
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Aug 1987

Medial Axis Transform using Ridge Following Medial Axis Transform using Ridge Following

Richard Mark Volkmann

Daniel C. St. Clair
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Volkmann, Richard Mark and St. Clair, Daniel C., "Medial Axis Transform using Ridge Following" (1987).
Computer Science Technical Reports. 80.
https://scholarsmine.mst.edu/comsci_techreports/80

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/80?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

MEDIAL AXIS TRANSFORM USING
RIDGE FOLLOWING

R. M. Volkmann* and D. C. St.

CSc 87-17

Clair

*This report is substantially the M.S. thesis of the first author,
completed, August 1987

Page iii

ABSTRACT

The intent of this investigation has been to find a
robust algorithm for generation of the medial axis
transform (MAT). The MAT is an invertible, object
centered, shape representation defined as the collection of
the centers of disks contained in the shape but not in any
other such disk. Its uses include feature extraction,
shape smoothing, and data compression. MAT generating
algorithms include brushfire, Voronoi diagrams, and ridge
following. An improved implementation of the ridge
following algorithm is given. Orders of the MAT generating
algorithms are compared. The effects of the number of
edges in the polygonal approximation, shape area, number of
holes, and number/distribution of concave vertices are
shown from test results. Finally, a set of useful
extensions to the ridge following algorithm are discussed.

Page iv

ACKNOWLEDGEMENT

I am indebted to Karl G. Kempf of INTEL Corporation for
his guidance in this study. In addition, I would like to
thank Daniel F. Mullen of Washington University, John
A. Zammit of Digital Equipment Corporation, and Joseph
L. Epplin, Kenneth F. Gerke, and Erwin W. Baumann of
McDonnell Douglas Corporation for their useful insights
into this work.

Page v

CONTENTS
ABSTRACT.. iii
ACKNOWLEDGEMENT iv
LIST OF ILLUSTRATIONS................................. vii
LIST OF TABLES....................................... ixI. INTRODUCTION 1

A. Definition Of The Medial Axis Transform . . . 1
B. Work Motivation............................... 4

II. HISTORICAL..7
A. Applications Of The Medial Axis Transform . . 7

1. Feature Extraction 7
2. Shape S m oothing.............................. 14
3. Data Compression.............................. 16

B. Methods Of Obtaining The Medial A x i s 18
1. B r u s h f i r e 19
2. Voronoi Diagrams 223. Ridge Following.............................. 27

C. Reconstruction Of Shape From M A T 30
III. THEORETICAL APPROACH 33A. Ridge Following Algorithm 33

B. Finding A Point Inside A Polygon 34
C. Determining Whether A Point Is Medial 36
D. Elimination Of Excess Medial Pixels 43

IV. EXPERIMENTAL RESULTS 47
A. Varying Number Of E d g e s 47
B. Varying A r e a 55
C. Varying Number Of H o l e s 62
D. Varying Distribution Of Vertex Types 64

V. CONCLUSION....................................... 70A. Effect Of Shape Characteristics On Run Time . 70
B. Extensions To The Ridge Following Algorithm . 71

1. Medial Axis Of Shapes Containing Curves . . . 71
2. Medial Axis Of The Exterior Of Shapes 73
3. Three Dimensional Ridge Following 74

REFERENCES... 76
V I T A ... 79

cr>
 c
n

Page vi

APPENDICES..80
A. IMPLEMENTATION................................ 80

1. Definitions...................................80
a. Boundary_Map...................................80
b. Checked_Map...................................80
c. Contours....................................... 81
d. Medial_Map.....................................81
e. Medial_Node...................................81f. Vertex L i s t82
g. Vertex T y p e82h. Segment Linked List (SLL) 82
i. Segment_Node...................................82

2. Input Required.................................84
3. The Al gorithm.................................84

a. Detail Of Step 2 86
b. Detail Of Step 3 86
c. Detail Of Step 5 87
d. Detail Of Step 9 88
. Computing Vertex Types 88
. Computing Line Coefficients 90
. Determining Pixel Mediality 90
a. Detail Of Step 2 92
b. Detail Of Step 4 93
c. Detail Of Step 5 947. Computing Distance Squared From A Pixel To An

E d g e ... 95
8. Determining Whether Two Edges Form A Concave

A n g l e ... 96

Page vii

LIST OF ILLUSTRATIONS

Figures Page

1. Non-unique closest points on the shape............ 2
2. Maximal disks of a shape.......................... 3
3. External medial axis transform.................... 5
4. Medial point types................................. 9
5. Medial axis transform of a deformed torus......... 10
6. Medial axis branch primitive types................ 12
7. Variations of the primitive types................. 13
8. Significance of shape features.................... 15
9. Ho and Dyer shape smoothing example............... 17

10. Spread of brushfire in a shape.................... 20
11. Voronoi diagram of a point set.................... 23
12. Voronoi diagram of the interior of a polygon...... 25
13. Medial axis transform of the polygon in Fig. 12.... 26
14. Inversion of a brushfire MAT...................... 29
15. Distance from a point to a line segment........... 38
16. Concave angle special case........................ 39
17. A shape that the DeSouza and Houghton ridge

following algorithm cannot handle.................. 41
18. Lower bound on the distance from point C to line... 42

segment AB.
19. Plot of CPU time for initialization when the number

of edges is varied................................ 50
20. Plot of CPU time to find the first medial point

when the number of edges is varied................. 51

Page viii

21. Plot of CPU time to find the remaining medial
points when the number of edges is varied......... 52

22. Plot of CPU time to thin when the number of edges
is varied.. 53

23. Plot of total CPU time when the number of edges is
varied... 54

24. Plot of CPU time for initialization when the shape
area is varied..................................... 57

25. Plot of CPU time to find the first medial point
when the shape area is varied..................... 58

26. Plot of CPU time to find the remaining medial
points when the shape area is varied............. 59

27. Plot of CPU time to thin when the shape area is
varied... 60

28. Plot of total CPU time when the shape area is
varied... 61

29. Two of the shapes used to test the effect of
varying the number of holes on the run time of the
ridge following algorithm.......................... 63

30. Plot of total CPU time when the number of holes is
varied... 65

31. Three of the shapes used to test the effect of
varying the distribution of vertex types on the run
time of the ridge following algorithm............. 68

32. Plot of total CPU time when the number/distribution
of concave vertices is varied 69

Page ix

LIST OF TABLES

Tables Page
I. Detailed Information on Sections of the Ridge

Following Algorithm................................. 72

Page 1

I INTRODUCTION

I.A Definition Of The Medial Axis Transform

The medial axis transform (MAT) is an invertible, object
centered, shape representation. It is defined as the locus
of points (called medial points) that do not have a unique
closest point on the shape boundary. Each of these medial
points is annotated with the shortest distance to the shape
boundary. In Fig. 1, the triangles represent holes in the
shape and the thick curves represent the MAT of the shape.
Points B and C are the non-unique closest points on the
shape boundary to the medial point A. The dashed circle
represents the maximal disk of the medial point A.

Alternately the MAT can be defined in 2-D as the
collection of the centers of maximal disks. Maximal disks
are disks that cannot be fully contained by any other disk
inside the shape. In Fig. 2, the MAT of a rectangle is
shown by dashed lines. Some of the maximal disks on the
left side of the rectangle are also shown. The shortest
distance to the shape boundary from the center of each
maximal disk is its radius. The definition of the MAT for
3-D objects is obtained by replacing disks with spheres
[23, 26, 27].

Page 2

Fig. 1. Non-unique closest points on the shape.

Fig. 2. Maximal disks of a shape.
u>

Page

Page 4

For shapes that are not convex the MAT exists on the
outside of the shape as well. This provides a way of
representing internal holes and external concavities.
Fig. 3 shows the external MAT, represented by dashed lines,
of a shape containing two holes. The MAT of a shape
interior is guaranteed to be connected [12].

Other names used in the literature to refer to methods of
obtaining the MAT include symmetric axis transform (SAT),
Blum transform (for its inventor H. Blum) [8, 9, 10, 11].
Skeletonization and thinning are also used but are less
common.

I.B Work Motivation

The motive for this study of MATs has been to find a
shape representation that lends itself to automated nesting
of irregular two dimensional shapes. Nesting is a space
allocation problem in which a reasoner is given a piece of
stock, a set of shapes (or templates) to be cut from the
stock, and a set of constraints. The goal is to cut the
shapes from the stock in such a way that waste is minimized
and the constraints are not violated.

Nesting has been proven to be an NP-complete problem
[19]. Due to the combinatorics involved, most practical
algorithms for problem solution are based on search.
Template placement is often conceptualized as a double
search approach. In each cycle of placement, the templates

Fig- 3. External medial axis transform.
Ul

Page

Page 6

remaining are searched to select the single template to
place next. Once selected, the stock remaining is searched
to determine the precise location at which to place the
template. This second search step is especially difficult
because the template has three continuous degrees of
positional freedom; two translational (along X and Y in the
plane of the stock) and one rotational (around Z normal to
the plane of the stock).

The branches in the MAT of a shape identify the features
of the shape. These features provide a level of
abstraction that can be used to classify "peninsulas" and
"bays" of shapes. If one can assign direction to them and
identify compatible peninsula-bay pairings then MATS have
the potential to ease the double search nature of the
nesting problem. Given a feature in the unused stock, the
selection and positioning of the next template to be placed
might be determined by matching this feature to the
features in the set of unplaced templates.

Page 7

II HISTORICAL

II.A Applications Of The Medial Axis Transform

The applications for which MATs have been utilized
include feature extraction, shape smoothing, and data
compression. These uses are described in the following
three sections.

