Indian Journal of Chemistry Vol. 56A, April 2017, pp. 407-413

Effect of hydroxyl alkyl amines on the solubility behavior of calcium sulphate dihydrate (gypsum) in the aqueous sodium chloride system at 35 °C

Jignesh Shukla & Arvind Kumar*

Salt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, GB Marg, Bhavnagar 364 002, India

Email: arvind@csmcri.org

Received 28 December 2016; revised and accepted 31 March 2017

The solubility behavior of calcium sulphate dihydrate (gypsum, CaSO₄·2H₂O) in aqueous NaCl solutions upon addition of hydroxyl alkyl amines, such as, ethanolamine (EA), diethanolamine (DEA), or triethanolamine (TEA) at 35 °C is reported. The addition of hydroxyl alkyl amines alters the solubility of CaSO4·2H2O in NaCl solutions significantly. At any equal concentration of hydroxyl alkyl amines in the solution, the order of CaSO₄·2H₂O solubility enhancement is found to be: EA < DEA < TEA. A three-fold increase in CaSO₄·2H₂O solubility maximum is observed in the solutions containing 15 wt% TEA. The addition of hydroxyl alkyl amines shifts the solubility maximum of CaSO4·2H2O towards higher concentration of NaCl in solution. Solution properties such as density (ρ) and speed of sound (u) data have been measured for the quaternary systems (CaSO₄·2H₂O+NaCl+hydroxyl alkyl amines+H₂O). All the measurements have been carried out at 35 °C under atmospheric pressure. Solution isentropic compressibility ($\kappa_{\rm S}$) values have been derived from u and ρ data. Solubility, density, speed of sound, and isentropic compressibility data have been fitted with suitable polynomial equations in these systems.

Keywords: Solution chemistry, Solubility, Density, Compressibility, Calcium sulphate, Gypsum, Hydroxyl alkyl amines

and interpretation of Measurements solution behaviour of electrolyte solutions is necessary for processing of recovery of their pure salts from industrial streams or processing these for value added chemicals in industrial applications. Such studies are also fundamentally important for understanding complex ionic interactions and phase behaviour of natural waters.^{1,2} Focus of our studies so far has been the saline aqueous solutions containing gypsum sulphate dihydrate, (calcium $CaSO_4 \cdot 2H_2O$). CaSO₄·2H₂O occurs in nature as a mineral or precipitates just before crystallization of common salt (NaCl) during solar evaporation of sea water or underground saline water. It is non-toxic and widely used material in diverse applications.^{3,4} The studies on aqueous solutions of gypsum (calcium sulphate dihydrate, $CaSO_4 \cdot 2H_2O$) are particularly relevant as it forms scale in pipes and other production equipment in desalination plants due to low solubility during the industrial water treatment.⁵ Studies on gypsum solutions are also important in development of high purity solar salt (NaCl) production processes from natural brines as $CaSO_4 \cdot 2H_2O$ precipitates in small amounts along with crystallization of NaCl, thus making it impure in terms of contamination of Ca^{2+} and SO_4^{2-} content.⁶

CaSO₄·2H₂O scaling or contamination in brine streams can be stopped by enhancing its the solubility to prevent the deposition using organic or inorganic additives. Electrolytes effect on dissolution behavior of CaSO₄·2H₂O in aqueous or brine systems has been extensively investigated in past by various researchers as well as by our own research group.⁷⁻²⁴ However, effect of organic solvents/additives on dissolution characteristics of CaSO4·2H2O in aqueous or brine systems is rarely studied.²⁵⁻²⁹ Organic solvents are generally mixed to adjust hydrate formation or to alter the solubility. Nature of organic additives changes the extent of mineral scaling significantly. Therefore, we embarked on a systematic study have on physicochemical data measurements of aqueous-NaCl solutions saturated with CaSO₄·2H₂O in presence of organic solvents. Such investigations will be useful for developing new models for prediction of solubility and other solution properties and also for testing of existing models of solution chemistry of brine and related systems. The studies will also be helpful in understanding the drowning out precipitation of salts from saline systems and producing high purity crystals of desired shape and size.³⁰⁻³³ In this work we have studied the effect of organic solvents (hydroxyl alkyl amines) on the solubility behavior of CaSO₄·2H₂O in aqueous NaCl solutions in order to test their ability towards alteration of solubility of $CaSO_4 \cdot 2H_2O$. We have also measured thermodynamic solution properties to contribute towards understanding of drowning out precipitation of inorganic salts utilizing organic solvents.

