
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Jul 1985

A Parallel Branch and Bound Algorithm for Integer Linear A Parallel Branch and Bound Algorithm for Integer Linear

Programming Models Programming Models

Rochelle L. Boehning

Billy E. Gillett
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Boehning, Rochelle L. and Gillett, Billy E., "A Parallel Branch and Bound Algorithm for Integer Linear
Programming Models" (1985). Computer Science Technical Reports. 81.
https://scholarsmine.mst.edu/comsci_techreports/81

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/81?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A PARALLEL BRANCH AND BOUND ALGORITHM FOR
INTEGER LINEAR PROGRAMMING MODELS

Rochelle L. Boehning*and Billy E. Gillett

CSc-85-2

Department of Computer Science
University of Missouri-Rolla

Rolla, Missouri 65401 (314) 341-4491

*This report is substantially the Ph.D. dissertation of the
first author, completed July 1985.

ABSTRACT

A parallel branch and bound algorithm is developed for
use with MIMD computers to study the efficiency of parallel
processors on general integer linear programming problems.

The Haldi and IBM test problems and a System Design model
are used in the implementation of the algorithm. Initially
the algorithm solves the Haldi and IBM test problems on a
single processor computer which simulates a multiple
processor computer. The algorithm is then implemented on
the Denelcor HEP multiprocessor using two of the IBM
problems to compare the results of the simulation to the

results using an MIMD computer. Finally the algorithm is

implemented on the HEP using the System Design model to
show a case in which the number of pivots decreases as the

number of processes are increased from seven to the process

limit of sixteen.
In general, it is shown that super linear efficiency

can be achieved using multiple processors.

I l l

ACKNOWLEDGEMENTS

I wish to thank my advisory committee for their help
and guidance throughout my graduate work in computer
science. They have been much more than an advisory
committee, they have also been my teachers, supervisors,

colleagues and friends. A special thanks goes to the
Praters for opening their home to me and giving much needed
emotional support. My advisor, Bill Gillett, is very

special, having kept me on the path of my program and never
forgetting to encourage me when problems arose.

In 1966, John DeCicco of Illinois Institute of

Technology convinced me that I could do research. His
patience and guidance kept alive in me the hope of finally

obtaining the Ph.D.
Thanks to Ralph Butler for his work on the HEP which

kept me from having to reinvent the wheel.
Finally, I must thank my family for their

understanding, encouragement and support. Without the
strength of my wife, this endeavor would have been

impossible.

TABLE OF CONTENTS

page
ABSTRACT... ii
ACKNOWLEDGEMENTS.. iii
LIST OF TABLES.. vii

I. INTRODUCTION...................................... 1
A. STATEMENT OF THE PROBLEM................. I

B. TECHNIQUES FOR SOLVING THE PROBLEM...... 2

II. LITERATURE SEARCH................................ 3

III. PARALLEL BRANCH AND BOUND ALGORITHM............ 9
A. INTRODUCTION............................... 9
B. THE ALGORITHM.............................. 9
C. LEVELS OF PARALLELISM..................... 12

IV. SIMULATION OF A MULTIPROCESSOR................. 16
A. INTRODUCTION............................... 16
B. BRANCH AND BOUND........................... 16
C. BRANCH AND BOUND WITH PARALLEL

HYPERPLANE CUTS............................ 17
D. BRANCH AND BOUND WITH EXPLICIT

ENUMERATION ON SOME (0,1) VARIABLES.... 17

E. RESULTS USING THE THREE TECHNIQUES ON
THE HALDI AND IBM TEST PROBLEMS......... 18
1. Branch and Bound Results........... 19

2. Results using Branch and Bound with
Parallel Hyperplane Cuts 28

V

TABLE OF CONTENTS CONTINUED

3. Comparison of Branch and Bound
with and without Parallel
Hyperplane Cuts...................... 34

4. Results Using Explicit Enumeration
Techniques............................ 36

V. IMPLEMENTATION OF PARALLEL ALGORITHM ON AN

MIMD COMPUTER.................................... 39
A. INTRODUCTION............................... 39
B. PROGRAMMING THE HEP....................... 40

C. RESULTS OF THE TEST PROBLEMS IMPLEMENTED

ON THE HEP................................. 42
VI. A CASE STUDY...................................... 46

A. THE SYSTEM DESIGN PROBLEM................ 46
B. APPLICATION OF THE ALGORITHM............. 49
C. RESULTS USING THE HEP..................... 51
D. CONCLUSIONS................................ 52

VII. CONCLUSIONS AND DIRECTIONS FOR FUTURE

RESEARCH... 55
A. CONCLUSIONS................................ 55

B. SUGGESTIONS FOR FUTURE RESEARCH......... 57

BIBLIOGRAPHY.. 59

VITA... 65
APPENDICES

A. THE DENELCOR HEP (HETEROGENEOUS ELEMENT
PROCESSOR)....................................... 66

V I

TABLE OF CONTENTS CONTINUED

B. PL/I PROGRAM TO SIMULATE BRANCH AND BOUND
TECHNIQUES WITH AND WITHOUT PARALLEL

HYPERPLANE CUTS................................. 71
C. MACROS USED IN THE C PROGRAM.................. 86
D. C LANGUAGE PROGRAM FOR THE PARALLEL BRANCH

AND BOUND ALGORITHM, WITH MACROS, FOR THE
DENELCOR HEP AT THE ARGONNE NATIONAL
LABORATORY....................................... 88

LIST OF TABLES

TABLE page
I. BRANCH AND BOUND...................................... 20

II. BRANCH AND BOUND WITH PARALLEL CUTS................ 29

III. COMPARISONS OF THE TEST PROBLEMS USING SINGLE AND

MULTIPLE PROCESSORS AND USING BRANCH AND BOUND
WITH AND WITHOUT PARALLEL HYPERPLANE CUTS......... 35

IV. HALDI—10 WITH ZERO-ONE ENUMERATION USING SEVEN
PROCESSORS................................... 38

V. IMPLEMENTATION OF LEVEL 2 PARALLELISM ON HEP....... 43
VI. EQUIPMENT OFFERED BY SUPPLIERS FOR THE SYSTEM

DESIGN MODEL... 47
VII. SYSTEM DESIGN MODEL RESULTS USING THE PARALLEL

BRANCH AND BOUND ALGORITHM AND THE HEP

MULTIPROCESSOR.. 53

v i i

1

I. INTRODUCTION

A. STATEMENT OF THE PROBLEM.
The solving of integer linear programming models using

the simplex method with a branch and bound algorithm lends
itself naturally to implemention on a multiprocessor
computer. The parallel implementation of components of a
branch and bound algorithm on a multiprocessor computer

gives rise to the possibility of achieving super linear
efficiency. This means that n processors working in
parallel can solve a given problem in fewer total
operations than a single processor.

This paper describes a parallel branch and bound
algorithm for solving integer linear programming models.
The algorithm uses a combination of parallel branch and

bound techniques with and without parallel hyperplane cuts.
Problems with some (0,1) variables were also investigated

using a combination of the above techniques in combination
with explicit enumeration. The algorithm was initially
implemented using a single processor to simulate many
processors working in parallel. This process was used to
investigate the IBM and Haldi test problems [1] to

demonstrate that parallel processors could achieve super
linear efficiency. These problems were chosen since they
were designed to test ILP algorithms, are well known and
are considered small but difficult. The algorithm was then

2

implemented on a multiple instruction stream, multiple data
stream computer. The IBM-3 and IBM-4 test problems and a

System Design model were chosen for investigation on the
parallel processing computer to compare with the simulation
results.
B . TECHNIQUES FOR SOLVING THE PROBLEM

The simulation was done using the PL/I language on the
IBM 4381 computer. The computer simulated was a Multiple
Instruction stream, Multiple Data stream (MIMD) type
computer with a common memory as well as individual

memories in each processor.
The algorithm was then programmed in the "C" .anguage

and implemented on the Denelcor HEP multiprocessor at
Argonne National Laboratory. The HEP is a general purpose
computer that can handle multiple instruction streams and
multiple data streams (MIMD) [APPENDIX A]. The macros used
to implement the parallel algorithm were adapted from the
FORTRAN macros written by Lusk and Overbeek [2,3] and the
"C" macros written by Butler [4].

3

II. LITERATURE SEARCH

The fields of parallel processing and integer linear
programming (ILP) have, until recently, been studied by
separate groups. This is evidenced by the fact that most of
the literature on parallel processing is in the electrical
engineering journals with very few articles concerning
parallel processing appearing in the operations research
journals. The number of papers published in the Proceedings
df the, International Conference on Parallel Processing has

more than doubled in the past five years. The early
parallel computing machines which were built in the
seventies were of the Single Instruction stream, Multiple
Data stream (SIMD) type. Most of the commercially
available multiprocessor computers today are still of this

type [5].
The operations research community had been disappointed

with the applicability of the SIMD type of super computer to
mathematical programming (MP) in general and to linear

algorithms in particular [6,7,8]. The hope now is that the
Multiple Instruction stream, Multiple Data Stream (MIMD) [8]

computers will help the field of M P . The main advantage
MIMD computers have over SIMD computers in solving problems
with systems of linear equations, is that the pivot step can
be done in parallel with column operations [7]. Present MP
applications are mostly in the area of matrix decomposition
algorithms [6,7,9,10,11,12] and partial differential

4

equations [13], with some in graph theory [14].
Techniques for obtaining parallelism include, dividing

a single execution string into several concurrent "threads"
[15] and dividing programs into sections that "reflect the
logical structure" of the problem concerned [16,17].

Working with a parallel computer and global variables
cause the concepts of mutual exclusion to be much more
critical than in a sequential computer, and hence the use of
locks, semaphores and monitors cannot be left to the
operating system [17,18,19]. These topics will be discussed
later in the paper.

Although the Branch and Bound algorithm for ILP seems
to lend itself very naturally to parallelism, the work with
this method has been restricted to the area of (0,1)

implicit enumeration problems. Two of these papers are of

special interest, Lai [20] and Gehringer et.al.[ll].
Lai deals with anomalies in the knapsack problem and

the travelling salesman problem. Anomalies are defined in
the following manner: If n processors take I(n) iterations
to do a particular problem and m processors take I(m)
iterations for the same problem and n m , the inequalities
I(n)/I(m) <_ m/n and I(n) >_ I(m) should hold. If either of
these inequalities does not hold it is said to demonstrate
anomalous behavior. Lai found that in the knapsack problem

that anomalous behavior occurred in ten percent of the
tests, and that no anomalous behavior occurred in the
travelling salesman test problems. He found, in the

5

knapsack problem, that the speed-up ratio I(n)/I(2n), (i.e.
doubling the number of processors), varied from 0.15 to
14.6. Since the number of processors was doubled, the
limits should have been 1.0 (i.e. taking as many iterations
on twice as many processors) and 2.0 (i.e. taking half as
many iterations using twice as many processors). He also
felt that an acceptable ratio would have been 1.6.
Although it was not stated, it appears that this was to
make up for added switching, communication and blocking

time due to the extra processors. The binary state space

tree was used, since it was believed that the use of an
n-ary state space tree would have taken weeks of computer

time to complete the simulation. Iterations were used as
measurements but were referred to as time measurements, and
since no parallel machine was mentioned, it is assumed that
the work was done as a simulation.

Gehringer, Jones and Segall [11] reported on how the

Carnegie-Me1Ion group [10], especially Raskin, used the Cm*

[21] to compare the Cm* used as a multiprocessor and the Cm*
used as a network. The Cm* consists of several mini

processors linked by intercluster busses. This architecture
makes the computer behave more like several separate
computers than a single multiprocessor. The problem was a
set partitioning integer problem using an enumeration

algorithm that performs an n-ary tree search in a large,
relatively sparse binary matrix for a min-cost solution.
The matrix was two dimensional with a size usually in the

6

order of hundreds by thousands. Greater-than-1inear speedup
was obtained with a 10—processor Cm*. The speed-up ratio is
the time for one processor to complete a task divided by the
time for n processors to do the same task. For n processors
to achieve at least linear speed-up, this ratio should be at
least n. Greater-than-1inear speed-up in this case means
that one processor will take more than n times as much time
to complete a task as n processors will take doing the same
task. In this algorithm’s initalization phase, a large
number of possible solutions are put in a global stack, from
which all the processors choose their work. As the search
proceeds, the cost of the best solution found so far by any
processor is stored as a global variable. All processors
compare their current cost value to it and begin to
backtrack in the search when the global cost is lower. The
multiprocessor could be "lucky", in that one of its
processors might encounter a near-optimal solution at the

outset and then none of the processors would have to do very
much work. The uni-processor version, which does not
encounter the near optimal solution until later, has the
disadvantage of having done a more complete search over the
earlier possible solutions. The multiprocessor could also

be "unlucky" if at the outset the near optimal solution is
encountered by the uniprocessor. This would cause both the
uniprocessor and the multiprocessor to enter at the same

time and therefore before the cost could be determined, the
other processors in the multiprocessor version would have

7

wasted processing tine on their initial solutions.
The conclusion concerning the ILP test runs was, that

although greater— than-linear speed-up was obtainable, it

will not usually be obtained. Greater-than-linear speed-up
was obtained in one of the five integer programming runs
using two through eight processors. All five runs produced
approximately linear speed-up for two processors. For eight
processors, the worst speed-up was 5.5 and the best was 9.75
where 8 would be linear.

