =

In the second case, if 20j — 20 + a < 0, then we write

AL(§)eM O (9)[¢]
A (€) — A2(8)

By choosing b = a in (4.39), we derive for all « the estimates

DI KS(tw) =57 (€)@ (©) ) (8 ).

LA ON ()¢l —ct|g|20i+a—20—|a| < —ct|¢|—|a|
( A1(€) = Xa(8) >‘“ €1 Sse g
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where c is a suitable positive constant. By Proposition B.5.1, we arrive at
|| D" K3 (¢, ) Lo S € uol La. (4.44)

Hence, from (4.43) and (4.44) we have proved the second statement in Proposition 4.4.4. By the
same arguments we may also conclude the last statement in Proposition 4.4.4 by using (4.40). Let us
turn to estimate the two remaining statements. Indeed, we write

A2 (€)eM N (€)
A1(E) — Aa(€)

ADI K (tx) = 57 X (EDIETE)) (1, 2).

By choosing b = 0 in (4.41) we obtain

o )‘2(5)6)\1(5))5)‘]‘ (6) —c —|af

where c is a suitable positive constant. By Proposition B.5.1, we arrive at

[0 1DI K5 (8 )] 1o < e [F (161G () [ o < € uoll gy < € uollrrg-

Finally, taking account of estimates for Ki(t,2) and some of its partial derivatives we will divide
our consideration into two cases. In the first case, if a > 20, then we write

. )\1(5)75)\] 20
DI KL () = 57 (St g X
By choosing b = 20 in (4.42), we obtain

‘ ( MO (¢ )\flz")‘
ENPGEPHEG

where c is a suitable positive constant. By Proposition B.5.1, we derive

(D127 T5(0)) ().

< eetg|mle

DI KL (1, )] 0 S ¢l ga-2e S €] a2

In the second case, if a < 20, then we write

@ Q)¢

APt -5 (S o e e EmEO) o).

By choosing b = a in (4.42), we have

‘ (*1<5W()\€I“
S\ A = Ma(9)

where c is a suitable positive constant. By Proposition B.5.1, we may conclude

)‘ < efct‘€|a72af\a\ < efct‘€|f|a|’

| [DI KL (t, )] 0 < e ual Lo
Summarizing, the proof of Proposition 4.4.4 is completed. O
Proof of Proposition 4.4.5. Following the expression as we did in Proposition 4.4.4 we write

j A A2(€)t\J min{a,0}—20;
DI Kg(tw) =57 o A1<5(§)fl<f)

A Az(f)tAj min{a,oc}—20j )
— g (RO (1) 1) D

— 3 LR €)) (t, 2) * | D2 g ().

By choosing b = min{a, o} — 2075 in (4.39), we get

xs(€DIEP = 5 (6) ) (8, )

]+

ug(z)

a(L%(tf))’ < e—ct|ﬂmin{a,a}—20—\a| < e_Ct‘ﬂ_U_‘a‘,
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where c is a suitable positive constant. Since
o
B Y 4.45
e (410

carrying out m steps of partial integration we derive

3ROt =C Y |x|2|§|s—l(ag(f%@,g)))(t,x).

For this reason, we obtain the following estimates:
5L O) ()| < Ja |5 (08 (B3 ) ) 19)] < Jol ™08 (L3(,9) (8] 1

0
Slal e [ lee g
1

o )T ifo< |z <land m=n—1,
<e
||~ D i |z > 1 and m =n + 1,

where the assumption ¢ > 1 comes into play. Hence, we arrive at

5 L) ()], < j I3 (L2(4,€)) (t, )| de + f 15 (L2(4,€) (¢ ) |de

z|< |z|=1

1 ©
< efCtJ d|x| + efCtJ |z|~2d|x| < e ¢
0 1

Then, employing Young’s convolution inequality from Proposition B.1.1 we have proved the second
statement in Proposition 4.4.5. In the same way, we may also conclude the last statement and the
third statement in Proposition 4.4.5, respectively, by using (4.40) and (4.42). Let us turn to estimate
the first statement. Indeed, we can see that

AP K (t,w) = 31 DI*F (M O (1€)T(6)) (1)
e)‘l(g)t

AR v v

xs(1€)T(9)) (), (4.46)

by using the relation
/\2(5)6)‘1(5)75 M 6,5( eM (@)t )
A2(§) — M() A2(§) — M(§)

In an analogous treatment to get the third statement, we derive the following estimate for the
second term:

e)‘l(g)t

A2(&) = Ai(€)

In order to control the first term, using the relation A\ (§) = —1 — v(&§) we write

e xs(1EDT(E)) ()] < e ol ygoor+- (447)

1

MO _ gty (OF _ ot _ te‘tv(é)f A Otr g
0

Hence, we obtain

§ (MO (ENT()) (1) = 3 (@(€)) (@) — T (1~ xa (€))T(€) (=)

e 5 (DT [ ) o). )

Obviously, we have

o1 (437 (@(©) ) ¢.)

L e ID|u |, < e_tHuoHHg. (4.49)



80 4. Linear structurally damped o-evolution models with § € (%,0]

Now, we re-write

1

85|D|“(te*t3*1(v(&)m(lf\)fo(f) |

0

Z e 2H1DI5 (1@ |

0

eiV(E)trdr)> (t,x)
1

6_7(5)”dr) (t,z)

)5 (O xalle]) | €O () dr) () # DI wn(a)
0

Zaj K —t
Z 8] z e ) (ig(t,f))(t,ﬂf) * \D‘[afa]wo(x).

Thanks to (4.27) and (4.29), by using the Leibniz rule we have

|ag(f%(t,§))’ < e%|§‘—20’€—20+min{a,a}—|a| < 6%‘€|_U_Ia|.

Using again (4.45), and carrying out n — 1 and n + 1 steps of partial integration imply
= : —=Dif0 < |z < 1
|$*1(L(1)(t,§))(t,x)‘ <ez {|$| 1 |$‘

||+ if 2] > 1.

It follows

i —~ -(n=1) it <1
=Ly —t\ m—1(T1 _et ) 2] if0<|z| <
§ t L;(t, t, ’S
’Z_O at ( e )3' ( O( 5))( "I}') e {|x_(n+1) if ‘Jf| > 17

where c is a sufficiently positive constant. Therefore, we derive

< e—Ct.

1

| S a5 T o)t )
£=0

Applying Young’s convolution inequality from Proposition B.1.1 gives

1

D (te 5 (v@alehate) | O ar)) e )], < e ol ypoonre. (450
0 La q
Moreover, due to 1 — x3(|¢]) € CF, we derive

<et.

~

lod1p1 (51 (1 = xall€D) ) )

Lt

By using again Young’s convolution inequality from Proposition B.1.1 we obtain

|2

Combining from (4.46) to (4.51) we may conclude the first statement in Proposition 4.4.5. Summa-
rizing, the proof of Proposition 4.4.5 is completed. O

(e ((1 = xa(IED)TE) ) (8)] < e ol (4.51)

La

From the statements in Propositions 4.4.4 and 4.4.5 we obtain immediately the following result.

Theorem 4.4.2. The Sobolev solutions to (4.22) satisfy the LY — L9 estimates

| 1D1 a8 Y % € (10030 s + ol + e ) i a€ (1,0) and o> 1,
| 1D1 a8 ) < € (10030 oot + ol + sl o s ) =1 07 o0 and o> 1,
q q

for anyt >0, a =0, integer j = 0 and a suitable positive constant c.
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L7 — L7 estimates for middle frequencies

Now let us turn to consider some estimates for middle frequencies, where 377 < €] < 37. Our goal
is to derive the exponential decay for solutions and some of their derivatives to (4.22).

Theorem 4.4.3. Let g € [1,00]. The Sobolev solutions to (4.22) satisfy the LY — L7 estimates
[011D1 s (8, )] Ly < €7 [ (w0, 1) Lo
foranyt >0, a =0, integer j = 0 and a suitable positive constant c.

Proof. Indeed, following the proof of Proposition 3.1.5 we may arrive at the exponential decay for the
following estimates:

|37 (161 o] Ko, €)x2(1€D) (1) 1 < e,
|37 (€l K (t, ) x2(1€D) (8 )| 1 < e
Therefore, applying Young’s convolution inequality from Proposition B.1.1 we get
[0 1D s (8 ) e < 15 (16107 Ko, ©x2(1€D) () 1 o] o
+ [ (el 07 K (¢, ©)x2(1€D) (t, )| 2w o

< e || (uo, ur)| s
Summarizing, the proof to Theorem 4.4.3 is completed. O
From the statements in Theorems 4.4.1, 4.4.2 and 4.4.3, we obtain immediately the following result.

Theorem 4.4.4. Let ¢ € (1,0) and m € [1,q). Then, the Sobolev solutions to (4.22) satisfy the
(L™ n L?) — L7 estimates

n

nNy1l_n(q1_1y_ _a
[ID1u(t, )], s (1 +6)2CHED 07073 ug | g
+ (140 RO E B D8 |
q
[ID1%us(t, )] o < (14 6)2OFED T2 0035 g L gy

+ (1 + 1) 7D 0755 g | o g
and the L1 — LY estimates

[1DI"u(t (1+1)2 D735 fug | g + (14 ) 20HED =35 |

e $ pla—2o1t

[1D1ue(t, ) e < (14 )2 ED 7 Jug| g + (14 6)2FHED=E g | g,

and for all a = 0.

1
m

1_ 1
wherel+5—;+

4.5. Comparison with known results

In this section, we explain some comparisons between the above obtained estimates and known results.

4.5.1. The case 0 € (%,0)

First if we are interested in studying the special case of ¢ = 1 and § € (%, 1), in the paper [57] the
authors obtained L' estimates for oscillating integrals to conclude the following L™ — L9 estimates
not necessarily on the conjugate line for solutions:
e, Yo < 1T P Lol : + OO if t € (0,1],
B JliLe =) o ntzess -1y [2]0- ¥ || pm + B A= DHE-UA=)F |y | if £ € [1,00),

where 1l <m<qg<oand 1+ % = % + % Here the authors took into considerations the connection
to Fourier multipliers appearing for wave models. It is reasonable to see that the decay rates for
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solution produced from the results in the paper [57] are somehow better than those in Theorem 4.3.1
with c =1and § e (%, 1). However, these decay rates are almost the same if we consider the case of
sufficiently large space dimensions n.

In the paper [11], the authors investigated L? estimates for solutions and some of their derivatives
as well in the case 0 € (%, 0) with additional L' regularity for the data as follows:

lu(t, Yz < (1 +8)" 5 Jugl i nzz + (14 O ] piaze,
[IDI7u(t, )] < A +1)~ "ﬁf”nuoumm <1+t>1f%”uulumm?

Jue(t, Yz < (1 +8)7" mrrzto—s + (L4855 Jug | e,
[IDP2u(t, )] o < (1 +6)" 5 uol i mpzs + (1 +6) 7 Jur | 12,

for all space dimensions n. Moreover, there are other sharper results under a restriction to the space
dimensions n > 20 in the paper [11] which is stated as follows:

= n—2c .
lu(t, ) < (1+t)7 35 lugllpinzz + (1 +8)" "5 |u|piaz  if n> 20,
(1+6) 5 Juol1nre +logle + Dl pinpz  ifn =20,

_n+t20 _n
IIDI7u(t, )] > < A +1)""5 Juollprnme + (1 + )73 ur]Lrqre2,
nt2e n
lue(t, e < (L+6)" 5 Juolprame-s + (1 +1)7 3 [ur] 1 r2,
H|D|26 u(t, - HLz <@+ Muglprapes + (L+1)” 450_1““1”L10L27

We can see that the authors in [11] considered L? estimates by using Parseval’s formula under the
choice of parameters m = 1 and ¢ = 2. For this reason, some results in the paper [11] are obviously
somehow better than those in Theorem 4.3.1 and Theorem 4.3.2, where we want to derive estimates in
gerenal cases g € (1,00) and m € [1, ¢q). Nevertheless, if we are interested in a restriction to sufficiently
large space dimensions n, the results in Theorem 4.3.1 and Theorem 4.3.2 almost coincide with those
n [11].

4.5.2. The case 6 = o

First if we are interested in studying low frequencies, the author in [69] in the special case of 0 = 6 = 1
obtained L' estimates for oscillating integrals to get the following L' — L' estimates:

s (8, )z < (1462 gl o+ (14 6) 2O FED g 1.
From Theorem 4.4.1 we may conclude for L' — L! estimates as follows:

Jtsey (£, )21 < (1 + ) ECFED g 1o+ (1 + ) 2CHIED gy | o

Here the author in [69] took into considerations the connection to Fourier multipliers appearing for
wave models. It is reasonable to see that the decay rates for solutions produced from the results in
[69] are somehow better than those in Theorem 4.4.1 with o = § = 1. However, these decay rates are
almost the same if we consider the case of sufficiently large space dimensions n.

In order to compare the estimates for solutions and some of their partial derivatives in the second
case of high frequencies, we recall the result from Theorem 4.4.2 as follows:

1D 1)1 5 e (10 00) ] gassoers + ol + s )
The author in [69] proved the following result:
70w 8] < €7 (a0, 00) |y -asianre + ol e + el g+ )

Finally, we can see that if we choose ¢ = 1 in Theorem 4.4.2, these two results are exactly the same.
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5. Semi-linear structurally damped

o-evolution models in the case § =&

2

The main purpose of this chapter is to study the global (in time) existence of small data Sobolev
solutions for semi-linear structurally damped o-evolution models. We will use the decay estimates
for solutions and some of their partial derivatives to the previous linear Cauchy problems to treat a
family of semi-linear models.

Let us consider the following two Cauchy problems:

g + (—A)7u + p(—A) S, = ||D|“u|p7 w(0,2) = up(z), ue(0,2) = uy(x) (5.1)

and
up + (—A)7u + ,u(—A)%ut = |w|?, w(0,z) = up(x), u(0,2)=u(x) (5.2)

in space dimensions n > 2 with 0 > 1, p > 0, a € [0,0) and a given number p > 1.
Let us explain our objectives and strategies as follows:

e The estimates for solutions to the linear Cauchy problems (2.1) are a key tool to deal with the
semi-linear Cauchy problems (5.1) and (5.2).

e By using the fractional Gagliardo-Nirenberg inequality, the fractional chain rule, the fractional
powers rule and the fractional Sobolev embedding, we obtain global (in time) existence of small
data solutions in the energy space, in the solution space below energy space, in the energy space
with a suitable higher regularity and in the large regular space.

e Some examples are presented at the end of each theorem to compare with known results.

In the following statements we introduce the data spaces Aj, , 1= (L™ n H;) x (L™ n H(Esfor)

with the norm

I(uo, un)llas, , = lwollzm + fuolay + fuslzm + lusl r—or+

where s > 0, g € (1,00) and m € [1, q).

5.1. Global (in time) existence of small data solutions to the
model (5.1)

5.1.1. Data from the energy space

Let us assume data to belong to the energy space on the base of LY.

Theorem 5.1.1. Let g € (1,0) be a fized constant and m € [1,q). Let a € [0,0) and n > 1. We
assume the condition

m(20 — a)

p>14 02074
n—m(oc—a)

Moreover, we suppose the following conditions:

pE [%,o@) ifne (m(a—a),q(afa)],
ve | i io—a) e (oo —a. 2]

Then, there exists a constant € > 0 such that for any small data

(uo,u1) € A7, , satisfying the assumption ||(uo,u1)|ag, =~ <e,
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we have a uniquely determined global (in time) small data energy solution (on the base of L?)
ue C([0,0), HT) n C*([0,0), LY)
to (5.1). The following estimates hold:
Jutt, Mzo < (14050 up, wr) Lag, .
|}(|D|“u< Drunlt, ) £ (14075 (o, un) | ag,,,

where 1 —|— o= —|— P
Remark 5 1.1. Let us explain the conditions for p and n in Theorem 5.1.1. The conditions p >
1+ % and n > m(c — a) imply the same decay estimates for solutions to (5.1) as for solutions

to the corresponding linear model with vanishing right-hand side. Hence, we can say that the non-
linearity is interpreted as a small perturbation. The other conditions for p come into play after we
apply the fractional Gargliardo-Nirenberg inequality. In addtion, the condition for n compared to the
term ¢(o — a) results from the same tool. Eventually, the upper bound for n < %
the set of admissible range for p to guarantee it as non-empty set.

arises from

Proof. Our approach bases on the paper [12]. By using fundamental solutions we write the solutions
to (5.1) with vanishing right-hand side as follows:

ul™(t, x) = Ko(t, ) %4 up(x) + K1 (t, ) %5 uy (),

where K;(t,z) with j = 0,1 are defined as in Chapter 2. Applying Duhamel’s principle leads to the
following representation of solutions to (5.1):

u(t,z) = Ko(t, ) #, ug(x) + K1(t,x) 5 uy (x J Ki(t — 7,2) #; || D|*u(r, ® | dr.

We introduce the data space A5, , 1= (L™ n HJ) x (L™ n L?). Moreover, we introduce for any

t > 0 the function space X (t) := C([0,], HY) n C*([0,1], L?). For the sake of brevity, we also define
the norm

lulxw = sup (Jolr) ™ fu(r. s + fo(r) DI u(r ) o + 07 ) )

o<sr<t

and the space Xo(t) := C([0,t], H7) with the norm

follsuis = sup (Aol Hutr, s + @) IDFwir, )

<7<t

where from the estimates for solutions and some of their derivatives to the linear Cauchy problems
given in Theorem 2.3.1 we choose

fo(r) =01+ 7)1_3(1_%), fo(m)=g(r)=(1+ 7-)_3(1—%)_
We define the operator N : X (t) — X(¢) by the formula

t
Nu(t,z) = Ko(t, z) #5 up(z) + K1(t,x) #, up(x) + j K1(t —7,2) #; || D|*u(r, 2)|"dr.
0
We will prove that the operator N satisfies the following two estimates:
INullx @y < I(uo, ur)lag, , + lul’, ) (5.3)
INu = Nolxq < lu—vlxon (lul%k + [0]%00)- (5.4)

First let us prove the estimate (5.3). Taking into consideration the estimates for solutions and
some of their partial derivatives to the linear Cauchy problems from Chapter 2 for j,k = 0,1 and
(j, k) # (1,1) we get the following estimates:

|071D|* (Ko(t, x) %, uo(z) + K1(t,2) %5 u(2)) ],
S @465 D g | g+ (14 65O ERD |

< @+ ) F DD (yg, ) ag

m,q"
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In order to control the integral term in the representation of solutions, we use two different strategies
for 7 € [0,t/2] and T € [t/2,t]. In particular, we use the (L™ n L) — L? estimates if 7 € [0, /2] and
the L? — LY estimates if 7 € [t/2,t] from Theorem 2.3.1. Therefore, we obtain

HaJ|D|k0NU Hm <@ +t)1*£(1*l) (k+])H(uO Ul)HAglq
t/2
+f (14t — 1)~ 20= D049 | Djew(r, )P, dr
0

t
o [ w0 Dot o
t/2

Hence, it is necessary to require the estimates for ||D|*u(r, x)’p in L™ n L7 and LY as follows:

[ 1Dl u(r, )] +[[1DI*u(r 1D o = (1Dl )

HLq

s S 1D, )7 Rl

Applying the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we may conclude

Lmp

[ID1%u(r, ) o < [ID17u(r, )5 fulr, ) 0"

S (fa(T)HUHXo(T)> ” (foMul o))"

—0qp < (1 +7_)1—3(1—$)—6qpHu”XO(T)’

and
a o Om 1—0pmp
D1 u(r, )| oy S 1Dl ) |07 e, ) 2
mp 100y _a(-1y_a,,
< (fa(T)IIU(T,~)|\x0<T>) (fo(D)lullxo(r)) S @47 mF 0 me a1y,
where
n /1 1 a n /1 1 a
0 ::9(10' ) :*(7_* *) dem ::eaa 5 :7(7_7 — .
ap o(ap,q) o\g " n) ndbm o (mp,q) -\ mp+n)

a

As in Corollary C.1.1 we have to guarantee that 6,, and 6,,, belong to [£,1]. Both conditions
imply the restrictions
n

pe[%,oo) ifn<qlc—a), or pe[%,m] if n>q(oc—a).

By virtue of 6,,, < 6,4, and the relation 1 + % =14+ L we derive

1Dl (1200w g s (1 A D ),

| ”Lmr\Lq ~

a —2(1-1)-0,4 _mp(1 _ 1
HID1u(r, |, < (14 7PU=30 D0 jyjp g (14 )= Grmds e D 8,
Summarizing, from both estimates we may conclude

HaJ\DVWNu HLq <1 +t)1_ﬂ(1— )_(k+j)||(UO7U1)HA$nq

t/2 n - np 1 a
Flulf [ (L4t = 7= B 0D gy F G gy
0
t
+ HuHiomJ (14t —7) (14 7= Gt Dar,
t/2
Using (1+t—7)~ (1+¢t)if 7e€[0,t/2] and (1 +7) ~ (1 +¢t) if 7 € [t/2,t] we get

t/2 )
f (I+t— 7)173(17%)7(’”3')(1 + TP wme ) dr
0
t/2 )
< (14 )50=n)=k+) J (14 7P~ s +50dr,
0
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and

t t
f 1+t —7) =D (1 4 )PPt Ddr < (1+t)p*?<%*#+%>f (14t —7)=F+gr
t/2 t/2

< (L+ )P~ F a2 (4) < (1 4 ¢)l=5 A==kt +14p— 5 (5 +58)

% it follows immediately

-1
p—E(LJr%) < -1
a m n

Because of p > 1 +

n —1 ajg
Consequently, the function (1 + 7)P"~ (2 +22) is integrable over (0,00). Hence, we have

3=

t/2
J (L+t—7) a0 D=0t (1 4 P~ S G ms D dr < (14 ¢) 7m0 =(t),
0

and

t
f (141 — 7)) (1 4 1P BB+ Dy < (1 4 )1 20— (k4d),
t/2

Finally, we conclude for 7,k = 0,1 and (j,k) # (1,1) the estimates
o 1y ]
[671D1* Nu(t, )|, < (1407507 ED (| (ug, ) g, , + Jul, )-

From the definition of the norm in X (¢), we obtain immediately the inequality (5.3).

Next let us prove the estimate (5.4). Using again the estimates for solutions and some of their partial
derivatives to the linear Cauchy problems from Chapter 2, that is, the (L™ n L9) — L? estimates if
7 € [0,¢/2] and the LY — L? estimates if 7 € [t/2,t] from Theorem 2.3.1, then we may derive for two
functions v and v from X (¢) the estimates

|6 |D1* (Nu(t, ) = Nu(t,))| .

t/2 ) ,
sj (L4t =)' == DD D, )" = 1D ()| e e
0
t
o[ @t Dt o = Do e
By using Hoélder’s inequality, we get

[1D1"u(r, )" = [ID1*v(r, )|

< [1DI1*u(r, ) = DI (r, )| yor (1D1ulr, ) [ + [1D10 (7, )0
and

D1 u(r, )" = [1D]"o(r, )]

< [1DIu(r, ) = D10, )| oy (D1 ulr ), + [1D10(7 ) ).

Analogously to the proof of (5.3), applying the fractional Gagliardo-Nirenberg inequality from
Proposition C.1.1 to the norms

[ID|*u(r, ) = [D]*v(r, )|

[1D1*u(r,-)]

[1DI"v(7, )

n’ n’ n

with 7 = ¢p and n = mp we derive the following estimates:

|||D‘au(7a ) - |D|av(7—7 HLQP ~ (1 + 7)1_3(1_%)_0“} Hu - v”Xo(T)?
[ID1w(r, )] oy < (1 7)1 50D 0w ] 1,

[P0 (7, ) o S (14775000 0 1,
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and
|||D‘au(77 ) - |D|av(7—7 ')Hme < (1 + T)l_g(l_%)_emp Hu - v”Xo(T)?

||D|%u(r, )| 1-2(1-3)~

|ID|*v(r, )|

Pl x ()
1_2(1_%)_9Ww

pop S (L+7T)
Lmp ~ (1 + T)

0] x0(r)

Therefore, thanks to 0,,, < 6,4, and the relation 1 + % =1+ L we obtain

H ||D|a ) ‘p - “D|a T?')‘pHLMqu

—2P( __ @ —1 !
S A+ )P ETm D) |y — vlxon) (Il + 10l
and

HIDI*u(r, ) = [Pl ()

1

_np(l __ a -1 —1
S(@+7)P - Gn ‘”’+")HU - UHXo(T)(”u”Z))(O(T) + HUHZ))(O(T))-
Applying again an analogous treatment as we did in the proof of (5.3) we may conclude for j, k = 0, 1
and (j,k) # (1,1) the estimates

|1DIE (Nu(t, ) = No(t, )], < (1 + =500 |y —of o (Jul% by + o5 ))-

From the definition of the norm in X (¢), we obtain immediately the inequality (5.4).
Summarizing, the proof of Theorem 5.1.1 is completed. O

Example 5.1.1. If we choose m =1 and ¢ € (1,2] in Theorem 5.1.1, then it becomes Theorem 1 in
the paper [11]. For this reason, Theorem 5.1.1 is a generalization of Theorem 1 in the paper [11].

Example 5.1.2. If we choose m =1, 0 = 1, a = 0 and the space dimensions n = 2, 3,4 in Theorem
5.1.1, then it becomes Theorem 1 in the paper [12] with ¢ € (1,2]. Moreover, by choosing some other
suitable parameters for g € (1,0), we can see that the results of Theorem 5.1.1 bring some flexibility
in comparison with those from Theorem 1 in the paper [12] (see the following table):

Theorem 5.1.1 Theorem 1 in [12]
€(1,2] and n = 2,3,4 pe[q,"’_‘q]andp>l+% pe[q,ni_q]andp>1+%
g=4andn =234 p € [4,00) no result for p

g=4andn=>5 p € [4,5] no result for p

Tab. 5.1.: Comparison between the obtained results.

Remark 5.1.2. In this remark, we allow a loss of decay in estimates for solutions in comparison
with the corresponding decay estimates for solutions to the linear Cauchy problem with vanishing
right-hand side. We follow the proof of Theorem 5.1.1. Having this in mind we fix the data space and
the solution space as in Theorem 5.1.1, but we use the norm

Julxw = sup (fer () ulr Yo + ea (0 IDIT0(r, )+ ey (7)) e )

STt

and the space Xo(t) := C([0,t], H7) with the norm

oo = sp (o) wm Mo + Lea () 1D w00 ).

o<t<t

where
fo(r) = @+ n)ime0m0re £ (7) = (L+7) 750792 and fo (1) = (1 + 1) "7 070)*e,

for some positive constants €1, €2 and 3.
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Case 1: If we assume that €1 = g5 = €3 = ¢ are sufficiently small positive constants, then the
condition for exponents p is the same as in Theorem 5.1.1, in particular,

p>1+7m(20—a) .
n—m(oc—a)

Case 2: Now we fix the parameter ¢1 := (1 — %)(— 1+ 2(1— %)) Next we choose €5 = 1+ &1 and

ez = 1. Then, we have to guarantee another condition for the space dimension n as follows:

2mqo

n >
q—m

which we may avoid the condition for the exponent p > 1 + % in Theorem 5.1.1.

5.1.2. Data below the energy space

In the second case we assume that the data belong to the Sobolev space on the base of LY only. For
this reason, we get Sobolev solutions instead of energy solutions.

Theorem 5.1.2. Let s€ (0,0) andn > 1. Let g € (1,0) be a fized constant, m € [1,q) and a € [0, s).
We assume the condition

m(20 — a)

p>14 02774
n—m(oc—a)

Moreover, we suppose the following conditions:

pe [%,oo) ifne (m(a—a),q(s—a)],
ve | i) goe (ats-0), T

Then, there exists a constant € > O such that for any small data
(uo,u1) € Ay, , satisfying the assumption || (uo,u1)|as, = <e,
we have a uniquely determined global (in time) small data Sobolev solution

ue C([0,0),H)

q

to (5.1). The following estimates hold:

n

_n(p_1
[u(t,-)|za < (1 —I—t)1 = (1 T)||(U0,u1)|
[IDutt, )|, < (14850793

AS

m,q’

(uo,u1)

A

s
m,q’

wherel—f—%:%—i—%.
Proof. We introduce the data space Aj, . := (L™ n HJ) x (L™ n L?). Moreover, we introduce for any
t > 0 the function space X (t) := C([0,t], HZ). For the sake of brevity, we also define the norm

- (== — n1_1lyp s
lullx ) == Oiupt((lJrT) 0D (T, Y| pe + (1 + 7)o =045

T

D|*u(r, -)HM).
We define the operator N : X (t) — X (t) by the formula
t

Nu(t,z) = Ko(t, z) 5 up(z) + K1(t,x) #, up(x) + J Ki(t—7,x) *, ||D|au(7,m)|pd7.
0

We will prove that the operator N satisfies the following two estimates:

INullx @ < I(uo, ur)las, , + lul . (5.5)

m,q

INu — Nolxqy = ol (lulfg + oI50)- (5.6)
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First let us prove the estimate (5.5). Taking into consideration the estimates for solutions and some
of their partial derivatives to the linear Cauchy problems from Chapter 2 for k = 0,1 we get the
following estimates:

||DI*s (Ko(t, z) #, uo( )+K1(t ) %z u1(2)) ],
(1+t)—7(1 = qu (1+t)1_ﬂ(1 1)_7
<A+t 0-7

7 || (uo, ur)| 4, ,

In order to control the integral term in the representation of solutions, we use the (L™ n L?) — L4
estimates if 7 € [0,¢/2] and the LY — LY estimates if 7 € [¢/2,¢] from Theorem 2.3.1. Therefore, we
obtain

[IDIF* Nu(t, )|, £ A+ 677097 F (ug, u) | ay, ,
v 1-2(1—1)— ks P
R [T [
t
e[ e It

Hence, it is necessary to require the estimates for ||D|%u(r, x)|p in L™ n L? and LY as follows:

D1, ) oo S (1D ) [+ [1D1 0l s DI ulr I o = (1D () s

Applying the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we may conclude

IID1u(r, ) 1w < NIDIalr, )57 fulr, )5 < (14 7) =5 G730 |,
and 1
|[D1*w(T, )| o S [IDIPu(r ||me lu(r, Mg < (1 + 1) =2 A= 20 | ),
where
n/1 1 a n/1 1 a
o s 0) = (L T 0= 0y = (1 %)
ap s(ap,q) s\qg @ + ) a0 P s(mp,q) \g " mp + -

As in Corollary C.1.1 we have to guarantee that 64, and 6,,, belong to [¢,1]. Both conditions
imply the restrictions

pe[i,oo> ifn<q(s—a), or [ 7] if n>q(s—a).
m m’ n—q(s—a)
By virtue of 0,,, < 8,4, and the relation 1 + 1 =141 wederive
a _n _np(l_ 1 ,a
HIDIu(r, W g < 7P (30D 50m) gz, < (1 =2 G s Dy

1

|| ||D|“u<n~>|”|\m S (1 T>p(1—%<1—%>—‘; ) fullry S (14 P F G
)

Summarizing, from both estimates we may conclude

H|D|I“Nu HLq < (1 —I—t)l_ﬂ(l_’

7 (o, ) 4, ,

t/2 o
+ HUHX(t L (1+t—7)1*?(1*%)* (14+7)P~% A8,

np

t
npel 1 4 a
Flul [ @ e=m i@ F
/2
Using (1+t—7)~ (1+t)if 7e€[0,t/2] and (1 +7) ~ (1 +¢t) if 7 € [t/2,t] we get

t/2 ) p L
f (1+t— 7)17%(17%)7%(1 + T)p77(%7m7>+5)d7
0
t/2
< +t)1*%<1*%>*%f (1+7)p s+ 50 dr,
0
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np 1 np

¢ ¢

J (].+t—7’)17%(1+T)p_7(m_$+%)d7§ (1+t)p_7(%_é+%)f (1+t—7)17%d7'
t t/2

S+ FEmH DI < (144 F 0D E R )

m(20—a)

Because Ofp >1+ n—m(o—a)’

it follows immediately

Consequently, the function (1 + T)p77 (7 z ) is integrable over (0,00). Hence, we have

t/2 n a n S
| st g e G b < (0D
0

and

¢
J\(1+t—7) B B e < (14 4)- 20—
t/2
Finally, we conclude for k = 0,1 the estimates

[P Nu(t, )], < (1 + 50D~ (g, un) |, + [l )

From the definition of the norm in X (¢) we obtain immediately the inequality (5.5).
Next let us prove the estimate (5.6). Using again the (L™ n L9) — L7 estimates if 7 € [0,¢/2] and

the L9 — L7 estimates if 7 € [¢/2,t] from Theorem 2.3.1 we derive for two functions v and v from X (¢)
the estimates

|ID|** (Nu(t,-) — Nv(t M e

t/2
< J. (I1+t— 7)1—2(1— u(T, ~)|p — ||D|“U(7'7 -)|p pmapadT
0
¢
+J (14+t—71)" }p—HD\“U(T,- }pHLq T
t/2

By using Holder’s inequality and applying again an analogous treatment as we did in the proof of
(5.4) in Theorem 5.1.1, we may conclude for k£ = 0,1 the estimates
(1+t)-s0-p-%

[IDI**(Nu(t,) = No(t u—vlx o (lul g + lol)-

HLq ~

From the definition of the norm in X (¢) it follows immediately the inequality (5.6).
Summarizing, the proof of Theorem 5.1.2 is completed. O

Example 5.1.3. By choosing m =1, g = 1.1, 0 =1, s = 0.99 and a = 0.1 we obtain the following
admissible range of the exponents p in Theorem 5.1.2:

€(20,00) and n=1.

5.1.3. Data from the energy space with suitable higher regularity

Now we assume that the data in (5.1) belong to the energy space with a suitable higher regularity.
We have the following result.