Experimental

Analytical grade CaSO₄·2H₂O (99.0% by mol) and NaCl (>99.9% by mol) were procured from Samir Tech Chem India, Baroda and RANKEM (RFCL Limited, New Delhi) respectively. To remove the moisture content, the salts were dried at 70 °C in an oven. Analytical grade ethanolamine, diethanolamine and triethanolamine with a purity of 99.0 mol% were obtained SD Fine-Chem Limited (Mumbai). Solvents were also dried over 0.4 nm molecular sieves prior to use without any further purification. Solutions with a precision of ± 0.0001 g were constructed by weight in Millipore grade water using a digital electronic balance (Denver Instrument APX-200). Aqueous NaCl-organic solvent stock solutions were prepared by adding known amounts of organic solvent (5-10 wt%) and NaCl. Aqueous NaCl solutions containing different organic solvents always measured a pH value of higher than 8.5. Solutions saturated with CaSO₄·2H₂O were then prepared by diluting the aqueous NaCl stock solutions with an aqueous solution of ethanolamine, diethanolamine or triethanolamine and adding excess CaSO₄·2H₂O. Temperature of the solutions was kept constant using a thermostatically controlled water bath. To ensure dissolution, complete solutions were stirred continuously with an electrical paddle for about 24 h. The solutions were then kept unstirred for 6-8 h and filtered with Whatman filter paper. No liquid-liquid demixing was observed in the resulting solutions. Samples prepared were analyzed for Ca²⁺ and Cl⁻ concentrations volumetrically using standard EDTA or AgNO₃ respectively, with an error of < 0.2%. SO₄²⁻ concentration with an estimated error of < 0.1% was gravimetrically determined using BaCl₂ as precipitating agent.¹⁷ The overall error in solubility measurement was $< 0.005 \text{ mol} \cdot \text{kg}^{-1}$.

Density (ρ) and speed of sound (u) of the solutions were measured at 35 °C (±0.01 °C) with an Anton Paar (model DSA 5000M) density and sound velocity meter (resolution: 5×10^{-2} kg m⁻³ and 0.01 m·s⁻¹ respectively). The machine was calibrated with aqueous NaCl solutions³⁴ for ρ and with water³⁵ for u with an accuracy of 0.01%. The speed of sound were measured at a frequency of 3 MHz. The estimated error for ρ and u was 0.0005 kg m⁻³ and <±0.1 m s⁻¹ respectively for standard solutions. To check the reproducibility, at least three measurements were made. The overall error in density values was <1% considering the compositional errors of prepared solutions.

Results and discussion

Solubility (s) of CaSO₄·2H₂O in aqueous-hydroxyl alkyl amines-NaCl solutions and solution properties (ρ and u) at 35 °C are given in Table 1. The dependence of physical properties of solution and CaSO₄·2H₂O solubility in the systems (NaCl+H₂O+hydroxyl alkyl amines) as a function of NaCl concentration is correlated using a polynomial type equation, Eq. (1),

$$F(Q) = A_0 + A_1(m \text{ NaCl}) + A_2(m \text{ NaCl})^2 + A_3(m \text{ NaCl})^3$$
...(1)