The literature in computer science is void of papers
on the use of parallel processors in the solution of ILP
problems using simplex type algorithms. The only papers

which use parallel branch and bound techniques in ILP were

those for the (0,1) type of problem such as AND/OR-tree
searches, state space searches, game-tree searches and
finding shortest paths in trees [22,23,24,25]. Most of
these types of problems use only addition and subtraction
since binary matrices are used. Those using weighting
factors include some integer multiplication but none use

floating point multiplication or division.
The simplex method [26], which is used on more general

types of ILP problems, typically uses a large number of

divisions on each pivot operation, and there are usually
many pivot operations in a problem, hence the computational

difficulty is much greater and much more prone to
computational errors such as round-off. Taha [27] suggests

8

that

such

enume

used

in the general ILP problems, a combination of methods,

as branch-and-bound, cutting plane, and implicit

ration, may give better results than any one method

alone.

9

III. PARALLEL BRANCH AND BOUND ALGORITHM

A. INTRODUCTION
Consider the integer linear programming model:

P
Maximize z= £ c(j)x(j)

j = l

P
subject to J a(i,j)x(j) b(i) i=l,2,...,n

j = l

x(j) >_ 0, integer

where n=number of constraints, p=number of variables, c(j)
are the cost coefficients, a(i,j) and b(i) are constants in
the constraints, x(j) are the variables and z is the

objective function value.

B . THE ALGORITHM

STEP 1.
Initialize Lower Bound (LB) = -10E10 (a number with a

large enough absolute value to approximate negative
infinity for the problem), state the number of
processors and the initial simplex dimensions and then

load the initial simplex.

10

STEP 2 .
Calculate the continuous solution using the
Lexicographical Column Dual Simplex Method. [27]

STEP 3 .
If the continuous solution is an all-integer solution,
the problem is solved, so print the results and stop;
otherwise, the final tableau of the continuous
solution, referred to as a node, is stored as a layer
of a three dimensional matrix (node storage) and the
z-value (objective function value) is stored as an
element of a Z-vector protected by an ASKFOR monitor
[APPENDIX C] which prevents two processors from
accessing the same node. The Z-vector elements are

labeled Z(i), where i represents the level of the node
in the node storage, and are not changed outside of the

noni tor.
STEP 4 .
Any free processor (one that is not calculating a node)
may ask the monitor for a simplex tableau with the

maximum z—value (maximum upper bound node selection).
If there is no available node, either all the nodes are

fathomed and the problem is finished or some node is
being calculated by some other processor and the free

processor waits for the next clock tick (100ns for the
HEP) and tries again. If there is an available maximum
node at level i in the node storage, mark Z(i) to

11

indicate that the node is being; processed and go to
step 5.
STEP 5 .
Select the first row of the node obtained from step 4
which has a non integer x variable value. This will be
the row used to determine the branching variable (First

Fraction Variable Selection). Add the down constraint
to the simplex tableau and add the up constraint to a
copy of the simplex tableau [27]. This gives the two
branches (nodes) of the Branch and Bound Algorithm.
STEP 6 .
Calculate the LP solution at each of these nodes by the
methods of step 2. During the calculation, after each
pivot operation, the processor compares the floor of

the z-value of the node it is calculating with the
present lower bound after each pivot operation is
performed, where the floor of a number is the greatest
integer less than or equal to the number. If the floor
of the z-value is less than or equal to the value of
the lower bound, the node is fathomed. To indicate
that a node is fathomed, set Z(i)=-10E10 which will be

less than or equal to the lower bound so that node will
no longer be considered. Otherwise, the pivots are

continued until the simplex tableau is primal feasible.

For each node, if the value of the objective function Z
and the associated x values are integer, Z is compared
to the present lower bound and if larger, set LB=Z(i)

12

to indicate the new present lower bound. Whether
integer or not, if the z-value is less than or equal to
the present lower bound, the node is said to be
fathomed. This means that no better solution will be
found along that branch and hence it is pruned. When

all nodes except the one with the present lower bound
are fathomed, the problem is completed. If all nodes
are fathomed and the lower bound is still negative
infinity, there is no integer solution.
STEP 7 .
If a calculated node is not fathomed it is stored in
the node storage matrix. The down node will replace
the branching node and the up node will form a new
layer in the node storage. If the node storage has any
unfathomed nodes, go to step 4; otherwise, stop and

print the results.

C . Levels of Parallelism
There are several levels of parallelism possible in the

implementation of the algorithm.

Level 1.
Steps 4,5,6 and 7 are combined into one logical module.

Each free processor:
(a) checks the monitor for an available node and

receives the node

13

(b) adds the up constraint to a copy of the
branching node and stores the uncalculated up
node,
(c) adds the down constraint, calculates the down
node, then
(d) calculates the up node, stores both results
in the node storage and puts the z-values in the

Z-vector.
Thus, any free processors will only have access to these
nodes after both are calculated and stored.

Level 2 .
The same as Level 1 except change (c) and (d) of Level
1 as follows:

(c*) adds the down constraint, calculates the down
node, stores it in the node storage and puts the
z-value in the Z-vector, then
(d*) calculates the up node, stores it in the node
storage and puts the z-value in the Z-vector.

This gives the opportunity for a free processor to obtain
the down node while the first processor is calculating the

up node.

Level 3 .
The same as level 1 except, change (b) and (d) of Level

1 as follows:
(b") adds the up constraint to a copy of the

branching node and stores the uncalculated up node

14

in the node storage, marking it as an uncalculated
node,

(d”) stores the results in the node storage and
puts the z-value in the Z-vector.”

When the up branch is examined by a free processor it will
have the Z(i) value of the node before branching. This will
put it back in equal contention with all available nodes.
The last line of step 4 of the algorithm would be replaced
by:

If there is an available node, check to see if it is an
uncalculated node. If it is, go to step 6; otherwise

go to step 5.
Level 4 .

Another level of parallelism is also desirable if many

processors are available and the Simplex tableaus are
very large. When the pivot operation is called in any
of the above steps, the processor is given the indexes
of the leaving row and the entering column. It then
performs the element operation n*p times, where p is
the number of variables and n is the sum of the number
of variables, the number of constraints and the number
of branches already done. These operations are
independent of each other and could therefore be
assigned to different processors. This assignment of

processors could either be done row by row or element
by element. If by row, a processor is given a row
index and it performs the p operations associated with

15

that row. If by element, a processor is given the row
and column indexes of the element it is to process.
Level 1 was used in a test version of the code on the

HEP but was discarded because of its poor use of parallelism.
Levels 1 and 2 are identical on a single processor but Level
2 utilizes multiple processors better because it makes the
down constraint available sooner. Level 2 was implemented
on the Denelcor HEP for the IBM-3 and IBM-4 test problems.
There is only one line of code difference in the two levels.
Level 3 was used in the simulation for all of the test
problems. The simulation was done before the HEP became

available and extensive changes in the code including a
different node storage would have been necessary to obtain
Level 3 parallelism. Level 4 could be implemented using
more monitors and using methods of calculating the simplex
tableaus similar to methods in the literature involving
Gaussian elimination techniques [7]. This would utilize
idle processors but should not change the number of pivots.

16

IV. SIMULATION OF A MULTIPROCESSOR

A. INTRODUCTION

A single processor was used to simulate the
multiprocessor implementation of the Parallel Branch and
Bound Algorithm. Level 3 parallelism was simulated using
the IBM 4381 computer and the PL/I language program given in
APPENDIX B. The simulation explored every node which could
be applicable, which in most cases meant that every branch
was pursued until either an integer lower bound was found,
infeasibi1ity occurred or the node could not be used because
of its value relative to the known solution and its location
in the branching tree. Three ILP techniques were studied for
simulating implementation on a multiprocessor: branch and

bound, branch and bound with parallel hyperplane cuts, and
branch and bound with (0,1) explicit enumeration.

B . BRANCH AND BOUND
Branch and bound with first fraction variable selection

and maximum upper bound node selection was used in all

s imulat ions.
The first fraction variable selection was used since it
shortens the search for the branching variable in the node
storage and uses only comparisons instead of calculating

penalty functions.
The maximum upper bound node selection was chosen

because of its simplicity, needing only a comparison search,
and because of its favorable numbers of pivot calculations

17

when compared with the more complicated penalty function
methods [28].

The Beale and Small [27] method gains storage
efficiency for sequential processing, especially in the case
in which the first direction contains the solution. This
efficiency is gained by the use of a stack type storage with
backtracking. The use of backtracking makes the variable
selection automatic for one processor but more complicated
for multiprocessors. The use of multiple processors also
necessitates a stack for each processor and hence this
method was not pursued.
C. BRANCH AND BOUND WITH PARALLEL HYPERPLANE CUTS

The techniques of part B were combined with the
following addition. If a primal feasible solution does not
have an integer z—value, a fractional cut is performed which
is parallel to the objective function. This cut is called
the "parallel hyperplane cut," and is performed immediately
after a branching node is chosen and before the up and down
constraints are added. This cut is different from the usual
cutting plane techniques in that it is performed on the

objective function row instead of a basic variable row.

D. BRANCH AND BOUND WITH EXPLICIT ENUMERATION ON SOME

(0,1) VARIABLES
The calculation of the continuous solution for the

first node usually takes several pivot operations, hence in
the case of using a dedicated multiprocessor, all processors
but one are idle during this time. Since only one

18

additional constraint has been added for the up or down

branch, it quite frequently takes only one additional pivot
to obtain the continuous feasible solution for the next
node. To utilize the other processors while the first
processor is calculating the first node, an explicit
enumeration technique was used.

The explicit enumeration technique used gives one or
more of the (0,1) variables the value 0 or 1 and then

performs the calculations on the resulting simplex tableau.
This tableau is smaller since at least one variable and row

have been eliminated from the original tableau. An

enumeration was performed by each free processor while the
first processor was calculating the continuous solution for
the first node. Since these processors were working on
smaller simplex tableaus, it was hoped that they would have
their results in fewer pivots than the first processor would

need so their results would be ready for the first processor
when it had completed its calculations. It was hoped that
this would not only keep more processors busy while the
continuous solution was being calculated, but might either
give the solution or at least give a lower bound and hence a
better idea of which variable to pursue next.
E. RESULTS USING THE THREE TECHNIQUES OH THE HALDI AND IBM

TEST PROBLEMS.
In all implementations, the number of pivot operations

was used as a measure of performance since it was found that
the time to do a pivot operation did not significantly

19

change in a given problem as one row (up or down constraint)
was added . The clock times available to this project on
the IBM 4381 were in increments of ten milliseconds so were
of little value.

IBM-1 through IBM-5 and HALDI-1 through HALDI-10 [1]
were used as test problems in the simulation. The
continuous solutions for the IBM-1, HALDI-7 and HALDI-8 were
also the integer solutions so no branching was needed.

1. Branch and Bound Results. The results of the
simulation of the parallel branch and bound algorithm using
branch and bound techniques are given in TABLE I. Two of
the twelve test problems (IBM-2 and HALDI-4) showed super

linear efficiency, although the improvement was only one
pivot operation less than with a single processor. Five of
the test problems showed linear efficiency and five showed
less than linear efficiency. Only HALDI-10 showed an
increase of more than one pivot operation on the best of the
multiprocessing tests over the single processor.

