
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Dec 1989

Development of an Expert System to Convert Knowledge-based Development of an Expert System to Convert Knowledge-based

Geological Engineering Systems into Fortran Geological Engineering Systems into Fortran

Jill J. Cress

Ralph W. Wilkerson
Missouri University of Science and Technology, ralphw@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Cress, Jill J. and Wilkerson, Ralph W., "Development of an Expert System to Convert Knowledge-based
Geological Engineering Systems into Fortran" (1989). Computer Science Technical Reports. 75.
https://scholarsmine.mst.edu/comsci_techreports/75

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/75?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

DEVELOPMENT OF AN EXPERT SYSTEM TO CONVERT
KNOWLEDGE-BASED GEOLOGICAL ENGINEERING

SYSTEMS INTO FORTRAN

J. J. Cress and R. W. Wilkerson

CSc-89-6

Department of Computer Science
University of Missouri-Rolla

Rolla, Missouri 65401 (314)341-4491

*This report is substantially the M.S. thesis of the first author,
completed December 1989.

ABSTRACT

A knowledge-based geographic information system (KBGIS) for geological

engineering map (GEM) production was developed in GoldWorks, an expert system

development shell. GoldWorks allows the geological engineer to develop a rule base for

a GEM application. Implementation of the resultant rule base produced a valid GEM,

but took too much time. This proved that knowledge-based GEM production was

possible but in GoldWorks implementation failed as a practical production system. To

solve this problem, a Conversion Expert System was developed which accepted, as

input, a KBGIS and produced, as output, the equivalent Fortran code. This allowed

the engineer to utilize GoldWorks for development of the rule base while implementing

the rule base in a more practical manner (as a Fortran program). Testing of the

Fortran program generated by this Conversion System confirmed that the GEMs

produced were identical to those from the KBGIS, and execution time was significantly

reduced. There was an additional benefit; since use of the Fortran program did not

require access to the GoldWorks System, a single GoldWorks package could be used

with the Conversion System to develop several Fortran production systems. These

systems could then be used at remote production sites. However, each Fortran

production system still required access to the Earth Resources Data Analysis System

(ERDA S) that supplied the GIS input and output files. Thus, this Conversion System

achieved two major objectives; it dramatically reduced GEM production time, and it

added versatility.

IV

ACKNOWLEDGEMENT

The author would like to express her sincere thanks to: Dr. Ralph Wilkerson, her

advisor, for his support and guidance during the development and completion of this

project; Dr. John Prater, Dr. George Zobrist, and Dr. David Barr for their

participation as committee members; Andy Hinely and all of the other members of the

USGS Software Engineering Section for their constant support; and Robin Deistcr for

her willingness to share her time and knowledge.

The author would also like to express her deepest thanks to her parents, for their

enduring support, love, and encouragement.

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOW LEDGEM ENT ... iv

LIST OF ILLUSTRATIONS ... vii

LIST OF TABLES .. viii

SECTION

I. INTRODUCTION .. 1

A. A RTIFICIA L INTELLIGENCE ... 1

B. EXPERT SYSTEM S ... 4

C. LISP ... 9

II. REVIEW DEVELOPMENT OF A KBGIS II

A. GEOLOGICAL ENGINEERING MAPS (GEM S) 11

1. Production Method .. 12

2. Production Weaknesses ...14

B. DEVELOPMENT OF THE KBGIS ... 16

1. Identification o f Minimal Factors .. 17

2. Rule Base C reatio n ...18

3. First KBGIS Implementation ..19

4. Final KBGIS Implementation ... 22

5. Results and Conclusions ...27

III. DEVELOPMENT OF CONVERSION EXPERT SYSTEM29

A. ANALYSIS OF EXISTING KBGIS EXPERT SYSTEM29

1. Weaknesses o f the KBGIS Expert System 29

VI

Page

2. Characteristics of the KBGIS Expert System 30

3. Results of the Analysis ... 31

B. ESTABLISH VALIDITY OF CONVERSION SYSTEM32

C. DEVELOPMENT OF THE CONVERSION EXPERT SYSTEM 33

1. Conversion o f KBGIS data structures 33

2. Conversion of the KBGIS Rules .. 34

3. Conversion of KBGIS User Interface35

4. Implementation of the Conversion Expert System 36

D. RESULTS ...37

IV. CONCLUSION ...38

BIBLIOGRAPHY ... 39

VITA ... 42

APPENDICES

A. Listing of the Conversion Expert System Rules43

B. LISP functions used by the Conversion Expert System51

C. Fortran code generated by the Conversion Expert System 68

Fi:

I

2

3

4

5

6

7

8

9

10

vii

LIST OF ILLUSTRATIONS

Page

Diagram of the Turing Test ... 2

Major Components of an Expert System .. 7

Conversion of Decision Tree into if-then Structured Rules 20

An Example of the Translation of a KBGIS rule into GoldWorks 23

Example of a Frame and an associated Instance 24

Example of KBGIS Implemented Recode Operation 25

Example of KBGIS Implemented Matrix Operation 26

Example of the Conversion of a GoldWorks Frame into a Fortran Array 34

Example of a Conversion of a GoldWorks rule into a Fortran rule . . . 35

An Example of the Conversion Expert System User Interface 36

vrn

LIST OF TABLES

Table Page

I GEMS USED FOR DETAILED INVESTIGATION 17

II FACTORS AND RESULTANT CLASSIFICATIONS 18

I. INTRODUCTION

A. A RTIFICIA L INTELLIGENCE

Artificial intelligence (AI) is one of the newest, as well as one of the most

controversial, areas in computer science. Its original purpose was perceived as simply

creating a machine which could exhibit human intelligence. However, as often happens,

this goal became much more difficult than was originally planned.

Most agree with the definition that AI means building a machine which can

simulate intelligence. However, few can agree on exactly what intelligence is and, more

to the point, how to know when a machine is simulating it. Alan Turing was one of the

first scientists to address AI and to offer a possible method of recognizing its presence.

In his article "Computing Machinery and Intelligence", which was published in 1950,

he stated that it was possible to program a computer to exhibit intelligence (Charniak,

1986). He then went on to describe a test which would verify that a computer was

exhibiting intelligence. This test, better known as the Turing Test, has since become

one of the cornerstones in the study o f AI.

The Turing Test simply states that a computer can be considered intelligent if it

can fool someone into thinking it's human. To perform this test, a computer is placed

in one room, a person in another, and a communication medium in a third (Figure 1).

The communication medium is then used to ask questions of the other two rooms in

an effort to determine which room holds the computer. If the questioner is unable to

determine which room holds the computer, then the computer is accepted as exhibiting

intelligence.

2

Room A Room B

During the mid-50's, Allen Newell and Herbert Simon created a "thinking

machine". It was a computer program called the Logic Theorist which proved theorems

in symbolic logic by applying rules of reason (Lipkin, 1988). This program was

considered unique since is was able "to deviate from the hard-cut paths typical of most

programs" in an effort to discover new and better proofs for theorems (Lipkin, 1988).

The Logic Theorist represented a major advancement in the area of A l. But

possibly even more important, were the discoveries made by Newell and Simon during

its development. It was while studying the way decisions are made they discovered

that, of major importance was our ability to limit the number of possible options

towards a solution without having to explore each one in detail. Tor example, "in chess,

there are more possible moves than there are stars in the universe. A master, clearly,

has tricks to keep him from weighing out every one." (Lipkin, 1988). It was now

3

obvious that a similar method for narrowing the search field would have to be created

before an intelligent machine could be developed. In response to this need Simon and

Newell developed heuristics — "search-limiting rules [which] zero in on good solutions."

(Lipkin, 1988).

Newell and Simon also discovered that, in order to fulfill their goals for an

intelligent machine, a more advanced language would have to be developed. Not only

did their program require that any language be much more flexible, it also depended

on a language having the ability to manipulate symbolic types of data. They decided

that the best way to perform symbolic manipulation was to treat symbols as lists and

then process the lists. They then created the first list-processing language, I PL.

Six months after Newell and Simon's "thinking machine" was created, AI became

a field of study as it is known today. A conference to study the field of artificial

intelligence was organized by John McCarthy, an assistant mathematics professor at

Dartmouth, and Marvin Minsky, from M.I.T.. The term "artificial intelligence" first

appeared in print in McCarthy's written purpose for this conference (Charniak, 1986).

The purpose stated that:

"a two-month, ten-man study of artificial intelligence
be carried out during the summer of 1956 at Dartmouth
College in Hanover, New Hampshire. The study is to
proceed on the basis of the conjecture that every
aspect of learning or any other feature of intelligence
can in principle be so precisely described that a
machine can be made to simulate it." (Charniak, 1986).

McCarthy's statement is still used as the definition of AI. His suggested timeframe,

however, grossly underestimated the complexity of the study o f intelligence. The

original conference group was unable to determine the nature of intelligence, let alone

its features. This study marks one of the more controversial, as well as complex, areas

of interest today, over thirty years later.

4

Today, the primary goal o f AI is twofold; first, to discover the nature of

intelligence and, second, to create an intelligent machine (Schank, 1987).

Unfortunately, intelligence continues to be one of the great mysteries o f our time.

Not only are we unable to determine what intelligence means, we are also unable to

even agree on its characteristics. Roger Schank, in his article "What Is AI, Anyway?",

attempts to define what he considers to be the critical characteristics of intelligence;

communication, internal knowledge (self-awareness), world knowledge, intentionality

(goal-driven), and creativity (Schank, 1987). However, he also points out that, while

these characteristics as a unit attempt to define intelligence, the absence of one of these

characteristics does not constitute a lack of intelligence. In other words, an entity

could still be intelligent even if it did not have all of the above characteristics.

Because of the complexity of defining intelligence, many researchers have turned

from this concern to that of applying what has already been learned in an endeavor to

build intelligent machines. In other words, they have avoided the theoretical

complexities and gone on to the practical applications of AI.

B. EXPERT SYSTEMS

The number and variety of applications within the field of AI have continued to

grow since the introduction of the Logic Theorist; an automated theorem proving

application. Automated theorem proving applications, simply put, are systems which

infer a conclusion given a set of truths (axioms). In the case of the Logic Theorist the

conclusion inferred is a proof of a specific theorem. Another type of theorem proving

application is an expert system, currently one o f the more commercially viable types

of AI applications.

5

Early theorem proving systems concentrated on attempting to duplicate the

human reasoning process. In 1957, Newell and Simon developed an improved version

of the Logic Theorist, called General Problem Solver. This newer system incorporated

abilities like "backward reasoning" (reasoning from the desired conclusion backwards),

and "hill climbing" (determining when a solution is being neared) (Lipkin, 1988).

Unfortunately, certain aspects of the human reasoning process still elude computer

implementation.

As a result of this, some researchers narrowed in on specific areas of reasoning.

One of these areas concentrated on the knowledge used to reach a conclusion since

"much of human thinking seems to involve a small amount of reasoning using a large

amount of knowledge" (Winston, 1984).

Edward Feigenbaum, a computer scientist at Stanford University, was one of the

major contributors to this new area. He concentrated on empirical induction; the

process of inferring information about objects by using observation. And "the result

o f his efforts to get computers to think empirically was the expert system" (Lipkin,

1988). In fact, he is acknowledged as the father of expert systems.

Feigenbaum, with the help of Joshua Lederberg, an organic chemist, created the

very first expert system, Dendral. Dendral analyses the structure of complex molecules

after being given the molecules' atomic formula and mass spectrogram.

The next major advance in expert systems came with the development of a system

called Mycin. Mycin was created by Edward Shortliffe, from Stanford Medical School,

and Bruce Buchanan, from the Stanford Computer Science Department, to aid doctors

in the diagnosis and treatment of infectious blood diseases. However, it was not the

expert system itself that proved to be so important but, rather, a discovery Shortliffe

made during its development. He discovered that it was possible to separate the

6

knowledge base from the inference engine, or logic mechanism. This allowed the

creation of an empty expert system, consisting of an inference engine into which

various knowledge bases could be inserted. He called this new machine Emycin (Empty

Mycin), a factless inference engine. This type o f system is now called an expert system

shell, since it contains the logic reasoning shell into which specific facts, or knowledge,

can be placed.

Today, an expert system is defined as an "artificial expert", a system which

replaces or assists an expert in solving a problem. And since a large number of

businesses are dependent on the knowledge o f their experts, as well as the availability

of that knowledge, expert systems have become one of the most popular forms of AI

in the corporate world. Expert systems not only offer businesses the opportunity to

preserve the knowledge of their experts, they also allow companies, who lack access to

experts, knowledge via an expert system.

An expert system consists of three main elements: a user interface, inference

engine, and knowledge base (Figure 2). The user interface handles the interaction

between the user and the system, it allows the user to respond to system questions and

input necessary data. The inference engine is the part o f the system that actually

performs the reasoning; it controls the user interface and generates the conclusions

from the knowledge base. Finally, the knowledge base contains the knowledge of the

system; this knowledge can be in various forms but the most common is that of

production rules. The knowledge base is the part o f the system that is developed by a

knowledge engineer working with the expert.

An expert system is designed and developed by a knowledge engineer. The

knowledge engineer is responsible for converting an expert's knowledge into a

knowledge base. This process consists of four steps.

7

Figure 2. Major Components of an Fxpert System

First, the purpose of the system must be defined. This involves not only defining

the problem/need of the expert system, but also determining if the system proposed is

a valid one. Not all expert processes can be replicated by an expert system. Expert

systems operate best when restricted to processes which serve a single purpose. It is

also necessary to confirm that the knowledge needed to support the system exists, and

that the necessary experts can be identified and consulted. It is also important to

decide on the method of expert system development (various options for development

will be discussed later).

Once the system has been clearly defined, it is time for step two, acquiring the

knowledge of how the expert reaches decisions. This step involves extensive interaction

between the knowledge engineer and the expert in order to identify and structure all

of the knowledge which is used during the expert's decision making process. This

includes identifying all items such as rules of thumb and instincts, as well as any

relationships within the knowledge.

Converting the knowledge into code is the third step in expert system

development. This is done after all o f the knowledge has been identified and structured.

The expert system development method chosen will strongly affect this step. The

8

knowledge base is converted into rules and facts, or whatever structure has been

chosen, and then entered into the system.

The fourth and final step in expert system development involves verification and

validation of the system. This means confirming that the system gives creditable results

when compared to the expert's results. If any changes in the system are required, the

above steps will be repeated as necessary.

There are currently a variety of software tools available to aid in expert system

development. These tools can be grouped into three categories, each representing a

different method of expert system development.

The first of these categories is called custom development. It involves starting

from scratch using an AI development language to create a specific system. This means

that in addition to developing a specific knowledge base, the knowledge engineer also

creates an inference engine. While this method of development results in a highly

specialized system, it also involves enormous development time and money.

Using an expert system shell is the second method of development. This method

involves purchasing (or using) a shell system which consists of a generic inference

engine, user interface, and knowledge base structure. The knowledge engineer then

builds the specific knowledge base and adds it to the generic shell structure. The time

savings of this method are obvious since the engineer is spared writing an inference

engine. An additional bonus is the ability to use the same shell to create a variety of

expert systems.

Expert system application packages are the final development method or

category. These packages consist o f a complete expert system which only needs a few

parameters o f input before it is ready to run. This method of development was first

9

marketed in 1985 and, although these systems require the least amount of development,

they are also the most restricting since the knowledge base is already defined. A

company would only find this type of system useful if it was needed for a relatively

common expert area, such as finance. But even though this is the more limiting type

of expert system development, it continues to grow in popularity by offering

prc-designed and developed systems to companies that lack either the expertise or the

resources necessary to develop a system any other way. The cost of these, however,

is still somewhat an inhibiting factor since such systems can cost as much as S46.000

(Newquist, 1986).