Theorem 5.1.3. Let 0 < s < o + % and n = 1. Let g € (1,00) be a fixed constant, m € [1,q) and
€ [0,0). We assume the condition

m(20 — a)

p>1+max{7,
n—m(oc—a)

p—d}
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Moreover, we suppose the following conditions:

pe [%,o@) ifne (m(a—a),q(s—a)],
(o —a) ]

mq(o — a)
n—q(s—a) p ]

pe[g,l—i—
m g—m

ifne (q(s —a),q(s —a)+
Then, there exists a constant € > 0 such that for any small data

(w0, u1) € A3, , satisfying the assumption |(uo, u1)|as, , < e,

we have a uniquely determined global (in time) small data energy solution
u € C([O7OO),H5) ) Cl([(),oo),H;*”)
to (5.1). The following estimates hold:

() e < (1 + 070 (g, ur) 4,
(

Jue(t, Vze < (1 + )75 (ug, ur) | as, (5.8)
| (IDPu(t, ), |DI*~“u(t, )

1w

_n(1_1ly_=s
lpe S @+ 0770775 (ug, u) s, (5.9)

1_1 1
wherel—f—g—;—i—ﬁ,

Remark 5.1.3. Let us explain the conditions for p and n in Theorem 5.1.3. Because we want to
use the fractional chain rule, the condition p > 1 + [s — o] is necessary to assume. The upper bound

forp<1+ % appears to guarantee the possibility for choosing the parameters satisfying the

fractional chain rule (the existence of these paremeters is presented more in detail in another remark
decay estimates for solutions to (5.1) as for solutions to the corresponding linear model with vanishing
right-hand side. Hence, we can say that the non-linearity is interpreted as a small perturbation. The
other conditions for p come into play after we apply the fractional Gargliardo-Nirenberg inequality.
In addtion, the condition for n compared to the term ¢(o — a) results from the same tool. Eventually,
mgq(oc—a)
q—m

at the end of the proof). Moreover, the conditions p > 1+ and n > m(o —a) imply the same

the upper bound for n < ¢(s —a) +
that this set is non-empty.

arises from the set of admissible range for p to guarantee

Proof. We introduce the data space A;, , := (L™ n H7) x (L™ n H3=7), the function space X () :=
C([0,t], H) n C*([0,t], H; =) with the norm

ulx = sup ((1+7)F0 D u(r, )l ge + (L4 7) 750D DPu(r, ),

o<T<t

ne_1 _ n_1 s
+ (L4770 (7)o + (14 7) IO

DI*™Tuy(, ')HLq)7

and the space Xo(t) := C([0,t], H?) with the norm

lwlxao = sup ((147)507D ulr e + (14 7)7 50705

T

IDPw(r, ). )-
We define a mapping N : X (t) — X (¢) in the following way:
¢
Nu(t,z) = Ko(t,x) =, ug(x) + K1 (t,x) %5 ug(z) + J Ki(t —T,x) %, ‘|D|“u(7,x)‘pd7.
0

In order to conclude the uniqueness and the global (in time) existence of small data solutions to
(5.1), we have to prove the following pair of inequalities:

[Nl xey < 1oy ) g, , + [l (5.10)
—1 —1
INu = Nolxq < fu = vlxon (lulfe by + [0Ft)- (5.11)

First let us prove the inequality (5.10). Our proof is divided into four steps.
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Step 1: We need to estimate the norm |Nu(t,-)|re. We apply the L™ n L? — L9 estimates if
7€ [0,t/2] and L? — LY estimates if 7 € [¢/2,t] from Theorem 2.3.1 to conclude

dr

t/2
_n(1_1 _n(1_1 a
INu(t, )|pe < (1+1)=0 T)||(u0,u1)|\Afn,q+f (1+t—7)-=0 T>H||D| u(T,.)|p‘meLq
0

+L2(1+t_T>y|D|au(T,.>} |, dr

‘We have

D1, ) o (1D )

Mo + 1D u(r

Rl

To estimate the norm H|D|“u(7', ')”i’w with k = ¢q,m, we apply the fractional Gagliardo-Nirenberg
inequality from Proposition C.1.1 to conclude

1D, )| < DI, 32 fulr, V1" S (14 7) 75070700 a1,
and - )
[ID1"u(r, )| oy < 1D u(r ULqP Ju(r, Mpe ™ s @+ 1) =70 =20 u (),
where
n/1 1 a n/1 1 a
eqp = ea,s(qpv Q) = g(& - % + E) and emp = ea,s(mpa Q) = ;(a - mip + E)

Due to Corollary C.1.1 we have to guarantee that f,, and 6,,, belong to [%,1]. Since 0, < Oy,
we obtain
q n

— m] if n>q(s—a).

pe[g,oo> ifn<q(s—a), or pe[
m

By virtue of the relation 1 + % = % + %, we derive

(1+7)" p(1-2(E—5+2)

HD1u(r I g [ulfy, oy
LD, Y] ,0 < @+ rP (3G ) g,
Hence, we get
t/2
L (1+t—7)tmz0-%) w(r, )| o padT

A

t/2
(1+ 8- 20=D . (t)f (14 7P 2GR+ gr
and
' P (1 n(L-2 a) '
[ s e=nloruPlyar < 403G ar g ) [ @ vi- e
t/2 t/2
B HU’HXO(t))

L A R e

where we use the estimates (1+t—7) ~ (1 +1¢)if 7 € [0,¢/2] and (1 +7) ~ (1 4+ ¢) if 7 € [t/2,¢].

%, we have immediately

p—1
p—7< %)<—1.
o\ m n

Consequently, the term (1 + 7)? —z(etee) is integrable over (0,00). Hence, we get

Because of p > 1 +

t/2
1—n(1—1 a p 1_n(1_1
L (L4t =) 50D D[, ) o < (L4 D20 Dl
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and .
L+t =) [[DI*ulr, )| L dr < (1 + )70 Dl - "
t/2 ®©

Therefore, we arrive at the following desired estimate:

_n(p_1
[Nut,)re < (148507 (| (uo, ua)|

Ao T HuH})’(O(t)). (5.12)

Step 2: We need to estimate the norm ||0; Nu(t, )| pq. Differentiating Nu (¢, z) with respect to ¢
we obtain

O Nu(t,z) = 0, (Ko(t, ) %5 uo(x) + K1 (t, @) #5 ur(2)) + L Oy (K1t — 7, @) =, || D|*u(r, x)}p)dT.

We apply the L™ n L9 — L7 estimates if 7 € [0,¢/2] and the LY — L7 estimates if T € [t/2,¢] from
Theorem 2.3.1 to conclude

l0eNu(t, Yo < (1+ )77 079 | (ug, ua) L as, .

t/2 N t
T R e [ R P W RS A

Following the same ideas for deriving (5.12) we may conclude

2N u(t, ) pe < (1+7)7F O ([(ug, wa) L, , + [l )

under the same assumptions for p, that is,
pe[i@o) ifn<q(s—a), or pe[—,i] if n > q(s—a),
m a

and )
pe1y M2o—a)
n—m(oc —a)

Step 3:  Let us estimate the norm |0y D[*~7 Nu(t We use

HLq

0| DI*~7 Nu(t,x) = 04| D|*~7 (Ko(t, ) *4 ug(x) + K1(t,z) *5 ui(x))

t
+ J 0| D|°° (Kl(t —T,T) %y ||D|au(7, :z:)|p)d7'.
0

We apply the (L™ n L%) — L? estimates if 7 € [0,¢/2] and the L? — LY estimates if 7 € [t/2, 1] from
Theorem 2.3.1 to derive

[ DI~ Nu(t (140507075 (wg, ua) g

m,q

RIITES

t/2
+f (L4t — )= 20= D=2 ID[ou(r, ) e odr
0 q

t
b [ e D ) -
t/2 !

= 1+ ) 7075 | (ug, ) |

A g
t/2 L )
+ J:) (1 +t- T) K e U(T’ )| |L"’Lr\L‘1r\H;7“
¢
+j (A+t=nt (T ) o g
t/2 K
The integrals with | ||D]%u(r, ')|pHLanq and | || D|%u(r, - |pHLq will be handled as before if we apply

the conditions for p, that is,

pe[£7oo> ifn<gq(s—a), or pe[q n
m

- m] if n>q(s—a),
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94
and 9
p>1+ m(20 —a) .
n—m(o —a)
Hence, we get
t/2 n 1 p n 1 s
L (1+t— 7)1—;(1—?)—* (T, )’ HLmﬁquT <(1+ t)l_?(l_?)_g H“HZ))(O(:&)’
and .
_ s a _n_ly_=s
[l DR P e < (04 070D
u(T, ~)’pHH5_g, we shall apply Proposition C.3.2 for

To estimate the integrals with the norm | ||D[*

the fractional chain rule with p > [s — o|. Therefore, we obtain
-1 1
Pz s

1
where — =
q q1 q2

P
[P AP | e < 1D u(r ) 7 D1 ur, )] s
Applying the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we have
_n(1_ly_=s
[P, )|y < Julr e ™ (1D u(r, ) S (4 7) 75070700 a1,
and
[P~ u(r, )| Ly < Julr, e [IDFu(r, )52 < (14 7)t 50D 50 fu ),
where
n/1 1 a n/1 1 s—o+a
91}1 = 9a7s(q1;Q) = g(a - qil + 5) and qu = 95—0-&-(1,5(‘]27‘]) = g(a - q; + " )
Hence, we may conclude
—2P(1-1)—= 1)04, +0
HIDIu(r O gyoe < (14 7y 005 (@0t
_mp(1_1 jay_s=o
SR 7l iy
where we can see that (p—1)6,, +6,, = %(% + =292 Here we have to guarantee that 6, € [%,1]
and 6,, € [£=2t2 1]. Both conditions imply the restrictions
l<p<1l+ alo = a) ifn>q(s—a), or p>1lifn<gqg(s—a).
n—q(s —a)
(5.13)

Therefore, we have shown the estimates
S5 ([ (o, wn) g, , + [l o))

|oe| DI Nu(t, )|, < (1 +1)'~
Step 4:  Let us estimate the norm [|D|*Nu(t,-)||,,. We use
DI Nu(t, z) = |D|* (Ko(t, 2) #5 uo(x) + K1 (£, ) 5 uy ()
f |D|*(K1(t — 7, %) #, || D|*u(r, 2)|")dr

0
L1 estimates if 7 € [0, ¢/2] and the L7 — L? estimates if 7 € [¢/2, ]

By applying again the (L™ n L?)

from Theorem 2.3.1, we derive
D77 (w0, ) as,

(148509

t/2 ,
+ J (1+t—7)—s0-7
0
t
R TR

dr

H|D| N’LL HLq ~
R4 -
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Following the approach to show (5.13) we may conclude

||DI* Nu(t 1 +¢)m70-9- 7 (|| (o, ur)|

HL‘I ~ A:n ,q + HuH?(o(t))'

Summarizing, from the definition of the norm in X (¢) we obtain immediately the inequality (5.10).
Next let us prove the inequality (5.11). Our proof is also divided into four steps.

Step 1:  We need to estimate the norm |Nu(t,-) —Nu(t, )| . Using the (L™ n L?) — L7 estimates
if 7 € [0,t/2] and the L? — L7 estimates if 7 € [t/2,t] from Theorem 2.3.1 we derive for two functions
uw and v from X (t) the estimate

t/2
[Nu(t,-) = Nv(t,-)|za < f (1+t—7)t=a0=x w(r, )" = |[D ()| o o dT
0
t
+L2(1+t—7-)| IDu(r, )| — |ID|%o(r, )|,.dr

By using Holder’s inequality and applying again the same ideas as we did in the proof of (5.4) and
Step 1 to prove (5.10) we may conclude

[Nu(t, ) = Not,)pe < (1+ 6507 u = ol xo0) ([l ) + 1015000
Step 2:  We need to estimate the norm |0 Nu(t, ) — dtNv(t,-)||pe. We use

n

t/2
[N u(t,-) — N v(t, ) 1a < J (L+t—7)" 30D || D|*u(r, )" — |DI*v(r
0

t
[ NP = Pt P
t/2

Using the same approach as we did in the proof of (5.4) and Step 2 to prove (5.10) we conclude

N pedr

10:Nu(t,-) — & Nv(t,)|pe < (1 +1)" 50>

(t)(HuHXU(t) + HUHXO(t))

Step 3:  Let us estimate the norm |d;|D|*~7 Nu(t,-) — 0| D|*~7 Nv(t We use

e

|0 DI~ Nu(t, ) — &|DI*="Nu(t, )| ,,

t/2
< J (1+t=7)' 5O | ID|*u(r, ) = [[D10(r, ) | o e
0 q

t
+ J;/Q(l +t— T)l—f H ||D|au(7" )‘p _ HD‘QU(T, .)‘pHHg_(’dT

t/2

= J;) (1 +t— 7)1—3(1—%)_* (7-7 )|p _ ||D|GU(T, .)|pHL7nﬁLqﬁH;_UdT
t
+ Lz(l +t=7)'F [ IDI"ulr, ) = DI ) o s-e
The integrals with | ||D|au(7', -)|p _ “D|ay(7-7 .)|pHLmﬁLq and H ||D|au(7_’ _)}p _ ||D|QU(T’ ')|pHLq will

be handled as we did in Step 1 to prove (5.11). Hence, we get

£/2
L 1+t—7)""7 R U(T,')|p— HD‘%(T")‘p LmaradT

< (1 46)s0-n-

(luleo ey + 1015 )

and
t
J;/Q(l + t— 7_)1—5” “D|au(7—v )‘p - “D|QU(T7 .)‘pHL‘ldT

S (L4050 75 u— v oo (Jul g + 0% g)-
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Let us now turn to estimate the norms | ||D|*u(r, ~)}p —||D]*v(r By using the integral

Wl
representation

|\D|“ Tx| —||D\“ Tx| —pf (|D| u(T, )—|D|“U(T,x))G(w|D|“u(7',x)+(1—w)|D|“v(7’,x)) dw,

where G(u) = ulu[P~2, we obtain

D1tz ) = 1DI*o(r, )| 35

1
s fo D= (IDI* (u(r, ) = w7, )) G (wIDI*u(r, ) + (1= w)|D|0(r, ) )| do:
Thanks to the fractional Leibniz formula from Proposition C.2.1, we may proceed as follows:

1D u(r, " = 1D1"0(r, )] e

< [ PP utr, )~ ) |G IDIutr, ) + (1= 1D, )y
+L |IDI* (u(, ) = v(7,)) | 1. [IDIP 7 G (w|D|%u(r,-) + (1 = w)|D|"(7,-)) | ., dew

S IDI=* () =00 g [ 1CEADIUE, )+ (= @)IDI0(r, )]y
1
+ H|D\a(u(7', ) —o(r, ))HU& L H|D|570G(W|D|au(77 4+ (1 —w)|D|*(r, ~))HLT4dw
< [IDF= (ulr, ) = v(r,)| o, (1D u(r, ) )

+[[D1 (ulr, ) = v(7,)) | g L [IDI*=7G (w|D[*u(r,) + (1 = w)|D|"v(7, ")) ., de,

1
Trao-n + |IDI%0(7, )

where
1 1 1 1 1

q T1 ] 3 T4

Employing the fractional Gargliardo-Nirenberg inequality from Proposition C.1.1 implies

[1D1=7 (u(r, ) = v(r, ) Ju(r,-) = (T, ~)H9-1.HU(T) o(r, )"

(2 0
7 ) Julr )H1 :

A

L™

(
D1 u(r, ) ooy < )
D107 )| ooy < (- >n92 o(r, )5
I () = o)y < L) = o), ) = o(r, )5,

where

1 1 — —
91 = 9570+a,s<T17Q):ﬁ( +S UJ’_G)E[S U+aa1:|7

S
03 := 04,s(r2(p — 1), 9) = g(% - Tz(pli_l) sa)eln)

1 1
and 03 := 0, 5(r3,9) = %(6 n + %) € [%,1].

S

Moreover, since w € [0, 1] is a parameter, we may apply again the fractional chain rule with p >
1+ [s— o] from Proposition C.3.2 and the fractional Gagliardo-Nirenberg inequality from Proposition
C.1.1 to conclude

[IDI*~7 G (w[D[*u(r, ) + (1 — w)|D|"v( )||L 4

$H|D|“(OJU( ') (1—W)U(T, N5 11~ ”“(W(T ) (1— W)v(7,)) | g
H (p—2)05+06 H ( ) H (p—2)(1—05)+1—6¢

< Jwu(r, ) + ,



5.1. Global (in time) existence of small data solutions to the model (5.1)

97

where

1 -2 1 L1
7:p +—7 05 ::9%8(7”57(1):2(7——4»9)6[%,1],

T4 5 Te s s n
n /1 1 s—o+a s—o+a
and 06 = 05_04—(1.,3(7'67(]) = 7(7 -+ ) € [ 71]
s\qg 7T¢ n s

Hence, we derive

Lr4dw

fo 1D G(w|D|%u(r, ) + (1 - w)|D|*(r, )|

(p—2)05+6 (p—2)(1—05)+1—0
< (lum )z + () ) PR (e + ol ) za) " ’ ‘.

Combining all previous estimates we get

[1DIeur, ) = [IDfo(r, )P s

_mp(y_ 1\ _n p—l, s—o+ap _1 _1
S U+ DTy — ) ) (Juls ¢y + 1005 (r))

<A+ T

-1 -1
(lalZ) + ol52t ),

where we note that

n/p—1 s—o+a
01+(p—1)92:93+(p—2)95+96:g(p + 7 p).

q n

Therefore, we may conclude

1/2
L 1+t —7)=s0-0-3 u(r, )" = |ID1*u(r, )| oo dr

<A +t)-el-9-z

(lullBes ey + 10 ay)

and

t
[t D ~ DG e
<A+ F0mD 5y — ] x4 (1) (|\u||§(0(t) + ”UHXO(t))

Summarizing, we have proved the estimates

|0 DIP=" Nu(t, ) — & DI Nu(t, )] 1o < (14 0507075 Ju— vl xy ) (lullyy + Tol%y).

Step 4:  Let us estimate the norm ||D|*Nu(t,-) — |D|*Nu(t HLq We use
JIDFNu(e, ) — IDFN(E, ),
t/2 w
< L 1+t —7)=20=9=2| || D|%u(r, ) — |D|*(r, I P

t
+ J;/Q(l +t— 7)1—5 H ||D‘au(7'7 )|p o |‘D|av(77 ')|pHH§—adT.

By the same treatment as in Step 3 to prove (5.11) we may conclude

||D|* Nu(t,-) — | D|* No(t 1+)l-70-0=%

HLq ~

(HUHXO(t + HUHXO(t))-

Summarizing, from the definition of the norm in X(¢) and all the previous estimates we have

completed the proof of (5.11).

O
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Remark 5.1.4. In this remark, we want to clarify the possibility to choose actually the parameters
q1, G2, 71, - ,7¢ and 61, -+ , 0 as required in the proof to Theorem 5.1.3.
Firstly, let us see that we may choose g1, ¢2 such that

1 -1 1 1 1
-2t a3 Las)efi

q a1 q@’ sNg @1 S
1 1 — —
andﬂqzzﬁ(f———ks oJra)e[s U+a’1]
SNq 42 n S
thanks to the following condition:
2§p<l+Mifn>q(s—a), orp=2ifn<q(s—a). (5.14)
n—qls —a)

Namely, we may describe the requirements on §,, and 6,, in terms of conditions on ¢; and g2 as
follows:

1 1 s—al 1 1 o—al

Lolieady g Loploema

Q1 q noq q2 q n q

Combining the second condition on ¢ and using the expression q% = % — pq—:l we may obtain the
following condition on ¢i:

1 L 0-a . S 9
— < — =  since p = 2.
@ n(p—1)

Hence, in order to guarantee the existence of two parameters ¢; and ¢ it is sufficient to intersect
two condition intervals for ¢; to become a non-empty intersection. This is possible by the following
condition:

1 s—a o—a

¢ n -1

which implies immediately (5.14). For the choice of parameters r1, 7o such that

n/l 1 s—o+a s—o+a
e N
s\q 71 n
1 1 1 1 1
oA Loy e g Lo L
s\q mp—1) s n q T T

we repeat exactly the same arguments to find (5.14) with r; in place of g2 and 73 in place of ~Z.

Let us turn now to explain the existence of suitable parameters r3,--- ,r¢ and 03,--- ,6g. In the
first step, our goal is to clarify parameters r3, r4 such that

1 1 1 1 1
-=—+— and 9?’:@(7_7_,_8)6[971].
q T3 T4 s\qg rg mn s

we express the condition on 3 equivalent to the condition on r4 as

1 _
— € [0, 5 a].
T4 n
Therefore, choosing r4 in the above admissible range we take r3 to guarantee 65 € [0, 1].
In the second step, taking account of conditions on

By re-writing % =
follows:

1_ 1
q T3

1 1 1 1 _ _
9522(*—*%-%)6[2,1] and QGZE( z a+a)e[s a+a,1]
s\q 15 S n 5

6 n s

we re-write as conditions on parameters r5 and rg as follows:

1 1 s—al 1 1 o—al
—e[f— ,f] and —e[ff ,f].
s q n q Te q n q

Moreover, using the sum % = pr52 + i and the above obtained condition i e [0,

the condition on r¢ in an equivalent way as a condition on 75, in particular,

S—a
—4] we express

1 — 1
<2 a—(p—2)— since p = 2.
Te n s
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Hence, in order to ensure that we get a non-empty range for the parameter rg we need to have the
following second condition for 75 as follows:

1 s+0—2a 1
p-2)—< —— — —.
s n q
Finally, we check the conditions on p and n coming from the requirement that the admissible range
of r5 becomes non-empty, that is,

1 s—a s+o0c—2a 1
(p_2)(7_ )< — T
q n n q

which leads again to (5.14).
Summarizing, we have shown that (5.14) is sufficient to guarantee the possibility to choose suitable
parameters qp, g2, 71, ,7¢ and 60, --- , 0 in the proof to Theorem 5.1.3.

Example 5.1.4. By choosing m =1, ¢ = 1.1, 0 = 1, s = 2 and a = 0 we obtain the following
admissible range of the exponents p in Theorem 5.1.4:

€(3,0)ifn=2, or pe(22375)ifn=3.

5.1.4. Large regular data

Next, we obtain the following result for large regular data by using the fractional powers rule and the
fractional Sobolev embedding.

Theorem 5.1.4. Let s > a+% andn = 1. Let g € (1,0) be a fized constant, m € [1,q) and a € [0, 0).

We assume the condition
m(20 — a)

p>1+max{ ,5—0,1}.

n—m(oc —a)

Moreover, we suppose the following conditions:
pE [g,oo) and n > m(o — a).
m
Then, there exists a constant € > 0 such that for any small data

(uo,u1) € A3, , satisfying the assumption |(uo,u1)|as = <e,

m,q

we have a uniquely determined global (in time) small data energy solution
ue C([0,00),HS) n C'([0,00), H;™7)
to (5.1). Moreover, the estimates (5.7) to (5.9) hold.

Remark 5.1.5. Let us explain the conditions for p and n in Theorem 5.1.4. Because we want to use
the fractional powers rule, the conditions p > 1+ s — o and p > 2 are necessary to assume. Moreover,
the conditions p > 1 + %
(5.1) as for solutions to the corresponding linear model with vanishing right-hand side. Hence, we can
say that the non-linearity is interpreted as a small perturbation. Finally, the remaining conditions for

p come into play after we apply the fractional Gargliardo-Nirenberg inequality.

and n > m(c — a) imply the same decay estimates for solutions to

Proof. We introduce the definitions of spaces A;, ,, X(t) and X(t) in the same way as in the proof
of Theorem 5.1.3. We repeat exactly on the one hand the same estimates for the terms ||D|%u(r, ~)|p
and || D|*u(r,)[" = ||D|*v(r,-)|” in L™ and L9. On the other hand, we estimate the above terms in
H 2 ¢ by using the fractional powers rule and the fractional Sobolev embedding.
In the first step, let us begin with H ||D|au(7’, ~)|pHHSﬁ,. We shall apply Corollary C.4.1 for the
fractional powers rule with s — o € (%, p). Therefore, Wé obtain
DI u(r, )| y-o < 1D1u(r ) | ggo 121l )7

S D1 u(r, ) ggo (11D1 ()| g+ [1D1 ) gzo) "
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Here we used Corollary C.5.1 with a suitable s* < % Applying the fractional Gagliardo-Nirenberg
inequality from Proposition C.1.1 we have

[IDI=* u(r, )| e < lulr, )" [1DPur,

s<1+7> - %nunxms(lw)l*%“*%)

s— U+u,

HUHXO(T )s
and

DI+ u(r, ), < Jur, )50 1D u(r ) |2,

<1+ 7)1_3(1_7)_?92\\u\\xo(7) <1+ 7)1_3(1—: -

_ * .
where 6; = 2=2%% and 6, = =2, Hence, we derive

H “D|a | ”H e ST p(1-20-1)-2)-52—(p-1)F HUHXO(T
S (L3OOl

if we choose s* = % — g9 where ¢y > 0 is a sufficiently small. Therefore, we may conclude

t/2 5 n s
L (1+t—r)i-30-D-3| }IDI“u(T,-)|p”H§_0dT < (1+t)1—;(1—%)—;”u\|§(0m

Moreover, in an analogous way we can also derive
t , .
Lza 1= ) D ulr, | edr S (14 8O E

Finally, let us turn to estimate the norms | || D|u(r, -)|p —|ID|*v(r, )|pHH_,, By using the integral
q
representation

’|D|au(7', x)’p — |\D|av(7, x)|p = pL |D\a(u(7', z) — U(T,z))G(w|D|“u(T, z) + (1 —w)|D|*(T, :c))dw,

where G(u) = ulu|P~2, we obtain

[ID1u(r, )" = [IDIo(, )["]

o
1
< [ 1D (utr) = v(r )G (@lDIu(r) + (L= @) DIo(r, ) oo
0
Thanks to the fractional powers rule from Corollary C.4.2, we can proceed as follows:

D1 u(r, )" = 1D, )|

< | D1 () = o) gy G AP ) + (1= ) D07, )]

1
+ , H|D|a(u(7,~)—v(T,~))HLmHG(w|D|“u( 9+ (1 —w)|D]%( )HH _odw

< L H|D|a(u(7—7 ) - U(Tv )) HH;-” Hw|D|au(T7 ) + (1 - w)|D|aU(T7 )| 2;1dw
+L D1 (u(r. ) = (. )) | |G (IDI () + (1 = )| DI0(r, ) o oo

Applying Corollary C.4.1 with p > 2 and s —o € (7,p — 1) we get

|G (wID|"u(r, ) + (1 = w)|D|*v(r, )|
< [wlDl"u(r, ) + (1 = w)[D|*v(r, )|

Hs—o'

fi-e [ DIu(r, ) + (1 = W) Dv(r, )7
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Using again Corollary C.5.1 with a suitable s* < % in order to estimate all the L* norms we get

[P (u(r, ) = v(m ) g < 1D (w7, ) = o(m)) | e + [[DI (ulr, ) = v(7, )]

H™7)
and

|wIDI"u(r, ) + (1 = w)[D[*v(r, )| ...

SHwIDI“U(Tw) (1= w)|D|"( s+ [w|D[*u(r, ) + (1 — w)|D|"v(r

7)1 Mg

Applying again the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we have

s— a+a

1DI* (u(r, ) = v, ) [ gze S (L) 7300
|| DI*u(r, ) + (1 = w)|D|*v(r < (147

H’LL - UHXQ(T )s

so+

“Hb 7~ ku + (1 - W)UHXO (1)

and

[1DI* (u(r, ) = v(7.))]
|wID|"u(r, ) + (1 = w)|D|"v(r, )]

it S S L+ 50D u — o x, ()

sk

S (@+7)tmF0m0-

RS HWU +(1 - )vHXo(T)'

Therefore, from the definition of the norm in Xy(¢) we may conclude

| IDFutr, I~ D10 ) -

1
< J (1+ T)p(l—gu_%)_%)_e;o

0

s* _
7 Ju— v x, () Jwu 4 (1 — w)v||§(O}T)dw

< (1P l30mD=8) =S50 o (it + ol

By an analogous argument as we applied in the first step we obtain

t/2
L (14t =) =2 0=D=F ||| Dlu(r, )" = |DI0(7, )| g7

_n(_1ly_=s —1 —1
S (L+ 0207072 Ju— vy (lully + 0150,

and
! s=c P P
J/2(1 1 =) |IDIu(r, ) — 1D oo dr
t
< (1481 750-D 5 Ju — L, (lul L, + I0I%))-
Summarizing, the proof of Theorem 5.1.4 is completed. O

Example 5.1.5. By choosingm =1,q=5,0 =1, s = 5 and a = 0 we obtain the following admissible
range of exponents p:

€ (5,0) for all n € [2,19].

5.2. Global (in time) existence of small data solutions to the
model (5.2)

Now, we assume that the data belong to a function space with large regularity. We obtain the following
result.
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Theorem 5.2.1. Let g € (1,00) be a fized constant, m € [1,q) and n = 1. We assume the regularity
s>o0+ %, and the exponent p satisfies the following conditions:

mo
pE [q oo) and p > 1+max{—,s—a,1}.
n
Then, there exists a constant € > 0 such that for any small data
(w0, u1) € A3, , satisfying the assumption |(uo, u1)|as, , <,

we have a uniquely determined global (in time) small data energy solution

we C([0,00), H) n C*([0,00), H; ™)

q

to (5.2). Moreover, the estimates (5.7) to (5.9) hold.

Remark 5.2.1. Let us explain the conditions for p and n in Theorem 5.2.1. Because we want to
use the fractional powers rule, the conditions p > s and p > 2 are necessary to assume. We are not
interested to have a restriction to the upper bound for p. For this reason, we suppose the condition
5 > 0 + 2. Moreover, the interval of admissible exponents p € [-Z,00) comes from applying the
fractional Gargliardo-Nirenberg inequality. The remaining conditions for p and s imply the same
decay estimates for solutions to (5.2) as for solutions to the corresponding linear model with vanishing

right-hand side. Hence, we can say that the non-linearity is interpreted as a small perturbation.

Proof. We introduce the definitions of spaces A7, , and X(t) in the same way as in the proof of
Theorem 5.1.3. We define a mapping N : X (t) — X (¢) in the following way:

¢
Nu(t,z) = Ko(t,x) =, up(z) + K1(t, ) #, ug(x) + J Ki(t — 7,x) #4 |ug(7, x)|Pdr.
0

In order to conclude the uniqueness and the global (in time) existence of small data solutions to
(5.2) as well, we have to prove the following pair of inequalities:

INullx @y < I(uo, ur)las, , + lul . (5.15)
|Nu = Nollx ) S Ju—=vlxe (lulfg, + 1ol5)- (5.16)

First let us prove the inequality (5.15). Our proof is divided into four steps.

Step 1: We need to estimate the norm |[Nu(t,-)|r.. We apply the L™ n L? — L9 estimates if
7€ [0,t/2] and L7 — L9 estimates if 7 € [¢/2,] from Theorem 2.3.1 to conclude

LmALa dr

(Ta )|p|

¢
+ f (1+t-— 7')H|ut(7', ')|pHquT
t/2

t/2
[Nu(t, )|z« < (1+ t)l—;(l—%)H(uo,ul)HAfn_q + f 1+t—7)=50-%
' 0

We have

[t (7, )17

To estimate the norm [u(7,-)|?,, with k& = g,m, we apply the fractional Gagliardo-Nirenberg
inequality from Proposition C.1.1 to get

LmALa = H|Ut(7—7 )lp‘ Lm + H|Ut(7-, )lpHLq s HUt(T, ,)Himp + Hut(T7 )”1[)/‘”’

lue(r, Yzar < [ID1us(m, )3 fue(r, ) 12" < (1 +7) 75 00 =550

U’HX (1)

and ’ o
lue(r, Y e S || [P~ HLf Jue(r, Y™ < (4 7) 75O 0y

where

n 1 1 n 1 1
eqp = GO,s—o(qpa Q) = s—o <5 - %) and amp = ao,s—a(mp;Q) = (7 - 7)
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As in Corollary C.1.1 we have to guarantee that 8,, and 0,,, belong to [0, 1]. Since 6., < 8,p, we
obtain

q n . n q ) n
pe[—,7]1f8<0+7, or pe[—,oo)ﬁs)o—i-f.
m’n—q(s — o) q m q
By virtue of the relation 1 + % = % + %, we derive
e o L P € il (1]

llue(r )], < (1 + r>—%(%—w>nunx<7

Hence, we may conclude

t/2 N . " t/2 N
f (1+t—7)7s0-% (7, .)|pHmequ¢ <A +t)ts0- f (1+7)"ms P Vg,
0

and
t N t
J (Lt =) fuelr )P o dr < (14 1) )l )f (14— 7)dr
t/2 t/2
_np( 1 __ 1 _n(1_1 __n_
< (1+t)2 a (m q”)HUHI))g(t) <1+t 2(1—-%)+1—:% (p— 1)HuHX(t

where we use the estimates I+t—7)~Q+¢t)if 7€[0,t/2) and (1 +7) ~ (1 +¢) if 7 € [t/2,t].
Because of p > 1 + ™2 it follows immediately

n

~ L p-1)<-

mao

Consequently, the term (1 + 7)== =1 is integrable over (0,0). Hence, we have

t/2 . . . N
L (L4t =) 5 e (7, WP o S (L4875l

and

t
L Lt =l P < (00O Pl

Therefore, we arrive at the following estimate:
_n(1_1
INu(t, Yoo < (040505 (Jug,un) L, + Julfeqy)- (5.17)

Step 2:  We need to estimate the norm |0 Nu(t, )| L«. Differentiating Nu = Nu(t, z) with respect
to t we obtain

t

O Nu(t,z) = 0y (Ko(t, @) %5 uo(x) + K1 (t, @) %5 ur(z)) + L Oy (K1 (t — 7,2) g [ug(7, @) [P)dr

We apply the L™ n L9 — L7 estimates if 7 € [0,¢/2] and the L? — LY estimates if 7 € [¢/2,¢] from
Theorem 2.3.1 to conclude

_n(1_1
[eNu(t, Yze < (1+ )50 (up, ur) Ly,

t/2 t
+f (14+t—7) w03 |ut(r,.)|p|mmdr+f/ |lue(, )P, dr
t/2

0

Using the same ideas for deriving (5.17) we may conclude

_n(1_-1
JoNu(t, Yos < (14772070 ([0, w) |, , + el )

under the same assumptions for p, that is,

q n ]

. n q . n
pe[ ifs<o+—, or pe[—7oo>1fs>a+f,
m’' n—q(s— o) m q

q
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and
mo
p>1+—.
n

Step 3:  Let us estimate the norm | d,|D|*~7 Nu(t We use

“Lq
O DI Nu(t, x) = 6| DI (Ko(t,2) #a uo(2) + Ky (t,2) %, wi ()

t
+f DI (Ko (t = 7,) % [ug (7, 0)|P) dr
0

We apply the (L™ n L?) — L? estimates if 7 € [0,¢/2] and the LY — L? estimates if 7 € [¢/2,t] from
Theorem 2.3.1 to derive

|6 DI~ Nu(t, )|, < 1+ )75 075 (g, ur) | as,
t/2 .
+f0 (I+t—7)" ?(1_7)_T|‘|ut(7,-)|p‘LmﬁH§,ng
t s—0o
—I—f (1+t—T)fTH\ut(T,-HpHHS_GdT
t/2 a
= (148770775 (g, w) |4y,
t/2 B
o R

t s—o
+J (1+tfT)fTH\ut(T,~)|pHLquSﬁ,dT.
t/2 N

The integrals with H|ut
conditions for p, that is,

and ||u (7 will be handled as before if we apply the

QL P 7] 2o

q . n q . n
pe[ 7]1f5<0+—, or pe[—,oo)lfSZOJr—,
m’n—q(s—o) q m q
and
mo
p>1+—.
n
Hence, we get
t/2 B
_n —s=e —n(1-1
|| = B Py 5 (7RO

and

t
_s—a _n(1_1ly_s—¢o
L2<1+t—7> 7 lue(r, )P e S (14 820D ulf .