In general, after the optimal number of processors.has
been reached, the addition of more processors causes the
number of nodes and the number of pivots to increase. The
exceptions are HALDI—5, HALDI—6 and HALDI—9 where both the

number of pivots and the number of nodes remained constant

regardless of the number of processors.

With the exceptions of IBM-3 and IBM-5, no test problem
would utilize more processors than the number of variables
in the problem. In the case of IBM-3 using eight

20

TABLE I
BRANCH AND BOUND

IBM-2
7 VARIABLES

processors # pivots # nodes
1 12 5

2 12 5
3 11 6
4 12 7

5 Will not use 5 process o:

IBM-3
7 VARIABLES

rocessors # pivots # nodes

1 30 21

2 31 21

3 31 21

4 31 21

5 33 23

6 37 27

7 39 28

8 39 28

9 Will not use 9 processo

21

TABLE I CONTINUED
BRANCH AND BOUND

IBM-4
15 VARIABLES

rocessors # pivots # nod

1 55 14
2 57 15
3 65 20
4 69 23
5 74 26

6 83 29
7 70 26
8 59 24

9 61 25

10 64 26

11 55 22

12 56 23
13 57 24
14 Will not use 14 processors

22

#

#

TABLE I CONTINUED
BRANCH AND BOUND

IBM -5
15 VARIABLES

processors # pivots # nodes
1 526 251
2 526 251

3 527 251
4 527 251
8 532 252

HALDI-1
5 VARIABLES

processors # pivots # nodes
1 14 9
2 15 9
3 16 11

4 15 10
5 16 11
6 Will not use 6 processors

23

TABLE I CONTINUED
BRANCH AND BOUND

HALDI-2
5 VARIABLES

rocessors # pivots # nodes
1 14 9

2 15 10

3 16 11

4 15 10

5 16 11

6 Will not use 6 processors

5
rocessors

HALDI-3
VARIABLES

pivots # nodes

1 12 7

2 13 8

3 13 8

4 15 10

5 16 11

6 Will not use 6 processors

24

TABLE I CONTINUED
BRANCH AND BOUND

HALDI-4
5 VARIABLES

rocessors # pivots # nodes
1 14 8
2 15 9
3 13 8
4 15 10
5 16 11
6 Will not use 6 processors

HALDI-5
VARIABLES5

processors
1
2
3
4
5 Will not

pivots # nodes
14 9
14 9
14 9
14 9

use 5 processors

#

25

HALDI-6
5 VARIABLES

processors # pivots # nodes
1 1 1 7
2 1 1 7
3 Will not use 3 processors

TABLE I CONTINUED
BRANCH AND BOUND

HALDI-9
6 VARIABLES

processors # pivots # nodes

1 13 7
2 13 7
3 Will not use 3 processors

TABLE I CONTINUED
BRANCH AND BOUND

HALDI-10
12 VARIABLES

processors # pivots # nodes

1 39 9

2 43 11

3 54 14

4 53 14
5 51 17

6 57 19

7 Will not use 7 processors

27

processors, the eighth processor performed only one pivot
operation and following that calculation, two processors
were idle. Although the simulation of IBM-5 was not carried
out beyond eight processors, it appeared from the branching
trees that more than fifteen processors might be utilized
with very little change in the number of nodes visited, but
with an increasing number of pivots.

The IBM-5 problem had almost no differences in the
number of nodes visited in obtaining a solution because of
the large number of distinct solutions which were at the
same level of the branching tree. The slight differences in
the relative number of pivots seemed to depend mostly on how
many nodes were calculated with z-value floors that were the
same as the z-value of the solution and on how many of their
pivot operations were performed before this floor was
obtained. For example, if -15 is the z-value of a feasible
integer solution, whenever any pivot operation gives a value
less than -14, its floor is then -15 so the node is
fathomed. In the IBM-5 problem, the first feasible integer
solution was the optimal solution regardless of the number
of processors. Because of the enormous amount of time
consumed simulating IBM-5 and the inability to see any

useful patterns, further investigation of this problem was
delayed until a large MIMD machine was available to check
for possible patterns using parallel processors.

The IBM-4 problem seemed ideal for multiprocessors
because of the path pursued using the sequential branch and

28

bound algorithm. The sequenti

down the right branch of the b

optimal integer solution was e

shortest path of thirty-two pi

path down the left side of the

six levels deep and with a sho

pivots. A shortest path is th

if it knew where the optimal i

would need the fewest pivot op

simulation, this shortest path

processors were in use, so the

the shortest path were offset

not examined by using one proc

2. Results Using Branch

Hyperplane Cuts. The results

in TABLE II. Since every node

z-value it did not utilize the

hence HALDI-9 is not in TABLE

combined with the branch and b

only case where there was less

the best performance of multip

processors. Seven of the prob

efficiency. HALDI-5, HALDI-6

constant level regardless of t

No test problem, with the

would use as many processors a

al algorithm pursued a path

ranching tree where the

ight levels deep with a

vots. There was, however, a

tree with an optimal solution

rtest path of twenty-six

e path a processor would take

nteger solution was which

erations to obtain. In the

was not utilized until eleven

advantages associated with

by examining nodes which were

essor.

and Bound with Parallel

of this simulation are given

in HALDI-9 had an integer

parallel hyperplane cuts,

II. When parallel cuts were

ound methods, HALDI-4 was the

than linear efficiency using

rocessors against single

lems demonstrated super linear

and HALDI-9 remained at a

he number of processors.

possible exception of IBM-5,

s the number of variables in

the problem. In HALDI-1 and HALDI-2, as the number of

29

TABLE II
BRANCH AND BOUND WITH PARALLEL CUTS

#

#

IBM-2
7 VARIABLES

cessors # pivots # nodes
1 12 4
2 11 4
3 12 5
4 will not use 4 processors

IBM-3
7 VARIABLES

ces sors # pivots # nodes

I 40 18
2 40 18
3 43 19
4 46 20
5 48 20
6 48 20
7 will not use 7 processors

30

TABLE II CONTINUED
BRANCH AND BOUND WITH PARALLEL CUTS

IBM-4
15 VARIABLES

oces sors # pivots # nodes
1 90 23
2 73 21
3 83 24
4 58 20
5 54 19

6 57 21
7 53 20 best
8 54 21
9 55 22
10 56 23

11 57 23

12 58 24
13 will not use 13 processors

IBM-5
15 VARIABLES

processors # pivots
1 1137
2 1098

3 1133

7 1081

nodes
331
327
329

319 best
8 1131 330

31

HALDI-1
5 VARIABLES

processors # pivots # nodes

TABLE II CONTINUED
BRANCH AND BOUND WITH PARALLEL CUTS

1 16 5
2 18 6
3 14 5
4 Will not use 4 processors

HALDI-2
5 VARIABLES

processors # pivots # nodes
1 19 7
2 14 5

3 13 5
4 Will not use 4 processors

HALDI-3

5 VARIABLES
processors # pivots # nodes

1 20 5

2 19 5

3 19 5
4 Will not use 4 processors

32

HALDI-4
5 VARIABLES

processors # pivots # nodes
1 15 4
2 20 7
3 2 1 7
4 Will not use 4 processors

HALDI-5
5 VARIABLES

processors # pivots # nodes
1 2 1 7
2 2 1 7
3 2 1 7
4 Will not use 4 processors

TABLE II CONTINUED
BRANCH AND BOUND WITH PARALLEL CUTS

HALDI-6
5 VARIABLES

processors # pivots # nodes
1 16 5
2 16 5
3 Will not use 3 processors

33

BRANCH AND BOUND WITH PARALLEL CUTS

HALDI-10
5 VARIABLES

processors # pivots # nodes
1 63 11
2 64 11
3 62 11
4 58 13
5 66 13
6 Will not use 6 processors

TABLE II CONTINUED
RANCH AND BOUND WITH PARALLEL CUTS

34

processors increased, the efficiency increased, up to the
maximum number of processors which would be used.

IBM-4 dropped from ninety pivots with a single processor
to fifty-three pivots with seven processors.

These results sound very good since they show that a
method is available which utilizes multiprocessors
efficiently. However, these results need to be compared
with the results obtained using Branch and Bound without
parallel hyperplane cuts to get a more complete picture.

3. Comparison of Branch and Be^and with and without
Parallel Hyperplane Cuts. TABLE III gives the comparison
between the two methods. In all but IBM-2 the number of
pivot operations for a single processor is smaller without
the parallel hyperplane cuts than with them. In IBM-2 using
two processors, the number of pivot operations is the same
with or without the cuts.

In IBM-5 the comparison is significant since the number
of pivot operations more than doubled when the cuts were
added, causing more than five hundred extra pivot operations
and visiting almost one hundred extra nodes.

The comparisons in IBM-4 start out almost as bad, with
fifty-five pivot operations without the cuts and ninety
pivot operations with them. However, as the number of
processors increases, so does the efficiency of the parallel

cuts. With seven processors, the parallel cuts give better
efficiency than the single processor with or without the
parallel cuts. HALDI-2 is the other problem in which three

35

TABLE III
COMPARISONS OF THE TEST PROBLEMS

USING SINGLE AND MULTIPLE PROCESSORS
AND USING BRANCH AND BOUND WITH AND WITHOUT

PARALLEL HYPERPLANE CUTS

Prob lent Single Multiple
Processor Processors

Performance Best Performance
Number of Number of Number of
Pivots Pivots Processors

Haldi-1 B&B 14 15 2,4
Haldi-1 + PC 16 14 3
Haldi-2 B&B 14 15 2
Haldi-2 + PC 19 13 3
Haldi-3 B&B 12 13 2
Haldi—3 + PC 20 17 3
Ha1d i-4 B&B 14 13 3
Haldi-4 + PC 15 20 2
Haldi-5 B&B 14 14 2,3,4
Hald i-5 + PC 21 16 3
Haldi-6 B&B 11 11 2
Haldi-6 + PC 16 16 2
Hald i-7 B&B The continuous solution was integer
Haldi-8 B&B The continuous solution was integer
Haldi-9 B&B 13 13 2
Haldi-9 + PC 13 13 2
Haldi-10 B&B 39 43 2
Haldi-10 + PC 63 58 4
IBM-1 B&B The continuous solution was integer
IBM-2 B&B 12 11 3
IBM-2 + PC 11 11 2
IBM-3 B&B 30 31 2,3,4
IBM-3 + PC 40 40 2
IBM-4 B&B 55 55 11
IBM-4 -t-PC 90 53 7
IBM-5 B&B 526 526 2
IBM-5 + PC 1137 1081 7

B&B = Branch and Bound without Parallel Cuts
+ PC = ♦branch and Bound with Parallei Cuts

36

processors with parallel cuts perform better than one
processor with or without parallel cuts. Also, in HALDI—2,
the number of nodes visited with three processors using the
parallel cuts is less than one half the number of nodes
visited with three processors not using parallel cuts.

As was stated earlier, generally fewer processors will
be used than the number of variables in the problem. Also,
the optimal number of processors is about one half of the
number of variables. These statements are true whether
parallel cuts are used or not.

4. Results Using Explicit Enumeration Techniques.

The HALDI-10 test problem was chosen for solution by branch
and bound using explicit enumeration, since it was the
largest of the test problems which had (0,1) variables.
There are twelve variables in the HALDI-10 problem and six
of these are (0,1) variables. Although only five or six
processors could be used in the branch and bound method with
or without parallel hyperplane cuts, seven processors were
used in this case. Seven processors were chosen since there
were six (0,1) variables. One processor would work on the
continuous solution while the other six could be working on
the (0,1) variables. On these other six, one of the six
variables could be set equal to one and the other five set
equal to zero. This would cut the size of the resulting
problems in half and perhaps give some information about
feasibility together with a lower bound. It was hoped the
number of pivot operations performed by the processors doing

37

the (0,1) enumerations would be considerably smaller than
the number of pivot operations performed by the processor
working on the continuous solution. However, no processor
needed fewer pivot operations than the processor doing the
continuous solution. The only (0,1) processor obtaining a
feasible integer solution needed thirteen pivot operations
while the continuous solution took only eleven. This not
only gave the lower bound too late for immediate use, it
also used a processor for two pivot operation periods that
could have been used by one of the branches from the
continuous solution. In addition, the lower bound given was
too low to be of any value in the problem. The information
given by the other five processors showed only that each of

those solutions was feasible.
Better results were obtained by placing the (0,1)

variables in the first columns, then any non-(0,l) value
would be taken care of first and at a usual cost of two to

four pivot operations per variable.
The results of this simulation are in TABLE IV.