Although these development tools differ in a variety of ways, they all eventually

produce an expert system, and they are all based on a list-processing language.

C. LISP

Although McCarthy accepted that the best way to handle symbolic manipulation

was list processing, he felt that a better language than IPL could be developed for this

purpose. He began working on his own list-processing language shortly after the

Dartmouth Conference. Before long LISP (List Processing) was born.

McCarthy started by designing four commands which would enable him to access

his machines memory locations. Of these, "car", which returns the first element of a list,

and "edr", which returns all but the first element of a list, are still in use today. Next

he wrote "read" and "write" routines, and designed what he referred to as a "universal

function", called "eval". He stated that "cval" was so powerful that it could be used to

interpret any of the other LISP functions. In fact, he wrote a paper stating that LISP

could be used to express computations in automata theory', replacing the use o f Turing

machines, since the "eval" function was so powerful (Charniak, 1986). Although

10

McCarthy was responsible for designing the "eval” function, it was one of his students,

Steve Russell, who actually wrote the code which allowed the function to run.

LISP is today considered the native language of AI. In fact "people who want to

know about computer intelligence at some point need to understand LISP, if their

understanding is to be complete" (Winston, 1984). A variety of different LISP versions

currently exist, but Common LISP has become the accepted standard. And, although

the specifics of the various versions may vary, the basic concepts of the language

remain the same.

LISP is an interpreted language instead of a compiled one (although it is also

possible to compile LISP). The difference between a compiled and an interpreted

language is that a compiled one translates everything (all lines of code) into machine

language before it can be executed. An interpreted language reads and executes each

line. LISP treats symbols as atoms and then creates lists consisting of atoms and/or

other lists. Symbolic expressions are then created by combining atoms and lists and

symbolic manipulation is performed on these expressions. LISP also supports both

procedure and data abstraction, which allows it to treat procedures as data. This ability

makes LISP an ideal language for the creation of compilers and interpreters.

n

II. REVIEW DEVELOPMENT OF A KBGIS

Expert system development is rapidly becoming an integral part of almost every

field. This trend can be traced to the growing need to add "knowledge" to processes and

the proven success of using expert systems to fulfill this need. In fact, the need for a

more knowledgeable production process recently lead to the introduction of expert

systems into yet another area, that o f map production in geological engineering. This

introduction resulted in the development of a knowledge-based geographic information

system (KBGIS) for geological engineering map (GEM) production.

A. GEOLOGICAL ENGINEERING MAPS (GEM S)

GEM s are maps that represent the "geological engineering conditions" o f an area;

they "show surficial and bedrock geologic patterns classified according to engineering

suitability for urban development..." (Usery, Deister and Barr, 1988; User}' ct. al.,

1988). The specific information which is represented on any single GEM is determined

by the chosen classification scheme, which, in turn, is based on the intended use of the

map.

Classification schemes refer to the methods used to classify the data of a GEM.

A classification scheme is developed by determining exactly what features are to be

represented on the map and then defining each class in terms of the chosen features.

A key is also included on the map to show the definition of each class. Features can

refer to properties such as soil, geology, and topography, as well as specific attributes

of these properties, i.e. flooding, permeability, karst, plasticity index, and slope.

One of the primary uses of GEM s is as a tool in determining the best site for a

particular type o f development. Site selection GEM s would show the geological

characteristics o f an area classified according to their suitability for the specified type

12

of development. For example, if a possible landfill site was being investigated,

characteristics such as flooding frequency and soil permeability would obviously be

important. Therefore, in response to this need, a GEM would be produced to classify

the area under investigation in terms of these factors.

1. Production Method.

The GEM production cycle begins by identifying an area which needs to be

mapped. Once this area has been chosen, a series of six processing steps are performed.

These steps, which are performed each time a GEM is produced, arc usually done by

a geological engineer. In fact, the first three processing steps rely heavily on input and

interpretation from an engineer skilled in both geological principles and mapping

concepts. Most, if not all, of these production steps are performed manually.

Obtaining the area maps necessary to generate the GEM is the first production

step. This involves determining what features are going to be used and then gathering

the maps of the area which contain information about these features. If this

information can not be either found on, or derived from, existing published maps then

a field investigation is required in order to develop a map of the missing feature or

features.

Field investigation forms the basis of all geological maps and involves a

significant investment in terms of both time and money. When a field investigation is

performed in order to acquire the field data necessary to produce a map, the amount

and quality of data gathered is a direct result of the amount of time spent in the field

(Usery et. al., 1988). In other words, the better the quality of the data the more

expensive the investigation. This means that each time a field investigation is

performed a determination is made between the quality o f the produced map verses the

13

cost o f the investigation. Because of this dilemma, there is a growing effort to find

alternatives to field investigation for generating the basic data needed to produce a

map.

Once all of the necessary maps have been obtained, the next production step

involves establishment of the specific criteria. The engineer determines which

characteristics are the most important for the specific map being produced. Referring

back to the earlier example of the landfill site selection map, Hooding and soil features

were mentioned. The engineer would convert these features into criteria by stating that

the area chosen for the landfill site must not be prone tc flooding and must have access

to impermeable soil.

After the desired criteria has been established, it is now time for the third

production step. All o f the maps that were obtained in the first step, both published

and on site investigations, are analyzed. Each map is studied by the engineer in an

effort to identify the sites which meet the criteria. One of the methods used for this

analysis is to place a clear mylar sheet over each of the maps and then mark any of the

areas that meet one or more of the criteria. Once all of the maps have been studied the

mylar sheet can then be used to create the final GEM since it has marked on it all the

areas which meet the specified criteria.

Before the GEM is actually made, however, the engineer must also decide how

much information he wants the finished map to contain. In other words, how many

classes should be specified on the map. If he wants an "all or nothing" product, then

only those areas which identify sites meeting all of the criteria would be classified. But

if a more flexible end product were desired, then in addition to classifying the areas

which meet all criteria, the areas that meet only some of the criteria would also be

classified.

14

The fourth step of the production process is printing the map. And since little or

no additional analysis is required at this point, the engineer, for the first time, is not

required. In fact, the engineer can be totally isolated from the actual map generation,

if necessary.

Determining acceptance of the map is the fifth step in the GEM production

system. This involves not only confirming that the map meets all quality guidelines,

but also gaining the approval of its users. If any problems are identified at this point,

or if the users request any changes, then the affected production steps must be

repeated. This iteration is continued until the map is finally both approved and

accepted by its users.

Even though the map has been accepted, it is not considered complete until it has

been field checked; the last step in the production process. Field checking means

confirming that the new map is correct by actually going into the field to check it. This

check is performed by making sure that the classifications for a specific area on the

map match the actual geological conditions found for that area. I f any discrepancies

are discovered, then the reason for the differences must be found and any needed

corrections made. As with step five, any of the necessary production steps must be

repeated, including again gaining the users approval, until the map is finally determined

to be correct.

Once the GEM has been successfully field tested, the production process is

complete and a published map is produced.

2. Production Weaknesses.

Several weaknesses can be observed in this GEM production system. One of the

more serious of these is the non-standardization of the system. Since there are no set

15

policies or guidelines for the development of classifications, it is entirely possible to

discover two maps which define the same specific classification in different ways. In

fact, studies of existing maps show' that a definite variance exists among classification

definitions. These definitions are obvious victims of the lack of standardization.

Even though each engineer applies the same basic geological principles when

developing these classification definitions, subjectivity is also introduced. This

subjectivity occurs when the engineer relies on his own personal base of knowledge and

interpretation in order to define the classification. Obviously, different engineers have

different knowledge bases and interpretations and could, therefore, end up with slightly

different definitions. The result of this subjectivity is a severe weakening of the power

of the different classification schemes. This weakening becomes visible when a user of

a specific GEM discovers different definitions for the same specific class. For example

one map might define "class-IA" as having a plasticity index of 20 whereas another

map would state a plasticity index of 10 in its definition.

Another weakness inherent in the GEM production process is the demands it

places, in terms of both time and effort, on a skilled geological engineer. Few of the

steps can be performed without extensive interaction with the engineer, which makes

the system extremely inefficient. The system also uses a "back to the drawing board"

approach for all of its resource gathering and data manipulation. This means that not

only does the engineer have to spend a large amount of time developing each GEM,

he will also be performing the same basic processing steps over and over again.

In summary, although the GEM production system fulfills its purpose by

producing a GEM , it does so in neither an efficient nor reliable manner. In fact, the

weaknesses inherent in tins system — its lack of standardization and extreme reliance

on interaction with a skilled engineer -- make it a prime target for modernization.

16

B. DEVELOPMENT OF THE KBGIS

Robin Deister, a PH.D. candidate in Geological Engineering at the University of

Missouri-Rolla (UMR), felt that the GEM production system could be significantly

improved by automation. Preliminary investigations determined that the best way to

automate would be to "...utilize expert knowledge in GIS [geographic information

system] processing" (Usery et. al., 1988). In other words, create a rule based expert

system with the ability to interact with existing GISs, i.e., a knowledge-based GIS

(KBGIS) (Usery et. al., 1988; Smith and Pazner, 1984).

G IS refers to an information system which allows for the input, manipulation,

and output of geographic databases. Geographic databases refer to files which contain

digitized geographic data. There are a variety of different types of geographic

databases; including digital line graphs (DLGs), which are created by digitizing an

existing map.

A joint research project to develop a KBGIS for GEM production was started in

1987 by the UM R Geological Engineering Department and the United States

Geological Survey (USGS). The first objective of this project was to discover the

"minimum number of Earth resource data sets needed to make engineering judgments

about areas..." (Usery et. al., 1988). And then apply this knowledge to the development

of a rule based expert system for GEM production.

During the initial investigation of existing maps it was discovered that the variety

of GEM classifications varied dramatically from region to region. It was clear that the

development of a single set of valid classifications would be virtually impossible. This

discovery resulted in the decision to narrow the scope o f the investigation so that it

only covered the Midwest region.

17

1. Identification of Minimal Factors.

In an effort to determine the minimal factors, i.e., properties, necessary for the

creation of a GEM, a sample of five GEMs were chosen for detailed investigation

(Table I, Usery et. al., 1988). This involved not only studying the maps but also

contacting their creators in an effort to establish exactly what thought processes were

used in their development. The result of this investigation was a list of each output

classification and exactly what factors made up the classification. Also included in the

list were any implied outputs; factors which were not explicitly stated but that were

implied.

Table I. GEM S USED FOR DETAILED INVESTIGATION

AREA

Crave Coeur, Missouri

San Mateo County, California

Northeast Corridor
Washington D.C., to Boston, Mass

Jefferson and St. Louis Counties, Missouri

St. Louis County, Missouri

TYPE OF MAP

Engineering Geology

Engineering Character
of Hillside Materials

Engineering Geology

Engineering Geology

Engineering Geology

Once a complete list had been developed, it was then converted into a table

format listing the factors, classification type, integer representation of classification

type, and the confidence factor (Table II). The confidence factor reflected how much

weight should be given to the specified data. It was based on whether or not any

discrepancies were found among the classification definitions.

The table was then used as input into 1st Class, an expert system shell developed

by Programs-In-Motion (Programs-In-Motion, 1987). 1st Class is an example-based

system which was used to develop a decision tree from the table of classifications and

factors. An advantage of the 1st Class decision tree evaluation method is its ability to

18

list only the factors which were necessary for the creation of unique classifications

(Usery et. al., 1988). For instance, figure 3 shows that only the flooding and plasticity

index factors are necessary in determining classification 2, or "lb".

Experimentation with the 1st Class system resulted in the discovery' that by

reordering the factors on the table, different decision trees could be created. The table

was then repeatedly reordered until a decision tree was developed which contained the

minimum number of factors needed to create a GEM. These factors were identified as

slope, karst, plasticity index, and flooding.

Table II. FACTORS AND RESULTANT CLASSIFICATIONS

geology FLOODING KARST JP} SLOPE CLASS RESULT WEIGHT

ALLUVIAL YES NO 20.0 2. la 1 2.00
ALLUVIAL YES NO 10.0 2. lb 2 2.00
ALLUVIAL OCCASIONAL NO 10.0 2. Ic 4 2.00
ALLUVIAL NO NO 20.0 20. Id 10 2.00
ALLUVIAL NO NO 27.0 9. le 5 2.00
LIMESTONE NO YES 15.0 25. lla 6 2.00
LIMESTONE NO YES 32.0 20. lib 7 2.00
LIMESTONE NO YES 15.0 20. lie 6 2.00
LIMESTONE NO YES 20.0 40. lid 9 2.00
LIMESTIONE NO YES 40.0 30. IVa 7 2.00
LIMESTONE NO YES 25.0 30. IVb 19 2.00
CYCLIC NO NO 15.0 20. V 14 2.00
LIMESTONE NO YES 25.0 20. Via 6 2.00
LIMESTONE NO YES 20.0 30. V!b 19 2.00
ALLUVIAL YES NO 10.0 2. la 2 1.00
ALLUVIAL NO NO 10.0 20. lb 3 1.00
ALLUVIAL NO NO 27.0 9. Ic 5 1.00
LIMESTONE NO YES 15.0 25. lla 6 1.00

WFIGHT KEY
2.00 Confident
1.00 Less Confident

2. Rule Base Creation.

An appropriate classification scheme had to be chosen before the rules could be

developed. In other words, a standardized classification scheme had to be established.

19

This meant, that in addition to resolving any variations between classification

definitions, a determination had to be made on what kind of end product was desired.

It was decided that a general GEM, instead of a specific site selection GEM , was

a desirable end product. This general end product increased the efficiency of the

production system by removing the need to repeat the entire production process each

time a specific site selection GEM was needed. Instead of repeating the process, the

general GEM could be used to derive any of the specific end products. In other words,

a one step translation from a general GEM to a specific GEM could easily be

performed.

After a reinvestigation of the maps in Table I, it was decided that the scheme used

for the St. Louis County GEM would be used as the standardized scheme since it

"forms a basic structure for a general classification in the Midwest" (Usery et. al., 1988;

Lutzen and Rockaway, 1971). It was also chosen because it defines specific

classifications in terms of their general engineering characteristics and then supplies a

table which states how each of the classifications would "perform under different

site-utilization situations." (Usery et. al., 1988).

Development of the rule base was essentially completed once the minimum

factors and a classification scheme were developed and chosen. All that remained was

simply converting the correct decision tree into if-then structured rules. Figure 3 shows

an example of this translation process.

3. First KBGIS Implementation.

The first KBGIS design used the LISP environment to implement the rule-base.

A LISP program was created that interacted with both the rule base and the input files

(overlays) in order to generate a file o f the G IS operations needed to produce a GEM.

20

------ etart of rule — -
FLOOWMG ??
YES: PI??

« 15.00 : (tb)
> 15.00 : 1 d o

NO : KARST ??
YES: PI??

< 28.50 :: SLOPE??
< 27.50 : (n o
> 27.50 : pi ??

<22.60: SLOPE??
< 35.00:... (V lb)
> 33.00:... (iw)

> 22.50 : (V lb)
> 28.50 :: SLOPE??

< 14.50 : pi ??
« 44.00 : n ib)
> 44.00 : n ib)

> 14.50 (i ib)
NO: Pt??

< 19.00 : SLOPE ??
< 30.00 : pi ??

< 16.60 : Pt ??
<12.50 : (tb)
>12.50 : (V)

> 16.50 : - (X .)
> 30.00 :.. (VI)

> 19.00 : SLOPE ??
< 9.50 : pi ??

< 29.50 :5 (I c)
>29.50: Pt??

< 43.00 :........16 (Xb)
> 43.00 :.... (Xc)

> 9.50 : pi ??
< 22.50 : (i n *)
> 22.50 : PI ??

