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ABSTRACT

The intent of this investigation has been to find a 
robust algorithm for generation of the medial axis 
transform (MAT). The MAT is an invertible, object 
centered, shape representation defined as the collection of 
the centers of disks contained in the shape but not in any 
other such disk. Its uses include feature extraction, 
shape smoothing, and data compression. MAT generating 
algorithms include brushfire, Voronoi diagrams, and ridge 
following. An improved implementation of the ridge 
following algorithm is given. Orders of the MAT generating 
algorithms are compared. The effects of the number of 
edges in the polygonal approximation, shape area, number of 
holes, and number/distribution of concave vertices are 
shown from test results. Finally, a set of useful 
extensions to the ridge following algorithm are discussed.
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I INTRODUCTION

I.A Definition Of The Medial Axis Transform

The medial axis transform (MAT) is an invertible, object 
centered, shape representation. It is defined as the locus 
of points (called medial points) that do not have a unique 
closest point on the shape boundary. Each of these medial 
points is annotated with the shortest distance to the shape 
boundary. In Fig. 1, the triangles represent holes in the 
shape and the thick curves represent the MAT of the shape. 
Points B and C are the non-unique closest points on the 
shape boundary to the medial point A. The dashed circle 
represents the maximal disk of the medial point A.

Alternately the MAT can be defined in 2-D as the 
collection of the centers of maximal disks. Maximal disks 
are disks that cannot be fully contained by any other disk 
inside the shape. In Fig. 2, the MAT of a rectangle is 
shown by dashed lines. Some of the maximal disks on the 
left side of the rectangle are also shown. The shortest 
distance to the shape boundary from the center of each 
maximal disk is its radius. The definition of the MAT for 
3-D objects is obtained by replacing disks with spheres 
[23, 26, 27].
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Fig. 1. Non-unique closest points on the shape.



Fig. 2. Maximal disks of a shape.
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For shapes that are not convex the MAT exists on the 
outside of the shape as well. This provides a way of 
representing internal holes and external concavities.
Fig. 3 shows the external MAT, represented by dashed lines, 
of a shape containing two holes. The MAT of a shape 
interior is guaranteed to be connected [12].

Other names used in the literature to refer to methods of 
obtaining the MAT include symmetric axis transform (SAT), 
Blum transform (for its inventor H. Blum) [8, 9, 10, 11]. 
Skeletonization and thinning are also used but are less 
common.

I.B Work Motivation

The motive for this study of MATs has been to find a 
shape representation that lends itself to automated nesting 
of irregular two dimensional shapes. Nesting is a space 
allocation problem in which a reasoner is given a piece of 
stock, a set of shapes (or templates) to be cut from the 
stock, and a set of constraints. The goal is to cut the 
shapes from the stock in such a way that waste is minimized 
and the constraints are not violated.

Nesting has been proven to be an NP-complete problem 
[19]. Due to the combinatorics involved, most practical 
algorithms for problem solution are based on search. 
Template placement is often conceptualized as a double 
search approach. In each cycle of placement, the templates



Fig- 3. External medial axis transform.
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remaining are searched to select the single template to 
place next. Once selected, the stock remaining is searched 
to determine the precise location at which to place the 
template. This second search step is especially difficult 
because the template has three continuous degrees of 
positional freedom; two translational (along X and Y in the 
plane of the stock) and one rotational (around Z normal to 
the plane of the stock).

The branches in the MAT of a shape identify the features 
of the shape. These features provide a level of 
abstraction that can be used to classify "peninsulas" and 
"bays" of shapes. If one can assign direction to them and 
identify compatible peninsula-bay pairings then MATS have 
the potential to ease the double search nature of the 
nesting problem. Given a feature in the unused stock, the 
selection and positioning of the next template to be placed 
might be determined by matching this feature to the 
features in the set of unplaced templates.
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II HISTORICAL

II.A Applications Of The Medial Axis Transform

The applications for which MATs have been utilized 
include feature extraction, shape smoothing, and data 
compression. These uses are described in the following 
three sections.

II.A.1 Feature Extraction

Feature extraction is the process of identifying the 
characteristic components of a shape. Once extracted, they 
can be used to measure the similarity between shapes or 
portions of shapes. The extraction process is comprised of 
two basic steps; location of features and description of 
features. For many shapes, the determination of where one 
feature ends and another begins can be a difficult problem.

The most extensive work on the use of MATS for 2-D 
feature extraction has been done by Blum and Nagel [8, 9, 
10, 11, 25J. To extract features from the MAT, the medial 
axis is segmented based on three types of MAT points. The 
resulting medial axis segments are then classified into 
seven primitive feature types.



Page 8

MAT points can be classified as normal points, branch 
points, and end points. This distinction is based on the 
number of contiguous sets of points on the shape boundary 
touched by their associated maximal disks. Points with 
only one set are end points. Points with two sets are 
normal points. Points with three or more sets are branch 
points. Contiguous sets of normal points bounded by branch 
points and/or end points are called medial branches. These 
medial branches represent shape features [28].

In Fig. 4, the triangles represent holes in the shape and 
the thick curves represent the MAT of the shape. Points A, 
B, C, D, E, F, and G are all medial points. A and G are 
end points. C and F are normal points. B, D, and E are 
branch points. The set of medial points between the 
following pairs of branch and/or end points form features 
of the shape: AB, BD, DE, EG.

For some shapes, such as a 2-D torus, it is possible for 
a contiguous set of normal points to connect to itself. In 
this case, the shape has only one branch and the branch is 
not bounded by branch points or end points (see Fig. 5).
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Fig. 4. Medial point types.



Fig. 5. Medial axis transform of a deformed torus.
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To facilitate classification of the medial branches, Blum 
and Nagel define two functions. The axis function gives 
the location of the MAT points. The radius function gives 
the radius of the maximal disk at each MAT point.
According to Blum and Nagel, a reasonable shape language 
should have a small set of primitives. Seven primitives 
that are characterized by the behavior of the radius 
function along the medial branch are identified. These 
primitives are named worm, opening wedge, closing wedge, 
opening cup, closing cup, opening flare, and closing flare 
(see Fig. 6). Variations of the primitives are 
characterized by the curvature of the axis function along 
the medial branch. The names given to the primitive 
variations are spiral in left, left circular, spiral out 
left, straight, spiral out right, right circular, and 
spiral in right (see Fig. 7).
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WORM

Fig. 6. Medial axis branch primitive types [11J.
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Fig. 7. Variations of the primitive types [11].
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II.A.2 Shape Smoothing

Shape smoothing simplifies shape descriptions by 
eliminating insignificant shape features. The 
determination of whether a shape feature is significant 
has, in the past, usually been based on measurements that 
are relatively local and scale dependent. These 
measurements do not allow for the fact that a shape feature 
that is significant on one shape may not be significant on 
another shape or in a different area of the same shape. In 
Fig. 8, a shape with two perturbations of the same size is 
shown. Although they are the same size, the perturbation 
near the center of this shape is more significant than the 
perturbation on the left side.
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Ho and Dyer [18] have proposed a method of shape 
smoothing that utilizes the object centered nature of MATS. 
The advantage of object centered representations over 
boundary representations is that they make the global 
properties of shapes more apparent. Their basic approach 
includes: finding the MAT of the shape, removing
insignificant medial branches or portions of medial 
branches, and reconstructing the shape from the remaining 
MAT. The top shape in Fig. 9 shows the MAT of a rectangle 
in dashed lines along with some of the maximal disks near 
the end of each branch that is bounded by an end point. If 
it is determined that the centers of the larger disks are 
the last significant MAT points on their branches then the 
result of shape smoothing will be the shape that is shown 
at the bottom of Fig. 9.