To estimate the integrals with the norm H|ut we shall apply Corollary C.4.1 for the

W
fractional powers rule with s —o € (q, p). Therefore, we obtaln

e (T, )P gramo S Juae (7, ) rg=e e (7, )T
S Jue(m ) grg=e (e (s Mo + e (7, ) s D

Here we used Corollary C.5.1 with a suitable s* < %. Applying the fractional Gagliardo-Nirenberg
inequality from Proposition C.1.1 we have

H“t<7'v'>||1'{§* <l 5" DI e, ), < (14 1) 0707 fulx

where 0 = . Hence, we derive

lue(r, WP |y S (@) FOD=Zm DT (14 1) F D
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if we choose s* = % — go where €y > 0 is a sufficiently small. Consequently, we may conclude

t/2 n 1 s—o —(1-1)—==
|t =) B g P e (17RO g,
0
Moreover, in an analogous way we can also derive
¢
| LD T P e < () OD T
t/2
Therefore, we have shown the estimates
s—o _1ly_s—¢o
DI Nur, )], < (146205755 ([(uo,un) |Las, . + [l ). (5.18)
Step 4:  Let us estimate the norm || D]* Nu(t HLq We use
|D|°*Nu(t,z) = |DJ*(Ko(t, ) #; uo(z) + K1 (t,2) %5 uy (x J |D|* (K1 (t — 7, 2) *5 |ug (7, 2)|[P)dr

By applying again the (L™ n L9) — L7 estimates if 7 € [0,¢/2] and the L?— L7 estimates if 7 € [t/2, ]
from Theorem 2.3.1, we derive

DI Nu(t, )], < (1465005 (uo,u) |as,
t/2 s—o
o] <1+t—Tr%“-%)-‘ﬂuum->|f’>WH;fadT
0

t
+f (1+tfT)*%H|ut(7',~)|p”H54dT.
t/2 4

Following the approach to show (5.18) we may conclude
= (I (o, )|

Summarizing, from the definition of the norm in X (¢) we obtain immediately the inequality (5.15).

DI Nu(t, )|, < @ +1)~ 70 s+ ul% )
(t)

Next let us prove the inequality (5.16). Our proof is divided into four steps.

Step 1:  We need to estimate the norm | Nu(t,-) — Nv(¢t, )| p«. Using the (L™ n L9) — L estimates
if 7 € [0,t/2] and the L? — LY estimates if 7 € [¢/2,t] from Theorem 2.3.1 we derive for two functions
uw and v from X (¢) the estimate

t/2

[Nu(t,-) = No(t,)|ze < L (Lt =7)' 20D g (7, )P = ou(r, )P

LmALa dr

t
[l e
t/2

By using Holder’s inequality, we may show the estimates
e (7, )P = Jor(r )P o S e, ) = ve (7, ) pow (e () an + e () an )

and
e (7, )P = [0s(r P o S (7, ) = v (7, M pomw (e (7, )i + 06 (7, ) ) -
Analogously to the proof of (5.15), applying the fractional Gagliardo-Nirenberg inequality from
Proposition C.1.1 to the norms
lue(7, ) = ve(7s )em, () e, foe(r, )] 2o

with 7 = ¢gp and n = mp we derive the following estimates:

Jue(r, ) = e, Ygor S (14 7) 7507 D=55%0

_n@_1ly_s=o
e (7, Mpar < (14 7) 72070755 0w u) (1,

= vl x(r),

loe(r, Vpar < (1 +7)"FA7D =20 g .,
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and
Jua(r, ) = (7, Vg < (14 1)~ 3O~ D=2y — o,
(7, e 5 (14 7)E 0770 o,
[or(r, Yz € (14 7) 720775550y .
Therefore, thanks to 6,,, < 6,4, and the relation 1 + % =1+ L we obtain
ez, P = [oe(r, WP e S (L4 775D = vyl + Pl
o7 )1 = [oe(r )P 1 < @+ 7)™ F 3 fu = vy (Juley + ol )-
Applying again the same ideas as we did in Step 1 to prove (5.15) we may conclude
[Nu(t, ) = Not,Ype < (1 + 6507 u— ol xqo (luligy + o)

Step 2:  We need to estimate the norm |0, Nu(t, ) — 0:Nov(t,-)||r«. We use

()P = oe(7 )P o

t/2 N
HatNU(t,')*atN’U(t,')”Lq S J (1+t*7’)7;( T
0

t
# [ e P = (P
t/2
Using the same approach of Step 2 to prove (5.15) and Step 1 to prove (5.16) we may conclude
_n(p_1
[0:Nu(t,-) = 0:Nv(t, )| za < (1+6)7 50 Ju = vl xy (Julieyy + [0l )
Step 3:  Let us estimate the norm |0 D[*~ Nu(t,-) — &|D|*~° Nv(t HLq We use

|0e|DI*~7 Nu(t, -) — 6| D|*~" Nw(t,-)|,,

t/2 1 s—o
< L (1+t—7)c070)=73 (7, )P — |ve(r, ')|p”meHg*vdT

t
e [ P = P
. q

/2
t/2 s
= L (14+t—7)"s0=%) (7, )P = |vs(r, .)|p”meLqﬁH;_adT
¢
+ f/2(1 +t— T)fT”|ut(T, NP = |vg (T, .)\p!‘LqﬁH?GdT.
¢
The integrals with | |u,(7, )" — [v¢(7,-)[P| o and [Jue(7,-)[P = |og(7,)|P|,, will be handled as

we did in Step 1 to prove (5 16). Hence, we get

t/2 . L
[P nso-
0

()P = [oe(m )P o

_n(1_1ly_s—¢o —1 —1
< (U407 F0D=2 Ju =l (ll5 ) + o),
and

t
L2<1 +t—7) 7 uelr, )P = o, )P dr

S U+ 077D u— ol (luli gy + 1ol

Let us now turn to estimate the norm [[ug(r,-)[” — [v¢(7,-)[P| 5o~ . By using the integral represen-
q

tation
1

| (1, 2)|P = |ve(7, ) |P = pJ;) (ut(T,x) — (T, x))G(wut(T, x) + (1 — w)v(r, x))dw,
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where G(u) = u|u|P~2, we obtain

H‘ut(T7 NP = loe(T |pHH* s = f H u (7, ) — ve(7, ) G(wue (7, ) + (1 — w)vy(, -))HH(,;_(,dw.

Thanks to the fractional powers rule from Corollary C.4.2, we can proceed as follows:

e O = s W ge < [ ) = e e |G, + 1 = ()t
[ ) =l e 16 )+ (1 = o g
< [ Wt = et e bt + 1=,
i [t = o, e |G ol ) + (1 = e, )| e

0

Applying Corollary C.4.1 with p > 2 and s — o € (%,p —1) we get
HG(wut(T, J+ (1 —w)u(r )”H o
< Jlwus (7, ) + (1= whoe(r, ) oo lwue(r, ) + (1 = w)o (7, ) |77
Using Corollary C.5.1 with a suitable s* < %, we obtain

() =0T, )L < Jue (T, ) = ve(ms ) g + Jue(rs ) = vel(ms )| g

and

|wut (T, ) + (1 — w)v(r, )| Lo

< lwun(r, ) + (1= w)ur(r, M ggr + looue(r, ) + (L= w)un(r, ) gs-o-

Applying the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we have

lue(r, ) = v, Mg < Jue(r,) = we(r, )2 [P (uelr, ) = vl N
< (1 +T)7§(17?)737HU - UHX(T)?

%
where § = =

we get

nep_1y_s*
Jwue(7,) + (1= w)or(r, N o S (1 +7)7 70707 Juou(r, ) + (1 = w7, ) x(r)-

Therefore, we may conclude

H‘ut(TV )|p - |Ut(7', _)|pHH570

1
< [ @ ny Do D o+ (1= ol d
0

< (14+r) F0 D fu— vl (lul%y + Tol%)-

By an analogous argument as we did in Step 3 to prove (5.15) we obtain

t/2 o
L e L (MG | O P L

< (4 FO D5 ol (Jul%d + oI,
and
t sS—a
f/2(1 7)) o )P o dr
t
_n(_ly_s—o — —
< (1+t) s (1=0)=55 HU*UHX(t)(HUHg((tl) + Hv\lﬁ’((tl))-
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Summarizing, we have proved the estimates
&\ DI*~ Nu(t, ) - 6| DI*~ Nu(t, )|,
< (1467300755 fu— v (Julfech + IR
Step 4:  Let us estimate the norm ||D|*Nu(t,-) — |D|*Nu(t, -)HLq. We use

”‘D‘SNu(tv ) - |D‘SN/U(t7 ')HLq

t/2 n(]_1)_s-o
sf (1+t—7) =0-2)=% [lue (7, )P = w7, )P o -
0

t
e = = P
t/2 q

Following the treatment as in Step 3 to prove (5.16) we may conclude
s s _n(_ly_s=¢o -1 —1
IDPNu(t, ) = IDPNo(t, ), S (1460750775 fu— vl ) (Tl + lol%).

Summarizing, from the definition of the norm in X(¢) and all the previous estimates we have
completed the proof of (5.16). O

Example 5.2.1. If we replace m = 1 in Theorem 5.2.1, then it becomes Theorem 3 in [11]. Hence,
we want to underline that Theorem 5.2.1 is a generalization of the result from Theorem 3 in [11].

Example 5.2.2. By choosing m = 1, ¢ = 5, 0 = 1 and s = 4 we obtain the following admissible
range of the exponents p in Theorem 5.2.1:

pe [b,0) forall ne[l,14].
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6. Semi-linear structurally damped

o-evolution models in the case ¢ € (0, )

Let us consider the following two Cauchy problems:
ug + (—A)7u + p(—=A)uy = |ulP,  w(0,z) = up(x), u(0,z) = ui(z) (6.1)

and
uge + (—A)7u + ,u(—A)%t = |ue?,  w(0,2) =ug(x), u(0,2) = uy(x) (6.2)

in space dimensions n > 2 with o > 1, 6 € (0,§), # > 0 and a given number p > 1.
Let us explain our objectives and strategies as follows:

e The estimates for solutions to the linear Cauchy problems (3.1) are a key tool to deal with the
semi-linear Cauchy problems (6.1) and (6.2).

e Because the oscillations in the representation of solutions for the linear Cauchy problems (3.1)
produce singular behavior of coefficients as ¢ — +0 in LP? — L? estimates, we can compensate this
singular behavior by assuming higher regularity for the data. Diffierent strategies appear to deal
with the semi-linear Cauchy problems (6.1) and (6.2) in the following two considerations: No loss
of decay but loss of regularity, loss of decay and loss of regularity.

Loss of regularity (see, for example, [4, 9, 50, 59]) is a well-known phenomenon describing the effect
that the regularity of the obtained solutions to semi-linear models is less than those of the initial
data. This phenomenon appearing in our global (in time) existence results is due to the singular
behavior of time-dependent coefficients in the estimates for solutions to the linear models localized
to high frequencies as t — +0. However, we can compensate this difficulty by assuming higher
regularity for the data.

Loss of decay is understood when the decay rates in the estimates for solutions to semi-linear
models are worse than those given for solutions to the linear models with vanishing right-hand
side. Additional benefits of allowing loss of decay (see [7]) are to show how the restrictions to the
admissible exponents p could be relaxed.

e By using the fractional Gagliardo-Nirenberg inequality, the fractional chain rule, the fractional
powers rule, the fractional Sobolev embedding and some auxiliary lemmas, we obtain global (in
time) existence of small data solutions in the energy space, in the solution space below energy
space, in the energy space with a suitable higher regularity and in the large regular space.

e Some examples are presented at the end of each theorem to compare with known results.

In the following statements we introduce the data spaces A7, , = (L™ H;) x (L™ n H{ES_UF)

with the norm

(w0, ur)las, , i= lluwolm + Juolly + luslzm + Jlua] yr—or+

ngsfa
where s > 0, g € (1,00) and m € [1,¢). Moreover, we fix the following constants:

60 —20
0 —26 ’ g—m

S0 1= (2 + [g])(g —26), ng:

6.1. No loss of decay but loss of regularity

6.1.1. Solutions in the energy space to the model (6.1)

In the first case, we obtain solutions to (6.1) from energy space on the base of L9.
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Theorem 6.1.1. Let g € (1,0) be a fized constant and m € [1,q). We assume the conditions [g] < mg

and
max {n — wn+mo, dm(o — 5)}

>1+ 6.3
P n—2m(o — 9) (63)
Moreover, we suppose the following conditions:
2
p€[£7oo) ifn<qo, or pe[i, " ]z’fne(qa, 79 ] (6.4)
m m’' n—qo qg—m
Then, there exists a constant € > 0 such that for any small data
uo, u1) € A2 satisfying the assumption |(ug, u1)| jo+s0 < €,
m,q A
we have a uniquely determined global (in time) small data energy solution (on the base of L?)
ue C([0,00),HT) n C*([0,0), L)
to (6.1). The following estimates hold:
__n __(1—1
Jut, Mao < (14877 0 (g, wr) | g0, (6.5)
H|D|U t, ”Lq < (1 + ) — a0y (=) — 355y H(umul)HA;’J;O’ (6.6)
—__n __(1_1y__95
Jue(t,)|zo < (14 0)' 7200 07755 (wg, u) | o0, (6.7)

1_1 1
wherel—f—a—;—i—a,

Remark 6.1.1. From the proof of Theorems 3.1.1 and 3.2.1, the solutions u!" to (6.1) with vanishing
right-hand side satisfy the following LY — L? estimates for ¢ € (0,1]:

Hul"(t Mze < t—(2+[%])(%—1)”uOHLq + tl—(1+[%])(%—1)”ulum’

7 HL <t (2+[%])(ﬁ*1)*%”u0”1ﬂ+t*(2+[%])(%*1)“u1”Lq’

g (t Mia 7 CFENE D=5 |y | o + ¢~ EHEDVE D fuy | o,

The singular behavior of coefficients as ¢ — +0 brings some problems in the treatment of the
semi-linear Cauchy problem (6.1). But we can compensate this singular behavior by assuming higher
regularity for the data ug and u;. We are going to prove the following lemma.

Lemma 6.1.1. The solutions u'™ to (6.1) with vanishing right-hand side satisfy the (L™ n L9) — L9
estimates

—_n —1
™ () e < (47T g o + (14770 7 [

H|D|0uln t,

n 1y lod _ 1—1)—
Hm <(A+t)" sto=51 (1= 3)— 3055 \|U0|\LmnH;+so +(1 +t) o=y (1= %)~ 3=5 HulHLmanoﬂ

lulm (¢, ) e < (1+ t)w(:;g)(lf%)fﬁuu()‘

m(1-1)_ s
pmamgto T (14 t)! mem () lusllpmprgo

for any t > 0.

Proof. First, we can see that from the condition [§] < ng in Theorem 6.1.1 it follows immediately

sp < 20. Following the proof of Theorems 3.1.1 and 3.2.1 we get

b (£, ) |ze < |57 (Kot )xs (€)@ () (¢ )] . + |5 (K (t, ©)xa (1D () ()] 1,
< I3 (el Ko (t, €)x3(1€D) &, ) 1. [ (€10 (€))L
+ & (K ©)xs (1)) (& )] 1[5 (@(9) |

luolgzo + ¢ 73 uallpa  if £ (0,1],
e (Juoll grzo + Jurza) if t € [1,00),
= Juolgzo + lluafze if £ € (0,1],
e (Juol gzo + Jurra) if t e [1,00),
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[D17ulf, (8, ) o < 15 (1617 Kot Oxs (16D (9)) (1) o + 57 (1€17K (8, Oxs (€D T E)) (&) .,
< |5 (I 7 Kot ©xs(1€D) (&) | 1 |8 (el @) | .,
+ 37 (Il K, )xa(1€D) ()] |8 (€1 @ () ]

- {|U0Ha+so + Ju] gso if t € (0,1],

- _Ct(”UoHHoﬂo + HuluHso) if t € [1,0),

{|U0H3+so + [uall gzo if t € (0,1],

e—ct(“uOHHngSO + Jlusg HH;O) if t € [1,0),

and

H(?tui(( Nze <3 (|§|20K1(t Exa(lEDuo(9))(t, HLq
+ |57 (Ko, &) — € Ka (,€)) xs (€)@ (€) (¢, )]
< I3 (1€l Kk, ©)xs(1€D) (& )| |8 (1610 m () |
+ 1571170 (Ko (t,€) — €% Ka (£, €)xa(1€D) (£ )] 1 |57 (1€ @ (€) | .,

ol gross0 + a0 if t € (0,1],

e (Juoll o o0 + Junllzo)  if ¢ € [1,00),
- HUOHH;’+SU + HU1HH;0 if t € (0,1],

e (Juoll yo+so + Jualpzo)  if t € [1,00),

where c is a suitable positive constant. Moreover, we have shown the following decay estimates for
low frequencies and middle frequencies:

m +1 m if t e (0,1],
i 1 s {10l B itte (0.1]
t 200-% r ”UOHLm + ¢t 209 v HUIHLm ifte [1700)7

H|Da ln H < HUOHQW i i N . . lftE( ) ]a
Lo~ e Um0 7205 |fug | pm + £ 2@ A7) T2@ D |y e if t € [1,00),

tluollLm + [lur]zm if te(0,1]

12 D=7 |y | + 2 O g it € [1, 00).

loeufy (£, ) Lo < {

and

Juls (¢, )L < e (Juollze + |uafLa),
|IDI7u (8, )] o < € (luollze + Juazae),

H(?tuxz (t,)ze < e (JuofLe + Jual o),

for all t € (0,00), where ¢ is a suitable positive constant. Summarizing, the proof of Lemma 6.1.1 is
completed. O

Remark 6.1.2. In the proof of Lemma 6.1.1 we apply Proposition 3.1.4 with a = —s( for [/(\o(t,ﬁ)
and a = 0, a = 0 — 89, a = 26 — sq for I/(\l(t €). To apply Proposition 3.1.4 with these mentioned
parameters, from Remark 3.1.4 we have to guarantee that so < 2. Because of the condition [§] < ng
in Theorem 6.1.1, it follows immediately this condition.

Proof of Theorem 6.1.1. By using fundamental solutions we write the solution to (6.1) with vanishing
right-hand side as follows:

ul™(t,x) = Ko(t, x) %5 uo(2) + Ki(t, ) %, up (z),

where K;(t,z) with j = 0,1 are defined as in Chapter 3. Applying Duhamel’s principle leads to the
following representation of solutions to (6.1):

u(t,z) = Ko(t, z) 5 up(z) + K1(t,x) #, ug(x) + J;) Ki(t — 7,2) #, |u(r, z)|Pdr.
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We introduce the data space A;‘,f;“ : (Lm HZ*s0) x (L™ n Hg°). Moreover, we introduce for

any t > 0 the function space X (¢ ( ") N Cl([O, t], Lq). For the sake of brevity, we also
define the norm

lulx = s (fo(r) e, o+ Lo (r) P o + F5(r) e, )
o<r<t
and the space Xo(t) := C([0,t], H7) with the norm

Jwllxo := sup (Jo(r) ™ ez + L) IDI w7 ), ).

<7<t

where from the estimates for solutions and some of their derivatives to the linear Cauchy problems
given in Theorem 3.3.1 we choose

folr) = (14 7)' 7m0 fo(r) = (L)t I e

and
S5

filr) = (14 )T Dot
We define the operator N : X (t) — X (t) by the formula

Nu(t,z) = Ko(t,x) #5 ug(x) + K1(t, x) #5 ug(x) + L Ki(t —7,x) % |u(r, z)|Pdr.

We will prove that the operator N satisfies the following two estimates:

INulxq S (o, )l goss0 + ful oy (6.5)
-1 —1
[V~ Nolxey S = vl (lulBecky + Iol%ly)- (6.9)
First let us prove the estimate (6.8). Taking into consideration the estimates for solutions and

some of their partial derivatives to the linear Cauchy problems in Lemma 6.1.1 we get the following
estimates for j, k = 0,1 and (j, k) # (1,1) :

|071D[* (Ko(t, x) %4 uo(z) + K1(t,2) %5 ua(2)) ],

S Q0T g g + (14 )T DT |

meHSO
ko+2j8

s (1 +t)1_2(an—6)(1_ )— 2(c—0) H(UO ul)HAngé,o

In order to control the integral term in the representation of solutions, we use two different strategies
for 7 € [0,[t — 1]7] and 7 € [[t — 1]*,¢]. In particular, we use the (L™ n L%) — L9 estimates if
€ [0, [t—1]"] and the L?— L9 estimates if 7 € [[t — 1] T, ¢] from Theorem 3.3.1. Therefore, we obtain

ko+23568
HaJ|D|koNU SIS (1+ 1) 2= (- L4220 H(Umul)HAow
[t—1] . )
+‘[ (1+t_7)1_m(1_ )— ];(:zg)é Hlu |p‘mequ7—

0

t
+J (t — 7)1 OHED G D= CD G (7, )P | dT
[

t—1]+

Hence, it is necessary to require the estimates for |u(7,x)|P in L™ n LY and L? as follows:

[, )P o o S T ) e + Tl M ans [l )P e = Tulr, -

Applying the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we may conclude

lu(r, o < |IDI7u(r, )37 Julr, >niq%s< ()l xo(m) " (oMl xo )~

€ 1+ O - Jelxo (),
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and
fu(r, M me 5 1D u(r, 05 M S (o)) (o) o)
S (Ut )T DT e )
where
Ogp = 60,0(qp,q) = g(é — %) and 0,,p, 1= 6o - (mp, q) = g(é — mip>

As in Corollary C.1.1 we have to guarantee that 6, and 6,,, belong to [0,1]. Both conditions imply

the restriction
pe[imo) if n<qo, or pe[i7
m m’ ' n—qo

]ifn>qa.

By virtue of 0,,, < 0,4, and the relation 1 + % =1+ L we derive

1— 52 (1—- 1) — 2 0,,,
e, WP g < (14 7P (a8 Oz o)y
g (]- + T)pim(pil)”u“?(o(”l‘)v

H|u(7’, ')|p”Lq <1+ T)p(l_Q(;:&)(1_%)_2(035)9(11,) H““?@(T)
1

SR i LY

Summarizing, from both estimates we may conclude

_ ko+2j6

1 —_n (11
\|@§|D|k"NU(t,')HLq < (1 +t)1 2(075)(1 ) 2(c—0) H(u07u1)“AZﬁ:;0

ko428

[t=1]" n 1 n
L R e i P e Ll
0

t P
+uly J[ T
t—

The key tool relies now in the application of Lemma B.6.1. Because of

max {n — “n +mo, 4m(o — §)}

> 1
P * n —2m(o — §) ’
we obtain n
S — | P |
P 5o =0) (p—1) :
and 1 ko + 256
n o+ 2] n
- (1--) - >p— —1).
2(075)( r) 500 P amo—a) PV
Hence, after applying Lemma B.6.1 by choosing
n 1 ko + 250 n
— 1o (1= )+ o and = —pt o (p— 1
o=+ 7)oy M- ProoY
we get
[t—11" )
f 1+t — 1) 7 =D =355 (1 4 )P swte=n P Dgr
0
t o +258 n n o +258
< f 1+t — ) 7 D555 (1 4 r)p s P Dar < (14 1) 55 005675
0

Moreover, since the condition [%] < ng holds, it follows

17(1+[2D<2%71)7(k+j)2%>71.
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Therefore, we estimate

t
J (¢ — 7)1 O EDE D) 85 (1 4 )P~ 25 (R =) gy
[i-1]+
t
<1+ t)P*m(m*;p) J (t — ) O EDEG D=+ 55 g7
[t-1]+
1
(1+t)1"m<f‘$>f P HED(E -1~ (k) 5 gy
0 1)_ko+2j6

S+t w14 e DT

since
_mp (1 1 o __n (1) _ko+2j0
P 2(0—5)(m qp)<p Qm(a—é)(p <l 2(0—5)( r) 2(c —9)°

Finally, we conclude for 7,k = 0,1 and (j, k) # (1,1) the estimates

) ko+258

Haj|D|koNu HLq < (1 _i_t)lfz(;is)(l* 2(c—0) <H(u0,u1)|\An+so + HUHXO(t )

From the definition of the norm in X (¢), we obtain immediately the inequality (6.8).

Next let us prove the estimate (6.9). Using again the estimates for solutions and some of their
partial derivatives to the linear Cauchy problems from Theorem 3.3.1, that is, the (L™ n L9) — L4
estimates if 7 € [0, [t — 1]*] and the L? — L7 estimates if 7 € [[t — 1]T,¢] we derive for two functions
u and v from X (t) the estimate

|071DIF (Nu(t, ) — Nu(t N La

[t—1] " .
sf (1+t77)1‘m(1—%) 5B ulr, )P = [o(r, )P dr

| HmeLq
0
¢
]y A DS o — ol )P dr
[t—1]*
By using Holder’s inequality, we get
llu(r, )P = o P L, < Julr) = oz, ) (Ju(r e + Jo(r, ) [5a),
lla(r, )P = o P o < Julr, ) = o7, ) [zme (T ) + [o(7, ) [ )

Analogously to the proof of (6.8), applying the fractional Gagliardo-Nirenberg inequality from
Proposition C.1.1 to the norms

[u(r,-) = o7, Yo, Julr; Yo, o7, )]z

with 7 = ¢gp and n = mp we derive the following estimates:

Ju(r,-) = v(r,)pw < (1 +7)"

lu(r, ) Lar < (1 +7)

7w (10 0 — 0] )
e (0w e o,
lv(r, e < (1+ 7-)1—7z<;15)(1—%)—72&5)% 1] x0(r);

and

A

__mn  (1_1\___o
lu(r,) —v(r, )| pmr < 1+ 1) 72D 720 o — v, (),

A

lu(r, Yzmr < (1 +7) " FFm D=5 0 |y o,

A

[o(r, M pme S (14 7) "B D250 |

Therefore, thanks to 6,,, < 04, and the relation 1 + % = % + %,

[lu(, )P = [o(r, )|

a(r, )P = Jo(r, )P 0 S (0 4+ 7P T3 vy oy (5L + L)

we obtain

_ n 1
oz S (L TP T O Dy o (Bt + [olEL),
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Applying again an analogous treatment as we did in the proof of (6.8) we may conclude for j,k = 0,1
and (j,k) # (1,1) the estimates

ko425

1 —_n _(1-1y_ y— —
61D (Nu(t, ) — No(t, )|, < (1+ 0700 D55 o — o] o (Il + [0 ky)-
From the definition of the norm in X (t), we obtain immediately the inequality (6.9).
Summarizing, the proof of Theorem 6.1.1 is completed. O

Remark 6.1.3. In Theorem 6.1.1 we may simplify the restriction of admissible exponent p if we
assume another condition for the space dimension n instead. In other word, if we have the following

condition 5
mq(30 — 4
n <y = BT = 49)
g—m
then it follows 4m(c — ) = n — “n + mo. This inequality allows us to remove the restriction of

p>1+ %, which appears in Theorem 6.1.1 to derive

b1+ dm(o —9)
n—2m(oc—4)’

Example 6.1.1. Here we want to make a comparison between Theorem 6.1.1 and Theorem 3 in the
paper [12] by choosing m =1, ¢ =2, 0 = 1 and 6 = 0.45. In general, with these selected parameters
the admissible range of the exponents p in Theorem 3 of [12] is more flexible than the result in Theorem
6.1.1 for the space dimensions n = 2, 3,4 (see the following table):

Theorem 6.1.1 | Theorem 3 in [12]
n=21| pe(3.44,00) p € (2.82,0)
n=3| pe(2.323] pe (23]
n=4 empty p=2

Tab. 6.1.: The first comparison between the obtained results.

Example 6.1.2. In this example, we want to emphasize that the results in Theorem 6.1.1 allow some
flexibility in comparison with those from Theorem 3 in the paper [12] if we choose m = 1, ¢ = 3,
o =1and § = 0.45 (see the following table):

Theorem 6.1.1 | Theorem 3 in [12]
n=21 pe(3.59,0) empty
n=3 p € [3,0) empty
n=4 p e [3,4] empty

Tab. 6.2.: The second comparison between the obtained results.

6.1.2. Solutions below the energy space to the model (6.1)

In the second case we obtain solutions from Sobolev space on the base of L9.

Theorem 6.1.2. Let g € (1,00) be a fized constant, m € [1,q) and 0 < s < 0. We assume the

conditions [%] < ng and

max {n — “n+ms, dm(o — )}

>1 6.10
P * n—2m(o — 9) (6.10)
Moreover, we suppose the following conditions:
q g n 4*s
peE [—,oo) ifn<gqs, or pEe [—, ] ifne (qs, ] (6.11)
m m’ n—qs qg—m
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Then, there exists a constant € > 0 such that for any small data

(uo,ur) € AT 50 satisfying the assumption ||(uo, ul)HA;‘JZO <e,
we have a uniquely determined global (in time) small data Sobolev solution
ue C([0,00), Hy)
to (6.1). The following estimates hold:
Ju(t, M re < (1+8)" 250 (g, un)] s, (6.12)
__n _1y_ s
”|D|su(t’ ')HLq S (1 4 t)l 2(c—9) (1 7‘) 2(c—-9) ”(UO,U1)|A:»IZO7 (613)

1_1 1
wherel+5—;+5.
Following the proof of Lemma 6.1.1 we may prove the following lemma.

Lemma 6.1.2. The solutions u'™ to (6.1) with vanishing right-hand side satisfy the (L™ n L9) — L4
estimates

[ (2, )|z < (14 )75 1)

[IDFFu™ (. )]

[woll o nprgo + (1 + )T (173

|U1 HLmﬁqu

_ n__ 1y s
0 S (1+1) o=y (1= %)~ 3= HUOHLmﬁHjﬂo

(1) T T |

Lm h]_ICES*U*’SO]+ )

for any t > 0.
Proof of Theorem 6.1.2. We introduce the data space A; >0 := (L™ n H;**0) x (L™ n H(ES_U+S°]+).

Moreover, we introduce for any ¢ > 0 the function space X (t) := C ([O7 t], Hy ) For the sake of brevity,
we also define the norm

[ulx() == sup ((1 +T)71+2(;1775)(1,%)

o<sr<t

We define the operator N : X (t) — X (t) by the formula

[u(r,Mas + (14 1) T DT [ Dfu(r, )|, ).

Nu(t,x) = Ko(t,x) #, up(z) + K1(t,2) %, uq1(x) + L Ki(t — 7,x) 4 |u(r,2)|Pdr.

We will prove that the operator N satisfies the following two estimates:
[Nl xey S D uonun) | gsso + 1l - (6.14)
-1 -1
INu—Nv|x@ < |u—v][xe (HU\@(@) + ‘|U‘|§((t))~ (6.15)

First let us prove the estimate (6.14). Taking into consideration the estimates for solutions to the
linear Cauchy problems in Lemma 6.1.2 we get the following estimates for k = 0, 1:

||DI** (Ko (t, z) #4 uo(z) + K1 (t,x) *5 ur(z))

S (40T g,

HLq

— _1y_ __ ks _
+ (1487 DT g |

+

s+sq — 5
qu f\H(ES o+sp]

S (1407 DTS g, 1) | g

m,q

In order to control the integral term in the representation of solutions, we use the (L™ n L?) — L4
estimates if 7 € [0, [t—1]"] and the LY — L? estimates if 7 € [[t—1] 7, ] from Theorem 3.3.2. Therefore,
we obtain

n

[IDI¥* Nu(t, )], < (1 + )= C= 75055 | (ug, us )

[ go+s
Am,qo

[t—11" 1 n__(1_1 ks
H e 0D u(r )P, e
0

t
*f (t — 7 =D D=5 | u(r, )P, dr.
[

t—1]+
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Hence, it is necessary to require the estimates for |u(r, x)|P in L™ n L? and L9 as follows:

|||u(7—7 ')‘p”meLq < HU(T, ')Hll)ﬂnp + Hu(7—7 ')Hiqm H|u(7, ')|pHLq = HU(T, ')H117/1P'

Applying the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we may conclude

1 9qp 15t (1 1) — 52 0,p
lu(r, Mo < |ID[*u(r, )52 fu(r, )12 < (1+ 1) " Fmm D" 2w % | ),
s mp Omp 1—55y 1—% —ﬁ&mp
lu(r, Y pme < |IDPulr, )| H it S (4 1) T T Oy,
where 1 . 1 1
n n
Oqp 1= 00,s(qp, q :7(7_7) and O,y := 6o s(mp, q =7(f—f>-
w = boslap ) = (L~ o pi=bostmp.a) = 20— oo

As in Corollary C.1.1 we have to guarantee that 6, and 6,,, belong to [0,1]. Both conditions imply

the restriction q g
p€[—,oo> ifn<gs, or pe[—,
m m’' n—qs

]ifn>q5.