< 30.00 :... (V)
> 30.00 :... (mb)

OCCASIONAL : (IC)

IF Flooding is None or Rare and Slope Is 5-30%
and Piasiticity Index ia 20-30 and Karst is No
THEN Class is Ig

IF Flooding Is None or Rare and Slope Is 5-30%
and Piasiticity Index is 30-40 and Karst is No
THEN Class Is lib

IF Karst is Yes
THEN Class Is lie

IF Slope is >30%
THEN Class Is lid

Figure 3. Conversion of Decision Tree into if-then Structured Rules

Production of the GEM was then simply a matter of using a GIS to perform these

operations. The Earth Resources Data Analysis System (ERDAS) software package,

which is "a raster-based GIS and image processing system", was chosen as the GIS for

this implementation (Usery et. al., 1988).

ERDAS files, which represent geographic overlays, are stored in a 512 bytes per

record format consisting of 128 bytes of header information followed by the map data.

Each byte of this data, which represents a pixel, contains a numerical value between 0

and 255. Although a variety of GIS commands are available for manipulating these

data files, knowledge based implementation requires only the recode and matrix

operations in order to produce a GEM.

21

In the ERDAS environment, a recode "essentially reassigns classification values

to new zones...For example, slope may be represented in 5 percent increments from 0

to 100 percent in a GIS overlay by numbers from 1 to 20. A recoding of the slopes to

a total o f three classes, 1 for numbers 0 to 5, 2 for numbers 6 to 12, and 3 for numbers

13 to 20, can be performed if the analysis requires values of only low, medium, and

high." (Usery et. al., 1988). In other words, the recode operation recodes (converts) a

range of pixel values into a new single pixel value.

A matrix operation, in the ERDAS environment, "analyzes two overlays and

produces a new overlay containing class values that are coded to indicate how the class

values from the original files coincide or overlap." (Userv et. al., 1988). This is done

by using the class values of one of the files as the matrix columns and the class values

of the other file as the matrix rows. This matrix can then be used to create "logical

combinations of classes such as union, intersection, complement, or any combination"

(User)7 et. al., 1988). For instance, the logical intersection of two overlays could be

found by sequentially numbering the matrix positions and then using this number as

the resultant classification (Usery et. al., 1988). Unfortunately the GIS matrix

operation can only analyze two overlays at a time. Therefore in order to logically

combine more then two overlay files, a complex series of both recode and matrix

operations is required. This is one of the data manipulation weaknesses that is inherent

in any GIS environment.

The first KBGIS implementation, the LISP program, was tested by using a

combination of actual and simulated data for the area of Aspen, Colorado (Usery et.

al., 1988). This information, which was formatted as ERDAS files, was then input into

the LISP program and an output file o f the needed ERDAS commands w'as generated.

ERDAS was then used to execute the commands from this file and actually produce

the GEM . After this was completed, the resultant GEM values were compared to

22

manually calculated results in order to determine the validity of the system. This

comparison confirmed that the knowledge-base was creating valid results by its

generation of recode and matrix operations. It was also observed, however, that the

use of the LISP environment to implement the knowledge base caused the results of

the system to vary, depending on the order of the rules in the knowledge base. It was,

therefore, concluded that another type of system would have to be designed in order

to implement the knowledge base.

4. Final KBGIS Implementation.

"The final system design implements GIS processing within the expert system"

(Usery et. al., 1988). In other words, the final system design required that an expert

system be developed that would actually produce the GEM, instead of just generating

a file o f ERDAS commands. The GoldWorks expert system shell package from Gold

Hill was used to develop this expert system.

GoldWorks provides "a knowledge-based expert system development environment

integrated with Gold Hill's Golden Common Lisp (GCLISP) Developer software"

(Gold Hill, 1987). It also provides two different interfaces which allow both the

programmer and non-programmer to easily develop expert systems. The Menu

interface can be used by anyone, regardless of their programming ability, to quickly

and easily develop and modify expert systems since it supplies a completely menu

driven environment. Of particular importance is its ability to allow' quick and easy

modification of a knowledge base. More experienced programmers are offered the

opportunity to use the Developers interface which uses the GM ACS editor and

G CLISP to allow for the creation o f more powerful systems.

23

A knowledge base consists of both active (rules) and passive (facts) knowledge.

GoldWorks provides an easily understood and used structure for both rules and facts.

Rules are structured in if-then format, and can be easily input and modified by using

the Menu interface (Figure A). GoldWorks uses a frame-based structure to represent

the facts of the knowledge base. A frame is used to represent the structure o f a class

o f objects. Frames consist of a set o f slots, each representing an attribute of the frame.

The actual occurrence of a specific object is represented by creating an instance of the

frame. Facts can then be placed in the slots of the instance. In other words, slots can

now be given slot values. Figure 5 gives an example of one of the frames and instances

in the KBGIS. In this example, the frame KARST has a slot for each of the possible

karst input values.

IF Flooding is None or Rare
and Slope is 5-30 %
and Plasticity Index is 20-30
and Karst is No

THEN Class is Ig

IF
((Instance ?X is Pixel with Flooding None)

or
(Instance ?X Is Pixel with Flooding Rare))

and
(Instance ?X is Pixel

with Slope 5-30%
with Plasticity 20-30
with Karst No)

THEN
(Instance ?X is Pixel

with Gem Class-lg)

Figure A. An Example of the Translation of a KBGIS rule into GoldWorks

Rules are used to deduce new facts from the existing fact base. This process is

controlled by the inference engine and in GoldWorks the inference engine supports

three inference techniques; forward-chaining, backward-chaining, and goal-directed

forward-chaining. The rule base can use any one of these techniques in order to deduce

new facts. It can even use a combination of all three. In the KBGIS rule base, the

forward-chaining technique was used.

24

KARST-Legend

YES...5

NO...3

WATER.... (0,1)

a) Frame b) instance

Figure 5. Example of a Frame and an associated Instance

The KBGIS uses conceptual values, that represent the symbolic values of the

various overlays, for processing. For instance, when the karst input is being processed

by the expert system, it will have one of the following conceptual values; "no", "yes",

or "water". These conceptual values are then used by the rule base to determine a

conceptual GEM classification value, like "class-la". In other words, since both the

input and output files consist.of numerical pixels, the expert system must have the

ability to perform the following mappings; "pixel to conceptual" and "conceptual to

pixel".

These mappings are performed by implementing the GIS recode operation in the

KBGIS. The recode operation is more complex in the KBGIS environment then it was

in the GIS, since it requires more then a "pixel to pixel" mapping. Referring back to

the recoding example for the slopes, in the KBGIS the final values would be the

conceptual ones, "low", "medium", and "high".

Implementation of the KBGIS recode operation was done by making use of the

frame-based data structures. In order to perform the KBGIS recode operation, first a

frame structure had to be created for each o f the GIS data files. The set o f slots for

each frame represented all o f its possible conceptual values. For example a frame called

25

karst would have "yes", "no", and "water" as its slots. In order to perform the recode

operation, each time the KBGIS is executed an instance for each of the frames is

created and the slot values are set equal to the appropriate pixel values (Figure 6). The

KBGIS recode can also map multiple pixel values into a single conceptual value since

GoldWorks allows multi-valued slots. The pixel values that are placed in the specific

slots are user-supplied for the input GIS files and system-supplied for the output GEM

GIS file.

GIS Karst File User-supplied Instance Pixel Instance

Figure 6. Example of KBGIS Implemented Recode Operation

After the instances have been created, they are then used as keys in order to

perform the "pixel to conceptual" and "conceptual to pixel" recodes. A GIS input pixel

to KBGIS conceptual recode is done by accessing the correct instance and then finding

the slot value which matches the input pixel. It is then simply a matter of setting the

conceptual value equal to the slot name which held the correct slot value. A conceptual

to pixel recode is performed in a similar manner, the main difference being that the

conceptual value is used as the key. The correct instance is referenced and the slot

name which matches the conceptual value is accessed, then the pixel value is set equal

to the slot value of the accessed slot. The KBGIS process accepts pixel input and

produces pixel output; therefore, two intermediate KBGIS recodes must be performed.

26

In addition to the recode operation, the KBGIS also implements the ERDAS

matrix operation. Implementation of the matrix operation in the KBGIS is much more

powerful then its equivalent in the GIS environment because it has the ability to matrix

any number of files simultaneously. Implementation of the matrix operation also relies

on the use o f frames. The matrix operation, however, only required the creation of a

single frame, one that represented a pixel. Its slots were named after each of the GIS

files that were either input or output. The slot values themselves are conceptual values

which are recoded from the appropriate pixel values, either input or output. Each time

a set of pixels are read from the input files, a single instance of the pixel frame is

created and the appropriate slot values are filled (Figure 7). This creation of a new fact

in the knowledge base causes the rule base to be invoked. The rules, which use

conceptual values, then inspect the slots of the instance pixel in an effort to set the

GEM slot. Figure 7 shows an example of this process. It can be seen that the number

of files which can be utilized by matrix is only limited by the number of slots contained

in the frame pixel.

Goldwork's Rule
IF

{ (instance ?X Is Pixel with Flooding Nona)
or

(Instance ?X is Pixel with Flooding Rare))
and
(Instance ?X Is Pixel

with Slope 5-30%
with Plasticity 20-30
with Karst No)

THEN
(Instance ?X is Pixel

with Gem Class-lg)

Pixel Instance
Pixel 255

flooding.....Rare
slope........ 5-30%
plasticity....20-30
Karst...............No
soils___________
gemClass-lg

Figure 7. Example of KBGIS Implemented Matrix Operation

Currently, the KBGIS can produce a GEM given one of two different types of

input. The first type of input requires four separate GIS overlay files; flooding, slope,

plasticity, and karst. In addition to supplying these input files, the user must also

27

supply the information necessary to map the input pixel value to a conceptual value

for each of the files. This information is then used by the system to convert the input

pixel from each of these files into a conceptual value, which is then placed in a pixel

instance. The rule base then performs the matrix operation and sets the GEM slot of

the pixel instance. This conceptual value is then recoded into a pixel value and output

to the GIS formatted GEM file. Once all of the pixels have been processed, a GIS

trailer file is created which contains a legend to aid in interpreting the GEM pixels.

The second type of input that the KBGIS can accept is that o f a GIS soils file.

A soils file is simply a composite of the flooding, slope, plasticity, and karst overlays.

Therefore, it can also be used to produce a GEM file. In order to use a soils file,

however, the user must first o f all describe to the system each of the possible soil pixels

in terms of the flooding, slope, plasticity, and karst overlays. In other words, a specific

pixel instance is created for each of the possible soils pixels and the appropriate

conceptual values are filled in. The system then performs a matrix operation to set the

GEM slot for each of these pixels. To produce a GEM file now simply requires a

KBGIS recode of the soils file and the creation of a trailer file.

5. Results and Conclusions.

The final KBGIS was tested by first selecting an area that already had a manually

produced GEM and then generating a KBGIS GEM for it. These two maps were then

compared and the results of the comparison were analyzed.

The Creve Coeur, Missouri, area was chosen for this test because a manually

produced GEM already existed for it (Usery et. al., 1988; Lutzen and Rockaway, 1970).

Once the area had been selected, it was then necessary to generate the KBGIS GEM

for that area for the eventual comparison testing.

28

The first generation step required that the needed input files be in ERDAS G IS

format. It was decided that the soils file would be used for the GEM generation.

Therefore, the published map of the soils overlay was digitized and then converted into

ERDAS format. Once this input was in the correct format, the KBGIS was used to

produce a GEM. This GEM was then displayed on a graphics system, as was the

digitized manually produced GEM, and side by side comparisons were performed.

It was concluded that a "good" correlation existed between the two maps, taking

into account land use changes that may have occurred in the 10 years since the manual

GEM was produced (Usery' et. al., 1988). The major differences that were observed

between the two maps were caused by differences in the classification methods, rather

then problems with the system (Usery et. al., 1988). In fact, the KBGIS produced a

more detailed GEM then the one produced manually. It was, therefore, concluded that

a KBGIS could be used to produce a GEM.

Unfortunately, the system did not prove to be very practical. The amount of

execution time required by the KBGIS severely hampered its practicality. Generation

o f the Creve Coeur GEM took in excess of 76 hours. In fact, the system was not

allowed to run to completion. Instead, processing was stopped and the missing

classifications where tabulated by hand. This meant that, although the KBGIS

automated the GEM production process, it was not at all efficient in terms o f time.

29

III. DEVELOPMENT OF CONVERSION EXPERT SYSTEM

Results of the testing of the final KBGIS supported the theory that a automated

approach could be used to produce GEM maps. In fact, automation strengthened the

production process by standardizing the classification definitions, reducing the time

commitment required o f an engineer, and removing the need to start from scratch each

time a specific site selection GEM was required. Unfortunately, the automated process

still required a significant amount of production time.

In response to this problem, an investigation was performed to determine how the

developed knowledge base could be more efficiently implemented as a production

system. This resulted in development of an expert system which converts any existing

KBGIS into Fortran code, which can then be compiled and used efficiently in

production.

A. ANALYSIS OF EXISTING KBGIS EXPERT SYSTEM

1. Weaknesses o f the KBGIS Expert System.

One of the primary causes of the slow KBGIS execution time is the large size of

the input and output files, since a typical GIS overlay file could easily contain as much

as 250,000 bytes of data. The overhead created by the processing of such large files is

significant. Expert system inference algorithms, while supporting extremely powerful

reasoning abilities, also, by their very nature, require a larger execution time for the

processing of larger data files.

Another weakness of the KBGIS as a production system is its reliance on the

GoldWorks package. Purchasing GoldWorks requires a major initial financial

investment, since both the software package and the appropriate hardware would have

30

to be purchased in order to use the KBGIS GEM production system. This could

possibly be an inhibiting factor for a smaller GEM prod iction environment, such as a

field office. This could result in only the larger production companies being able to

afford the system.

2. Characteristics of the KBGIS Expert System.

A detailed study of the KBGIS expert system has shown that the knowledge base

can essentially be split into two separate parts; an application-specific knowledge base,

and a GIS knowledge base. The GIS part consists of the knowledge needed to perform

the recode and matrix operations that enable the system to convert the input data into

a GEM . This represents the stable part of the knowledge base; regardless of the specific

application, this part o f the system remains unchanged. The application knowledge

base, however, is not stable. This is the part of the knowledge base consisting of the

specific rules that were developed to generate the GEM from the minimal factors, both

of which were established for the Midwest region only. This means that in order to

create a production system for any other region, the development process would have

to be repeated to establish a valid application knowledge base for the new region.

GoldWorks is vital to the application knowledge base development process. Its

ease of use for non-programmers makes it possible for geological engineers to develop

the rule base themselves, without requiring that they have access to programmers.

GoldWorks also offers the engineer the ability to develop prototype KBGISs quickly

and easily. This is done by plugging experimental application rules into the established

G IS knowledge base and generating GEMs. Needed rule base modifications can then

be made quickly and easily through GoldWorks, and the entire process repeated until

an acceptable rule base has been established. During this development process, in

31

order to overcome the problem of excessive execution time, limited test data sets could

be used for the preliminary prototyping and testing.

The application knowledge base consists of two parts; data structures for the

minimal factors and the rules which determine the classifications. The rules themselves

follow a fairly standard if-then format. The if part consists o f a combination of the

minimal factors and associated conceptual values; the then part sets the correct

classification value. These rules are mutually exclusive, and will always be mutually

exclusive since classification schemes demand that unique factor combinations be

established for each classification definition. The number of rules will, therefore, be

equal to the number of possible classifications, which will vary region to region. The

data structure of the minimal factors will also remain basically stable region to region.