II.A.3 Data Compression

A spatial occupancy array is an array in which the 
element (or pixel) values are determined by a membership 
predicate p(x,y) whose value is true when the pixel (x,y) 
is in the shape and false otherwise. A shape that is 
approximated by a spatial occupancy array can only be 
recovered as a smoothed version of the original shape.
This digitization also affects the properties of invariance 
to translation, rotation, and scaling [6, 24].
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Fig. 9. Ho and Dyer shape smoothing example.
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Use of spatial occupancy arrays for generating the MAT of 
a shape has similar drawbacks. If the medial points of a 
shape are selected from the elements of a spatial occupancy 
array then the result of inverting the MAT will be a 
smoothed version of the original shape. This is true 
because the medial elements will only be approximations of 
medial point locations and only a finite number of them 
will be available for inversion [5, 6].

Ahuja, et al. [2] have suggested that, for applications 
where some loss of accuracy in retrieved shapes is 
acceptable, a variation of the MAT could be used to store 
shape information in a more compact form. Their 
modification of the MAT replaces disks with squares. The 
loss of accuracy is controlled by the resolution of the 
spatial occupancy array.

II.B Methods Of Obtaining The Medial Axis

Methods that have been used to obtain MATS fall into 
three main categories, namely brushfire, Voronoi diagrams, 
and ridge following. Generators other than disks, such as 
squares (1, 6, 32, 33] and rectangles [37], have been used 
in brushfire algorithms but will not be discussed in this 
paper. When non-disk generators are used the connectivity 
of the MAT is no longer guaranteed [1],
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II.B.1 Brushfire

The brushfire method operates by eroding the shape 
boundary in a way that is analogous to a brushfire. A 
brushfire burns by each point once and only once. If a 
shape boundary is ignited simultaneously at all points 
along the boundary then the points where the fire is 
quenched form the MAT. In Fig. 10, the contour lines in 
the shape illustrate the spread of a brushfire into the 
shape at equal time intervals. The MAT of the shape is 
represented by dashed curves [8, 24].

The heart of a typical brushfire algorithm is shown in 
the following pseudo-code:

Represent the shape by a spatial occupancy array.

Repeat
For each boundary pixel in the spatial occupancy array 

If the pixel is not medial Then 
delete it (set to FALSE).

Until all remaining pixels are medial
Label remaining pixels with their distance 

from the original shape boundary.

The determination of whether a pixel is medial can be 
made on the basis of local properties. Patterns of the 
pixels in a 3x3 neighborhood centered at a pixel can be 
used to test its mediality [16, 29, 35].
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Fig. 10. Spread of brushfire in a shape.
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The order in which boundary pixels are evaluated can 
affect whether the resulting MAT will be connected. 
Variations of the basic brushfire algorithm devised to 
address this problem can be catagorized into four types.
The first is to check each pixel that is to be deleted to 
insure that the deletion will not locally disconnect pixels 
in its neighborhood (14, 32]. The second is to alternate 
sides (north, east, south, and west) of the shape where 
deletion is to take place [14, 29, 31, 35). The third is 
to evaluate all boundary pixels, marking those to be 
deleted, before any deletion from the current boundary is 
performed [4, 7, 32]. The fourth is to propagate deletion 
simultaneously from four sides (north, east, south, and 
west) to achieve an isotropic transformation (3, 4, 5, 16, 
29, 38]. This approach requires a parallel processor with 
at least four CPUs that uses shared memory for the spatial 
occupancy array. Hilditch's method (17] combines the 
second and fourth variations.

Shape information is retained more accurately by the last 
two brushfire variations than the first two since the last 
two variations are more isotropic. The first two 
variations can produce slightly different MATS depending on 
the order in which the pixels are evaluated. A drawback of 
the last two variations is that they must handle the 
additional problem of insuring that the MAT does not vanish 
or retain a width of two pixels along some branches.
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A disadvantage common to all brushfire algorithms is that 
the shape boundary is forced to erode inward in the four 
compass directions instead of eroding normal to the actual 
shape boundary. This is due to the fact that the spatial 
occupancy array is composed of square pixels.

The lowest order claimed for brushfire algorithms is 
20(n ) where the spatial occupancy has a resolution of n x 

n {7J. This is an upper bound on the order since the time 
required actually depends on the thickness of the shape 
along its medial axis. To see why this is the case, 
consider a square in which each element of an n x n spatial 
occupancy array is set to TRUE. Let a diagonal that is one 
element thick extend across another n x n spatial occupancy 
array. Several passes, roughly n / 2, will be required to 
thin the square but only one pass will be required to 
determine that the diagonal line is already thin.

II.B.2 Voronoi Diagrams

The Voronoi diagram (also known as Thiessen or Dirichlet 
tessellation) of a point set containing n points in 2-D 
divides the space into n regions that are bounded by line 
segments. Each region contains one of the points from the 
point set and all of the points in the space that are 
closer to that point than to any other point in the set 
[15, 34]. Fig. 11 illustrates this concept.



Fig. 11. Voronoi diagram of a point set.
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A variation of this idea is to use a set of line segments 
instead of a point set to generate the regions. When this 
is done the regions in the Voronoi diagram are bounded by 
linear and parabolic edges (see Fig. 12).

For a polygon, the MAT is a subset of the Voronoi diagram 
obtained using the edges of the polygon as the set of line 
segments. The MAT is acquired by removing the two region 
bounding edges incident with each concave vertex of the 
polygon and augmenting the remaining region bounding edges 
with radius functions (see Fig. 13).

The method for construction of Voronoi diagrams of 
polygons proposed by Lee (22] is based on the 
divide-and-conquer technique. The basic steps are shown 
below:

1) Create an ordered set of elements consisting 
of all edges and concave vertices.

2) Divide the set into two contiguous sets.
3) Find the Voronoi diagram of each set recursively.
4) Merge the two Voronoi diagrams.

In step 4, a "merge curve" that is the bisector of two 
sets of elements is constructed. The merge curve is 
composed of line segments and parabolic segments. The 
final merge curve is the output of the algorithm.



Page 25

Fig. 12. Voronoi diagram of the interior of a polygon
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Fig. 13. Medial axis transform of the polygon in Fig 12
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Using the equations of the line segments and parabolic 
segments, any number of medial points can be computed along 
them. Details of this algorithm can be found in [20, 21, 
30]. The lowest order claimed for algorithms that compute 
the Voronoi diagram of a polygon is 0(n log n) where n is 
the number of edges plus the number of concave vertices in 
the polygon [20, 22].

