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ABSTRACT

A parallel branch and bound algorithm is developed for 
use with MIMD computers to study the efficiency of parallel 
processors on general integer linear programming problems. 

The Haldi and IBM test problems and a System Design model 
are used in the implementation of the algorithm. Initially 
the algorithm solves the Haldi and IBM test problems on a 
single processor computer which simulates a multiple 
processor computer. The algorithm is then implemented on 
the Denelcor HEP multiprocessor using two of the IBM 
problems to compare the results of the simulation to the 

results using an MIMD computer. Finally the algorithm is 

implemented on the HEP using the System Design model to 
show a case in which the number of pivots decreases as the 

number of processes are increased from seven to the process 

limit of sixteen.
In general, it is shown that super linear efficiency 

can be achieved using multiple processors.
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I. INTRODUCTION

A. STATEMENT OF THE PROBLEM.
The solving of integer linear programming models using 

the simplex method with a branch and bound algorithm lends 
itself naturally to implemention on a multiprocessor 
computer. The parallel implementation of components of a 
branch and bound algorithm on a multiprocessor computer 

gives rise to the possibility of achieving super linear 
efficiency. This means that n processors working in 
parallel can solve a given problem in fewer total 
operations than a single processor.

This paper describes a parallel branch and bound 
algorithm for solving integer linear programming models.
The algorithm uses a combination of parallel branch and 

bound techniques with and without parallel hyperplane cuts. 
Problems with some (0,1) variables were also investigated 

using a combination of the above techniques in combination 
with explicit enumeration. The algorithm was initially 
implemented using a single processor to simulate many 
processors working in parallel. This process was used to 
investigate the IBM and Haldi test problems [1] to 

demonstrate that parallel processors could achieve super 
linear efficiency. These problems were chosen since they 
were designed to test ILP algorithms, are well known and 
are considered small but difficult. The algorithm was then
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implemented on a multiple instruction stream, multiple data 
stream computer. The IBM-3 and IBM-4 test problems and a 

System Design model were chosen for investigation on the 
parallel processing computer to compare with the simulation 
results.
B . TECHNIQUES FOR SOLVING THE PROBLEM

The simulation was done using the PL/I language on the 
IBM 4381 computer. The computer simulated was a Multiple 
Instruction stream, Multiple Data stream (MIMD) type 
computer with a common memory as well as individual 

memories in each processor.
The algorithm was then programmed in the "C" .anguage 

and implemented on the Denelcor HEP multiprocessor at 
Argonne National Laboratory. The HEP is a general purpose 
computer that can handle multiple instruction streams and 
multiple data streams (MIMD) [APPENDIX A]. The macros used 
to implement the parallel algorithm were adapted from the 
FORTRAN macros written by Lusk and Overbeek [2,3] and the 
"C" macros written by Butler [4].
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II. LITERATURE SEARCH

The fields of parallel processing and integer linear 
programming (ILP) have, until recently, been studied by 
separate groups. This is evidenced by the fact that most of 
the literature on parallel processing is in the electrical 
engineering journals with very few articles concerning 
parallel processing appearing in the operations research 
journals. The number of papers published in the Proceedings 
df the, International Conference on Parallel Processing has 

more than doubled in the past five years. The early 
parallel computing machines which were built in the 
seventies were of the Single Instruction stream, Multiple 
Data stream (SIMD) type. Most of the commercially 
available multiprocessor computers today are still of this 

type [5].
The operations research community had been disappointed 

with the applicability of the SIMD type of super computer to 
mathematical programming (MP) in general and to linear 

algorithms in particular [6,7,8]. The hope now is that the 
Multiple Instruction stream, Multiple Data Stream (MIMD) [8] 

computers will help the field of M P . The main advantage 
MIMD computers have over SIMD computers in solving problems 
with systems of linear equations, is that the pivot step can 
be done in parallel with column operations [7]. Present MP 
applications are mostly in the area of matrix decomposition 
algorithms [6,7,9,10,11,12] and partial differential
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equations [13], with some in graph theory [14].
Techniques for obtaining parallelism include, dividing 

a single execution string into several concurrent "threads" 
[15] and dividing programs into sections that "reflect the 
logical structure" of the problem concerned [16,17].

Working with a parallel computer and global variables 
cause the concepts of mutual exclusion to be much more 
critical than in a sequential computer, and hence the use of 
locks, semaphores and monitors cannot be left to the 
operating system [17,18,19]. These topics will be discussed 
later in the paper.

Although the Branch and Bound algorithm for ILP seems 
to lend itself very naturally to parallelism, the work with 
this method has been restricted to the area of (0,1) 

implicit enumeration problems. Two of these papers are of 

special interest, Lai [20] and Gehringer et.al.[ll].
Lai deals with anomalies in the knapsack problem and 

the travelling salesman problem. Anomalies are defined in 
the following manner: If n processors take I(n) iterations 
to do a particular problem and m processors take I(m) 
iterations for the same problem and n m , the inequalities 
I(n)/I(m) <_ m/n and I(n) >_ I(m) should hold. If either of
these inequalities does not hold it is said to demonstrate 
anomalous behavior. Lai found that in the knapsack problem 

that anomalous behavior occurred in ten percent of the 
tests, and that no anomalous behavior occurred in the 
travelling salesman test problems. He found, in the
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knapsack problem, that the speed-up ratio I(n)/I(2n), (i.e.
doubling the number of processors), varied from 0.15 to 
14.6. Since the number of processors was doubled, the 
limits should have been 1.0 (i.e. taking as many iterations 
on twice as many processors) and 2.0 (i.e. taking half as 
many iterations using twice as many processors). He also 
felt that an acceptable ratio would have been 1.6.
Although it was not stated, it appears that this was to 
make up for added switching, communication and blocking 

time due to the extra processors. The binary state space 

tree was used, since it was believed that the use of an 
n-ary state space tree would have taken weeks of computer 

time to complete the simulation. Iterations were used as 
measurements but were referred to as time measurements, and 
since no parallel machine was mentioned, it is assumed that 
the work was done as a simulation.

Gehringer, Jones and Segall [11] reported on how the 

Carnegie-Me1Ion group [10], especially Raskin, used the Cm* 

[21] to compare the Cm* used as a multiprocessor and the Cm* 
used as a network. The Cm* consists of several mini

processors linked by intercluster busses. This architecture 
makes the computer behave more like several separate 
computers than a single multiprocessor. The problem was a 
set partitioning integer problem using an enumeration 

algorithm that performs an n-ary tree search in a large, 
relatively sparse binary matrix for a min-cost solution.
The matrix was two dimensional with a size usually in the
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order of hundreds by thousands. Greater-than-1inear speedup 
was obtained with a 10—processor Cm*. The speed-up ratio is 
the time for one processor to complete a task divided by the 
time for n processors to do the same task. For n processors 
to achieve at least linear speed-up, this ratio should be at 
least n. Greater-than-1inear speed-up in this case means 
that one processor will take more than n times as much time 
to complete a task as n processors will take doing the same 
task. In this algorithm’s initalization phase, a large 
number of possible solutions are put in a global stack, from 
which all the processors choose their work. As the search 
proceeds, the cost of the best solution found so far by any 
processor is stored as a global variable. All processors 
compare their current cost value to it and begin to 
backtrack in the search when the global cost is lower. The 
multiprocessor could be "lucky", in that one of its 
processors might encounter a near-optimal solution at the 

outset and then none of the processors would have to do very 
much work. The uni-processor version, which does not 
encounter the near optimal solution until later, has the 
disadvantage of having done a more complete search over the 
earlier possible solutions. The multiprocessor could also 

be "unlucky" if at the outset the near optimal solution is 
encountered by the uniprocessor. This would cause both the 
uniprocessor and the multiprocessor to enter at the same

time and therefore before the cost could be determined, the 
other processors in the multiprocessor version would have
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wasted processing tine on their initial solutions.
The conclusion concerning the ILP test runs was, that 

although greater— than-linear speed-up was obtainable, it 

will not usually be obtained. Greater-than-linear speed-up 
was obtained in one of the five integer programming runs 
using two through eight processors. All five runs produced 
approximately linear speed-up for two processors. For eight 
processors, the worst speed-up was 5.5 and the best was 9.75 
where 8 would be linear.

The literature in computer science is void of papers 
on the use of parallel processors in the solution of ILP 
problems using simplex type algorithms. The only papers 

which use parallel branch and bound techniques in ILP were 

those for the (0,1) type of problem such as AND/OR-tree 
searches, state space searches, game-tree searches and 
finding shortest paths in trees [22,23,24,25]. Most of 
these types of problems use only addition and subtraction 
since binary matrices are used. Those using weighting 
factors include some integer multiplication but none use 

floating point multiplication or division.
The simplex method [26], which is used on more general 

types of ILP problems, typically uses a large number of 

divisions on each pivot operation, and there are usually 
many pivot operations in a problem, hence the computational 

difficulty is much greater and much more prone to 
computational errors such as round-off. Taha [27] suggests
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that

such

enume

used

in the general ILP problems, a combination of methods, 

as branch-and-bound, cutting plane, and implicit 

ration, may give better results than any one method 

alone.
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III. PARALLEL BRANCH AND BOUND ALGORITHM

A. INTRODUCTION
Consider the integer linear programming model:

P
Maximize z= £ c(j)x(j)

j  =  l

P
subject to J a(i,j)x(j) b(i) i=l,2,...,n

j = l

x(j) >_ 0, integer

where n=number of constraints, p=number of variables, c(j) 
are the cost coefficients, a(i,j) and b(i) are constants in 
the constraints, x(j) are the variables and z is the 

objective function value.

B . THE ALGORITHM 

STEP 1.
Initialize Lower Bound (LB) = -10E10 (a number with a 

large enough absolute value to approximate negative 
infinity for the problem), state the number of 
processors and the initial simplex dimensions and then 

load the initial simplex.
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STEP 2 .
Calculate the continuous solution using the 
Lexicographical Column Dual Simplex Method. [27]

STEP 3 .
If the continuous solution is an all-integer solution, 
the problem is solved, so print the results and stop; 
otherwise, the final tableau of the continuous 
solution, referred to as a node, is stored as a layer 
of a three dimensional matrix (node storage) and the 
z-value (objective function value) is stored as an 
element of a Z-vector protected by an ASKFOR monitor 
[APPENDIX C] which prevents two processors from 
accessing the same node. The Z-vector elements are 

labeled Z(i), where i represents the level of the node 
in the node storage, and are not changed outside of the 

noni tor.
STEP 4 .
Any free processor (one that is not calculating a node) 
may ask the monitor for a simplex tableau with the 

maximum z—value (maximum upper bound node selection).
If there is no available node, either all the nodes are 

fathomed and the problem is finished or some node is 
being calculated by some other processor and the free 

processor waits for the next clock tick (100ns for the 
HEP) and tries again. If there is an available maximum
node at level i in the node storage, mark Z(i) to
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indicate that the node is being; processed and go to 
step 5.
STEP 5 .
Select the first row of the node obtained from step 4 
which has a non integer x variable value. This will be 
the row used to determine the branching variable (First 

Fraction Variable Selection). Add the down constraint 
to the simplex tableau and add the up constraint to a 
copy of the simplex tableau [27]. This gives the two 
branches (nodes) of the Branch and Bound Algorithm.
STEP 6 .
Calculate the LP solution at each of these nodes by the 
methods of step 2. During the calculation, after each 
pivot operation, the processor compares the floor of 

the z-value of the node it is calculating with the 
present lower bound after each pivot operation is 
performed, where the floor of a number is the greatest 
integer less than or equal to the number. If the floor 
of the z-value is less than or equal to the value of 
the lower bound, the node is fathomed. To indicate 
that a node is fathomed, set Z(i)=-10E10 which will be 

less than or equal to the lower bound so that node will 
no longer be considered. Otherwise, the pivots are 

continued until the simplex tableau is primal feasible. 