II.A.1 Feature Extraction

Feature extraction is the process of identifying the
characteristic components of a shape. Once extracted, they
can be used to measure the similarity between shapes or
portions of shapes. The extraction process is comprised of
two basic steps; location of features and description of
features. For many shapes, the determination of where one
feature ends and another begins can be a difficult problem.

The most extensive work on the use of MATS for 2-D
feature extraction has been done by Blum and Nagel [8, 9,
10, 11, 25J. To extract features from the MAT, the medial
axis is segmented based on three types of MAT points. The
resulting medial axis segments are then classified into
seven primitive feature types.

Page 8

MAT points can be classified as normal points, branch
points, and end points. This distinction is based on the
number of contiguous sets of points on the shape boundary
touched by their associated maximal disks. Points with
only one set are end points. Points with two sets are
normal points. Points with three or more sets are branch
points. Contiguous sets of normal points bounded by branch
points and/or end points are called medial branches. These
medial branches represent shape features [28].

In Fig. 4, the triangles represent holes in the shape and
the thick curves represent the MAT of the shape. Points A,
B, C, D, E, F, and G are all medial points. A and G are
end points. C and F are normal points. B, D, and E are
branch points. The set of medial points between the
following pairs of branch and/or end points form features
of the shape: AB, BD, DE, EG.

For some shapes, such as a 2-D torus, it is possible for
a contiguous set of normal points to connect to itself. In
this case, the shape has only one branch and the branch is
not bounded by branch points or end points (see Fig. 5).

Page 9

Fig. 4. Medial point types.

Fig. 5. Medial axis transform of a deformed torus.

Page 10

Page 11

To facilitate classification of the medial branches, Blum
and Nagel define two functions. The axis function gives
the location of the MAT points. The radius function gives
the radius of the maximal disk at each MAT point.
According to Blum and Nagel, a reasonable shape language
should have a small set of primitives. Seven primitives
that are characterized by the behavior of the radius
function along the medial branch are identified. These
primitives are named worm, opening wedge, closing wedge,
opening cup, closing cup, opening flare, and closing flare
(see Fig. 6). Variations of the primitives are
characterized by the curvature of the axis function along
the medial branch. The names given to the primitive
variations are spiral in left, left circular, spiral out
left, straight, spiral out right, right circular, and
spiral in right (see Fig. 7).

Page 12

WORM

Fig. 6. Medial axis branch primitive types [11J.

Page 13

SPIRAL
IN

LEFT
SPIRAL

O UT LEFT

STRAIGHT

SPIRAL OUT
k RIGHT

N
SPIRAL \

IN \
RIGHT)

Fig. 7. Variations of the primitive types [11].

Page 14

II.A.2 Shape Smoothing

Shape smoothing simplifies shape descriptions by
eliminating insignificant shape features. The
determination of whether a shape feature is significant
has, in the past, usually been based on measurements that
are relatively local and scale dependent. These
measurements do not allow for the fact that a shape feature
that is significant on one shape may not be significant on
another shape or in a different area of the same shape. In
Fig. 8, a shape with two perturbations of the same size is
shown. Although they are the same size, the perturbation
near the center of this shape is more significant than the
perturbation on the left side.

Page 15

Page 16

Ho and Dyer [18] have proposed a method of shape
smoothing that utilizes the object centered nature of MATS.
The advantage of object centered representations over
boundary representations is that they make the global
properties of shapes more apparent. Their basic approach
includes: finding the MAT of the shape, removing
insignificant medial branches or portions of medial
branches, and reconstructing the shape from the remaining
MAT. The top shape in Fig. 9 shows the MAT of a rectangle
in dashed lines along with some of the maximal disks near
the end of each branch that is bounded by an end point. If
it is determined that the centers of the larger disks are
the last significant MAT points on their branches then the
result of shape smoothing will be the shape that is shown
at the bottom of Fig. 9.

II.A.3 Data Compression

A spatial occupancy array is an array in which the
element (or pixel) values are determined by a membership
predicate p(x,y) whose value is true when the pixel (x,y)
is in the shape and false otherwise. A shape that is
approximated by a spatial occupancy array can only be
recovered as a smoothed version of the original shape.
This digitization also affects the properties of invariance
to translation, rotation, and scaling [6, 24].

Page 17

Fig. 9. Ho and Dyer shape smoothing example.

Page 18

Use of spatial occupancy arrays for generating the MAT of
a shape has similar drawbacks. If the medial points of a
shape are selected from the elements of a spatial occupancy
array then the result of inverting the MAT will be a
smoothed version of the original shape. This is true
because the medial elements will only be approximations of
medial point locations and only a finite number of them
will be available for inversion [5, 6].

Ahuja, et al. [2] have suggested that, for applications
where some loss of accuracy in retrieved shapes is
acceptable, a variation of the MAT could be used to store
shape information in a more compact form. Their
modification of the MAT replaces disks with squares. The
loss of accuracy is controlled by the resolution of the
spatial occupancy array.

II.B Methods Of Obtaining The Medial Axis

Methods that have been used to obtain MATS fall into
three main categories, namely brushfire, Voronoi diagrams,
and ridge following. Generators other than disks, such as
squares (1, 6, 32, 33] and rectangles [37], have been used
in brushfire algorithms but will not be discussed in this
paper. When non-disk generators are used the connectivity
of the MAT is no longer guaranteed [1],

Page 19

II.B.1 Brushfire

The brushfire method operates by eroding the shape
boundary in a way that is analogous to a brushfire. A
brushfire burns by each point once and only once. If a
shape boundary is ignited simultaneously at all points
along the boundary then the points where the fire is
quenched form the MAT. In Fig. 10, the contour lines in
the shape illustrate the spread of a brushfire into the
shape at equal time intervals. The MAT of the shape is
represented by dashed curves [8, 24].

The heart of a typical brushfire algorithm is shown in
the following pseudo-code:

Represent the shape by a spatial occupancy array.

Repeat
For each boundary pixel in the spatial occupancy array

If the pixel is not medial Then
delete it (set to FALSE).

Until all remaining pixels are medial
Label remaining pixels with their distance

from the original shape boundary.

The determination of whether a pixel is medial can be
made on the basis of local properties. Patterns of the
pixels in a 3x3 neighborhood centered at a pixel can be
used to test its mediality [16, 29, 35].

Page 20

Fig. 10. Spread of brushfire in a shape.

Page 21

The order in which boundary pixels are evaluated can
affect whether the resulting MAT will be connected.
Variations of the basic brushfire algorithm devised to
address this problem can be catagorized into four types.
The first is to check each pixel that is to be deleted to
insure that the deletion will not locally disconnect pixels
in its neighborhood (14, 32]. The second is to alternate
sides (north, east, south, and west) of the shape where
deletion is to take place [14, 29, 31, 35). The third is
to evaluate all boundary pixels, marking those to be
deleted, before any deletion from the current boundary is
performed [4, 7, 32]. The fourth is to propagate deletion
simultaneously from four sides (north, east, south, and
west) to achieve an isotropic transformation (3, 4, 5, 16,
29, 38]. This approach requires a parallel processor with
at least four CPUs that uses shared memory for the spatial
occupancy array. Hilditch's method (17] combines the
second and fourth variations.

Shape information is retained more accurately by the last
two brushfire variations than the first two since the last
two variations are more isotropic. The first two
variations can produce slightly different MATS depending on
the order in which the pixels are evaluated. A drawback of
the last two variations is that they must handle the
additional problem of insuring that the MAT does not vanish
or retain a width of two pixels along some branches.

Page 22

A disadvantage common to all brushfire algorithms is that
the shape boundary is forced to erode inward in the four
compass directions instead of eroding normal to the actual
shape boundary. This is due to the fact that the spatial
occupancy array is composed of square pixels.

The lowest order claimed for brushfire algorithms is
20(n) where the spatial occupancy has a resolution of n x

n {7J. This is an upper bound on the order since the time
required actually depends on the thickness of the shape
along its medial axis. To see why this is the case,
consider a square in which each element of an n x n spatial
occupancy array is set to TRUE. Let a diagonal that is one
element thick extend across another n x n spatial occupancy
array. Several passes, roughly n / 2, will be required to
thin the square but only one pass will be required to
determine that the diagonal line is already thin.

II.B.2 Voronoi Diagrams

The Voronoi diagram (also known as Thiessen or Dirichlet
tessellation) of a point set containing n points in 2-D
divides the space into n regions that are bounded by line
segments. Each region contains one of the points from the
point set and all of the points in the space that are
closer to that point than to any other point in the set
[15, 34]. Fig. 11 illustrates this concept.

Fig. 11. Voronoi diagram of a point set.

Page 23

Page 24

A variation of this idea is to use a set of line segments
instead of a point set to generate the regions. When this
is done the regions in the Voronoi diagram are bounded by
linear and parabolic edges (see Fig. 12).

For a polygon, the MAT is a subset of the Voronoi diagram
obtained using the edges of the polygon as the set of line
segments. The MAT is acquired by removing the two region
bounding edges incident with each concave vertex of the
polygon and augmenting the remaining region bounding edges
with radius functions (see Fig. 13).

The method for construction of Voronoi diagrams of
polygons proposed by Lee (22] is based on the
divide-and-conquer technique. The basic steps are shown
below:

1) Create an ordered set of elements consisting
of all edges and concave vertices.

2) Divide the set into two contiguous sets.
3) Find the Voronoi diagram of each set recursively.
4) Merge the two Voronoi diagrams.