By virtue of 0,,, < 6,4, and the relation 1 + % =14+ L we derive

n m _ n 71
[, WP g < (47U mm Dm0 0 ) s, < (14t Dl
and
- (1-1)— 20 (L1
llutr, P (4 7P O TR O Dmm ) ol < (14 7P G
Summarizing, from both estimates we may conclude
H|D|ksNu HLq <1+t — gy (1- 1) — ks [ (o )| o o0
m,q

[t—1] . 1 S )
+ HUH;;((t) J (1 +t— 7')1*2(0—6) (177)72(;9—6) (1 n T)pfm(pfl)dT
0
t
L T e e

The key tool relies now in the application of Lemma B.6.1. Because of

max {n — “n+ms, 4m(o — )}
n—2m(c — §) ’

p>1+

we obtain
n

p—
and . L
n S n
—71—7)—72 —-—F=({—-1).
2(0—5)( Y A e el s ey A
Hence, applying Lemma B.6.1 by choosing

n 1 ks n
o=ty (1-7) s g A= g D)

we get

[t 1]+ n 1 ks n
J (1+t—7) e )75 (1 4 )P~ 2= P Vgr
0

t
< J (1+t_7_)1_2(0"75)(1—%)—2(§i5)(1+T)P—2m(+5)(p—1)d7_g (1+t>1_ﬁ(1_%)_ﬁ,
0

Moreover, since the condition [ ] < ng holds, it follows

n
2

OGS
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Therefore, we estimate

t
J (t — 1) - OHBDGE D=5 (1 4 1) T2 &) gr
[t-11

t—1]+
1
$(1+ty—xrﬁv~7aj'H—uﬂ%n%—n—%dr
0
<1+t T EmTw) < (1+ ) e D ey
since
np (1 1) n n ( 1) ks
-t (- )<p-— p-D <l — (1) -
P e —\m ) P e P Y 20 -0\ 1) 2000

Finally, we conclude for & = 0,1 the estimates

s n 1_1y_ _ ks
H|D|k Nult HL‘I < +t) — s (1 7) 5025 (H(UQ,Ul)‘Aa+aO + HuHX(t))

From the definition of the norm in X (¢) we obtain immediately the inequality (6.14).

Next let us prove the estimate (6.15). Using again the (L™ n L?) — L7 estimates if 7 € [0, [t — 1]7]
and the LY — L9 estimates if 7 € [[t — 1], ¢] from Theorem 3.3.2 we derive for two functions u and v
from X (t) the estimates

[IDI**(Nu(t, ) = No(t, )],

[t 1] n s
< f (1+t— 7')17 o (1=~ H|u(7’, WP = |v(r, ~)|pHmequT
0

t
D ()l — Jo(r, )P i
[t—1]+

By using Holder’s inequality and applying again an analogous treatment as we did in the proof of
(6.9) in Theorem 6.1.1, we may conclude for k£ = 0,1 the estimates

1D (Nu(t, ) = No(t, )|, < (1+ 0750075055 [y — o] (lul ) + ol

From the definition of the norm in X (¢) it follows immediately the inequality (6.15).
Summarizing, the proof of Theorem 6.1.2 is completed. O

Remark 6.1.4. In Theorem 6.1.2, if we assume the following condition for the space dimension:

mq(do — 45 — s)

n<ng = ,
qg—m

then the relation 4m(o—¢8) = n— “n+ms holds. This inequality allows us to simplify the restriction
of admissible exponents p in Theorem 6.1.2 as follows:

dm(o —9)

14 ————.
p= +n—2m(o—§)

Example 6.1.3. By choosing m =1,q =2, 0 =2,0 = 0.9 and s = 1.5 we obtain the admissible
range of the exponents p as follows:

€(6.5,0)ifn=3, or pe(3.44,4]ifn=4.
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6.1.3. Solutions in the energy space with suitable higher regularity to the model

(6.1)

In the third case, we obtain solutions to (6.1) belonging to the energy space (on the base of L?) with
a suitable higher regularity.

Theorem 6.1.3. Let g € (1,0) be a fized constant, m € [1,q) and 0 < s < o + %. We assume that
the exponent p satisfies the conditions p > 1+ [s — o] and

max {n — “n+ms, dm(o — )}

>1+ , 6.16
b n—2m(oc — 90) (6.16)
where [%] < ng. Moreover, we suppose the following conditions:
pE [i,oo) ifn<gqs, or pe [2,1—# 1 ] ifne (qs,qs+ ama ] (6.17)
m m n—qs —

Then, there exists a constant € > 0 such that for any small data
(uo,u1) € A5 20 satisfying the assumption | <u0’u1)HAf,jf;§° <eg,
we have a uniquely determined global (in time) small data energy solution

we C([0,00), H) n C*([0,00), H; ™)

q
to (6.1). The following estimates hold:

1 0 (g, w)|

s+s
A d®?
n

)

14 t)1—2(a_5)(1—%)—42(;'_7) | (o, u)
)
)

H s+s(
-Am,q ’

1 ey (1= )=

.
7 [ (w0, ua) | gors0

~2 5 D= FTEF | (ug, uy)|

A:‘J}Z(l )
wherel+%=%+%.
Following the proof of Lemma 6.1.1 we may prove the following lemma.

Lemma 6.1.3. The solutions u'™ to (6.1) with vanishing right-hand side satisfy the (L™ n L9) — L4
estimates

Huln(t, ')HL‘I < (1 + t)*2(gn?s) (1-1)

n 1
Lmapz + (L4 T TEw 078

\uo\ \U1HLan47

”|D|suln(t, .)HLq <(1+ t)_iz(an—s) =-D-s=5 o]

Lm (-\HSJFSO

1+ t)riz(;:a)(17%)*7((,;_7;) ]

s—o+s
NH; 05

—_n __(—1ly__9¢_
i (&, Y < (14677077 Jugl o

n 1y__96
I (1 i t)l—z(a—a)(l—i) =5 HulumeHgnv

_ _1y_s—0o+2§
H‘Dls—auin(ﬁ, ')HL(I < (1 + t) 2(0"75)(1 ) 2(0—0) HUOHmeH;“U
+ (14 )T DTG Jug]e-oveo
q

for any t > 0.

Proof of Theorem 6.1.3. We introduce the data space Ajf%0 := (L™ n H+%0) x (L™ n HZ=7F#0).
Moreover, we introduce for any ¢ > 0 the function space X (t) := C([0,t], HS) n C*([0,t], H~7). For
the sake of brevity, we also define the norm

ulx = sup ((L+7) 7 O Du(r, ) + (L4 7) 55 DT | Dl )|,

o<sr<t
() TS g, )

+ (14 ) 0D | Doy (r, ), ),
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and the space Xo(t) := C([0,t], H) with the norm
[wlxo == sup (@ +7)7 DD u(r, s + (1 + 1) O | Dfw(r, ), )
osr<t

We define the operator N : we€ X(t) — Nu € X(t) by the formula
¢
Nu(t,z) = Ko(t,x) #4 up(x) + K1 (t, 2) 5 uy(x) + f Ky (t — 7,x) %, |u(r, z)|Pdr.
0

We will prove that the operator N satisfies the following two estimates:

[Nullx ) S I(uo, ur)l| gorso + lul, o)

[Nu — Nolx = vl (lulfky + 1505)- (6.23)

First let us prove the inequality (6.22). Our proof is divided into four steps.

Step 1: We need to estimate the norm |Nu(t,-)|r«. We apply the L™ n L? — L9 estimates if
e [0,[t — 1]*] and the LY — L9 estimates if 7 € [[t — 1]T, ¢] from Theorem 3.3.1 to conclude

INu(t, )]s < (1 +8)' "7 =)

(’LLQ, ul) HAersO

[t-1] .
+J (1+t_7)1im(17%) (7—7')|pHmequT
0

t
*f (t — 7) = EDGE D) (7, 2], dr
[

t—1]+
We have
(T, )|

To estimate the norm |u(r,-)|},, with k& = ¢,m, we apply the fractional Gagliardo-Nirenberg
inequality from Proposition C.1.1 to obtain

= [lu(r, )|

Lo + [u(Ts ) Lan-

LmALa pm [lu(r, ')‘p”Lq S fu(r, )

_ n 1y s 0
lu(r, Yzar < [IDIu(r, )3 ulr, ) 12" < (1 4+ 1) @m0 7550 ) (o,

and

lu(T,-)

e < H‘D‘S H pH Hl Omp < (1 + 7_)172((,"_5)(17%)*2(;‘_5)Gm,pHuHXO(T)’

where

n/l 1 n/l 1
011;0 = ‘90,5((]]% Q) = ;(5 - %) and amp = GO,S(mpv q) = *(6 - m7p>

As in Corollary C.1.1 we have to guarantee that 6,, and 6,,, belong to [0, 1]. Both conditions follow

the restrictions q
p € |:7a
m’' n—qs

] ifn>gqs, or pe [g,oo) if n <gs.
m
. . 1_ 1, 1 :
By virtue of the relation 1 + 7= 7t we derive

(1 + T D ) ol < (14 ) )

([T P () S Ml ry:
i, Pl < (4 7Pl O Dmem ) s ) < (14 7P T G

From both estimates we may conclude

INut, )| Lo < (1+ )77 (ug, uy))|

sts
A d°

[t—1]
+ H“H];(O(t) J (I1+t¢t— 7')1 365 (1= )(1 + T)P Fm(a—sy (P— 1)d7_
0
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The key tool relies now in the application of Lemma B.6.1. Because of

max {n — “n+ms, dm(o — )}
n—2m(oc — §) ’

p>1+

we obtain
n

2m(a—6)(p71)<71’

p—
and 1
n n
1—7(1—7) >p———(p—1).
o\ "5 PP T oy ® Y
Hence, after applying Lemma B.6.1 by choosing

n

“=‘1+a;f5@‘%)mﬂﬁ=—P+

n

smo —o) P~

we get

[t_1]+ n 1 n
J (1 4+t — 7—)1*2(575) (1*?)(1 + T)P* Tm(e=5) (P*l)dT
0

t
< f Q+t—r) D14 P me=m P Dy < (14 )T 470,
0

Moreover, since [%] < ng holds, it follows

n o
- (3 ) (5 -1 >t
1+ 5 % 1) >-1
Therefore, we estimate

t
J (t77)1*(1+[%])(%*1)(1 +7-)P—2<:35)(%_$)d7
[

t
S+t e J (t — 7= HED (&1 gy
[t—1]+
np 1 1 1 n >
<1+ t)P—m(m—ﬁ) J. P+ ED(F -1 gy
0
< (1 + t)p_%(%_ﬁ) < (1 + t)l—ﬁ(l_%)7

since

Hence, we arrive at the following estimate:

INu(t, o < (L4 877D D ([ (g, )

T HuH];(O(t)). (6.24)

Step 2:  We need to estimate the norm |0, Nu(t, )| r«. Differentiating Nu(¢,z) with respect to ¢
we obtain

t
OtNu(t,z) = 04 (Ko(t,z) x, ug () + K1 (t,x) #4 ul(z)) + f O (Kl(t — T, T) *y |u(7',:1:)|p)d7'.
0
We apply the L™ n L1 — L? estimates if 7 € [0, [t — 1]7] and the LY — L9 estimates if 7 € [[t — 1], ¢]
from Theorem 3.3.1 to conclude

n

l6:Nu(t, )| za < (14 )25 0775 | (ug, uy)|

sts
A d°

[t—1]" 1o mn _(q_1y__&_
+ J (I+t—71) BECEIS H|u(7’, ')|pHmequT
0

t
+J (t = 7)~CHEDE D ju(r, P, dr.
[

t—1]+
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Using the same ideas for deriving (6.24) we may conclude
—_n __(1—L1y_
JouNu(t, e < (1+ )" ([ (g, un)] o + il )

Step 3:  Let us estimate the norm | |D|*Nu(t We use

M g
|D|*Nu(t,z) = |D|* (Ko(t, ) #; uo(z) + K1(t, ) 5 u1(x)) + Jo |D|* (K1 (t — 7, @), [u(r, 2)[")dr

We apply the (L™ n L?) — L estimates if 7 € [0, [t —1]"] and the L?— L? estimates if 7 € [[t—1]*,¢]
from Theorem 3.3.2 to derive

[|D]* Nuft (1+ )75 D755 | (g, u ) | goa0

RIITES

(o= s
+J (1+tfT)lfm(lf?)*m’“u(ﬂ~)|pHmestdT
0 q

t
# e D (]
[t—1]* ’

— (1 + )0 D g, )

[t-1]* . 1y s
+f 1+t —7)' " U= 2w = | |u(r, )P dr

L""r\L‘ImH37"
0

t
T M Rl T T A
[t—1]+ !

and H|u(7’ will be handled as before if we apply the

The integrals with [|u(r )|pHmeLq )|p||Lfl

conditions for p and n, that is,

pe[q ]ifn>qs, or pe[g,oo)ifnéqs,
m’'n—gqs m
and
. max {n — “n+ms, dm(o — )} n
> 14 5] <
P n—2m(o — 0) 2 1o

Hence, we get

[t—1] n S
[ art-nm b g . e
0

S+ g,

and

t
—(2+[2P(& -1 1— 5t (1- 1) — 5
Luﬁﬂ CHEDE D lu(r )P pydr < (14 0) T DT .

To estimate the integrals with the norm H|u(7, ~)\pHH5ﬂ,, we shall apply Proposition C.3.2 for the
q

fractional chain rule with p > [s — o]. Therefore, we obtain

-1 1

q1 q2

1
P P DI where S =

Applying the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we have

1

e, Meas < ulr, 5" 11w, g8 5 (14 )T 0D
and
[P =7u(r, )|y < lulr, ) [IDFu(r, )32 < (14 7)) 72 0 7m0,
where nlo1 nl 1 s—o
04, :=00.5(q1,q) = §(§ — q71> and 8y, 1= 055 5(q2,q) = E(& — qiz + - )
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Hence, we may conclude

|||U(T, ')‘pHHE;_" < (1 + T)P— 2(;135) (1—%)_2(;,5) ((P—1)9q1 +9q2) HUH_I;(O

<+ rp TG R EET g

where we can see that (p —1)6,, +6,, = %(% + £=2). Here we have to guarantee that 6,, € [0,1]

and 0y, € [*2%,1]. Both conditions imply the restrictions

ifn>¢qs, or p>1lifn<gs

l<p<1+

Therefore, we have shown the estimates

—_n _(1_1y__ s
1Dl Nu(t 1+ )7 07355 ([ (o, u) | g0 + [0l )- (6.25)

HLq ~ (
Step 4:  Let us estimate the norm |0 D|*~7 Nu(t,-)|,,. We use
O DIP " Nu(t,x) = 0| D*~7 (Ko (t, ) #4 uo(x) + Ki(t, ) #4 ui(x))

t
+ J 8 DI (K1 (¢ — 7.2) %y u(r, z) ) dr.
0

By applying again the (L™ n L) — L9 estimates if 7 € [0, [t — 1]7] and the LY — L? estimates if
€ [[t — 1], ¢] from Theorem 3.3.2, we derive

n s—o+26
H(';t|D|s UNu (]_ + ) 2(0—5)(1*%)* 2(gj6) H(“07“1)”Afn+20

HLq ~

[t=1] . o
- J (1+t— T)lfmﬂ*%)waiﬁﬂ“u(ﬁ ] P—
0 q

t
+J (t = 7)~ @ EDE D ju(r, )P,
[ q

t—1]+

Following the approach to show (6.25) we may conclude

s—o+26

n_(1_1y_
”6t|D|S T Nu(t HLq < (1 +t) — gty (1= 5) = 5253 (H(uo’ul)”Afnij + H““?@(t))'

Summarizing, from the definition of the norm in X (¢) we obtain immediately the inequality (6.22).
Next let us prove the inequality (6.23). Our proof is also divided into four steps.

Step 1: We need to estimate the norm |Nu(t,:) — Nov(t, )|r«. We use the (L™ n L) — L1
estimates if 7 € [0, [t — 1]"] and the LY — L7 estimates if 7 € [t — 1], ¢] from Theorem 3.3.1 to derive
for two functions u and v from X (¢) the estimate

[t—=1]1*

INu(t, ) = No(t, )| e Sf L+t =)D fu(r )P = ol )P g
0

t
+ f (t - T)l_(1+[%])(%_l)|“u(7—v )|p - |U(T, ')lpHquT
[t—1]+

By using Holder’s inequality and applying again the same ideas as we did in the proof of (6.9) and
Step 1 to prove (6.22) we may conclude
—_n __(1—-1 — —
INu(t,) = Not,)ze < (1+ 877500 i — o]y (Julliee by + Tl byy)-
Step 2:  We need to estimate the norm |0, Nu(t,-) — 0y Nv(t,-)||ra. We use

[t71]+ n 1 5
|0 Nu(t,-) — &:Nv(t, )| ra < f L+t —7)' 7 DT Ju(r, )P = (7, )P s a7
0

t
H ey G E D )l — ot )P dr
[t-1]+
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Using the same approach of (6.9) and Step 2 to prove (6.22) we conclude

__n _1y__6 _
[0:Nult, ) = AuNw(t, e < (1+8)' 7m0 0775 fu— v, (Jull () + 01 )

Step 3:  Let us estimate the norm | |D|*Nu(t,-) — |D|*Nu(t, HL We use

|ID]* Nu(t,-) — [D|*Nuv(t, )|,

[t—1]* . .
< f 1+t — )" =5 =725 | ju(r, )P — |o(T, 1l P——
0 q

t
| G E D ) — ot )P e
[t-1]* !

[t—11*
1——2 __(1—1)y— s _
_ f (1 +t— 7—) o5 (1—%)— 3505 H|U(T’ .)|P _ ‘1}(7’, ')|p||meL4mH;§_"dT
0

t
+ f (t =) CHEDE D u(r, )P —Jo(r, )P L, a-edr
[t—1]* q

The integrals with [[u(r,)[" — |v(7,)[?| . ., and |Ju(7, )P = |v(7,-)|P|,, will be handled as we
did in the proof of (6.9) and Step 3 to prove (6.22). Hence, we get

(r-2)* . i),
f (1t t = 7)) D77 [u(r, )P = [0(r, )P g

LmALa T
0

1——n 1—Ly___s _
S (1 + )= D755 fu— v o) (el ) + 101 )
and

t
| = e E D (e, ot
[

t—1]+ ")|pHquT
1——n _(1—L1y__ s _
<1+t wm T |y — UHXo(t)(H“HXO(t) + ”UHXO(t))

Let us now turn to estimate the norm ||[u(7, -)|P—|v(r, -)|?| -~ . By using the integral representation
q

1

lu(r, )P — [o(r, 2)|P = p j (u(r, ) — (7, 2))G (wulr, 2) + (1 - wyo(r, z))d,

0

where G(u) = u|u|P~2, we obtain

dw.
La

P = ot e < | 108 ((utr) = ol ) Gl + (1= (s, )

~Thanks to the fractional Leibniz formula from Proposition C.2.1, we may estimate a product in
H;™7 as follows:

1
lladr, Y = ol WP gge < [ 11D (utr) = o(7.)

# [ 1t ot

< H|D|S_U(u(7, D —o(r L”J HG wu(T w)v(T,-))
+ Ju(r, ) = v(7, )| s L H|D|S*"G(wu(r, )+ (1 —w)o(r, ~))HLT4dw
< [IDF=7 (u(r, ) = v(r, ) | oy (s ) sy + () P )

1
+|\u(7,~)—v(7,~)|\mL [IDI=7G (wu(r, ) + (1 = w)o(7, ), dw,

|G wu(r, ) + (1= w)o(r, )|y dw

|D|*~7 G (wu(r,-) + (1 — w)v(7, )], ., dw

Lra

dw

L2
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where
1 1 1 1 1

g T T2 T3 T4
Employing the fractional Gargliardo-Nirenberg inequality from Proposition C.1.1 implies

[P~ (ulr, ) = v(r, )1y S HU(T,-)—U(T,')HQL u(r, ) = o(r, )| 1"
Ju(, M pra-n < Julr, H u(r, )H1 e

lv(T;-)| o(r, )",

(7,°)
Lr2p—1) < H (7—7 )
(1,) —

lu(r,) = v(r, )z < Julr, ( ,')Hfig Ju(r,) = v(r, )",
where
1 1 - -
01 = 08_0"9(T17q)22(,77+8 0) € [S Ual:la
s\qg r n s

n/1 1

s\q

02 :=bo,s(r2(p — 1),q) = *(* - m) €[0,1] and 05 :=0os(rs,q) = E<1 - i) e [0,1].

s \q 3

Moreover, since w € [0,1] is a parameter, we may apply again the fractional chain rule with p >
1+ [s— o] from Proposition C.3.2 and the fractional Gagliardo-Nirenberg inequality from Proposition

C.1.1 to conclude

H|D|§ ”G(wu(r, )+ (1 —w)o(r,- )HU4
< Jwu(r, ) + (1 =w)o(r, )52 (DI (wulr, ) + (1= w)o(r, )] o
< Jwu(r, ) + (1 = w)o(r, W A () 4 (1 g Dt
where
PR e ot = 25— ) 0.1,

1 1 — —
and g 1= bs_o s(11,9) = %(5 fa + i nCT) € [s 0,1].

Hence, we derive

| PG ontr) + (=)

(p—2)05+6 (p—2)(1—05)+1—0
S (lw(r, M groa + 100 M graa) ™ (o + o7, ) za) ™ ’ .

Therefore, we conclude
[lu(r, )P = fo(r, 1P| oo
np _ 1y n p—1
< (U4 e TS Ty — o) oo ([l gy + 1015 ()

__np 1 _ 1y __s—o —
<@1+7)7 50=5) (m ~ap) " H(o=0) HU—UHXO(T)(HUHXO +H““Xo T))

where we note that

-1 —
01+(p—1)92=93+(p—2)05+06=ﬁ(p7+S U).
s\ q n
Summarizing, we have proved the estimates

s n 11—y __s _
[IDIENu(t, ) = [DIENv(t, )| 1, < (1+ )7 D73 fu— vy ) (Jull ) + 1ol )

Step 4:  Let us estimate the norm || D|*~7 Nu(t,-) — 6;|D|*"“ Nuv(t,)|| . We use
|0:|DI*~7 Nu(t,-) — 6| D|* " Nu(t,-)|,,
[t=1] n oo
<[ @t D )P = o )P gy
0 ¢

t
+ J (t — )" CrBEDGEED ju(r, )P = Jo(r, ) P] o dr.
[t—1]+ a
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By the same treatment as in Step 3 to prove (6.23) we may conclude
H&t|D|5*"Nu(t, ) = &|D|*"? Nu(t, -)HLq
1— n 1—1 _s8—0426 1 —1
< (14 OO D5 ol (ullicly + I0I50L)-

Summarizing, from the definition of the norm in X (¢) and all the previous estimates we have

completed the proof of (6.23). O
Remark 6.1.5. Explaining the possibility to choose the suitable parameters qi, g2, 71,--- ,7¢ and
01, - ,0¢ appearing in the proof to Theorem 6.1.3 is the same as that in Remark 5.1.4. Following the

explanations as we did in Remark 5.1.4 we may conclude the following conditions:

2<p<1l+

o
ifn>gqs, or p=2ifn<gs,
s

which are sufficient to guarantee the existence of all these parameters satisfying the required conditions.
Remark 6.1.6. If we assume the following condition for the space dimension:

mq(4o — 46 —
<y M0~ 40— 5)
qg—m
then it follows 4m(o — §) = n — “n + ms. This inequality allows us to avoid the restriction of

n—2n+ms

p>1+ #(075) in Theorem 6.1.3. Hence, we only need to guarantee the following restriction:
dm(o —9)
>1+ ————.
P * n—2m(o — 9)

Example 6.1.4. By choosing m =1, g =2, 0 = 2,0 = 0.9 and s = 2.5 we obtain the following
admissible range of exponents p:

n=3 n=4 n=>5 n==>6 n="7 n=2~8
pe (6.5,0) | pe(3.5,0) | pe(2.79,0) | pe (2.45,5] | pe (2.25,3] | pe (2.12,2.33]

Tab. 6.3.: The admissible range of exponents p depends on the space dimension n.

6.1.4. Large regular solutions to the model (6.1)

Finally, we obtain large regular solutions to (6.1) by using the fractional powers rule and the fractional
Sobolev embedding.

Theorem 6.1.4. Let s > o + 7. Let g € (1,0) be a fized constant and m € [1,q). We assume that
the exponent p satisfies the conditions p > 1+ s — o and

max {n — “n+ms, dm(o — )}

1 6.26
p=it n—2m(c — §) ’ (6:26)
where [%] < ng. Moreover, we suppose the following conditions:
pE [2, oo) and n > 2m(o — §). (6.27)
m

Then, there exists a constant € > 0 such that for any small data

(ug,u1) € A5F20 satisfying the assumption ||(ug,u1)]|

m,q Ajﬂ*;o < g,

we have a uniquely determined global (in time) small data energy solution
ue C([0,00), H) n C*([0,00), H; ™)

to (6.1). Moreover, the estimates (6.18) to (6.21) hold.
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Proof. We introduce the definitions of spaces A;7 50, X (t) and X(t) as in the proof of Theorem 6.1.3.
We repeat exactly on the one hand the same estimates for the terms |u(7,-)|? and [u(7,-)[? — |v(7,-)[?
in L™ and L7 On the other hand, we estimate the above terms in H;~7 by using the fractional
powers rule and the fractional Sobolev embedding.

In the first step, let us begin with H lu(T We shall apply Corollary C.4.1 for the fractional

) )‘pHH57‘7
powers rule with s — o € (%, p). Therefore, we obtain

G ] P (GO PP G e

p—1
< Jualry g (s Vg + )y

Here we used Corollary C.5.1 with a suitable s* < %. Applying the fractional Gagliardo-Nirenberg
inequality from Proposition C.1.1 we have

Hu(7_7 )HH;—” < HU( 1 91 H|D| 1 + 7— 2(5715)(1 ) 2(0—0) HU’HX()(T)?

HLq ~

2] —_n __(1—-1 __s*
\mwfw@*suw 52 IDIu(r, )7 < (14 7)== 00730 fu) x, ),

* .
where ¢ =1 — 2 and ¢, = “~. Hence, we derive

[lulr P fs-e < (L4 7)7 (1= (1-0) =iy~ 0D xi el o)

(1+T)p Fme=5) (P~ 1)HuHXO oy

if we choose s* = 2 — ¢ with a sufficiently small 5 > 0. Therefore, by an analogous argument as we
did in the proof of Theorem 6.1.3 we may conclude

[t=11" n . n .
| @ty D ) o dr 5 (1 )T g
0 q

and

t
f[ 1]+(t - T)f(2+[%])(%—1)“|u(7, .)|pHH3,C,dT < (14t)' 72w 5 (=3~ 255 HUHX -
t—

Finally, let us turn to estimate the norm ||u(r,-)[P — |v(7,)|? Then, repeating the proof of

7] 7=
q
the second step of Theorem 5.1.4 and using the same treatment as in the proof of the above first step

we get

2 1 1 —1
Il P = o, P oo S (14 TP T — v sy (Rl + el

Hence, we arrive at

[t—1] ; .
f (1+t— 7-)1_2(0—5) (-3 - 555 H|u(7-7 NP = |v(r, ')|pHH5—”w‘1dT
0
S (L) 7T fu— ol ([l % ) + 1ol )
and
t n a
f (t =) CTEDESE D u(r, )P = Jo(r, )P s o dr
[t—1]+
l— gt (1= 1) — 5= -
S 1+ )" 7= U TImT fu— vl g (Tl ) + 0Bt
Summarizing, the proof of Theorem 6.1.4 is completed. O

Example 6.1.5. By choosing m =1, ¢ = 2, 0 = 2, 6 = 0.9 and s = 5 we obtain the following
admissible range of exponents p:
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n n =3 n=4 n=>9
p || pe(9.125,0) | p e (4.889,0) | p e (4,0)

Tab. 6.4.: The admissible range of exponents p depends on the space dimension n.

6.1.5. Large regular solution to the model (6.2)

In this section, we obtain large regular solutions to (6.2) by using the fractional powers rule and the
fractional Sobolev embedding.

Theorem 6.1.5. Let s > o + %. Let g € (1,00) be a fized constant and m € [1,q). We assume that
the exponent p satisfies the conditions p > 1+ s — o and

max {n — “n+m(s — 26), 2m(20 — 30)}

1 6.28
p=2+ n —2m(c — 24) ’ (6:28)

where [g] < ngy. Moreover, we suppose the following conditions:
pE [%, oo) and n > 2m(o — 29). (6.29)

Then, there exists a constant € > 0 such that for any small data

(ug,u1) € Afj,;o satisfying the assumption |(ug, u1) <e,

| gz+20

we have a uniquely determined global (in time) small data energy solution
ue C([0,00), H) n C*([0,00), H; ™)

to (6.2). Moreover, the estimates (6.18) to (6.21) hold.

Proof. We introduce the definitions of spaces Ajf#0 and X(t) as in the proof of Theorem 6.1.3. We
define the operator N : X (t) — X (¢) by the formula

t
Nu(t,x) = Ko(t, x) %5 up(x) + K1(t, ) %, ug(x) + J Ki(t — 7, @) %y |ug (7, 2)|PdT.
0

We will prove that the operator N satisfies the following two estimates:

[Nullxqy (w0, ur)| gorso + ul’kqy (6.30)
-1 -1
[Nu— Nvfx@y S Ju—vllxe (lulfq) + 1015%m)- (6.31)

First let us prove the inequality (6.30). Our proof is divided into four steps.

Step 1: We need to estimate the norm |Nu(t,-)| .. We apply the L™ n L? — L? estimates if
7€ [0,[t —1]T] and the LY — L% estimates if 7 € [[t — 1]T, ¢] from Theorem 3.3.1 to conclude

1
T

INu(t, )| pe < (1+¢) o7

(UO’ uy ) HA;n*zO

(11" n !

+J (L4t =) 75 O fuy(r, )P padr
0
t

[ D )
=11+

We have
”‘ut<7—> ')|p|meLq = H|Ut(77 ')|p‘ Lm T H|“t(7a )lpHL‘I S Jua(rs Wimo + s (7, Yoo

To estimate the norm [u.(7,-)|",, with k& = ¢,m, we apply the fractional Gagliardo-Nirenberg
inequality from Proposition C.1.1 to obtain

s—o

_ 0 —0 __n (1_1 _s—ag
Jue (7, Y < [IDP e (r )| 32 Jue(r, et ™ < (1 + 1) 7@ 0= e5 2w oy ),
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and

1-6 —_n (11 5= 0,
T e 11 s G 1 € e e G 5 B e i U PSS

where

Ogp :=00,5—c(qp,q) = S ﬁ . (é — é) and 0y, 1= 0y s—o(Mmp,q) = - ZL - (1 _ L)

As in Corollary C.1.1 we have to guarantee that 6, and 6,,, belong to [0,1]. Both conditions imply
the restrictions

q n . n q ) n
pe[ 7]1fs<a+7, or pe[—,oo)ﬂs)a—f—f.
m’'n—q(s—o) q m q
By virtue of the relation 1 + % = % + %, we derive
H|ut<r,->\PHmeLq < @+ rplmmesn 0ty
1— — 1 y_
(1+7) P( o5y () "5 J)HUHX(T
(.- nLq <+ - o) bl
1 + 7— p(l 2(o— 5)(7n77)70 J)HUHX(T

From both estimates we may conclude

__n _1
INut, e s (146727907 (g, w)| goro

[t=1] n n_ (1
ke [ @re-n D (G -s) gr
0

)

t
Flullgy [ (0= gl i) .
[t—1]*

The key tool relies now in the application of Lemma B.6.1. Because of

max {n — “n+m(s —26), 2m(20 — 30)}

1
p>1+ n —2m(o — 24) ’
we obtain ) ) 5
n
l1-— ) = -1

p( 2(075)(771 mp) 075)< ’

and
1 1

n 1 n 6
——(1l=-=)2pll - —— — — .
2((7—5)( r) p( 2(0 —0) (m mp) 0'—5>
Hence, after applying Lemma B.6.1 by choosing

n

O‘:_Hm(l_%) andf”:p(—”z((f_(s)(;‘n;)%ia)

we get

[t=1]* n 1 1 s
f 1+t - 0D (- G- —5) gr
0

t
< J (1 +t— T)lfﬁ(lf%)(l + T)p(lfﬁ(#*n%p)*%)ch— < (1 —l—t)liﬁ(li%),
0

Moreover, since [%] < ng holds, it follows

B G )
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Therefore, we can estimate

t
j (t — )=+ BDGE-D (1 4 (- G )55 g7
[t-11+
n 1 1 s t
< (1+t);0(1—m(;—5)—m)‘[ (t — ) -+ ED G-V gr
[

t—1]+

1
§(1+ty@fﬁ%s%7¢%;%)f A-HED(E D) g,
0
<(1+ t)P(l—ﬁ(%—é)—%g) <1+ t)l—ﬁ(l—%),

p(lmf_(s)(;qlp)gé_a)“?(f_a)(li)-

Hence, we arrive at the following estimate:

since

__mn (1_1
INu(t, Yzo < (1+ 077D (g, un)] goseo + Julfy ) (6:32)

Step 2: We need to estimate the norm [|0; Nu(t,-)| La. Differentiating Nu(t, z) with respect to ¢
we obtain

¢
OtNu(t,x) = 0 (Ko(t,a:) 5 ug () + Kq(t, @) #, ul(sc)) + J Oy (Kl(t —T,) *g |uy (T, x)\p)dr
0
We apply the L™ n LY — L? estimates if 7 € [0, [t — 1] 7] and the LY — L9 estimates if 7 € [[t — 1], ¢]
from Theorem 3.3.1 to conclude

n

l6:Nu(t, )| za < (1+ )25 A0 =5 | (ug, uy)|

s+s
A d°

[t71]+ 1— 2 (1-1) 3
+J (14t —7) "7 D755 (7, )P a7
0

i
*f (t — 7) = EBDE D |y (7, )P 7.
[

t—1]+

Using the same way for deriving (6.32) we may conclude

JoeNu(t, e < (1+6)' 7270 D775 (| (g, )

i )

Step 3:  Let us estimate the norm [|D|*Nu(t,-)||,,. We use
t

|D|*Nu(t,z) = |D|* (Ko(t, ) #; uo(z) + K1(t, ) 5 u1(x)) + ‘[ |D|* (K1 (t — 7, ) 5 |ue(7, ) [P)dr.
0

We apply the (L™~ L?) — L? estimates if 7 € [0, [t —1]1] and the L9 — L7 estimates if 7 € [[t —1]T, ]
from Theorem 3.3.2 to derive

H|D|5Nu(t7 .)HLq <1+ t)172<;15)(1*%)*2(ai§) (o, ur)

Lzt
[t_l]Jr 1 n 1—1 S
+f (L+t—7)' 72D D7 uy (7, )P oo dT
. q
t
4*[ (t —7)" DG uy (7, )P o dr
[t-1]+ '
_n(_Ly___ s _
= (L4077 (g, )| oo
[t71]+ 1l _(1_1y___s _
e [ O T 1 P o
0 '

t
H| e G E D (P,
[t—1]+ !
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The integrals with H|ut |pH will be handled as before if we apply the

conditions for p and n, that is,

and | |u(7

LmnL4 )|pHLq

q n . n q . n
pe[—,7]1f5<0+7, or pE[f,OO)lfS>U+*,

m’ ' n—q(s—o) q m q
and

p>1+

max {n — “n+m(s — 26), 2m(20 — 36)} n
n —2m(o — 20) ’ [5] = no-

Hence, we get

[e—11 n . n .
| @t 0 )Py < (1) TR0 D T
0

and

t
—(2+[2D(Z -1 I— gt (1- 1) — 5%
J[t1]+(t — )T )H|“t(7’ ')‘pHquT s(A+t) =@ Hemo Huugf(t)

To estimate the integrals with the norm H|Ut(7 we shall apply Corollary C.4.1 for the

) ')‘pHH;*f”
fractional powers rule with s — o € (%, p). Therefore, we obtain

e (7, )P ] s < Nue(m, ) gra-e e (7, )

S Jue(m M ggg=o (e (7, M grow + (7, ) g

Here we used Corollary C.5.1 with a suitable s* < %. Applying the fractional Gagliardo-Nirenberg
inequality from Proposition C.1.1 we have

.