This structure associates with each of the minimal factors all o f its possible input

values.

3. Results of the Analysis.

Although the GoldWorks expert system is obviously vital to the development of

the application knowledge base, it is inefficient when used to implement the resultant

knowledge base in a production environment. It was also observed that once the rule

base is established, its characteristics did not require implementation in an expert

system environment. This discovery lead to the conclusion that, once the final rule base

was established, it could be converted into another, more efficient, programming

language for production purposes. However, it was also observed that this conversion

from a GoldWorks based expert system into another language would require access to

an experienced computer programmer. This conversion process would also have to be

performed multiple times and possibly over a prolonged time period, since any changes

to a region's established rule base must also be reflected in the production system.

32

It was, therefore, decided that an intermediate expert system should be developed

that could accept as input any KBGIS knowledge base and convert it into another

computer language. This new program could then be compiled and used for the

production system. Development of an expert system to perform the conversion

process would solve both the need to have access to a programmer, and the need to

perform the conversion process repetitively.

B. ESTABLISH VALIDITY OF CONVERSION SYSTEM

The first step in developing a conversion expert system was to choose the

language to convert the KBGIS into, and then confirm that significant time savings

would be obtained. Fortran was chosen as the language because of its inherently fast

execution time for data intense files, which can be seen in Fortran based ERDAS

processing. It was also chosen because of its availability, since the majority of the

computer systems currently available in the field support Fortran.

After Fortran was chosen, the existing KBGIS for the Midwestern region was

manually converted into equivalent Fortran code. This hand-coded program was

compiled and an executable program developed. A sample data set was then used to

develop a GEM , using both the Fortran program and the KBGIS expert system.

Comparisons were made between the two GEM s to confirm that the Fortran code was

producing identical results. A byte by byte comparison was made between the two

GEM files and no discrepancies were found. Therefore, it was concluded that the

Fortran program was producing valid results.

A comparison was also done between the execution times of the two GEM

production systems, which were both executed on the same hardware in order to

eliminate any hardware related execution factors. The Fortran program was able to

33

produce the GEM in 5 minutes and 49 seconds whereas the KBGIS had still not

completed production after 3 hours. It was, therefore, concluded that the Fortran

production system was able to produce a valid GEM with a significant time savings

as compared to the KBGIS expert system.

C. DEVELOPMENT OF THE CONVERSION EXPERT SYSTEM

The GoldWorks expert system development shell was chosen as the development

tool for the Conversion Expert System. GoldWorks was chosen, not only because the

KBGIS was implemented in it, but because it also allowed for the creation and use of

powerful LISP functions in its Developers interface.

1. Conversion of KBGIS data structures.

The first task of this expert system was to convert the GoldWorks framed-based

data structures into appropriate Fortran data structures. Fortran arrays where chosen,

since they allowed a specific number of elements to be associated with a single data

structure. This was a vital requirement, since each of the frames in the KBGIS had

associated slots. Conversion of a frame into an equivalent Fortran array was done by

creating an instance of the specific frame, and then giving the name of the equivalent

Fortran array element as a value for each of the slots (Figure 8). The name of the array

is used as the instance name, and a key list containing the frame name and associated

array name was constructed.

An equivalent Fortran array data structure was created for each of the frames

representing one of the minimal factors. Determination of these frames was performed

by searching the rule base and developing a list of all frames used in the antecedent

part o f the rules which set the GEM classification. This list was then used as a key for

34

KARST Arrayl

YES YES...Array1(1)

NO NO....Arrayl (2)

WATER Water.. Arrayl (3)

a) Frame b) Instance

Key - list
(Karst Arrayl)

Figure 8. Example of the Conversion of a GoldWorks Frame into a Fortran Array

which frames needed to be converted. Once all of the appropriate frames were

converted, it was time to convert the rules.

2. Conversion of the KBGIS Rules.

Conversion of the GoldWorks rules into Fortran if-then rules required extensive

use of recursion. Only the rules which deduce a GEM classification needed to be

converted. Therefore, the first step was to identify those rules. This was done by

retrieving each rule's consequence and then searching it for the name which represented

the classification slot o f the pixel frame. GEM is the slot name in the existing KBGIS.

If a match was found, then the specific classification value which the rule sets was

checked for validity. Confirmation of validity was done by making sure that the

classification value specified in the rule matched one of the slots for the GEM frame

in the KBGIS.

Once it was established that a rule needs to be converted, a list o f the rule's

antecedent was retrieved. This list can consist of several layers, depending on the

complexity of the antecedent. Each member of the list was searched until the minimal

sublist was found. This sublist is a list which actually contains the pattern used to

search the fact base. This list is then converted into Fortran code and, if necessary, the

35

appropriate logical connective is also converted into Fortran (Figure 9). This process

was recursively repeated until each of the minimal sublists were converted. After the

rules antecedent was processed, the consequence was retrieved and converted. This

conversion was much simpler, since the list

that can be easily converted (Figure 9).

Goldwork's Rule

IF
((Instance ?X is Pixel with Flooding None)

or
(Instance ?X is Pixel with Flooding Rare))

and
(Instance ?X is Pixel

with Slope 5-30%
with Plasticity 20-30
with Karst No)

THEN
(Instance ?X is Pixel

with Gem Class-lg)

of the consequence contains only atoms,

FORTRAN

IF (((Flooding .EQ. Array3(1))
.OR. (Flooding .EQ. Array3(3))

.AND. (Slope .EQ. Array2(2))

.AND. (Plasticity .EQ. Array4(3))

.AND. (Karst .EQ. Array1(2)))

THEN
GEM = 6

Figure 9. Example of a Conversion of a GoldWorks rule into a Fortran rule

3. Conversion of KBGIS User Interface.

The only part of the KBGIS system left to convert was its user interface. This

conversion was relatively simple, since the only anticipated changes would be the

names and numbers of the input files since these are based on the minimal factors used

by the system. The format of both the input and output files was constant since it was

based on the use of GIS files; and the creation of a trailer file was also constant.

Essentially, all that was required for this part of the conversion was to create the user

input interface. This required using the list o f the minimal factors (developed earlier in

the conversion) to generate the Fortran code needed for input/output processing by

using formatted stream output statements.

36

4. Implementation of the Conversion Expert System.

In order to use the Conversion Expert System, the KBGIS to be converted must

first of all be loaded into the system. Once this is done, the system can be executed.

The Conversion System is extremely easy to use and requires a minimum amount of

input from the user. User interface functions in a very user-friendly environment. Each

time the system requests input from the user, not only is the user given the opportunity

to change the answer, but the system also confirms that a valid answer is given. If

either the user or the system decides that an incorrect entry is given, the user is asked

to enter the input again. An example of a series of user queries are given in figure 10.

r ~ \

Is GEM a valid output variable?

YES NO

___)

Figure 10. An Example o f the Conversion Expert System User Interface

After entering the system from the opening screen, the user is required to tell the

system the directory path name for the generated Fortran code. This consists of six files

called ftrO.dat to ftr5.dat that must be concatenated together in ascending numerical

order to produce the complete Fortran source code. This is easily done by using the

DOS copy command. Then the user is asked for input and output variable names, as

well as a default output classification. Finally, the user is asked whether the specified

factor, which the system has retrieved from the KBGIS rule base, can be derived from

the soils file, represents an independent overlay, or both.

37

D. RESULTS

Once the generated Fortran code is converted into an executable program, it can

then be used to produce a GEM. This program is now equivalent to the KBGIS system

in terms of input and output requirements, i.e., it requires one of two types of input

and produces two outputs (GEM and trailer). The only differences in the systems are

their methods of processing; the Fortran program performs pixel to pixel recodes

instead of pixel to conceptual to pixel recodes like the KBGIS. In addition, the Fortran

code is limited to one-to-one mappings, unlike the KBGIS which supports multiple

values to a single value mapping. This is, however, the only additional constraint added

by the Fortran production system. And, if a multiple to single mapping is required of

the system, it can easily be performed in ERDAS as a pre-processing step.

The Conversion Expert System was tested by converting the Midwestern KBGIS

expert system. After the KBGIS was converted into Fortran code by the expert system,

an executable Fortran program was created. In other words, the Fortran code which

was output by the expert system was compiled and linked. Next, the executable

Fortran program was used to produce a GEM and then compared to a GEM produced

by the KBGIS from the same input. Comparisons resulted in no differences being

found between the GEMs.

The Fortran production system was able to process 179 bytes per second (.0056

sec/byte) as compared to the KBGIS which processed only .77 bytes per second (1.30

sec/byte). And since this comparison was based on a data set o f only 62500 bytes and

it had already been determined that the larger the data set the worse the KBGIS system

performs (in fact the time required to process a byte grows exponentially) it wras

obvious that the Fortran production system performs in a significantly more efficient

manner.

38

IV. CONCLUSION

It can easily be seen that while the KBGIS approach to development of a GEM

production system has definite benefits, it fails to fulfill its obligations as a production

system. The introduction of an intermediate step, however, was able to bridge the gap

between ease of development and efficiency of use. This bridge was the development

of a Conversion Expert System.

This system significantly improved the practicality of the automated production

of GEM s by drastically reducing the production time. The Fortran approach was also

able to solve the possibly inhibiting effect of the cost of the system. Although the

GoldWorks package is still a requirement in order to develop such a KBGIS, once the

system has been developed and converted into Fortran, any system that can execute

Fortran can be used as a production system. This means that a hub approach could

be taken by a production company which could result in significant financial savings.

A hub approach means that only the central regional office would need to purchase the

GoldWorks package and associated hardware. The KBGIS could then be developed

and converted at the central office, and only the resulting executable program would

need to be sent out to the field offices.

In conclusion, the development of a KBGIS for the production of GEMs, resulted

in major improvements over existing production methods. Then the development of a

Conversion System to be used in association with the KBGIS made the resulting

production process both efficient and affordable.

39

BIBLIOGRAPHY

Carter, James R. "A Typology of Geographic Information Systems," Proceedings of

the American Congress on Surveying and Mapping/American Society for

Photogrammetry and Remote Sensing , Vol. 5 (1988), 207-215.

Charniak, Eugene and Drew McDermott. Introduction to Artificial Intelligence.

Reading, Massachusetts: Addison-Wesley Publishing Company, 1986.

Dangermond, Jack. "A Review of Digital Data Commonly Available and some of the

Practical Problems of Entering them into a GIS," Proceedings of the American

Congress on Surveying and Mapping/American Society for Photogrammetry

and Remote Sensing , Vol. 5 (1988), 1-10.

Deister, Robin. Personal interview. October 25, 1989.

Denning, Peter J. "The Science of Computing: Blindness in Designing Intelligent

Systems," American Scientist , Vol. 76 (March-April, 1988), 118-120.

ERDAS, Inc. ERDAS Software Toolkit Image Processing System User's Guide.

Atlanta, Georgia: ERDAS, Inc., 1987.

Gold Hill. GoldWorks Expert System Development and Delivery. Cambridge,

Massachusetts: Gold Hill Computers, Inc., 1987.

Lipkin, Richard. "Cover Story," Insight, (February 15, 1988), 8-17.

Lutzen, E. E. and J. D. Rockaway, Jr. "Engineering Geology of St. Louis County,

Missouri," Engineering Geology Series No. 4 , 1971, 23.

40

Lutzen, E. E. and J. D. Rockaway, Jr. "Engineering Geology o f the Creve Coeur

Quadrangle, St. Louis County, Missouri," Engineering Geology Series No. 2 ,

1970, 19.

Mishkoff, Henry C. Understanding Artificial Intelligence. Indianapolis, Indiana:

Howard W. Sams and Company, 1985.

Newquist III, Harvey P. "Expert Systems: The Promise of a Smart Machine,"

Information Systems for Management: A Book of Readings. 1986, 170-181.

Programs-ln-Motion. 1st Class User's Guide , Wayland, Massachusetts:

Programs-In-Motion, Inc., 1987.

Schank, Roger C. "What Is AI, Anyway?," AI Magazine , Winter 1987, 59-65.

Steele, Guy L., Jr. Common LISP The Language. Digital Equipment Corporation,

1984.

Smith, T. R., and M. Pazner. "Knowledge-Based Control of Search and Learning in a

Large-Scale G IS," Proceedings International Symposium on Spatial Data

Handling , 1984, 498-519.

Tanimoto, Steven L. The Elements of Artificial Intelligence. Rockville, Maryland:

Computer Science, Inc., 1987.

Tatar, Deborah G. A Programmer's Guide to Common LISP. Digital Equipment

Corporation, 1987.

Usery, E. L., Phyllis Altheide, Robin Deister, and David Barr. "Knowledge-Based GIS

Techniques Applied to Geological Engineering," Photogrammetric Engineering

and Remote Sensing , Vol. 54 (November 1988), 1623-1628.

41

Usery, E. L., Robin Deister, and David Barr. "A Geological Engineering Application

of a Knowledge-Based Geographic Information System," Proceedings of the

American Congress on Surveying and Mapping/American Society for

Photogrammetry and Remote Sensing , Vol. 2 (1988), 176-185.

Waldrop, M. Mitchell. "Artificial Intelligence," The Washington Post , (February 22,

1988), C3.

Waterman, Donald A. A Guide to Expert Systems. Reading, Massachusetts:

Addison-Wesley Publishing Company, 1986.

Williamson, Mickey. Artificial Intelligence for Micro-computers: The Guide for

Business Decisionmakers. New York: Brady Communications Company, Inc.,

1986.

Winston, Patrick Henry, and Berthold Klaus Paul Horn. LISP. Reading,

Massachusetts: Addison-Wesley Publishing Company, 1984.

42

VITA

Jill Janene Cress was born January 3, 1964 in Ft. Collins, Colorado. She received

her primary and secondary education in Rolla, Missouri. She has received her college

education from the University of Missouri-Rolla, in Rolla, Missouri. She received a

Bachelor of Science degree in Computer Science from the University of Missouri-Rolla,

in Rolla, Missouri in May 1986.

She has been enrolled in the Graduate School of the University Missouri-Rolla

since June 1987. She is currently working as a programmer analyst for the United

States Geological Survey in Rolla, Missouri.

APPENDIX A

LISTING OF THE CONVERSION EXPERT SYSTEM RULES

44

(DEFINE-INSTANCE MAIN-SCREEN
(print-name 'M AIN -SCREEN '

doc-string 'M ain screen control'
is SCREEN-CONTROL)

(SCREEN-LAYOUTS (INTRO-SCREEN))
(TEM PLATE-AREA-HEIGHT 23)
(STATUS INITIAL-STATUS)
)

(DEFINE-INSTANCE INTRO-SCREEN
(print-name 'IN TRO -SCREEN'

doc-string "
is SCREEN-LAYOUT)

(SYSTEM-MENU YES)
(SCREENS-M ENU YES)
(MENU-BAR-BORDER-COLOR LIGHT-GRAY)
(MENU-BAR-TEXT-COLOR LIGHT-GRAY) ;; Slot MENU could not be saved of type NULL
(SCREEN-TEM PLATES

((O PENING-SCREEN LEFT 0 TOP 2 WIDTH 79 HEIGHT
20)))

(PARENT-SCREEN-CONTROL MAIN-SCREEN)
)

(DEFINE-INSTANCE OPENING-SCREEN
(print-name 'O PENING-SCREEN'

doc-string 'Opening screen layout'
is SCREEN-TEM PLATE)

(OBJECTS
((CONTINUE MENU START-CODE ' CONTINUE ')

(LEAVE MENU LEAVE-SCREEN ' EXIT ')))
(CONTENTS

((' ') (' ')
(' WELCOME TO THE ')
(' FORTRAN CONVERSION EXPERT SYSTEM ')
C ')(' ') (' ')
(' THIS SYSTEM CONVERTS A KBGIS EXPERT SYSTEM INTO')
(' FORTRAN CODE WHICH CAN THEN BE COMPILED AND EXECU TED ')
(' ')(' ')
(' ') (' ')
(' ' CO N TIN U E' ' LEAVE)))

(TEXT-COLOR GREEN)
(BORDER-COLOR BLUE)
(BORDER DOUBLE)
(ORIENTATION ROW)
(LAYOUT LINEAR)
(SPACES-BETW EEN-COLUMNS 0)
(SPACES-BETWEEN-ROWS 0)
)

(DEFINE-INSTANCE LEAVE-SCREEN
(print-name 'L E A V E '

doc-string 'Asks the user if they are sure they want to exit the system.'
is POPUP-CONFIRM)

(TARGET-SLOT CLOSE-REQUEST)
(TARGET-INSTANCE MAIN-SCREEN)
(BORDER-COLOR BLUE) ;; Slot MENU could not be saved of type NULL
(CENTER X-AND-Y)
(DEFAULT-ANSW ER YES)
(CONTENTS (' Do you want to exit the system? '))
)

(DEFINE-INSTANCE M ESSAGE-SCREEN
(print-name 'M ESSA G E-SCREEN '

doc-string 'Used to output messages to the screen.'