In step 4, a "merge curve" that is the bisector of two
sets of elements is constructed. The merge curve is
composed of line segments and parabolic segments. The
final merge curve is the output of the algorithm.

Page 25

Fig. 12. Voronoi diagram of the interior of a polygon

Page 26

Fig. 13. Medial axis transform of the polygon in Fig 12

Page 27

Using the equations of the line segments and parabolic
segments, any number of medial points can be computed along
them. Details of this algorithm can be found in [20, 21,
30]. The lowest order claimed for algorithms that compute
the Voronoi diagram of a polygon is 0(n log n) where n is
the number of edges plus the number of concave vertices in
the polygon [20, 22].

II.B.3 Ridge Following

Ridge following is a method of locating medial pixels in
a spatial occupancy array that attempts to minimize the
number of pixels that must be tested for mediality while
guaranteeing that all of them will be found [13]. To
obtain the MAT of the inside of a digitized shape, interior
pixels are examined to find a starting medial pixel. The
remainder of the medial pixels are found by searching along
ridges (or branches) from the known medial pixel.
Searching along ridges is accomplished by examining the
neighboring pixels of known medial points. Neighboring
pixels are the pixels in a 3x3 neighborhood centered at a
given pixel. Due to the connectivity of MATS on the inside
of shapes one can be assured that all of the interior
medial pixels will be reached from the starting medial
pixel.

Page 28

As in the brushfire method, the resulting MAT is composed
of a set of pixels. However, in ridge following the test
for mediality of pixels is taken directly from the
definition of medial points using distances to the shape
boundary as opposed to examining patterns of pixel
neighborhoods. For this reason, the ridge following method
is more accurate than the brushfire method.

Accuracy can be measured by examining the difference
between the original digitized shape and the digitization
of the inverted MAT. In Fig. 14, (a) shows the pixels that
are turned on in a spatial occupancy array, (b) shows the
pixels that would be selected as medial pixels by a typical
brushfire algorithm, and (c) shows the pixels that would be
turned on as a result of inverting the MAT in (b). The *'s
in Fig. 14 (c) also represent the pixels that would be
selected as medial in the inverted shape. It is clear that
a considerable loss of accuracy can occur during the
inversion process. This is further evidenced by the
difference between the two MATS.

1 1 1
111 111 111

11111 11111 11111
1111111 1111111 1111111

111111111 111111111 111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
1111111111111111111111111111111
11111111111 11111111111
11111111111
11111111111
11111111111
11111111111

11111111111
11111111111
11111111111
11111111111

(a)

1 11 1
11111

1
111111

1
1
1
1
1
1
1

1 1
1 1

1

1
1
11

1 11
1 1

(b)

111 111 1
1111111 11111 11111

11* 111111111*11 1111*11
111* 11111111* 11111111*111

11111* 1111111* 11111111*111
11111* 1111111* 1111111*1111

111111* 1111111* 1111111*1111
111111* 1111111* 1111111*11111

1111111*111111*1111111*1111111
11111111* 11111* 1.11111*111111111

11111111* 1111111* 11111*111111111
11111111*********11111*1111111111
11111111* 11111111*****1*111111111
11111111* 1111111111111***11111111
11111111* 1111111111111111*1111111
11111111* 1111111111111111*1111111
11111111* 1111111111111111*1111111

1111111* 11111111111111111*111111
1111111* 11111111111111111*11111
111111* 11111111111111111*111111
11111* * 11111111111111111*111111
1111* 11*111111
111* 111*11111
11* 11111*1111
11111111111

1111111111
1

11111**1111
11111* 1**111
1111* 1111*11
1111*1111111

1111111111
1111111

1111
(c)

Fig. 14. Inversion of a brushfire MAT [36].

Page 29

Page 30

The ridge following algorithm is 0(n log n) where n is
the number of edges in the polygon. This order can be
obtained by examining the details of the improved algorithm
described in section III. However, this order is
misleading since several factors other than the number of
edges affect the time required. Other factors include
shape area, proximity of edges, angle measures, and
concavities. The effects of these factors are also
discussed in Section III.

II.C Reconstruction Of Shape From MAT

The spatial occupancy array of a shape corresponding to
its MAT is easily obtained by selecting a finite number of
points along the MAT and recording the spatial occupancy of
their maximal disks.

The literature contains few references to generating a
polygonal approximation for a shape from its MAT. However,
it seems that the algorithm described below might work
well. To obtain an approximation using splines one could
use this procedure to obtain a polygonal approximation and
then fit splines to sections of the polygonal
approximation.

Select a finite number of points along the MAT.
(The number of medial points selected and the distance
between them along the medial axis will affect the
quality of the polygonal approximation.)

Page 31

For each selected MAT point A
If A is a normal point Then

Find the MAT points B and C that
immediately precede and follow A.

Find the two lines m and n (one on each side of the
medial axis) that are tangent to the maximal disks
of B and C.

Find the two points D and E on the maximal disk of A
(one on each side of the medial axis) where the
tangent to the maximal disk of A is parallel to
lines m and n on the same side of the medial axis.

Include points D and E in the polygonal
approximation.

Else
If A is an end point Then

Find the MAT point B that immediately precedes A.
Find the two lines m and n (one on each side of

the medial axis) that are tangent to the maximal
disks of A and B.

Find the points of tangency, C and D, of lines m
and n (one on each side of the medial axis) on
the maximal disk of point A.

Include points C and D along with several other
points between C and D on the side of the maximal
disk opposite from point B in the polygonal
approximation.

Page 32

Else
If A is a branch point Then
Do nothing.
If enough closely spaced medial points are
selected then sufficient polygonal
approximation points will be obtained
from the medial points that are near A.

Page 33

III THEORETICAL APPROACH

The MAT generating algorithm being proposed is an
improved version of the ridge following algorithm given by
DeSouza and Houghton [13], After presenting the basic
components of the algorithm, three sub-algorithms will be
discussed. For each of these, the DeSouza and Houghton
approach will be presented, its shortfalls will be
discussed, and methods to overcome these will be given.

III.A Ridge Following Algorithm

The algorithm operates on polygons. It can be modified
to handle shapes containing curves as will be described in
Section V.B.l.

The input data consists of the coordinates of the
vertices in the shape boundary (including holes) and the
grid size to be used for the spatial occupancy array. The
output of the algorithm is a set of medial point
coordinates together with the radius value (or closest
distance to the shape boundary) for each medial point. The
medial points returned are ordered by increasing x within
increasing y, which is the same order that they are stored
in the spatial occupancy array.

The basic steps of the algorithm are shown below:

Digitize the shape boundary, not including the shape
interior, in a spatial occupancy array.

Page 34

Find any pixel that is inside the shape (seed pixel).
Search vertically up and down from this interior

pixel to find the first medial pixel (existence
is guaranteed since the MAT is connected).

Find the rest of the medial pixels by recursively
examining all of its neighboring pixels.

III.B Finding A Point Inside A Polygon

In the DeSouza and Houghton method an interior point of
the polygon is found by performing the following steps:

Find the minimum x and y values of the polygon vertices.
Find the first two intersections encountered when moving

from the point (minimum x, minimum y) along a ray
making an angle of 45 degrees with the positive x axis.

Find the midpoint of the line segment connecting these
two points.

For many shapes, such a ray will not intersect the shape
at all. This approach is therefore not sufficient for all
polygons.

The problem of finding an interior point of a convex
polygon can be solved by finding the centroid of the
polygon. For a non-convex polygon, the centroid may lie
outside the polygon. It is possible to find a convex
region of a non-convex polygon. Once this is found, one

Page 35

can find the centroid of the convex region to obtain an
interior point. This method is outlined below:

Let A be the highest concave vertex in the polygon.

Let B be the highest vertex in the polygon.

Let C be the next vertex in the
counter-clockwise direction from B.

Let D be the next vertex in the
clockwise direction from B.

If C is below A Then
Change C to be the point on the line
segment BC with the same y value as A.

If D is below A Then
Change D to be the point on the line
segment BD with the same y value as A.

The centroid of B, C, and D is
in the interior of the polygon.

Note that the concavity of each vertex must be determined
anyway for the purpose of avoiding incorrect mediality
tests (described in section III.C). This approach works
without modification on polygons with polygonal holes. If
the digitized shape boundary has more than one bounded set
of interior pixels then an interior seed pixel wiLl be
required for each bounded set. To use the above procedure

Page 36

for finding each seed pixel the polygon must be subdivided
into several polygons such that the digitized shape
boundary of each has only one bounded set of interior
pixels.

III.C Determining Whether A Point Is Medial

By definition, a point is medial if it does not have a
unique closest boundary point. The accuracy of shape
represention when using spatial occupancy arrays is
dependent on the grid size. To allow for this, the
definition must be relaxed to consider pixels as medial if
the difference between the distance to the closest and the
second closest boundary points is less than a tolerance of
one grid size.

When testing points for mediality, distances from points
to line segments in the polygonal approximation of the
shape are measured without finding the coordinates of the
closest points on the line segments. Remember that the
distance from a point to a line segment can be greater than
the distance to the continuous line. In Fig. 15, consider
the distances from the points C and D to the line segment
AB. For C the desired distance is the perpendicular
distance to the line AB. The foot of the perpendicular
through D to the line AB, point E, is not on the line
segment AB. The desired distance for D is therefore the
distance between D and the closest line segment endpoint,

Page 37

namely B. This distance is greater that the distance from
C to E.

If the two closest line segments are adjacent and form a
concave angle then the closest point on each line segment
will be the endpoint that is common to the line segments.
To avoid an incorrect mediality test, this case requires
that one of the line segments be replaced by the next
closest line segment. In Fig. 16, all of the points in the
cross-hatched region would be incorrectly classified as
medial if this specal case were not observed.