For each node, if the value of the objective function Z 
and the associated x values are integer, Z is compared 
to the present lower bound and if larger, set LB=Z(i)
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to indicate the new present lower bound. Whether 
integer or not, if the z-value is less than or equal to 
the present lower bound, the node is said to be 
fathomed. This means that no better solution will be 
found along that branch and hence it is pruned. When 

all nodes except the one with the present lower bound 
are fathomed, the problem is completed. If all nodes 
are fathomed and the lower bound is still negative 
infinity, there is no integer solution.
STEP 7 .
If a calculated node is not fathomed it is stored in 
the node storage matrix. The down node will replace 
the branching node and the up node will form a new 
layer in the node storage. If the node storage has any 
unfathomed nodes, go to step 4; otherwise, stop and 

print the results.

C . Levels of Parallelism
There are several levels of parallelism possible in the 

implementation of the algorithm.

Level 1.
Steps 4,5,6 and 7 are combined into one logical module. 

Each free processor:
(a) checks the monitor for an available node and

receives the node
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(b) adds the up constraint to a copy of the 
branching node and stores the uncalculated up 
node,
(c) adds the down constraint, calculates the down 
node, then
(d) calculates the up node, stores both results 
in the node storage and puts the z-values in the 

Z-vector.
Thus, any free processors will only have access to these 
nodes after both are calculated and stored.

Level 2 .
The same as Level 1 except change (c) and (d) of Level 
1 as follows:

(c*) adds the down constraint, calculates the down 
node, stores it in the node storage and puts the 
z-value in the Z-vector, then
(d*) calculates the up node, stores it in the node 
storage and puts the z-value in the Z-vector.

This gives the opportunity for a free processor to obtain 
the down node while the first processor is calculating the 

up node.

Level 3 .
The same as level 1 except, change (b) and (d) of Level 

1 as follows:
(b") adds the up constraint to a copy of the 

branching node and stores the uncalculated up node
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in the node storage, marking it as an uncalculated 
node,

(d”) stores the results in the node storage and 
puts the z-value in the Z-vector.”

When the up branch is examined by a free processor it will 
have the Z(i) value of the node before branching. This will 
put it back in equal contention with all available nodes.
The last line of step 4 of the algorithm would be replaced 
by:

If there is an available node, check to see if it is an 
uncalculated node. If it is, go to step 6; otherwise 

go to step 5.
Level 4 .

Another level of parallelism is also desirable if many 

processors are available and the Simplex tableaus are 
very large. When the pivot operation is called in any 
of the above steps, the processor is given the indexes 
of the leaving row and the entering column. It then 
performs the element operation n*p times, where p is 
the number of variables and n is the sum of the number 
of variables, the number of constraints and the number 
of branches already done. These operations are 
independent of each other and could therefore be 
assigned to different processors. This assignment of 

processors could either be done row by row or element 
by element. If by row, a processor is given a row 
index and it performs the p operations associated with
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that row. If by element, a processor is given the row 
and column indexes of the element it is to process.
Level 1 was used in a test version of the code on the 

HEP but was discarded because of its poor use of parallelism. 
Levels 1 and 2 are identical on a single processor but Level 
2 utilizes multiple processors better because it makes the 
down constraint available sooner. Level 2 was implemented 
on the Denelcor HEP for the IBM-3 and IBM-4 test problems. 
There is only one line of code difference in the two levels. 
Level 3 was used in the simulation for all of the test 
problems. The simulation was done before the HEP became 

available and extensive changes in the code including a 
different node storage would have been necessary to obtain 
Level 3 parallelism. Level 4 could be implemented using 
more monitors and using methods of calculating the simplex 
tableaus similar to methods in the literature involving 
Gaussian elimination techniques [7]. This would utilize 
idle processors but should not change the number of pivots.
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IV. SIMULATION OF A MULTIPROCESSOR

A. INTRODUCTION

A single processor was used to simulate the 
multiprocessor implementation of the Parallel Branch and 
Bound Algorithm. Level 3 parallelism was simulated using 
the IBM 4381 computer and the PL/I language program given in 
APPENDIX B. The simulation explored every node which could 
be applicable, which in most cases meant that every branch 
was pursued until either an integer lower bound was found, 
infeasibi1ity occurred or the node could not be used because 
of its value relative to the known solution and its location 
in the branching tree. Three ILP techniques were studied for 
simulating implementation on a multiprocessor: branch and 

bound, branch and bound with parallel hyperplane cuts, and 
branch and bound with (0,1) explicit enumeration.

B . BRANCH AND BOUND
Branch and bound with first fraction variable selection 

and maximum upper bound node selection was used in all 

s imulat ions.
The first fraction variable selection was used since it 
shortens the search for the branching variable in the node 
storage and uses only comparisons instead of calculating 

penalty functions.
The maximum upper bound node selection was chosen 

because of its simplicity, needing only a comparison search, 
and because of its favorable numbers of pivot calculations
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when compared with the more complicated penalty function 
methods [28].

The Beale and Small [27] method gains storage 
efficiency for sequential processing, especially in the case 
in which the first direction contains the solution. This 
efficiency is gained by the use of a stack type storage with 
backtracking. The use of backtracking makes the variable 
selection automatic for one processor but more complicated 
for multiprocessors. The use of multiple processors also 
necessitates a stack for each processor and hence this 
method was not pursued.
C. BRANCH AND BOUND WITH PARALLEL HYPERPLANE CUTS

The techniques of part B were combined with the
following addition. If a primal feasible solution does not 
have an integer z—value, a fractional cut is performed which 
is parallel to the objective function. This cut is called 
the "parallel hyperplane cut," and is performed immediately 
after a branching node is chosen and before the up and down 
constraints are added. This cut is different from the usual 
cutting plane techniques in that it is performed on the 

objective function row instead of a basic variable row.

D. BRANCH AND BOUND WITH EXPLICIT ENUMERATION ON SOME

(0,1) VARIABLES
The calculation of the continuous solution for the 

first node usually takes several pivot operations, hence in 
the case of using a dedicated multiprocessor, all processors 
but one are idle during this time. Since only one
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additional constraint has been added for the up or down 

branch, it quite frequently takes only one additional pivot 
to obtain the continuous feasible solution for the next 
node. To utilize the other processors while the first 
processor is calculating the first node, an explicit 
enumeration technique was used.

The explicit enumeration technique used gives one or 
more of the (0,1) variables the value 0 or 1 and then 

performs the calculations on the resulting simplex tableau. 
This tableau is smaller since at least one variable and row 

have been eliminated from the original tableau. An 

enumeration was performed by each free processor while the 
first processor was calculating the continuous solution for 
the first node. Since these processors were working on 
smaller simplex tableaus, it was hoped that they would have 
their results in fewer pivots than the first processor would 

need so their results would be ready for the first processor 
when it had completed its calculations. It was hoped that 
this would not only keep more processors busy while the 
continuous solution was being calculated, but might either 
give the solution or at least give a lower bound and hence a 
better idea of which variable to pursue next.
E. RESULTS USING THE THREE TECHNIQUES OH THE HALDI AND IBM

TEST PROBLEMS.
In all implementations, the number of pivot operations 

was used as a measure of performance since it was found that 
the time to do a pivot operation did not significantly
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change in a given problem as one row (up or down constraint) 
was added . The clock times available to this project on 
the IBM 4381 were in increments of ten milliseconds so were 
of little value.

IBM-1 through IBM-5 and HALDI-1 through HALDI-10 [1] 
were used as test problems in the simulation. The 
continuous solutions for the IBM-1, HALDI-7 and HALDI-8 were 
also the integer solutions so no branching was needed.

1. Branch and Bound Results. The results of the 
simulation of the parallel branch and bound algorithm using 
branch and bound techniques are given in TABLE I. Two of 
the twelve test problems (IBM-2 and HALDI-4) showed super 

linear efficiency, although the improvement was only one 
pivot operation less than with a single processor. Five of 
the test problems showed linear efficiency and five showed 
less than linear efficiency. Only HALDI-10 showed an 
increase of more than one pivot operation on the best of the 
multiprocessing tests over the single processor.

In general, after the optimal number of processors.has 
been reached, the addition of more processors causes the 
number of nodes and the number of pivots to increase. The 
exceptions are HALDI—5, HALDI—6 and HALDI—9 where both the 

number of pivots and the number of nodes remained constant 

regardless of the number of processors.

With the exceptions of IBM-3 and IBM-5, no test problem 
would utilize more processors than the number of variables 
in the problem. In the case of IBM-3 using eight
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TABLE I
BRANCH AND BOUND 

IBM-2
7 VARIABLES

# processors # pivots # nodes
1 12 5

2 12 5
3 11 6
4 12 7

5 Will not use 5 process o:

IBM-3
7 VARIABLES

rocessors # pivots # nodes

1 30 21

2 31 21

3 31 21

4 31 21

5 33 23

6 37 27

7 39 28

8 39 28

9 Will not use 9 processo
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TABLE I CONTINUED
BRANCH AND BOUND

IBM-4
15 VARIABLES

rocessors # pivots # nod

1 55 14
2 57 15
3 65 20
4 69 23
5 74 26

6 83 29
7 70 26
8 59 24

9 61 25

10 64 26

11 55 22

12 56 23
13 57 24
14 Will not use 14 processors
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#

#

TABLE I CONTINUED
BRANCH AND BOUND

IBM -5
15 VARIABLES

processors # pivots # nodes
1 526 251
2 526 251

3 527 251
4 527 251
8 532 252

HALDI-1 
5 VARIABLES

processors # pivots # nodes
1 14 9
2 15 9
3 16 11

4 15 10
5 16 11
6 Will not use 6 processors
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TABLE I CONTINUED
BRANCH AND BOUND

HALDI-2 
5 VARIABLES

rocessors # pivots # nodes
1 14 9

2 15 10

3 16 11

4 15 10

5 16 11

6 Will not use 6 processors

5
rocessors

HALDI-3
VARIABLES

# pivots # nodes

1 12 7

2 13 8

3 13 8

4 15 10

5 16 11

6 Will not use 6 processors
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TABLE I CONTINUED
BRANCH AND BOUND

HALDI-4 
5 VARIABLES

rocessors # pivots # nodes
1 14 8
2 15 9
3 13 8
4 15 10
5 16 11
6 Will not use 6 processors

HALDI-5
VARIABLES5

# processors 
1 
2
3
4
5 Will not

pivots # nodes
14 9
14 9
14 9
14 9

use 5 processors

#
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HALDI-6 
5 VARIABLES

# processors # pivots # nodes
1 1 1 7
2 1 1 7
3 Will not use 3 processors

TABLE I CONTINUED
BRANCH AND BOUND

HALDI-9
6 VARIABLES

# processors # pivots # nodes

1 13 7
2 13 7
3 Will not use 3 processors



TABLE I CONTINUED
BRANCH AND BOUND

HALDI-10 
12 VARIABLES

processors # pivots # nodes

1 39 9

2 43 11

3 54 14

4 53 14
5 51 17

6 57 19

7 Will not use 7 processors
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processors, the eighth processor performed only one pivot 
operation and following that calculation, two processors 
were idle. Although the simulation of IBM-5 was not carried 
out beyond eight processors, it appeared from the branching 
trees that more than fifteen processors might be utilized 
with very little change in the number of nodes visited, but 
with an increasing number of pivots.