0 __n (g1 _s*
e (7 ) o < e, W2 1D ue(r, )| 1 < (1 + 1) 7 7o 00755 750 u) oy,

s¥
s—

where 0 = . Hence, we derive

n s—o ¥
I P e {3
__m (1 _ 1 y\__95
< (1 + 7_)10(1 2(075)(7” ’HLp) a,(;) Huui(ﬂ’
if we choose s* = 2 — &g where g9 > 0 is sufficiently small. By an analogous argument as we did in
Step 1 we obtain

[t=1] . .
f (1t =) 77D D730 [uy (7, )P o (1 0)' T DT
0 q

t
—2+[2])(& -1 lm g (1= 1) s
[l = D P e 5 1) Ol

Therefore, we have shown the estimates
—_n _(1—_1y__ s _
H|D| NU HLq < (1 + t)l 2(c—9) (1 r) 2(0c—9) (H(u07u1)HA:n+,ZO + HUHI;((t)> (633)

Step 4:  Let us estimate the norm |0 D[*~7 Nu(t We use

o
O¢| DI ° Nu(t,x) = 0¢|D|°™° (Ko(t,x) #g o () + Ki(t, 2) #4 ui ()

t
+f OD= (Ko (t — 7, ) %y [ (r, 2)[P) dr
0

By applying again the (L™ n L) — L9 estimates if 7 € [0, [t — 1]*] and the LY — L? estimates if
€ [[t — 1], ¢] from Theorem 3.3.2, we derive

s—o+2

1+ t) 2(0715) (1_%)_ 2(0— 5) H (UO; Ul)‘

H8t|D|S UNU,

s = Atz

[t—1]* n s—o+28
T f (1 +t— 7—)1_2(075) (1_%)_2«77:5) H|ut(7’ ~)|pHmeHsfodT
o q

t
[ e D ], i
[t—1]+ '
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Following the approach to show (6.33) we may conclude

|20 DI~ Nuft (1 + )= DT (g, )|

B v+ lulfe)-

Summarizing, from the definition of the norm in X (¢) we obtain immediately the inequality (6.30).
Next let us prove the inequality (6.31). Our proof is also divided into four steps.

Step 1: We need to estimate the norm |Nu(t,:) — Nov(t, )|r«. We use the (L™ n L) — L4
estimates if 7 € [0, [¢ — 1]T] and the L? — LY estimates if 7 € [t — 1]*,¢] from Theorem 3.3.1 to derive
for two functions u and v from X (¢) the estimate

[t-1] ;
HNﬂ@w)*AW@wMLqSJ‘ (L4t =) 7 Oy (7, )P = or (7, P a7
0

t
H O EE Y fua(r )P~ o,
[t—1]*

By using Hoélder’s inequality and applying again the same ideas as we did in the proof of (6.9) and
Step 1 to prove (6.30) we may conclude

_n (g1
INu(t,) = Not,)pe < (1+ 6750 u— o x ) (lulbeqy + lole)-
Step 2:  We need to estimate the norm |0, Nu(t, ) — 0:Nv(t,-)||r«. We use
[t-1]*

|o:Nu(t,-) — &:No(t, )| e < f (L+t—7) D D775 luy(r, )P — [og(r,
0

dr

‘ ||meLq

t
+ J (t =) CHEVE D juy(7,)[7 — fog (7, )7 dr
[t-1]+

Using the same approach to derive (6.9) and Step 2 to prove (6.30) we conclude

__n _1y_ 6 _
|6:Nu(t,-) = AiNv(t, ) pa < (141750775 fu— o] x ) (fullig, + [ol%))-

Step 3:  Let us estimate the norm | |D|*Nu(t,-) — |D|*Nu(t We use

e

[IDI*Nu(t,) = [DI*"Nu(t, )|,

[t—1]" . .
sJ‘ (1+t—7f7ﬂwﬁu*%*ﬂwﬂHMAﬂ)P—ﬁw@yﬂﬂhmmﬁﬂdT
0

t
+ J (t— T)*(H[%])(%A)H\Ut(ﬂ NP = [oe(r, ')lpHHS_”dT
[t-1]* !

[t 1]+ n 1 s
= f (1+t—7) = )75 |y (7, )P — fou (7 dr
0

’ .)|pHmeLqu;‘70

¢
+ f (t — 1)~ CHENGED [y (r, )P — fop(, )P g oo -
[t—1]+ 4

The integrals with | |u,(7, )" — [v¢(7,-)[P| o and [Jue(7,-)[P = |oy(7,)|P|,, will be handled as
we did in the proof of (6.9) and Step 3 to prove (6.30). Hence, we get

[t 1] 1—_n (1,1)7 3
f (1 +1- T) 2(e=9) vl 2= ”|’th(7', )|p - |Ut(7—7 )‘p L'nLr\quT
0

1— g (1= L) — -1 -1
< L+ O T DT Ju— v (Tl + o)

and

t
f (t — 1) CHEDED luy (1, )P — [oy(r, )] dr
[

t—1]+

1l——n __(1—1)y__ s _
S 1+ 73 D755 - vl (Jully + 1ol%s))-
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Let us now turn to estimate the norm | |u, (7, )| — |ve(7 By using the integral represen-

5 ')|pHH§70 '
tation

1

|ug (1, 2)|P — |ve(r, 2) [P = pJ;] (ut(T, x) — v (T, x))G(wut(T,:v) + (1 — w)ve(T, x))dw,

where G(u) = u|u|P~2, we obtain
(1P = o P e sL D= (e, ) = vl ) Gl ) + (1 = wpun(r, )| do

Thanks to the fractional powers rule from Corollary C.4.2, we can proceed as follows:

L4

[lue (7, )P = Jo(r, )P oo L Jue (T, ) = 07, ) oo | G (wue (7, ) + (1 = w)ve(7, ) | o dw
1
+ L [we(T, ) — v (T, )| e HG(wut(T7 S+ (1 — w)ue(r, -))HH;,c,dw
< [ ur) = oo e, ) + (1 = e,
0
+ J;) [we(T, ) — v (7, )| Lo HG(wut(T7 D+ (1 — w)vg(T, -))HHg,adw.

Applying Corollary C.4.1 with p > 2 and s —o € (7,p — 1) we get
|G (wue(T, ) + (1 — w)ve(r )HH -
< Jwue(r, ) + (1= w)oi(r, ) oo Jloue (7, ) + (1 = wor (7, ) |72

Using Corollary C.5.1 with a suitable s* < % we get

8

() =07, )L < Jue (T, ) = 0e(Ts )| g + w7, ) = ve(ms ) g
and

Jwur (7, ) + (1 = w)or (T, ) |
S Joous(rs ) + (1= w)vi(m, ) ggx + lowwa(7, ) + (1= w)oi (7, )| g

Applying the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we have
0
e, ) = vl ) g < el ) = vl )|z (1D (w7, ) — vl )
S (14 7) DT o)),

where 0 =

2. In the same way, we get

__n 1 ) _s®
[wus (T, ) + (1 — w)ve (T, ')HH;* <S(+7) 35 (1= 7))~ 75 30— Jwue (7, -) + (1 — w)ve (7, )| x () -
Therefore, we may conclude
H\ut(ﬂ‘”p - \Ut(Ta')|pHH;w

1 n s—O S*
< f (1 + 7y (1= 565 1= D= 55%) =2t = 355 oy — ] x(ry Jwots + (1 — w)v|f ke
0

__mn _(1_1y__96
< (1_|_7_)P(1 2(675)(1 7) 0'—6) z(a 5) 2(a ) HU_UHX T)(HUHX(T +||U”X(T)

By an analogous argument as we did in Step 1 to prove (6.30) we obtain

[t—1] " .
| @t O ()P = o, gy d
0

1——n 1—1y— s
S 1+ 7= U735 u — o (Jullfg + le)s
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and

t
J[ (t — 1)~ CHEVE D |y (7, )P — oy (r, Wl g dr

t—1]+
11— _(1—1)y— s
<A+l Hu—vqu)(HUHX(t) + HUHX(:))

Summarizing, we have proved the estimates

[IDI*Nu(t,-) = IDI*No(t, )], s (1+ )" 7m0 073055 fu— o] x ) (Julg + [0l ))-

Step 4:  Let us estimate the norm |0 D[*~7 Nu(t,-) — &;|D|*~° Nv(t We use

e

|6:| DI~ Nu(t,-) — &,|D*~" No(t, )|,

(t=1] n o
sf (1+t =) D= | uy (7, )P = 0i(7, )P ool
0 q

t
+ f (¢ = )~ @HEDGE Dy (7, )7 = fon (7, )P -
[t—1]+ ’

By the same treatment as in Step 3 to prove (6.31) we may conclude

|04/ DI*~ Nu(t, ) — at\DP TNu(t,)| .

— B (1—1) 5ot -1 -1
< U+ 0T DT Ju — o] (Julig + olie)-

Summarizing, from the definition of the norm in X(¢) and all the previous estimates we have
completed the proof of (6.31). O

Remark 6.1.7. From the condition s > o + %, we can see that

. n—n+m(s—26) )
* n —2m(o — 29) -

Hence, the condition p > 2 in the proof of Theorem 6.1.5 can be omitted. Moreover, if we introduce
the another condition for the space dimension n, namely
mq(4o — 46 — s
<y M0 =40~ 5)
q—m
then it follows 2m (20 —36) = n— %*n+m(s—20). This inequality allows us to avoid the restriction of

n—"2n+m(s—20)

m in Theorem 6.1.5. Hence, we only need to guarantee the following restriction:

p>1+

2m(20 — 39)

>14 — .
P +n—2m(a—25)

Example 6.1.6. By choosing m =1, ¢ = 2, 0 =2, § = 0.9 and s = 5 we obtain the following
admissible range of exponents p:

€ (717,00)ifn=1, or pe(4,0)ifn=2,34,5.

6.2. Loss of decay and loss of regularity

In this section, we show how the restrictions to the admissible exponents p appearing in all the
theorems of Section 6.1 can be relaxed. We will use some decay rates for solutions or some of their
partial derivatives to the semi-linear models which are worse than those given for solutions to the
corresponding linear models with vanishing right-hand side to treat the semi-linear models (6.1) and
(6.2). Consequently, we allow loss of decay. This strategy comes into play to bring some advantage
to weaken the restrictions to the admissible exponents p in comparison with those in the previous
section.



6.2. Loss of decay and loss of regularity 135

6.2.1. Solutions in the energy space to the model (6.1)
In the first case we obtain solutions from energy space on the base of L.

Theorem 6.2.1. Under the assumptions of Theorem 6.1.1, if condition (6.3) is replaced by n > n,
then we have the same conclusions of Theorem 6.1.1. But the estimates (6.5) to (6.7) are modified in
the following way:

“ (|D|0u(t7 ')7 u(t’ )) HLq < (1 + t)%( 2(0 2e=9 (- ) H(uOv ul)”A"‘*'sm (6'34)

[ (2, -)HLq <(1+ t)1—2((,"75) (1_7‘)H (uo, ul)HAiﬁf;O' (6.35)

Proof. We follow the proof of Theorem 6.1.1. Having this in mind we fix the data space and the
solution space as in Theorem 6.1.1, but we use the norm

fulxw = sup (fer (7)™ Julr Yo + fea () IDIT0(r, )+ g (7)) e )

STt

and the space Xo(t) := C([0,t], H”?) with the norm

||w||Xo(t) = OSUP (fsl(T)_1Hw< e+ feo (7 1|||D|a ")HLQ)’

<7<t

where

f61 (T) = (1 + T)l_ﬁ(l_%)+sl7 f62 (T) = (1 + 7—)1_2(:75) (1_%)_2(:75) +E2a

and ., s
feu(r) = (14 7) Tremm () mem e

for some positive constants €1, €5 and £3. Here these constants stand for the loss of decay in comparison
with the corresponding decay estimates for solutions to the linear Cauchy problem with vanishing
right-hand side.

First let us prove the estimate (6.8). Repeating the proof of Theorem 6.1.1 we derive the following
estimates:

ko4255

HaJ|D|kO'Nu HLq <(1+t)! — sy (1-3) - 57220 |\(UO,U1)HA0+<0

ko4255

[t_l] n n
Flulf [ @4t w0 bR (1 g gy 0Dt 00y
0

t
g [ (DS (1 G et 00
t—

Now we fix the constant 1 := (1 — %) ( -1+ ﬁ(l - %))
Due to n > nq, it follows —1 + ﬁ (1 — %) > 1 and &7 is positive. Next we choose €5 = ﬁ +e1
and €3 = %. Then, we have

n _ ko+2
1+6) — oty (1-1) - &et2i8 H(UOaUl)HAH “

o101 Nut, )], = (

[t—1]* l— o (1—1)_ ko2 1— o n(1-1)
+||u\|§’(0<t>f (Lt —7) 2007 2@= (14 7) " 2@=9 " dr
0

t
- ||u|§(0<t>f[ g ) AHEDE D=5 (1 4 1) e (g
t—

After applying Lemma B.6.1 by choosing a = —1+ 5. (1-1)+ g‘(’;fg and f = — 145" (1-1)

T
we get

[t 1] n 1 ko+256 n 1
J A+t—7) "m0 1+ ) e i < 1+ 1) e 00,
0

Following the same arguments we used in the proof of Theorem 6.1.1, the condition [%] < ng implies

t
J (t — 7-)1—(14'[%])(%—1)—(’64']')%(1 + 7—)1 sy (1—+ ) dr <1+ t)l—ﬁ(l—%).
[t—1]+
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Finally, we conclude the following estimates:

INu(t, Yo S For(8) (a0, ) yzso + [l ).
DI Nu(t ) 4y < Feat) (10, u0)] gm0 + [l o))
0Nt o < fey (1) (I, )] grro + )

From the definition of the norm in X (¢), we obtain immediately the inequality (6.8).

Next let us prove the inequality (6.9). An analogous treatment as we did in the proof of Theorem
6.1.1 and the above arguments give the following estimates:

|Nu(t,-) = Not,-)za  for (8) 1w = vlxo ) (1l 0 + 005,
[IDI7Nu(t, ) = DI Nu(t, )| 1, S fea (8) 1 = vl xo0) (Julliy ) + 01,

o(t)/?
0
0

1
)
1
(t))’
0eNu(t, ) = AN o(t, ) 1y < Fea 8) = vl ooy (Il + T3 1)
From the definition of the norm in X (t), we obtain immediately the inequality (6.9).
Summarizing, the proof of Theorem 6.2.1 is completed. O

Remark 6.2.1. Here we can see that some loss of decay appears in Theorem 6.2.1. Although the
loss of decay is not arbitrarily small, for example, 5 > 2(0%57 we can reduce the restrictions of
admissible exponents p in comparison with those of Theorem 6.1.1. In other words, the admissible
interval of exponents p is more relaxed because we only need to guarantee the conditions coming from
Gagliardo-Nirenberg inequality. Moreover, if we assume €1 = g5 = €3 = £, where

f0i= (“i)(ﬁ‘ﬁ‘ﬁ(l‘%)

then we have to guarantee another condition for the exponent p in Theorem 6.2.1 as follows:
2n — = —2m(o — )
n—m(30 — 20)

p=

Additionally, we want to emphasize that the results in Theorem 6.2.1 bring some flexibility in com-
parison with those in Theorem 6.1.1. For the sake of brevity, let us denote and recall two parameters
as follows:
max {n — Zn + mo, 4m(c — )} 4mq(o — 6)

1 and np = ———=

=1
P * n—2m(o — 0) qg—m

appearing in Theorem 6.1.1 and Theorem 6.2.1, respectively. In order to observe the whole picture
for the admissible interval of exponents p, for example, we may summarize our results depending on
using no loss of decay or loss of decay in Theorem 6.1.1 and Theorem 6.2.1 in the following picture:

p‘ pk

No loss of decay

Loss of decay

P1Le - —---—
| |
| |
| |
| |
4 ¢ — - - - EERETREeEEeEes, | 4
m I I I m I I I
I I I I I I
I I I I I I
I I I I I I
Iy . — - Y Y —
0 2m(o —9) a9 ?c T 0 2m(oc —4§) ™ qo 2s N
qg—m q—m

Fig. 6.1.: The admissible set of exponents p and dimensions n without loss of decay and with loss of decay.
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Example 6.2.1. In the first example, we choose m =1, ¢ = 2, 0 = 2 and § = 0.875 in Theorem 6.1.1
and Theorem 6.2.1. Here we can see that the idea of allowing a loss of decay cannot be applied to
Theorem 6.2.1 because there is no value of n satisfying the condition n > n;. Hence, we only obtain
the results of Theorem 6.1.1 without a loss of decay (see the following table):

n n=3 n=4 n=>5 n==~6 n==7

p || pe(7,0) | pe(5,o) | pe(2.63,5] | pe (2.5,3] | pe (2.27,2.33]

Tab. 6.5.: The admissible interval of exponents p depends on the space dimension n without loss of decay.

Example 6.2.2. In the second example, we choose m =1, ¢ =4, 0 = 2 and § = 0.875 in Theorem
6.1.1 and Theorem 6.2.1. Then, we can see that the loss of decay works in Theorem 6.2.1 because
there exist values of n satisfying the condition n > n;. Hence, using loss of decay in Theorem 6.2.1
brings some flexibility for the following admissible intervals of exponents p:

n n==7 n=3~8 n=9

Pl PE [4700) pe [4’00) pe [4a9]

Tab. 6.6.: The admissible interval of exponents p depends on the space dimension n with loss of decay.

6.2.2. Solutions below the energy space to the model (6.1)

In the second case we obtain solutions from Sobolev space on the base of L4.

Theorem 6.2.2. Under the assumptions of Theorem 6.1.2, if the condition (6.10) is replaced by
n > ny, then we have the same conclusions of Theorem 6.1.2. But the estimates (6.12) to (6.13) are
modified in the following way:

[(ID1Put, ), u(t, )|, < (1+ )2 755 ) (ug, uy) (6.36)

HAfnJ:ZO .
Proof. We follow the proof of Theorems 6.1.2 and 6.2.1. Having this in mind we fix the data space
and the solution space as in the proof of Theorem 6.1.2, but we use the norm
ulx = sup (fer (1) M, s + feu () HIDP U )] ),
o<r<t
where

1
p

for(r) = (L4 1) T OTDR and £ () = (14 )T O

for some positive constants €; and 5. Here these constants stand for the loss of decay in comparison
with the corresponding decay estimates for solutions to the linear Cauchy problem with vanishing
right-hand side.

Now we fix the constant 1 := (1 — %)( -1+ ﬁ(l — %)) Next we choose g9 = ﬁ + €1.
Then, following the proofs of Theorems 6.1.2 and 6.2.1 we may prove Theorem 6.2.2. O
Remark 6.2.2. Here we can see that some loss of decay appears in Theorem 6.2.2. This brings some
benefits to reduce the restrictions of admissible exponent p in comparison with those from Theorem

6.1.2. In other words, the admissible interval of exponents p is more relaxed because we only need
to guarantee the conditions coming from Gagliardo-Nirenberg inequality. Moreover, if we assume

€1 = €9 = g, where
€0 = (“%)(ﬁ”)*m(“%)’

then we have to guarantee another condition for exponents p in Theorem 6.2.2 as follows:

2n — =% —2m(o — )

n—2m(c —2§) —ms’

Example 6.2.3. If we choose m =1, ¢ =4, 0 = 2, § = 0.875 and s = 1.8 in Theorem 6.2.2, then

we can see that the loss of decay works in Theorem 6.2.2. Hence, we obtain the following admissible
intervals of exponents p:

p=
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n n="7 n=2_8 n=29

p || peldo) | pel4,10] | pel4,5]

Tab. 6.7.: The admissible interval of exponents p depends on the space dimension n with loss of decay.

6.2.3. Solutions in the energy space with suitable higher regularity to the model
(6.1)

Now we obtain solutions belonging to the energy space with a suitable higher regularity.

Theorem 6.2.3. Under the assumptions of Theorem 6.1.3, if condition (6.16) is replaced by n > n,
then we have the same conclusions of Theorem 6.1.3. But the estimates (6.18) to (6.21) are modified
in the following way:

[Pt ), u(t, )| 0 < (0 + 020750 (g, )|

(6.37)

s+sg
Anz,q ’

H (|D|S_Uut(t’ ')a ut(t’ )) HLq < (1 + t)liz(;ié) -7

(g )] g (6.38)

Proof. We follow the proof of Theorems 6.1.3 and 6.2.1. Having this in mind we fix the data space
and the solution space as in Theorem 6.1.3, but we use the norm

s = sup (o (0) ulr, s + a0 IDFulr )
e m e+ feu () IDP ()] ).

and the space Xo(t) := C([0,t], H;) with the norm

ol = sup (o) ulr, e + Fea () 1D ), ),

TS

where
far() = (L)' O p () = (14 )t e

and
s—o+268

f€3 (7—) = (1 + T)lfﬁ(lf%)*ﬁer, f54(7-) — (1 + 7—)1*2@[5)(17%)* 3(c—3) 1E4

for some positive constant ; with 7 = 1,2,3,4. Here these constants stand for the loss of decay in
comparison with the corresponding decay estimates for solutions to the linear Cauchy problem with
vanishing right-hand side.

Now we fix the constant €1 := (1 — %)( -1+ ﬁ(l — %)) Next we choose g9 = ﬁ + €1,
€3 = % and g4 = 52_(;’:?)‘5 . Then, following the proofs of Theorems 6.1.3 and 6.2.1 we may prove
Theorem 6.2.3. U

Remark 6.2.3. Here we can see that some loss of decay appears in Theorem 6.2.3. This brings some
benefits to reduce the restrictions of admissible exponents p in comparison with those from Theorem
6.1.3. In other words, the admissible interval of exponents p is more relaxed because we only need to
guarantee the conditions coming from the fractional Gagliardo-Nirenberg inequality and the fractional
chain rule.

Example 6.2.4. If we choose m =1, ¢ =4, 0 =2, = 0.875 and s = 2.5 in Theorem 6.2.3, then we
can see that the idea to allow loss of decay works in Theorem 6.2.3. Hence, we obtain the following
admissible interval of exponents p:

p€[4,0) foralln=7,8,09.

6.2.4. Large regular solutions to the model (6.1)

Now we obtain large regular solutions to (6.1).
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Theorem 6.2.4. Under the assumptions of Theorem 6.1.4, if the condition (6.26) is replaced by
n > ny, then we have the same conclusions of Theorem 6.1.4. But the estimates (6.18) to (6.21) are
modified in the following way:

1

(1D u(t, ), ult, )| . < (1 + )7 7775 0 (ug, uy) (6.39)

” s+s
Am‘qoj

—__n (11
H (|D|S_0Ut(t7 .), ut(t, )) HL‘I < (1 + t)l 2(c—0) (1 7‘)||(u0, ul)”Af,iZO . (640)
Proof. We follow the proof of Theorems 6.1.4 and 6.2.1. Having this in mind we fix the data space and
the solution space as in the proof of Theorem 6.1.4, but we use the norm as in the proof of Theorem
6.2.3.
Now we fix the constant €1, and choose €; with j = 2,3,4 as in the proof of Theorem 6.2.3. Then,
following the proofs of Theorems 6.1.4 and 6.2.1 we may prove Theorem 6.2.4. O

Example 6.2.5. If we choose m =1, ¢ = 10, 0 = 2, 6 = 0.875 and s = 10.5 in Theorem 6.2.4, then
we can see that the loss of decay works in Theorem 6.2.4. Hence, we obtain the following admissible
interval of exponents p:

n==06 n="7 n=2~8 n=9
pe€[10,15.17] | p e [10,13.14] | p e [10,11.625] | p € [10,10.44]

Tab. 6.8.: The admissible range of exponents p depends on the space dimension n with loss of decay.

6.2.5. Large regular solutions to the model (6.2)
Finally, we obtain large regular solutions to (6.2).

Theorem 6.2.5. Under the assumptions of Theorem 6.1.5, if the condition (6.28) is replaced by
n > ny, then we have the same conclusions of Theorem 6.1.5. But the estimates (6.18) to (6.21) are
modified in the following way:

[(DPu(t, ) ult, )], < 1+ 07D (ug, w1 (6.41)

” s+sqo
-Am,q ’

H (|D|S_Uut(t7 .)’ ut(t, )) HL‘I < (1 + t)%(lf o5 (1-1)) H(UO7 u1>||Afn+Z° . (6.42)
Proof. We follow the proof of Theorems 6.1.5 and 6.2.1. Having this in mind we fix the data space and
the solution space as in the proof of Theorem 6.1.5, but we use the norm as in the proof of Theorem
6.2.3.

Now we fix the constant ¢ := (1 — %)( -1+ ﬁ(l — %)) Next we choose €1 = 0, g5 =
s—o+29

2(0’8—6) ’
+ £. Then, following the proofs of Theorems 6.1.5 and 6.2.1 we may

€3 = % +eand &4 = 5775
prove Theorem 6.2.5. O

Example 6.2.6. If we choose m =1, ¢ =10, 0 = 2, § = 0.875 and s = 10.5 in Theorem 6.2.5, then
we can see that the loss of decay works in Theorem 6.2.5. Hence, we obtain the following admissible
interval of exponents p:

n=7

n==~6

n=2~8

n=29

pe[10,15.17]

p e [10,13.14]

p e [10,11.625]

p e [10,10.44]

Tab. 6.9.: The admissible range of exponents p depends on the space dimension n with loss of decay.
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7. Semi-linear structurally damped

o-evolution models in the case § € (, 0|

Let us consider the following two Cauchy problems:

wpe + (=A)7u+ p(=A) up = |uf’, w(0,2) = uo(x), u(0,7) = wi () (7.1)
and

Ut + (_A)Uu + :U’(_A>6ut = |ut|pa ’LL(O,.T) = U()(.'L'), ut(07 JJ) = ul(x) (72)

in space dimensions n > 2 with o > 1, 6 € (§,0], # > 0 and a given number p > 1.
Let us explain our objectives and strategies as follows:

e The estimates for solutions to the linear Cauchy problems (4.1) are a key tool to deal with the
semi-linear Cauchy problems (7.1) and (7.2).

e By using the fractional Gagliardo-Nirenberg inequality, the fractional chain rule, the fractional
powers rule, the fractional Sobolev embedding and some auxiliary inequalities, we obtain global
(in time) existence of small data solutions in the energy space, in the solution space below energy
space, in the energy space with a suitable higher regularity and in the large regular space.

e Some examples are presented at the end of each theorem to compare with known results.

In the following statements we introduce the data spaces A7, , := (Lm N H;) X (Lm ) H,ES_%F)
with the norm

(w0, ur)]as, , == luollm + |uollmg + [ur]pm + [url oo+,
q

where s > 0, g € (1,00) and m € [1, q). Moreover, we fix the following constants:

w14 (1 [ (1= ) (0 g - 7) wd = (o [F (- F) 017

7.1. Global (in time) existence of small data solutions to the
model (7.1)

7.1.1. Data from the energy space

In the first result we assume data from energy space on the base of L9.

Theorem 7.1.1. Let g € (1,00) be a fized constant, m € [1,q) and n = 1. We assume the condition

max {2md(1 + k1), n — ant 2mé}

> 1 7.3
p + n — 2morKy (7.3)
Moreover, we suppose the following conditions:
2428
pE [i, oo) ifn<2¢5, or pe [g, ] ifne (2q(57 ¢ ] (7.4)
m m’ n — 2qd qg—m

Then, there exists a constant € > 0 such that for any small data
(ug,u1) € Aif,q satisfying the assumption | (uo,u1)|a2s <€,

we have a uniquely determined global (in time) small data energy solution (on the base of L1)

ue C([0,00), HZ’) n C*([0,%0), L)
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to (7.1). The following estimates hold:

Jutt, )], < (148 OB 2 =300 | (ug, uy ) gy, (7.5)
[IDI7u(t, )] o € (14 1) OHEDA=5)2 =5 0275 | (ug, uy) | ag, (7.6)
Hut(t, )HLq < (14 0)CHEDO-5 %—%(1—%)”(%,ul)HA%?é), (7.7)
[IDIP2u(t, )], < (1+6)OHEDO) =35 0= (g, un) | s (7.8)

11 1
wherel—f—a—;—i—ﬁ.

Proof. We introduce the data space A2} := (L™ n H2°) x (L™ n L?). Moreover, we introduce for
any ¢ > 0 the function space X (t) := C([0, ], Hg‘s) n C'([0,t], L?). For the sake of brevity, we also
define the norm

lulx @) = sup (fo(T)leU( Meo + fo () THIDI7ulr, )| Lo + 9(r)Hue(r, )| 2o

STt

+ S5 1D u(r, ), )

and the space Xo(t) := C([0,t], H?’) with the norm
ol = sup (folr) wr, Moo + £ 1D ),)-
o<r<t

where

o \1 n

o) = (1 +7)FOHEDA= 3= 3508 (1) (1 4 )+ EDO-F)E= 50D~ %

and
g(r) = 1+ 1)HBEDO=F)F-50-D) f(r) = (1 + 1) EDO-F) 1503,

We define the operator N : X (t) — X (t) by the formula
Nu(t,z) = Ko(t,z) #, ug(x) + K1 (t, ) 5 uq (z J Ki(t —7,@) %, [u (T,x)’pdT,

where K;(t,z) with j = 0,1 are defined as in Chapter 4. We will prove that the operator N satisfies
the following two estimates:

INulxq < 1o, un)lLazs, + [l (7.9)

INu ~ Nolxq < lu = ol ([alfhy + [0I5L)- (7.10)

First let us prove the estimate (7.9). Taking into consideration the estimates for solutions and some
of their partial derivatives to the linear Cauchy problems from Theorems 4.3.1 and 4.4.4 we get the
following estimates with s = 0, o, 24:

|[DI* (Ko(t, z) %5 uo(z) + Ky (t, x) #5 ui(2)) |, < (1+ t)H(”[%D(l’%)%’%(1’%)’%||(u0,ul)HAggq,

[0 (Kot 2) %2 wo(@) + K (t,2) % wa(@) ], 5 (L4 1) FHEDO=5) w3500

(w0, ur)] azs -

In order to control the integral term in the representation of solutions, we use the (L™ n L?) — L4
estimates from Theorems 4.3.1 and 4.4.4. Therefore, we obtain

[Nu(t, ), < (14 ) FOHEDO=5)5 =35 070 (g, )| gz,
t
+ f (L4t =) EDOE =S 0D u(r, )P g dr
0

Hence, it is necessary to require the estimates for |u(7’, z)|p in L™ n LY as follows:

”|u(7—v ')|p”meLq S HU(T, )Himp + HU(T, ')Hiw'
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Applying the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we may conclude

1-0,, Ogp 1—0qp
u(r Mz < [IDPutr, Y5 a5 < (500 ulxom) ™ (fo(o)ulxoer)
- (1+7)1+(1+[ ])( gk (G Y T
and
13 1—0mp e i
Ju(r, Yzme < [IDPur, )72 fulr, Mg < (s lulxym) "™ (Folr)lulxom)
< (1+r)1+<1+[21>< B Y POV
where

n (1 1 n /1 1
Oqp 1= 00,25(qp, q) = % (* - %) and 0,,p, := 6y 26(mp, q) = %(6 — mip)

As in Corollary C.1.1 we have to guarantee that 6, and 6,,, belong to [0,1]. Both conditions imply

the restrictions
pE [i,oo) ifn<2¢), or pe [27
m m

n .
n—2q5] if n > 2¢é.

By virtue of 0,,, < 0,4, and the relation 1 + % =1+ L we derive

H|u NG HLm = <(1+7) (1+(1+[ N(—2 %—%(#—mﬁ)) ”qu(o

Summarizing, from both estimates we may conclude

| Nul(t, (14 1)+ (3D F)E- 30—

1
HLq ~ ") ‘(uovul)HA%‘iq

o

t
+ Hul‘l)’(o(t)fo(l+t_7—)1""(1""[%])(1—*)*—2%(1—%)(1+7_)P(1+(1+[ sD(A—%) 75— %(m—%p))dr

The key tool relies now in the application of Lemma B.6.1. Because of p > 1+ %m, it follows
n o1 n /1 1
D0 R B
p( G 2 26/ r  26\m  mp =
After applying Lemma B.6.1 with the condition p > 1 + %, we get
t
f (14t — 1) HEDO=F)E-5 00 4 (DO 505 G 5) g
0

<(1+ t)1+(1+[%])(1_%)%_%(1_%).
Finally, we conclude the following estimate:
HNU HLq <q +t)1+(1+[”])( -5 ?7%(1*%)(H(Uo,ul)HA%{q + HuH’)’(O(t)).
Analogously, we arrive at
[[DI*Nu(t, )|, < (1 + 1)+ EDO=F) =3 0-D—5 (H(uo,ul)HAQa + ful’, (t)

HatNu (1 + t)(2+[%])(1—l ——2%;(1_ )(||(u0,u1)”A25 + ”u”XU(t >

HLq ~

for s = 0, 2. From the definition of the norm in X (¢), we obtain immediately the inequality (7.9).