In the DeSouza and Houghton method, the two closest edges
are found by performing the following steps:

Find the six closest vertices to the point.
For each of the six vertices
Calculate the distance to the two line

segments incident at the vertex.
Select the two edges with the shortest distances.

Fig. 15. Distance from a point to a line segment.

Page 38

Page 39

Fig. 16 Concave angle special case

Page 40

The number six was chosen rather arbitrarily. Fig. 17
shows a shape where this approach would fail. The six
closest vertices to point P are A, H, I, C, D, and E. The
two closest edges that are adjacent to these vertices are
HI and DE. By using these edges, point P would appear to
be medial when in fact it is not. Therefore, their method
is not sufficient for all polygons. The only way to
guarantee that the two closest line segments will be found
is to compute the distance to all of them or find a way of
insuring that any ignored line segment cannot possibly be
one of the closest two.

Calculating the distance from a point to every line
segment in a polygon becomes a very time consuming task as
the number of line segments in the shape increases. To
reduce the number of distance computations a scheme
involving a lower bound on the distance to each line
segment has been devised (see Fig. 18). This lower bound
is the greater of the lower bound on the x distance and the
lower bound on the y distance. The lower bound on the x
distance is zero if the x values of the line segment
endpoints are on opposite sides of the x value of the
point. Otherwise, it is the smallest x distance from the
point to one of the endpoints. The lower bound on the y
distance is defined similarly.

A

C

Fig. 17. A shape that the DeSouza and Houghton ridge following
algorithm cannot handle. Page 41

♦o

dxA A

}ommr boood *
MAX I MIN tdxA* dxBJ. MIN (dyA, dyBU

Fig. 18. Lower bound on the distance from point C to line
segment AB.

Page 42

Page 43

To determine the mediality of a pixel, this lower bound
is computed for each line segment in the polygon. The line
segments are then sorted on ascending lower bound (recall
that the sort can be 0(n log n) [34]). Distances to the
line segments are computed evaluating them in this order.
Whenever the lower bound on the distance to the next line
segment is greater than the shortest distance calculated so
far, the distance calculations for the rest of the line
segments can be disregarded.

The benefits of this scheme depend on the proximity of
polygon edges to the pixels being tested for mediality. If
relatively few edges have small lower bounds on their
distance to the pixel, then a significant number of
distance calculations will be avoided.

III.D Elimination Of Excess Medial Pixels

Due to the tolerance used in determining the mediality of
the pixels in the spatial occupancy array, the resulting
MAT is likely to have a thickness of more than one pixel
along some branches. This is especially noticeable at
branch points. Whether this is of any concern depends upon
the application.

If there is a need to further thin the MAT, the quality
of the retained pixels can be examined to determine which
ones to eliminate. The quality of a medial pixel can be
measured by the difference between the distance to the

Page 44

closest and the second closest boundary points. Low values
of this measure indicate better medial pixels. This is the
same value that is compared to the tolerance to determine
whether a pixel is medial, so it can be saved for this
purpose.

In the DeSouza and Houghton method, excessive medial
pixels are eliminated by performing the following steps:

For each medial pixel whose quality is better than the
quality of any other medial pixel in the surrounding
5 x 5 neighborhood

Check the mediality of 16 evenly spaced points inside
the grid of this medial pixel to find a medial point
of better quality.

Save this medial point.
Eliminate all medial pixels in the

surrounding 5 x 5 neighborhood.

This approach certainly eliminates excessive medial
pixels and raises the quality of the remaining medial
points. Its downfall, however, is that it reduces the
resolution of the resulting MAT and makes the connectivity
of the medial points unclear.

Another approach is to use the notion of simple pixels
combined with the quality measure. A simple pixel is
defined as a pixel that can be removed without damaging the
connectivity of the medial pixels. The following steps

Page 45

illustrate this method:

Repeat
For each medial pixel

If its quality is worse than the quality
of each of its medial neighbors
AND
it is a simple pixel Then

Eliminate it
Until no more medial pixels can be removed

The steps used to determine whether a pixel is simple are
shown below:

Create an 8 element array of Boolean values to
correspond to the 8 neighbors of the pixel.

Use the following direction numbers

3 2 1
\ I /

4 - * - 0
/ I \

5 6 7

where diagonal neighbors are those with an odd
direction number and non-diagonal neighbors
are those with an even direction number.

Set the array elements corresponding to medial

P a g e 46

pixels to TRUE.

For each diagonal neighbor
If both of the adgacent non-diagonal

neighbors are set to TRUE Then
set the diagonal neighbor array element to TRUE

Count the number of TRUE elements in the array.

Count the number of changes from TRUE to FALSE in the
array.

The pixel is simple if
(TRUE elements > 2) AND (Changes «= 1).

In this approach the resolution of the resulting MAT is
the same as the resolution of the unthinned MAT. Also, the
connectivity of the medial pixels can still be determined
by pixel adjacency in the spatial occupancy array.

Page 47

IV EXPERIMENTAL RESULTS

To test the performance of the improved ridge following
algorithm, the four shape characteristics that were
expected to have the most impact on run time were selected:
number of edges, area, number of holes, and
number/distribution of concave vertices. The shapes that
were used for testing were chosen so that one of the four
characteristics could be varied while the other three
remained constant.

CPU times were gathered for four different phases of the
algorithm: initializing, finding the first medial pixel,
finding the remainder of the medial pixels, and eliminating
excess medial pixels. The initialization phase includes
digitizing the shape boundary, calculating the type (convex
or concave) of each vertex, combining adjacent colinear
line segments, and computing the coefficients in the line
equations for each line segment. The phase to find the
first medial pixel also includes finding an internal seed
point for the polygon.

IV.A Varying Number Of Edges

The shapes used for this set of tests were regular
polygons. The number of edges was varied from 3 to 70.

Page 48

CPU times for initialization and finding the first medial
pixel were expected to increase linearly with the number of
edges. The plots shown in Fig. 19 and Fig. 20 are rather
erratic but CPU time appears to increase as the number of
edges increases. The linear correlation coefficients are
approximately 0.64 for Fig. 19 and 0.74 for Fig. 20. CPU
time required for these phases was extremely small compared
to the total CPU time required.

CPU time to find the remaining medial pixels was expected
to be 0(n log n) with respect to number of edges but is
obviously higher as shown in Fig. 21. This was the first
indication of the role that angle measure plays in the
order of the algorithm. As the number of edges in the
regular polygons increases, the angle measures increase.
This allows many more pixels to be counted as medial due to
the tolerance check on the difference between the distances
to the closest and second closest edges.

The same comments apply to the CPU time required to
eliminate excess medial pixels (also referred to as
thinning the MAT). All of the regular polygons were
created with their centers at the origin and their first
vertices on the positive x axis. The upward turn that
occurs in Fig. 21 and Fig. 22 at around 16 edges can be
explained by noting that the branch from the shape center
to the first vertex is trivial in comparison to the other
branches. Since it is oriented in one of the four compass

Page 49

directions with respect to the spatial occupancy array,
fewer excess medial pixels are generated. This is similar
to the stair stepping effect that is seen when
non-horizontal, non-vertical lines are drawn in raster
graphics. At around 16 edges, the effects of this trivial
branch dissipate. The levelling off that occurs in the
plot for the thinning phase can be explained by noting that
at around 40 edges nearly every pixel in the interior of
the shapes is considered medial. Additional edges no
longer translate into a large increase in excess medial
pixels so the time required to eliminate them does not
increase significantly. Fig. 23 shows a plot of the total
CPU time required.

CP
U

SE
CO

ND
S

TO
 I

NI
TI

AL
IZ

E
(in

 h
un

dr
ed

th
s)

5 0

45--

40 - -

35--

30 - -

25--

20 - -

1 5 - *

10 - -

5-

-4-4-4 1 1-1 4 \ H'l I 4 1-1 I 1-4 I -4-1 M 1 1 H - M - H - M 1 1 I 1-1 1-4-4-4-4 t-H 4 1 ■ 1 H-H-H -H-H l
10 15 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5

R EG ULAR PO LYG O N ED G ES
6 0 6 5 7 0

Fig. 19. Plot of CPU time for initialization when the number
of edges is varied.

Page 50

CP
U

SE
CO

ND
S

TO
 F

IN
D

FIR
ST

 M
AT

 P
T.

(in
 h

un
dr

ed
th

s)

3 0

5-

O 1 I I III I |-H II I t I I I I M 4-H-)■ H 4 + > ♦ I H II I I M I I I 11 I I t I I I I I I I I I I I l-H-i » l> M l-M t ¥■
O 5 10 15 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0

REG ULAR P O LYG O N ED G ES

Fig. 20. Plot of CPU time to find the first medial point when
the number of edges is varied.

Page 51

CP
U

SE
CO

ND
S

TO
 F

IN
D

RE
MA

IN
IN

G
MA

T
PT

S.

(in
 h

un
dr

ed
th

s)

Fig. 21. Plot of CPU time to find the remaining medial pointswhen the number of edges is varied.

Page 52

CP
U

SE
CO

ND
S

TO
 TH

IN
(in

 h
un

dr
ed

th
s)

Fig. 22. Plot of CPU time to thin when the number of edges
is varied.

Page 53

Fig. 23. Plot of total CPU time when the number of edges
is varied.

Page 54

Page 55

IV.B Varying Area

The shapes used for this set of tests were equilateral
triangles. The area was varied from 3 to 70 square units.