where Q represents measured physical properties (s, ρ and u) or derived parameter (isentropic compressibility, κ_s) and *m* is the NaCl concentration (mol·kg⁻¹) in different solutions. The method of least squares using non-linear method with all points weighted equally was used to evaluate the parameters A_i . Table 2 includes the parameters A_i and standard deviations σ . Solubility patterns of CaSO₄·2H₂O with different hydroxyl alkyl amines additives (5-15 wt%) in aqueous- NaCl solutions are compared with organic solvent-free system²² in Figs 1-3. Hydroxyl alkyl amines (TEA and DEA) showed a salting-in effect wherein the solubility of CaSO₄·2H₂O in aqueous NaCl solutions was found higher as compared to that without any organic additives. In the case of EA, the solubility of CaSO₄·2H₂O in aqueous NaCl solutions was found to be lower as compared to organic additive free system. However, solutions containing higher amounts of EA showed higher dissolution of CaSO₄·2H₂O in concentrated NaCl regime when compared with organic additive-free system. In general, an increase in solubility of CaSO₄·2H₂O was observed with the increase of amount of hydroxyl alkyl amines (5-15 wt%) in the solutions. This is because of increased hydrophilicity of the water on addition of hydroxyl alkyl amines. At a fixed concentration of hydroxyl alkyl amines, the sequence of solubility of CaSO₄·2H₂O in aqueous NaCl solutions was: TEA > DEA > EA. The higher solubility of CaSO4·2H2O in the case of TEA containing solutions is because of higher number of hydroxyl groups contributing to the enhanced hydrophilicity of the solution. The solubility maximum of CaSO4·2H2O shifted towards higher NaCl concentration in all the hydroxyl alkyl amine containing systems.

NOTES

NaCl (mol·kg ⁻¹)	CaSO ₄ (mol·kg ⁻¹) $\rho (\text{kg} \cdot \text{m}^{-3})$	$u \ (m \cdot s^{-1})$	NaCl (mol·kg ⁻¹)	CaSO ₄ (mol·kg ⁻¹)	ρ (kg·m ⁻³)	$u \ (m \cdot s^{-1})$	
5% Ethanolamine (EA)				10% Ethanolamine (EA)				
0	0.0113	1005.12	1545.7	0	0.0150	1014.8	1560.7	
0.6211	0.0250	1030.77	1580.8	0.9099	0.0322	1043.9	1615.8	
1.0519	0.0307	1042.91	1603.2	1.6628	0.0427	1073.1	1650.2	
1.6027	0.0388	1065.89	1630.7	2.1436	0.0480	1091.9	1675.7	
2.2038	0.0428	1087.31	1660.5	2.5844	0.0504	1108.7	1695.5	
2.5545	0.0447	1101.45	1681.4	2.9650	0.0527	1122.0	1716.4	
3.1555	0.0464	1120.76	1709.8	3.5661	0.0532	1141.0	1744.8	