The IBM-5 problem had almost no differences in the 
number of nodes visited in obtaining a solution because of 
the large number of distinct solutions which were at the 
same level of the branching tree. The slight differences in 
the relative number of pivots seemed to depend mostly on how 
many nodes were calculated with z-value floors that were the 
same as the z-value of the solution and on how many of their 
pivot operations were performed before this floor was 
obtained. For example, if -15 is the z-value of a feasible 
integer solution, whenever any pivot operation gives a value 
less than -14, its floor is then -15 so the node is 
fathomed. In the IBM-5 problem, the first feasible integer 
solution was the optimal solution regardless of the number 
of processors. Because of the enormous amount of time 
consumed simulating IBM-5 and the inability to see any 

useful patterns, further investigation of this problem was 
delayed until a large MIMD machine was available to check 
for possible patterns using parallel processors.

The IBM-4 problem seemed ideal for multiprocessors 
because of the path pursued using the sequential branch and
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TABLE II
BRANCH AND BOUND WITH PARALLEL CUTS

#

#

IBM-2
7 VARIABLES

cessors # pivots # nodes
1 12 4
2 11 4
3 12 5
4 will not use 4 processors

IBM-3
7 VARIABLES

ces sors # pivots # nodes

I 40 18
2 40 18
3 43 19
4 46 20
5 48 20
6 48 20
7 will not use 7 processors
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TABLE II CONTINUED 
BRANCH AND BOUND WITH PARALLEL CUTS 

IBM-4
15 VARIABLES

oces sors # pivots # nodes
1 90 23
2 73 21
3 83 24
4 58 20
5 54 19

6 57 21
7 53 20 best
8 54 21
9 55 22
10 56 23

11 57 23

12 58 24
13 will not use 13 processors

IBM-5
15 VARIABLES 

# processors # pivots
1 1137
2 1098

3 1133

7 1081

# nodes 
331 
327 
329

319 best
8 1131 330
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HALDI-1 
5 VARIABLES

# processors # pivots # nodes

TABLE II CONTINUED
BRANCH AND BOUND WITH PARALLEL CUTS

1 16 5
2 18 6
3 14 5
4 Will not use 4 processors

HALDI-2 
5 VARIABLES

# processors # pivots # nodes
1 19 7
2 14 5

3 13 5
4 Will not use 4 processors

HALDI-3 

5 VARIABLES
# processors # pivots # nodes

1 20 5

2 19 5

3 19 5
4 Will not use 4 processors
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HALDI-4 
5 VARIABLES

# processors # pivots # nodes
1 15 4
2 20 7
3 2 1 7
4 Will not use 4 processors

HALDI-5 
5 VARIABLES

# processors # pivots # nodes
1 2 1 7
2 2 1 7
3 2 1 7
4 Will not use 4 processors

TABLE II CONTINUED
BRANCH AND BOUND WITH PARALLEL CUTS

HALDI-6 
5 VARIABLES

# processors # pivots # nodes
1 16 5
2 16 5
3 Will not use 3 processors
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BRANCH AND BOUND WITH PARALLEL CUTS

HALDI-10 
5 VARIABLES

# processors # pivots # nodes
1 63 11
2 64 11
3 62 11
4 58 13
5 66 13
6 Will not use 6 processors

TABLE II CONTINUED
RANCH AND BOUND WITH PARALLEL CUTS
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processors increased, the efficiency increased, up to the 
maximum number of processors which would be used.

IBM-4 dropped from ninety pivots with a single processor 
to fifty-three pivots with seven processors.

These results sound very good since they show that a 
method is available which utilizes multiprocessors 
efficiently. However, these results need to be compared 
with the results obtained using Branch and Bound without 
parallel hyperplane cuts to get a more complete picture.

3. Comparison of Branch and Be^and with and without 
Parallel Hyperplane Cuts. TABLE III gives the comparison 
between the two methods. In all but IBM-2 the number of 
pivot operations for a single processor is smaller without 
the parallel hyperplane cuts than with them. In IBM-2 using 
two processors, the number of pivot operations is the same 
with or without the cuts.

In IBM-5 the comparison is significant since the number 
of pivot operations more than doubled when the cuts were 
added, causing more than five hundred extra pivot operations 
and visiting almost one hundred extra nodes.

The comparisons in IBM-4 start out almost as bad, with 
fifty-five pivot operations without the cuts and ninety 
pivot operations with them. However, as the number of 
processors increases, so does the efficiency of the parallel 

cuts. With seven processors, the parallel cuts give better 
efficiency than the single processor with or without the 
parallel cuts. HALDI-2 is the other problem in which three
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TABLE III
COMPARISONS OF THE TEST PROBLEMS 

USING SINGLE AND MULTIPLE PROCESSORS 
AND USING BRANCH AND BOUND WITH AND WITHOUT 

PARALLEL HYPERPLANE CUTS

Prob lent Single Multiple
Processor Processors

Performance Best Performance
Number of Number of Number of
Pivots Pivots Processors

Haldi-1 B&B 14 15 2,4
Haldi-1 + PC 16 14 3
Haldi-2 B&B 14 15 2
Haldi-2 + PC 19 13 3
Haldi-3 B&B 12 13 2
Haldi—3 + PC 20 17 3
Ha1d i-4 B&B 14 13 3
Haldi-4 + PC 15 20 2
Haldi-5 B&B 14 14 2,3,4
Hald i-5 + PC 21 16 3
Haldi-6 B&B 11 11 2
Haldi-6 + PC 16 16 2
Hald i-7 B&B The continuous solution was integer
Haldi-8 B&B The continuous solution was integer
Haldi-9 B&B 13 13 2
Haldi-9 + PC 13 13 2
Haldi-10 B&B 39 43 2
Haldi-10 + PC 63 58 4
IBM-1 B&B The continuous solution was integer
IBM-2 B&B 12 11 3
IBM-2 + PC 11 11 2
IBM-3 B&B 30 31 2,3,4
IBM-3 + PC 40 40 2
IBM-4 B&B 55 55 11
IBM-4 -t-PC 90 53 7
IBM-5 B&B 526 526 2
IBM-5 + PC 1137 1081 7

B&B = Branch and Bound without Parallel Cuts
+ PC = ♦branch and Bound with Parallei Cuts
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processors with parallel cuts perform better than one 
processor with or without parallel cuts. Also, in HALDI—2, 
the number of nodes visited with three processors using the 
parallel cuts is less than one half the number of nodes 
visited with three processors not using parallel cuts.

As was stated earlier, generally fewer processors will 
be used than the number of variables in the problem. Also, 
the optimal number of processors is about one half of the 
number of variables. These statements are true whether 
parallel cuts are used or not.

4. Results Using Explicit Enumeration Techniques.

The HALDI-10 test problem was chosen for solution by branch 
and bound using explicit enumeration, since it was the 
largest of the test problems which had (0,1) variables.
There are twelve variables in the HALDI-10 problem and six 
of these are (0,1) variables. Although only five or six 
processors could be used in the branch and bound method with 
or without parallel hyperplane cuts, seven processors were 
used in this case. Seven processors were chosen since there 
were six (0,1) variables. One processor would work on the 
continuous solution while the other six could be working on 
the (0,1) variables. On these other six, one of the six 
variables could be set equal to one and the other five set 
equal to zero. This would cut the size of the resulting 
problems in half and perhaps give some information about 
feasibility together with a lower bound. It was hoped the 
number of pivot operations performed by the processors doing
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the (0,1) enumerations would be considerably smaller than 
the number of pivot operations performed by the processor 
working on the continuous solution. However, no processor 
needed fewer pivot operations than the processor doing the 
continuous solution. The only (0,1) processor obtaining a 
feasible integer solution needed thirteen pivot operations 
while the continuous solution took only eleven. This not 
only gave the lower bound too late for immediate use, it 
also used a processor for two pivot operation periods that 
could have been used by one of the branches from the 
continuous solution. In addition, the lower bound given was 
too low to be of any value in the problem. The information 
given by the other five processors showed only that each of 

those solutions was feasible.
Better results were obtained by placing the (0,1) 

variables in the first columns, then any non-(0,l) value 
would be taken care of first and at a usual cost of two to 

four pivot operations per variable.
The results of this simulation are in TABLE IV.
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TABLE IV

HALDI-10 WITH ZERO-ONE ENUMERATION 
USING SEVEN PROCESSORS

Processor Duty # pivots value

1 Continuous Solution 11 18.709

2 x (1)=1,Other (0,1)=0 13 12 (INT)
3 x (2)=1,Other (0,1)=0 11 14.71

4 x(3)-l,Other o II o 12 11.33

5 x (4)=1,Other OIIrHO 12 9.11
6 x (5)=1,Other OIIr-4

o'—✓ 14 10.28

7 x (6)=1,Other (0,1)=0 11 10.87

OPTIMAL SOLUTION IS ,17
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V. IMPLEMENTATION OF PARALLEL ALGORITHM ON AN MIMD COMPUTER

A. INTRODUCTION
After the simulation was completed, the author became 

aware of an MIMD computer at Argonne National Laboratories 
which was available for graduate student research in 
parallel processing applications. This gave the opportunity 
for implementation of the Parallel Branch and Bound 
Algorithm on an MIMD machine.