CPU time for initialization was expected to be 0(SQRT(n))
with respect to area since the digitization process should
be linear with respect to the grid size of the spatial
occupancy array and all other portions of the
initialization phase should be linear. Fig. 24 plot bears
this out.

CPU time to find the first medial pixel was expected to
be constant for two reasons. The time required to find an
interior pixel depends only on the number of edges. Also,
the interior pixel that is found for an equilateral
triangle is always medial. In fact, it is a medial branch
point since it is at the centroid of the equilateral
triangle. The plot shown in Fig. 25 is rather erratic but
appears to be constant in general. The linear correlation
coefficient is approximately 0.30. CPU time required for
this phase is small compared to the total CPU time
required.

CPU time to find the remaining medial pixels was expected
to be 0(SQRT(n)) with respect to area. Fig. 26 supports
this.

Page 56

CPU time to thin the MAT was expected to be linear with
respect to area. This is due to the fact that, in general,
the number of excess medial pixels increases linearly with
respect to area. Fig. 27 confirms this. Fig. 28 shows a
plot of the total CPU time required.

CP
U

SE
CO

ND
S

TO
 I

NI
TI

AL
IZ

E
(in

 h
un

dr
ed

th
s)

7 0

6 0 - -

5 0 * ■

4 0 - *

3 0 - -

2 0 ' -

1 0 - -

q jL-| t--t) | | |) H -H - H - f I I I W - I l i t I l-l I) I I M l <—I—I—f—I I I I M - M - H - M - M + I M - t 1--H t I I M l M

o 5 10 15 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0
EQUILATER AL TRIANGLE AREA

Fig. 24. Plot of CPU time for initialization when the shape
area is varied.

Page 57

3 0

2 5
I—
Q -
l ~

l— 2 0 - -
CO
o z ^

u _ m
JCZ

o ~o
<uV—

u _ - O 1 5 - -
co D

t— X Z

CO C
CD
zo 1 0 - -
o
U J
CO

I D
Q_
O

II t M * I I 4-M-4 M H - M H - M -H-t I (f-t-t-4 M M +-t I IH - H I I I I I H + H - H I I H - H I I I I H I I I I I
O 10 15 20 25 30 35 40 45 50 55

EQ UILATER AL TRIANGLE AREA
60 65 70

Fig. 25. Plot of CPU time to find the first medial point
when the shape area is varied.

Page 58

1 0 0 0

OO I—
Q .
I—;
O
Z
UJO'

9 0 0 - -

8 0 0 - -

CO

-oa>O -oZ C
E J
COQroo
LU
CO

Q_O

7 0 0 -

6 0 0 - -

5 0 0 - •

4 0 0 - -

5 0 0 - -

200--

100- -

I I I (l-l'h U H - l I H » I-1 (I t I f-H I t-M I I M -M I -M- f-M MH-I-H-M -M-f I » +-♦■+ f ■ M I I f- !■ f-M-M-M
0 10 15 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0

EQ UILATER AL TRIANG LE AREA

Fig. 26. Plot of CPU time to find the remaining medial points
when the shape area is varied.

Page 59

7 0 0

6 0 0 - ■

5 0 0 - -

_ CD

£ i00 PQ -OO 3 O JZZ
U Joo _t=
— JQ_o

4 0 0 - -

3 0 0

200--

100

I | |+ |. H | | | t M l t M -+ -M -4 I I I f t H I I I H H I I I I H "M - M - H - H t-t-4 -H I I I I I t - I I I I I I I I f -M -
o 5 10 15 2 0 2 5 3 0 3 5 4 0 45 5 0 55

EQUILATERAL TRIANGLE AREA
60 6 5 7 0

Fig. 27. Plot of CPU time to thin when the shape area isvaried.

Page 60

TO
TA

L
CP

U
SE

CO
ND

S
(in

 h
un

dr
ed

th
s)

Fig. 28. Plot of total CPU time when the shape area is varied.

Page 61

Page 62

IV.C Varying Number Of Holes

Suitable shapes to be used for this set were difficult to
find. While it is easy to come up with a shape in which
edges can be removed and used to create holes, it is
difficult to keep the number of convex and concave vertices
constant. Note that the sense of convex and concave is
reversed for holes. A triangle shaped hole has three
concave vertices, not three convex vertices. Fig. 29 shows
two of the shapes from this test set. Each hole is created
by removing six "teeth" edges from the shape boundary,
replacing the removed edges with a longer edge, and using
the remaining five edges to create a triangle that is
dented on two sides. Three concave and two convex vertices
are removed from the shape boundary and the new hole that
is created contains three concave and two convex vertices.
The number of holes was varied from 0 to 20.

All of the holes used were the same shape and size. In
addition, they were positioned in similar locations with
respect to the shape border. This was done so that the
effects of adding holes would not be tainted by introducing
these three characteristics of the holes.

This set of tests provided the first indication of the
role that edge proximity plays in the order of the
algorithm. As mentioned in section 3.3, when many edges
are close to a pixel that is being tested for mediality the
benefits of the lower bound scheme are reduced. Consider

Fig. 29. Two of the shapes used to test the effect of varying
the number of holes on the run time of the ridge following
algorithm.

Page 64

the pixels near the center of the test shape containing no
holes. Many of the "teeth" edges are nearly equidistant
from these pixels so a high number of distances are
calculated. In contrast, for the test shape containing 20
holes far fewer edges are nearly equidistant from pixels
near the center of the shape. The plot in Fig. 30 shows
that as the number of holes increased, average edge
proximity decreased causing the total CPU time required to
decrease.

IV.D Varying Distribution Of Vertex Types

The shapes used for this test set were obtained by using
a regular polygon with 20 edges and "flipping in" various
vertices. The number of edges in the regular polygon was
selected in such a way that we would obtain a sufficient
number of concavities in the test shapes generated from the
original regular polygon.

The process of generating test shapes from the original
20-gon is illustrated in the following examples. To obtain
shapes in which no two concave vertices are adjacent one
simply steps around the 20-gon reflecting every other
vertex about a line through its previous and next vertices.
This generates 10 different shapes. Returning to the
original 20-gon and continuing in this manner one steps
around the 20-gon reflecting consecutive pairs of vertices
about the previous and next vertices. The next vertex

CP
U

SE
CO

ND
S

(in
 h

un
dr

ed
th

s)

7 0 0 0 0 -t—

6 0 0 0 0 -

5 0 0 0 0 - -

4 0 0 0 0 -

50000 -

20000--
i—oK-

10000--

o j —\ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1
NU M BER OF H OLES

Fig. 30. Plot of total CPU time when the number of holes isvaried.

i--- (_
9 2 0

Page 65

Page 66

becomes the previous vertex for the next pair of vertices
to be flipped. This procedure yields the following set of
shapes, three of which are shown in Fig. 31.

KEY A / B where
A ** total # of concave vertices in shape
B «= # of concave vertices in each set

of adjacent concave vertices

0/0

1/1 2/1 3/1 4/1 5/1
6/1 7/1 8/1 9/1 10/1

2/2 4/2 6/2 8/2 10/2

3/3 6/3 9/3 12/3 15/3

4/4 8/4 12/4 16/4

5/5 10/5* 15/5*

6/6 12/ 6*

7/7 14/7*

8/8 16/8*

9/9* 18/9*

Some of these shapes (followed by *) are not simply
connected. At least one edge crosses another edge in the
shape so they cannot be processed by the algorithm. This

Page 67

is the case for the rightmost shape in Pig. 31.

This test set was the most difficult from which to
extract a pattern. The characteristics that vary in this
set are the total number of concave vertices and the number
of concave vertices within each set of adjacent concave
vertices.

It was expected that in general CPU time would decrease
as the total number of concave vertices increased since
concave vertices do not have medial branches leading into
them. The plot in Fig. 32 supports this conjecture. For
shapes with the same number of concave vertices, varying
the number of concave vertices in each adjacent set of
concave vertices did not have a consistent effect on the
CPU time required to generate the MAT.

3 / 1 6 / 3 1 5 / 5

Fig. 31. Three of the shapes used to test the effect of
varying the distribution of vertex types on the run
tine of the ridge following algorithm.

Page 68

TO
TA

L
CP

U
SE

CO
ND

S
(in

 h
un

dr
ed

th
s)

8 0 0 0

7 0 0 0

6 0 0 0

5 0 0 0

4 0 0 0

3 0 0 0

2 0 00

1000

0
! !5

i f
I I
V V

I I I Iv y ? ? 0 ? ? ? ? ? ? ?
? £
9 9
9 9
9 9
9 9
9 9y y X X

I fv y ? 2 ? 9
9 9y y ? 0 ? 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9y y
X X

y y y y y y y y y y y y y y? 9
9 9
9 9y y y y y y y y? ?
9 9
9 9y y y y
X X

■I
? ?y y
y y ? ? ? 9
9 9
9 9
9 9
9 9

i f fH P
9 9 %
9 9 9
9 9 9y y y ? ? ? ? ? ?
9 9 9
9 9 9
9 9 9
9 9 9
9 9 9y y y y y y y y y
X X X

y y? ?y y? a
? 2 y y y y y y? ?? ?? ? y y y y y y
X X

u

ylyy|yylyyly
X I X

2 ?y y
y y|yBBy y|y|y
?y y|y|y y y|y|y y y|y|y x xlxlx

r - T - c M ' - f O ,-CN'd-,“ Ln T _ C N f O c O ’- N ’- { N ' ^ a D ’- f O r" cN cM fr)'^-fO^
r- N (M n n ^ ' t r j - i n ^ l O i O l D l o N N I D O O O O C O O l O O O t M N t M i n i D

C O N C A V E VERTICES / A D JA C E N C IE S
(u s i n g a r e g u l a r po lygon with 2 0 e d g e s)

Fig. 32. Plot of total CPU time when the number/distribution
of concave vertices is varied.