38

TABLE IV

HALDI-10 WITH ZERO-ONE ENUMERATION
USING SEVEN PROCESSORS

Processor Duty # pivots value

1 Continuous Solution 11 18.709

2 x (1)=1,Other (0,1)=0 13 12 (INT)
3 x (2)=1,Other (0,1)=0 11 14.71

4 x(3)-l,Other o II o 12 11.33

5 x (4)=1,Other OIIrHO 12 9.11
6 x (5)=1,Other OIIr-4

o'—✓ 14 10.28

7 x (6)=1,Other (0,1)=0 11 10.87

OPTIMAL SOLUTION IS ,17

39

V. IMPLEMENTATION OF PARALLEL ALGORITHM ON AN MIMD COMPUTER

A. INTRODUCTION
After the simulation was completed, the author became

aware of an MIMD computer at Argonne National Laboratories
which was available for graduate student research in
parallel processing applications. This gave the opportunity
for implementation of the Parallel Branch and Bound
Algorithm on an MIMD machine.

Denelcor is the manufacturer of the machine which is
called the HEP (Heterogeneous Element Processor). The HEP
is described in APPENDIX A. Macros had been written to
convert FORTRAN routines to routines for MIMD computers in
general and the HEP in particular. Butler [4] translated
some of these macros to the C language for use in his
research. The adaptations of these macros for the parallel
algorithm are given in APPENDIX C. The HEP had compilers
for only the FORTRAN and C languages so the decision was
made to convert the basic PL/I simulation code to the C
language. The C language was chosen because of its
ALGOL-like structure. The main problems in the basic

translation were the lack of built-in functions which are so
plentiful in PL/I and the subroutine structure which does
not permit internal subroutines.

40

B. PROGRAMMING THE HEP
The early attempts to convert the single processor

version of the C language program to a multiple process
version met with the many frustrations of trying to think in
parallel. A program may run perfectly on a single processor
but when the number of processes is changed to two, the
computer may abnormally end with no reasons given. The HEP
architecture uses the creation of processes rather than
processors since several processes may be in the pipe at the
same time on any processor.

The connection to the HEP is through a modem and
telephone lines. System breakdowns are frequent and the

causes are not always apparent even when the system is
rebooted. Since the work on the computer is usually done
late at night when the phone rates are less, rebooting the
computer is not always possible until the next day.

The amount of memory given to this type of project was
said to be about 1.5M. With double precision arithmetic,
this amount of memory is too small to run the larger test
problems, hence IBM-3 and IBM-4 were chosen. IBM-3 is a
good test problem to check for robustness of the code on a
single processor. It is small, several of the branches lead
to infeasibities and round off error can cause some of the
branch and bound coding techniques to miss the optimal
integer solution and instead stop with a non-optimal integer
solution. IBM-3 was therefore a good candidate for checking
the algorithm and the C language code on the parallel

41

process computer. IBM-4 was chosen because of the extensive
simulation effort already done. The simulation had shown
that a large number of ties (nodes with the same z-values)
were encountered causing a large fluctuation in the paths
taken to a solution. There are also several possible
solutions.

The results from the HEP are printed in the order in
which the information gets to the front-end-machine which
handles the I/O and the control program. All processes
compete for the I/O buffers. The results are not separated
on the printout in terms of processes. The simulation
results help to place results with processes.

Locks were used around all print statements. Without
them, if two processes want to print at the same time, the
printout is garbled with intermixed messages. Since locks
slow the machine, fewer and shorter print statements were
designed. The change in the size of print statements can
have an effect on which node a process examines.

Global variables are needed so all the processes can
have access to shared information. The Z-vector was
protected by a monitor and not changed outside of it.
The code, given in APPENDIX D, has the access to this ASKFOR
monitor on line 123. The finding of the next node to be
examined is done through the GETPROB macro which is
contained in the monitor.

The heart of the parallelism is the "work" subroutine.
All other subroutines needed in the parallelism are called

42

from this module. The part of the PL/I simulation program
that was the main program has been replaced by lines 90
through 98. These lines call the macros which CREATE the
number of processes, time the parallelism, start the
problem, call the "work" module and end the parallel part of
the program.
C. RESULTS OF THE TEST PROBLEMS IMPLEMENTED ON THE HEP

Both IBM-3 and IBM-4 were run successfully as single
processor problems on the VAX-11/780 at Rolla before
transferring the code to the HEP. The problems were then
run with "numprocs" (number of processes) set equal to one.
More processes were then added to see whether the actual
runs would agree with the simulation. Since the parallel
processes code is written for level 2 parallelism, the
original branching trees [27] were used to check the
results. These results are given in TABLE V and correspond
with the Level 2 simulation results. Clock times in units
of 100ns were also given for the problems after the
continuous solution was calculated and problems were being
assigned to the multiple processors.

IBM-3 was run with one through six processes with very
little difference in the numbers of pivots from the results
obtained in the simulation. The times for parallelism
indicated that two processes complete the problem in about
one half the time of one processor. However, with three
processes the number of pivots is larger and the time is not
close to being as small as one third of the time for one

43

TABLE V
IMPLEMENTATION OF LEVEL 2 PARALLELISM ON HEP

IBM-3

rocessors # pivots time in ns

1 30 250432900

2 30 139863000

3 31 123222300

4 33 119084700

5 34 120791500

6 37 131717100

IBM-4

'rocessors # pivots t ime in ns

1 55 979241500

2 123 1407789100

3 128 1073274500

4 154 1063886900

6 155 836087200

7 134 691446400

8 143 693102900

44

processor. As the number of processes increase from four to
five, the time actually increases by .001 sec, and the
number of pivots increase from thirty-three to thirty-four.
An increase of three pivots in going from five to six
processes increases the time by .01 sec.

The IBM-4 results indicate a vast difference between
implementation on the HEP using Level 2 parallelism and the
simulation which used Level 3 parallelism (compare TABLE I
with TABLE V). Level 2 causes the free processes to wait
until the down node is calculated before the up node can be
obtained for calculation, even though the up row had been
added and the up node stored before the down row was added.
Level 2 parallelism causes each process to act on more
complete information before obtaining a node to process than
level 3 parallelism does. This takes time, and in the case
of IBM-4, caused the calculation of many more nodes than

with level 3 parallelism.
Because of the difficulty involved in getting on the

HEP and in staying on it for long enough periods of time to
do multiple runs, IBM-4 was run using one, two, three, four,
six, seven and eight processes. Another factor was, the
IBM-4 problem used enough more memory with multiple
processes (since each process is allotted its own memory),
that sometimes memory exceptions would occur merely by
changing the number of processes. Sometimes this would

terminate the session.

45

In going from one process to four, the number of pivots

almost tripled while the processing time only went up
slightly. With four processes, one of the processes (or
combinations of processes) took the shortest path to a
solution, but this was not enough to make up for all of the
nodes calculated by the other three processes. With one
process the shortest path to a solution was of length thirty-
two, hence only twenty—three pivots were performed on other
nodes, nineteen of which were performed to obtain the
continuous solution. With three and four processes the
shortest path to their solution was of length twenty-six,
using the other pivots for other nodes (each of the
solutions will have a shortest path).

With two and seven processes, the shortest path to
their solution was of length thirty-five. In this case, two
and one half times as many processes took half as much time
to do only eleven more pivots. This shows that, not only
was more work done with more processes but also, the average

time per process per pivot increased. Six and eight
processes took distinct paths with shortest path length of
thirty four. The eight different numbers of processes found
five different solutions.

46

VI. A CASE STUDY

A. THE SYSTEM DESIGN PROBLEM
The following system design (SD) problem is described

by Plane and McMillan [29].
An electric power company plans to build a steam

generating plant capable of producing 2 million kilowatt
hours of electrical energy per day. The major equipment in
the plant will consist of boilers, generators, and
condensers. The sources of supply for these pieces of
equipment have been narrowed to 11 manufacturers. In TABLE
VI are presented data relative to the equipment offered by
these suppliers (A through K).

The power company wants to design that system which
will meet the energy capacity of the plant with the least
cost. The requirements are a follows:
A. The capacity of the set of generators selected must be
at least 2 million kwh/day.
B. The steam requirements of the generators must be met by
the combined capacities of the boilers selected.
C. The steam capacities of the set of condensers selected
must be adequate to accomodate the steam capacities of the

boilers.
D. Equipment of one supplier is interchangeable with that
of another supplier except in the case of supplier A. Note
that supplier A produces both boilers and condensers. The
operating costs quoted for supplier A ’s boiler and condenser

47

TABLE VI

EQUIPMENT OFFERED BY SUPPLIERS FOR THE SYSTEM DESIGN MODEL

Steam Electricity Initial Operat i ng
Kcfm Kwh/day Cost ($K) Cost $K/yr

Boilers (capacity)

X(l) A 100 50 50

X(2) B 140 75 60

X (3) C 90 60 40

X (4) D 80 50 20

Generators (requirements)

X (5) E 70 500 600 60

X (6) F 120 650 600 75

X (7) G 150 700 800 75

X (8) H 100 800 750 90

Condensers (capacity)

X (9) A 50 25 3

X(10) I 65 17 4

X(ll) J 70 20 4

X (12) K 55 13 2

4 8

are based on the assumption that each of A ’s boilers will be
matched with two of A ’s condensers, since they constitute a
matched set. If each and every one of A ’s boilers is not
used with two of A ’s condensers then an added $10,000 annual
operating cost can be expected.
E. Because of their size and shape it is impracticable to
fit one of supplier F’s generators into the plant with one
or more of supplier G ’s generators.
F. Supplier K ’s condensers are of such construction that
they must be used in pairs.
G. Management has decided the initial capital outlay for
the system should not exceed $2.3 million.

Assume the power company’s objective is to minimize the
expected annual operating cost of the system, subject to the
above constraints. This leads to the following integer

linear programming formulation.
MAXIMIZE -50X(1)-60X(2)-40X(3)-20X(4)-60X(5)-75X(6)-75X(7)

-90X(8)-3X(9)—4X(10)-4X(11)-4X(12)-10X(13)

SUBJECT TO
500X(5)+650X(6)+700X(7)+800X(8) 2000
100X(1)+140X(2)+90X(3)+80X(4)
-70X(5)-120X(6)-150X(7)-100X(8) 0
50X(9)+65X(10)+70X(11)+110X(12) 1 100X(1)+140X(2)

+ 90X(3)+80 X(4)

2X(1)-X(9) 1 100X(13)
X (6) <_ 4-4X (14)
X (7) 1 3-3(1-X(14))

4 9

50X(1)+75X(2)+60X(3)+50X(4)
+600X(5)+600X (6)+800X(7)
+750X(8)+25X(9)+17X(10)

+20X(11)+26X(12) 1 2300
X(i) >_ 0, X(i) integer, and X(13),X(14) = (0,1)

This problem is notorious for poor performance using
cutting plane methods, especially the all integer cuts.
Syslo [30], did not obtain a solution after 15 minutes of
computation time on an Amdahl 470 V/6 and 350,000
iterat ions.
B . APPLICATION OF THE ALGORITHM

The SD problem was attempted using the VAX 11/780 with
the dimensions of the node storage matrix declared as
50,16,50, where the first dimension is the number of rows
anticipated in the simplex tableau, the second is the number
of columns and the third is the number of layers needed in
the node storage. These were larger than any of the test
problems except IBM-5. However, the problem did not run.
The first and third dimensions were then increased to 100,
each with similar results. The problem was then partially
simulated on the IBM 4381 to find what to expect for an
upper bound on the dimensions. The number of layers of the
node storage was found to be at least 117 and the number of
rows needed to get there was determined to be no more than
35. With new dimensions of 35,15,125, the problem obtained
the solution in 501 pivots with a depth of 10 in the
branching tree and a shortest path to the only solution

50

obtained was of length 21.
This problem was larger than any of the IBM problems

tried on the HEP. When the problem was attempted on the
HEP, the error message indicated a memory problem and the
program abnormally terminated. The next run brought the
system down. The first attempt to take care of the problem
was to call Argonne and ask for more memory, however it was
not clear to the people there how this could be done and the
Denelcor representative had just been changed. They did not
think that it was a memory allocation problem.