45

is OUTPUT-WINDOW)
(LEFT 0)
(TOP 21)
(WIDTH 80)
(HEIGHT 4)
(FOREGROUND-COLOR RED)
(BACKGROUND-COLOR WHITE)
(AUTO-NEWLINE YES)
(SCROLLING SCRO LL)
(CLEAR BEFORE-NEW -DISPLAY YES)
)

(DEFINE-INSTANCE START-CODE
(print-name 'START-CO DE'

doe-string 'Asks the user for the output file path.'
is POPUP-ASK-USER)

(BORDER-COLOR BLUE) ;; Slot MENU could not be saved of type NULL
(CENTER X-AND-Y)
(ANSWER-WIDTH 10)
(INSTRUCTIONS ('Example \\gw\\kbgis\\'))
(CONTENTS ('Enter the complete directory path for the output files '))
)

(DEFINE-INSTANCE ENTER-INPUT
(print-name 'ENTER-IN PU T'

doc-string 'Asks the user to enter an input variable.'
is POPUP-ASK-USER)

(BORDER-COLOR BLUE) ;; Slot MENU could not be saved of type NULL
(CENTER X-AND-Y)
(ANSWER-WIDTH 10)
(CONTENTS ('Enter an input variable '))
)

(DEFINE-INSTANCE CONFIRM-INPUT
(print-name 'CO NFIRM -INPUT'

doc-string 'Asks the user if the entered input variable is correct.'
is POPUP-CONFIRM)

(BORDER-COLOR BLUE) ;; Slot MENU could not be saved o f type NULL
(CENTER X-AND-Y)
(DEFAULT-ANSW ER YES)
)

(DEFINE-INSTANCE ENTER-OUTPUT
(print-name 'ENTER-O U TPU T'

doc-string 'Asks the user to enter the output variable.'
is POPUP-ASK-USER)

(BORDER-COLOR BLUE) ;; Slot MENU could not be saved o f type NULL
(CENTER X-AND-Y)
(ANSWER-WIDTH 10)
(CONTENTS ('Enter the output variable '))
)

(D EFIN E INSTANCE CONFIRM OUTPUT
(print-name 'CO NFIRM -O UTPUT'

doc-string 'Asks the user if the entered output variable is correct.'
is POPUP-CONFIRM)

(BORDER-COLOR BLUE) ;; Slot MENU could not be saved o f type NULL
(CENTER X-AND-Y)
(DEFAULT-ANSW ER YES)
)

(DEFINE-INSTANCE EN TER-D EFA U LT
(print-name 'E N T ER -D EFA U LT '

doc-string 'A sks the user to enter a default output value.'
is POPUP-ASK-USER)

46

(BORDER-COLOR BLUE) ;; Slot MENU could not be saved of type NULL
(CENTER X-AND-Y)
(ANSWER-WIDTH 10)
(CONTENTS ('Enter the default output value '))
)

(DEFINE-INSTANCE CONFIRM -DEFAULT
(print-name 'CO N FIRM -D EFAU LT'

doc-string 'Asks the user if the entered default is correct.'
is POPUP-CONFIRM)

(BORDER-COLOR BLUE) ;; Slot MENU could not be saved of type NULL
(CENTER X-AND-Y)
(DEFAULT-ANSW ER YES)
)

(DEFINE-INSTANCE CHECK-FACTOR
(print-name 'CHECK-FACTOR'

doc-string 'Asks the user what the basic factor should be used for.'
is POPLP-CONFIRM)

(BORDER-COLOR BLUE) ;; Slot MENU could not be saved of type NULL
(CENTER X-AND-Y)
(DEFAULT-ANSW ER YES)
)

(DEFINE-RULE START-SYSTEM
(print-name 'START-SYSTEM '

doc-string 'Starts the system-'
dependency NIL
direction FORWARD
certainly 1.0
explanation-string "
priority 0
sponsor TOP-SPONSOR)

(INSTANCE MAIN-SCREEN IS SCREEN-CONTROL
WITH STATUS STARTED)

THEN
(INSTANCE MAIN-SCREEN IS SCREEN-CONTROL

WITH STATUS RUNNING
WITH NEW-SCREEN INTRO-SCREEN))

(DEFINE-RULE GENERATE-CODE
(print-name 'GEN ERATE-CO D E'

doc-string 'Starts the FORTRAN code generation-'
dependency NIL
direction FORWARD
certainty 1.0
explanation-string "
priority 0
sponsor TOP-SPONSOR)

(INSTANCE START-CODE IS POpUP-ASK-USER
WITH ANSWER ?A)

THEN
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEAR YES
WITH DISPLAY (* STARTED CREATING FORTRAN CODE'))

(EVALUATE (START ?A))
(INSTANCE ENTER-INPUT IS POpUP-ASK-USER

WITH GO YES))

(D EFIN E-RU LE QUIT-SYSTEM
(print-name 'QUIT-SYSTEM *

doc-string 'Asks the user if they w>sh to leave the system.'
dependency NIL
direction FORWARD
certainty 1.0

explanation-string "
priority 0
sponsor TOP SPONSOR)

(INSTANCE START-CODE IS POPUP-CONFIRM
WITH ANSWER NO)

THEN
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEAR YES)
(INSTANCE LEAVE-SCREEN IS POPUP-CONFIRM

WITH GO YES))

(DEFINE-RULE CHECK-INPUT
(print-name 'CH ECK-INPU T'

doc-string 'Asks the user to confirm the input variable.'
dependency NIL
direction FORWARD
certainty 1.0
explanation-string "
priority 0
sponsor TOP-SPONSOR)

(INSTANCE ENTER INPUT IS POPUP-ASK-USER
WITH ANSW ER ?A)

THEN
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEAR YES)
(INSTANCE CONFIRM-INPUT IS POPUP-CONFIRM

WITH CONTENTS
('Is ' ?A ' a valid input variable?')

WITH GO YES))

(DEFINE-RULE INCORRECT-INPUT
(print-name 'INCORRECT-INPUT'

doc-string 'Input variable is invalid, user is asked to re-enter.'
dependency NIL
direction FORWARD
certainty 1.0
explanation-string "
priority 0
sponsor TOP-SPONSOR)

(INSTANCE CONFIRM-INPUT IS POPUP-CONFIRM
WITH ANSW ER NO)

THEN
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEAR YES
WITH DISPLAY (' INCORRECT INPUT VARIABLE'))

(INSTANCE ENTER-INPUT IS POPUP-ASK-USER
WITH GO YES))

(DEFINE-RULE CORRECT-INPUT
(print-name 'CO RRECT-INPUT'

doc-string 'Input variable is correct, processing is continued.'
dependency NIL
direction FORWARD
certainty 1.0
explanation-string "
priority 0
sponsor TOP-SPONSOR)

(INSTANCE CONFIRM-INPUT IS POPUP-CONFIRM
WITH ANSW ER YES)

(INSTANCE ENTER-INPUT IS POPUP-ASK-USER
WITH ANSW ER ?A)

TH EN
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEA R YES
WITH DISPLAY (' W ORKING'))

48

(EVALUATE (SET-INPUT-VARIABLE ?A))
(INSTANCE M ESSAGE-SCREEN IS OUTPUT WINDOW

WITH CLEA R YES)
(INSTANCE ENTER-OUTPUT IS POPUP-ASK-USER

WITH GO YES))

(DEFINE RULE CHECK-OUTPUT
(print-name 'CHECK-OUTPUT'

doc-string 'Asks the user to confirm the output variable.'
dependency NIL
direction FORWARD
certainty 1.0
explanation-string "
priority 50
sponsor TOP-SPONSOR)

(INSTANCE ENTER-OUTPUT IS POPUP-ASK-USER
WITH ANSW ER ?A)

THEN
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEAR YES)
(INSTANCE CONFIRM-OUTPUT IS POPUP-CONFIRM

WITH CONTENTS
('Is ' ?A ' a valid output variable?')

WITH GO YES))

(DEFINE-RULE INCORRECT-OUTPUT
(print-name 'INCORRECT-OUTPUT'

doc-string 'Invalid output variable, user is asked to re-enter.'
dependency NIL
direction FORWARD
certainty 1.0
explanation-string "
priority 0
sponsor TOP-SPONSOR)

(INSTANCE CONFIRM-OUTPUT IS POPUP-CONFIRM
WITH ANSWER NO)

(INSTANCE ENTER-OUTPUT IS POPUP-ASK-USER
WITH ANSWER ?A)

THEN
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEAR YES
WITH DISPLAY (7A ' IS AN INCORRECT OUTPUT VARIABLE'))

(INSTANCE ENTER-OUTPUT IS POPUP-ASK-USER
WITH GO YES))

(DEFINE-RULE CORRECT-OUTPUT
(print-name 'CORRECT-OUTPUT'

doc-string 'Correct output variable, processing is continued.'
dependency NIL
direction FORWARD
certainty 1.0
explanation-string "
priority 0
sponsor TOP-SPONSOR)

(INSTANCE CONFIRM-OUTPUT IS POPUP-CONFIRM
WITH ANSWER YES)

(INSTANCE ENTER-OUTPUT IS POPUP-ASK-USER
WITH ANSW ER ?A)

THEN
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEA R YES
WITH DISPLAY (' W ORKING'))

(EVALUATE (OUTPUT ?A)))

(D EFIN E-RU LE CH ECK-DEFAULT

49

(print-name 'CH ECK-D EFA U LT'
doc-string 'Asks the user to confirm the default output value.'
dependency NIL
direction FORWARD
certainty 1.0
explanation-string "
priority 50
sponsor TOP-SPONSOR)

(INSTANCE ENTER-DEFAULT IS POPUP-ASK-USER
WITH ANSWER ?A)

THEN
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEAR YES)
(INSTANCE CONFIRM -DEFAULT IS POPUP-CONFIRM

WITH CONTENTS
('Is ' ?A ' a valid default output value?')

WITH GO YES))

(DEFINE-RULE INCORRECT-DEFAULT
(print-name 'INCO RRECT-DEFAULT'

doc-string "Invalid default, user is asked to re-enter.'
dependency NIL
direction FORWARD
certainty 1.0
explanation-string "
priority 0
sponsor TOP-SPONSOR)

(INSTANCE CONFIRM -DEFAULT IS POPUP-CONFIRM
WITH ANSW ER NO)

(INSTANCE ENTER-DEFAULT IS POPUP-ASK-USER
WITH ANSWER ?A)

THEN
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEAR YES
WITH DISPLAY (?A ' IS AN INCORRECT DEFAULT VALUE'))

(INSTANCE ENTER D EFAULT IS POPUP-ASK-USER
WITH GO YES))

(DEFINE-RULE CORRECT-DEFAULT
(print-name 'CO RRECT-D EFAULT'

doc-string 'Correct default, processing is continued.'
dependency NIL
direction FORWARD
certainty 1.0
explanation-string "
priority 50
sponsor TOP-SPONSOR)

(INSTANCE CO NFIRM -DEFAULT IS POPUP-CONFIRM
WITH ANSW ER YES)

(INSTANCE ENTER-D EFAULT IS POPUP-ASK-USER
WITH ANSW ER ?A)

THEN
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEAR YES
WITH DISPLAY (' W ORKING'))

(EVALUATE (SET-DEFAULT ?A)))

(DEFINE-RULE FINISH-CODE
(print-name 'FINISH -CO DE'

doc-string 'Processing is continued.'
dependency NIL
direction FORWARD
certainty 1.0
explanation-string "
priority 0

50

sponsor TOP-SPONSOR)
(INSTANCE CONFIRM -DEFAULT IS POPUP-CONFIRM

WITH ANSW ER YES)
THEN
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEA R YES
WITH DISPLAY (' FINDING OVERLAYS'))

(EVALUATE (SET-COMP-VARIABLES))
(EVALUATE (FIND-BASICS))
(EVALUATE (BUILD-BASICS-CODE))
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEA R YES
WITH DISPLAY (' BUILDING FORTRAN CODE'))

(EVALUATE (BUILD-DEF-CODE))
(EVALUATE (BUILD-INPUT-CODE))
(EVALUATE (BUILD-FILE-MISSING-CODE))
(EVALUATE (BUILD-READ-INPUT-CODE))
(EVALUATE (CONVERT-RULES))
(EVALUATE (FINISH-OUTPUT-CODE))
(INSTANCE M ESSAGE SCREEN IS OUTPUT-WINDOW

WITH CLEAR YES
WITH DISPLAY (' CREATING FINAL LEGEND CODE'))

(EVALUATE (BUILD-LEGEND-CODE))
(EVALUATE (BUILD-END-CODE))
(INSTANCE M ESSAGE-SCREEN IS OUTPUT-WINDOW

WITH CLEAR YES
WITH DISPLAY (' FINISHED CREATING FORTRAN CODE'))

(INSTANCE MAIN-SCREEN IS SCREEN-CONTROL
WITH CLOSE-REQUEST YES))

APPENDIX B

LISP FUNCTIONS USED BY THE CONVERSION EXPERT SYSTEM

52

Program Ftr.lsp
Written by Jill Cress
Purpose Lisp functions which are used to convert a GoldWorks

KBGIS Expert System into Fortran code.