Denelcor is the manufacturer of the machine which is 
called the HEP (Heterogeneous Element Processor). The HEP 
is described in APPENDIX A. Macros had been written to 
convert FORTRAN routines to routines for MIMD computers in 
general and the HEP in particular. Butler [4] translated 
some of these macros to the C language for use in his 
research. The adaptations of these macros for the parallel 
algorithm are given in APPENDIX C. The HEP had compilers 
for only the FORTRAN and C languages so the decision was 
made to convert the basic PL/I simulation code to the C 
language. The C language was chosen because of its 
ALGOL-like structure. The main problems in the basic 

translation were the lack of built-in functions which are so 
plentiful in PL/I and the subroutine structure which does 
not permit internal subroutines.
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B. PROGRAMMING THE HEP
The early attempts to convert the single processor 

version of the C language program to a multiple process 
version met with the many frustrations of trying to think in 
parallel. A program may run perfectly on a single processor 
but when the number of processes is changed to two, the 
computer may abnormally end with no reasons given. The HEP 
architecture uses the creation of processes rather than 
processors since several processes may be in the pipe at the 
same time on any processor.

The connection to the HEP is through a modem and 
telephone lines. System breakdowns are frequent and the 

causes are not always apparent even when the system is 
rebooted. Since the work on the computer is usually done 
late at night when the phone rates are less, rebooting the 
computer is not always possible until the next day.

The amount of memory given to this type of project was 
said to be about 1.5M. With double precision arithmetic, 
this amount of memory is too small to run the larger test 
problems, hence IBM-3 and IBM-4 were chosen. IBM-3 is a 
good test problem to check for robustness of the code on a 
single processor. It is small, several of the branches lead 
to infeasibities and round off error can cause some of the 
branch and bound coding techniques to miss the optimal 
integer solution and instead stop with a non-optimal integer 
solution. IBM-3 was therefore a good candidate for checking 
the algorithm and the C language code on the parallel
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process computer. IBM-4 was chosen because of the extensive 
simulation effort already done. The simulation had shown 
that a large number of ties (nodes with the same z-values) 
were encountered causing a large fluctuation in the paths 
taken to a solution. There are also several possible 
solutions.

The results from the HEP are printed in the order in 
which the information gets to the front-end-machine which 
handles the I/O and the control program. All processes 
compete for the I/O buffers. The results are not separated 
on the printout in terms of processes. The simulation 
results help to place results with processes.

Locks were used around all print statements. Without 
them, if two processes want to print at the same time, the 
printout is garbled with intermixed messages. Since locks 
slow the machine, fewer and shorter print statements were 
designed. The change in the size of print statements can 
have an effect on which node a process examines.

Global variables are needed so all the processes can 
have access to shared information. The Z-vector was 
protected by a monitor and not changed outside of it.
The code, given in APPENDIX D, has the access to this ASKFOR 
monitor on line 123. The finding of the next node to be 
examined is done through the GETPROB macro which is 
contained in the monitor.

The heart of the parallelism is the "work" subroutine. 
All other subroutines needed in the parallelism are called
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from this module. The part of the PL/I simulation program 
that was the main program has been replaced by lines 90 
through 98. These lines call the macros which CREATE the 
number of processes, time the parallelism, start the 
problem, call the "work" module and end the parallel part of 
the program.
C. RESULTS OF THE TEST PROBLEMS IMPLEMENTED ON THE HEP

Both IBM-3 and IBM-4 were run successfully as single 
processor problems on the VAX-11/780 at Rolla before 
transferring the code to the HEP. The problems were then 
run with "numprocs" (number of processes) set equal to one. 
More processes were then added to see whether the actual 
runs would agree with the simulation. Since the parallel 
processes code is written for level 2 parallelism, the 
original branching trees [27] were used to check the 
results. These results are given in TABLE V and correspond 
with the Level 2 simulation results. Clock times in units 
of 100ns were also given for the problems after the 
continuous solution was calculated and problems were being 
assigned to the multiple processors.

IBM-3 was run with one through six processes with very 
little difference in the numbers of pivots from the results 
obtained in the simulation. The times for parallelism 
indicated that two processes complete the problem in about 
one half the time of one processor. However, with three 
processes the number of pivots is larger and the time is not 
close to being as small as one third of the time for one
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TABLE V
IMPLEMENTATION OF LEVEL 2 PARALLELISM ON HEP

IBM-3

rocessors # pivots time in ns

1 30 250432900

2 30 139863000

3 31 123222300

4 33 119084700

5 34 120791500

6 37 131717100

IBM-4

'rocessors # pivots t ime in ns

1 55 979241500

2 123 1407789100

3 128 1073274500

4 154 1063886900

6 155 836087200

7 134 691446400

8 143 693102900
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processor. As the number of processes increase from four to 
five, the time actually increases by .001 sec, and the 
number of pivots increase from thirty-three to thirty-four. 
An increase of three pivots in going from five to six 
processes increases the time by .01 sec.

The IBM-4 results indicate a vast difference between 
implementation on the HEP using Level 2 parallelism and the 
simulation which used Level 3 parallelism (compare TABLE I 
with TABLE V). Level 2 causes the free processes to wait 
until the down node is calculated before the up node can be 
obtained for calculation, even though the up row had been 
added and the up node stored before the down row was added. 
Level 2 parallelism causes each process to act on more 
complete information before obtaining a node to process than 
level 3 parallelism does. This takes time, and in the case 
of IBM-4, caused the calculation of many more nodes than 

with level 3 parallelism.
Because of the difficulty involved in getting on the 

HEP and in staying on it for long enough periods of time to 
do multiple runs, IBM-4 was run using one, two, three, four, 
six, seven and eight processes. Another factor was, the 
IBM-4 problem used enough more memory with multiple 
processes (since each process is allotted its own memory), 
that sometimes memory exceptions would occur merely by 
changing the number of processes. Sometimes this would 

terminate the session.
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In going from one process to four, the number of pivots 

almost tripled while the processing time only went up 
slightly. With four processes, one of the processes (or 
combinations of processes) took the shortest path to a 
solution, but this was not enough to make up for all of the 
nodes calculated by the other three processes. With one 
process the shortest path to a solution was of length thirty- 
two, hence only twenty—three pivots were performed on other 
nodes, nineteen of which were performed to obtain the 
continuous solution. With three and four processes the 
shortest path to their solution was of length twenty-six, 
using the other pivots for other nodes (each of the 
solutions will have a shortest path).

With two and seven processes, the shortest path to 
their solution was of length thirty-five. In this case, two 
and one half times as many processes took half as much time 
to do only eleven more pivots. This shows that, not only 
was more work done with more processes but also, the average 

time per process per pivot increased. Six and eight 
processes took distinct paths with shortest path length of 
thirty four. The eight different numbers of processes found 
five different solutions.
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VI. A CASE STUDY

A. THE SYSTEM DESIGN PROBLEM
The following system design (SD) problem is described 

by Plane and McMillan [29].
An electric power company plans to build a steam 

generating plant capable of producing 2 million kilowatt 
hours of electrical energy per day. The major equipment in 
the plant will consist of boilers, generators, and 
condensers. The sources of supply for these pieces of 
equipment have been narrowed to 11 manufacturers. In TABLE 
VI are presented data relative to the equipment offered by 
these suppliers (A through K).

The power company wants to design that system which 
will meet the energy capacity of the plant with the least 
cost. The requirements are a follows:
A. The capacity of the set of generators selected must be 
at least 2 million kwh/day.
B. The steam requirements of the generators must be met by 
the combined capacities of the boilers selected.
C. The steam capacities of the set of condensers selected 
must be adequate to accomodate the steam capacities of the 

boilers.
D. Equipment of one supplier is interchangeable with that 
of another supplier except in the case of supplier A. Note 
that supplier A produces both boilers and condensers. The 
operating costs quoted for supplier A ’s boiler and condenser
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TABLE VI

EQUIPMENT OFFERED BY SUPPLIERS FOR THE SYSTEM DESIGN MODEL

Steam Electricity Initial Operat i ng
Kcfm Kwh/day Cost ($K) Cost $K/yr

Boilers (capacity)

X(l) A 100 50 50

X(2) B 140 75 60

X ( 3 ) C 90 60 40

X ( 4 ) D 80 50 20

Generators (requirements)

X (5 ) E 70 500 600 60

X ( 6) F 120 650 600 75

X ( 7 ) G 150 700 800 75

X ( 8 ) H 100 800 750 90

Condensers (capacity)

X (9) A 50 25 3

X(10) I 65 17 4

X(ll) J 70 20 4

X ( 12 ) K 55 13 2



4 8

are based on the assumption that each of A ’s boilers will be 
matched with two of A ’s condensers, since they constitute a 
matched set. If each and every one of A ’s boilers is not 
used with two of A ’s condensers then an added $10,000 annual 
operating cost can be expected.
E. Because of their size and shape it is impracticable to 
fit one of supplier F’s generators into the plant with one 
or more of supplier G ’s generators.
F. Supplier K ’s condensers are of such construction that 
they must be used in pairs.
G. Management has decided the initial capital outlay for 
the system should not exceed $2.3 million.

Assume the power company’s objective is to minimize the 
expected annual operating cost of the system, subject to the 
above constraints. This leads to the following integer 

linear programming formulation.
MAXIMIZE -50X(1)-60X(2)-40X(3)-20X(4)-60X(5)-75X(6)-75X(7) 

-90X(8)-3X(9)—4X(10)-4X(11)-4X(12)-10X(13)

SUBJECT TO
500X(5)+650X(6)+700X(7)+800X(8) 2000
100X(1)+140X(2)+90X(3)+80X(4) 
-70X(5)-120X(6)-150X(7)-100X(8) 0
50X(9)+65X(10)+70X(11)+110X(12) 1 100X(1)+140X(2)

+ 90X(3)+80 X(4) 

2X(1)-X(9) 1 100X(13)
X ( 6 ) <_ 4-4X ( 14 )
X (7) 1 3-3(1-X(14))



4 9

50X(1)+75X(2)+60X(3)+50X(4)
+600X(5)+600X (6)+800X(7)
+750X(8)+25X(9)+17X(10)

+20X(11)+26X(12) 1 2300
X(i) >_ 0, X(i) integer, and X(13),X(14) = (0,1) 

This problem is notorious for poor performance using 
cutting plane methods, especially the all integer cuts.
Syslo [30], did not obtain a solution after 15 minutes of 
computation time on an Amdahl 470 V/6 and 350,000 
iterat ions.
B . APPLICATION OF THE ALGORITHM

The SD problem was attempted using the VAX 11/780 with 
the dimensions of the node storage matrix declared as 
50,16,50, where the first dimension is the number of rows 
anticipated in the simplex tableau, the second is the number 
of columns and the third is the number of layers needed in 
the node storage. These were larger than any of the test 
problems except IBM-5. However, the problem did not run.
The first and third dimensions were then increased to 100, 
each with similar results. The problem was then partially 
simulated on the IBM 4381 to find what to expect for an 
upper bound on the dimensions. The number of layers of the 
node storage was found to be at least 117 and the number of 
rows needed to get there was determined to be no more than 
35. With new dimensions of 35,15,125, the problem obtained 
the solution in 501 pivots with a depth of 10 in the 
branching tree and a shortest path to the only solution
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obtained was of length 21.
This problem was larger than any of the IBM problems 

tried on the HEP. When the problem was attempted on the 
HEP, the error message indicated a memory problem and the 
program abnormally terminated. The next run brought the 
system down. The first attempt to take care of the problem 
was to call Argonne and ask for more memory, however it was 
not clear to the people there how this could be done and the 
Denelcor representative had just been changed. They did not 
think that it was a memory allocation problem.