Nezxt let us prove the estimate (7.10). Using again the (L™ n L?) — L? estimates from Theorems
4.3.1 and 4.4.4 we have for two functions u and v from X (¢) the following estimates for k = 0, 1:

[P (Nu(t, ) = No(t, )|,

‘ HmeLq

t
< J (14t — )L OHEDA= )3 30Dk |y (7 )P — [o(r, )| dr.
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Applying Holder’s inequality leads to
[lu(r, P = lo(r, )P ] L. < lulr,-) = o) e (Julr, ) + 100 ) )
[lu(r, P = o, )P o < Julr,-) = o) [me ([u(r ) [ + 007, ) ).

In the same way as in the proof of (7.9), after employing the fractional Gagliardo-Nirenberg in-
equality from Proposition C.1.1 to the norms

Ju(r, ) = v(m, )en, lulr, )L, [olr, )L
with n = ¢gp and n = mp we have for k = 0,1 the estimates

[IDP*F (Nu(t, ) = Nu(t, )] .,

B oot (It + 5L ).

Analogously, we also derive
H|D| ( ) - Nv(tv '))HLq
n — o)1l _

g( + ) +[3](1 25)7 25(1 T —35 HU—UHXO(t)(”uH -|- Hv”Xo(t)

[oe(Nu(t, ) = No(t, ) |,
[2 JR- 2 O 1
S (14 )@ IO 5070y — )| i, (el ) + 0150

From the definition of the norm in X (¢), we may conclude the inequality (7.10).
Summarizing, the proof of Theorem 7.1.1 is completed. O

Example 7.1.1. In the first example, we want to make a comparison between the statements from
Theorem 7.1.1 and those from Theorem 4 in the paper [12] by choosing m = 1, ¢ = 2, 0 = 1 and
6 = 0.8. In general, with these selected parameters the admissible range of exponents p in Theorem 4 of
[12] is more flexible than the result in Theorem 7.1.1 for the space dimensions n = 4,5, 6. Nevertheless,
for n = 3 the result in Theorem 4 of [12] is empty while the admissible range of exponents p in Theorem
7.1.1 is available (see the following table):

Theorem 7.1.1 | Theorem 4 in [12]
n=3 p € (5.75,0) empty
n=4 p € (3.73,5] pE[2,5]
n=>5 | pe (2.64,2.78] p e [2,2.78]
n==6 empty p € [2,2.14]

Tab. 7.1.: The first comparison between the obtained results.

Example 7.1.2. In the second example, we want to emphasize that the results from Theorem 7.1.1
allow some flexibility in comparison with those from Theorem 4 in the paper [12] if we choose m = 1,
g=3,0=14and § =1 (see the following table):

Theorem 7.1.1 | Theorem 4 in [12]
n=3| pe(8.33,m0) empty
n=4| pe(4.33,0) empty
n=>5 p € (3.22,0) empty
n=06 p € [3,0) empty
n="7T pe[3,7] empty
n=38 p € [3,4] empty

Tab. 7.2.: The second comparison between the obtained results.
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Example 7.1.3. In the third example, we want to make a comparison between the statements from
Theorem 7.1.1 and those from Theorem 2 in the paper [12] in the viscoelastic damping case by choosing
m=1, ¢ =2and o = = 1. In general, with these selected parameters the admissible range of
exponents p in Theorem 2 of [12] is larger than that in Theorem 7.1.1 for the space dimensions n = 4,5
(see the following table):

Theorem 7.1.1 | Theorem 2 in [12]
n=4 p € (12,00) p € [2,00)

n=>5 p € (4.67,5] p € [2,5]
Tab. 7.3.: The third comparison between the obtained results.

Example 7.1.4. In the fourth example, we want to emphasize that in the viscoelastic damping case
the results from Theorem 7.1.1 allow some flexibility in comparison with those from Theorem 2 in the
paper [12] if we choose m =1, ¢ = 3 and 0 = § = 1 (see the following table):

Theorem 7.1.1 | Theorem 2 in [12]
n=3 p € (15,00) empty
n=4 p € (6,00) empty
n=>51| pe(3.67,0) empty
n==6 p € (3.25,0) empty
n="7 pe[3,7] empty
n=_8 p e [3,4] empty

Tab. 7.4.: The fourth comparison between the obtained results.

Remark 7.1.1. In this remark, we allow a loss of decay in estimates for solutions to semi-linear models
in comparison with the corresponding decay estimates for solutions of the linear Cauchy problem with
vanishing right-hand side. We follow the proof of Theorem 7.1.1. Having this in mind we fix the data
space and the solution space as in Theorem 7.1.1, but we use the norm

Julxo = sup (fe () fulr, Mo + fo () IDIuCr ) o + Fes (7))o
+ L (O IDP (), ).

and the space X, (t) := C([0,1], Hg&) with the norm

lwlxago = 5P (£ ()7 o(r Mo + fea () IDF0(r )] ),

ST

where

N3

(1) = (1 + )W OHEDO=F) s =5 (0=Dter ¢ (7)) = (1 + 1) FAHEDO-F) i -5 (-2~ F+ea

)

and
foo () = (L4 ) @HEDO=F)—5s0-)tes ¢ () = (1 4 7) A+ EDA=FH)r—g5 (1= res
for some positive constant €; with j =1,--- ,4.
Now we fix the constant e := (1 —3)(35(1 — 1) —#1). Next we choose e5 = g5, e3 = 1 — 55 (55 — 1)

and €4 = 1+ £;. Then, we have to guarantee the following condition for the space dimension:

2
"~ mqd(1l + K1)
qg—m

9

which allows us to omit the condition (7.3).
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7.1.2. Data below the energy space

In the second result we assume data from Sobolev space on the base of L9.

Theorem 7.1.2. Let q € (1,0) be a fived constant and m € [1,q). Let 0 < s <25 andn = 1. We
assume the condition

. max {2mé(1 + k1), n —n—l—ms} -
p>1+ n — 2mory (7.11)
Moreover, we suppose the following conditions:
2
pe[g,oo> ifn<gs, or pe[g, n ]ifne(qs, ¢ ] (7.12)
m m’ n—qs qg—m
Then, there exists a constant € > O such that for any small data
(w0, u1) € A3, , satisfying the assumption |(uo, u1)|as, , <,
we have a uniquely determined global (in time) small data Sobolev solution
ue C([0,0), Hy)
to (7.1). The following estimates hold:
Ju(t, M o (14 ) FOFEDOE 3502 (g, ) g (713)
H|D|s t’.)HLq < (1+t)1+(1+[%])(1*%)?7%(1*7 25 || (ug, u1) o (7.14)

1_1 1
wherel—f—a—;—i—a,

Proof. We introduce the data space A, | := (L™ n Hy) x (L™ n L7). Moreover, we introduce for any
t > 0 the function space X (t) := C([O, t], H;) For the sake of brevity, we also define the norm

lulxcy = sup (fo(r) ™ utr, Yza + ) 1D u(r)] ).

o<sr<t

where
fed 1

Fol7) = (1 + 7)HHEDA=F) =500 f (1) = (1 4 7)HHEDO—F) 250D~ 55

We define the operator N : X (t) — X (t) by the formula
Nu(t,z) = Ko(t,x) #, ug(x) + K1 (t, ) 5 uq (z J Ki(t —7,@) %, Ju(r, 2 | dr.

We will prove that the operator N satisfies the following two estimates:

INulx ey < [(uo, ur)lag, , + lul (7.15)
INu—Nvlx@) < |lu— UHX(t)(Hqu o+ vl%s)- (7.16)

First let us prove the estimate (7.15). Taking into consideration the estimates for solutions and
some of their partial derivatives to the linear Cauchy problems in Theorems 4.3.3 and 4.4.4 we get
the following estimates for k = 0, 1:

H|D|kS(Ko(f,ZE) . UO(I) + Kl(t,$) sy ul(iﬂ))HLq < (1 + t)1+(1+[%])(17ﬁ)7*%(17%)*%||(UO,U1)HAimq.

In order to control the integral term in the representation of solutions, we use the (L™ n L?) — L4
estimates from Theorems 4.3.3 and 4.4.4. Therefore, we obtain

[IDIF Nut, )|, < (1+ )+ OHEDO=5) 2= 0075 | (ug, 1) | 4, ,
t
+J (14t — 7)Y+ O+BNO=F) =305 | ju(r, )|, ,dr.
0
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Hence, it is necessary to require the estimates for |u(7', z)|p in L™ n LY as follows:

”|u(7—7 ')|p||meLq p HU(T, )Himp + HU(T7 ')Hiw'

Applying the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we may conclude

1=64p ba o
Jur, Mz < 1D |72 futr, M5 < (Folulxn) ™ o lulxn) ™
<1 +7')1+(1+[ D=5 :—35(1-7)- ﬁe"”HUHX(T%
and
s 0.,"-;) 1 9mp e e
Ju(r, Yoo < 1D, )2 Julr, S (F@ulxn) "™ (for)ulxr)
< (1 +7)trerls ])(1—2%)%—1( =)= 350 |y x (1,
where 1 1 L !
n n
0 = 9075 qp, q :7(7_7> and 9177, = 9075 mp,q :7(7_7>
qp ( ) s\q qp 3 ( ) Sha b

As in Corollary C.1.1 we have to guarantee that 64, and 6,,, belong to [0,1]. Both conditions imply

the restrictions q q
pe[—,oo) ifn<gs, or pe[—7
m m’ ' n—qs

] if n > gs.
By virtue of 0,,, < 8,4, and the relation 1 + % = % + %, we derive

Jlu(r, -

HmeLq < (1 + ) (1+(1+[%])( 5 ’*ﬁ(%*ﬁp)) ”qu((-,—)

Summarizing, from both estimates we may conclude

DI Nut, )], S (1 -+ £) FOHED O 525005 (g, )

m,q

t
T g, J(1+t—7)1+(1+[ 305505 (0-2=5 (1 4 (OO 8- 5 G- 39) g
0

2mo(1+k1)

The key tool relies now in the application of Lemma B.6.1. Because of p > 1+ P ey P

o (e 5] (- ;)1—%(2—%))@1'

n-‘rma

, it follows

After applying Lemma B.6.1 with the condition p > 1 + 2 , we get

n— 2m6ﬁ

?r
Sl

t
J(1+t—7)1““[%])(1*%)%*53(1*1) S(1 4+ 1) (1+(1+[%D(1*%>$*%(i*ﬁ))dT
0

Finally, we conclude the following estimates for k = 0, 1:
[ID* Nu(t, )|, < (1+ )™ A+[BDA-F5) r -5 (1-1)— 53 (H(uo,ul)HAe + [l o) )

From the definition of the norm in X (¢), we obtain immediately the inequality (7.15).

Next let us prove the estimate (7.16). By applying again an analogous treatment as we did in the
proof of (7.10) in Theorem 7.1.1, we may conclude the following estimates for k = 0, 1:

|||D|’“S(Nu(t7 ) — Nu(t (1 +t)1+(1+[%])( —35)7 3 (1=%)

D) R D75 Ju = vl (lul iy + [0l

From the definition of the norm in X (¢), we obtain immediately the inequality (7.16).
Summarizing, the proof of Theorem 7.1.2 is completed. O

Remark 7.1.2. We want to underline that due to the flexibility of the choice of parameter g € (1, 00),
we really get a result for arbitrarily small positive s in Theorem 7.1.2. In particular, if we take any
small positive s = ¢, then we may also choose, for example, a sufficiently large ¢ = }2 and m =1 in
order to guarantee the existence of both an admissible space dimension n and admissible exponents p

satisfying the required conditions in Theorem 7.1.2.
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Example 7.1.5. In the first example, by choosing m =1, ¢ =2, 0 = 1.8, = 1 and s = 1.5 we
obtain the following admissible range of exponents p in the structural damping case:

€(6.25,00) if n =3, or pe(3.53,4]ifn=4.

Example 7.1.6. By choosingm =1,¢=3,0 =6 =1 and s = 1.5 we obtain the following admissible
range of exponents p in the viscoelastic damping case:

n n=3 n=4 n=>5 n==06
p || pe(15,00) | pe (6,00) | pe (3.5,10] | p € (3.06,4]

Tab. 7.5.: The admissible range of exponents p depends on the space dimension n.

7.1.3. Data from the energy space with suitable higher regularity

The third result contains Sobolev solutions to (7.1) belonging to the energy space (on the base of L?)
with a suitable higher regularity.

Theorem 7.1.3. Let q € (1,0) be a fived constant and m € [1,q). Let 26 <5 <26+ 7 andn > 1.
We assume that the exponent p > 1 + [s — 2] satisfies the condition

max {2mé(1 + k1), n — wn+ ms}

1 . 7.17
p=1+ n — 2mdrKy ( )

Moreover, we suppose the following conditions:

2q0

)
pE [g,oo) ifn<gqs, or pe [2,1—# ] ifne (qs qs+ ma ] (7.18)
m m S qg—m

Then, there exists a constant € > 0 such that for any small data

As < g,

m,q

(uo,u1) € A3, , satisfying the assumption | (ug,u1)]
we have a uniquely determined global (in time) small data energy solution
ue C([0,00), HS) n C*([0,0), Hi2%)
to (7.1). The following estimates hold:

1 4 I+ HEDA-F) E- 20—

1
lre < T)H(anul)HAO

I+(A+[3D0=5) - 35 (1-3) =35 [ (uo, Ul)HA

lze < (10, ur)|| y2er-o,

1+ 243D (1- ) =g (1—

) ) (
e ) o (
) 14+ 0)CHEDO=5) k- 350-2)) (
) ) (

I 735 (ug, 1) L4,

where 1 + % = % +
Proof. We introduce the data space A;, , := (L™ n H;) x (L™ n H;_Q‘S)7 the function space X (t) :=
C([0,t], H) n C*([0,], H;~2°) with the norm

lullx ) = Sup (fo(T)*ll\U( Wea + fs(@)HIDPulr, )| L+ go(r) ™ ue(r, )| 2s

<7<t

() DI ().

and the space Xy(t) := C([O,t], H;) with the norm

[wlxo = sup (fo(r) ™ fwr as + £(1) " IDPwir ).

<7<t
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where

Fo(r) = (1 + )W HEDO=F) i =5 0-2) (7)) = (1 + 7)+OHEDO-FH) i =350-7) 55

and

go(T) = (1 4+ )@+ ED0-55 a5 (1-3) gs(7) = (1 + 7)1+ C+EDO=F) =35 1-3)=35

)

We define a mapping N : X (t) — X (¢) in the following way:
Nu(t,z) = Ko(t,z) 5 uo(x) + K1(t, ) #5 ur(z J- Ki(t — 7,x) %, |u(r, z)|Pdr.

In order to conclude the uniqueness and the global (in time) existence of small data solutions to
(7.1), we have to prove the following pair of inequalities:

INulx@ < [(uo,ur)las, , + HUHQOW (7.23)

INu = Nvlx) < lu—vlxoe (HUH )+ 1ol%)- (7.24)

First let us prove the inequality (7.23). Our proof is divided into four steps.

Step 1:  We need to estimate the norm |Nu(t,-)||rs. We use the (L™ n L?) — L? estimates from
Theorems 4.3.1 and 4.4.4 to obtain

[Nu(t, )], < (10 OFEDOE 25070 (g, u) 4,
1
1+(+[2D(-%) -2 (1-21)
+L(1+t77-) (D=5 E 0D (e, 7] . dr

Hence, it is necessary to require the estimates for |u(T, x)‘p in L™ n L9 as follows:

”|u(7—v ')|p”meLq S HU(T’ ')Himp + Hu(Tv ')Hiqp'
Applying the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we may conclude
1—64p

lu(r, Mo < |1PPFu(r, )52 Ju(r, )5 < (Fo()ulxoim) ™ (Fol)ulxo )

o \1

S+ ﬂ”“ﬂ’ﬁ]m*wmﬂf%*%% [l (s

and
u(r, Mame < IDFulr, 5 Julr 5" < ol )" (Fo()ulxm) '~
i
where 01 ) - .
Oup = o (ap.0) = (= ) and Oy 2= Bo.u(mp.g) = (0= ).

As in Corollary C.1.1 we have to guarantee that 6, and 6,,, belong to [0,1]. Both conditions imply

the restrictions g

m’'n—qs

pé[g,oo> ifn<gs, or pe[ ]ifn>qs.
m

By virtue of 0,,, < 6,4, and the relation 1 + % =1+ L we derive

07, WP g S (1 PP CFOHED O G
L™nL4

Summarizing, from both estimates we may conclude

INut, )za < (1+ ) FOHEDO=5) 7 =350 (g g ) s

1 1

t
N HUHZ;(U(t)L(l+t77‘)1+(1+[%])(17%)%7”( H(1 4+ (D051 -5 Ga—5) g7
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2mo(1+r1

The key tool relies now in the application of Lemma B.6.1. Because of p > 1+ de), it follows

(e (1 [FD0- 55 - (G- mp)) <

q

After applying Lemma B.6.1 with the condition p > 1 + %:L;:IS, we get

t
J (141 — ) D=5 -5 0-1) (4 pp(HaHEDO- 5
0
< (14 ) HEDA= )3 -5 0-1)

Therefore, we arrive at the following desired estimate:

n o1 _n_1
“]\/'u(t7 ')HL‘l < (1 + t)1+(1+[2])(1 35) 7 a5 (1 T)(H(uo,ul)HAfn,q + HUHZ))(O(t))' (7.25)
Step 2:  We need to estimate the norm [|0; Nu(t,-)| . Differentiating Nu(t, ) with respect to ¢
we obtain

O Nu(t,z) = 0y (Ko(t, @) x5 uo(z) + Ky (t, @) %5 uy () + fo Or (K1 (t = 7,2) %, (7, 2)[P)dr.

We apply the L™ n L9 — L9 estimates from Theorems 4.3.1 and 4.4.4 to conclude

2N u(t, ) zo £ (1+ 1) EEDO—H) =00

T (w0, u1)| as, ,
t
+J (1+t— 1) EHEDO= =350 D) jy(r P dr.
0

Using the same ideas for deriving (7.25) we may conclude
|0 Nu(t, Y re < (1 + t)(2+[%])(1—2%- T

under the same assumptions for p, that is,

pe[g,oo> ifn<gs, or pe[i, ]ifn>qs,
m m’' n—qs
and
max{2md(1l + k1), n — Bn + ms}
p>1+ 1 .
n — 2mory
Step 3:

Let us estimate the norm |0y D|*~° Nu(t, ')HLq. We use
at\D\S_Q‘SNu(t, x) = 6t|D|3_26 (Ko(t,x) . U (z) + K1 (t, ) #4 ug (x))

t
+ J o,|D|5~% (K1 (t = 7,2) #; |u(r,2)|P)dr.
0
We apply the (L™ n L?) — L7 estimates from Theorems 4.3.1 and 4.4.4 to derive

|o: DI~ Nu(t, )|, < (1 + 1)+ EHEDO=5)2 35070755 | (ug, uy )|

Ag

t
+J (1 + ¢ — ) CHEDA=F)r =5 A== 55 | |y(r, )P, pe-asdr
0 "t
= (1 + )" CHBEDO=F) 5 =35 (=0 =55 | (ug, uy )| 4

t
BN ) E g (- )5 : _
# | ot DO O ()P, s

The integrals with ||u(r,-)[?| ., will be handled as before to get

t
J (14t — r) I+ @EDO= 550055 (7, )P, dr
0

< (14 4)+HEDO— )30 D)5

u”g}(o(t)'
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we shall apply Proposition C.3.2 for the

To estimate the integral with the norm [|u(r, ~)|pHHS,25,
q
. Therefore, we obtain

fractional chain rule with p > [s — 24]
1 p—-1

[t 1D, )]

1

where — =
q q1 q2

[l )P rg—s < llulr,

Applying the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we have

1-6 0
lu(r, Yo < Julr, ) (1Dl
< (14 ) AHEDA=5) =35 (=055 | ) o,
and
1-6 0
Mo 2 [IDFulr, )| 2

P A A D = |y 0,

||‘D‘s_26u(7—a ')Hng s ”u( La
< (14 7)HO+HEDA-5)

where
n /1 1
Oq, = 90,5(Q1,Q) = g(* - —

and 0,, := 05_95s(q2,q) =
q fh) g2 26, (g2 CI) S

Hence, we may conclude
50-0) =4 (-0 0n) s,

led

(1+ T)p(1+<1+[g]>(1 7

1 1 1
—35) 7‘%(%‘@”‘

It P25
< +T)p(1+(1+[ D

where we can see that (p — 1)0,, + 6,4, = %(% + £=20) Here we have to guarantee that 6,, € [0,1]

& 26 HuHX() T)’

3_325, 1]. Both conditions imply the restriction

and 6,4, €[
ifn>qgs, or p>1lifn<gs

l<p<1+
n—qs

Therefore, we have shown the estimates
~ 3 (7.26)

1+t )1+(2+[g])(1 2 Az, t HU\Iio(t))-

Ha IDJ*~ 25Nu ”Lq < )lf%(lf%)*ﬁ(u(uo,ulﬂ
‘We use

Let us estimate the norm [|D|* Nu(t HLq

\D\S(Ko(t,z) g, ug(x) + K1 (t, x) =, ul(z))
+ J |D|8(K1(t —T,x) %, |u(T, 33)|p)d7'.

L7 estimates on the interval T € [0, ¢] from Theorems 4.3.1 and

Step 4:
|D|° Nu(t,x) =

By applying again the (L™ n L7)
4.4.4, we derive

1_n1_1
) (1 ,,. —35 ||(u0, U1)| A, a

HL < (1+¢)tra+zha
IO fu(r, )P e

||D|° Nu(t
t
J ) HO+ED -5

1+t
0

Following the approach to show (7.26) we may conclude
(1+ t)1+(1+[ N(-g)i-H(1-1)- (H(uo,ul)HAm Lt HuHXO(t )

”‘D‘ Nu HLq ~
Summarizing, from the definition of the norm in X (¢) we obtain immediately the inequality (7.23)

Next let us prove the inequality (7.24). Following the proof of Theorem 7.1.1, the new difficulty is

to estimate the norm
llutr, )PP = o P -5
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The integral representation
1
lu(r, )P — |v(r,2)|P = pf (u(r,z) — v(1,2)) G (wu(r, ) + (1 — w)v(7, 7)) dw,
0
where G(u) = ulu[P~2, leads to

dw.
La

[, P = [, )P 25 < f D12 ((u(r.) = v(r. ) Glwulr. ) + (1 = w)e(r, )

Applying the fractional Leibniz formula from Proposition C.2.1 we derive the following estimate:

[lu(r, )P = [o(r, ) 7| dw

L2

fz-20 < H|D|5725 (u(T, ) = (T, )) I J HG’(wu(T, S+ (1 —w)u(r, ))
0

 lulr, ) = o(r, )l JO [[IDF=2G (wulr, ) + (1 = w)o(7, )| ., dew
< [IDI=2 () = o) g, (Y + () )

+ |u(r, ) = v(r, )| L L H|D|S*25G(a)u(7-7 )+ (1 =w)(r,)

dw,

Lra

where
1 1 1 1 1

T T2 T3 Ta g
Taking into consideration the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we
obtain

DI () = v ) [y Sl ) = ol )G, Julr ) = ol )32,
Ju(r, Marson < Julr )1, Julr )5,

Ju(r. ) = v(r. )z < Jur.) = v(r ), Julr. ) = o(r)l5",

where
6, — %G_%JFS_H%) c [8_326’1]’ 0, — g(é_wl_lﬂ €[0,1], and 65 = g(é—%) e [0,1].

Because w € [0, 1] is a parameter, employing again the fractional chain rule with p > 1 + [s — 24]
from Proposition C.3.2 and the fractional Gagliardo-Nirenberg inequality we get

H\D\S_%G(wu(ﬂ) + (1 —w)v(r )HLT4
< Jwu(r, ) + (1 —w)o(r, )LTS [IDI* =2 (wulr, ) + (1 — w)o(r, -))

L7é
< Jwu(r,-) + (1 — wo(r, >|\ 20559 Jwu(r, ) + (1 — w)o(r, )| D010
where
p—2 1 1 nsl 1 n/l 1 §—2§ §—26
—=—, Os5=—(-——)€[0,1] and b= —(~- — —
s +7‘6 re’ S(q T5)€[,]an 6 s(q e n )e[ s ’]

All together it follows

[ 1D et )+ (1 =t

(p—2)05+6 (p—2)(1—05)+1—6
< (lulr, gy + To(r, ) g2) PR (e + ol )" ‘.

Hence, we derived the following estimate:
[lu(r, )P = Jo(r, )P

n _oyl_n 1 1y)_s=25 _ _
< (1 + T)p(1+(1+[2])(1 25)7 =35 (o qp)) 20 Hu - U”XO(T)(HUHQO%-,—) + Hv“é)(o%v'))’

‘rs—28
Hq
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where we note that

_ _n/p—1 s—20
01+(p 1)92 —93+(p 2)95+66 = 8(7(] + " )

Therefore, we have proved the estimates

[IDI=20 8 (Nu(t, <) = Nu(t, )],

n _o\1_ _1y_ s
(1_|_t)1+(2+[2])( 25)r 2(1-1) stu_U”XO(t)(Hqu +HU”XO(t)

<
[IDI* (Nu(t, ) = No(t, )|,
< +t)1+( [2])(1—2—5);—%(1—% 25 Hu—vl\xou)(\lu\l ) Tl ||X0(t)

From the definition of the norm in X (¢) the inequality (7.24) follows.

Summarizing, the proof of Theorem 7.1.3 is complete. O
Remark 7.1.3. One should explain if one can really choose the parameters ¢, g2, 71, ,7g and
01,--- ,0¢ as required in the proof of Theorem 7.1.3. Following the explanations as we did in Remark
5.1.4 we may conclude the following conditions:

20
2<p<1+ q ifn>gqs, or px=2ifn<gs.
—qs

These conditions are sufficient to guarantee the existence of all these parameters satisfying the required
conditions.

Example 7.1.7. In the first example, by choosing m =1, ¢ =2, 0 = 1.8, = 1 and s = 2.5 we
obtain the following admissible range of exponents p in the structural damping case:

n=23 n=4 n=>5 n==~06 n="7 n==~8
€ (6.25,00) | pe (3.65,0) | pe (2.85,0) | pe (2.53,5] | pe (2.37,3] | pe (2.18,2.33]

Tab. 7.6.: The admissible range of exponents p depends on the space dimension n.

Example 7.1.8. In the second example, by choosing m =1, ¢ =2, 0 =9 =1 and s = 2.5 we obtain
the following admissible range of exponents p in the viscoelastic damping case:

n n=4 n=>5 n==6
p | pe2,0) | pe (467,0) | pe (4,5]

Tab. 7.7.: The admissible range of exponents p depends on the space dimension n.

7.1.4. Large regular data

Next, we obtain large regular solutions to (7.1) by using the fractional powers rule and the fractional
Sobolev embedding.

Theorem 7.1.4. Let q € (1,0) be a fixred constant and m € [1,q). Let s > 20 + 4 andn>1. We
assume that the exponent p > 1+ s — 29 satisfies the condition

max {2mé(1 + k1), n— —n—l—ms}
p>1+

2
n — 2moKy (7.27)

Moreover, we suppose the following conditions:
pE [g, oo) and n > 2mdKy. (7.28)
m
Then, there exists a constant € > 0 such that for any small data

(uo,u1) € Ay, , satisfying the assumption ||(uo,u1)|as, = <e,
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we have a uniquely determined global (in time) small data energy solution
ue C([0,00), HS) n C*([0,00), Hi~2%)
to (7.1). Moreover, the estimates (7.19) to (7.22) hold.

Proof. We introduce the definitions of spaces A;, ,, X () and X, (t) as in the proof of Theorem 7.1.3.
We repeat exactly on the one hand the same estimates for the terms |u(7, )" and [u(7,-)|P — |v(T,-)|?
in L™ and L?. On the other hand, we estimate the above terms in H 5=20 hy using the fractional
powers rule and the fractional Sobolev embedding.

In the first step, let us begin with ||u(r, -)|pHH3,25. We shall apply Corollary C.4.1 for the fractional

powers rule with s — 20 € (%,p). Therefore, we obtain
—1
[l )P o < lulr, ) gp-as ulr, )7

—1
<l M grs-2s (lalr, Y g + lulr, )l grg=20)”

Here we used Corollary C.5.1 with a suitable s* < %. Applying the fractional Gagliardo-Nirenberg
inequality from Proposition C.1.1 we have

Hu(7_7 ')”[_'[;—25 s ”u( 1 91 |||D‘ H ~ 1 + 7_ 1+(1+[ ])(1—%)%_%(1—%)—9255 HuHXO o,
ny(1—2 )i _n ,l _s*
HU(T’ )HH;* < HU(T 1 02 ”|D‘S H 1 + 7_ 1+(1+[2])( )y 35 (1—2)— 55 ”u”Xo(‘r)a

* .
where §; = 1 — % and 0 = *~. Hence, we derive

”‘U(Tv')‘pHHS*” <1 +T)za(1+(1+[%])( —g)t-n (1—%)),556257(1771)%HUHXD(T)

< (14 rp(+O13DO- 525G =) |, i
< o

if we choose s* = % — go with a sufficiently small g > 0. Therefore, by an analogous argument as we
did in the proof of Theorem 7.1.3 we may conclude

t
J (14t — 7Y CHBDO=F) 2= 0= D=5 |7, |7 . s
O q
< (14 1) +eHEDO-5 %‘%(1_7)_%”“”?{0@)'

Finally, let us turn to estimate the norm ||u(r,-)[P — |v(7,)[? Then, repeating the proof of

17 7520
the second step of Theorem 5.1.4 and using the same treatment as in the proof of the above first step
we get

[luCr, )P = Jo ()] os

< (1 4+ 7P (O DOt 5 G0 o — o], oy (Juli, + [l )-

Hence, we arrive at

t
[t =gyt 0D )P~ fo(r, e
0

< (L4 IO E 0D o — ) (Jul% + [0]50)-
Summarizing, the proof of Theorem 7.1.4 is completed. O

Example 7.1.9. In the first example, by choosing m =1, ¢ =4, 0 = 18,6 = 1 and s = 3.5 we
obtain the following admissible range of exponents p in the structural damping case (see Tab.7.8):

Example 7.1.10. In the second example, by choosing m =1, ¢ =4, 0 = § = 1.1 and s = 3.5 we
obtain the following admissible range of exponents p in the viscoelastic damping case (see Tab.7.9):
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n

n=3

n=4

n=>5

p

p € (7.39,0)

p € (4.51,0)

pE [4700)

Tab. 7.8.: The admissible range of exponents p depends on the space dimension n.

n

n=3

n=4

n=>y

p

pE (24, 0)

p € (7.67,0)

p € (4.67,00)

Tab. 7.9.: The admissible range of exponents p depends on the space dimension n.

7.2. Global (in time) existence of small data solutions to the
model (7.2)

Finally, we obtain large regular solutions to (7.2) by using the fractional powers rule and the fractional
Sobolev embedding.

Theorem 7.2.1. Let ¢ € (1,0) be a fized constant and m € [1,q). Let s > 26 + g andn=>1. We
assume that the exponent p > 1+ s — 20 satisfies the condition

max {2md(1 + k), n — “n+m(s— o)}

p>1+ (7.29)

n — 2mdksg

Moreover, we suppose the following conditions:
pE [g, oo) and n > 2miks. (7.30)
m

Then, there exists a constant € > 0 such that for any small data

(uo,u1) € A}, , satisfying the assumption | (ug,u1)] <eg,

2q

A

we have a uniquely determined global (in time) small data energy solution
ue C([0,00), HS) n C*([0,0), Hi~2%)

to (7.2). Moreover, the estimates (7.19) to (7.22) hold.

Proof. We introduce the definitions of spaces A;, , and X(t) as in the proof of Theorem 7.1.3. We

define a mapping N : X (¢t) — X (¢) in the following way:

t
Nu(t, z) = Kot ) %o 0(x) + K1 () 0 u1(z) + J Ki(t— 7.2) #, |us(r, 2)[Pdr.
0

In order to conclude the uniqueness and the global (in time) existence of small data solutions to
(7.2), we have to prove the following pair of inequalities:

(7.31)
(7.32)

INullx ey S |(uo, ur)].a

m,q

+ul e

INu— Nollxqy S lu—vllxe (luli + lolig)-

First let us prove the inequality (7.31). Our proof is divided into four steps.

Step 1:  We need to estimate the norm |Nu(t,-)||zs. We use the (L™ n L?) — L? estimates from
Theorems 4.3.1 and 4.4.4 to obtain

[Nu(t, )], < 1+ OFEDO=E) 7= 02 (g, uy))|

Asna

t
+J (1+ ¢ — )OO =5 0D luy (7, )P 0 odT.

0

Hence, it is necessary to require the estimates for |ut (7, x)|p in L™ n LY as follows:

e (7 P e S Jae (7 ) + e (7, ) |-
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Applying the fractional Gagliardo-Nirenberg inequality from Proposition C.1.1 we may conclude
S— 6‘117 1_9 0‘1?’ 170‘11’
e (7, Mzar < 1D 20ue (7, )| Nuae () e ™ < (g5 (Dl x )™ (g0(m) ulx (7))

< (14 r)CHEDO-E) - 50D~ 00y

and
8—26 97np 1—9mp 97”1’ 1797""
Juer Mme £ DI ue(ry ) 727 fue(r, )" < (g5(Dlelx) ™ (o0(r) ful x)
< (14 7)== 350D =5
where

n 1 1 n 1 1
Oap == 00,026 (qp, @) = (== —) and Oy = Bo,525(mp,q) = G--).
qp 0,s—26(qp q) s—2\q qp an P o, 25(mp, q) s—2\q " mp
As in Corollary C.1.1 we have to guarantee that 64, and 6,,, belong to [0,1]. Both conditions imply
the restrictions

q n

Lowo)its=2+2 L, ——
pe[m,oo is= —|—q, or pe m’ n—q(s —20)

]ifs<2(5+ﬁ.
q

By virtue of 0,,, < 0,4, and the relation 1 + % = % + %, we derive

el WP, s < (14 )P (@HEDO= 50235 Gm5)) ulf).