The next attempt was to split the problem into two
problems and test it on the UMR VAX, eliminating X(6) on one
run and X(7) on the next. This would also eliminate X(14).
In eliminating X(6), 124 levels of the node storage were
needed, 424 pivots were performed and all exposed nodes were
fathomed with no integer solution. The elimination of X(7)
proved more fruitful, giving the solution in 312 pivots,
using 87 levels of node storage. The splitting, however
took a total of 736 pivots with at least 624 needed if two
processes communicated with each other to know when the
solution had been found. Also, the size of the smaller
subproblem was still too large to obtain a solution on the
HEP if lack of allocated memory was the problem.

By cutting the dimensions down to 33,15,40, the HEP
performed until these limits were reached with multiple
processes. However, the algorithm did not get close to a
solution, but verified that the code would run if the memory

51

problem was corrected or more memory could be allocated.
The HEP, however, was not the problem. After system

breakdowns at intervals of approximately two hours for
almost a week, the problem was found to be in the way the
VAX front-end-machine operating system was looking at the
memory. The operating system was executing code which
should never have been executed. Possibly a memory error
was sending the code to the wrong place and thus causing the
system breakdowns. New memory boards were installed and
the system immediately went down. By hiding 4M of the
original memory from the operating system and allowing it
access only to the 8M of newly installed memory the system
breakdowns stopped. Even though this memory problem was on
the VAX and not the HEP, this temporary fix allowed a
continuation of the study of the SD problem, although the
memory problem with the front-end-machine has not been
resolved. The current logon messages indicate a need to
save results immediately since system breakdowns are still

occurring daily.
The use of MIMD machines with their front-end and the

associated operating system problems are still not fully

unders t ood.
C. RESULTS USING THE HEP

Times in terms of 100ns intervals were taken for the
parallel portion of the code (APPENDIX C, lines 94-97).
Speedup is defined to be the quotient of the time for a
single process to complete a task and the time for n

52

processes to complete the same task. For n processes,
linear speed-up would be n. If the quotient is greater than
n, super linear speed-up is said to be obtained. Efficiency
is as defined in CHAPTER IV.

The following results can be seen from TABLE VII. A
speedup in time using two processes is 1.97 and linear
efficiency is obtained. With three processes, a speed-up of
2.86 and super linear efficiency is obtained. It was not
until eight processes were in use that the super linear
efficiency becomes significant where only 495 pivots were
necessary. With 8,10 and 16 processes, successive runs
sometimes gave a different number of pivots. This occurred
because with that many processes, completion of a pivot and
the reporting of the results to the Z-vector may occur in
th'e same clock time (100ns interval) on two processes and
therefore the same path to the solution may not always be
followed . In these cases, the times varied slightly also,
hence the times and number of pivots for these runs for a
given number of processes were averaged.

D . CONCLUSIONS
As a general rule in the test problems, more processes

than the number of variables should not be utilized.
However, in the SD problem which has 14 variables, not only
were 16 processes utilized, but the efficiency generally
increased as the number of processes increased. This
indicates that in some real life type models, super linear

53

TABLE VII

SYSTEM DESIGN MODEL RESULTS
USING THE PARALLEL BRANCH AND BOUND ALGORITHM

AND THE HEP MULTIPROCESSOR

Number of Average Number Average Number Seconds
Processors of Pivots in Parallel Processing

1 501 12.034
2 501 6.115

3 500 4.215

4 503 3.307

5 504 2.845

6 506 2.482

7 500 2.195
8 495 1.982

9 494 1.839

10 496 1.848

12 495 1.830

14 481 1.762

16 472 1.793

54

efficiency can be obtained and the number of processes

efficiently utilized may be more than was indicated by the
test problems.

55

VII. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

A. CONCLUSIONS
The use of parallel processing in the solution of

general integer linear programming models is desirable in
some cases as is evidenced by the study of the System Design
model and the Haldi and IBM test problems.

Super linear efficiency is obtainable for some types of
integer linear programming problems using parallel branch
and bound techniques and the simplex method. In the System
Design problem, as the number of processes was increased,
better efficiency was achieved up to the maximum number of
processes available. For the Haldi and IBM test problems,
TABLE I shows that the best efficiency was obtained using
approximately one half as many processes as the number of
variables.

In general, if multiple processes give linear or super
linear efficiency, there exists a point at which the
addition of more processes degrade the performance. One
reason for this is that with multiple processes, nodes are
explored that would not have been explored with a single
process. This can be seen in TABLE I and TABLE II by noting
the number of nodes examined as the number of processes is
increased. A way to overcome this is for multiple
processes to pursue a shorter path to a solution. This may

mean more nodes, but it must mean fewer pivots.

56

TABLE I and TABLE II also show that there is an upper
limit for the number of processes which can be utilized.
There can never be fewer pivots performed by a process than
the length of the shortest path to a solution. When some
process, or combination of processes, uses this path, any
additional processes added will not improve the efficiency.
On the other hand, if the branch and bound algorithm using a
single process causes a path other than the shortest one to
be pursued, multiple processes may give better efficiency.

For single processors, the addition of parallel cuts
generally did not improve the efficiency. In some problems,
it more than doubled the number of pivots needed. Using
parallel cuts generally started out inefficiently but
improved as the number of processes was increased. The
combination of parallel hyperplane cuts with branch and
bound increased efficiency in only one fourth of the test

problens.
The use of explicit enumeration in conjunction with

branch and bound for the purpose of keeping processes busy
does not seem to be efficient. A much better way to keep
the extra processes busy while one process is finding the
continuous solution would be to use level 4 parallelism.

The present code is portable between MIMD machines
except for a few lines in some of the macros. The code is
robust, giving correct answers to the System Design model
and to the Haldi and IBM problems tested for which the
allotted memory space allowed the program to finish.

57

The algorithm is general and leaves choices as to which
path to follow in the branching tree. One such choice is
which node should be chosen when there is a tie, that is
whenever two nodes have the same z—value. This became
evident when level 2 parallelism was used on IBM-4. For
nodes with the same z-value, level 2 parallelism, combined
with the storage numbering method of the program, caused the
choosing of the smallest numbered node, whereas the
simulation using level 3 parallelism used the
first-in-first-out technique for choosing the node.
B . SUGGESTIONS FOR FUTURE RESEARCH

Brown and Almasi [31] believe that a new era in high
performance computing is beginning which will be dominated
by parallel computing and that its application will pace
future development in manufacturing and knowledge-intensive

i ndus tries.
The research started in this paper is now being

continued in collaboration with Ralph Butler. Our research
is centered on the implementation of level 4 parallelism.
As more memory becomes available for this type of research
on the HEP or other MIMD type computers, larger problems
could be used to test the algorithm.

Different techniques for handling the node storage
could be tried which would use a different numbering system
on the nodes. This may give a better way to tell which

process is working with a particular node and make the
tracing of shortest paths easier. It might also give more

58

efficient use of the node storage, by eliminating a level
from the storage as soon as the node is fathomed and reusing
it. Some different method of keeping track of the best
present lower bound would also need to be devised.

Techniques involving a combination of parallel
hyperplane cuts with branch and bound may still have merit
if used in a different way. An example might be to use the
cuts only when the branch and bound technique gets the same
z-value for two or three consecutive pivots, or nodes.

Parallelism should be investigated using new techniques
for solving linear programming problems. Extensions to the
C language like those suggested by Nacini [32] could also
be studied.

5 9

BIBLIOGRAPHY

[1] Garfinkel, R. S. and Nemhauser, G. L., Integer
Programming, John Wiley and Sons, New York,
(1972).

[2] Lusk, E. L. and Overbeek, R. A., "Use of Monitors
in Fortran: A Tutorial on the Barrier, Self
Scheduling Do-Loop, and ASKFOR Monitors,"
ANL-84-51, Argonne National Laboratory,
Argonne,IL, (July 1984).

[3] Lusk, E. L. and Overbeek, R. A., Implementation
of Monitors with Macros: A Programming Aid for the
HEP and Other Parallel Processors," Technical
Report ANL-83-97, Argonne National Laboratory,
Argonne,IL, (July 1984).

[4] Butler, R. A., "An Algorithm for Parallel
Subsumption,"Unpub 1ished Ph.D. dissertation,
University of Missouri-Ro11 a , (May 1985).

[5] Hwang, K. and Briggs, F. A., Computer Architecture
and Parallel Processing. McGraw-Hill, New York,
(1984).

[6] Heller, D., "A Survey of Parallel Algorithms in
Numerical Linear Algebra," SIAM Review. 20, 4,
(1978), p 740-776.

60

[7] Lord, R. E., Kowalik, J. S., and Kumar, S. P.,
"Solving Linear Algebraic Equations on am MIMD
Computer," Journal of the ACM. 30, 1, (1983),
p 103-117.

[8] Daniel, R. C.,"LP-Based Mathematical Programming-
-The Significance of Recent Developments," The
Journal of the Operational Research Society, 32, 2
(1981), p113-118.

[9] Kumar, S. P. and Kowalik, J. S., " Parallel
Factorization of a Positive Definite Matrix on an
MIMD Computer," Proceedings of the 1984
International Conference on Parallel Processing,
Computer Society Press, (1984).

[10] Ful1er, S . J .,Ousterhout, J. K. , Raskin, L.,
Rubinfeld, P. I. , S indhu, P. J. and Swan, R.
"Multi-Microprocessors: An Overview and Working
Example," Proceedings of the IEEE, 66,2,(1978),
p216-228.

[11] Gehringer, E. F., Jones, A. K., and Segall, Z. Z.,
"The Cm* Testbed," Computer, 15, 10, (1982), p

40-53.
Sameh, A. H., "Numerical Parallel Algorithms— A
Survey," High Speed Computer and Algorithm
Organization, Academic Press, New York, (1977),

P207-228.

[12]

6 1

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Traub, J. F., "Iterative Solution of Tridiagonal
Systems on Parallel or Vector Computers,"
Complexity for Sequential and Parallel Numerical
Algorithms, Academic Press, New York, (1973)
p49-82.
Quinn, M. J. and Yoo, Y. B. "Data Structures for
the Efficient Solution of Graph Theoretic Problems
on Tightly-Coupled MIMD Computers", Proceedings of
the 1984 International Conference on Parallel
Processing, Computer Society Press, (1984).
Witt, B. I., "Parallelism, Pipelines, and
Partitions: Variations on Communication Modules,"
Computer. 18, 2, (1985), pl05-112.
Barlow, R. H., "Performance Measures for Parallel
Algorithms," Parallel Processing Systems, an
Advanced Course, (Evans,D .E .,Editor), Cambridge:
Cambridge University Press, (1982), pl79-189.
Jones, A. and Schwarz, R., "Experience Using
Multiprocessor Systems— A Status Report", Coinput ing
Surveys, 12, 2, (1980), pl21-165.
Andrews, G. R. and Schdeider, F. B. "Concepts and
Notations for Concurrent Programming", ACM

Computing Surveys, 15, 1, (1983).
Deitel, H. M., An Introduction to Operating

Systems, Addison Wesley Publishing Company,
Reading,MS, (1984).

62

[2 1]

[22]

[23]

[24]

[25]

[20] Lai, T. H., "Anomalies in Parallel Branch and
Bound Algorithms," Proceedings of the 1983
International Conference on Parallel Processing,
IEEE Computer Society Press, (1983), pl83-190.
Satyanarayanan, M. Multiprocessors: A Comparative
Study. Prentice Hall, Englewood Cliffs,NJ, (1980).
Li, G. and Wah, B. W., "How To Cope With Anomalies
In Parallel Approximate Branch-And-Bound
Algorithms," AAAI-84 National Conference of
Artificial Intelligence, (August 1984)
Kumar, V. and Kanal, L., "Parallel Branch-and-Bound
Formulations for AND/OR Tree Search," Department
of Computer Sciences University of Texas at
Austin, TR-83-14, Austin,Texas, (August 1983).
Quinn, M. J. and Deo, N., "An Upper Bound for the
Speedup of Parallel Branch-and-Bound Algorithms,"
Computer Science Department, Washington State
University, CS-83-112, Pullman, Washington, (May
1983).
Deo, N., Yoo, T. B. and Lord, R. E., "A Parallel
Algorithm for the One-to-All, Mixed-Weight,
Shortest Path Problem," Computer Science
Department, Washington State University,
CS-83-113, Pullman, Washington, (June 1983).