3.5060	0.0466	1134.57	1727.2	3.9868	0.0533	1158.9	1762.2	
4.0068	0.0455	1152.74	1751.3	4.2931	0.0528	1168.1	1786.3	
4.6078	0.0437	1173.48	1779.2	4.6063	0.0512	1178.9	1806.3	
4.9083	0.0420	1184.12	1799.5	4.9452	0.0503	1189.6	1834.5	
15% Ethanolamine (EA)				5% Diethanolamine (DEA)				
0	0.0188	1020.6	1578.0	0	0.0188	1002.7	1546.0	
0.48683	0.0295	1036.6	1606.0	0.6411	0.0357	1027.0	1581.1	
0.95562	0.0366	1053.4	1630.4	1.0818	0.0467	1045.0	1603.9	
1.33427	0.0425	1067.4	1650.8	1.5802	0.0526	1062.9	1633.8	
2.2065	0.0535	1100.2	1693.8	2.1036	0.0558	1082.6	1658.5	
2.66854	0.0559	1116.3	1714.2	2.6044	0.0571	1100.2	1684.5	
3.10127	0.0561	1131.9	1743.3	3.0853	0.0570	1119.3	1710.9	
3.33567	0.0561	1139.5	1754.8	3.5260	0.0565	1133.7	1730.8	
3.87659	0.0552	1158	1785.1	4.0469	0.0549	1149.3	1757.0	
4 46257	0.0546	1179.2	1820.6	4 6078	0.0517	1168 5	1779.4	
4.96261	0.0536	1196.5	1847.9	4.7557	0.0500	1186.1	1799.9	
10% Diethanolamine (DEA)				15% Diethanolamine (DEA)				
0	0.0218	1007.2	1557.5	0	0.0253	1013.2	1580.2	
0.4936	0.0210	1030.9	1590.2	0 7820	0.0299	10132.8	1617.8	
0.9112	0.0419	1048.0	1612.9	1 2628	0.0370	1049 5	1640.9	
1 4237	0.0486	1067.5	1640 7	1 7016	0.0528	10667	1666.2	
1.8224	0.0531	1084 7	1662.8	2 1236	0.0562	1085.9	1694.4	
2 3919	0.0587	1104 1	1691.9	2.1230	0.0502	1101.6	1717.0	
2.3919	0.0507	1104.1	1711 7	3 1246	0.0575	1116.5	1750.0	
2.7541	0.0008	1123.5	1711.7	3 8270	0.0623	11/0.5	17813	
3.6827	0.0000	11/0 1	1755.8	1 2283	0.0621	11507	1800.0	
1 3830	0.0558	1149.1	1700.2	4.2205	0.0611	1172.6	1815.8	
4 6998	0.0547	1186.1	1811 3	4 7690	0.0600	1179.2	1829.2	
5% Triethanolamine (TEA)				10% Triethanolamine (TEA)				
0 0.0193 1005.1 1535.07				0 0.0245 1011.5 1550.30				
0.9556	0.0554	1030.8	1588.04	0 5305	0.0556	1034 3	1580.61	
1 3343	0.0635	1042.9	1610.47	1.0017	0.0550	1054.8	1609.32	
1 8391	0.0699	1065.9	1638 17	1.5040	0.0828	1073.1	1637.87	
2 2358	0.0753	1087 3	1660 58	1 9639	0.0914	1090.4	1662 37	
2.2336	0.0754	1101 5	1682.07	2 4041	0.0996	1110.4	1687 47	
3 1013	0.0749	1120.8	1703 56	2.1041	0.1072	1127.2	1718 52	
3 3357	0.0720	1120.0	1715 53	3 4307	0.1072	1143.0	1740.32	
3 8766	0.0685	1152.7	1749.02	3 9080	0 1070	1163.5	1762 77	
1 1676	0.0003	1173 5	177771	J. 3567	0.10/9	1178.0	1785 75	
4.4020	0.0034	11/3.3	1///./1	4.330/	0.1048	11/0.9	1/03./3	
4.0012	0.0505	1104.1	1/73.43	5.0005	0.0905	1172.0	1010.04	