II.B.3 Ridge Following

Ridge following is a method of locating medial pixels in 
a spatial occupancy array that attempts to minimize the 
number of pixels that must be tested for mediality while 
guaranteeing that all of them will be found [13]. To 
obtain the MAT of the inside of a digitized shape, interior 
pixels are examined to find a starting medial pixel. The 
remainder of the medial pixels are found by searching along 
ridges (or branches) from the known medial pixel.
Searching along ridges is accomplished by examining the 
neighboring pixels of known medial points. Neighboring 
pixels are the pixels in a 3x3 neighborhood centered at a 
given pixel. Due to the connectivity of MATS on the inside 
of shapes one can be assured that all of the interior 
medial pixels will be reached from the starting medial 
pixel.
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As in the brushfire method, the resulting MAT is composed 
of a set of pixels. However, in ridge following the test 
for mediality of pixels is taken directly from the 
definition of medial points using distances to the shape 
boundary as opposed to examining patterns of pixel 
neighborhoods. For this reason, the ridge following method 
is more accurate than the brushfire method.

Accuracy can be measured by examining the difference 
between the original digitized shape and the digitization 
of the inverted MAT. In Fig. 14, (a) shows the pixels that 
are turned on in a spatial occupancy array, (b) shows the 
pixels that would be selected as medial pixels by a typical 
brushfire algorithm, and (c) shows the pixels that would be 
turned on as a result of inverting the MAT in (b). The *'s 
in Fig. 14 (c) also represent the pixels that would be 
selected as medial in the inverted shape. It is clear that 
a considerable loss of accuracy can occur during the 
inversion process. This is further evidenced by the 
difference between the two MATS.
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The ridge following algorithm is 0(n log n) where n is 
the number of edges in the polygon. This order can be 
obtained by examining the details of the improved algorithm 
described in section III. However, this order is 
misleading since several factors other than the number of 
edges affect the time required. Other factors include 
shape area, proximity of edges, angle measures, and 
concavities. The effects of these factors are also 
discussed in Section III.

II.C Reconstruction Of Shape From MAT

The spatial occupancy array of a shape corresponding to 
its MAT is easily obtained by selecting a finite number of 
points along the MAT and recording the spatial occupancy of 
their maximal disks.

The literature contains few references to generating a 
polygonal approximation for a shape from its MAT. However, 
it seems that the algorithm described below might work 
well. To obtain an approximation using splines one could 
use this procedure to obtain a polygonal approximation and 
then fit splines to sections of the polygonal 
approximation.

Select a finite number of points along the MAT.
(The number of medial points selected and the distance 
between them along the medial axis will affect the 
quality of the polygonal approximation.)
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For each selected MAT point A 
If A is a normal point Then

Find the MAT points B and C that 
immediately precede and follow A.

Find the two lines m and n (one on each side of the 
medial axis) that are tangent to the maximal disks 
of B and C.

Find the two points D and E on the maximal disk of A 
(one on each side of the medial axis) where the 
tangent to the maximal disk of A is parallel to 
lines m and n on the same side of the medial axis.

Include points D and E in the polygonal 
approximation.

Else
If A is an end point Then

Find the MAT point B that immediately precedes A. 
Find the two lines m and n (one on each side of 

the medial axis) that are tangent to the maximal 
disks of A and B.

Find the points of tangency, C and D, of lines m 
and n (one on each side of the medial axis) on 
the maximal disk of point A.

Include points C and D along with several other 
points between C and D on the side of the maximal 
disk opposite from point B in the polygonal 
approximation.
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Else
If A is a branch point Then 
Do nothing.
If enough closely spaced medial points are 
selected then sufficient polygonal 
approximation points will be obtained 
from the medial points that are near A.
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III THEORETICAL APPROACH

The MAT generating algorithm being proposed is an 
improved version of the ridge following algorithm given by 
DeSouza and Houghton [13], After presenting the basic 
components of the algorithm, three sub-algorithms will be 
discussed. For each of these, the DeSouza and Houghton 
approach will be presented, its shortfalls will be 
discussed, and methods to overcome these will be given.

III.A Ridge Following Algorithm

The algorithm operates on polygons. It can be modified 
to handle shapes containing curves as will be described in 
Section V.B.l.

The input data consists of the coordinates of the 
vertices in the shape boundary (including holes) and the 
grid size to be used for the spatial occupancy array. The 
output of the algorithm is a set of medial point 
coordinates together with the radius value (or closest 
distance to the shape boundary) for each medial point. The 
medial points returned are ordered by increasing x within 
increasing y, which is the same order that they are stored 
in the spatial occupancy array.

The basic steps of the algorithm are shown below:

Digitize the shape boundary, not including the shape 
interior, in a spatial occupancy array.
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Find any pixel that is inside the shape (seed pixel).
Search vertically up and down from this interior 

pixel to find the first medial pixel (existence 
is guaranteed since the MAT is connected).

Find the rest of the medial pixels by recursively 
examining all of its neighboring pixels.

III.B Finding A Point Inside A Polygon

In the DeSouza and Houghton method an interior point of 
the polygon is found by performing the following steps:

Find the minimum x and y values of the polygon vertices.
Find the first two intersections encountered when moving 

from the point (minimum x, minimum y) along a ray 
making an angle of 45 degrees with the positive x axis.

Find the midpoint of the line segment connecting these 
two points.

For many shapes, such a ray will not intersect the shape 
at all. This approach is therefore not sufficient for all 
polygons.

The problem of finding an interior point of a convex 
polygon can be solved by finding the centroid of the 
polygon. For a non-convex polygon, the centroid may lie 
outside the polygon. It is possible to find a convex 
region of a non-convex polygon. Once this is found, one
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can find the centroid of the convex region to obtain an 
interior point. This method is outlined below:

Let A be the highest concave vertex in the polygon.

Let B be the highest vertex in the polygon.

Let C be the next vertex in the
counter-clockwise direction from B.

Let D be the next vertex in the
clockwise direction from B.

If C is below A Then
Change C to be the point on the line 
segment BC with the same y value as A.

If D is below A Then
Change D to be the point on the line 
segment BD with the same y value as A.

The centroid of B, C, and D is
in the interior of the polygon.

Note that the concavity of each vertex must be determined 
anyway for the purpose of avoiding incorrect mediality 
tests (described in section III.C). This approach works 
without modification on polygons with polygonal holes. If 
the digitized shape boundary has more than one bounded set 
of interior pixels then an interior seed pixel wiLl be 
required for each bounded set. To use the above procedure
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for finding each seed pixel the polygon must be subdivided 
into several polygons such that the digitized shape 
boundary of each has only one bounded set of interior 
pixels.

III.C Determining Whether A Point Is Medial

By definition, a point is medial if it does not have a 
unique closest boundary point. The accuracy of shape 
represention when using spatial occupancy arrays is 
dependent on the grid size. To allow for this, the 
definition must be relaxed to consider pixels as medial if 
the difference between the distance to the closest and the 
second closest boundary points is less than a tolerance of 
one grid size.