Page 69

Page 70

V CONCLUSION

Applications of the MAT and methods of obtaining it have
been presented. The ridge following method has been
presented in depth. Improvements to a previous ridge
following algorithm have been proposed. Test results that
show the effects of certain shape characterisics on the run
time of the improved ridge following algorithm have been
presented and interpreted.

V.A Effect Of Shape Characteristics On Run Time

The brushfire algorithm runs fastest for shapes that have
small area and are nearly "thin" (small radius values for
the maximal disks). This greatly restricts the class of
shapes that it can process efficiently. The Voronoi
algorithm runs fastest for shapes whose polygonal
approximations have few edges and few concave vertices.

Many more shape characteristics affect the run time of
the ridge following algorithm. The same shape
characteristics that are good for the Voronoi algorithm are
also good for ridge following. Other shape characteristics
that decrease the run time of the ridge following algorithm
are small area (see section IV.B), small angles between
edges in the polygonal approximation (see section IV.A),
and low edge proximity (see section IV.C).

Page 71

Table I shows the shape characteristics that affect each
section in the ridge following algorithm. It also shows
the order of each section in terms of number of edges and
shape area. Plots of combined CPU times for steps 1 thru 6
are in Fig. 19 and Fig. 24. Plots of combined CPU times
for steps 7 and 8 are in Fig. 20 and Fig. 25. Plots of CPU
times for step 9 are in Fig. 21 and Fig. 26. Plots of CPU
times for step 10 are in Fig. 22 and Fig. 27. Plots of
total CPU times for all steps are in Fig. 23, Fig. 28,
Fig. 30, and Fig. 32.

V.B Extensions To The Ridge Following Algorithm

In the interest of making the ridge following algorithm
more generally applicable it would be beneficial to extend
its capabilities in three ways. First, the requirement
that the starting represention be a polygon should be
removed. Second, the ability to find the MAT of a shape's
exterior should be added. This is especially important for
feature extraction. Third, the algorithm should be
extended to handle 3-D shapes.

V.B.l Medial Axis Of Shapes Containing Curves

The ridge following algorithm can be modified to find the
medial axis of a non-polygonal shape. A polygonal
approximation of the shape is still required, but the
algorithm can be modified to prevent medial branches from

Page 72

Table IDetailed Information on Sections
of the Ridge Following Algorithm

Shape 0(7)
Character- whereistic n is

Section Description 1 2 3 4 5 Edges Area
1 find polygon extrema X n 1
2 allocate and initialize maps X 1 n3 draw polygons in map X X n sqrt4 get vertex types X n 15 combine colinear edges X n 16 compute line equations X n 17 find internal point X n 18 find 1st medial point X X X n log n sqrt
9 find rest of medial points X X X X n log n n
10 thin medial points X X X 1 n
s determine if 1 pt. is medial X X X n log n 1

n

n

Section s is a subroutine that is called by steps 8 and 9.
Key for shape characteristic columns:1 - area2 - number of edges

3 - proximity of edges4 - angle measures
5 - number of concavities

Page 73

extending into convex vertices created by the polygonal
approximation of curves. During polygonal approximation of
curves the average radius of curvature of the original
shape boundary in the area of each approximated edge must
be computed and saved. The check for pixel mediality must
be modified to disqualify the pixel if the distance to one
of its two closest edges is less than the radius of
curvature for the edge.

A robust algorithm for generation of the MAT should have
the ability to process curved shapes. Along with
investigation into extending the ridge following algorithm
to handle curved shapes, the possibility of extending the
Voronoi algorithm should be explored.

V.B.2 Medial Axis Of The Exterior Of Shapes

The MAT of the exterior of a shape exists provided that
the shape contains at least one concavity. To find the MAT
of the exterior of a shape using ridge following, a seed
pixel is required for each bounded set of exterior pixels.
Since the MAT extends outward from the shape indefinitely,
the spatial occupancy array must be dimensioned to include
all medial pixels of interest. This dimensioning provides
a stopping point for the recursive process of finding
neighboring medial pixels.

Page 74

V.B.3 Three Dimensional Ridge Following

The ridge following method can be extended to operate on
3-D shapes. Pixels must be replaced by volume elements (or
voxels). The basic steps of the revised algorithm are
shown below:

Digitize the shape surface, not including the
shape interior, in a 3-D spatial occupancy array.

Find any voxel that is inside the shape (seed voxel).
Search a plane of voxels containing that voxel

to find the first medial voxel (existence
is guaranteed since the MAT is connected).

Find the rest of the medial voxels by recursively
examining all the neighboring voxels.

The concepts that must be altered for the 3-D case are
listed below:

2-D 3-D

8 neighbors per pixel
distances are measured from pixels to edges

check is made for a concave vertex shared by adjacent edges
lower bound on distance is
based on edge endpoints

26 neighbors per voxel
distances are measured from voxels to polygonal
faces
check is made for a
concave vertex shared by adjacent faces
lower bound on distance is based on face vertices

Page 75

The same tolerance can be used for evaluating the
difference between the closest and second closest face.
Also, the same steps for thinning the MAT can be used. The
procedure for identifying simple voxels might be similar
but will be somewhat more complicated than identifying
simple pixels since the ordering of voxels in a
neighborhood is not clear.

Page 76

REFERENCES
11] N. Ahuja and W. Hoff, "Augmented Medial Axis Transform", Proc. Workshop on Computer Vision: Representation and Control", pp. 251-256, 1984.
[2] N. Ahuja, B. An, and B. Schachter, "Image Representation Using Voronoi Tessellation", Computer Vision, Graphics, and Image Proc., vol. 29, pp. 286-295, 1985.
[3] C. Arcelli and L. Cordelia and S. Levialdi, "A Grassfire Transformation for Binary Digital Images",

Proc. Second Int. Joint Conf. on Pattern Rec., pp. 152-153, 1974.
[4] C. Arcelli and G. Sannita di Baja, "On the Sequential Approach to Medial Line Transformation", IEEE Trans. Sys. Man. Cybernet., vol. 8, pp. 133-144, 1978.
[5] C. Arcelli and G. Sanniti, "A Thinning Algorithm Based on Prominence Detection", Pattern Recogn., vol. 13, pp. 225-235, 1981.
16] C. Arcelli and G. Sanniti, "An Approach to Figure Decomposition Using Width Information", Computer

Vision, Graphics, and Image Proc., vol. 26, pp. 61-72, 1984.
[7] C. Arcelli and G. Sanniti, "A Width-Independent Fast Thinning Algorithm", IEEE Trans. Pattern Anal. Machine Intell., vol. 7, no. 4, pp. 463-474, 1985.
[8] H. Blum, "A Transformation for Extracting New

Descriptions of Shape", Models for the Perception of Speech and Visual Form, W. Dunn, Ed. Cambridge, MA:M.I.T. Press, pp. 153-171, 1967.
[9] H. Blum, "Biological Shape and Visual Science (Part I)", Journal of Theoretical Biology, vol. 38, pp.

205-287, 1973.
[10] H. Blum, "A Geometry for Biology", Conf. on Mathematical Analysis of Fundamental Biological

Phenomena, 0. Gurel, Ed., Ann. N.Y.A.S., vol. 231, pp. 19-30, 1974.
[11] H. Blum and R. Nagel, "Shape Description Using Weighted Symmetric Axis Features", Pattern Recognition, vol. 10, pp. 167-180, 1978.
[12] L. Calabi, "A Study of the Skeleton of Plane Figures",

Parke Mathematical Laboratories, Scientific Report no.
2. 1965.

Page 77

[131 P- DeSouza and P. Houghton, "Computer Location ofMedial Axes", Computers and Biomedical Research, vol.
10, no. 4, pp. 333-343, 1977.

[14] C. Dyer and A. Rosenfeld, "Thinning Algorithms for Gray-Scale Pictures", IEEE Trans. Pattern Anal.
Machine Intell., vol. 1, no. 1, pp. 88-89, 1979.

[15] J. Fairfield, "Segmenting Dot Patterns by Voronoi
Diagram Concavity", IEEE Trans. Pattern Anal. Machine Intell., vol. 5, no. 1, pp. 104-110, 1983.

[16] A. Favre and H. Keller, "Parallel Syntactic Thinning by Recoding of Binary Pictures", Computer Vision,
Graphics, and Image Proc., vol. 23, pp. 99-112, 1983.

[17] C. Hilditch, "Comparison of Thinning Algorithms on a Parallel Processor", Image Vis. Comput., vol. 1, no.3, pp. 115-132, 1983.
[18] S. Ho and C. Dyer, "Shape Smoothing Using Medial Axis Properties", IEEE Trans. Pattern Anal. Machine Intell., vol. 8, no. 4, pp. 512-519, 1986.
[19] S. Israni and J. Sanders, "Two-dimensional Cutting Stock Problem Research: A Review and a New Rectangular Layout Algorithm" Journal of Manufacturing Systems, vol. 1, no. 2, pp. 169-181, 1982.
[20] D. Kirkpatrick, "Efficient Computation of Continuous Skeletons", Proc. 20th Annu. Symp. Found. Computer

Sci., pp. 18-27, Oct. 1979.
[21] D. Lee and R. Drysdale, "Generalization of Voronoi Diagrams in the Plane", SIAM J. Comput., vol. 10, pp. 73-87, Feb. 1981.
[22] D. Lee, "Medial Axis Transformation of a Planar Shape", IEEE Trans. Pattern Anal. Machine Intell.,

vol. 4, no. 4, pp. 363-369, 1982.
[23] R. Mohr and R. Bajcsy, "Packing Volumes by Spheres", IEEE Trans. Pattern Anal. Machine Intell., vol. 5, no. 1, pp. 111-116, 1983.
[24] J. Mott-Smith, "Medial Axis Transformations", Picture Processing and Psychopictorics, Lipkin and Rosenfeld,

Eds. New York:Academic Press, pp. 267-283, 1970.
[25] R. Nagel, "A Symmetric Axis Basis for Object Recognition and Description", IEEE Proc. of the

Conference on Decision and Control Including the 15th
Symposium on Adaptive Processes, pp. 168-170, 1976.