The next attempt was to split the problem into two 
problems and test it on the UMR VAX, eliminating X(6) on one 
run and X(7) on the next. This would also eliminate X(14). 
In eliminating X(6), 124 levels of the node storage were
needed, 424 pivots were performed and all exposed nodes were 
fathomed with no integer solution. The elimination of X(7) 
proved more fruitful, giving the solution in 312 pivots, 
using 87 levels of node storage. The splitting, however 
took a total of 736 pivots with at least 624 needed if two 
processes communicated with each other to know when the 
solution had been found. Also, the size of the smaller 
subproblem was still too large to obtain a solution on the 
HEP if lack of allocated memory was the problem.

By cutting the dimensions down to 33,15,40, the HEP 
performed until these limits were reached with multiple 
processes. However, the algorithm did not get close to a 
solution, but verified that the code would run if the memory
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problem was corrected or more memory could be allocated.
The HEP, however, was not the problem. After system 

breakdowns at intervals of approximately two hours for 
almost a week, the problem was found to be in the way the 
VAX front-end-machine operating system was looking at the 
memory. The operating system was executing code which 
should never have been executed. Possibly a memory error 
was sending the code to the wrong place and thus causing the 
system breakdowns. New memory boards were installed and 
the system immediately went down. By hiding 4M of the 
original memory from the operating system and allowing it 
access only to the 8M of newly installed memory the system 
breakdowns stopped. Even though this memory problem was on 
the VAX and not the HEP, this temporary fix allowed a 
continuation of the study of the SD problem, although the 
memory problem with the front-end-machine has not been 
resolved. The current logon messages indicate a need to 
save results immediately since system breakdowns are still 

occurring daily.
The use of MIMD machines with their front-end and the 

associated operating system problems are still not fully 

unders t ood.
C. RESULTS USING THE HEP

Times in terms of 100ns intervals were taken for the 
parallel portion of the code (APPENDIX C, lines 94-97). 
Speedup is defined to be the quotient of the time for a 
single process to complete a task and the time for n
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processes to complete the same task. For n processes, 
linear speed-up would be n. If the quotient is greater than 
n, super linear speed-up is said to be obtained. Efficiency 
is as defined in CHAPTER IV.

The following results can be seen from TABLE VII. A 
speedup in time using two processes is 1.97 and linear 
efficiency is obtained. With three processes, a speed-up of 
2.86 and super linear efficiency is obtained. It was not 
until eight processes were in use that the super linear 
efficiency becomes significant where only 495 pivots were 
necessary. With 8,10 and 16 processes, successive runs 
sometimes gave a different number of pivots. This occurred 
because with that many processes, completion of a pivot and 
the reporting of the results to the Z-vector may occur in 
th'e same clock time (100ns interval) on two processes and 
therefore the same path to the solution may not always be 
followed . In these cases, the times varied slightly also, 
hence the times and number of pivots for these runs for a 
given number of processes were averaged.

D . CONCLUSIONS
As a general rule in the test problems, more processes 

than the number of variables should not be utilized.
However, in the SD problem which has 14 variables, not only 
were 16 processes utilized, but the efficiency generally 
increased as the number of processes increased. This 
indicates that in some real life type models, super linear
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TABLE VII

SYSTEM DESIGN MODEL RESULTS 
USING THE PARALLEL BRANCH AND BOUND ALGORITHM 

AND THE HEP MULTIPROCESSOR

Number of Average Number Average Number Seconds
Processors of Pivots in Parallel Processing

1 501 12.034
2 501 6.115

3 500 4.215

4 503 3.307

5 504 2.845

6 506 2.482

7 500 2.195
8 495 1.982

9 494 1.839

10 496 1.848

12 495 1.830

14 481 1.762

16 472 1.793
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efficiency can be obtained and the number of processes 

efficiently utilized may be more than was indicated by the 
test problems.
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VII. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

A. CONCLUSIONS
The use of parallel processing in the solution of 

general integer linear programming models is desirable in 
some cases as is evidenced by the study of the System Design 
model and the Haldi and IBM test problems.

Super linear efficiency is obtainable for some types of 
integer linear programming problems using parallel branch 
and bound techniques and the simplex method. In the System 
Design problem, as the number of processes was increased, 
better efficiency was achieved up to the maximum number of 
processes available. For the Haldi and IBM test problems, 
TABLE I shows that the best efficiency was obtained using 
approximately one half as many processes as the number of 
variables.

In general, if multiple processes give linear or super 
linear efficiency, there exists a point at which the 
addition of more processes degrade the performance. One 
reason for this is that with multiple processes, nodes are 
explored that would not have been explored with a single 
process. This can be seen in TABLE I and TABLE II by noting 
the number of nodes examined as the number of processes is 
increased. A way to overcome this is for multiple 
processes to pursue a shorter path to a solution. This may 

mean more nodes, but it must mean fewer pivots.
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TABLE I and TABLE II also show that there is an upper 
limit for the number of processes which can be utilized. 
There can never be fewer pivots performed by a process than 
the length of the shortest path to a solution. When some 
process, or combination of processes, uses this path, any 
additional processes added will not improve the efficiency. 
On the other hand, if the branch and bound algorithm using a 
single process causes a path other than the shortest one to 
be pursued, multiple processes may give better efficiency.

For single processors, the addition of parallel cuts 
generally did not improve the efficiency. In some problems, 
it more than doubled the number of pivots needed. Using 
parallel cuts generally started out inefficiently but 
improved as the number of processes was increased. The 
combination of parallel hyperplane cuts with branch and 
bound increased efficiency in only one fourth of the test 

problens.
The use of explicit enumeration in conjunction with 

branch and bound for the purpose of keeping processes busy 
does not seem to be efficient. A much better way to keep 
the extra processes busy while one process is finding the 
continuous solution would be to use level 4 parallelism.

The present code is portable between MIMD machines 
except for a few lines in some of the macros. The code is 
robust, giving correct answers to the System Design model 
and to the Haldi and IBM problems tested for which the 
allotted memory space allowed the program to finish.



57

The algorithm is general and leaves choices as to which 
path to follow in the branching tree. One such choice is 
which node should be chosen when there is a tie, that is 
whenever two nodes have the same z—value. This became 
evident when level 2 parallelism was used on IBM-4. For 
nodes with the same z-value, level 2 parallelism, combined 
with the storage numbering method of the program, caused the 
choosing of the smallest numbered node, whereas the 
simulation using level 3 parallelism used the 
first-in-first-out technique for choosing the node.
B . SUGGESTIONS FOR FUTURE RESEARCH

Brown and Almasi [31] believe that a new era in high 
performance computing is beginning which will be dominated 
by parallel computing and that its application will pace 
future development in manufacturing and knowledge-intensive 

i ndus tries.
The research started in this paper is now being 

continued in collaboration with Ralph Butler. Our research 
is centered on the implementation of level 4 parallelism.
As more memory becomes available for this type of research 
on the HEP or other MIMD type computers, larger problems 
could be used to test the algorithm.

Different techniques for handling the node storage 
could be tried which would use a different numbering system 
on the nodes. This may give a better way to tell which 

process is working with a particular node and make the 
tracing of shortest paths easier. It might also give more
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efficient use of the node storage, by eliminating a level 
from the storage as soon as the node is fathomed and reusing 
it. Some different method of keeping track of the best 
present lower bound would also need to be devised.

Techniques involving a combination of parallel 
hyperplane cuts with branch and bound may still have merit 
if used in a different way. An example might be to use the 
cuts only when the branch and bound technique gets the same 
z-value for two or three consecutive pivots, or nodes.

Parallelism should be investigated using new techniques 
for solving linear programming problems. Extensions to the 
C language like those suggested by Nacini [32] could also 
be studied.
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APPENDIX A

THE DENELCOH HEP (HETEROGENEOUS ELEMENT PROCESSOR)

The HEP is a large-scale, high-speed, general-purpose 
mainframe data processor. It is designed for applications 
that can effectively use a processing speed of 10 to 160 
million instructions per second (Mips). HEP achieves this 
throughput with a multiple instruction stream, multiple data 
stream (MIMD) architecture.

MIMD architecture allows user processes, or programs, 
to execute in parallel. Each process has its own independent 
instruction stream operating on its own data stream.
Processes cooperate by sharing data and solving parts of the 
same problem in parallel. In HEP, high-use logic functions 
are pipelined to further increase performance so that new 
inputs can start processing without waiting for previous 
input to finish. Also, all of the instruction streams and 
their active data streams are always in main memory; even 
though processes share the computing resource, no active 
time is required to load and store processes when selected 

to run.
The hardware components that make the HEP system unique 

are the central processing unit (CPU), the switch module, 
and the data memory module.

The CPU is the basic computing unit of the HEP system. 
There are as many as 16 CPUs in a machine configuration.
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Each CPU includes 2K 64-bit words of register memory, 4K 
64-bit words of constant memory, at least 32K 64-bit words 
of program memory, 64 user processes, 64 supervisor 
processes, nine function execution units, MIMD architecture 
and pipelined logic.

A process in a HEP CPU is an instruction stream (or 
program) stored in program memory for execution. To be 
executed, a process must be created in an active task.

A task is the fundamental protection domain in a CPU. 
When a task is activated, explicit areas of each type of 

memory are defined for process use in that task. Tasks can 
overlap if they are to cooperate in solving a common problem. 
Processes can be created and terminated in a task whenever 
appropriate to optimize parallelism and maximize throughput.

In a CPU, instruction processing is available uniformly 
to all active tasks. Each 100 nanoseconds (ns), a task is 
selected and one instruction from a process in the task is 
accepted for processing. The processes for a task are 
queued so that only one instruction for a process is 
accessible at a time. Instructions are processed on a 
first-in, first-out sequence according to the position of 
the process in the task queue.

When a process is read out of a task queue, it enters a 
control pipeline known as the instruction loop, where 
decoding and operand fetching are performed. The 
instruction loop is divided into eight 100ns time phases.
An instruction takes 800ns to get through the pipeline but
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there can be eight instructions in the pipeline at once.
The function units, such as float adder, f1oat/integer 

multiplier, and hardware access unit, are all completed in 
800ns in synchronism with the instruction loop. Functions 
which are not completed in 800ns, such as the divider and 
the scheduler function unit (SFU), are called asynchronous 
f unc t i ons. The divide operation takes 1700ns to complete.
To maintain the throughput, the divider is replicated rather 
that pipelined and can accept new operands and begin 
execution every 100ns until all modules are busy. Process 
data synchronization is maintained by inhibiting access to 
the memory location receiving the result of the asynchronous 
function until after the result has been stored.