Summarizing, from both estimates we may conclude

g\ 1 n

INu(t,)|zs < 1+ )+ OHEDA=F) 7 =300 (g, 0y )|

A,

»q

t
1 1

+ Hqu{(t) f (14t — ) HOHEDO-FH)r-50-2) (1 4 T)p((2+[%])(1f%>;fﬁ(ifm—p))dT_

0
The key tool relies now in the application of Lemma B.6.1. Because of p > 1+ %, it follows
(e ED0-H)r 56w <
After applying Lemma B.6.1 with the condition p > 1 + %, we get
Jt(l +t—7)ttHED0-5 %—%(1—%)(1 + T)P((2+[%])(1*%)%*%(%*%p)) dr

' <(1+ t)H(H[%D(l_%)%_%(l_%).
Therefore, we arrive at the following desired estimate:

INu(t, Yzo < (1+ ) FOEDO=E25 0D (| (g, ), + July ). (7.33)

Step 2 We need to estimate the norm ||0; Nu(t, )| pa. Differentiating Nu(¢, ) with respect to ¢
we obtain

t

O Nu(t,z) = 0y (Ko(t, ) %5 uo(x) + K1 (t, @) #5 u1(2)) + L O (K1 (t — 7,2) %4 |ug (7, 2)[P)dr.

We apply the L™ n L? — LY estimates from Theorems 4.3.1 and 4.4.4 to conclude

1

|0 Nu(t, )| e < (1+t)EFEDA-F)1-350-5)

(w0, u1)] As o
t
* f (1+t— 1) EDO=5 =35 =Dy (r, )P
0

Using the same ideas for deriving (7.33) we may conclude

J0:Nu(t, Ype < (14 7)CHEDO=)2 =500 (| (ug, uy)|

-Afn,q + ||U||§((t)) )
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under the same assumptions for p, that is,

pe[;)]l )1fs 25+6 or pe[gl m]ifs<25+g,

and
max{2md(1l + k), n — Zn+m(s — o)}
p>1+ 1 .

n — 2mdkKa

Step 3:  Let us estimate the norm |d,[D|*~2’ Nu(t, We use

Mo

0| DI* 2 Nu(t,z) = 04| D|*"2° (Ko (t, x) 5 uo(z) + K1 (t,2) %5 u1 ()
t
N J 8D (K (t — 7,2) oy g7, 2)|P)dr
0
We apply the (L™ n L?) — L9 estimates from Theorems 4.3.1 and 4.4.4 to derive

Hg |D|*~ 2‘5Nu (1+ t)”(z*[%])(l*%)?*%(17%)*%||(uo,ul)|\,4¢m

RIS
t
T R ] [TCO L P
0 q
— (1 + t)1+(2+[%])(17*)l7 (17? 35 “(u07u1)HA

m,q

i
- J‘ <1 +t - T)1+(2+[%])(1_% T 6(1 % <T7 )|p| L""r\L‘Ir\HSf%d,t
0 q

The integrals with [|u(7 will be handled as before to get

’.)|pHmeL‘?

t
J (U4t = )OO O D755 g (7, )P 1,
0

-
20 Hqug(ty

To estimate the integral with the norm |[Ju(r we shall apply Corollary C.4.1 for the

.
fractional powers rule with s — 26 € (%, p). Therefore, we obtain

-1
e (7, )P ] 20 < (7, ) a-2s e (7, ) e
-1
S e, ) grg=2s (e (7, ) e + (7, Wz2s)”

Here we used Corollary C.5.1 with a suitable s* < %. Applying the fractional Gagliardo-Nirenberg
inequality from Proposition C.1.1 we have

n o n S*
Hut('r; )HHS* < Hut( HLqe H|D|s 25 HLq < (1 + T)(2+[§])(1fﬁ)%*ﬁ(17%)*ﬁHUHX(T),
q

*
_ s
where § = 255

Ite(r, VP gg-s < (14 )P (EHEDO= 83850 D) =5~ 55 Py .

<1 +T)p((2+[%])(1—i =35 Gh—mp )HUHX(
if we choose s* = 2 — gy where g9 > 0 is sufficiently small. Therefore, by an analogous argument as
we did in the proofq of Theorem 7.1.3 we may conclude

t
J (1+1- 7')1+(2+[%])(17%)%7%(1*%)*% H|Ut(7'7 ')|pHHLzsdT
O q
=z —oyl_mn 11y _ s

<(1+ t)1+(2+[2])(1 ) r—35(1—5)—35 Hqu{(t)'

Therefore, we have shown the estimates

o«“"

|6:|D[*~% Nu(t (1+ ) HEHEDO=F) =55 0-7)-3

25 (]| (uo, ua )|

A, k). (7:34)

RIITES
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Step 4:  Let us estimate the norm | |D|*Nu(t We use

e
|DI*Nu(t,z) = |D|* (Ko(t, z) 5 uo(z) + K1(t,z) *4 ui(x))

+ L |D|S(K1(t — T, 1) #g |ug (T, :zc)|p)dr

By applying again the (L™ n L9) — L9 estimates from Theorems 4.3.1 and 4.4.4, we derive

|[DJ* Nu(t HLq < (14 )H+EDA-% %_%(1—%)_%“(%#1)\\%(]
t
o R T R [T P
0 q

Following the approach to show (7.34) we arrive at

”|D| Nu(t (1+t)”(”[ sD(—g5) s -2 (1-1)— 2°(|\(U0,U1)\

RIITES Aty + [0lr))-
Summarizing, from the definition of the norm in X (¢) we obtain immediately the inequality (7.31).

Next let us prove the inequality (7.32). The new difficulty is to estimate the norm
(NP = o, Mo

Then, repeating the proof of Theorem 7.1.3 and using an analogous treatment as in the first step
we may derive

[IDI=% 0y (Nu <t, N o
1
< (1
|IDI* (Nut,) = Nu(t, )|,
< (1 + ) OHEDA= ) 7= A=) =55 gy — vl (Il + I015)-

~+
N2
—
+
—~
)
+
—
wf3
—
=
=
¥
S
-
Rl
|
)|
B
—
=
3

=5 Ju — oy (b + ol

From the definition of the norm in X (¢) we conclude immediately the inequality (7.32).
This completes the proof of Theorem 7.2.1. O

Example 7.2.1. In the first example, by choosing m =1, ¢ =4, 0 = 1.8, = 1 and s = 3 we obtain
the following admissible range of exponents p in the structural damping case:

€[4,0) foralln=1,23.

Example 7.2.2. In the second example, by choosing m =1, g =4, 0 = § = 1.1 and s = 3 we obtain
the following admissible range of exponents p in the viscoelastic damping case:

€(6.89,00)if n =1, or pe[4,00)ifn=23.
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8. Other qualitative properties of solutions to
linear models

Up to now, we have presented (L™ n L?)— L% and L?— L? estimates, with g € (1,00) and m € [1, q), for
solutions and some of their partial derivatives to the Cauchy problem for linear damped o-evolution
models in Chapters 2, 3 and 4. Then, a direct application of these estimates is to prove the global
(in time) existence of small data Sobolev solutions to the corresponding semi-linear models from
suitable function spaces basing on LY spaces in Chapters 5, 6 and 7. In this chapter, we explain some
other qualitative properties of solutions to the linear models as Gevrey smoothing, propagation of
singularities and loss of regularity in the cases of structural damping 6 € (0,0), external damping
¢ = 0 and visco-elastic damping § = o, respectively.
The following linear Cauchy problem is of our interest:

uge + (—A)7u + ,u(fA)‘;ut =0, u(0,z)=up(x), u0,2)=mui(x) (8.1)

with u > 0, 0 = 1 and ¢ € [0, 0].

8.1. Gevrey smoothing

We are interested to understand which Gevrey space I'*** the solution to (8.1) belongs to. For this
reason, we will consider our estimates with the L? norm and assume for the Cauchy data ug € H®
and u; € L?. The study of regularity properties for solutions allows to restrict our considerations for
large frequencies in the extended phase space. In order to state our main results, at first we recall the
following definitions of the Gevrey space regularity.

Definition 8.1.1. A given function u : R® — R belongs to the Gevrey space I'"* if and only if
there exist positive real constants a and s such that

exp (a(€) ) F(u)(€) € L.

We write u € I'*®. By I'* we denote the inductive limit of all spaces I'*#, that is, I'* := ., '*®.

a>0
More precisely, we may define the regularity of Gevrey-Sobolev spaces as follows.
Definition 8.1.2. A given function u : R™ — R belongs to the Gevrey-Sobolev space I'*** if and
only if there exist positive constants a, s and a real constant p € R such that
1

exp (a€)®) (&) F(u)(€) € L?.

We write u € T'»%P. By I'*? we denote the inductive limit of all spaces I'***  that is, ' :=
Uamo T

8.1.1. The case J € (0,%)

Theorem 8.1.1. Let us consider the Cauchy problem (8.1) with 6 € (0,%). The data (ug,u1) are
supposed to belong to the space € H® x L?. Then, there is a smoothing effect in the sense, that the
solutions belong to the Gevrey-Sobolev space and the Gevrey space, respectively, as follows:

u(t, ) € I'%57 and |D|%u(t, ), ut(t,-) € 2 forallt>0.
Proof. Applying partial Fourier transformation to (8.1) we obtain the Cauchy problem as follows:

Gy + pl€| 0+ €70 =0, a(0,€) = (), @(0,€) =uw(f). (8.2)
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We may choose without loss of generality u =1 in (8.1). We recall the characteristic roots are

Mz = hal@) = 5 (- 1670 £ /gl — igfer).

The solutions to (8.2) are presented by the following formula (here we assume A\; # A2):

N )\16)\2t _ )\26)\1t/\ e}qt _ e)\gt
u t, = YV U +
e = N g T

Taking account of the cases of large frequencies we have

Mo~ =6 +d€]7 and A — Ay ~ €]

W (€) =1 Ko(t,€)u(€) + K1 (t, &) (6).

We introduce the smooth cut-off functions x, = xx(|¢]) with k = 1,2, 3 as in Section 3.1. Using the

asymptotic behavior of the characteristic roots we find the estimates for large frequencies

[Ko(t,6)] < e, K (t,€)] < [l meelel™,

|0:Ko(t,6)| < |€|7e e, 0K (8,€)| < emelel,

for some positive constant ¢. Hence, we derive the following estimate for solutions (¢, )

localized to large frequencies:
| exp (2elePPe) 1 + I fate, O Pa(lehde
< [ e a0 + PR OO + Rt T xa(leDd
< || exp (2o 1+ )R OPITO Pra€l)de
# | exp (26l 1+ 6P IR P @) Prael)ae
< | @@ Palende + [ @@ e

Moreover, we have for [€|7Gi(t, €) = Fose (| D|7u(t, z)) the following estimate:
. exp (el e late. ) Prailas
< [ e POl Kot T + R 9T Praed
< | exp (2el€ ) 271t €)1 (€) P xa (16D de

[ e (2l€PoIER R &) P hall€de
< j |5|2“|fo<s>|2><3<|5\>d5+f 1T () Pxa (€D de
R™ R™

For the partial derivative in time 4 (¢, &) = F(ui (¢, x)), we may conclude

| exp oo O xa(ichae
< | e (eo0)aRal OO + ARt T xa(led
< || exp (a0 0 Ral OGO Pl
# [ e (elePo0I (L OPITO Prael)de
< | PmOPeds + | e aiehae

Therefore, by Definitions 8.1.1 and 8.1.2 we may conclude immediately u(t, -) € ['z5:° and | D|7u(

w(t,-) € D250 for all t > 0 what we wanted to prove.

= S(U(t, $))

t7')7

O
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8.1.2. The case 6 = g

Theorem 8.1.2. Let us consider the Cauchy problem (8.1) with 6 = §. The data (ug,u1) are supposed

to belong to the space Ho x L2. Then, there is a smoothing effect in the sense, that the solutions belong
to the Gevrey-Sobolev space and the Gevrey space, respectively, as follows:

u(t,”) €T and |D|u(t,-), w(t,")eT#° for allt> 0.
Proof. Here we divide our considerations into two cases: p # 2 and p = 2.
Case 1: 1 # 2. We have the characteristic roots

My = 2 (mnE 2 —4) i e (2,0),
’ Lo (—ptin/4—p2)  if pe(0,2).

Taking account of the asymptotic behavior of the characteristic roots we obtain the following esti-
mates:

| Ko(t,€)] < e eI, K (t,6)| < €77 eelel™
O Ro(t,€)| < J¢l7eelel™, Rt 6)] < e—cler,

for some positive constant c¢. Hence, in an analogous way as in the proof of Theorem 8.1.1 we may
prove the statements in Theorem 8.1.2 with p # 2.

Case 2: = 2. We have a double root A1 2(§) = —|£|?. The solutions and their derivative in time
to (8.2) are, respectively,

a(t,€) = (1+ g7 Mg (6) + te (¢,
and
(t,€) = —t[€*7e™ a5 (€) + (1 —t[¢]T)e I a (¢).
Now let us turn to estimate for high frequencies. First we get the following estimate for solutions:
1i¢gle PN —Ligle o~ o
le2 €78 (e) act, )xa (€D o < e 247 el T (€ xa(1ED] 12 + ¢ e 21 eP T () xaIED)] 12
Lg% o~
e = g m ) (lED)] .

Thanks to Parseval’s formula, we derive

e 21 g7 @ (©)xa (€N o < e 2 xa (€N .0 1€ T (E)] o
< il @(©)] 2 = luol o
tlem 215 e Poaa(€)xs (1€D)] o < [t 1€7e™ 2 s (€D o 1€ 70 ()] 1

< lgl"@(©)] > = luoll o

and

te 2" el ar (&) xa (1€])] Lo < [£1€]7e 21 xs(

< ur(©)) . = luallze-

@(6)] .

Hence, we arrive at
Liglo (2PN
ez &) alt, ) xs (€D 12 < luoll o + [ual 2
Analogously, we also obtain the following estimates:

1ige ~
le21€" g|7at, )xs(1€D] 2 < luoll o + [uallze,

and
Liglot~
e @ (8, ) xs (€D 1 < luoll o + a2

Summarizing, we have proved the statements in Theorem 8.1.2. O
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8.1.3. The case d € (£,0)

Theorem 8.1.3. Let us consider the Cauchy problem (8.1) with § € (§,0). The data (ug,uy) are

supposed to belong to the space He x L2. Then, there is a smoothing effect in the sense, that the
solutions belong to the Gevrey-Sobolev space and the Gevrey space, respectively, as follows:

,') € peeE an u(t,-), ue(t, )€ BEEDE or a > 0.
u(t,") el 7 and |D|u(t t,) el 0 It>0

Proof. We will follow the proof of Theorem 8.1.1 to prove Theorem 8.1.3. For large frequencies, we
get
M~ g dg~ g7 and Ar = Ag ~ €17

By using the asymptotic behavior of the characteristic roots, we find the following estimates for
large frequencies:

—~ _clg)2(e—9) — _ e 2=
|[Ko(t,€)] < e7<F 7, |1 (1,6)| < J¢] 720 ele T,
}&fff\o(t,f)’ S ‘€|2(075)(370‘5|2(G_5)t7 ‘&tf?\l(t, 5)‘ S e,C|E‘2(a—5)t7

for some positive constant c. Hence, in the same way as in the proof of Theorem 8.1.1 we may prove
the statements in Theorem 8.1.3. O

8.2. Propagation of singularities

In this section we would like to discuss another property of solutions to (8.1), the so-called propagation
of singularities along characteristics. In order to describe this property more precisely, we are interested
in considering the so-called micro-local descriptions whose main ideas come from the notion of wave
front set. Denoting by Uy(xg) and Vj(&p) a neighborhood of a point zy € R™ and a conical neighborhood
of a point & € R", respectively, we recall the following definitions of wave front set.

Definition 8.2.1. Let us consider a distribution g € D’. Then, a point (z9,&) € R™ x (R™\{0})
does not belong to the wave front set WFg if there exist two functions x and ¥ having the following
properties:

e x €C{(Uo(z0)) and x =1 on a neighborhood U; (z¢) of zo, where Uy (zg) < Up(zo),

e ¢ € C* such that ¥ = 1 on a conical neighborhood V;(&y) of & and ¢ = 0 outside a conical
neighborhood V;(&p), where V1 (&) < Vo(&o),

e (D)(xg) € C*, where ¥(D) is a pseudo-differential operator and ¥ (D)(xg) is defined in the form
(D) (x9)(x) = F (¥ (€)F(x9)(€)) (@)

Definition 8.2.2. Let us consider a distribution g € D’. Then, a point (z,&y) € R™ x (R™\{0}) does
not belong to the wave front set WFg if there exists a function x having the following properties:

e x € C{(Uo(z0)) and x =1 on a neighborhood Uy (zg) of xo, where Uy (o) < Up(o),

e to each 7 there exists a constant C, such that |F(xg)(&)| < C,(&)™" in Vo(&).

To apply the above definitions of wave front set for solutions to structurally damped o-evolution
equations, we introduce the following lemma (see, for instance, [26, 27]) which explains the structure
of wave front set for Fourier integral operators.

Lemma 8.2.1. Let g € g (R™) be a distribution with compact support in R™. Let A be the Fourier
integral operator in the form

Agla) i= | €959 ala,) 3o )

where ¢ = ¢(x,&) is a given phase function and the amplitude a = a(x,&) belongs to the Hérmander
class S"(R™) with r € R, that is, the following inequalities are true:

o208a(,€)] < Cap(e)



8.2. Propagation of singularities 163

for any multi-index o, 5, some constants Cq g and for all (x,£) € R™ x R". Let us assume that the
set

{(y,€) € WFg : there exists x € R" such that y = V¢d(,£), Vad(z, &) = 0}
is empty. Then, it holds

WF Ag c {(:E,f) . there exists n € R™\{0} such that & = V,é(z,n), (anﬁ(x,n),n) € WFg}.

Now let us consider the propagation of microlocal singularities for solutions to (8.1) with § = 0,
that is, for solutions to the Cauchy problem

upr + (—A)°u+ puy =0, w(0,2) =wup(x), u(0,2) = ui(x). (8.3)
We are going to prove the following result.
Theorem 8.2.1. The wave front set of solutions to (8.2) is described as follows:

20.|€|2(7—2
NOEE

Proof. The study of propagation of microlocal singularities for solutions allows to restrict our con-
siderations for large frequencies in the extended phase space. From Section 3.4 we get the following
reprentation of solutions to (8.3) by Fourier multipliers for large frequencies:

Uys (t? l‘) = g_l (a(t? £)X3(|§|))
)\1€>‘2t _ /\2e>\1t At Aot

e A G R () 3)

1. 20 2 t 1 1 —~
= 5 (e VAT (1 W)xgﬂﬂ)uo(f))

g (e B € ey

5 (e b Wmmul(s))
YN S S

+F (e wt (2+2i\/4|§|207_”2)><3
N S Ao

N )]

Hence, it is reasonable to take account of the following phase functions:

¢J_F(tax7€) =T fi %t\/ 4|§|20 —/.LQ

These phase functions satisfy the assumption of Lemma 8.2.1 since V¢4 (¢, z,7) = 1 = 0 is excluded
in Definitions 8.2.1 and 8.2.2. For this reason, with £ = 7 we may conclude from (zg, &) € WFuy N
WF u; as follows:

WFu(t,-)c{(a:irtf 5):(x,€)eWFu0uWFu1} for all t # 0.

e+

(I (©))

20&[*7 2
Ved (t,w0,80) = 0 £ t§—F———.
VA7 — p?
Therefore, this completes our proof. O

Remark 8.2.1. In Theorem 8.2.1 we want to explain that microlocal singularities of solutions to
(8.3) are contained on the lateral surface of the characteristic cone with apex in the singularities of
the data. This means, that we have no small neighborhood in those points, where the data are C*.
More precisely, if (zg, &) € WF ug U WF uq, i.e. the estimate from Definition 8.2.2 is not true in the
direction &p, then the wave front set WF u(t, ) is contained in the set (with respect to x) of points on
the lateral surface of the characteristic cone with apex in zg in the direction

20§o|* 2
VA& — 1

Hence, the & direction is a bad one with respect to £ .

Yo := &
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8.3. Loss of regularity

The main purpose of this section is to study the loss of regularity for solutions to the following
visco-elastic damped o-evolution models:

ug + (=A)7u + (=A)7u; =0, u(0,z) =up(x), u(0,2)=u() (8.4)

with ¢ > 1. The study of the regularity of solutions allows to restrict our considerations for large
frequencies in the extended phase space. We are going to prove the following result.

Theorem 8.3.1. Let a, {1, lo = 0. The Sobolev solutions to (8.4) satisfy the following estimates:

D1y (8, )] o < € (a0l oz + (1 + )75 o] prases )
+ e (14 )7 oo+t aa )
[1D]*00tn (8 )] 1o < €™ ((1+ 1) [ graves + ol zze)
R (SR g 1 P )
where ¢ 1s a suitable positive constant.

Proof. Using partial Fourier transformation to (8.4) we obtain the Cauchy problem for @(t,§) :=
S(u(t, ), uo(§) := F(uo(x)) and u1(§) := F(u1(z)) as follows:

e + €170 + €70 =0, 0(0,€) =Uo(€),  (0,€) =u(§). (8.5)

The characteristic roots are

4
A2 = A12(8) = %|§|20<_ L+, /1= |§|2a>'

The solutions to (8.5) are presented by the following formula (here we assume A\; # Ag):

)\16)\2t _ )\26>\1t e/\lt _ e)\zt

i(t.§) = 5w + (€)= Ko(t,T0(©) + K, 9T (©).

We introduce the smooth cut-off functions xr = xx(|¢]) with & = 1,2,3 as in Section 4.4. Taking
account of the cases of large frequencies separately we have

)\1 ~ —1, /\2 ~ —‘§|2G, and )\1 — /\2 ~ |§|20.

More precisely, using Newton’s binomial theorem we re-write

4 2 2
1- — =1- — - - _ —40
VTR T e e o)

for large frequencies. Consequently, we derive the following relations for large frequencies:
A= =1 €7 —olg]7>),

A2 = €177 + 1+ [€]727 + o(|€]72),
A — Az = €% —2 - 20¢]7% + o(|€| 7).

Using the above asymptotic behavior of the characteristic roots we find the estimates for large
frequencies

€| Bo(t, )] < [l eIl 4 met]g|eeelel ™7,

€] | K (¢, €
1€[%]0: Ko (t,
€[2[0 K (¢, €

<
< e—ct|§|a—2¢7€—c\§|’2”t + |£‘a—206—c|5‘20t’

e—ct|€|ae—c|§\’2"t + ‘€|ae—c\£|2”t7

)
)
)
)‘ efct|£|a72o’670\§|726t + |£‘aefc‘5|2at

pS
S
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for any a > 0, where c is a suitable positive constant. From these estimates, we observe that the
decay properties of regularity-loss type appear. Indeed, let us now decompose the solutions to (8.4)
into three parts localized separately to low, middle and high frequencies, that is,

u(tv x) = Uy, (t7 :C) Tt Uy, (ta {E) T Uy, (ta :E),

where
Uy, () = F " (x(|€DA(t, )  with k=1,2,3.

By using the following estimates:

sup (¢ Pe ) < (14 4)7 7,
[¢l=1

with 8 > 0 and a, ¢ > 0 we may arrive at

[1D1 % (8, ) 2 s (€DIEl 7€ o(©)] o + =[x (EDIEI e ] o €)] .
e xa(leD el 2 e T e P A (€)1 + s (€DIE T e R (9)] 1
S R
+e t(1+ t)_ﬁ% lwill grra—zoeq1+ + e_Ct”ulHH[a*”]*’

and

[1D1 Bty (£,) = < € [xa (€D 1€l e g™+ i (€) | o + [xa(l€D e e] "0 (€)]] 2
+ e xa (€D [E] = e o2 2y ()] + [xs (€D g i (€)1
< e L+ )75 Juo|gares + e uo] e

£
+ e L4 1) fun | yra-zo e + € e

Therefore, this completes the proof of Theorem 8.3.1. O
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9. Blow-up result

The main goal of this chapter is to discuss the critical exponent for the following Cauchy problem for
semi-linear structurally damped o-evolution models:

{utt + (=A)u + (—A)ouy = |ul?, xeR™ ¢t >0, (9.1)

u(0,2) = uo(x), u(0,2) = uy(x), x e R™,

with some o = 1, 6 € [0,0) and a given real number p > 1. Here, critical exponent perit = Derit(n)
means that for some range of admissible p > p..;+ there exists a global (in time) Sobolev solution for
small initial data from a suitable function space. Moreover, one can find suitable small data such that
there exists no global (in time) Sobolev solution if 1 < p < peri. In other words, we have, in general,
only local (in time) Sobolev solutions under this assumption for the exponent p.

For the local existence of Sobolev solutions to (9.1), we address the interested readers to Proposition
9.1 in the paper [9]. The proof of blow-up results in the present paper is based on a contradiction
argument by using the test function method. The test function method is not influenced by higher
regularity of the data. For this reason, we restrict ourselves to the critical exponent for (9.1) in the
case, where the data are supposed to belong to the energy space. To deal with the fractional Laplacian
(—A)? and (—A)° as well-known non-local operators, a modified test function method is applied to
prove a blow-up result in the subcritical case and in the critical case as well.

Let us now introduce the following two parameters:

k™ :=min{0;20} and kT := max{o;25}.

09.1. Main theorem

In order to state our blow-up result, we recall the global (in time) existence result of small data energy
solutions to (9.1) in the following theorem.

Theorem 9.1.1 (Global existence). Let m € [1,2) and n > mok™ with m%) =L 1 We assume
the conditions
2
—<p<® if n <2kt
m
2 n 4kt
S <pg ——— if ne (2kt, ]
m SPS ok if n ( 2—m
Moreover, we suppose the following condition:
m(kt + o)
>14+ ———-. 9.2
b n—mk~ (9-2)

Then, there exists a constant €y > 0 such that for any small data
(ug,u1) € (L™ Hk+) x (L™ n L?) satisfying the assumption |uo||pm g+ + w1 pmare < €o,
we have a uniquely determined global (in time) small data energy solution
ue C([O,oo),Hk+) n C* ([0, ), L?)

to (9.1). Moreover, the following estimates hold:

n 1

lut, e € (1 + )76 5 T35 (g

Lm~HET + HUIHmeL2)7
- _ n (L,l), kT —x—
H|D| u(t, .)”L2 S (1 +1t) 26— m 220 ) (HUOHmeH” + HulﬂLmﬁLz)7

__m (1 __1y_o—k—
[ue(t, Mz S (1+8) 2000 27T (Jug| s + ]

LmAL2 ) .
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We are going to prove the following result.

Theorem 9.1.2 (Blow-up). Let o0 > 1, § € [0,0) and n > k™. We assume that we choose the initial
data ug = 0 and w1 € L' satisfying the following relation:

fﬂ w(@)dz > €, 9.3)

where € is a suitable nonnegative constant. Moreover, we suppose the condition

2
pe (1,1+ n:fki]. (9.4)

Then, there is no global (in time) Sobolev solution u € C([0,0), L?) to (9.1).

Remark 9.1.1. We want to underline that the lifespan T of Sobolev solutions to given data (0, euq)
for any small positive constant ¢ in the subcritical case of Theorem 9.1.2 can be estimated as follows:

_ _Ro—xT)(p=1)

T. < Ce 2-G—)e-10  with C' > 0. (9.5)

Remark 9.1.2. If we choose m = 1 in Theorem 9.1.1, then from Theorem 9.1.2 it is clear that the
critical exponent p.,;; is given by

20
n—20

Perit(n) =1+ ifde [0, %] and 40 < n < 4o.

However, in the case 0 € (F,0) there appears a gap between the exponents given by 1 + 26—+; from

oy
Theorem 9.1.1 and 1 + f%g from Theorem 9.1.2 for 20 < n < 84.

0.2. A modified test function

In this section, we collect some preliminary knowledge about a modified test function method needed
in our proofs.

Definition 9.2.1 ([43, 70]). Let s € (0,1). Let X be a suitable set of functions defined on R™. Then,
the fractional Laplacian (—A)® in R™ is a non-local operator given by

(=4)" s ve X — (=A)v(z) := Cn s p.v~J Mdy

R |£C _ y|n+2s

4°T(5 +s)

as long as the right-hand side exists, where p.v. stands for Cauchy’s principal value, C,,  := e
T —S

is a normalization constant and I" denotes the Gamma function.

Lemma 9.2.1. Let <17> = (1+ |z|2)% for all x € R™ and g > 0. Then, the following estimate holds
for any multi-index « satisfying || = 1:

o (x) ™| < <m>_q_‘a‘ for all z € R™.

Proof. First, we recall the following formula of derivatives of composed functions from Lemma B.6.2
for || =1 :

o2h(f(w) = Y, bW (f(2)) > (02 f()) -+ (82 f(2)) |
k=1 Y1t esSa
[vi]+-+]yvel=lal, [vi|=1

where h = h(z) and h(F)(2) = d';’;(:). Applying this formula with h(z) = 2~ % and f(z) = 1 + |z|*> we
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obtain
—q & g 2 2
|03 (z) < Y (L + a2 > 03 (1 + [a*)] - og= (1 + [af)]
k=1 Y1t FresSa
[val++lvel=lal, [vil=1
1 if 0 < |z <1,
o] ,
<C 1+ |z|>)"27F
PR 2 [T fa T e > 1,
Vit FYRSo
[yal+-+lvel=lel, [vil=1
o] :
1 if 0<|z|/<1
o2N—9_k )
< 02 ];1(1 + |I‘ ) 2 {|m|2k_|a| if |$| > 17
- Cg\oz|<x>_q_2 if 0<|z<1,
| Colal(z) el Tl 2] 2 1,
where C'; and Cs are some suitable constants. This completes the proof. O

Lemma 9.2.2. Let me Z, s€ (0,1) and v := m + s. If v e H*(R"), then it holds
(=A)"v(z) = (=A)" ((=A)*v(@)) = (=A)*((—=4)v(z)).
One can find the proof of Lemma 9.2.2 in Remark 3.2 in [1].

Lemma 9.2.3. Let (x) := (1 + |z|2)2 for all z € R™ and ¢ > 0. Let m e Z, s € (0,1) and y := m +s.
Then, the following estimates hold for all x € R™:

<x>7q727 if 0<qg+2m<n,
CAPE <y P gt +la) i qt2m=n, (9:6)
<x>_n_2$ if  q+2m>n.

Proof. We follow ideas from the proof of Lemma 1.5 in [29] devoting to the case m = 0 and s = 1,
that is, the case v = % is generalized to any fractional number v > 0. To do this, for any s € (0,1) we
shall divide the proof into two cases: m = 0 and m > 1.

Let us consider the first case m = 0. Denoting by ¢ = ¢(z) := (z) " we write (—A)*(z) " =
(—A)*(¢)(x). According to Definition 9.2.1 of fractional Laplacian as a singular integral operator, we

have
v~ ),

(=AY (Y)(x) := Cps pv. pTEST

Rn |$*

A standard change of variables leads to

(—AYW)@) = -2 po. j Y ty) + (e —y) —20@)

2 |y‘n+2$
Cn S . - - 2
_ G J Y@ +y) + o . y) w(x)dy
2 e—0+ e<|y|<1 ‘y|n+ S

ly|>1

2 |y|n+2s
To deal with the first integral, after using a second order Taylor expansion for i, we arrive at

[la+y) + e —y) - 20@)| _ [

|y|n+2s ~ |y|n+2372 '

Thanks to the above estimate and s € (0,1), we may remove the principal value of the integral at
the origin to conclude

(—A)S(QZJ)(LC) _ _Cn,s ¢(9C + y) + w(l" — y) — 21/J($)

dy.
2 Jo [y +2 Y
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To prove the desired estimates, we shall divide our considerations into two subcases. In the first
subcase {z : |z| < 1}, we can proceed as follows:

‘(—A)s(w)(l')‘ < jy|s1 |1/J(£U + y) +|Z}(nx+2_s y) — 2¢($)|dy + JyIZI |¢($ + y) +|;5|(nx+;y) — 2¢(x)|dy

< 02 j

lyl<

1 1
———dy + ||v Loof ——dy.
1 |y|n+23—2 ” ” ly|>1 |y|n+2$
Due to the boundedness of the above two integrals, it follows immediately
|(—A)S(¢)(x)| <1 forall |z| < 1. (9.7)

In order to deal with the second subcase {z : |z| = 1}, we can re-write

C'n, s - - 2
) le|>zz| R +|:/Z}("x+25y) oy
— 2 d
2 Lz|<|y|<2a: ly[n+2s Y
2 Jy|<§|w| |y[+2s 24 (9:8)

For the first integral, we notice that the relations |z +y| > |y| —|z| > |z| and |z —y| = |y| —|z| = |z
hold for |y| = 2|x|. Since v is a decreasing function, we obtain the following estimate:

V(@ +y) + Y@ —y) —2¢()
n+2s dy
lyl>2/a] [yl
1 . 1
< 4 ()| L _ay<( j L dlyl
izl Y] 20 (=) yi>2lal [Y]"F2°

< (z) a7 < <x>_q_2s (due to |z| ~ (z) for all |z > 1). (9.9)
It is clear that |y| ~ |z| in the second integral domain. Moreover, it follows
1
{v:3lal <yl <20alf = {y: I +yl <3lal}, (9.10)
1
{v: 3lal <yl < 20alf = {y: lo —yl < 3lal}. (9.11)

For this reason, we arrive at

” Y(x +y) +p(r —y) *%(ﬂ?)dy‘
Llal<ly|<2la]

|y‘n+2s

sl ([ vty [ sy o) | 1dy)

|z +y| <3|z |z —y|<3|z] 3lz|<|y|<2]x|
sl ([ ey + (o)), (912

|z+y| <3|z

where we used the relation
| wla+ iy = | (o — y)dy.
|z+y|<3|z| |z—y|<3|z|

By the change of variables 7 = |2z + y|, we apply the inequality 1 + r2 >

2
% to get

[z +y|<3|z| r<3|z|

r<3|x|
(14 3|z|)"1 if 0<g<n,
< A log(e + 3|x]|) if q=n, (9.13)
1 if g>n.



9.2. A modified test function 171

By |z| ~ (x) for all |z| > 1, combining (9.12) and (9.13) leads to

bla+y) + vla—y) — (e @, roD=asn
| T Dy < o) " S logle+3a) i g-n  (0.14)
lel<lyl<2al [l (o) ,
a:> if g>n.