63

[27]

[28]

[29]

[30]

[31]

[32]

[26] Gillett, B. E., Introduction to Operations
Research, A Computer-Oriented Algorithmic
Approach, McGraw Hill Book Company, New York,
(1976),
Taha, H. A.,Integer Programming Theory.
Applications, and Computations, Academic Press,
New York, (1975).
Chambless, S. D., "Users Guide to an Integer
Programming Package," Unpublished Paper, Computer
Science Department, University of Missouri, Rolla,
(May 1984).
Plane, D. R. and McMillan, C., Discrete
Optimization. Integer Programming and Network
Analysis for Management Decisions, Prentice Hall,
Englewood Cliffs, NJ, (1971), pl53,159.

Syslo, M. M., Deo, N. and Kowalik, J. S., D i sere te
Optimization Algorithms with Pascal Programs.
Prentice Hall, Englewood Cliffs, NJ, (1983),
p94,96.
Brown, J. C. and Almasi, G., "Research in Parallel
Computing," Computer, 17, 7, (1984), p92-93.
Nacini, H.,"A Few Statement Types Adapt C-language
to Parallel Processing," Electronics, 57, 13,
(1984), pl25-129.

64

[33}

[34]

[35]

Smith, B. J., "A Pipelined, Shared Resource MIMD
Computer," Proceedings of the International
Conference on Parallel Processing, Computer
Science Press, (August 1978).
Mullin, R., Nemeth, E. and Weidenhofer, N., "Will
Public Key Crypto Systems Live Up To Their
Expectations?" Proceedings of the 1984
International Conference on Parallel Processing,
Computer Society Press, (1984).
Heterogeneous Element Processor (HEP) Hardware
Reference Manual, Publication 9000003,

Denelcor,Inc., (1982).

65

VITA

Rochelle Lloyd Boehning was born on November 12, 1932
near Diamond, Missouri. He received his elementary and
secondary schooling in Seneca, Missouri. He received his
college education from Joplin Junior College in Joplin,
Missouri; Northeastern Oklahoma A & M in Miami, Oklahoma;
Kansas State College of Pittsburg in Pittsburg, Kansas; the
University of Missouri—Columbia, in Columbia, Missouri; the
University of Kansas in Lawrence, Kansas; the University of
Wisconsin-Madison, in Madison, Wisconsin; the Illinois
Institute of Technology, in Chicago, Illinois; the
University of Arkansas, in Fayetteville, Arkansas; and the
University of Missouri-Rolla in Rolla, Missouri. He
received a Bachelor of Science in Education degree in
Mathematics in July, 1959 and a Master of Science degree in
Mathematics in July, 1960 from Kansas State College of
Pittsburg, in Pittsburg Kansas. He received a Master of
Science degree in Computer Science in July, 1983 from the
University of Missouri-Rolla in Rolla, Missouri.

He has been enrolled in the Graduate School of the
University of Missouri-Rolla since August, 1982.

66

APPENDIX A

THE DENELCOH HEP (HETEROGENEOUS ELEMENT PROCESSOR)

The HEP is a large-scale, high-speed, general-purpose
mainframe data processor. It is designed for applications
that can effectively use a processing speed of 10 to 160
million instructions per second (Mips). HEP achieves this
throughput with a multiple instruction stream, multiple data
stream (MIMD) architecture.

MIMD architecture allows user processes, or programs,
to execute in parallel. Each process has its own independent
instruction stream operating on its own data stream.
Processes cooperate by sharing data and solving parts of the
same problem in parallel. In HEP, high-use logic functions
are pipelined to further increase performance so that new
inputs can start processing without waiting for previous
input to finish. Also, all of the instruction streams and
their active data streams are always in main memory; even
though processes share the computing resource, no active
time is required to load and store processes when selected

to run.
The hardware components that make the HEP system unique

are the central processing unit (CPU), the switch module,
and the data memory module.

The CPU is the basic computing unit of the HEP system.
There are as many as 16 CPUs in a machine configuration.

67

Each CPU includes 2K 64-bit words of register memory, 4K
64-bit words of constant memory, at least 32K 64-bit words
of program memory, 64 user processes, 64 supervisor
processes, nine function execution units, MIMD architecture
and pipelined logic.

A process in a HEP CPU is an instruction stream (or
program) stored in program memory for execution. To be
executed, a process must be created in an active task.

A task is the fundamental protection domain in a CPU.
When a task is activated, explicit areas of each type of

memory are defined for process use in that task. Tasks can
overlap if they are to cooperate in solving a common problem.
Processes can be created and terminated in a task whenever
appropriate to optimize parallelism and maximize throughput.

In a CPU, instruction processing is available uniformly
to all active tasks. Each 100 nanoseconds (ns), a task is
selected and one instruction from a process in the task is
accepted for processing. The processes for a task are
queued so that only one instruction for a process is
accessible at a time. Instructions are processed on a
first-in, first-out sequence according to the position of
the process in the task queue.

When a process is read out of a task queue, it enters a
control pipeline known as the instruction loop, where
decoding and operand fetching are performed. The
instruction loop is divided into eight 100ns time phases.
An instruction takes 800ns to get through the pipeline but

6 8

there can be eight instructions in the pipeline at once.
The function units, such as float adder, f1oat/integer

multiplier, and hardware access unit, are all completed in
800ns in synchronism with the instruction loop. Functions
which are not completed in 800ns, such as the divider and
the scheduler function unit (SFU), are called asynchronous
f unc t i ons. The divide operation takes 1700ns to complete.
To maintain the throughput, the divider is replicated rather
that pipelined and can accept new operands and begin
execution every 100ns until all modules are busy. Process
data synchronization is maintained by inhibiting access to
the memory location receiving the result of the asynchronous
function until after the result has been stored.

The SFU controls all operations that access data
memory. Asynchronous SFU operations require a random,
intermediate time to complete, so the SFU withholds the
process from the task queue and maintains it in an SFU
queue. When complete, the process is requeued using a
special asynchronous access port.

The HEP switch is a flexibly-configured, programmable
network that interconnects CPUs, data memory modules, I/O
control processors (a VAX 11/780 in our case) and other

system devices. It uses packet switching techniques to
route messages among the units that comprise the system.
Each node in the switch network has three full-duplex ports,
so it can simultaneously send and receive three messages.
Each message processed by the switch contains the address of

6 9

the unit to which it is directed and the data being
transmitted. Each message has an associated age (priority),
which is incremented each time the message is routed if the
original routing is other than the optimal direction. Each
node has an input rate of 100ns. The propagation time
through the node is 50ns. Therefore, the switch is
configured in such a way that adjacent nodes have alternate
input cycles.

Data memory provides communication and process
synchronization between tasks active in different CPUs. All
data memory in HEP occupies one continuous address space,
regardless of the number of memory units. The entire memory
is addressable by all the CPUs via the switch. Local data
memory can be made available to each CPU by special
allocation if needed . SFU access to data memory via the
switch is asynchronous with the instruction and data loops.
The SFU uses control logic to synchronize multiple
concurrent accesses to data memory and to ensure correct
relinking to the task queues when the data memory operation
is complete. Synchronous and asynchronous access to data
memory are through separate ports, so accessing conflicts do
not occur.

Program memory stores instruction streams to be
executed. Because of the execute-only characteristics of
program memory and the ability to subdivide other memory
domains by indexed addressing, data environments need not
be bound to instruction streams. Several processes can

70

execute the same instruction stream using separate data
streams in other memories. Conflict between writing
synchronous and asynchronous results is avoided by using
separate access times to the memories [2,3,5,33,34,35].

71

APPENDIX B
PL/I PROGRAM TO SIMULATE BRANCH AND BOUND TECHNIQUES WITH

AND WITHOUT PARALLEL HYPERPLANE CUTS

//C9040D JOB (0465VSIB,LPGM,C9040D,UMRVMB), * BOEHNING,CHELLE
// TIME=1,MSGCLASS=A
// EXEC PLIXC LG,PARM.PLI=’GOS TMT,MARGINS(2,72,1) ’

//PLI.SYSPRINT DD DUMMY
//PLI.SYS IN DD *
LEXDUAL: PROC OPTIONS(MAIN);
DCL A (0:99,0:31)

FLOAT DEC(16) INIT((3100)0),
(MINC,SUM,MINCOST,MINACT,SUM1,FK,QUO)FLOAT DEC(16),
(E,I,J,K,L,M,N,P,Q,R,MINCOL,MINRW,FLAG,FLAG1,COL_DN,
COLUP)FIXED DEC(3),T CHAR(9),
(MILLI.T1,T2,ST1.ST2,LT2,ELAPSEDTIME,TOTAL_TIME,
LOAD_TIME)FIXED DEC(5),
(SYS IN,SYSPRINT)FILE,
(ABS,SUBSTR,FLOOR,CEIL,MOD,TIME,CHAR)BUILTIN;

/***/

/* LOAD REQUIREMENTS=B(I) AND ACTIVITIES= A(I,J) */
/************* I************************************/

GET LIST(P,Q,R);/* P=NO. OF VARIABLES, Q=NO. OF
CONSTRAINTS*/
DO I=P+1 TO R;

GET LIST((A(I,J) DO J-0 TO P));

72

END;
DO I=P+1 TO R;

DO J=0 TO P;
A (I ,J)=-l*A(I,J)

END ;
END ;
/****************************/

/* LOAD NON BASIC VARIABLES */
/****************************/

DO J=1 TO P;

A(J,J)= -1;
END ;

/* LOAD COST COEFFICIENTS= C(J) */

DO J=1 TO P;
GET LIST(A(0,J));

A(0,J)=(-1*A(0,J));
END;
CALL MINCOLM;
N=R;
IF FLAG=1 THEN DO; /*DUAL INFEASABLE*/

N=R+1;
CALL NEWROW;
L = N ;
E=MINCOL;
CALL SIMPLEX;

73

CALL PIVOT; /*THE SIMPLEX IS NOW DUAL FEASABLE*/
END;

DO UNTIL (MINRW=0);
CALL ROUNDA;
CALL MINROW;

IF MINRW=0
THEN DO; /*PRIMAL FEASIBILITY*/

L = 0 ;
E = 0 ;
CALL PRNTSOL;

END;
ELSE DO;

L=MINRW;
CALL LEXMIN;
IF FLAG1=0

THEN DO;
E = 0 ;
CALL SIMPLEX;
PUT S KIP(3) LIS T(’NO FEASABLE

SOLUTION’);
MINRW=0;
END ;

ELSE
CALL PIVOT;

END ;
END;

DO M=1 TO 20 UNTIL (FK=0);

74

IF(((A(0,0)-FLOOR(A(0,0)))>1E-10)
&((CEIL(A(0,0))-A(0,0)>1E—10)))

THEN DO;
CALL ROUNDA;
CALL PCUT;PUT SKIP LIST(’PARALLEL CUT’);
L = N ;

CALL LEXMIN;
CALL PIVOT;
DO UNTIL(MINRW=0);

CALL MINROW;
IF MINRW=0
THEN DO;

L=0; E=0;
CALL PRNTSOL;

END;
ELSE DO;

L=MINRW;
CALL LEXMIN;
IF FLAG1=0
THEN DO;

E = 0 ;
CALL SIMPLEX;
PUT SKIP (3) LIST(’NO FEASIBLE

SOLUTION’);

MINRW=0;
END;

ELSE CALL PIVOT;

75

END;
END;

END;
ELSE PUT SKIP(3) LIST(’Z IS INTEGER ’);
CALL ROUNDA;
CALL FIRSTFRACTION;
IF FK=0
THEN

DO;
PUT SKIP LIST(’INTEGER SOLUTION’);
CALL PRNTSOL;

END;
ELSE

DO;
IF M=2 I M=3

THEN
DO;
CALL UPBRANCH; PUT SKIP LIST(’UP BRANCH’);
IF COL_UP=0
THEN PUT SKIP LIST(’UP BRANCH IS INFEASIBLE’);
ELSE

DO;
E=COL_UP;
L = N;

END;
END;

ELSE

7 6

DO;

CALL DNBRANCH; PUT SKIP LIST(’DOWN BRANCH’);
IF COL_DN=0
THEN PUT SKIP LIST(’DOWN BRANCH IS INFEASIBLE’);
ELSE

DO;
E=COL_DN;
L = N ;

END ;
END;

CALL PIVOT;
DO UNTIL(MINRW=0);
CALL MINROW;
IF MINRW= 0
THEN DO;

L=0; E=0;
CALL PRNTSOL;

END ;
ELSE DO;

L=MINRW;
CALL LEXMIN;
IF FLAG1=0
THEN DO;