; Sets the maximum dimension for the arrays,
(defconstant limit 12)

; Initializes the lists and variables which are used by the
; other functions.
(defun start (path)

(self arrav-key '(arrayl array2 array3 array4 array5 array6 array7 array8))
(self arrav list '('ARRAY1(12)’ 'A RRA Y 1(1)' 'A R RA Y 1(2)' 'ARRAY1(3)'

'A RRA Y 1(4)' 'ARRAY1(5)' 'ARRAY1(6)' 'ARRAY1(7)' 'ARRAY1(8)'
'A R R A Y !(9)' 'A RRA Y l(lO)' 'A R R A Y l(ll) ' 'ARRAY1(12)' 'ARRAY2(12)'
'ARRAY2(1)' 'ARRAY2(2)' 'ARRAY2(3)' 'ARRAY2(4)' 'ARRAY2(5)'
'A RRA Y2(6)' 'ARRAY2(7)' 'ARRAY2(8)' 'ARRAY2(9)' 'ARRAY2(10)'
'A RRA Y2(11)' 'ARRAY2(12)' 'ARRAY3(12)' 'ARRAY3(1)' 'A RRA Y3(2)'
'ARRAY3(3)" 'ARRAY3(4)' 'ARRAY3(5)' "ARRAY3(6)' "ARRAY3(7)'
'ARRAY3(8)' 'ARRAY3(9)' 'ARRAY3(10)' 'ARRA Y3(11)' 'ARRAY3(12)'
'ARRAY4(12)' *ARRAY4(1)' 'ARRAY4(2)' 'ARRAY4(3)' 'ARRAY4(4)'
'ARRAY4(5)' 'ARRAY4(6)' 'ARRAY4(7)' 'ARRAY4(8)' 'ARRAY4(9)'
*ARRAY4(10)' 'ARRAY4(11)' 'ARRAY4(12)' 'ARRAY5(12)' 'A R R A Y S(l)'
'A R R A Y 5(2)' 'ARRAY5(3)' 'ARRAYS(4)' 'ARRAY5(5)' *ARRAYS(6)"
'ARRAY5(7)’ 'ARRAY5(8)' ”ARRAY5(9)' 'ARRAYS(IO)' 'A R R A Y S(ll) '
*ARRAY5(12)' 'ARRAY6(12)' 'ARRAY6(1)' 'ARRAY6(2)' 'A R R A Y 6(3)'
'ARRAY6(4)' 'ARRAY6(5)' 'A R R A Y 6(6)' 'ARRAY6(7)' 'ARRAY6(8)'
'ARRAY6(9)' "ARRAY6(10)' 'ARRA Y6(11)' 'ARRAY6(12)' 'ARRAY7(12)'
'ARRAY7(1)' 'ARRAY7(2)' 'ARRAY7(3)' *ARRAY7(4)' ”ARRAY7(5)*
'ARRAY7(6)' *ARRAY7(7)' ”ARRAY7(8)' 'ARRAY7(9)' 'ARRAY7(10)'
'A R RA Y 7(11)' 'ARRAY7(12)' 'ARRAY8(12)' 'A R R A Y 8(l)' 'ARRAY8(2)'
'ARRAY8(3)' 'ARRAY8(4)’ *ARRAY8(5)' 'ARRAY8(6)' 'ARRAY8(7)'
'ARRAY8(8)' 'ARRAY8(9)' 'ARRAY8(10)' 'A RRA Y 8(11)' 'ARRAY8(12)'))

(setf key-list'())
(sctf factor-list '())
(self basics-list '())
(sctf logic-unit 7)
(setf dcf-unit 4)
(setf label 100)
(setf err-label 855)

; Sets up the output files.
(setf filenameO (make-pathname directory path

name "flrO' type "dat'))
(setf datafile (open filenameO direction output

element-type 'string-char))
(setf filenamel (make-pathname directory path

name "fir 1' type "dat'))
(setf fir 1 file (open filenamel direction output

element-type 'string-char))
(setf filename2 (make-pathname directory path

name "f\r2 ' type "dat'))
(setf ftr2file (open filename2 direction output

element-type 'string-char))
(setf filcname3 (make-pathname directory path

name "ftr3 ' type "dat'))
(setf ftr3file (open filename3 direction output

element-type 'string-char))
(setf filename4 (make-pathname directory path

name "flr4 ' type "dat'))
(setf ftr4file (open filename4 direction output

element-type string-char))

53

(setf fiiename5 (make-pathname directory path
name "ftr5 ' type "dat'))

(setf ftr5fiie (open fiiename5 direction output
element-type 'string-char))

; Start the fortran code generation,
(start-data)
(start-code))

Builds the initial data declarations for the fortran program.
(defun start-data ()

(format datafile '
(format datafile '
(format datafile
(format datafile
(format datafile '
(format datafile '
(format datafile
(format datafile '
(format datafile "
(format datafile "
(format datafile '
(format datafile
(format datafile '
(format datafile

°% C

"o
)

PROGRAM FTRG IS')

0
0 0 /

CHARACTER'
REALM
LOGICAL*4
CHARACTER'
CHARACTER'
CHARACTER'
INTEGERM
IN T E G E R S
INTEGERM
INTEGER*4
REALM
CH ARA CTER'S

I A NS')
COLS')

COMP')
30 FNAM E')
30 FNAM E2')
128 HEADER')

1')
IOE')
J ')
NUM BER')

ROWS')
TYPE'))

; Starts the fortran code.
(defun start-code ()

(formal flrlfile " ° “ i>C')
(format ftrlfile " °% C Asks the user which type of map they wish to produce.')
(format flrlfile " °% C ')
(format flrlfile W RITE(V A)' label)
(format flrlfile “A FORMAT(' ENTER THE TYPE OF MAP TO BE PRODUCED',/, ' label)
(format flrlfile + ' (GENERAL|LANDF1LL) = = > ')')
(setf label (+ label 10))
(format flrlfile R EA D (V A) TYPE ' label)
(format Arlfile " °% °A FORMAT(A8)' label)
(format ftr5file " °% C ')
(format ftrSfile " °% C File Error Messages.'))

; Sets up the input variable.
(defun set-input-variable (frame)

(setf input-var frame)
(format datafile "°®i> CH A RA CTER*! °A ' input-var))

Sets up the array for the final-legend values, sets the result variable,
and establishs the valid result values.

(defun output (frame)
(cond ((frame-p frame)

(setf result frame)
(format datafile 1NTEGER*2 °A ' frame)
(setf final-legend Tortran-legend)
(make-instance final-legend is frame)
(setf output-values (instancc-all-slots final-legend))
(setf (slot-value message-screen 'clear)' yes)
(setf (slot-value enter-default 'go) ' yes))

(T
(setf (slot-value 'confirm-output 'answer) ' no))))

54

; Sets up the default output value and puts the integer output values
; into the output array instance.
(defun set-default (frame)

(cond ((member frame output-values)
(setf default frame)
(setf slot-list output-values)
(setf count 0)
(dotimes (I (length output-values))

(cond ((neq (car slot-list) default)
(setf count (+ count 1))
(setf (slot-value final-legend (car slot-list)) count))

<T
(setf (slot-value final-legend (car slot-list)) 0)))

(setf slot-list (cdr slot-list))))
cr
(self (slot-value confirm-default answer) ' no))))

; A composite factor will be used therefore die necessary variables are
; initialized.
(defun set-comp-variables ()

(setf comp-var SOILS)
(format datafile "°% INTEGER*4 °A ' comp-var)
(setf comp-array 'SLS)
(setf comp-list '())
(setf comp-unit 3))

; The following series of functions are used to develop a list
; of all of the factors which exist in the rule-base.
(defun find-basics ()

(setf rules (all-rules))
(find-basics-rules rules))

(defun find-basics-rules (rule-list)
(cond ((neq rule-list '())

(setf rule (car rule-list))
(setf cons (rule-consequent rule))
(cond ((and(member 'with cons) (member result cons))

(setf result-slot (nth 1 (member result cons)))
(cond ((member result-slot output-values)

(setf ante (rule-antecedent rule))
(basics-variable ante))

(T nil)))
CT nil))

(find-basics-rules (cdr rule-list)))
(T nil)))

(defun basics-variable (ante-list)
(cond ((OR(eq 'AND (car ante-list))(eq 'OR (car ante-list)))

(dotimes (I (- (length ante-list) 1))
(setf temp (nth (+ I I) ante-list))
(basics-variable temp)))

((eq 'INSTANCE (car ante-list))
(setf a-list (member 'with ante-list))
(build-basics-lisl a-list))

<T nil)))

(defun build-basics-list (b-list)
(cond ((neq b-list '())

(setf basic (nth 1 b-list))
(cond ((member basic basics-list) nil)

<T
(setf basics-list (cons basic basics-list))))

55

(setf b-list (member 'with (cdr b-list)))
(build-basics-list b-list))

(T nil)))

; Determines which of the factors should be composite overlays and/or
; non-composite factors.
(defun build-basics-code ()

(setf temp-b-list basics-list)
(dotimes (1 (length basics-list))

(setf basic-factor (car temp-b-list))
(setf temp-b-list (cdr lemp-b-list))
(setf (slot-value 'check-factor contents)

'('Is ' basic-factor ' a ' comp-var ' overlay '))
(setf (slot-value 'check-factor 'go) ' yes)
(if (eq (slot-value 'check-factor 'answer) ' yes)

(comp-factors basic-factor))
(setf (slot-value 'check-factor 'contents)

'('Is ' basic-factor ' an independent overlay '))
(setf (slot-value 'check-factor 'go) ' yes)
(if (eq (slot-value 'check-factor 'answer) ' yes)

(factor basic-factor))))

; Builds the fortran code to split the composite factor into the
; seperate overlays.
(defun comp-factors (frame)

(setf comp-list (cons frame comp-list))
(setf array-name (car array-key))
(setf array-key (cdr array-key))
(setf array (car array-list))
(setf array-list (cdr array-list))
(format datafile 1NTEGER*2 °A ' frame)
(format datafile " °% IN T E G E R S °A ' array)
(setf key-list (cons array-name key-list))
(setf key-list (cons frame key-list))
(make-instance array-name is frame)
(setf slot-list (instance-all-slols array-name))
(setf slots (instance-all-slots array-name))
(setf dimen (length slot-list))
(dotimes (I limit)

(cond ((neq slot-list '0)
(setf (slot-value array-name (car slot-list)) (car array-list))
(setf slot-list (cdr slot-list)))

(T nil))
(setf array-list (cdr array-list)))

(setf label (+ label 10))
(setf return-label (- label 1))
(format flr2file
(format flr2file
(format ftr2file
(format flr2file
(format flr2file
(format flr2file
(format flr2fi!e

°% C ')
'°% C Asks the user to enter the °A overlay value ' frame)
'°% C which is associated with the input °A value.' comp-var)
'°%
'°%

°A W R1TE(*,°A)' return-label labfel)
“A FORMAT(' ENTER THE ASSOCIATED °A VALUE

+ ' CHOICES °S ' slots)
= = >')')% +

(setf label (+ label 10))
(setf slot-list (instance-all-slots array-name))

°%
" ° %

(format ftr2file
(format ftr2file
(format ftr2file
(format ftr2file " °%
(setf slot-list (cdr slot-list))
(dotimes (I (- (length slots) 1))

(format ftr2file " °%
(format ftr2file " °%

R EA D (V A) CHOICE' label)
FORMAT(AS)' label)
IF (CHOICE .EQ. °A') TH EN ' (car slot-list))

°A(CA,°A) = 1' comp-array comp-var (length comp-list))

ELSEIF (CHOICE
°A(°A,°A) = °A '

EQ. '°A') T H E N ' (car slot-list))

' label frame)

56

comp-array comp-var (length comp-list) (+ 12))
(setf slot-list (cdr slot-list)))

(format ftr2ftle " °% ELSE1F (CHOICE .EQ.
(format ftr2file " °%
(format ftr2file " '%
(format ftr2file "°°/o
(format ftr2file " °%

') TH EN ')
°A(°A,°A) = 0" comp-array comp-var (length comp-list))

ELSE')
GOTO °A ' return-label)

ENDIF'))

; Guilds the fortran code which creates the definition file entries
; for each factor.
(defun factor (frame)

(setf factor-list (cons frame factor-list))
(cond ((member frame key-list)

(setf temp-list (member frame key-list))
(setf array-name (nth 1 temp-list))
(setf slots (instance-all-slots array-name))
(setf dimen (length slots)))

O’
(self array-name (car array-key))
(setf array-key (cdr array-key))
(setf array (car array-list))
(setf array-list (cdr array-list))
(format datafile " °% INTEGER*2 °A ' frame)
(format datafile " °% IN TEGER*2 CA ' array)
(setf key-list (cons array-name key-list))
(setf key-list (cons frame key-list))
(make-instance array-name is frame)
(setf slot-list (instance-all-slots array-name))
(setf slots (instance-all-slots array-name))
(setf dimen (length slot-list))
(dotimes (I limit)

(cond ((neq slot-list '())
(setf (slot-value array-name (car slot-list)) (car array-list))
(setf slot-list (cdr slot-list)))
<T nil))

(setf array-list (cdr array-list)))))
(setf label (+ label 10))

•%C")(format ftr3file
(format ftr3file
(format ftr3file
(format ftr3file
(format ftr3file
label)

(format f\r3file
(format ftr3file
(format ftr3file
(format ftr3file
(setf label (+ label 10))
(format ftr3file " °%
(format flr3file " °% “A
(dotimes (I (- dimen 1))

(format ftr3file '13,IX ,'))
(format ftr3file "13)'))

%C Asks the user to set the integer values associated')
%C with the given “A choices.' frame)
% W RITE(V A)' label)
% °A FORMATC ENTER TH E INTEGER VALUES WHICH REPRESENT',

+
+
+
+

' THE °A CHOICES ',/,' frame)
' “S ' , / , ' slots)
’ (USE FORMAT = ==== > X X X XX X X X X)',/,')
' = = > ')')

R E A D (V A) (°A(I),I= 1,°A)' label array-name dimen)
FO R M A Tf label)

; Guilds the fortran code which asks the user if they want to use
; a composite factor.
(defun build-def-code ()

(setf label (+ label 10))
(format ftrlfile " °% C ')
(format ftrlfile " °% C Asks the user if they have a °A file.' comp-var)
(format ftrlfile " °% W RITE(V A)' label)
(format ftrlfile " “% °A FORMAT(' DO YOU HAVE A °A FILE (Y|N) = = > ') ' label comp-var)
(setf label (+ label 10))
(format ftrlfile " °% R EA D (V A) ANS' label)

57

(format ftrlfile " °% °A FO RM A T(Al)' label)
(format ftrlfile " °% COMP = .FALSE.')
(format ftrlfile "°% C ")
(format ftrlfile " °% C If they do have a °A fik then its definition file ' comp-var)
(format ftrlfile " °% C is accessed.')
(format ftrlfile " “% IF(ANS .EQ. 'Y) THEN')
(build -comp -def-co de)
(build-noncomp-def-code))

; Builds the fortran code which reads the composite definition file
; if it already exists and builds it if it doesn't.
(defun build-comp-def-code 0

(make-instance 'dummy is comp-var)
(setf dimen (length (instance-all-slots 'dummy)))
(format datafile " °% INTEGER*2 °A(°A,°A)'
comp-array dimen (length comp-list))

(format datafile CH ARACTER’ S CHOICE')
(format ftrlfile " °°o COMP = .TRUE.')
(format ftrlfile "°% C ")
(format ftrlfile «C initializes the °A overlay arrays.' comp-var)
(setf temp-list comp-list)
(dotimes (1 (length comp-list))

(setf c-factor (car temp-list))
(setf temp-list (cdr temp-list))
(setf array (nth 1 (member c-factor key-list)))
(setf elements (length (instance-all-slots array)))
(setf label (+ label 10))
(format ftrlfile " °% C ')

DO °A I = 1,°A" label elements)
°A(I) = V array)

CONTINUE' label))

(format ftrlfile
(format ftrlfile
(format ftrlfile

(setf label (+ label 10))
(format ftrlfile
(format ftrlfile
(format ftrlfile
(format ftrlfile
(format ftrlfile
(format ftrlfile
(format ftrlfile
(setf label (+ label 10))
(format ftrlfile " °%
(format ftrlfile " °% “A
(setf label (+ label 10))
(format ftrlfile " °%
(format ftrlfile " °% "A FORMATE DOES THE DEFINITION FILE A LREA D Y EXIST (Y|N) = = > ')
label)

(setf label (+ label 10))
(format ftrlfile " °%
(format ftrlfile " 0%
(format ftrlfile
(format ftrlfile
(format ftrlfile
(format ftrlfile
(setf err-label (+ err-label 5))
(setf open-err err-label)
(format ftrlfile " °% O PEN (U N IT= °A,F1LE = FNAM E,ERR = °A,IOSTAT = lOE.STATUS = O LD ',
def-unit open-err)

(format ftrlfile " °%
(format ftrSfile " “%
(format ftr5file " °%
(format ftr5file " °%
(format ftr5file
(setf label (+ label 10))
(setf err-label (+ err-label 5))
(format ftrlfile " °% REA D (°A ,°A ,ERR = °A,IO STAT= IOE) ((°A(I,J),I = 1,°A),J = 1,°A)'

-,-oC')
°% C Asks the user to enter the °A definition file name' comp-var)
°% C and whether or not the file already exists.')
°% W R IT E (V A)' label)
°% °A FORMATE ENTER THE COMPLETE PATH NAME O F',' label)

+ ' THE °A DEFINITION FILE ',/,' comp-var)
% + ' = = > ')')

R E A D (V A) FN A M E' label)
FORMAT(A30)' label)

W RITE(V A) ' label)
FORMATE DOES THE DEFINITION FILE A LREA D Y EXIST (Y|N) = =

READ (*,°A) ANS ' label)
°A FORM AT(AI)'label)

"°% C ')
" °% C if the definition file already exists then it is')
" °% C opened and read.')