For the third integral in (9.8), using again the second order Taylor expansion for 1) we obtain

Yo+ ) + 9w — y) — 20()
‘flvl e ’ ’ dy‘

|y|n+23
\J [Y(z +y) -I-w(nsty) z/J(ac)|dy sf - B —
ly|<i|z| |y‘ ly|< L]z 0€[0.1] |y‘
—q—2 1 —q—2 1-2 —q—2s
< max (z+0y) © ————dy < (x f lyl"~**dly| < (x . (9.15)
Jp s G 0™ ety < (7 (=)

Here we used the relation |z + y| > |z| — 0|y| > |z| — 1|z| =
(9.15) we arrive at the following estimates for all |x| > 1:

]z|. From (9.8), (9.9), (9.14) and

(x Tas if 0<gq<n,
(AP @)(@)] <3 (@) " logle +3x)) it g=n, (9.16)
<x>_n_25 if ¢>n.

Finally, combining (9.7) and (9.16) we may conclude all desired estimates for m = 0.

Next let us turn to the second case m > 1. First, a straight-forward calculation gives the following
relation:

—Alz) "= r((n —r— 2)<x>_7-_2 + (r+ 2)<m>_r—4> for any r > 0. (9.17)

By induction argument, carrying out m steps of (9.17) we obtain the following formula for any
m = 1:

(a7 (a) " = 0 [T+ 2) ([T a+ 20)()
=0 j=1
—cl ﬁ(—n +q+29) (g + 2m)(x) "2

i=3

’"m]_[ (q+2m + 2j)(z)” Hm). (9.18)
7=0
Then, thanks to Lemma 9.2.2, we derive
(=AY (@)™ = (=A)* ((-Aa)"(=) ™)
m—1 m
= (0" [T+ 29 (TT(-n+a+29) (~a) ()"
Jj=0 j=1
-Cp H( n+q+25)(qg+2m) (—A)s<x>_q_2m_2
+ C'ﬂzq . ( n+q+27)(qg+2m)(q + 2m + 2) (7A)s<x>*Q*2’m.74

m—1

b (—D)m 1_[ (q +2m + 27) (fA)5<z>7q74m). (9.19)
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For this reason, in order to conclude the desired estimates, we only indicate the following estimates
for k=0,---,m

<z>7q tl if 0<gq+2m<mn,
}(_A)S<$>_q_2(m+k)| S (z) e log(e + |z|) if g+ 2m =n, (9.20)
n—2s .
<I> if qg+2m>n.
Indeed, substituting ¢ by ¢ + 2(m + k) with k = 0,--- ,;m and v = s into (9.6) leads to

<x>7q727 if 0<qg+2(m+k)<n,

}(—A)S<x>7q72(m+k)| < <x>_n_28 log(e + |z|) if ¢+2(m+k)=n,
<a:>7n72s it g+2(m+k)>n.

From these estimates, it follows immediately (9.20) to conclude (9.6) for any m > 1. Summarizing,
the proof of Lemma 9.2.3 is completed. O

Lemma 9.2.4. Let s € (0,1). Let ¢ be a smooth function satisfying 021 € L®. For any R > 0, let
Vg be a function defined by

Un(z) = (R 'z)
for all z € R™. Then, (—A)*(vr) satisfies the following scaling properties for all x € R™:
(—AV(Gr)(x) = B2 ((—A)w) (Ra).

Proof. Thanks to the assumption 021 € L®, following the proof of Lemma 9.2.3 we may remove the
principal value of the integral at the origin to conclude

(_A)S('(/)R)(./E) _ _Cn,s ¢R(x + y) + wR(x — y) — QwR(l‘)

dy

2 R |y|n+2s
_ Chs 2 1/)(R*1:1: + R’ly) + 1/J(R*1x — Rfly) — Zw(Rflz) d(R-1
N _T R™ |R—1y‘n+23 ( y)
= R™*((-A)*y) (R '2).
This completes the proof. O

Lemma 9.2.5 (One mapping property in the scale of fractional spaces {H®}cr). Let vy, s € R. Then,
the fractional Laplacian

(A : f = (ZA)f = (A f)(@) = § (1€ F(©) (@)
maps isomorphically the space H® onto H5~27.
This result can be found in Section 2.3.8 in [72].
Lemma 9.2.6. Let f = f(z) € H® and g = g(x) € H® with s € R. Then, the following estimate
holds:
| s@ st <15l

The proof of Lemma 9.2.6 can be found in Theorem 16 in [27].

9||H*s-

Lemma 9.2.7. Let s€ R. Let vi = vi(x) € H® and v = vy(x) € H~*. Then, the following relation
holds:

[ @ @i = [ s
Proof. We present the proof from Theorem 16 in [27] to make the paper self-contained. Since the
space S is dense in H® and H~?, there exist sequences {v1 ;}r and {va }r with vy = vy (2) € S and

vg ) = V2,5(2) € S such that

[vig —villgs = 0 and  |ve g —vallg-s = 0 as k — oo.
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On the one hand, as k£ — o0 we have the relations

Viw(€) o= (14 €12 D1(6) = Vi(€) = (L +[€[)2 Du(6)  in L7,
Vo (€) i= (14 [61) 72 Do) = Va(&) i= (1 +[¢[*) 72 Ba(§)  in L%,
On the other hand, by Parseval-Plancherel formula we arrive at
jn v1k(z) vok(z) do = (vik, Vok) 1o = (ks Dok) o = fn 01,%(§) V2,1(§) d€
— [ a1 o 1+ 16 Baal@de = [ Tia©) Tan(e)de 020

where (-, )2 stands for the scalar product in L?. Moreover, applying Lemma 9.2.6 we may estimate
’ J- (v1,k(2) va,p () — v1(2) v2(2)) dw’
< ‘f (Ul,k(l‘) — 1 (m)) v27k(a:)dx‘ + U v1(x) (vg7k(x) - vg(w)) dx)

-+ + [vilms v —v2lg-- >0 ask— o0

< vk —vims [va,kl

This is equivalent to

J vy (2) vo k(x) de — vi(x)va(x)dx as k — . (9.22)
n R?L

In the same way we also derive

| ha@Par©de > [ BOT©d ask (9.23)

Rn

Summarizing from (9.21) to (9.23) we may conclude

| @ e = [ B© W= | 0@

R R™

Therefore, the proof of Lemma 9.2.7 is completed. O

9.3. Proof of the main theorem

We divide the proof of Theorem 9.1.2 into several cases.

9.3.1. The case that both parameters o and ¢ are integers

Proof. The proof of this case can be found in the paper [9]. O

9.3.2. The case that the parameter o is integer and the parameter § is
fractional from (0, 1)

Proof. First, we introduce the function ¢ = ¢(|z|) := <z>7n726 and the function 1 = 7n(¢) having the
following properties:

1 if 0<t<i,
1. neC([0,00)) and n(t) = { decreasing if 1 <t<1,
0 it t>1,
p’ ’ ’ 1
2.y (W @F + ' @)F) <C  forany te [5,1 : (9.24)

where p’ is the conjugate of p > 1 and C is a suitable positive constant. Let R be a large parameter
in [0, 0). We define the following test function:

or(t,z) == nr(t)pr(z),
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k~. We define the

174
¢(R'z) with a fixed parameter a := 20 —

n(R™*t) and ¢g(z) :=

where ng(t) :=
functionals
0

In _f J t, ) Pon(t, 7) d:cdt=f J lult, )P on(t, z) dudt

" 0 n

and N
In, = f f lult, )P on(t, z) dudt.
; to (9.1).

Let us assume that v = u(t, ) is a global (in time) Sobolev solution from C([0,0), L?)
After multiplying the equation (9.1) by ¢r = ¢r(t, ), we carry out partial integration to derive

0<In=—| w@en)dr+ | | utt.a)otna(t)on(a) dode

loe] ’ R%
+ Jo f nr(t)er(x) (—A) u(t, ) dedt — fi N omr(r(@) (—AYu(t, ) dedt

= —J ui(z)pr(x)de + Jy + Jo — J3
= 1 we may estimate as follows

(9.25)

Applying Hoélder’s inequality with = +

|J1| < f f u(t, )| |0inr(t)|or(x) dudt

JRQ fﬂ u(t,a:)qbi(t,x))p dwdt » ﬁi fﬂ

E La J nm” O)e2nr®)] orle d:vdt)
By the change of variables £ := R™®t and & := R~ 'x, a straight-forward calculation gives
|| < If, R ( f (77" di)?. (9.26)

(t) and the assumption (9.24). Now let us turn to estimate Jo and
and u € C([O 0), L2) we apply Lemma 9.2.7 to conclude the following

1
I

¢1_%% (t,x)0inr(t)pr(x )’ dxdt)

1
o7

Here we used 02ng(t) = R=2%n"
J3. First, by using pr € H*®
relations:
| en@) ayuttade = | €Rpnt©) it - | ulta) () () de
| en@ ayutade = [ 6@ a0 0d - | ulta) (<A gn(o)do.
Hence, we obtain
e t A”t,ddt=oo Hult, A dzrdt
2= || mnoente) (ayuttaydsat = [ [ apltyutt) (A on(e) o
Sor(z) drdt.

-
dnr(t)ult, z) (=A)

and
R’!‘L

o
Ty = f | omnlt)on(x) (~A) ult, ) dadt L

-

Applying Hoélder’s inequality again as we estimated J; leads to
1
2l < 24 (| j 1r(t)en” (1) |(~A) () drdt)”,

\\H

i (@) (=8 o) dudt)”.

and .
1 _p
g < 1k ([ [ on” @lnel e
- JRn
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In order to control the above two integrals, the key tools rely on the results from Lemmas 9.2.1,
9.2.3 and 9.2.4. Namely, at first carrying out the change of variables £ := R~%t and Z := R~ 'z we

arrive at
J J t)p % |(*A) |p dzdt)
0 Jrn

([ eF@lcare@r d@)?

1
7/

|J2] SI”

w+a

$ Ip R—20+

where we note (o is an integer) that (—A)%pg(z) = R727(—A)%p(%). Using Lemma 9.2.1 implies the

following estimate:
1

FARS If; RS (J (z) R d:z) o (9.27)

Next carrying out again the change of variables  := R~®t and & := R~ 'z and employing Lemma
9.2.4 we can proceed J3 as follows:

1
| J3] < I}?t

J J . @O ¢ @ (-8 (@) dzdd)’

SR e @A) @) i)

@E\H

Here we used dyngr(t) = R™“n(#) and the assumption (9.24). To deal with the last integral, we
apply Lemma 9.2.3 with ¢ = n + 20 and v = ¢, that is, m = 0 and s = § to get

1

1 nto e \
PARS (f (%) 25dx) . (9.28)

Because of the assumption (9.3), there exists a sufficiently large constant Ry > 0 such that it holds

J ) ur(x)pr(z)dx >0 (9.29)

for all R > Ry. Combining the estimates from (9.25) to (9.29) we may arrive at

0< J ur(z)pr(z)de < I}ét (Rf%‘+ Ea + Rfa*z(n%) + I}% R™%F . Ir
<I'R —In (9.30)
for all R > Ry. Moreover, applying the inequality
Ay”—yéAﬁ forany A>0,y>0and 0 <y <1
leads to
0< f w(w)pn(z)de $ ROV (9.31)

for all R > Ry. It is clear that the assumption (9.4) is equivalent to —20p’ + n + « < 0. For this
reason, in the subcritical case, that is, —20p’ + n + a < 0 letting R — o0 in (9.31) we obtain

Jnul(x) dx = 0.

This is a contradiction to the assumption (9.3).

n-‘roz

. It follows immediately —20 + = 0. Then, repeating
some arguments as we did in the subcrltlcal case we may conclude the follovvlng estimate:

1
P

0<Cp:= J ur(x)r(z) de < C;LIE2 —Ip, where C := (J <x> 20 dx) ,

that is,
1
Co+ Ig < Cl.[]g. (932)
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1 1
From (9.32) it is obvious that Ir < C1Ij; and Cy < C1I};. Hence, we obtain

Ip<CP (9.33)

and or
Ip> -3, (9.34)

cy

respectively. By substituting (9.34) into the left-hand side of (9.32) and calculating straightforwardly,
we get

2
Cp
Ir > p(jrpQ .
G

For any integer j > 1, an iteration argument leads to

cr cr 2 Cy \P
Inz b =0 —op () (9.35)
C‘fﬂ) dootp C];)T cr

1

Now we choose the constant
\—n—286 .
G:J <x> n2 dz

in the assumption (9.3). Then, there exists a sufficiently large constant R; > 0 so that

L w1 (2)pr(z) de > €

for all R > R;. This is equivalent to

p _p_ C
Co>CV =C7™', thatis, 9 > 1.
o
Therefore, letting j — oo in (9.35) we derive I — o0, which is a contradiction to (9.33). Summa-
rizing, the proof is completed. O

Let us now consider the case of subcritical exponent to explain the estimate for lifespan 7. of
solutions in Remark 9.1.1. We assume that v = u(t, ) is a local (in time) Sobolev solution to (9.1) in
[0,7) x R™. In order to prove the lifespan estimate, we replace the initial data (0, u1) by (0,eu1) with
a small constant € > 0, where u; € L' satisfies the assumption (9.3). Hence, there exists a sufficiently
large constant Ry > 0 so that we have

J u(x)pr(z)dr = c>0

for any R > Ry. Repeating the steps in the above proofs we arrive at the following estimate:

20p' —n—a

e<CRV e <o
with R = T'. Finally, letting T — T we may conclude (9.5).

Remark 9.3.1. We want to underline that in the special case 0 = 1 an § = % the authors in [12]
have investigated the critical exponent perit = perit(n) = 1+ % If we plug o =1 and § = % into
the statements of Theorem 9.1.2, then the obtained results for the critical exponent p.,;; coincide.

9.3.3. The case that the parameter o is integer and the parameter § is
fractional from (1,0)

Proof. We follow ideas from the proof of Section 9.3.2. At first, we denote ss := § — |§]. Let us

introduce test functions n = n(¢) as in Section 9.3.2 and ¢ = p(z) := <m>7n7285. We can repeat
exactly the estimates for J; and Jo as we did in the proof of Section 9.3.2 to conclude

ntao

1
| S Ip, R, (9.36)

nto

1
|Jo| S TH R, (9.37)
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Let us turn to estimate J3, where 0 is any fractional number in (1,0). In the first step, applying
Lemma 9.2.7 and Hélder’s inequality lead to

9 < T ([ [ Ol o™ (@) (<A (o) dade)”

Now we can re-write § = mg + s5, where mg := |§| = 1 is integer and s; is a fractional number in
(0,1). Employing Lemma 9.2.2 we derive

(=A)pr(z) = (—A)% ((—=A)™ pr(2)).

By the change of variables Z := R~'x we also notice that
(—A)™ R (x) = R (=A)"™ (¢)(z)

since ms is an integer. Using the formula (9.18) we re-write

mes—1 ms
(—=A)™pr(x) = ()™ R>™ [ (¢+24) (H —n+q+25)(@)
§=0 i=1
ms
- Ch, n(—n +q+2j)(g+ 2m5)<:z>*q*2m5’2
j=2
mg
+C2, [ T(=n+q+2))(g + 2ms)(q + 2ms + 2)()
7j=3

—q—2ms—4

ms—1

w7 T G 2ms 4 2)(3) ),
j=0

where g := n + 2s5. For simplicity, we introduce the following functions:

—q—2ms—2k 1 <‘%>7q72m,;72k

or(z) = () and  @pr(x) = @(Rx) =

with k = 0,--- ,mg. As a result, by Lemma 9.2.4 we arrive at

(A pn(e) = (—1)m B2 mH<q +2)) (ﬁw a4 2)) (—A) (p0.0)(@)

e ﬁ;<—n 4+ 2))(a+ 2ms) (~A)" (1.0 (@)
+Ch, ﬁ,(” +q+25)(q + 2ms)(q + 2ms + 2) (=) (02,r) (x)
bt () mﬂ<q & 2m5 4 27) (=) (P 1) )

= (—1)me RTAme 200 if_[ol q+2§) (ﬁ —n +q + 25) (—A)* (o) (%)
e ﬁm g+ 2))(a+ 2ms) (~A) (1) (2)
ey ﬁ<—n 4 g+ 27)(a + 2me)a + 2ms +2) (~AY* (22)(@)
bt 0 TT 0ok 2ms +20) (<A) () @)

Jj=0

= R (-A)%(¢)(3),
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For this reason, performing the change of variables f := R~®t we obtain

5| < Ih, R f J B o5 (@) |(-A) (2) @) dxdt)%
S f ) o () |(7A)5(¢)(5c)}”’ az) v

Here we used dynr(t) = R™%n/(f) and the assumption (9.24). After applying Lemma 9.2.3 with
qg=n+2ss and v =9, i.e. m = mg and s = S5, we may conclude

1 n+o —n—2s % 1 _os__ nto
Js| < I, R0 (f (@) an) s RS (9.38)

Finally, combining (9.36) to (9.38) and repeating arguments as in Section 9.3.2 we may complete
the proof of Theorem 9.1.2. O

9.3.4. The case that the parameter o is fractional from (1,0) and the
parameter 0 is integer

Proof. We follow ideas from the proofs of Sections 9.3.2 and 9.3.3. At first, we denote s, := o — |o].

Let us introduce test functions n = n(t) as in Section 9.3.2 and ¢ = ¢(z) := <a:>_n_25”. Then,
repeating the proof of Sections 9.3.2 and 9.3.3 we may conclude what we wanted to prove.

9.3.5. The case that the parameter o is fractional from (1,0) and the
parameter J is fractional from (0, 1)

Proof. We follow ideas from the proofs of Sections 9.3.2 and 9.3.4. At first, we denote s, := o — |o].
Next, we put s* := min{s,, d}. It is obvious that s* is fractional from (0,1). Let us introduce test

—n—2s%
functions n = n(t) as in Section 9.3.2 and ¢ = ¢(z) := (z) > Then, repeating the proof of
Sections 9.3.2 and 9.3.4 we may conclude what we wanted to prove. O

9.3.6. The case that the parameter o is fractional from (1,0) and the
parameter § is fractional from (1,0)

Proof. We follow ideas from the proofs of Sections 9.3.2 and 9.3.5. At first, we denote s, := 0 — |o]
and s5 := § — [§]. Next, we put s* := min{s,, ss}. It is obvious that s* is fractional from (0,1). Let

9k
us introduce test functions 7 = n(t) as in Section 9.3.2 and ¢ = ¢(z) := (z) e Then, repeating
the proof of Sections 9.3.2 and 9.3.5 we may conclude what we wanted to prove. O
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A. Notation- Guide to the reader

Symbols used throughout the thesis

[a] = ceiling(a)
|a] = floor(a)
{a} =a—1d
[a]T = max{a, 0}
Rez

smallest integer greater than or equal to a € R;
largest integer less than or equal to a € R;

fractional of a € R;
positive part of a € R;

real part of z € C;

Im 2z imaginary part of z € C;
arg z argument of z € C;
|| Euclidean norm of x € R™;

(z) = /1 + |z]?

ol =01+ + ay,

Japanese bracket of x € R™;

length of the multi-index « = (ay, ..., a,) € N,

]| x the norm of a function u € X;

Sooe(u) Fourier transform of u;

8’6—»m< u) inverse Fourier transform of ;

VvV, V., spatial gradient;

A, A, Laplacian with respect to the spatial variables;

div divergence with respect to the spatial variables;

|DI|?, |Ds|” pseudo-differential operator with symbol |£]7;

<D>a7 <DI>U pseudo-differential operator with symbol <£>U;

f<g if there exists a positive constant C' such that f < Cg;

f~g if f<sgandgsf;

f~g if f = Cg for some constant C' > 0;

f=o0(g) if limsup,,_, ., \ggng 0;

f=0(9) if limsup,,_,, ‘\gggf < o0;

supp u support of the function wu;

f*g convolution between f and g;

[*@) g convolution between f and g with respect to the spatial variables;

J,L(z) Bessel function of first kind of order y;

Tu(2) modified Bessel function of first kind of order y;

Pruj(n) Fujita exponent;

K;(t,x) fundamental solutions to the o-evolution equation
with structural damping and visco-elastic damping;

(t,¢) Fourier transform of fundamental solutions to the o-evolution

equation with structural damping and visco-elastic damping;

0= i)_jt; exponent which appears in the fractional Gagliardo-Nirenberg

po pL T m

inequality for 0 < s < 03

By — By continuous embedding of B; in Bs.
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Function spaces

We collect function spaces which are frequently used within this thesis.

Ck — Ck(Rn)
Cs = CH(R™)

C® = (C® (Rn)
Cy” = C(R™)

Cy = Cy(R™)

D' = D'(R")

g =¢&'R")

S = S(R")

S =S8'(R")
Z=Z(R")

P

2 = Z'(R")
L = LP(R")
Lige = Lio(R™)

LP® = [P*(R")
Wm,p — Wm,p(Rn)

Hy = H3(R") = (D) "LP(R")
Hy = Hy(R") = | D|~*L*(R")
H* = H*(R") = H5(R")
) = ()

Fp g = 1y (R™)
inq_inq( )

H;,a _ Hg,a(Rn)
L(Lp(Rn) — Lq(Rn))

Te:s:p — Fa,s,p(Rn)
8P = Fs,p(Rn)

res = I‘a7s(Rn)
s = Fs(Rn)

spaces of k times continuously differentiable functions;
spaces of k times continuously differentiable functions

with compact support;

spaces of infinitely continuously differentiable functions;
spaces of infinitely continuously differentiable functions
with compact support;

spaces of bounded continuous functions;

spaces of distributions;

spaces of distributions with compact support;

Schwartz spaces of rapidly decaying functions;

spaces of tempered distributions;

spaces of Schwartz functions with all moments vanishing;
set of all polynomial functions in n variables;

topological dual of Z(R™) which can be canonically
identified with the factor spaces S'(R")/P;

Lebesgue spaces, 1 < p < o

spaces of locally p-summable functions, 1 < p < o0;

weak Lebesgue spaces, 0 < p < o
Sobolev spaces based on LP(R™), 1 < p < w0, meN;
Bessel potential spaces, 1 < p < o0, s € R;
homogeneous Bessel potential spaces, 1 <
Sobolev spaces based on L?(R"), s € R;

homogeneous Sobolev spaces based on L?(R"), s € R;

p <o, seR;

Triebel-Lizorkin spaces, se R, 0 < p < 00, 0 < q¢ < o0;
homogeneous Triebel-Lizorkin spaces, s € R, 0 < p < o0,
0<g<

weighted homogeneous Sobolev spaces of potential type,
s>0,aeR, 1 <q<o0;

spaces of linear continuous operators mapping L?(R™)
into L4(R™), 1 < p, ¢ < o0;

Gevrey-Sobolev spaces, 0 < a, s < o0, p € R;
Gevrey-Sobolev spaces as the the inductive limit of all
spaces I'**7 je. TP :={],.,

Gevrey spaces, 0 < a, s < 00;

resr 0<s<ow, pelk;

Gevrey spaces as the the inductive limit of all spaces I'*?,
Le. T i=J,ooT%*% 0 <s < 0.
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B. Basic tools

B.1. Young’s convolution inequality

Proposition B.1.1. Let f € L™ and g € LP be two given functions. Then, the following estimates
hold for the convolution u := f *g:

S|

1
|ulpe < |flzrlgller  foralll <p<gq<oo and1+ rie

"=

B.2. Riesz-Thorin interpolation theorem
Proposition B.2.1. Let 1 < pg, p1, qo, @1 < 0. If T is a linear continuous operator from
L(Lpo N qu) mL(Lpl N qu)7

then T belongs to
L(Lp" . L‘IG) for each 0 € (0,1),

too, where

1 1-6 0 1 1-6 0
— = +— and — = +—.
Do Po D1 q9 q0 q1

Moreover, the following norm estimates are true:

—0 4
HTHL(LPGHLQG) < HTulL(Lpo_)qu) HTHL(LZH—»L‘H)'

B.3. Modified Bessel functions

Let J, = Ju(s) be the Bessel function of order p € (—o0, +0). Then, J,(s) := J’;;(LS) is called the
modified Bessel function, where p is a non-negative integer.

Proposition B.3.1. Let f € LP, p € [1,2], be a radial function. Then, the Fourier transform F(f)
1s also a radial function and it satisfies

Fa(§) :==3()(E) = CJ g(r)yr" = Ty 1 (rl€])dr, where g(|z[) := f(x),

that is,
f@) = [ B Ty rlalyar

0

Proposition B.3.2. Assume that p is a non-negative integer. The following properties hold:

1. 5d,Ju(5) = Tu-1(s) = 2uT0(s),

2. dsju(*S) = _Sjﬂ+1(5)’

j,%(s) = \/gcoss and j%(s) = \/g%!

4 |Tu(s)| < Cem™Mmul if s < 1, and J,(s) = Cs™2 cos (s—&m—2) + O(|s|72) if |s] > 1,

o

O

- i (rle]) = =50, T (rlal), 7 # 0, 2 # 0.

rfel?
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B.4. Faa di Bruno’s formula

Proposition B.4.1. Let h(g(x)) = (ho g)(x) with x € R. Then, we have

i — (mi+mat-tmy) () m
" 00) = 2 T @) [0 @)™,
j=
where the sum is taken over all n- tuples of non-negative integers (my,ma, -+ ,my) satisfying the

constraint of the following Diophantine equation:

1-mi+2-mg+---4+n-my,=n.

B.5. A variant of Mikhlin-Hormander multiplier theorem
Proposition B.5.1. Let g€ (1,0), k = [2] + 1 and b > 0. Suppose that m € C*(R™\{0}) satisfying
m(§) =04f ¢l <1 and
ozm(€) < clelli-El (a1,
Jor all |o| < k, |§] = 1 and with some constant A = 1. Then, the operator T, = F1(m(t,€))* (),
defined by the action T, f(t,x) := 35__1,I (m(t,f)gy_,f (f(y))), s continuously bounded from L% into
itself and satisfies the following estimate:
Tt Mo < CA" 3
The proof of this lemma can be found in [49] (Theorem 1) and [9] (Theorem 10).

B.6. Useful lemmas

Lemma B.6.1. Let o, 3 € R. Then, the following inequalities are satisfied:

. (1+ t)*mi“{o"ﬁ} if max{a, S} > 1,
I(t) := f I+t—7)"*1Q+ T)iﬁdT S (1+ t)*mi“{o‘”@} log(2+1t) 4f max{a, 3} =1,
0 (14t)t—a=8 if max{a, B} < 1.

Proof. Let us divide the interval [0,¢] into [0,¢/2] and [¢/2,t]. Tt holds
1

5(1+t)<1+t—s<1+t for any s € [0,t/2],

1
2
Hence, using the change of variables when needed we get

(1+¢)<14+s<1+t foranyse[t/2¢]

t/2 t
I(t) ~ (1+t)’“f (1+7)Pdr + (1+t)’ﬁf (1+t—7)"%dr
0 t/2
t/2 t/2
= (1+t)*“f (1+7)Pdr + (1+t)*5f (1+7)"%dr
0 0
) t/2
~ (1 + t)~ min{ess) f (1 4 )~ max{eBl g,
0

Therefore, the proof of Lemma B.6.1 is completed.

Lemma B.6.2. The following formula of derivative of composed function holds for any multi-index

o
||

on(1©) = 3 hO(1©)( > (1) (7" 19)) ).

Y1+ YesSa
[yl vel=lal, [vi|=1

where h = h(s) and h¥)(s) = %.
The result can be found in [63] at the page 202.
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C. Some inequalities in fractional Sobolev
spaces

In the Appendix we list some results of Harmonic Analysis which are important tools for proving
results on the global (in time) existence of small data Sobolev solutions to semi-linear damped o-
evolution models with power non-linearities. In particular, these tools concern the fractional calculus
which allows to estimate power non-linearities in Sobolev spaces of fractional order (see [61]).

First of all, we recall the Bessel and Riesz potential spaces. Let s € R and 1 < p < c0. Then,

Hy(R") = {ue S'R") : KDY ulpon) = lulge) < 0},
Hy(R™) = {ue Z'(R") : ||D*u| po(en) = [l s any < o0}

are called Bessel and Riesz potential spaces, respectively.

C.1. Fractional Gagliardo-Nirenberg inequality

The first inequality that we present is a generalization of the classical Gagliardo-Nirenberg inequality
to the case of Sobolev spaces of fractional order. Hence, we will refer to the following result as the
fractional Gagliardo-Nirenberg inequality.

Proposition C.1.1. Let 1 < p, po, p1 < 0, 0 > 0 and s € [0,0). Then, it holds the following

Jractional Gagliardo-Nirenberg inequality for all we LP* n H :

0
leal g < Tl Tl

4 4

= and; 0 <1.

S\Hg\H
“‘»—ws\»a
MNEI

where 0 = 05 5(p,po,p1) =

For the proof one can see [35].

Corollary C.1.1. Let 1 <p, m < ©, 0 > 0 and s € [0,0). Then, we have the following inequality
for allue H?:

i 1DI7 ]

11Dl < lul;

where 6 = 0, 5(p,m) = 2(L — % +2) and £ <0, ,(p,m) <1.

LHL)

Corollary C.1.2. Let ¢ > 1, s1, 82 = 0 and 6 € (0,1). We assume s € [s1,s2] satisfying s =
(1 —0)s1 + 0sa. Then, the following inequalities hold:

lulzr; < lulgs? lule, (C.1)

for any u e H;l HSZ, and
H = (C.2)

Jula < Jull;

Jor anyue HJ* n HZ2.
Proof. From the statement of Proposition C.1.1, we obtain
0
loll 7 < lvlze H’UHHm

where § = 2. Then, in order to prove (C.1), we will replace a = s — 51, v by |D|**u and o = s5 — 1.

Consequently, from (C.1) we may conclude (C.2) by using the relation [ufme = |u] z. + |u]rs with
q

a=s, s; and Ss. O
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C.2. Fractional Leibniz rule

Proposition C.2.1. Let us assume s > 0, 1 < r < 0 and 1 < p1, p2, 1, g2 < 0 satisfying the

relation
1 1 1 1 1

ropop @ g
Then, the following fractional Leibniz rules hold:

[1DI* (wv)

o S IDPu|,, [0lzee + Julza [IDI0]
for any u e stn N L1 and v e H;’Q N LP2,

KDY (wv)| . < KDY ulp,, [0lzee + Julza [KD)*0
for anyue Hy n L™ andve Hy, n LP2.

These results can be found in [32].

C.3. Fractional chain rule

Proposition C.3.1. Let us choose s € (0,1), 1 <7, 71, 72 < 00 and a C' function F satisfying for
any 7 € [0,1] and u, v € R the inequality

[F'(Tu+ (1= 7)v)| < () (G(u) + G(v)),

for some continuous and non-negative function G and some non-negative function p € L'([0,1]).
Under these assumptions, the following estimate is true:

IE @ gy < 1G]z ul gy

for any u e Hﬁz such that G(u) € L™, provided that

1 1 1

T T1 T2 '

For the proof of this result one can see [6] or the proof in a slightly modified version in [61].
In particular we may apply Proposition C.3.1 for F(u) = |u|P or F(u) = tulu|P~!. After choosing
G(u) = |F'(u)| and p as a positive constant, the next result follows immediately.

Corollary C.3.1. Let F(u) = |ulP or F(u) = tululP™t forp > 1, s € (0,1) and r, r1, r2 € (1,00).
Then, it holds
-1
PG, <l ol

for any uwe L™ n H;,, provided that
p—1 1

T T1 T2
The following result shows that there is no necessity to assume s € (0,1) in the last corollary.

Proposition C.3.2. Let us choose s >0, p > [s] and 1 < r, r1, 19 < 00 satisfying

1 -1 1
P + —.

r T1 T2
Let us denote by F(u) one of the functions |ulP, +|u|P~tu. Then, it holds the following fractional

chain rule:
[IDIPF )|, < [l |1DIy|

L2

foranyue L™ n HJ,.

The proof can be found in [61].
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C.4. Fractional powers

We apply a result from [62] for the fractional powers rule.

Proposition C.4.1. Letp>1,1<r <o and ue HS, where s € (%,p). Let us denote by F(u) one
of the functions |u|P, +|u|P~*u. Then, the following estimate holds:

—1
|E ()| < Cllullag [ulfe -

In particular, if s € N, one may weaken the condition on p top > s — %
We shall use the following corollary from Proposition C.4.1.
Corollary C.4.1. Under the assumptions of Proposition C.4.1, it holds

[F ()5 < Clul

ulfft
Proof. Let us prove it for F(u) = |ulP. We write the estimate from Proposition C.4.1 in the form

[l ], + [lul?]

l12s o < Cllull g + o)l

Using instead of u the dilation uy(+) := u(A-) in the last inequality we obtain the desired inequality
after taking into consideration

Junl e = A F Jul g, and Juslor = A% ul
and letting A — oo. O
Proposition C.4.2. Letr € (1,0) and o > 0. Then, the following inequality holds:

Juw

Hg S ulaglv]oe + u] L= |vllag
for any u,ve HZ n L.
Corollary C.4.2. Let r € (1,00) and o > 0. Then, the following inequality holds:

< . .
R P o o e Py Y P

for any u,v e H? n L™.

C.5. A fractional Sobolev embedding

L0<s<n, l<g<r<ow,ac< % where q' denotes conjugate

v satisfying * = % + S=1==. Then, it holds:

Proposition C.5.1. Let n

VAR

number of q, and v > —%, «

H|x\"|D|_SuHU < [zl that is , ||z ul

uHqu o S H|x|o‘|D|5uHLq

for any u € H;“)‘, where Hg;’“ = {u : |D|*u € LYR", |z|*?)} is the weighted homogeneous Sobolev
space of potential type with the norm HuHHg,a = [|=|* |D|SuHLq.

The proof can be found in [71].

Corollary C.5.1. Let 1 < g < 0 and 0 < s1 < % < s9. Then, for any function u € H;l I8 H;z we

have
lulle < ul g + lluf gee-

Proof. By choosing o = v = 0 and s = s1 in Proposition C.5.1 we get

1 1
where — = 77571.
r o q n

HU|LT < H‘D|SluHan

Since sy — s1 > %, we may conclude

lulze < Jul goa-er < Julzr + 1D~ ul

rr S ID1 g + 112 -

Hence, the proof of Corollary C.5.1 is completed. O
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