Table 1 – Solubility of CaSO₄·2H₂O in aqueous hydroxyl alkyl amines-NaCl solutions, solution density (ρ) and speed of sound (u). [Temp.: 35 °C; Expt pressure p = 0.1 MPa]

Table 1 – Solubi	lity of CaSO ₄ ·2H ₂ O	in aqueous hyd	lroxyl alkyl ami	nes-NaCl solutions	s, solution density (ρ) a	and speed of s	ound (u) .	
		[Temp.: 35 °	C; Expt pressur	e p = 0.1 MPa]. (C	ontd.)			
NaCl (mol· $k\sigma^{-1}$)	$CaSO_{4}$ (mol·kg ⁻¹)	$a (kg \cdot m^{-3})$	u (m·s ⁻¹)	NaCl (mol·kg ⁻¹)	$CaSO_{4}$ (mol·kg ⁻¹)	$o(kg \cdot m^{-3})$	$u (m \cdot s^{-1})$	
ruer (mor kg)		p(Kg III)	<i>a</i> (III 5)	Nach (morkg) cabe ₄ (morkg) p (kg m) u (m				
0	0.0214	$\frac{10184}{10184}$	1567.20	N	o additives (Data from	$\frac{1 \text{ KeI. } 22)}{006.1}$	1521.4	
0 40222	0.0314	1018.4	1567.39	0 170(0.0151	996.1	1521.4	
0.4233	0.0574	1038.4	1590.01	0.1796	0.0250	1004.4	1532.0	
0.9029	0.0744	1050.0	1019.32	0.3184	0.0295	1010.5	1541.1	
1.4425	0.0931	1077.6	164/.8/	0.4///	0.0351	1017.4	1550.4	
1.8231	0.1002	1093.3	16/2.3/	0.7754	0.0410	1030.1	1568.0	
2.3039	0.1089	1110.9	1696.47	1.1295	0.0462	1042.3	1585.3	
2.8048	0.1156	1127.1	1723.52	1.4890	0.0491	1054.4	1603.7	
3.2055	0.1204	1145.0	1745.32	2.0024	0.0520	1076.6	1634.1	
3.7275	0.1204	1163.0	1772.77	2.5153	0.0529	1094.2	1660.4	
4.2068	0.1203	1173.4	1795.75	3.0303	0.0529	1114.2	1688.1	
4.6078	0.1192	1191.9	1815.64	3.4906	0.0510	1127.8	1711.3	
Table 2 – Parar	neters (A_i) and standa	rd deviations ((σ) of Eq. (1) fo	r the system CaSO	2H₂O-NaCl-Water-h	vdroxvl alkvl	amines.	
Tuble 2 Tulu	neters (11) and stand	Temp.:	35 °C: Expt pr	essure $p = 0.1$ MPa]	y arony r anky r	unnites.	
		[1 empire	00 0, 2pt pr	our p on nir a	1			
Organic s	olvent	A_0	A_1	A_2	A_3		σ	
			Solubility (m	lol·kg⁻¹)				
5% E	A	0.0126	0.0201	-0.00	- 29	0.0008		
10% 1	EA	0.0153	0.0210	-0.00	- 29	0.00	05	
15% 1	EA	0.0195	0.0210	-0.00	- 29	0.00	10	
5% D	EA	0.0099	0.0282	-0.00	85 0.0008	0.00	07	
10%1	DEA	-0.0002	0.0016	0.000)2 -	0.00	02	
15%1	DEA	0.0007	0.0021	-0.00	- 04	0.00	02	
5% TE 4		0.0226	0.0371	-0.00	64 -	0.00	20	
10% TFA		0.0290	0.0447	-0.00	62 -	0.00	20	
15% TEA		0.0356	0.0470	-0.00	64 -	0.00	19	
10/0		0.0550	Deveiter a (3)		0.00	17	
5 0/ E	A	1001 52	Density, ρ (1	kg·m ⁺)		2.0	7	
5% EA		1001.53	32.74	-	-	2.6	7	
10% EA		1014.11	35.87	-	-	1.0	2	
15% EA		1020.17	35.70	-	-	0.4	8	
5% DEA		1003.94	36.88	-	-	1.9	1	
10% DEA		1017.73	35.40	-	-	3.5	5	
15%1	DEA	1008.04	35.42	-	-	2.6	0	
5% T	EA	997.29	39.46	-	-	2.91		
10%	ГЕА	1016.70	36.82	-	-	2.30		
15%	ГЕА	1023.00	37.04	-	-	1.7	1.72	
			Speed of sound	$, u (m \cdot s^{-1})$				
5% E	A	1521.7	55.8	-	-	4.:	5	
10% 1	EA	1561.6	52.8	-	-	3.8	3	
15% 1	EA	1577.4	53.8	-	-	1.8	1.8	
5% D	EA	1548.6	51.8	-	-	2.1		
10% 1	DEA	1583.4	48.4	-	-	5.7		
15% 1	DEA	1579.7	49.9	-	-	4.	l	
5% T	5% TEA		55.2	-	-	- 3		
10%	ГЕА	1568.2	50.8	-	-	3.4	3.4	
15%	ГЕА	1570.0	54.1	-	-	1.4	1.4	
		Icontro	nio commoniti	lity 10 ¹² xy (Do ⁻¹)				
50/ E	٨	114 09	AD 05	$\frac{111}{2} \frac{111}{2} 11$	2	0.0)	
J70 E. 100/ 1		410.20	-42.03	2.2.	, -)	0.5	0.9	
10% EA		417.37 207.04	-55.97	0.5		1.0))	
15% EA		30/.04 416.24	-55.39	1.8.		2.0) C	
5% DEA		410.34	-43.13	2.3	, -	1.0) 1	
10% DEA		402.48	-40.88	3.6	· -	2.4	+ \	
15%1		394.10 421.47	-34.17	1.0	7 - 1	3.0) 1	
5% L		421.4/	-41.81	1.64	+ -	3.4	†	
10%		403.41	-45.//	3.10) -	0.8	5	
17%	LEA.	190.90	-41 × >	<i>)</i> 11			,	

Fig. 1 – Comparison of solubility of CaSO₄·2H₂O at 308.15 K in aqueous NaCl-solutions containing ($\mathbf{\nabla}$) 0, (\mathbf{n}) 5%, ($\mathbf{\bullet}$) 10% and ($\mathbf{\bullet}$) 15% ethanolamine (EA). [Lines are polynomial fit to the experimental data. Data for no additives is plotted from Ref. 22].