The SFU controls all operations that access data 
memory. Asynchronous SFU operations require a random, 
intermediate time to complete, so the SFU withholds the 
process from the task queue and maintains it in an SFU 
queue. When complete, the process is requeued using a 
special asynchronous access port.

The HEP switch is a flexibly-configured, programmable 
network that interconnects CPUs, data memory modules, I/O 
control processors (a VAX 11/780 in our case) and other 

system devices. It uses packet switching techniques to 
route messages among the units that comprise the system.
Each node in the switch network has three full-duplex ports, 
so it can simultaneously send and receive three messages. 
Each message processed by the switch contains the address of
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the unit to which it is directed and the data being 
transmitted. Each message has an associated age (priority), 
which is incremented each time the message is routed if the 
original routing is other than the optimal direction. Each 
node has an input rate of 100ns. The propagation time 
through the node is 50ns. Therefore, the switch is 
configured in such a way that adjacent nodes have alternate 
input cycles.

Data memory provides communication and process 
synchronization between tasks active in different CPUs. All 
data memory in HEP occupies one continuous address space, 
regardless of the number of memory units. The entire memory 
is addressable by all the CPUs via the switch. Local data 
memory can be made available to each CPU by special 
allocation if needed . SFU access to data memory via the 
switch is asynchronous with the instruction and data loops. 
The SFU uses control logic to synchronize multiple 
concurrent accesses to data memory and to ensure correct 
relinking to the task queues when the data memory operation 
is complete. Synchronous and asynchronous access to data 
memory are through separate ports, so accessing conflicts do 
not occur.

Program memory stores instruction streams to be 
executed. Because of the execute-only characteristics of 
program memory and the ability to subdivide other memory 
domains by indexed addressing, data environments need not 
be bound to instruction streams. Several processes can
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execute the same instruction stream using separate data 
streams in other memories. Conflict between writing 
synchronous and asynchronous results is avoided by using 
separate access times to the memories [2,3,5,33,34,35].
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APPENDIX B
PL/I PROGRAM TO SIMULATE BRANCH AND BOUND TECHNIQUES WITH 

AND WITHOUT PARALLEL HYPERPLANE CUTS

//C9040D JOB (0465VSIB,LPGM,C9040D,UMRVMB), * BOEHNING,CHELLE 
// TIME=1,MSGCLASS=A
// EXEC PLIXC LG,PARM.PLI=’GOS TMT,MARGINS(2,72,1) ’

//PLI.SYSPRINT DD DUMMY 
//PLI.SYS IN DD *
LEXDUAL: PROC OPTIONS(MAIN);
DCL A (0:99,0:31)

FLOAT DEC(16) INIT((3100)0),
(MINC,SUM,MINCOST,MINACT,SUM1,FK,QUO)FLOAT DEC(16), 
(E,I,J,K,L,M,N,P,Q,R,MINCOL,MINRW,FLAG,FLAG1,COL_DN, 
COLUP)FIXED DEC(3),T CHAR(9),
(MILLI.T1,T2,ST1.ST2,LT2,ELAPSEDTIME,TOTAL_TIME, 
LOAD_TIME)FIXED DEC(5),
(SYS IN,SYSPRINT)FILE,
(ABS,SUBSTR,FLOOR,CEIL,MOD,TIME,CHAR)BUILTIN;

/*************************************************/

/* LOAD REQUIREMENTS=B(I) AND ACTIVITIES= A(I,J) */
/************* I************************************/

GET LIST(P,Q,R);/* P=NO. OF VARIABLES, Q=NO. OF 
CONSTRAINTS*/
DO I=P+1 TO R;

GET LIST((A(I,J) DO J-0 TO P));
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END;
DO I=P+1 TO R;

DO J=0 TO P;
A (I ,J )=-l*A(I,J )

END ;
END ;
/****************************/

/* LOAD NON BASIC VARIABLES */
/****************************/

DO J=1 TO P;

A(J,J)= -1;
END ;

/* LOAD COST COEFFICIENTS= C(J) */

DO J=1 TO P;
GET LIST(A(0,J));

A(0,J)=(-1*A(0,J));
END;
CALL MINCOLM;
N=R;
IF FLAG=1 THEN DO; /*DUAL INFEASABLE*/ 

N=R+1;
CALL NEWROW;
L = N ;
E=MINCOL;
CALL SIMPLEX;
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CALL PIVOT; /*THE SIMPLEX IS NOW DUAL FEASABLE*/ 
END;

DO UNTIL (MINRW=0);
CALL ROUNDA;
CALL MINROW;

IF MINRW=0
THEN DO; /*PRIMAL FEASIBILITY*/

L = 0 ;
E = 0 ;
CALL PRNTSOL;

END;
ELSE DO;

L=MINRW;
CALL LEXMIN;
IF FLAG1=0 

THEN DO;
E = 0 ;
CALL SIMPLEX;
PUT S KIP(3) LIS T( ’NO FEASABLE

SOLUTION’);
MINRW=0;
END ;

ELSE
CALL PIVOT;

END ;
END;

DO M=1 TO 20 UNTIL (FK=0);
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IF(((A(0,0)-FLOOR(A(0,0)))>1E-10) 
&((CEIL(A(0,0))-A(0,0)>1E—10)))

THEN DO;
CALL ROUNDA;
CALL PCUT;PUT SKIP LIST(’PARALLEL CUT’);
L = N ;

CALL LEXMIN;
CALL PIVOT;
DO UNTIL(MINRW=0);

CALL MINROW;
IF MINRW=0 
THEN DO;

L=0; E=0;
CALL PRNTSOL;

END;
ELSE DO;

L=MINRW;
CALL LEXMIN;
IF FLAG1=0 
THEN DO;

E = 0 ;
CALL SIMPLEX;
PUT SKIP (3) LIST(’NO FEASIBLE

SOLUTION’);

MINRW=0;
END;

ELSE CALL PIVOT;
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END;
END;

END;
ELSE PUT SKIP(3) LIST(’Z IS INTEGER ’);
CALL ROUNDA;
CALL FIRSTFRACTION;
IF FK=0 
THEN 

DO;
PUT SKIP LIST(’INTEGER SOLUTION’);
CALL PRNTSOL;

END;
ELSE

DO;
IF M=2 I M=3 

THEN 
DO;
CALL UPBRANCH; PUT SKIP LIST(’UP BRANCH’);
IF COL_UP=0
THEN PUT SKIP LIST(’UP BRANCH IS INFEASIBLE’); 
ELSE 

DO;
E=COL_UP;
L = N;

END;
END;

ELSE
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DO;

CALL DNBRANCH; PUT SKIP LIST(’DOWN BRANCH’);
IF COL_DN=0
THEN PUT SKIP LIST(’DOWN BRANCH IS INFEASIBLE’); 
ELSE 

DO;
E=COL_DN;
L = N ;

END ;
END;

CALL PIVOT;
DO UNTIL(MINRW=0);
CALL MINROW;
IF MINRW= 0 
THEN DO;

L=0; E=0;
CALL PRNTSOL;

END ;
ELSE DO;

L=MINRW;
CALL LEXMIN;
IF FLAG1=0 
THEN DO;

E = 0;
CALL SIMPLEX;
PUT SKIP (3) LIST(’NO FEASIBLE

SOLUTION’);
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MINRW=0;
END;

ELSE CALL PIVOT;
END;

END;

END;

END;

PUT SKIP EDIT(’M=*,M)(A,F(3));
/I*;:*:*************:*******:**:***********::*:***********/

/♦ THIS GIVES THE CONTINUOUS SOLUTION ♦ /
/*$£$£♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦/
/♦♦♦♦*****♦♦♦*♦***♦*♦♦*♦♦♦*♦♦**♦♦**♦♦♦♦♦♦♦/
/♦ NEWROW ♦ /
/♦LOAD THE ROW TO OBTAIN DUAL FEASABILITYV 
/*****************************************/ 

NEWROW:PROC;
S UM-0;
DO J = 1 TO P;
SUM=SUM+ABS(A (0,J ));
A ( N , J ) = 1;

END;
SUM1=0;

DO 1=1 TO R;
SUM1=SUM1+ABS(A (I,0));

END;

IF SUM1>SUM+10 
THEN A ( N , 0 ) = S U M 1 ;



ELSE A ( N , 0 ) = S UM *10;
END NEWROW;
/**************************************** / 

/* MINCOLM */
/* FINDS MOST NEGATIVE COST COEFFICIENT */
/****************************************/

MINCOLM: PROC;
FLAG=0;
MINCOST=-.0001;
MINCOL=0;
DO J = 1 TO P;

IF MINCOST>A(0,J)

THEN DO;
FLAG=1;
MINCOST=A(0,J );
MINCOL=J;
END;

END;
END MINCOLM;

/***************************/

/* FINDS MOST NEGATIVE ROW */
/***************************/

MINROW: PROC;
MINACT=-.00001;
MINRW=0;
DO 1 = 1 TO N;

IF A(I,0)<-.00001



7 9

THEN
IF MINACT> A (I,0)
THEN DO;

MINACT= A(I,0);
MINRW = I;
END;

END ;
END MINROW;

/* FINDS THE MIN COLUMN */

Z * * * * * * * * * * * * * * * * * * * * * * * * * * * Z

LEXMIN: PROC;
MINC = 10E11;
FLAG 1=0;
DO J= 1 TO P;

IF A(L,J)<-.0001 
THEN IF

MINC>ABS(A(0,J)/ACL,J))
THEN DO;

FLAG1=1;
MINC=ABS(A(0,J)/A(L,J));
E =J;
END ;

END ;
END LEXMIN;

/*********************/

/* CALCULATES A(I,J) */
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PIVOT: PROC;

T=TIME; MILLI=SUBSTR(T,5,5);T1=MILLI;
DO 1=0 TO N;

IF 1^=1 THEN 
DO J=0 TO P;

IF J/' = E THEN
A(I,J)=A(I,E)*A(L,J)/(-l*A(L,E))+A(I,J);

END ;
END ;
DO 1=0 TO N;

IF I~=L THEN

A(I,E)=A(I,E)/(-1*A(L ,E ));
END ;
DO J=0 TO P;

IF J~=E THEN A (L ,J )=0;
ELSE A (L ,E )=-1;

END ;
T=TIME; MILLI=SUBSTR(T,5,5);T2=MILLI;
IF T2> =T1 THEN 
ELAPSED_TIME=T2-T1;

ELSE DO T2=T2+60;
ELAPSED_TIME=T2-T1;END;

PUT SKIP(2) EDIT(*ELAPSED TIME = ’,ELAPSEDTIME)(A,F(5)) 
PUT SKIP EDIT(*Z=*,A(0,0))(A,F(16,8));

/*********************/

END PIVOT;