IF(ANS .EQ. 'Y') THEN ')

+ ACCESS = SEQUENTIAL'.FORM = FO RM ATTED ')')
°A W RITE(*,°A) IOE' open-err (+ open-err 2))
°A FORMAT(' ERROR OPENING °A ',/, ' (+ open-err 2) comp-var)

+ ' DEFINITION FILE, ERROR = \ I 4) ')
GOTO 1000 ')

58

def-unit label err-label comp-array dimen (length comp-list))
(format ftrlfile " °% °A FORMAT(“A (ll))' label (* dimen (length comp-list)))

A W RITE(VA) IOE' err-label (+ err-label 2))
A FORMATE ERROR READING °A ', / , ' (+ err-label 2) comp-var)

(format ftrSfile
(format ftrSfile
(format ftr5file
(format ftr5file
(format ftrlfile

°%

»C')

DEFINITION FILE, ERROR = .14) ')
GOTO 1000 ')

')(format flrlfile " °% C Since the definition file does not already exist
(format ftrlfile " °% C it is created and saved.')

ELSE')
OPEN(UNIT = “A,FILE = FNAM E.ERR =

(format flrlfile
(format ftrlfile " °%
def-unit open-err)

(format ftrlfile " °%
(setf label (+ label 10))

A.IOSTAT = 10E.STA LLS = N L\V'

ACCESS = SEQUENTI AL'.FORM = FORM ATTED')')

°% C ')
°% C Initializes the composite array.')
°°o DO “A J = 1 ,°A' label (length comp-list))
°“o DO “A I = 1,DA ' (- label 1) dimen)
“% °A(I,J) = 0' comp-array)

CONTINUE' (- label 1))
CONTINUE' label)

°A
°A

(format flrlfile
(format ftrlfile
(format flrlfile
(format flrlfile
(format flrlfile
(format ftrlfile
(format flrlfile
(setf label (+ label 10))
(format flrlfile " °% C ')
(format flrlfile " °% C Builds the composite definition file.')
(format ftrlfile DO °A I = 1,°A' label dimen)
(format ftr2file “A CONTINUE' label)
(setf label (+ label 10))
(format ftrlfile "°%C")

Asks the user to input a valid =A value.' comp-var)
W RITE(V A)' label)

\ FORMATE ENTER TH E INTEGER “A VALUE - label comp-var)
ENTER 999 TO END - (FORMAT = = > XXX)',/,')
= = > T)

“oC

+
+

R EA D (V A) "A ' label comp-var)
FORMAT(13)' label)

(formal ftrlfile
(format ftrlfile
(format ftrlfile
(format ftrlfile
(format flrlfile
(setflabel(+ label 10))
(format ftrlfile " °%
(format ftrlfile " O0o °A
(setf label (+ label 10))
(format ftrlfile
(format flr2file " °% °A
(setf label (+ label 10))
(setf err-label (+ err-label 5))
(format flr2file " °% C ')
(format ftr2file " °% C Saves the definition file.')
(format ftr2fi!e " °% WRITE(0A,°A.ERR = °A,IOSTAT = IOE) (CA(LJ).l = 1,°A).J= 1,°A)'
def-unit label err-label comp-array dimen (length comp-list))

IF (“A .EQ. 999) GOTO
CONTINUE" label)

'A ' comp-var label)

(format ftr2file
(format ftr5file
(format ftr5file
(format ftrSfile
(format ftrSfile
(format ftr2file
(format flr2file
(format ftr2file

70
' c 0/ /O
'°%

°A FORM AT(°A(Il))' label (* dimen (length comp-list)))
“A W RITE(V A) IOE' err-label (+ err-label 2))
°A FORMATE ERROR WRITING °A ' (+ err-label 2) comp-var)

+ ' DEFINITION FILE, ERROR = ,14)')
GOTO 1000 ")

ENDFILE(°A) ' def-unit)
EN D IF')
C L O SE fA)' def-unit))

; Builds the fortran code which reads the non-composite definition file
; if it already exists, and builds it if it doesn't.
(defun build-noncomp-def-code ()

(format flr2file " °% C ')
(format ftr2file " °% C Since a composite file is not being used the user is asked')
(format ftr2file " ° °o C if they have the necessary non-composite files.')
(format flr2file " °% ELSE ')
(setf label (+ label 10))
(format ftr2file " °% W R IT E (\°A)' label)
(format flr2file " °% °A FORMATE DO YOU HAVE °S FILES ',' label factor-list)
(format flr2file " °% + ' (Y|N) = = > ')')

59

(setf label (+ label 10))
(format flr2file
(format ftr2fi)e
(format ftr2file
(format ftr2file
(format ftr2file
(format ftr2file
(setflabel (+ label 10))
(format ftr2file
(format ftr2file °A
label)

(format ftr2file " °% +
(setflabel (+ label 10))
(format ftr2file " °%
(format ftr2file " °% °A
(setflabel (+ label 10))
(formal ftr2lile " °%
(format fir2file " °% °A
label)

(setf label (+ label 10))
(format ftr2file
(format ftr2filc
(format ftr2file
(format ftr2file
(format ftr2file
(sctf err-label (+ err-label 5))
(sctf open-err crr-labcl)

READ (V A) ANS' label)
FORM AT(Al)' label)

%
"°% °A
"°%C")
"°% C Since there are non-composite files the definition file')
" °% C name is asked for and whether or not the file already exists.')

IF(ANS .EQ. Y ')TH EN ')

W R IT E (V A)' label)
FORMATE ENTER COMPLETE PATH NAME OE THE DEFINITION H I E

= = > ')')

READ (V A) FNAM E' label)
FORMAT(A30)' label)

W RITE(*,°A) ' label)
FORMATE DOES THE DEFINITION FILE A LREA D Y EXIST (Y|N) = = •> '

R EA D (V A) ANS ' label)
°% °A FORM AT(Al)'label)
°% C')
°% C The definition file is opened and read.")

IF(ANS .EQ. 'Y') THEN ')

(format ftr2file
def-unit open-err)

OPEN(UNTT = °A,FILE = F N A M E ,E R R =cA,IOSTAT = IOE.STATUS = 'OLD'

+ ACCESS = SEQUENTIAL',FORM = FORMATTED')")
°A W RITE(*,°A) IOE' open-err (+ open-err 2))
°A FORMATE ERROR OPENING °A " (+ open-err 2) factor-list)

+ ' DEFINITION FILE, ERROR = ,14) ')
GOTO 1000 ')

(format ftr2file
(format ftrSfile
(format ftr5file
(format ftr5file
(format ftr5file
(setf temp-list factor-list)
(setf err-label (+ err-label 5))
(dotimes (I (length temp-list))

(setf factor (car temp-list))
(setf temp-list (cdr temp-list))
(setf array (nth 1 (member factor key-list)))
(setf elements (length (instance-all-slots array)))
(setflabel (+ label 10))
(format ftr2file READ(°A,°A,ERR = °A ,IO STAT= IOF.)
(format ftr2file "(°A(I),I = 1,°A)' array elements)
(format ftr3file W RITE(°A,°A,ERR =
(format ftr3file "(°A(1),I = 1,°A)' array elements)
(format ftr2file " °% °A FORMAT(' label)
(dotimes (J (- elements 1))

(format ftr2file '13,'))
(format ftr2file "13)'))

(format ftr5file " °% °A W RITE(V A) IOE' err-label (+ err-label 2))
(format ftr5file °A FORMATE ERROR READING °A ' , , ' (+ err-label 2) factor-list)
(format ftrSfile " O0/0 + ' DEFINITION FILE, ERROR = ',14) ')
(format ftr5file " °% GOTO 1000 ')
(setf err-label (+ err-label 5))

def-unit label err-label)

A.IOSTA I = IOE) ' def-unit label (+ err-label 5))

°A W RITE(V A) IOE' err-label (+ err-label 2))
D% °A FORMAT(' ERROR WRITING “A (+ err-label 2) factor-list)
°% + ' DEFINITION FILE, ERROR = ',14) ')
°% GOTO 1000 ')
°% C ')

(format ftrSfile
(format ftrSfile
(format ftrSfile
(format ftr5file
(format ftr2file
(format ftr2file " °% C The definition file is created and saved.')
(format ftr2file
(format ftr2file “%

ELSE ')
OPEN(UNIT = “A.FILE = FNAM E,ERR = A ,IO STA T= IO E,STA TU S= NEW

def-unit open-err)
(format ftr2fi!e "°°/l ACCESS = SEQUENTIAL'.FORM = 'FO RM ATTED') ') -

60

(format flr3file " °%
(format ftr3file " °%
(format flr3file " °%

E N D F IL E fA)' def-unit)
EN D IF')
CLOSE(°A)" def-unit))

; Starts the fortran code which reads in the input.
(defun build-input-code ()

(format flr4file ” ”% C')
(format ftr4file " °% C Reads the input from the °A file and converts' comp-var)
(format flr4file " " 0oC it into seperate overlay values.')
(format ftr4file IF (COMP) TH EN')
(buiid-comp-input-codc)
(format ftr4file "°% C ")
(format ftr4file " °% C Reads the input from the non-composite files.')
(format ftr4file " °% ELSE')
(build-noncomp-input-code)
(setf result-unit logic-unit)
(setf logic-unit 7))

; Builds the fortran code which reads in the composite input and
; converts it into seperate overlay values.
(defun build-comp-input-code ()

(setf comp-unit 3)
(setflabel (+ label 10))
(setf err-label (+ err-label 5))
(format ftr4file " ”% READ(°A,°A,REC = 1,ERR = °A .IO STAT= IOE) °A '
comp-unit label err-label input-var)

(format ftr4file " =0b °A FORM AT(Al) ' label)
(format ftrSfile " °% °A W RITE(V A) IOE' err-label (+ err-label 2))
(format ftrSfile “A FORMAT(' ERROR READING “A FILE INPUT. ERROR = ,14) '
(+ err-label 2) comp-var)

(format ftrSfile " °% GOTO 1000')
(format flr4file " ° °b DA = ICHAR(°A)' comp-var input-var)
(setf subscript (- (length comp-list) 1))
(dotimes (1 (length comp-list))

(setf factor (nth subscript comp-list))
(format flr4file " “°b °A = °A(°A,°A)'factor comp-array comp-var (+ 1 1))
(setf subscript (- subscript 1))))

; Builds the fortran which reads in the input from the non-composite files.
(defun build-noncomp-input-code ()

(setflabel (+ label 10))
(setf err-label (+ err-label 5))
(self temp-list factor-list)
(dotimes (I (length factor-list))

(setf factor (car temp-list))
(setf temp-list (cdr temp-list))
(format ftr4file READ (°A ,°A ,REC= I,E R R = °A,IOSTAT = IOE) °A '
logic-unit label err-label input-var)

(self logic-unit (+ logic-unit 1))
(format ftr4file

(format ftr4file " ° 0/o
(format ftr4file " °%
(format ftr5file " 0|1b
(format ftr5file " °%
(+ err-label 2))

(format ftrSfile

°A = 1CHA R (°A)' factor input-var))
°A FO R M A T (A l)' label)

EN D IF')
°A WR1TE(*,°A) IOE' err-label (+ err-label 2))
°A FORMATC ERROR READING A NON-COMPOSITE FILE, ERROR =

GOTO 1000'))

.14)

; Builds the fortran code to handle the case of missing files.
(defun build-file-missing-code ()

(format ftr3file " °% C ')
(format ftr3file " °% C Since neither the composite file or all of the')

61

(format ftr3file " °% C non-composite files are available an error message')
(format ftr3file " °% C is output and processing is stopped.')
(format ftr3file " °% ELSE')
(setflabel (+ label 10))
(format ftr3file " °% W R ITE(\°A)' label)
(format flr3file " °% °A EORMAT(' CANNOT PRODUCE A °A FILE label result)
(format flr3file " °% + ' - CRITICAL DATA FILES ARE NOT A V A ILA B LE.)')
(formal ftr3file " °% GOTO 1000')
(format ftr3file " °% EN D IF')
(format flr3filc ENDIF'))

; Starts the fortran code which opens the GIS file(s) for input
; and creates the output file.
(defun build-read-input-code ()

(format flr3file " °% C ')
(format ftr3file " °% C Opens the input and output files.')
(format flr3fi)c " °% IF (COMP) TH EN ')
(build-read-comp-code)
(format flr3file " ° °o C ')
(format ftr3file " °% C Opens the input and output files.')
(format ftr3file ELSE ')
(build -read -noncomp-code))

Builds the fortran code which opens the composite input file and
creates the result output file.