The density (ρ) and speed of sound (u) values for CaSO₄·2H₂O+NaCl+H₂O+hydroxyl alkyl amines systems at 35 °C as a function of NaCl concentration are plotted in Fig. 4. Both, ρ and u increase linearly with increase in electrolyte concentration in the solution. The nature of aqueous-hydroxyl alkyl amine medium also influenced the physical properties. The solutions containing hydroxyl alkyl amine were found denser than water at any given NaCl concentration and the solutions became denser with the increase of organic solvent concentration. The density of the solutions was in the order: TEA > DEA > EA. This is according to the concentration of CaSO₄·2H₂O in the corresponding solutions and also due to the nature of the organic solvent. The speed of sound (u) was found maximum in TEA containing solutions, and least in EA containing solutions. With increase in electrolyte concentration in the solutions, u increased almost linearly. The composition dependence of ρ and u has been fitted to Eq. 2. The parameters A_i along with the standard deviations σ are given in Table 2.

The solution isentropic compressibility κ_s has been derived from the *u* and ρ values, assuming negligible ultrasonic absorption under the experimental conditions by using the Newton-Laplace equation.

$$\kappa_s = 1/u^2 \rho \qquad \dots (2)$$

Figure 5 shows the comparison of κ_s of the CaSO₄·2H₂O+NaCl+H₂O+hydroxyl alkyl amine

Fig. 2 – Comparison of solubility of $CaSO_4 \cdot 2H_2O$ at 308.15 K in aqueous NaCl-solutions containing ($\mathbf{\nabla}$) 0, (\mathbf{n}) 5%, ($\mathbf{\bullet}$) 10% and ($\mathbf{\bullet}$) 15% diethanolamine (DEA). [Lines are polynomial fit to the experimental data. Data for no additives is plotted from Ref. 22].

Fig. 3 – Comparison of solubility of CaSO₄·2H₂O at 308.15 K in aqueous NaCl-solutions containing ($\mathbf{\nabla}$) 0, (\mathbf{n}) 5%, ($\mathbf{\bullet}$) 10% and ($\mathbf{\bullet}$) 15% triethanolamine (TEA). [Lines are polynomial fit to the experimental data. Solubility data in absence of additives is plotted from Ref. 22].

systems. The composition dependence of κ_s has been fitted to Eq. 2, and the parameters and standard deviations are provided in Table 2. The solution compressibility was found to decrease with the addition of hydroxyl alkyl amines and followed the order: TEA < DEA < EA. Decrease in solution compressibility is normally due to breaking of the network structure of water which results in a more compact solution state. Packing efficiency of unlike molecules as a consequence of specific geometries and nature of hydrogen bonding of hydroxyl alkyl

Fig. 4 – Density (left) and speed of sound (right) data of aqueous-NaCl solutions saturated with $CaSO_4 \cdot 2H_2O$ and containing (**■**) 5%, (**●**) 10% and (**▲**) 15% ethanolamine (EA), diethanolamine (DEA) and triethanolamine (TEA) at 308.15 K. [Lines are linear fit to the experimental data. Density data in absence of additives is plotted from Ref. 22].

Fig. 5 – Isentropic compressibility of aqueous NaCl solutions saturated with $CaSO_4 \cdot 2H_2O$ having ethanolamine (EA), diethanolamine (DEA) and triethanolamine (TEA) at 308.15 K. [Lines are polynomial fit to the experimental data. Isentropic compressibility data in absence of additives is plotted from Ref. 22].

amines with water also contributes to the changes in solution compressibility. Further, the compressibility of solutions containing electrolytes comprises configurational and vibrational effects where the configurational effect plays a major role in dilute solutions.³⁶ Compression of the hydration shell of the ions largely contributes to the isentropic compressibility in the concentrated solutions.

Acknowledgement

Authors acknowledge Council of Scientific & Industrial Research, New Delhi, India, for supporting the research under Chemical Science Cluster (CSC0203) project of Twelfth Five Year Plan.