/* PRINTS THE SIMPLEX */
/**********************/

SIMPLEX: PROC;
/* L IS LEAVING VARIABLE, E IS ENTERING COLUMN*/ 
PUT SKIP(3) EDIT(’L=’,L)(COL(2),A,F(3));
PUT SKIP(2) EDIT(* E = *,E)(COL(2),A ,F(3));
DO 1= 0 TO N;

PUT SKIP(2) LIST(’ *);
PUT EDIT((A(I,J) DO J=0 TO P))(F(9,1));

END ;
PUT SKIP(3) LIST(’******************************’)
END SIMPLEX;

/*******************/

/* PRINTS SOLUTION */
/*******************/

PRNTSOL: PROC;
DO 1=0 TO P;

IF 1=0 THEN
PUT SKIP(2) EDIT(’OPTIMAL VALUE’,A (0,0))

(COL(2),A,F(12,5)) ;
ELSE PUT SKIP(2) ED IT(’X’ ,CHAR(I), * = * ,A (1,0 ) )

(COL(2),3 A,F(12,5));

END ;

/**********************/

END PRNTSOL;
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/* ROUNDS TO INTEGERS IF THE VALUES ARE */ 
/* WITHIN E-10 OF AN INTEGER */
/I*****************************************/

ROUNDA: PROC;
DO 1=0 TO N;

DO J=0 TO P;
IF (A (I,J )-FLOOR(A(I,J)))<1E-10 
THEN A (I,J )= FLOOR(A (I,J));
ELSE IF (CEIL(A(I,J))-A(I,J))ClE-10 

THEN A(I,J)=CEIL(A(I,J));
END;

END;
END ROUNDA;

/*****************************************/

/* PARALLE L CUTTING PLANE */

/* CUTS Z TO INTEGER VALUE */

PCUT: PROC;
K=0;FK=0;
DO 1 = 0 TO P UNTIL (FK/' = 0);

FK=A(I,0)-FLOOR(A(1,0));

K= I;
END;
IF FK=0
THEN PUT SKIP(3) LIST(’INTEGER SOLUTION’);
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ELSE DO;
N = N+1;
A (N ,0)= -FK;

DO J=1 TO P;

A (N ,J )=FLOOR(A (K ,J ))-A(K,J);
END;

END ;
END PCUT;

/t*****************^*******t******/

/* FINDS FIRST FRACTIONAL VALUE */
/* IN THE FIRST COLUMN */
/*********************************/

FIRSTFRACTION: PROC;
FK = 0; K = 0 ;
DO 1=1 TO P UNTIL(FK~=0);

FK=A(I,0)-FLOOR(A(I,0));
IF FK~=0 

THEN 
DO;

K= I;
PUT SKIP EDIT(*FK=*,FK,’K=’,K)(A,F(5,2),A,F(3)); 

END;

END;
END FIRSTFRACTION;

/ * * * * * * * * * * * * * * * * * * * * * * * * * * /

/* ADDS DOWN BRANCH IF IT IS FEASIBLE */

/t***************************************/
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DNBRANCH: PROC;
QUO=IE10; COL_DN=0;
DO J=1 TO P;

IF A (K ,J )> 0 
THEN

IF QU0>A(0,J)/A(K,J)
THEN

DO;
QUO=A(0,J)/A(K,J);
COI_DN=J;

END;
END ;
IF COL_DN~=0 
THEN 

DO;
N = N + 1;
A (N ,0)=-FK;
DO J = 1 TO P;

A (N ,J )=-A(K ,J );
END;

END;
END DNBRANCH;

/***********#****************************/ 

/* ADDS UP BRANCH IF IT IS FEASIBLE */ 
/^****************************t**********/ 

UPBRANCH: PROC;
QUO=IE 10; COL_UP=0;
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DO J=1 TO P;
IF A(K,J)<0 
THEN

IF QUO>ABS(A(0,J)/A(K,J))
THEN

DO;
QUO=ABS(A(0,J)/A(K,J));
COL_UP=J;

END ;
END ;
IF COL_UP~=0 
THEN 

DO;
N = N+1;
A(N ,0)= FK-1;
DO J=1 TO P;

A (N , J ) = A (K , J) ;
END;

END;
END UPBRANCH;
PUT SKIP(2) LIST(’IBM6 PARALLEL CUTS WITH 

END LEXDUAL;
//LKED.SYSPRINT DD DUMMY 
//GO.SYSPRINT DD SYSOUT=A 
//GO.SYS IN DD *

AND B ’);

/*
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APPENDIX C
MACROS USED IN THE C PROGRAM

/******* macro definitions *********/
♦define GETPROB(D1,D2) \ /* USED IN THE ASKFOR MONITOR

if (m > -I) \ TO GET THE MAXIMUM UPPER
{ \ BOUND VALUE AND SUBSCRIPT */
MAXZ(); \
D1 = br; \
D2 = 0; \

}

♦define RESET \
m = -1;

♦define PROBSTRT \
MENTER(si,0) \
m = 0; \
CONTINUE(sl,0,0) \
MEXIT(s1,0)
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#def ine MENTER(D1,D2)
#def ine CONTINUE(D1,D2 ,D3 )
#def ine ME XIT(D1,D2)
#def ine NEWPROC(D1)
#def ine AINIT(Dl) /*

#def ine ADEC(DI) /*

#def ine BARINIT(Dl) /*

#def ine LOCKINIT(D1) /*

#de fine LOCKDEC(D1) /*

#def ine LOCK(D1) /*
#def ine UNLOCK(D1)
#def ine BARRIER(D1,D2) /*

#def ine PROBEND(D 1,D2) /*

#def ine PROGEND(D1) /*

#def ine CREATE(Dl) /*

♦define CLOCK(D1) D1=0;
#def ine ASKF0R(D1,D2,D3 i 04

/* ENTER THE MONITOR */

/* LEAVE THE MONITOR */

/* START NEW PROCESS*/
INITIALIZE THE ASKFOR MONITOR */ 
DECLARE THE ASKFOR MONITOR */ 
INITIALIZE THE BARRIER MONITOR*/ 
INITIALIZE THE LOCKS */
DECLARE THE LOCKS */
USED F6R PRINT STATEMENTS */

DEFINED BY LUSK & OVERBEEK */
END OF PROBLEM */
END OF PROGRAM */
CREATES PROCESSES */

D5 ) D2 = 1; D4
/* DEFINED BY LUSK AND OVERBEEK */
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APPENDIX D
C LANGUAGE PROGRAM FOR THE PARALLEL BRANCH AND BOUND 
ALGORITHM WITH MACROS, FOR THE DENELCOR HEP, ARGONNE 

NATIONAL LABORATORY

1. finelude<stdio.h>
2. #include<math.h>
3. int N [20] ,br,rc,m ,lb,elk 1,clk2,pct;
4. int p ,q ,r ,numprocs;
5. double B [50][16][20],Z [20],C ,LB;
6. NEWPROC(slave)
7. ADEC (si)
8. LOCKDEC(3)

9. main()
10. {
11. /* load requirements b(i) and activities a(i,j)*/
12. int i , j , flag, mi n e d  , sum , suml;
13. double mlncost,ffchek();
14. AINIT(sl)
15. LOCKINIT(3)
16.
17. scanf("£d",&numprocs);
18. printf(" numprocs = £d\n",numprocs);
19. scanf("£d %d Sd",&p,&q,&r);
20. printf("p= £d q= £d r= £d\nM ,p ,q ,r);

2 1 .
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22. for(i=p+l;i<r+l;i++){
23. for(j=0;j <p+l;j++)
24. {
25. scanf(n%fn,&B[i][j][0]);
26. }
27. }
28. /* load non basic variables */
29. for(j=l;j<p+l;j++){
30. B[jJ[j][0J=(-l);
31. >
32.
33. /* load cost coefficients c(j) */
34.
35. for(j = l;j <p+l;j++){
36. scanf("*fM,&B(0][j]f0]);
37. Bf0][j][0]=(-l)*B[0][j][0];
38. >
39. m = 0;
40. /* find most negative cost coefficient */
41. pct=0;
42. flag=0;
43. mincost=(-.0001);
44. mincol=0;
45. for(j=l;j<p+l;j++){
46. if(mincost>B[0][j][0])
47. {
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48. flag=l;
49. mincost = B [0] fj] [0] ;
50. mincol=j;
51. }
52. }

53. if(flag==l){ /* dual infeasible */
54. r=r+l;
55. /* add a new row of l ’s */
56. sum=0;
57. for(j=l;j<=p;j++){
58. sum=sum+fabs(B [0][J][0]);
59. Bfr] fj] f0 ] =1;
60. }
61. sum1 = 0;

62. for(i=l;i<=r;i++){
63. suml=suml+fabs(B[i][0][0]);
64. }
65. if(sural>sum*10){
66. B [r][0][0]=suml;
67. >
68. else{
69. Bfr][0][0]=sum*10;
70. }
71. pivot(r, m,r,mincol);
72. printsol (■) ,*
73. } /* The siraplex is now dual feasible */
74. /* Now we try for priraal feasibility */
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75. LB=(-10el0);
76. primal(r,m);
77. /* Uses Primal to obtain the primal solution */
78. C=zrO]=B[0][0][0];
79. N [0]=r;
80. printf("CONTINUOUS SOLUTION IS Xf\n",C);
81. /***********♦**♦***********♦******♦****/
82. /* This Gives The Continuous Solution */
83. /**************************************/

84. if(ffchek(m)==0){
85. printf("CONTINUOUS SOLUTION IS INTEGER\n");
86. 1 b = 0 ;
87. goto answer;
8 8 . }

89. /a*****************/

90. RESET
91. for (i=l; i < numprocs; i++) {
92. CREATE(s1ave);
93. }
94. CLOCK(clkl)
95. PROBSTRT
96. work (*m *);
97. CLOCK(clk2)
98. PROGEND(sl)
99. /*******♦**********/

100. answer:
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101. printf("pivot count =Xd\n",pet);
102. printf("\nm=Xd\n",m);
103. printf("INTEGER SOLUTION Z[Xd]=Xf\n",lb,B [0][0] [lb] ) ;
104. printf(" \n total time was Xd\n", clk2 - clkl);
105. printf("lb=%d LB=%f\n",lb,LB);
106. printsol(lb);
107. } /* end main */
108. /****************************************************/
109. /* subroutines */
110. /****************************************************/ 

HI./****************************************************/
112. /***************************/

113. slave () { work (’s ’); }
114. /a**************************/

115. /****************************************************/
116. work (who)
117. /****************************************************/
118. char who;
119. {
120. int i, j, mw,n, brw, arc;

121. double ffchek();

122. for (;;) { /* forever */

123. ASKFOR(s1,arc,numprocs,GETPROB(brw,arc),RESET)

124. if (arc == -1 !! (arc != 0 && who == ’m *))

125. b reak;

126. if (arc != 0) continue;
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127.
128.
129.
130.
131.
132. 
133 . 
134. 
135 .
136.
137.
138.
139.
140 .
141 .
142.
143.
145.
146.
147.
148.
149.
150.
151.
152.
153.

if(pct> = 100 m> = 19){ /* safety valve */
LOCK(1)
printf("pivot count=Xd\n",pet);
UNLOCK(1) 
break;

}
/*****************/

n = N [ b rw];
dnbrn(n, brw); /* adds the down row */
i f(dnbrn(n ,b rw)= = 1) printf("error\n");
MENTER(s1,0) 
m=m+l; mw=m;
Z [m ]=(-10e5);
ME XIT(sl,0) 
for(i = 0;i< = n;i++){ 

for(j = 0;j< = p;j + +)
B [i][jJ[mw]=B[i]fj][brw]; /* copies node */

}
upbrn(n,mw); /* adds the up row */
N[brw] = N[inw] = n + l;
if(Z[brw]<(—10e6)) goto nosoll; 
n=N[brw];
primal(n ,brw); /* calculates the down node */

/********************************/

if(B[0][0][brw]>LB){
if(ffchek(brw)==0){/*check for integer vector*/

1 5 4 . i f ( B [ 0 ] [ 0 ] [ b r w ] != f l o o r ( C ) ) {



9 4

155.
156.