When testing points for mediality, distances from points 
to line segments in the polygonal approximation of the 
shape are measured without finding the coordinates of the 
closest points on the line segments. Remember that the 
distance from a point to a line segment can be greater than 
the distance to the continuous line. In Fig. 15, consider 
the distances from the points C and D to the line segment 
AB. For C the desired distance is the perpendicular 
distance to the line AB. The foot of the perpendicular 
through D to the line AB, point E, is not on the line 
segment AB. The desired distance for D is therefore the 
distance between D and the closest line segment endpoint,
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namely B. This distance is greater that the distance from 
C to E.

If the two closest line segments are adjacent and form a 
concave angle then the closest point on each line segment 
will be the endpoint that is common to the line segments.
To avoid an incorrect mediality test, this case requires 
that one of the line segments be replaced by the next 
closest line segment. In Fig. 16, all of the points in the 
cross-hatched region would be incorrectly classified as 
medial if this specal case were not observed.

In the DeSouza and Houghton method, the two closest edges 
are found by performing the following steps:

Find the six closest vertices to the point.
For each of the six vertices
Calculate the distance to the two line 

segments incident at the vertex.
Select the two edges with the shortest distances.



Fig. 15. Distance from a point to a line segment.

Page 38



Page 39

Fig. 16 Concave angle special case
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The number six was chosen rather arbitrarily. Fig. 17 
shows a shape where this approach would fail. The six 
closest vertices to point P are A, H, I, C, D, and E. The 
two closest edges that are adjacent to these vertices are 
HI and DE. By using these edges, point P would appear to 
be medial when in fact it is not. Therefore, their method 
is not sufficient for all polygons. The only way to 
guarantee that the two closest line segments will be found 
is to compute the distance to all of them or find a way of 
insuring that any ignored line segment cannot possibly be 
one of the closest two.

Calculating the distance from a point to every line 
segment in a polygon becomes a very time consuming task as 
the number of line segments in the shape increases. To 
reduce the number of distance computations a scheme 
involving a lower bound on the distance to each line 
segment has been devised (see Fig. 18). This lower bound 
is the greater of the lower bound on the x distance and the 
lower bound on the y distance. The lower bound on the x 
distance is zero if the x values of the line segment 
endpoints are on opposite sides of the x value of the 
point. Otherwise, it is the smallest x distance from the 
point to one of the endpoints. The lower bound on the y 
distance is defined similarly.
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C

Fig. 17. A shape that the DeSouza and Houghton ridge following 
algorithm cannot handle. Page 41
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Fig. 18. Lower bound on the distance from point C to line 
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To determine the mediality of a pixel, this lower bound 
is computed for each line segment in the polygon. The line 
segments are then sorted on ascending lower bound (recall 
that the sort can be 0(n log n) [34]). Distances to the 
line segments are computed evaluating them in this order. 
Whenever the lower bound on the distance to the next line 
segment is greater than the shortest distance calculated so 
far, the distance calculations for the rest of the line 
segments can be disregarded.

The benefits of this scheme depend on the proximity of 
polygon edges to the pixels being tested for mediality. If 
relatively few edges have small lower bounds on their 
distance to the pixel, then a significant number of 
distance calculations will be avoided.

III.D Elimination Of Excess Medial Pixels

Due to the tolerance used in determining the mediality of 
the pixels in the spatial occupancy array, the resulting 
MAT is likely to have a thickness of more than one pixel 
along some branches. This is especially noticeable at 
branch points. Whether this is of any concern depends upon 
the application.

If there is a need to further thin the MAT, the quality 
of the retained pixels can be examined to determine which 
ones to eliminate. The quality of a medial pixel can be 
measured by the difference between the distance to the



Page 44

closest and the second closest boundary points. Low values 
of this measure indicate better medial pixels. This is the 
same value that is compared to the tolerance to determine 
whether a pixel is medial, so it can be saved for this 
purpose.

In the DeSouza and Houghton method, excessive medial 
pixels are eliminated by performing the following steps:

For each medial pixel whose quality is better than the 
quality of any other medial pixel in the surrounding 
5 x 5  neighborhood

Check the mediality of 16 evenly spaced points inside 
the grid of this medial pixel to find a medial point 
of better quality.

Save this medial point.
Eliminate all medial pixels in the 

surrounding 5 x 5  neighborhood.

This approach certainly eliminates excessive medial 
pixels and raises the quality of the remaining medial 
points. Its downfall, however, is that it reduces the 
resolution of the resulting MAT and makes the connectivity 
of the medial points unclear.

Another approach is to use the notion of simple pixels 
combined with the quality measure. A simple pixel is 
defined as a pixel that can be removed without damaging the 
connectivity of the medial pixels. The following steps
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illustrate this method:

Repeat
For each medial pixel

If its quality is worse than the quality 
of each of its medial neighbors 
AND
it is a simple pixel Then 

Eliminate it
Until no more medial pixels can be removed

The steps used to determine whether a pixel is simple are 
shown below:

Create an 8 element array of Boolean values to 
correspond to the 8 neighbors of the pixel.

Use the following direction numbers

3 2 1
\ I /

4 - * - 0
/ I \

5 6 7

where diagonal neighbors are those with an odd 
direction number and non-diagonal neighbors 
are those with an even direction number.

Set the array elements corresponding to medial
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pixels to TRUE.

For each diagonal neighbor
If both of the adgacent non-diagonal 

neighbors are set to TRUE Then 
set the diagonal neighbor array element to TRUE

Count the number of TRUE elements in the array.

Count the number of changes from TRUE to FALSE in the 
array.

The pixel is simple if
(TRUE elements > 2) AND (Changes «= 1).

In this approach the resolution of the resulting MAT is 
the same as the resolution of the unthinned MAT. Also, the 
connectivity of the medial pixels can still be determined 
by pixel adjacency in the spatial occupancy array.
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IV EXPERIMENTAL RESULTS

To test the performance of the improved ridge following 
algorithm, the four shape characteristics that were 
expected to have the most impact on run time were selected: 
number of edges, area, number of holes, and 
number/distribution of concave vertices. The shapes that 
were used for testing were chosen so that one of the four 
characteristics could be varied while the other three 
remained constant.

CPU times were gathered for four different phases of the 
algorithm: initializing, finding the first medial pixel,
finding the remainder of the medial pixels, and eliminating 
excess medial pixels. The initialization phase includes 
digitizing the shape boundary, calculating the type (convex 
or concave) of each vertex, combining adjacent colinear 
line segments, and computing the coefficients in the line 
equations for each line segment. The phase to find the 
first medial pixel also includes finding an internal seed 
point for the polygon.