References

- 1 Robinson R A & Stokes R H, *Electrolyte Solutions*, 2nd Edn, 1970, (Butterworths, London).
- 2 Jenkins H D B & Marcus Y, Chem Rev, 95 (1995) 2695.
- 3 Singh N B & Middendorf B, Prog Cryst Growth Charact Mater, 53 (2007) 57.
- 4 Freyer D & Voigt W, Mon Chem, 134 (2003) 693.
- 5 Ahmed S B, Tlili M, Amor M B, Bacha H B & Elleuch B, *Desalination*, 167 (2004) 311.
- 6 Mohandas V P, Gohil S J & Gomkale S D, Int J Salt Lake Res, 6 (1998) 331.
- 7 Hill A E & Yanick N S, J Am Chem Soc, 57 (1935) 645.
- 8 Hill A E & Wills J H, J Am Chem Soc, 60 (1938) 1647.
- 9 Dutrizac J E, Hydrometallurgy, 65 (2002) 109.
- 10 Cameron F K & Seidell A, J Phys Chem, 5 (1901) 643.
- 11 Bock E, Can J Chem, 39 (1961) 1746.
- 12 Marshall W L & Slusher R, J Phys Chem, 70 (1966) 4015.
- 13 Marshall W &, Slusher R, J Chem Eng Data, 13 (1968) 83.
- 14 Furby E, Glueckauf E & McDonald L A, *Desalination* 4 (1968) 264.
- 15 Susarla V R K S & Sherwood D, J Indian Chem Soc, (1997) 24.

- 16 Raju K U G & Atkinson G, J Chem Eng Data, 35 (1991) 361.
- 17 Kumar A, Mohandas V P, Susarla V R K S & Ghosh P K, J Sol Chem, 33 (2004) 995.
- 18 Kumar A, Mohandas V P, Sanghavi R & Ghosh P K, J Sol Chem, 34 (2005) 333.
- 19 Kumar A, Sanghavi R & Mohandas V P, J Sol Chem, 35 (2006) 1515.
- 20 Kumar A, Sanghavi R & Mohandas V P, J Chem Eng Data, 52 (2007) 902.
- 21 Shukla J, Mohandas V P & Kumar A, *J Chem Eng Data*, 53 (2008) 2797.
- 22 Kumar A, Shukla J, Dangar Y & Mohandas V P, 55 (2010), 1675.
- 23 Shukla J, Trivedi T J, Bharmoria P & Kumar A, *Indian J Chem*, 55A (2016) 57.
- 24 Trivedi T J, Shukla &, Kumar A, *Chem Eng Data*, 59 (2014) 832.
- 25 Kan A T, Fu G & Tomson M B, Ind Eng Chem Res, 42 (2003) 2399.
- 26 Kaur M, Rao K S, Singh T, Mohandas V P & Kumar A, *J Chem Eng Data*, 55 (2010) 4704.
- 27 Trivedi T J, Pandya P & Kumar A, *J Chem Eng Data*, 58 (2013) 773.
- 28 Gomis V, Saquete M D & García-Cano, Fluid Phase Equilib, 360 (2013) 248.
- 29 Fernández-Lozano J A & Wint A, Chem Eng J, 67 (1997) 1.
- 30 Mullin J W, Crystallization, 2nd Edn, (Butterworth, London) 1972, Chap. 8, pp. 263.
- 31 Budz J, Karpinski P H, Mydlarz J & Nyvlt J, Ind Eng Chem Prod Res Dev, 25 (1986) 657.
- 32 Titiz-Sargut, S, Sayan P & Avcı B, Cryst Res Technol, 42 (2007) 119.
- 33 Rashad M M, Baioumy H M & Abdel-Aal E A M, *Cryst Res Technol*, 38 (2003) 433.
- 34 Surdo A L, Alzola E M & Millero F J, J Chem Thermodyn, 14 (1982) 649.
- 35 Del Grosso V A & Mader C W, J Acoust Soc Am, 52 (1972) 1442.
- 36 Sile W M, Donfor A R & Litovitz T A, *J Chem Phys*, 44 (1966) 3712.