157.
158.
159. 
160 . 
161. 
162. 
163 .
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174. 
175 .
176.
177.
178.

179.
180.

LOCK(1)
printf("NEW INTEGER LOWER BOUND, 
Zd[a»d]=*f\n" ,brw, B [ 0 ] [0] [brw] ) ;
UNLOCK(1)
if(LB<=(-10e5) !! B [0][0][brw]>=LB){

LB = B [ 0 ] [0 J [brw] ;
MENTER(s1,0)
Z [b rw]=(-10el0);
ME XIT(s1,0) 
lb =brw;
f o r (i = 0;i< =mw;i + + ) {

if(LB<f1oor(Z [i])) goto nosoll;

}
}

}
lb=brw;
if (who == ’ goto endwork;

}
}
MENTER(sl,0)
Z[brw]=B[0][0][brw];
ME XIT(s 1,0) 

nosoll:
/I************************************************/

if(Z (mw]<(-10e6)) goto nosolu; 

n = N [mw];
primal(n ,mw); /* calculate the up node */
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181.
182.
183.
184.
185.
186.

186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200. 
201. 
202.
203.
204.
205.

/ft************************************************/

if(B[0J[0][mw]>LB){
if(ffchek(mw)==0){/* check for integer vector */ 

if(B[0][0][mw]!=floor(C)){
LOCK(1)
printf("NEW INTEGER LOWER BOUND,
Zu[*d]=*f\n”,mw,B[0][0][mw]);
UNLOCK(1)
if(LB<=(-10e5) !I B [0][0](mw]>=LB){

LB=B[0][0][mw];
Z [mw]=(-10el0); 
lb=mw;
f o r ( i = 0 ;i< = mw;i + +){

if(LB<f1oor(Z[i])) goto nosolu;

>
}
lb =mw;
if (who == ’m ’) goto endwork;

}
}

/♦it:************************************************/

MENTER(s1,0)
Z [mw]= B [0][0] [mw];
MEXIT(sl.O) 

nosolu:printf(”");
} /* end forever */
endwork:return (0); } /*end work */
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207. MAXZ()/* Calculates the present Maximum Upper Bound*/
208. /***************************************************/

209. {
210. int i,frc;
211. double MAX;
212. b r =(-1);
213. rc=(-1);
214. f rc = 0;
215. MAX=LB;
216. for(i=0;i<=m;i++){
217. if(Z [i]< =LB && Z[i] > (-10e4)){
218. Z[i]=(-10el0); /*N0DE FATHOMED*/
219. printf("node Z[%d] fathomed \n",i);
220. continue;
2 2 1 . }

222. if(Z [i]>MAX && Z [i]>(-10e4)){
223. MAX=Z[i];
224. br= i;
225. rc=0;
226. }
227. if(Z[i]>(-10e6) && Z [i]<(-10e4)) frc=l;

228. } /* end for */
229. i f(rc = = 0) Z[br] = (-10e5);
230. else if(frc==l) rc=l;
231. return(0);
232. } /* end MAXZ */

206. /****************************************************/
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233. /*************************************************/

234. /*************************************************/
235. primal(n , x) /* Uses Pivot and Lexmin

to obtain the primal solution */
236. /************************************************/
237. int n , x ;
238. {
239. int L, E;
240. do{
241. L=minrow(n, x);

242. if(L!=0){
243. E=lexmin(x ,L);

244. i f(E !=0){
245. pivot(n,X|L,E);
246. L0CK(1)
247. printf("Z[%d]=%f\n",x,B[0][0][x]);

248. UNLOCK(1)
249. if(floor(B[0][0][x])<=LB){
250. L=0;
251. MENTER(s1,0)
252. Z[x]=B[0J[0][x]=(-10el0);
253. MEXIT(s1,0)
254. LOCK(1)
255. printf("NODE Z[*dJ FATHOMED\n",x);
256. UNLOCK(1)

257. } 
else printfC”'* );258.
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259. }
260. else{
261. MENTER(s 1,0 )
262. Z[x]=B[0][0][x]=(—lOelO);
263. MEXIT(s1,0)
264. LOCK(1)
265. printf ("No Feasible Solution for Z[S>d]\n",x) ;
266. UNLOCK(1)
267. L=0;
268. }
269. }
270. }
271. while(L !=0);
272. } /* End Primal */
273. /*************************************************/

274. pivot(n, x, L, E)
275 /* Performs the pivot operation on the Simplex */
276. /*************************************************/

277. int n , x, L, E;
278. {
279. int i, j;
280. pct=pct+l;
281. for(i=0; i <= n; i++) {
282. if (i != L){
283. for (j=0; j<=p; j++) {

if (j != E){284.



285. B[i][j][x]=B[i][E][x]*B[L][j]fx]
/((—1)*B[L][E][x ])+B[i][j][x];

286. }
287. }
288. }
289. }
290. for(i=0;i<=n;i++){
291. if(i!=L){
292. (B [ i] [E] [x]=B[i] [E] [x]/((-1)*B[L] [E] fx] ))
293. }
294. }
295. for(j=0;j<=p;j++){
296. if(j!=E)(B[L][j][x]=0);
297. else(B[L][E][x]=(-l)>;
298. }
299. return(O);
300. } /* end pivot*/
301. /*******************************************/

302. minrow(n, x) /* Finds the most neg. row */
303. /*******************************************/

304. int n, x;
305. {
306. int i.minrw;
307. double minact;
308. minact=(-.00001);
309. minrw=0;
310. for(i=l;i<=n;i++){
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311. if(B[i][0][x]<(-.00001)){
312. if(B[i][0][x]<minact){
313. minact=B[i][0][x];
314. minrw=i;
315. }
316. }
317. }
318. return(minrw);
319. } /* end minrow ♦/
320. /a:*****************************************/

321. 1exmin(x ,L) /* Finds the minimum column */
322. /******************************************/

323. int x ,L ;
324. {
325. double mine;
326. int j ,E ;
327. minc=10ell;
328. E=0;
329. for(j=l;j<=p;j++){
330. if(B[L][j][x]<(-.00001)){
331. if(minc>f ab s(B[0][j][x]/B[L] [j] [x])){
332. minc=fabs(B[0][j][x]/B[L][j][x]);

333. E=j;
334. }
335. }
336. }
337. return(E);
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338. } /* end lexmin */
339. /**********************************************/

340. double ffchek(x)
341. /*Checks for an integer lower bound */
342. /**********************************************/

343. int x;
344. {
345. int i;
346. double ff;
347. for(i=l;i<=p;i++){
348. f f = ( B [ i J[0][x])-floor(B[i][0][x]);
349. if(ff>0.000000001 && ff<0.999999999) break;
350. }
351. if (ff< = 0.000000001 f f> = 0.999999999 ) ff = 0.0;
352. return(ff);
353. } /* end ffchek */
354. /I************************************************/

355. dnbrn(n, x) /*Adds Down Branch if it is Feasible*/
356. /************************************************/

357. int n , x ;
358. {
359. int i,j,k,coldn;
360. double quo.fk;
361. for(i=1;i<=p;i++){
362. fk=(B[i][0][x])-floor(B[i][0][x]);
363. if(fk>0.000000001 && fk<0.999999999){
364. k = i;



365. break;
366. }
367. >
368. if(fk<=0.000000001 :: fk>=0.999999999) return(l)
369. quo=lel0;
370. coldn=0;
371. for(j=l;j<=p;j++){
372. if(B[k] [j] [x]> 0){
373. if(quo>(B[0] [j] [x]/B[k] [j] [x])){
374. quo=B[0][ j] [ x ] / B [ k ] [ j ] [ x ] ;

375. coldn=j;
376. )
377. }
378. }
379. if(coldn!=0){
380. n++;
381. B[n][0][x]=(-fk);
382. for(j=l;j<=p;j++){
383. B[n][j][x]=(-B[k][j][x]);
384. }
385. }
386. else{
387. MENTER(s1,0)
388. Z [x]=(-lOelO);
389. MEXIT(s1,0)
390. } return(0);
391. } /*end downbranch*/
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392. /********************************************** */
393. upbrn(n, x) /*Adds Up Bran ch if it is Feasible */
394. /************** *************** ***************** */
395. int n , x ;
396. {
397. double quo,fk;
398. int i,J ,k,colup;
399. for(i=l;i<=p;i++){
400. fk=(B[i][0][x])-floor ( B [ i] [0 ][x]);
401. if(fk>0.000000001 && fk<0 .999999999){
402. k = i ;
403. break;
404. >
405. }
406. quo=1e10;
407. colup=0;
408. for(j=l;j<=p;j++){
409. if(B[k][j][x]< 0 ) {
410. if (quo > fabs(B[0 ] [j] [x] / B[k] [j] [x] )){
411. quo = fabs(B[0] f j] tx] / B [ k ] [j][x] ) ;
412. colup = j;

413. }
414 . }
415. }
416. if(colup!=0){

417. n++;
418. B[n][0]fx]= fk-l;
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419. for(J = 1;j<=p;j++){
420. B[n][j][x]=B[k]fj][ x ];
421. }
422. }
423. else{
424. MENTER(sl.O)
425. Z[x]=(—lOelO);
426. MEXIT(s1,0)
427. }
428. return(0);
429. } /* End Up Branch */
430. /*************************************************/

431. printsol(x) /* Prints the solution */
432. /*************************************************/

433. int x;
434. {
435. int i,j;
436. printf("\n");
437. for(i=0;i<p+1;i++){
438. printf("\n");
439. printf("x(Xd)= *f",i , B [i] [0][x ]);

440. }

441. printf("\n");
442. printf("\n");
443. } /* end printsol */
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