IV.A Varying Number Of Edges

The shapes used for this set of tests were regular 
polygons. The number of edges was varied from 3 to 70.
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CPU times for initialization and finding the first medial 
pixel were expected to increase linearly with the number of 
edges. The plots shown in Fig. 19 and Fig. 20 are rather 
erratic but CPU time appears to increase as the number of 
edges increases. The linear correlation coefficients are 
approximately 0.64 for Fig. 19 and 0.74 for Fig. 20. CPU 
time required for these phases was extremely small compared 
to the total CPU time required.

CPU time to find the remaining medial pixels was expected 
to be 0(n log n) with respect to number of edges but is 
obviously higher as shown in Fig. 21. This was the first 
indication of the role that angle measure plays in the 
order of the algorithm. As the number of edges in the 
regular polygons increases, the angle measures increase. 
This allows many more pixels to be counted as medial due to 
the tolerance check on the difference between the distances 
to the closest and second closest edges.

The same comments apply to the CPU time required to 
eliminate excess medial pixels (also referred to as 
thinning the MAT). All of the regular polygons were 
created with their centers at the origin and their first 
vertices on the positive x axis. The upward turn that 
occurs in Fig. 21 and Fig. 22 at around 16 edges can be 
explained by noting that the branch from the shape center 
to the first vertex is trivial in comparison to the other 
branches. Since it is oriented in one of the four compass
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directions with respect to the spatial occupancy array, 
fewer excess medial pixels are generated. This is similar 
to the stair stepping effect that is seen when 
non-horizontal, non-vertical lines are drawn in raster 
graphics. At around 16 edges, the effects of this trivial 
branch dissipate. The levelling off that occurs in the 
plot for the thinning phase can be explained by noting that 
at around 40 edges nearly every pixel in the interior of 
the shapes is considered medial. Additional edges no 
longer translate into a large increase in excess medial 
pixels so the time required to eliminate them does not 
increase significantly. Fig. 23 shows a plot of the total 
CPU time required.
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Fig. 22. Plot of CPU time to thin when the number of edges
is varied.
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Fig. 23. Plot of total CPU time when the number of edges
is varied.

Page 54



Page 55

IV.B Varying Area

The shapes used for this set of tests were equilateral 
triangles. The area was varied from 3 to 70 square units.

CPU time for initialization was expected to be 0(SQRT(n)) 
with respect to area since the digitization process should 
be linear with respect to the grid size of the spatial 
occupancy array and all other portions of the 
initialization phase should be linear. Fig. 24 plot bears 
this out.

CPU time to find the first medial pixel was expected to 
be constant for two reasons. The time required to find an 
interior pixel depends only on the number of edges. Also, 
the interior pixel that is found for an equilateral 
triangle is always medial. In fact, it is a medial branch 
point since it is at the centroid of the equilateral 
triangle. The plot shown in Fig. 25 is rather erratic but 
appears to be constant in general. The linear correlation 
coefficient is approximately 0.30. CPU time required for 
this phase is small compared to the total CPU time 
required.

CPU time to find the remaining medial pixels was expected 
to be 0(SQRT(n)) with respect to area. Fig. 26 supports
this.
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CPU time to thin the MAT was expected to be linear with 
respect to area. This is due to the fact that, in general, 
the number of excess medial pixels increases linearly with 
respect to area. Fig. 27 confirms this. Fig. 28 shows a 
plot of the total CPU time required.
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Fig. 28. Plot of total CPU time when the shape area is varied.
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IV.C Varying Number Of Holes

Suitable shapes to be used for this set were difficult to 
find. While it is easy to come up with a shape in which 
edges can be removed and used to create holes, it is 
difficult to keep the number of convex and concave vertices 
constant. Note that the sense of convex and concave is 
reversed for holes. A triangle shaped hole has three 
concave vertices, not three convex vertices. Fig. 29 shows 
two of the shapes from this test set. Each hole is created 
by removing six "teeth" edges from the shape boundary, 
replacing the removed edges with a longer edge, and using 
the remaining five edges to create a triangle that is 
dented on two sides. Three concave and two convex vertices 
are removed from the shape boundary and the new hole that 
is created contains three concave and two convex vertices. 
The number of holes was varied from 0 to 20.

All of the holes used were the same shape and size. In 
addition, they were positioned in similar locations with 
respect to the shape border. This was done so that the 
effects of adding holes would not be tainted by introducing 
these three characteristics of the holes.

This set of tests provided the first indication of the 
role that edge proximity plays in the order of the 
algorithm. As mentioned in section 3.3, when many edges 
are close to a pixel that is being tested for mediality the 
benefits of the lower bound scheme are reduced. Consider



Fig. 29. Two of the shapes used to test the effect of varying 
the number of holes on the run time of the ridge following 
algorithm.
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the pixels near the center of the test shape containing no 
holes. Many of the "teeth" edges are nearly equidistant 
from these pixels so a high number of distances are 
calculated. In contrast, for the test shape containing 20 
holes far fewer edges are nearly equidistant from pixels 
near the center of the shape. The plot in Fig. 30 shows 
that as the number of holes increased, average edge 
proximity decreased causing the total CPU time required to 
decrease.

IV.D Varying Distribution Of Vertex Types

The shapes used for this test set were obtained by using 
a regular polygon with 20 edges and "flipping in" various 
vertices. The number of edges in the regular polygon was 
selected in such a way that we would obtain a sufficient 
number of concavities in the test shapes generated from the 
original regular polygon.

The process of generating test shapes from the original 
20-gon is illustrated in the following examples. To obtain 
shapes in which no two concave vertices are adjacent one 
simply steps around the 20-gon reflecting every other 
vertex about a line through its previous and next vertices. 
This generates 10 different shapes. Returning to the 
original 20-gon and continuing in this manner one steps 
around the 20-gon reflecting consecutive pairs of vertices 
about the previous and next vertices. The next vertex
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becomes the previous vertex for the next pair of vertices 
to be flipped. This procedure yields the following set of 
shapes, three of which are shown in Fig. 31.

KEY A / B where
A ** total # of concave vertices in shape 
B «= # of concave vertices in each set 

of adjacent concave vertices

0/0

1/1 2/1 3/1 4/1 5/1
6/1 7/1 8/1 9/1 10/1

2/2 4/2 6/2 8/2 10/2

3/3 6/3 9/3 12/3 15/3

4/4 8/4 12/4 16/4

5/5 10/5* 15/5*

6/6 12/ 6*

7/7 14/7*

8/8 16/8*

9/9* 18/9*

Some of these shapes (followed by *) are not simply 
connected. At least one edge crosses another edge in the 
shape so they cannot be processed by the algorithm. This
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is the case for the rightmost shape in Pig. 31.

This test set was the most difficult from which to 
extract a pattern. The characteristics that vary in this 
set are the total number of concave vertices and the number 
of concave vertices within each set of adjacent concave 
vertices.

It was expected that in general CPU time would decrease 
as the total number of concave vertices increased since 
concave vertices do not have medial branches leading into 
them. The plot in Fig. 32 supports this conjecture. For 
shapes with the same number of concave vertices, varying 
the number of concave vertices in each adjacent set of 
concave vertices did not have a consistent effect on the 
CPU time required to generate the MAT.