Page 78

[26] J. O'Rourke and N. Badler, "Decomposition of Three-Dimensional Objects into Spheres", IEEE Trans. Pattern Anal. Machine Intell., vol. 1, no. 3, pp. 295-305, 1979.
[27] J. O'Rourke and N. Badler, Correction to

"Decomposition of Three-Dimensional Objects into Spheres", IEEE Trans. Pattern Anal. Machine Intell., vol. 1, no. 4, p. 417, 1979.
[28] T. Pavlidis, "Algorithms for Shape Analysis of Contours and Waveforms", IEEE Trans. Pattern Anal. Machine Intell., vol. 2, no. 4, pp. 301-312, 1980.
[29] T. Pavlidis, "Algorithms for Graphics and Image Processing", Computer Science Press, 1982.
[30] F. Preparata, "The Medial Axis of a Simple Polygon", Proc. Sixth Symp. on Math. Found, of Computer Science, 1977.
[31] A. Rosenfeld, "A Characterization of Parallel Thinning Algorithms", Information and Control, vol. 29, pp. 286-291, 1975.
[32] A. Rosenfeld and A. Kak, "Digital Picture Processing", 2nd Edition, Academic Press, 1982.
[33] H. Samet, "Quadtrees and Medial Axis Transforms", IEEE Proc. Int. Conf. Pattern Recognition, pp. 184-187, 1982.
[34] R. Sedgewick, "Algorithms", Addison-Wesley Publishing Co., 1983.
[35] H. Tamura, "A Comparison of Line Thinning Algorithms from Digital Geometry View Point", IEEE Proc. Int. Conf. Pattern Recognition, pp. 715-719, 1978.
[36] Y. Tsao and K. Fu, "Stochastic Skeleton Modeling of Objects", Computer Vision, Graphics, and Image Proc., vol. 25, pp. 348-370, 1984.
[37] A. Wu and S. Bhaskar and A. Rosenfeld, "Computation of Geometric Properties from the Medial Axis Transform in 0(n log n) Time", Computer Vision, Graphics, and Image Proc., vol. 34, no. 1, pp. 76-92, 1986.
[38] B. Zvolanek and C. Lee, "Image Skeletonization for Object Position Measurement", Proc. of SPIE Applications of Digital Image Processing IV, vol. 359,

pp. 92-97, 1982.

Page 79

VITA

Richard Mark Volkmann was born on April 16, 1961 in
St. Louis, Missouri. He received his primary and secondary
education in Maryland Heights, Missouri. He has received
his college education from the University of
Missouri-St. Louis and the University of Missouri-Rolla
Graduate Engineering Center in St. Louis, Missouri. He
received a Bachelor of Science degree in Computer Science
from the University of Missouri-St. Louis in May 1983. He
has been enrolled in the Graduate School of the University
of Missouri-Rolla since September 1983.

Since April of 1986 he has been working at McDonnell
Douglas. His efforts there have been focused on automatic
nesting of sheet metal and composite aircraft parts. He
has also worked on automatic placement of rivets used to
hold down scrap areas created during the cutting of sheet
metal parts.

Page 80

APPENDICES

A IMPLEMENTATION

The improved ridge following algorithm was implemented
on a DEC VAX 8300 computer using Pascal. The details of
the algorithm are presented in the following sections.

A.1 Definitions

The following terms are used to describe the steps of
the algorithm:

A.l.a Boundary_Map

The Boundary_Map is a 2-D array of Boolean values, the
TRUE elements of which represent pixels that are on a
boundary of the shape.

A.l.b Checked_Map

The Checked_Map is a 2-D array of Boolean values, the
TRUE elements of which represent pixels that have been
checked for mediality.

Page 81

A.l.c Contours

Contours refer to the polygons that are used to
represent the shape, i.e. the boundary and the holes (if
any).

A.l.d Medial_Map

The Medial_Map is a 2-D array of Medial_Nodes
corresponding to pixels.

A.I.e Medial Node

A Medial_Node
with the following

is an element
fields:

in the Medial_Map array

Medial
« a Boolean value indicating whether

the corresponding pixel is medial

Quality
= the difference between the distance from the

pixel to the closest contour polygon edge and the
second closest contour polygon edge that does not
form a concave angle with the closest edge
(The lower the Quality value, the closer the pixel
center is to being on the actual medial axis.)

Page 82

Radius_Squared
- the distance squared to the closest contour polygon
edge

A.l.f Vertex List

The vertex list contains the (X,Y) points in the
polygonal approximation of each contour of the shape. The
points are stored in clockwise order for the boundary and
in counter-clockwise order for holes.

A.l.g Vertex Type

Vertex type refers to the angle between the two
contour polygon edges that are incident at a vertex. It
can be Concave, Colinear (angle = Pi), or Convex. For
vertices in the contour polygons of holes, the meaning of
Concave and Convex is reversed.

A.l.h Segment Linked List (SLL)

The segment linked list is a linked list of
SegmentNodes.

A.l.i Segment_Node

A Segment_Node is a node in the segment linked list
(SLL) that represents a contour polygon edge. It contains
the following fields:

Page 8

Owner Contour *
contour number of which this edge is a member
(1 for the boundary, 1 + hole number for holes)

Begin_Point -
index of the first endpoint of the edge
in the vertex list of the Owner_Contour

End_Point «
index of the second endpoint of the edge
in the vertex list of the Owner_Contour

Begin_VT ®
the vertex type of the Begin_Point

Line_Coefficients «
A, B, & C where Ax + By + C » 0 for the
line through Begin_Point and End_Point

Lower_Bound •=
lower bound on the distance from the current
pixel being tested for mediality to this edge

Distance_Squared -
distance squared from the current pixel
being tested for mediality to this edge

Next *
pointer to the next Segment_Node
in the segment linked list (SLL)

Page 84

A.2 Input Required

The input required by the algorithm is:

1) number of contours in the shape
(1 for the boundary + number of holes in shape)

2) 1-D array containing the number of points
in the vertex list of each contour

3) 1-D array containing a vertex list for each contour

4) resolution (the grid size of the pixels that the
medial pixels will be chosen from will be
1 / resolution)

A.3 The Algorithm

The basic steps in the algorithm are:

1) Allocate the Boundary_Map, CheckedMap, and
Medial_Map dynamic arrays based on the minimum
and maximum X and Y vertex values in the boundary
contour and the Grid_Size.

2) "Draw” the boundary of the shape and
its holes in the Boundary_Map.

3) Create the SLL.

Page 85

4) Combine colinear segments in the SLL by deleting
those that have a Colinear BeginVT and setting
the End_Point of their previous Segment_Node to
the End_Point of the deleted Segment_Node.

5) Find any pixel that is inside the shape
boundary but not inside one of its holes.

6) Set Tolerance to the Grid_Size plus a very small
number. (If the quality of a pixel is close to the
Grid_Size it may appear to be slightly greater than
the Grid_Size due to the precision of the computer.
If a small number were not added to the tolerance,
the pixel would not be marked as medial and, due to
the recursive nature of the algorithm, much of the
MAT could be missed.)

7) Find the first medial pixel by examining all internal
pixels above and below the known internal pixel until
one is found (existence is guaranteed since the MAT
is connected), (see the section A.6)

8) Find the rest of the medial pixels by recursively
examining all the neighboring pixels (8 for each
pixel) of the known medial pixel that are:

1) not turned on in the Checked_Map
2) not turned on in the Boundary_Map
3) not obtained by crossing a shape contour in

the boundary map in a diagonal direction

Page 86

(see the section A.6)

9) "Thin" excess pixels that were marked as medial.

A.3.a Detail Of Step 2

The Bresenham line drawing algorithm was used to turn
on pixels in the BoundaryMap along the contour polygon
edges.

A.3.b Detail Of Step 3

For each contour
For each edge in the current contour

Create a new Segment_Node and set the following
fields:
Owner_Contour,
Begin_Point,
Endpoint,
Begin_VT,
Line_Coefficients.
{ see the sections A.4 and A.5 }

Set the Next field of the previous Segment_Node
to point to the newly created SegmentNode.

Page 87

A.3.c Detail Of Step 5

The concave vertices of the contour polygons
will have been marked already in the SLL.

Let A be the highest concave vertex in the SLL.

Let B be the highest vertex in the boundary contour
polygon.

Let C be the next vertex in the counter-clockwise
direction from B in the boundary contour polygon.

Let D be the next vertex in the clockwise
direction from B in the boundary contour polygon.

If C is below A in the sense of its y coordinate
then let C be the point on the line segment BC
with the same y value as A.

If D is below A in the sense of its y coordinate
then let D be the point on the line segment BD
with the same y value as A.

Find the centroid of B, C, and D.

This point is in the interior of the
shape as is the pixel that contains it.