E = 0;
CALL SIMPLEX;
PUT SKIP (3) LIST(’NO FEASIBLE

SOLUTION’);

77

MINRW=0;
END;

ELSE CALL PIVOT;
END;

END;

END;

END;

PUT SKIP EDIT(’M=*,M)(A,F(3));
/I*;:*:*************:*******:**:***********::*:***********/

/♦ THIS GIVES THE CONTINUOUS SOLUTION ♦ /
/*$£$£♦♦/
/♦♦♦♦*****♦♦♦*♦***♦*♦♦*♦♦♦*♦♦**♦♦**♦♦♦♦♦♦♦/
/♦ NEWROW ♦ /
/♦LOAD THE ROW TO OBTAIN DUAL FEASABILITYV
/***/

NEWROW:PROC;
S UM-0;
DO J = 1 TO P;
SUM=SUM+ABS(A (0,J));
A (N , J) = 1;

END;
SUM1=0;

DO 1=1 TO R;
SUM1=SUM1+ABS(A (I,0));

END;

IF SUM1>SUM+10
THEN A (N , 0) = S U M 1 ;

ELSE A (N , 0) = S UM *10;
END NEWROW;
/** /

/* MINCOLM */
/* FINDS MOST NEGATIVE COST COEFFICIENT */
/**/

MINCOLM: PROC;
FLAG=0;
MINCOST=-.0001;
MINCOL=0;
DO J = 1 TO P;

IF MINCOST>A(0,J)

THEN DO;
FLAG=1;
MINCOST=A(0,J);
MINCOL=J;
END;

END;
END MINCOLM;

/***************************/

/* FINDS MOST NEGATIVE ROW */
/***************************/

MINROW: PROC;
MINACT=-.00001;
MINRW=0;
DO 1 = 1 TO N;

IF A(I,0)<-.00001

7 9

THEN
IF MINACT> A (I,0)
THEN DO;

MINACT= A(I,0);
MINRW = I;
END;

END ;
END MINROW;

/* FINDS THE MIN COLUMN */

Z * Z

LEXMIN: PROC;
MINC = 10E11;
FLAG 1=0;
DO J= 1 TO P;

IF A(L,J)<-.0001
THEN IF

MINC>ABS(A(0,J)/ACL,J))
THEN DO;

FLAG1=1;
MINC=ABS(A(0,J)/A(L,J));
E =J;
END ;

END ;
END LEXMIN;

/*********************/

/* CALCULATES A(I,J) */

80

PIVOT: PROC;

T=TIME; MILLI=SUBSTR(T,5,5);T1=MILLI;
DO 1=0 TO N;

IF 1^=1 THEN
DO J=0 TO P;

IF J/' = E THEN
A(I,J)=A(I,E)*A(L,J)/(-l*A(L,E))+A(I,J);

END ;
END ;
DO 1=0 TO N;

IF I~=L THEN

A(I,E)=A(I,E)/(-1*A(L ,E));
END ;
DO J=0 TO P;

IF J~=E THEN A (L ,J)=0;
ELSE A (L ,E)=-1;

END ;
T=TIME; MILLI=SUBSTR(T,5,5);T2=MILLI;
IF T2> =T1 THEN
ELAPSED_TIME=T2-T1;

ELSE DO T2=T2+60;
ELAPSED_TIME=T2-T1;END;

PUT SKIP(2) EDIT(*ELAPSED TIME = ’,ELAPSEDTIME)(A,F(5))
PUT SKIP EDIT(*Z=*,A(0,0))(A,F(16,8));

/*********************/

END PIVOT;

/* PRINTS THE SIMPLEX */
/**********************/

SIMPLEX: PROC;
/* L IS LEAVING VARIABLE, E IS ENTERING COLUMN*/
PUT SKIP(3) EDIT(’L=’,L)(COL(2),A,F(3));
PUT SKIP(2) EDIT(* E = *,E)(COL(2),A ,F(3));
DO 1= 0 TO N;

PUT SKIP(2) LIST(’ *);
PUT EDIT((A(I,J) DO J=0 TO P))(F(9,1));

END ;
PUT SKIP(3) LIST(’******************************’)
END SIMPLEX;

/*******************/

/* PRINTS SOLUTION */
/*******************/

PRNTSOL: PROC;
DO 1=0 TO P;

IF 1=0 THEN
PUT SKIP(2) EDIT(’OPTIMAL VALUE’,A (0,0))

(COL(2),A,F(12,5)) ;
ELSE PUT SKIP(2) ED IT(’X’ ,CHAR(I), * = * ,A (1,0))

(COL(2),3 A,F(12,5));

END ;

/**********************/

END PRNTSOL;

8 2

/* ROUNDS TO INTEGERS IF THE VALUES ARE */
/* WITHIN E-10 OF AN INTEGER */
/I***/

ROUNDA: PROC;
DO 1=0 TO N;

DO J=0 TO P;
IF (A (I,J)-FLOOR(A(I,J)))<1E-10
THEN A (I,J)= FLOOR(A (I,J));
ELSE IF (CEIL(A(I,J))-A(I,J))ClE-10

THEN A(I,J)=CEIL(A(I,J));
END;

END;
END ROUNDA;

/***/

/* PARALLE L CUTTING PLANE */

/* CUTS Z TO INTEGER VALUE */

PCUT: PROC;
K=0;FK=0;
DO 1 = 0 TO P UNTIL (FK/' = 0);

FK=A(I,0)-FLOOR(A(1,0));

K= I;
END;
IF FK=0
THEN PUT SKIP(3) LIST(’INTEGER SOLUTION’);

83

ELSE DO;
N = N+1;
A (N ,0)= -FK;

DO J=1 TO P;

A (N ,J)=FLOOR(A (K ,J))-A(K,J);
END;

END ;
END PCUT;

/t*****************^*******t******/

/* FINDS FIRST FRACTIONAL VALUE */
/* IN THE FIRST COLUMN */
/*********************************/

FIRSTFRACTION: PROC;
FK = 0; K = 0 ;
DO 1=1 TO P UNTIL(FK~=0);

FK=A(I,0)-FLOOR(A(I,0));
IF FK~=0

THEN
DO;

K= I;
PUT SKIP EDIT(*FK=*,FK,’K=’,K)(A,F(5,2),A,F(3));

END;

END;
END FIRSTFRACTION;

/ * /

/* ADDS DOWN BRANCH IF IT IS FEASIBLE */

/t***************************************/

84

DNBRANCH: PROC;
QUO=IE10; COL_DN=0;
DO J=1 TO P;

IF A (K ,J)> 0
THEN

IF QU0>A(0,J)/A(K,J)
THEN

DO;
QUO=A(0,J)/A(K,J);
COI_DN=J;

END;
END ;
IF COL_DN~=0
THEN

DO;
N = N + 1;
A (N ,0)=-FK;
DO J = 1 TO P;

A (N ,J)=-A(K ,J);
END;

END;
END DNBRANCH;

/***********#****************************/

/* ADDS UP BRANCH IF IT IS FEASIBLE */
/^****************************t**********/

UPBRANCH: PROC;
QUO=IE 10; COL_UP=0;

85

DO J=1 TO P;
IF A(K,J)<0
THEN

IF QUO>ABS(A(0,J)/A(K,J))
THEN

DO;
QUO=ABS(A(0,J)/A(K,J));
COL_UP=J;

END ;
END ;
IF COL_UP~=0
THEN

DO;
N = N+1;
A(N ,0)= FK-1;
DO J=1 TO P;

A (N , J) = A (K , J) ;
END;

END;
END UPBRANCH;
PUT SKIP(2) LIST(’IBM6 PARALLEL CUTS WITH

END LEXDUAL;
//LKED.SYSPRINT DD DUMMY
//GO.SYSPRINT DD SYSOUT=A
//GO.SYS IN DD *

AND B ’);

/*

8 6

APPENDIX C
MACROS USED IN THE C PROGRAM

/******* macro definitions *********/
♦define GETPROB(D1,D2) \ /* USED IN THE ASKFOR MONITOR

if (m > -I) \ TO GET THE MAXIMUM UPPER
{ \ BOUND VALUE AND SUBSCRIPT */
MAXZ(); \
D1 = br; \
D2 = 0; \

}

♦define RESET \
m = -1;

♦define PROBSTRT \
MENTER(si,0) \
m = 0; \
CONTINUE(sl,0,0) \
MEXIT(s1,0)

87

#def ine MENTER(D1,D2)
#def ine CONTINUE(D1,D2 ,D3)
#def ine ME XIT(D1,D2)
#def ine NEWPROC(D1)
#def ine AINIT(Dl) /*

#def ine ADEC(DI) /*

#def ine BARINIT(Dl) /*

#def ine LOCKINIT(D1) /*

#de fine LOCKDEC(D1) /*

#def ine LOCK(D1) /*
#def ine UNLOCK(D1)
#def ine BARRIER(D1,D2) /*

#def ine PROBEND(D 1,D2) /*

#def ine PROGEND(D1) /*

#def ine CREATE(Dl) /*

♦define CLOCK(D1) D1=0;
#def ine ASKF0R(D1,D2,D3 i 04

/* ENTER THE MONITOR */

/* LEAVE THE MONITOR */

/* START NEW PROCESS*/
INITIALIZE THE ASKFOR MONITOR */
DECLARE THE ASKFOR MONITOR */
INITIALIZE THE BARRIER MONITOR*/
INITIALIZE THE LOCKS */
DECLARE THE LOCKS */
USED F6R PRINT STATEMENTS */

DEFINED BY LUSK & OVERBEEK */
END OF PROBLEM */
END OF PROGRAM */
CREATES PROCESSES */

D5) D2 = 1; D4
/* DEFINED BY LUSK AND OVERBEEK */

8 8

APPENDIX D
C LANGUAGE PROGRAM FOR THE PARALLEL BRANCH AND BOUND
ALGORITHM WITH MACROS, FOR THE DENELCOR HEP, ARGONNE

NATIONAL LABORATORY

1. finelude<stdio.h>
2. #include<math.h>
3. int N [20] ,br,rc,m ,lb,elk 1,clk2,pct;
4. int p ,q ,r ,numprocs;
5. double B [50][16][20],Z [20],C ,LB;
6. NEWPROC(slave)
7. ADEC (si)
8. LOCKDEC(3)

9. main()
10. {
11. /* load requirements b(i) and activities a(i,j)*/
12. int i , j , flag, mi n e d , sum , suml;
13. double mlncost,ffchek();
14. AINIT(sl)
15. LOCKINIT(3)
16.
17. scanf("£d",&numprocs);
18. printf(" numprocs = £d\n",numprocs);
19. scanf("£d %d Sd",&p,&q,&r);
20. printf("p= £d q= £d r= £d\nM ,p ,q ,r);

2 1 .