3 / 1 6 / 3 1 5 / 5

Fig. 31. Three of the shapes used to test the effect of 
varying the distribution of vertex types on the run 
tine of the ridge following algorithm.
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V CONCLUSION

Applications of the MAT and methods of obtaining it have 
been presented. The ridge following method has been 
presented in depth. Improvements to a previous ridge 
following algorithm have been proposed. Test results that 
show the effects of certain shape characterisics on the run 
time of the improved ridge following algorithm have been 
presented and interpreted.

V.A Effect Of Shape Characteristics On Run Time

The brushfire algorithm runs fastest for shapes that have 
small area and are nearly "thin" (small radius values for 
the maximal disks). This greatly restricts the class of 
shapes that it can process efficiently. The Voronoi 
algorithm runs fastest for shapes whose polygonal 
approximations have few edges and few concave vertices.

Many more shape characteristics affect the run time of 
the ridge following algorithm. The same shape 
characteristics that are good for the Voronoi algorithm are 
also good for ridge following. Other shape characteristics 
that decrease the run time of the ridge following algorithm 
are small area (see section IV.B), small angles between 
edges in the polygonal approximation (see section IV.A), 
and low edge proximity (see section IV.C).
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Table I shows the shape characteristics that affect each 
section in the ridge following algorithm. It also shows 
the order of each section in terms of number of edges and 
shape area. Plots of combined CPU times for steps 1 thru 6 
are in Fig. 19 and Fig. 24. Plots of combined CPU times 
for steps 7 and 8 are in Fig. 20 and Fig. 25. Plots of CPU 
times for step 9 are in Fig. 21 and Fig. 26. Plots of CPU 
times for step 10 are in Fig. 22 and Fig. 27. Plots of 
total CPU times for all steps are in Fig. 23, Fig. 28,
Fig. 30, and Fig. 32.

V.B Extensions To The Ridge Following Algorithm

In the interest of making the ridge following algorithm 
more generally applicable it would be beneficial to extend 
its capabilities in three ways. First, the requirement 
that the starting represention be a polygon should be 
removed. Second, the ability to find the MAT of a shape's 
exterior should be added. This is especially important for 
feature extraction. Third, the algorithm should be 
extended to handle 3-D shapes.

V.B.l Medial Axis Of Shapes Containing Curves

The ridge following algorithm can be modified to find the 
medial axis of a non-polygonal shape. A polygonal 
approximation of the shape is still required, but the 
algorithm can be modified to prevent medial branches from
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Table IDetailed Information on Sections 
of the Ridge Following Algorithm

Shape 0(7)
Character- whereistic n is

Section Description 1 2 3 4 5 Edges Area
1 find polygon extrema X n 1
2 allocate and initialize maps X 1 n3 draw polygons in map X X n sqrt4 get vertex types X n 15 combine colinear edges X n 16 compute line equations X n 17 find internal point X n 18 find 1st medial point X X X n log n sqrt
9 find rest of medial points X X X X n log n n
10 thin medial points X X X 1 n
s determine if 1 pt. is medial X X X n log n 1

n

n

Section s is a subroutine that is called by steps 8 and 9.
Key for shape characteristic columns:1 - area2 - number of edges

3 - proximity of edges4 - angle measures
5 - number of concavities
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extending into convex vertices created by the polygonal 
approximation of curves. During polygonal approximation of 
curves the average radius of curvature of the original 
shape boundary in the area of each approximated edge must 
be computed and saved. The check for pixel mediality must 
be modified to disqualify the pixel if the distance to one 
of its two closest edges is less than the radius of 
curvature for the edge.

A robust algorithm for generation of the MAT should have 
the ability to process curved shapes. Along with 
investigation into extending the ridge following algorithm 
to handle curved shapes, the possibility of extending the 
Voronoi algorithm should be explored.

V.B.2 Medial Axis Of The Exterior Of Shapes

The MAT of the exterior of a shape exists provided that 
the shape contains at least one concavity. To find the MAT 
of the exterior of a shape using ridge following, a seed 
pixel is required for each bounded set of exterior pixels. 
Since the MAT extends outward from the shape indefinitely, 
the spatial occupancy array must be dimensioned to include 
all medial pixels of interest. This dimensioning provides 
a stopping point for the recursive process of finding 
neighboring medial pixels.
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V.B.3 Three Dimensional Ridge Following

The ridge following method can be extended to operate on 
3-D shapes. Pixels must be replaced by volume elements (or 
voxels). The basic steps of the revised algorithm are 
shown below:

Digitize the shape surface, not including the
shape interior, in a 3-D spatial occupancy array.

Find any voxel that is inside the shape (seed voxel).
Search a plane of voxels containing that voxel 

to find the first medial voxel (existence 
is guaranteed since the MAT is connected).

Find the rest of the medial voxels by recursively 
examining all the neighboring voxels.

The concepts that must be altered for the 3-D case are 
listed below:

2-D 3-D

8 neighbors per pixel
distances are measured from pixels to edges

check is made for a concave vertex shared by adjacent edges
lower bound on distance is 
based on edge endpoints

26 neighbors per voxel
distances are measured from voxels to polygonal 
faces
check is made for a 
concave vertex shared by adjacent faces
lower bound on distance is based on face vertices
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The same tolerance can be used for evaluating the 
difference between the closest and second closest face.
Also, the same steps for thinning the MAT can be used. The 
procedure for identifying simple voxels might be similar 
but will be somewhat more complicated than identifying 
simple pixels since the ordering of voxels in a 
neighborhood is not clear.
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APPENDICES

A IMPLEMENTATION

The improved ridge following algorithm was implemented 
on a DEC VAX 8300 computer using Pascal. The details of 
the algorithm are presented in the following sections.

A.1 Definitions

The following terms are used to describe the steps of 
the algorithm:

A.l.a Boundary_Map

The Boundary_Map is a 2-D array of Boolean values, the 
TRUE elements of which represent pixels that are on a 
boundary of the shape.

A.l.b Checked_Map

The Checked_Map is a 2-D array of Boolean values, the 
TRUE elements of which represent pixels that have been 
checked for mediality.
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A.l.c Contours

Contours refer to the polygons that are used to 
represent the shape, i.e. the boundary and the holes (if 
any).

A.l.d Medial_Map

The Medial_Map is a 2-D array of Medial_Nodes 
corresponding to pixels.

A.I.e Medial Node

A Medial_Node 
with the following

is an element 
fields:

in the Medial_Map array

Medial
« a Boolean value indicating whether 

the corresponding pixel is medial

Quality
= the difference between the distance from the

pixel to the closest contour polygon edge and the 
second closest contour polygon edge that does not 
form a concave angle with the closest edge 
(The lower the Quality value, the closer the pixel 
center is to being on the actual medial axis.)
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Radius_Squared
- the distance squared to the closest contour polygon 
edge

A.l.f Vertex List

The vertex list contains the (X,Y) points in the 
polygonal approximation of each contour of the shape. The 
points are stored in clockwise order for the boundary and 
in counter-clockwise order for holes.