Page 88

A.3.d Detail Of Step 9

Repeat
For each Medial_Node

If the Medial field is set to TRUE Then
If the Quality values of all of its neighboring

medial pixels are lower than its Quality Then
If the pixel can be removed without damaging the

connectivity of the medial pixels
(simple pixel) Then

Set the Medial field to FALSE
to remove the medial pixel.

Until no more medial pixels can
be removed by this process

A .4 Computing Vertex Types

In order to compute the vertex type of a vertex in a
contour polygon one considers the two edges incident at the
vertex. Label the vertex of interest B and label vertices
A and C such that A immediately precedes B and C
immediately follows B when the vertices are traversed in
clockwise order. Let VI be the vector from B to A and let
V2 be the vector from B to C.

When the dot product of two vectors is positive then
the smallest angle between the vectors is less than Pi / 2.
This could be either the angle from the first vector to the

Page 89

second or the second to the first.

When the cross product of two vectors is positive then
the counter-clockwise angle from the first vector to the
second vector is less than PI. When the cross product of
two vectors is negative then the counter-clockwise angle
from the first vector to the second vector is greater than
PI (right-hand rule).

The process of determining the vertex type of B is
shown below:

Normalize VI and V2 (divide by vector length) so that
their cross product gives the sine of the angle between
them.

Let DP be the dot product of VI and V2.

Let CP be the cross product of Vl and V2.

If DP > 0 Then
If CP > 0 Then

Begin_VT is Convex
Else

If CP < 0 Then
vertex type of B is Concave

Else
{ CP * 0, the line segments
lie on top of each other)

vertex type of B is Colinear

Page 90

Else
If CP > SIN (5 degrees) Then
vertex type of B is Convex

Else
If CP < - SIN (5 degrees) Then
vertex type of B is Concave

Else { - SIN (5 degrees) <= CP <*= SIN (5 degrees) }
vertex type of B is Colinear

Checking the CP against SIN (5 degrees) allows points
that are nearly colinear to be labeled as colinear. This
may not be desirable for line segments that are used to
approximate curves.

A.5 Computing Line Coefficients

The coefficients of the equation Ax + By + C = 0 for a
line specified by two points (xl, yl) and (x2, y2) are
computed as follows:

A = yl - y2
B = x2 - xl
C = (xl * y2) - (yl * x2)

A.6 Determining Pixel Mediality

The following steps are performed when a particular
pixel is being tested for mediality:

Page 91

1) Set the Checked_Map element corresponding to the
pixel to TRUE.

2) For each edge in the SLL, set Lower_Bound to a lower
bound on the distance from the pixel center to the
edge.

3) Sort the nodes in the SLL on ascending lower
bound. The order of the SLL remains fairly
constant while evaluating pixels that are neighbors
of the previously evaluated pixel. This reduces
the amount of sorting required for most pixels.

4) Find the closest edge to the pixel
in terms of distance squared.

5) Find the next closest edge to the pixel in
terms of distance squared that does not
form a concave angle with the closest edge.

6) Set the Quality of the pixel to the
difference between the second closest and
the closest distances to edges.

7) If Quality < Tolerance Then
Set Medial to TRUE for the pixel and save the
distance squared to the closest edge (from
step 4) in RadiusSquared.

Page 92

A.6.a Detail Of Step 2

The lower bound on the distance from a point to an
edge (or line segment) that was used can be computed
quickly since it involves only subtraction, MIN, and MAX
operations. The following steps are performed to obtain a
lower bound on the distance from a point (xO, yO) to a line
segment from (xl, yl) to (x2, y2):

Delta_X_l = xl - xO
Delta_Y_l - yl - yO
Delta_X_2 = x2 - xO
Delta_Y_2 = y2 - yO

If Sign (Delta_X_l) - Sign (Delta_X_2) Then
{ endpoints are on the same horizontal side of xO)
Lower_Bound = MIN (ABS (Delta_X_l), ABS (Delta_X_2))
If Sign (Delta_Y_l) = Sign (Delta_Y_2) Then

{ endpoints are on the same vertical side of yO }
Lower_Bound »
MAX (Lower_Bound,

MIN (ABS (Delta Y 1), ABS (Delta Y 2)))

Page 93

Else
{ endpoints are on different horizontal sides of xO }
If Sign (Delta_Y_l) •= Sign (Delta_Y_2) Then

{ endpoints are on the same vertical side of yO }
Lower_Bound = MIN (ABS (Delta_Y_l), ABS (Delta_Y_2))

Else
{ endpoints are on different vertical sides of yO }
Lower__Bound = 0

A.6.b Detail Of Step 4

The following steps are performed to find the closest
edge to a pixel:

Loop through sorted SLL from beginning

Compute D, the distance squared from
the pixel center to the current edge.
{ see section A.7 }

If D < shortest distance squared computed so far Then
save D and the current edge

Until the end of the SLL is reached
OR

the Lower_Bound of the next edge is greater than
or equal to the shortest distance found so far
{ since all remaining edges must be at least that
far away }

Page 94

A.6.C Detail Of Step 5

The following steps are performed to find the second
closest edge to a pixel:

Loop through sorted SLL from beginning

If the current segment is not the closest segment Then
If the current segment is not incident with

the closest edge at a concave angle Then
{ see section A.8 }

If the distance squared from the pixel center to
the current edge has already been computed Then

Retrieve D from Distance_Squared.
Else
Compute D, the distance squared from
the pixel center to the current edge.
{ see section A.7 }

If D < second shortest distance squared
computed so far Then
save D and the current edge

Until the end of the SLL is reached
OR

the Lower_Bound of the next edge is greater than
or equal to the second shortest distance found so
far { since all remaining edges must be at least
that far away }

Page 95

A.7 Computing Distance Squared From A Pixel To An Edge

The following steps are performed to obtain the
distance squared from a pixel center (xO, yO) to a line
segment from (xl, yl) to (x2, y2):

Let VI be the vector from (xl, yl) to (xO, yO).

Let V2 be the vector from (xl, yl) to (x2, y2).

Let DP be the dot product of VI and V2.

If DP <= 0 Then
compute the distance squared
from (xO, yO) to (xl, yl),
(xO - xl)**2 + (yO - yl)**2

Else
Let VI be the vector from (x2, y2) to (xO, yO).

Let DP be the dot product of VI and V2.

If DP >= 0 Then
compute the distance squared
from (xO, yO) to (x2, y2),
(xO - x2)**2 + (yO - y2)**2

Else
compute the perpendicular distance
from (xO, yO) to the edge

Page 96

using the line equation coefficients for the edge
that were computed earlier, the distance squared is
(A * xO + B * yO + C)**2 / (A**2 + B**2)

A.8 Determining Whether Two Edges Form A Concave Angle

The following steps are performed to determine whether
two edges are incident at a concave vertex:

If the edges are in the same contour Then
If the second endpoint of the first

edge is the same point as the first
endpoint of the second edge Then
The edges are incident at a common vertex
so check the vertex type of this vertex.

Else
If the second endpoint of the second

edge is the same point as the first
endpoint of the first edge Then

The edges are incident at a common vertex
so check the vertex type of this vertex.

Else
The edges are not incident.

Else
The edges are not incident.

Index Terms - medial axis transform, Blum transform
symmetric axis transform, skeleton, shape representation
feature extraction, shape smoothing, brushfire, Voronoi
diagram, ridge following

FIGURE CAPTIONS

Fig. 1. Non-unique closest points on the shape.
Fig. 2. Maximal disks of a shape.
Fig. 3. External medial axis transform.
Fig. 4. Medial point types.
Fig. 5. Medial axis transform of a deformed torus.
Fig. 6. Medial axis branch primitive types.
Fig. 7. Variations of the primitive types.
Fig. 8. Significance of shape features.
Fig. 9. Ho and Dyer shape smoothing example.
Fig. 10. Spread of brushfire in a shape.
Fig. 11. Voronoi diagram of a point set.
Fig. 12. Voronoi diagram of the interior of a polygon.
Fig. 13. Medial axis transform of the polygon in Fig. 12.
Fig. 14. Inversion of a brushfire MAT.
Fig. 15. Distance from a point to a line segment.
Fig. 16. Concave angle special case.
Fig. 17. A shape that the DeSouza and Houghton ridge following algorithm cannot handle.
Fig. 18. Lower bound on the distance from point C to line segment AB.
Fig. 19. Plot of CPU time for initialization when the number of edges is varied.
Fig. 20. Plot of CPU time to find the first medial point when the number of edges is varied.
Fig. 21. Plot of CPU time to find the remaining medial points when the number of edges is varied.

Fig. 22. Plot of CPU time to thin when the number of edges
is varied.

Fig. 23. Plot of total CPU time when the number of edges is varied.
Fig. 24. Plot of CPU time for initialization when the shape

area is varied.
Fig. 25. Plot of CPU time to find the first medial point when the shape area is varied.
Fig. 26. Plot of CPU time to find the remaining medial points when the shape area is varied.
Fig. 27. Plot of CPU time to thin when the shape area is varied.
Fig. 28. Plot of total CPU time when the shape area is varied.
Fig. 29. Two of the shapes used to test the effect ofvarying the number of holes on the run time of the ridge following algorithm.
Fig. 30. Plot of total CPU time when the number of holes is varied.
Fig. 31. Three of the shapes used to test the effect of varying the distribution of vertex types on the run time of the ridge following algorithm.
Fig. 32. Plot of total CPU time when thenumber/distribution of concave vertices is varied.

	Medial Axis Transform using Ridge Following
	Recommended Citation

	tmp.1606227573.pdf.HIcfA