8 9

22. for(i=p+l;i<r+l;i++){
23. for(j=0;j <p+l;j++)
24. {
25. scanf(n%fn,&B[i][j][0]);
26. }
27. }
28. /* load non basic variables */
29. for(j=l;j<p+l;j++){
30. B[jJ[j][0J=(-l);
31. >
32.
33. /* load cost coefficients c(j) */
34.
35. for(j = l;j <p+l;j++){
36. scanf("*fM,&B(0][j]f0]);
37. Bf0][j][0]=(-l)*B[0][j][0];
38. >
39. m = 0;
40. /* find most negative cost coefficient */
41. pct=0;
42. flag=0;
43. mincost=(-.0001);
44. mincol=0;
45. for(j=l;j<p+l;j++){
46. if(mincost>B[0][j][0])
47. {

9 0

48. flag=l;
49. mincost = B [0] fj] [0] ;
50. mincol=j;
51. }
52. }

53. if(flag==l){ /* dual infeasible */
54. r=r+l;
55. /* add a new row of l ’s */
56. sum=0;
57. for(j=l;j<=p;j++){
58. sum=sum+fabs(B [0][J][0]);
59. Bfr] fj] f0] =1;
60. }
61. sum1 = 0;

62. for(i=l;i<=r;i++){
63. suml=suml+fabs(B[i][0][0]);
64. }
65. if(sural>sum*10){
66. B [r][0][0]=suml;
67. >
68. else{
69. Bfr][0][0]=sum*10;
70. }
71. pivot(r, m,r,mincol);
72. printsol (■) ,*
73. } /* The siraplex is now dual feasible */
74. /* Now we try for priraal feasibility */

91

75. LB=(-10el0);
76. primal(r,m);
77. /* Uses Primal to obtain the primal solution */
78. C=zrO]=B[0][0][0];
79. N [0]=r;
80. printf("CONTINUOUS SOLUTION IS Xf\n",C);
81. /***********♦**♦***********♦******♦****/
82. /* This Gives The Continuous Solution */
83. /**************************************/

84. if(ffchek(m)==0){
85. printf("CONTINUOUS SOLUTION IS INTEGER\n");
86. 1 b = 0 ;
87. goto answer;
8 8 . }

89. /a*****************/

90. RESET
91. for (i=l; i < numprocs; i++) {
92. CREATE(s1ave);
93. }
94. CLOCK(clkl)
95. PROBSTRT
96. work (*m *);
97. CLOCK(clk2)
98. PROGEND(sl)
99. /*******♦**********/

100. answer:

92

101. printf("pivot count =Xd\n",pet);
102. printf("\nm=Xd\n",m);
103. printf("INTEGER SOLUTION Z[Xd]=Xf\n",lb,B [0][0] [lb]) ;
104. printf(" \n total time was Xd\n", clk2 - clkl);
105. printf("lb=%d LB=%f\n",lb,LB);
106. printsol(lb);
107. } /* end main */
108. /**/
109. /* subroutines */
110. /**/

HI./**/
112. /***************************/

113. slave () { work (’s ’); }
114. /a**************************/

115. /**/
116. work (who)
117. /**/
118. char who;
119. {
120. int i, j, mw,n, brw, arc;

121. double ffchek();

122. for (;;) { /* forever */

123. ASKFOR(s1,arc,numprocs,GETPROB(brw,arc),RESET)

124. if (arc == -1 !! (arc != 0 && who == ’m *))

125. b reak;

126. if (arc != 0) continue;

9 3

127.
128.
129.
130.
131.
132.
133 .
134.
135 .
136.
137.
138.
139.
140 .
141 .
142.
143.
145.
146.
147.
148.
149.
150.
151.
152.
153.

if(pct> = 100 m> = 19){ /* safety valve */
LOCK(1)
printf("pivot count=Xd\n",pet);
UNLOCK(1)
break;

}
/*****************/

n = N [b rw];
dnbrn(n, brw); /* adds the down row */
i f(dnbrn(n ,b rw)= = 1) printf("error\n");
MENTER(s1,0)
m=m+l; mw=m;
Z [m]=(-10e5);
ME XIT(sl,0)
for(i = 0;i< = n;i++){

for(j = 0;j< = p;j + +)
B [i][jJ[mw]=B[i]fj][brw]; /* copies node */

}
upbrn(n,mw); /* adds the up row */
N[brw] = N[inw] = n + l;
if(Z[brw]<(—10e6)) goto nosoll;
n=N[brw];
primal(n ,brw); /* calculates the down node */

/********************************/

if(B[0][0][brw]>LB){
if(ffchek(brw)==0){/*check for integer vector*/

1 5 4 . i f (B [0] [0] [b r w] != f l o o r (C)) {

9 4

155.
156.

157.
158.
159.
160 .
161.
162.
163 .
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175 .
176.
177.
178.

179.
180.

LOCK(1)
printf("NEW INTEGER LOWER BOUND,
Zd[a»d]=*f\n" ,brw, B [0] [0] [brw]) ;
UNLOCK(1)
if(LB<=(-10e5) !! B [0][0][brw]>=LB){

LB = B [0] [0 J [brw] ;
MENTER(s1,0)
Z [b rw]=(-10el0);
ME XIT(s1,0)
lb =brw;
f o r (i = 0;i< =mw;i + +) {

if(LB<f1oor(Z [i])) goto nosoll;

}
}

}
lb=brw;
if (who == ’ goto endwork;

}
}
MENTER(sl,0)
Z[brw]=B[0][0][brw];
ME XIT(s 1,0)

nosoll:
/I**/

if(Z (mw]<(-10e6)) goto nosolu;

n = N [mw];
primal(n ,mw); /* calculate the up node */

95

181.
182.
183.
184.
185.
186.

186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.

/ft**/

if(B[0J[0][mw]>LB){
if(ffchek(mw)==0){/* check for integer vector */

if(B[0][0][mw]!=floor(C)){
LOCK(1)
printf("NEW INTEGER LOWER BOUND,
Zu[*d]=*f\n”,mw,B[0][0][mw]);
UNLOCK(1)
if(LB<=(-10e5) !I B [0][0](mw]>=LB){

LB=B[0][0][mw];
Z [mw]=(-10el0);
lb=mw;
f o r (i = 0 ;i< = mw;i + +){

if(LB<f1oor(Z[i])) goto nosolu;

>
}
lb =mw;
if (who == ’m ’) goto endwork;

}
}

/♦it:**/

MENTER(s1,0)
Z [mw]= B [0][0] [mw];
MEXIT(sl.O)

nosolu:printf(”");
} /* end forever */
endwork:return (0); } /*end work */

96

207. MAXZ()/* Calculates the present Maximum Upper Bound*/
208. /***/

209. {
210. int i,frc;
211. double MAX;
212. b r =(-1);
213. rc=(-1);
214. f rc = 0;
215. MAX=LB;
216. for(i=0;i<=m;i++){
217. if(Z [i]< =LB && Z[i] > (-10e4)){
218. Z[i]=(-10el0); /*N0DE FATHOMED*/
219. printf("node Z[%d] fathomed \n",i);
220. continue;
2 2 1 . }

222. if(Z [i]>MAX && Z [i]>(-10e4)){
223. MAX=Z[i];
224. br= i;
225. rc=0;
226. }
227. if(Z[i]>(-10e6) && Z [i]<(-10e4)) frc=l;

228. } /* end for */
229. i f(rc = = 0) Z[br] = (-10e5);
230. else if(frc==l) rc=l;
231. return(0);
232. } /* end MAXZ */

206. /**/

97

233. /***/

234. /***/
235. primal(n , x) /* Uses Pivot and Lexmin

to obtain the primal solution */
236. /**/
237. int n , x ;
238. {
239. int L, E;
240. do{
241. L=minrow(n, x);

242. if(L!=0){
243. E=lexmin(x ,L);

244. i f(E !=0){
245. pivot(n,X|L,E);
246. L0CK(1)
247. printf("Z[%d]=%f\n",x,B[0][0][x]);

248. UNLOCK(1)
249. if(floor(B[0][0][x])<=LB){
250. L=0;
251. MENTER(s1,0)
252. Z[x]=B[0J[0][x]=(-10el0);
253. MEXIT(s1,0)
254. LOCK(1)
255. printf("NODE Z[*dJ FATHOMED\n",x);
256. UNLOCK(1)

257. }
else printfC”'*);258.

98

259. }
260. else{
261. MENTER(s 1,0)
262. Z[x]=B[0][0][x]=(—lOelO);
263. MEXIT(s1,0)
264. LOCK(1)
265. printf ("No Feasible Solution for Z[S>d]\n",x) ;
266. UNLOCK(1)
267. L=0;
268. }
269. }
270. }
271. while(L !=0);
272. } /* End Primal */
273. /***/

274. pivot(n, x, L, E)
275 /* Performs the pivot operation on the Simplex */
276. /***/

277. int n , x, L, E;
278. {
279. int i, j;
280. pct=pct+l;
281. for(i=0; i <= n; i++) {
282. if (i != L){
283. for (j=0; j<=p; j++) {

if (j != E){284.

285. B[i][j][x]=B[i][E][x]*B[L][j]fx]
/((—1)*B[L][E][x])+B[i][j][x];

286. }
287. }
288. }
289. }
290. for(i=0;i<=n;i++){
291. if(i!=L){
292. (B [i] [E] [x]=B[i] [E] [x]/((-1)*B[L] [E] fx]))
293. }
294. }
295. for(j=0;j<=p;j++){
296. if(j!=E)(B[L][j][x]=0);
297. else(B[L][E][x]=(-l)>;
298. }
299. return(O);
300. } /* end pivot*/
301. /***/

302. minrow(n, x) /* Finds the most neg. row */
303. /***/

304. int n, x;
305. {
306. int i.minrw;
307. double minact;
308. minact=(-.00001);
309. minrw=0;
310. for(i=l;i<=n;i++){

100

311. if(B[i][0][x]<(-.00001)){
312. if(B[i][0][x]<minact){
313. minact=B[i][0][x];
314. minrw=i;
315. }
316. }
317. }
318. return(minrw);
319. } /* end minrow ♦/
320. /a:***/

321. 1exmin(x ,L) /* Finds the minimum column */
322. /**/

323. int x ,L ;
324. {
325. double mine;
326. int j ,E ;
327. minc=10ell;
328. E=0;
329. for(j=l;j<=p;j++){
330. if(B[L][j][x]<(-.00001)){
331. if(minc>f ab s(B[0][j][x]/B[L] [j] [x])){
332. minc=fabs(B[0][j][x]/B[L][j][x]);

333. E=j;
334. }
335. }
336. }
337. return(E);

101

338. } /* end lexmin */
339. /**/

340. double ffchek(x)
341. /*Checks for an integer lower bound */
342. /**/

343. int x;
344. {
345. int i;
346. double ff;
347. for(i=l;i<=p;i++){
348. f f = (B [i J[0][x])-floor(B[i][0][x]);
349. if(ff>0.000000001 && ff<0.999999999) break;
350. }
351. if (ff< = 0.000000001 f f> = 0.999999999) ff = 0.0;
352. return(ff);
353. } /* end ffchek */
354. /I**/

355. dnbrn(n, x) /*Adds Down Branch if it is Feasible*/
356. /**/

357. int n , x ;
358. {
359. int i,j,k,coldn;
360. double quo.fk;
361. for(i=1;i<=p;i++){
362. fk=(B[i][0][x])-floor(B[i][0][x]);
363. if(fk>0.000000001 && fk<0.999999999){
364. k = i;

365. break;
366. }
367. >
368. if(fk<=0.000000001 :: fk>=0.999999999) return(l)
369. quo=lel0;
370. coldn=0;
371. for(j=l;j<=p;j++){
372. if(B[k] [j] [x]> 0){
373. if(quo>(B[0] [j] [x]/B[k] [j] [x])){
374. quo=B[0][j] [x] / B [k] [j] [x] ;

375. coldn=j;
376.)
377. }
378. }
379. if(coldn!=0){
380. n++;
381. B[n][0][x]=(-fk);
382. for(j=l;j<=p;j++){
383. B[n][j][x]=(-B[k][j][x]);
384. }
385. }
386. else{
387. MENTER(s1,0)
388. Z [x]=(-lOelO);
389. MEXIT(s1,0)
390. } return(0);
391. } /*end downbranch*/

103

392. /** */
393. upbrn(n, x) /*Adds Up Bran ch if it is Feasible */
394. /************** *************** ***************** */
395. int n , x ;
396. {
397. double quo,fk;
398. int i,J ,k,colup;
399. for(i=l;i<=p;i++){
400. fk=(B[i][0][x])-floor (B [i] [0][x]);
401. if(fk>0.000000001 && fk<0 .999999999){
402. k = i ;
403. break;
404. >
405. }
406. quo=1e10;
407. colup=0;
408. for(j=l;j<=p;j++){
409. if(B[k][j][x]< 0) {
410. if (quo > fabs(B[0] [j] [x] / B[k] [j] [x])){
411. quo = fabs(B[0] f j] tx] / B [k] [j][x]) ;
412. colup = j;

413. }
414 . }
415. }
416. if(colup!=0){

417. n++;
418. B[n][0]fx]= fk-l;

104

419. for(J = 1;j<=p;j++){
420. B[n][j][x]=B[k]fj][x];
421. }
422. }
423. else{
424. MENTER(sl.O)
425. Z[x]=(—lOelO);
426. MEXIT(s1,0)
427. }
428. return(0);
429. } /* End Up Branch */
430. /***/

431. printsol(x) /* Prints the solution */
432. /***/

433. int x;
434. {
435. int i,j;
436. printf("\n");
437. for(i=0;i<p+1;i++){
438. printf("\n");
439. printf("x(Xd)= *f",i , B [i] [0][x]);

440. }

441. printf("\n");
442. printf("\n");
443. } /* end printsol */

	A Parallel Branch and Bound Algorithm for Integer Linear Programming Models
	Recommended Citation

	tmp.1634564321.pdf.Vfwt2