A.l.g Vertex Type

Vertex type refers to the angle between the two 
contour polygon edges that are incident at a vertex. It 
can be Concave, Colinear (angle = Pi), or Convex. For 
vertices in the contour polygons of holes, the meaning of 
Concave and Convex is reversed.

A.l.h Segment Linked List (SLL)

The segment linked list is a linked list of 
SegmentNodes.

A.l.i Segment_Node

A Segment_Node is a node in the segment linked list 
(SLL) that represents a contour polygon edge. It contains 
the following fields:



Page 8

Owner Contour *
contour number of which this edge is a member 
(1 for the boundary, 1 + hole number for holes)

Begin_Point -
index of the first endpoint of the edge 
in the vertex list of the Owner_Contour

End_Point «
index of the second endpoint of the edge 
in the vertex list of the Owner_Contour

Begin_VT ®
the vertex type of the Begin_Point 

Line_Coefficients «
A, B, & C where Ax + By + C » 0 for the 
line through Begin_Point and End_Point

Lower_Bound •=
lower bound on the distance from the current 
pixel being tested for mediality to this edge

Distance_Squared -
distance squared from the current pixel 
being tested for mediality to this edge

Next *
pointer to the next Segment_Node 
in the segment linked list (SLL)
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A.2 Input Required

The input required by the algorithm is:

1) number of contours in the shape
(1 for the boundary + number of holes in shape)

2) 1-D array containing the number of points 
in the vertex list of each contour

3) 1-D array containing a vertex list for each contour

4) resolution (the grid size of the pixels that the 
medial pixels will be chosen from will be
1 / resolution)

A.3 The Algorithm

The basic steps in the algorithm are:

1) Allocate the Boundary_Map, CheckedMap, and 
Medial_Map dynamic arrays based on the minimum 
and maximum X and Y vertex values in the boundary 
contour and the Grid_Size.

2) "Draw” the boundary of the shape and 
its holes in the Boundary_Map.

3) Create the SLL.
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4) Combine colinear segments in the SLL by deleting 
those that have a Colinear BeginVT and setting 
the End_Point of their previous Segment_Node to 
the End_Point of the deleted Segment_Node.

5) Find any pixel that is inside the shape 
boundary but not inside one of its holes.

6) Set Tolerance to the Grid_Size plus a very small 
number. (If the quality of a pixel is close to the 
Grid_Size it may appear to be slightly greater than 
the Grid_Size due to the precision of the computer.
If a small number were not added to the tolerance, 
the pixel would not be marked as medial and, due to 
the recursive nature of the algorithm, much of the 
MAT could be missed.)

7) Find the first medial pixel by examining all internal 
pixels above and below the known internal pixel until 
one is found (existence is guaranteed since the MAT 
is connected), (see the section A.6)

8) Find the rest of the medial pixels by recursively 
examining all the neighboring pixels (8 for each 
pixel) of the known medial pixel that are:

1) not turned on in the Checked_Map
2) not turned on in the Boundary_Map
3) not obtained by crossing a shape contour in 

the boundary map in a diagonal direction
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(see the section A.6)

9) "Thin" excess pixels that were marked as medial.

A.3.a Detail Of Step 2

The Bresenham line drawing algorithm was used to turn 
on pixels in the BoundaryMap along the contour polygon 
edges.

A.3.b Detail Of Step 3 

For each contour
For each edge in the current contour

Create a new Segment_Node and set the following 
fields:
Owner_Contour,
Begin_Point,
Endpoint,
Begin_VT,
Line_Coefficients.
{ see the sections A.4 and A.5 }

Set the Next field of the previous Segment_Node 
to point to the newly created SegmentNode.
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A.3.c Detail Of Step 5

The concave vertices of the contour polygons 
will have been marked already in the SLL.

Let A be the highest concave vertex in the SLL.

Let B be the highest vertex in the boundary contour 
polygon.

Let C be the next vertex in the counter-clockwise 
direction from B in the boundary contour polygon.

Let D be the next vertex in the clockwise 
direction from B in the boundary contour polygon.

If C is below A in the sense of its y coordinate 
then let C be the point on the line segment BC 
with the same y value as A.

If D is below A in the sense of its y coordinate 
then let D be the point on the line segment BD 
with the same y value as A.

Find the centroid of B, C, and D.

This point is in the interior of the 
shape as is the pixel that contains it.
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A.3.d Detail Of Step 9 

Repeat
For each Medial_Node

If the Medial field is set to TRUE Then
If the Quality values of all of its neighboring 

medial pixels are lower than its Quality Then 
If the pixel can be removed without damaging the 

connectivity of the medial pixels 
(simple pixel) Then 

Set the Medial field to FALSE 
to remove the medial pixel.

Until no more medial pixels can 
be removed by this process

A .4 Computing Vertex Types

In order to compute the vertex type of a vertex in a 
contour polygon one considers the two edges incident at the 
vertex. Label the vertex of interest B and label vertices 
A and C such that A immediately precedes B and C 
immediately follows B when the vertices are traversed in 
clockwise order. Let VI be the vector from B to A and let 
V2 be the vector from B to C.

When the dot product of two vectors is positive then 
the smallest angle between the vectors is less than Pi / 2. 
This could be either the angle from the first vector to the



Page 89

second or the second to the first.

When the cross product of two vectors is positive then 
the counter-clockwise angle from the first vector to the 
second vector is less than PI. When the cross product of 
two vectors is negative then the counter-clockwise angle 
from the first vector to the second vector is greater than 
PI (right-hand rule).

The process of determining the vertex type of B is 
shown below:

Normalize VI and V2 (divide by vector length) so that 
their cross product gives the sine of the angle between
them.

Let DP be the dot product of VI and V2.

Let CP be the cross product of Vl and V2.

If DP > 0 Then
If CP > 0 Then

Begin_VT is Convex 
Else

If CP < 0 Then
vertex type of B is Concave 

Else
{ CP * 0, the line segments 
lie on top of each other ) 

vertex type of B is Colinear
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Else
If CP > SIN (5 degrees) Then 
vertex type of B is Convex 

Else
If CP < - SIN (5 degrees) Then 
vertex type of B is Concave 

Else { - SIN (5 degrees) <= CP <*= SIN (5 degrees) } 
vertex type of B is Colinear

Checking the CP against SIN (5 degrees) allows points 
that are nearly colinear to be labeled as colinear. This 
may not be desirable for line segments that are used to 
approximate curves.

A.5 Computing Line Coefficients

The coefficients of the equation Ax + By + C = 0 for a 
line specified by two points (xl, yl) and (x2, y2) are 
computed as follows:

A = yl - y2 
B = x2 - xl
C = (xl * y2) - (yl * x2)

A.6 Determining Pixel Mediality

The following steps are performed when a particular 
pixel is being tested for mediality:
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1) Set the Checked_Map element corresponding to the 
pixel to TRUE.

2) For each edge in the SLL, set Lower_Bound to a lower 
bound on the distance from the pixel center to the 
edge.

3) Sort the nodes in the SLL on ascending lower 
bound. The order of the SLL remains fairly 
constant while evaluating pixels that are neighbors 
of the previously evaluated pixel. This reduces 
the amount of sorting required for most pixels.

4) Find the closest edge to the pixel 
in terms of distance squared.

5) Find the next closest edge to the pixel in 
terms of distance squared that does not 
form a concave angle with the closest edge.

6) Set the Quality of the pixel to the 
difference between the second closest and 
the closest distances to edges.

7) If Quality < Tolerance Then
Set Medial to TRUE for the pixel and save the 
distance squared to the closest edge (from 
step 4) in RadiusSquared.
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A.6.a Detail Of Step 2

The lower bound on the distance from a point to an 
edge (or line segment) that was used can be computed 
quickly since it involves only subtraction, MIN, and MAX 
operations. The following steps are performed to obtain a 
lower bound on the distance from a point (xO, yO) to a line 
segment from (xl, yl) to (x2, y2):

Delta_X_l = xl - xO 
Delta_Y_l - yl - yO 
Delta_X_2 = x2 - xO 
Delta_Y_2 = y2 - yO

If Sign (Delta_X_l) - Sign (Delta_X_2) Then
{ endpoints are on the same horizontal side of xO )
Lower_Bound = MIN (ABS (Delta_X_l), ABS (Delta_X_2))
If Sign (Delta_Y_l) = Sign (Delta_Y_2) Then

{ endpoints are on the same vertical side of yO } 
Lower_Bound »
MAX (Lower_Bound,

MIN (ABS (Delta Y 1), ABS (Delta Y 2)))



Page 93

Else
{ endpoints are on different horizontal sides of xO } 
If Sign (Delta_Y_l) •= Sign (Delta_Y_2) Then

{ endpoints are on the same vertical side of yO } 
Lower_Bound = MIN (ABS (Delta_Y_l), ABS (Delta_Y_2)) 

Else
{ endpoints are on different vertical sides of yO } 
Lower__Bound = 0

A.6.b Detail Of Step 4

The following steps are performed to find the closest 
edge to a pixel:

Loop through sorted SLL from beginning

Compute D, the distance squared from 
the pixel center to the current edge.
{ see section A.7 }

If D < shortest distance squared computed so far Then 
save D and the current edge

Until the end of the SLL is reached
OR

the Lower_Bound of the next edge is greater than 
or equal to the shortest distance found so far 
{ since all remaining edges must be at least that
far away }
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A.6.C Detail Of Step 5

The following steps are performed to find the second 
closest edge to a pixel:

Loop through sorted SLL from beginning

If the current segment is not the closest segment Then 
If the current segment is not incident with 

the closest edge at a concave angle Then 
{ see section A.8 }

If the distance squared from the pixel center to 
the current edge has already been computed Then 

Retrieve D from Distance_Squared.
Else
Compute D, the distance squared from 
the pixel center to the current edge.
{ see section A.7 }

If D < second shortest distance squared 
computed so far Then 
save D and the current edge

Until the end of the SLL is reached
OR

the Lower_Bound of the next edge is greater than 
or equal to the second shortest distance found so 
far { since all remaining edges must be at least 
that far away }
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A.7 Computing Distance Squared From A Pixel To An Edge

The following steps are performed to obtain the 
distance squared from a pixel center (xO, yO) to a line 
segment from (xl, yl) to (x2, y2):

Let VI be the vector from (xl, yl) to (xO, yO).

Let V2 be the vector from (xl, yl) to (x2, y2).

Let DP be the dot product of VI and V2.

If DP <= 0 Then
compute the distance squared 
from (xO, yO) to (xl, yl),
(xO - xl)**2 + (yO - yl)**2 

Else
Let VI be the vector from (x2, y2) to (xO, yO).

Let DP be the dot product of VI and V2.

If DP >= 0 Then
compute the distance squared 
from (xO, yO) to (x2, y2),
(xO - x2)**2 + (yO - y2)**2 

Else
compute the perpendicular distance 
from (xO, yO) to the edge
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using the line equation coefficients for the edge 
that were computed earlier, the distance squared is 
(A * xO + B * yO + C)**2 / (A**2 + B**2)

A.8 Determining Whether Two Edges Form A Concave Angle

The following steps are performed to determine whether 
two edges are incident at a concave vertex:

If the edges are in the same contour Then 
If the second endpoint of the first 

edge is the same point as the first 
endpoint of the second edge Then 
The edges are incident at a common vertex 
so check the vertex type of this vertex.

Else
If the second endpoint of the second 

edge is the same point as the first 
endpoint of the first edge Then 

The edges are incident at a common vertex 
so check the vertex type of this vertex.

Else
The edges are not incident.

Else
The edges are not incident.



Index Terms - medial axis transform, Blum transform 
symmetric axis transform, skeleton, shape representation 
feature extraction, shape smoothing, brushfire, Voronoi 
diagram, ridge following



FIGURE CAPTIONS

Fig. 1. Non-unique closest points on the shape.
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Fig. 3. External medial axis transform.
Fig. 4. Medial point types.
Fig. 5. Medial axis transform of a deformed torus.
Fig. 6. Medial axis branch primitive types.
Fig. 7. Variations of the primitive types.
Fig. 8. Significance of shape features.
Fig. 9. Ho and Dyer shape smoothing example.
Fig. 10. Spread of brushfire in a shape.
Fig. 11. Voronoi diagram of a point set.
Fig. 12. Voronoi diagram of the interior of a polygon. 
Fig. 13. Medial axis transform of the polygon in Fig. 12. 
Fig. 14. Inversion of a brushfire MAT.
Fig. 15. Distance from a point to a line segment.
Fig. 16. Concave angle special case.
Fig. 17. A shape that the DeSouza and Houghton ridge following algorithm cannot handle.
Fig. 18. Lower bound on the distance from point C to line segment AB.
Fig. 19. Plot of CPU time for initialization when the number of edges is varied.
Fig. 20. Plot of CPU time to find the first medial point when the number of edges is varied.
Fig. 21. Plot of CPU time to find the remaining medial points when the number of edges is varied.



Fig. 22. Plot of CPU time to thin when the number of edges 
is varied.

Fig. 23. Plot of total CPU time when the number of edges is varied.
Fig. 24. Plot of CPU time for initialization when the shape 

area is varied.
Fig. 25. Plot of CPU time to find the first medial point when the shape area is varied.
Fig. 26. Plot of CPU time to find the remaining medial points when the shape area is varied.
Fig. 27. Plot of CPU time to thin when the shape area is varied.
Fig. 28. Plot of total CPU time when the shape area is varied.
Fig. 29. Two of the shapes used to test the effect ofvarying the number of holes on the run time of the ridge following algorithm.
Fig. 30. Plot of total CPU time when the number of holes is varied.
Fig. 31. Three of the shapes used to test the effect of varying the distribution of vertex types on the run time of the ridge following algorithm.
Fig. 32. Plot of total CPU time when thenumber/distribution of concave vertices is varied.
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