(defun build-read-comp-code 0
(setflabel (+ label 10))

W R IT E (V A)" label)
FORMATE ENTER THE “A FILE NAME = = > ')' label comp-var)

REA D (V A) FNAME ' label)
FORMAT(A30)' label)

(format ftr3fi!e "o
(format ftr3file " ° °o °A
(setflabel (+ label 10))
(format ftr3file
(format flr3file " °% °A
(setf err-label (+ err-label 5))
(self open-err err-label)
(format 0r3file " °% OPEN(UNIT = “A.FILE = FNAM E,ERR = °A,10STAT = IOE,STATUS = OLD ,
comp-unit open-err)

(format ftr3file " °% + ACCESS = DIRECT',FORM = UNFORM ATTED'.RECL = 4)')
(format ftr5file "°®o °A VVRITE(*,°A) IOE ' open-err (+ open-err 2))
(formal ftrSfile " °% °A FORMATE ERROR OPENING °A FILE, ERROR = ,14) '
(+ open-err 2) comp-var)

(format ftrSfile GOTO 1000')
(setf err-label (+ err-label 5))
(setf head-err err-label)
(format ftr3file " °% C ')
(format ftr3file " °% C Reads the number of cols and rows of input that')
(format flr3file " °% C need to be processed.')
(format ftr3file " °% REA D (°A ,REC = 5,ERR = °A ,IO STAT= IOE) CO LS' comp-unit err-label)
(format ftr3file " °% RF,AD(°A,REC = 6,ERR = °A ,IO STAT= IOE) ROWS' comp-unit crr-labcl)
(format IlrSfilc " °% °A W RITE(*,°A) IOE ' crr-labcl (+ err-label 2))
(format ftr5filc " °% °A FORMATE ERROR READING °A FILE HEADER, ERROR = ,14) "
(+ err-label 2) comp-var)

(format ftr5file "°®»
(format ftr3file " °%
(format ftr3file
comp-unit open-err)

(format ftr3filc " °%
(setflabel (+ label 10))
(format Ar3file " °%
(format fir3file " *% “A
(setflabel (+ label 10))
(format ftr3file " °%
(format fir3file " °% °A
(setflabel (+ label 10))
(format fir3f»le " °%

GOTO 1000')
CLOSE(°A) ' comp-unit)
O PEN (UN IT= “A, FILE = FNAM E, E R R = °A ,10STA T= lOE.STATUS = OLD',

ACCESS = D1 RECT'.FORM = 'UNFORM ATTED',RIvCL = 128)')

W RITE(V A) " label)
FORMATE ENTER THE A FILE NAM E = = > ')' label result)

R EA D (V A) FNAM E2 ' label)
FORMAT(A30)' label)

W R ITE (*,°A)' label)

62

(format ftr3file " °
label result)

(setflabel (+ label 10))

A FORMATS DOES THE °A FILE ALREADY EXIST (Y|N) = = > ')'

°% R EA D (*,DA) ANS ' label)
°% °A FORMAT(Al)" label)
°% C')
°% C The °A file is opened.' result)
°% 1F(ANS .EQ. 'Y') THEN ')

(format ftr3file
(format ftr3file
(format flr3file
(format ftr3file
(format ftr3file
(setf err-label (+ err-label 5))
(setf open-err2 err-label)
(format ftr3file OPEN(UNIT = °A ,FILE = FNAM E2,ERR = °A ,IO STAT= 10E,STATUS = OLD','
result-unit open-err2)

(format ftr3file " °% + ACCESS = 'DIRECT'.FORM = UNFORM ATTED'.RECL = 128)')
(format flr5file " ° ° « °A W RITE(*,°A) IOE' open-err2 (+ open-err2 2))
(format ftr5file " °% °A FORMAT(' ERROR OPENING °A FILE. ERROR = ',14)'
(+ open-err2 2) result)

(format ftr5file
(format ftr3file "°%
(format flr3file
result-unit open-err2)

(format ftr3file " °%
(format ftr3file
(format ftr3file
(format ftr3file
(format ftr3file
(format flr3file

GOTO 1000')
ELSE')

OPEN(UNIT = “A.F1LE = FNAM E2.ERR = "A.IOSTAT = IOL.STA TUS =

+ ACCESS = 'DIRECT'.FORM = 'UNFORM ATTED'.RECL = 128)')
EN D IF')

NEW ','

70

'°% C ')
'°% C Reads the header information from the °A file' comp-var)
'°% C and writes it to the output file.')

R EA D fA .R EC = 1 ,ERR = "A.IOSTAT = IOE) H EADER'
(setf err-label (+ err-label 5))
(format ftr3file W RITE(°A,REC= l.ERR = °A ,JO STAT= IOE) HEADER
(format ftrSfile ""% °A W RITE(VA) IOE' err-label (+ err-label 2))
(format ftrSfile °A FORMAT(' ERROR WRITING °A FILE HEADER. ERROR =
(+ err-label 2) result)

GOTO 1000')
CLOSE(°A) ' comp-unit)
CLOSE(°A) ' result-unit)
O PEN(UNIT= °A,FILE = FNAM E,ERR = “A.IOSTAT = 10 E.STATUS

(format ftr5file " °%
(format ftr3file " °%
(format ftr3file " °%
(format ftr3file " °%
comp-unit open-err)

(format ftr3fiie
(format flr3file
result-unit open-err2)

(format ftr3file " °%
(format ftr3file " °% C ')
(format ftr3file " °% C Calulates the number of bytes of input data.')
(format ftr3file " °% NUMBER = lNT(COLS * ROWS) + 128'))

comp-unit head-err)

' result-unit err-label)

.14)'

O LD ','

■/O" “O' + ACCESS = 'DIRECT'.FORM = 'FORM ATTED'.RECL = 1)')
O PEN (U N IT=°A ,FILE = F N A M E 2,E R R =I,A .IO STAT=IO E.STATUS = 'O LD ','

+ ACCESS = DIRECT'.FORM = 'FORM ATTED'.RECL = 1)")

; Builds the fortran code which opens the non-composite input files and
; creates the result output file.
(defun build-read-noncomp-code 0

(setf temp-list factor-list)
(dotimes (I (- (length factor-list) 1))

(setf factor (car temp-list))
(setf temp-list (cdr temp-list))
(setflabel (+ label 10))
(format ftr3file W RITE(V A) ' label)
(format ftr3file " °% °A FORMAT(' ENTER THE “A FILE NAME = = > ') ' label factor)
(setflabel (+ label 10))
(format ftrSfile " °% R EA D (V A) FNAME ' label)
(format ftr3file " °% °A FORM AT(A30)'label)
(setf err-label (+ err-label 5))
(setf open-err err-label)
(format ftr3file " °% OPEN(UNIT = °A,FILE = FNAM E,ERR = °A ,IO STAT= IOE,STATUS = O LD '.'
logic-unit open-err)

(format ftr3file " °% + ACCESS = DIRECT'.FORM = FORM ATTED'.RECL = 1)')
(setf logic-unit (+ logic-unit 1))
(format flr5file °A W RITE(V A) IOE ' open-err (+ open-err 2))

63

(format ftr5file " °% °A FO R M A Tf ERROR OPENING °A FILE, ERROR = ,14) '
(+ open-err 2) factor)

(formal ftr5file GOTO 1000'))
(setf factor (car temp-list))
(setf temp-list (cdr temp-list))
(setflabel (+ label 10))
(format flr3file " °% W RITE(V A) ' label)
(format ftr3file " °% °A FORMAT*' ENTER THE °A FILE NAME = = > ')' label factor)
(setflabel (+ label 10))
(format ftr3file READ (*,°A) FNAME ' label)
(format llr3filc " "% “A FORM AT(A3 0) 'label)
(setf err-label (+ err-label 5))
(setf open-err err-label)
(formal ftr3file " °% OPEN(UNIT = °A,FILE = FN A M E,ERR = °A,IOSTAT = IOE,STATUS = OLD ,"
logic-unit open-err)

(format ftr3filc + ACCESS - 'DIRECT'.FORM « 'UNFORM ATI'E D '.RECI. = 4)')
(formal ftrSfile ""% "A \VRITE(*,"A) IOE ' open-err (+ open-err 2))
(format ftrSfile °A FORMAT* ERROR OPENING “A FILE, ERROR = ,14)'
(+ open-err 2) factor)

(format flr5file " °% GOTO 1000')
(setf eir-label (+ err-label 5))
(setf head-err err-label)
(format ftr3file " °% C ')
(format ftr3file " °% C Reads the number of cols and rows of input that')
(format ftrSfile " °% C need to be processed.')
(format ftr3filc READ (°A,REC = 5,ERR = “A.IOSTAT = IOE) CO LS' logic-unit err-label)
(format fir3file " °% R EA D (°A ,REC = 6 ,E R R = °A,IOSTAT = IOE) ROWS' logic-unit err-label)
(format ftrSfile °A W R1TE(*,°A) IOE ' err-label (+ err-label 2))
(format ftr5filc DA FORMAT(' ERROR READING °A FILE HEADER, ERROR = ,14)"
(+ err-label 2) factor)

GOTO 1000')
CLOSE(°A) ' logic-unit)
OPEN(UNIT = °A,FILE = FNAM E,ERR = °A ,IO STAT= lO E.STATLS = O L D ','

ACCESS = DIRECT'.FORM = L’N FORM ATTED'.RECL = 128)')

\VR1TE(',°A) ' label)
FORMAT(' ENTER THE

R EA D (V A) FNAMF.2
FORMAT(A30)" label)

A FILE NAME = = > ')' label result)

label)

(format ftr5file
(format flr3file " O,,o
(format (\r3filc " ””o
logic-unit open-err)

(format ftr3file " °%
(setflabel (+ label 10))
(format ftr3file " ° ° o
(format ftr3file " °"b °A
(setflabel (+ label 10))
(format ftr3file " °%
(format ftr3file "°®o °A
(setflabel (+ label 10))
(format ftr3file VVRITE(*,°A) ' label)
(format ftr3file " °% °A FORMAT(' DOES THE °A FILE A LREAD Y EXIST (Y|N) = = >
label result)

(setflabel (+ label 10))
(format ftr3file " °% READ (*,°A) ANS ' label)
(format ftr3file " O0b "A FO RM A T(A l)' label)
(format ftr3file " °% C ')
(format flr3file " °% C The °A file is opened.' result)
(format ftr3file " D% IF(ANS .EQ. Y) THEN ')
(setf err-label (+ err-label 5))
(setf open-err2 err-label)
(format ftr3file OPEN(UNIT = °A,F1LE = FNAM E2.ERR = °A,IOSTAT = IOE,STATUS = 'OLD',
result-unit open -err2)

(format ftr3file + ACCESS = DIRECT'.FORM = 'UNFORM ATTED'.RECL = 128)')
(format ftr5file " °% °A W R1TE(*,°A) IOE ' open-err2 (+ open-crr2 2))
(format ArSfile " °% °A FORMAT(' ERRO R OPENING °A FILE, ERROR = ,14)'
(+ open-err2 2) result)

(format ftrSfile " °% GOTO 1000')
(format flr3file " °% E L SE ')
(format flr3file OPEN(UNIT = °A ,FILE = FN A M E2,ERR = °A,IOSTAT = 10E,STA TU S= 'NEW'
result-unit open-err2)

(format fir3file " °% + ACCESS = DIRECT'.FORM = 'UNFO RM ATTED'.RECL = 128)')
(format flr3file " °% EN D IF')

64

(format ftr3file " °% C ')
(format flr3file " °% C Reads the header information from the °A file' factor)
(format flr3file " °% C and writes it to the output file.')
(format fir3file " °% READ(°A,REC = 1,ERR= °A ,lO STAT= IOE) H EADER' logic-unit head-err)
(setf err-label (+ err-label 5))
(format ftr3file " °% W RITE(°A,REC= 1,ERR = °A,IOSTAT = IOE) H EA D ER' result-unit err label)
(format ftrSfile " °% °A W RITER,°A) IOE' err-label (+ err-label 2))
(format flr5file " °% °A FO RM A Tf ERROR WRITING “A FILE HEADER, ERROR = ,14)'
(+ err-label 2) result)

GOTO 1000')
C LO SE(°A)' logic-unit)
C LO SE(°A)' result-unit)
OPEN(UNIT = °A,FILE = FNAM E,ERR = °A,IOSTAT = IOE.STATUS = O LD ','

(format ftr5file
(format ftr3file
(format ftr3file " °%
(format ftr3file " °%
logic-unit open-err)

(format ftr3file " “%
(format ftr3file
result-unit open-crr2)

(format ftr3fite
(format ftr3file " “% C')
(format ftr3file " °% C Calulates the number of bytes of input data.')
(format ftr3file " °% NUMBER = INT(COLS * ROWS) + 128')
(format ftr3file " °% ENDIF'))

+ ACCESS = 'DIRECT'.FORM = 'FORM ATTED'.RECL = 1)')
OPEN(UNIT = °A,FILE = FNAME2.ERR = °A,IOSTA I = IOE.STATUS = OLD',

+ ACCESS = DIRECT'.FORM = FORM ATI ED ,R E C L =]) ')

; The following series of functions are used to convert the rule base
; into valid fortran if.elseif logic.
(defun convert-rules ()

(setf control 0)
(self rules (all-rules))
(find-rules rules))

(defun find-rules (rule-list)
(cond ((neq rule-list'())

(setf rule (car rule-list))
(sctf cons (rule-consequent rule))
(cond ((and(member 'with cons) (member result cons))

(setf result-slot (nth 1 (member result cons)))
(cond ((member result-slot output-values)

(cond ((neq default result-slot)
(if (eq control 0)

(format ftr4file " °% IF ')
(format ftr4file " °% ELSE1F'))

(self control 1)
(setf ante (rule-antecedent rule))
(convert-ante ante 'AND)
(convert-cons))

(T (setf default-rule rule))))
<T nil)))

<T nil))
(find-rules (cdr rule-list)))

(T (format ftr4file " °% ELSE ')
(setf control 0)
(setf result-slot default)
(convert-cons)
(format ftr4file " °% ENDIF'))))

(defun convert-ante (ante-list logic-var)
(cond ((OR(eq 'AND (car ante-list))(eq 'OR (car ante-list)))

(setf logic-var (car ante-list))
(format ftr4file " (')
(dotimes (I (- ficngth ante-list) 1))

(setf temp (nth (+ 1 1) ante-list))
(convert-ante temp logic-var)
fif (neq (+ I 1) (- (length ante-list) 1))

(format ftr4file "°*/o + .°A .' logic-var)

65

(format ftr4file ") '))))
((eq 'INSTANCE (car ante-list))
(sctf a-list (member 'with ante-list))
(convert-variables a-list logic-var))

<T nil)))

(defun convert-variables (v-list logic-var)
(cond ((neq v-list '0)

(setf frame-key (nth 1 v-list))
(setf slot-key (nth 2 v-list))
(setf frame (nth 1 (member frame-key key-list)))
(setf slot (slot-value frame slot-key))
(format ftr4file " (“A .EQ. “A)" frame-key slot)
(setf v-list (member 'with (cdr v-list)))
(if (neq v-list '())

(format ftr4file + .°A. ' logic-var))
(convert-variables v-list logic-var))

(T nil)))

(defun convert-cons ()
(if (neq control 0)

(format ftr4file " THEN'))
(setf slot (slot-value final-legend result-slot))
(format ftr4file °A = °A ' result slot))

; Builds the fortran code which writes the output value.
(defun finish-output-code ()

(format flr4file " “% "A = CHAR(°A)'input-var result)
(setflabel (+ label 10))
(setf err-label (+ err-label 5))
(format ftr4file W RITE(°A,°A ,REC= I,ERR = “A.IOSTAT = IOE) “A '
result-unit label err-label input-var)

(format ftr4file " °% °A FO RM AT(Al)'label)
(format ftrSfile " °% °A W RITE(VA) IOE " err-label (+ err-label 2))
(format ftrSfile " °% °A FORMAT(ERROR WRITING °A FILE, ERROR = ,14)'
(+ err-label 2) result)

(format ftrSfile " °% GOTO 1000')
(setflabel (+ label 10))
(format ftr3file " °% DO °A 1 — 129.NUMBER' label)
(format ftr4file " °% °A CONTINUE' label)
(format ftr4file " °% CLOSE(°A)' result-unit)
(setflabel (+ label 10))
(formal ftr4file W RITE(V A) ' label)
(format ftr4filc " °% °A FORMAT(' FINISHED CREATING RESU LT.')' label))

; Builds the fortran code for the development of a final-legend and
; trailer file.
(defun build-legend-code ()

(format datafile " °% C H A R A C T E R S LINE1')
(format datafile " °% C H A R A C T E R S LINE2')
(setf count 0)
(setf slot-list output-values)
(setf final-values (mapear ^'(lambda (x) (slot-value final-legend x)) slot-list))
(format ftr4file " °% C ')
(format ftr4file " °% C Opens and starts the Trailer file.')
(build-trailer)
(format ftr4file " °% C ')
(format ftr4file " °% C Puts the values in the trailer file.')
(format ftr4file " °% IF frY P E .EQ. 'GENERAL ') TH EN ')
(setf leg-cons (rule-consequent 'GENERAL-LEGEND))
(build-legend-list (cdr leg-cons))
(format ftr4file " °% ELSEIF (TYPE .EQ. 'LA N D FILL') TH EN ')
(setf leg-cons (rule-consequent 'LAND FILL-LEGEN D))
(setf count 0)
(build-legend-list (cdr leg-cons))

66

(format ftr4file " °% ELSE')
(format ftr4file " °% CLOSE(°A)' logic-unit)
(setflabel (+ label 10))
(format ftr4file " °% W RITE(V A) ' label)
(format ftr4file "A FORMAT(ERROR - MAP TYPE INCORRECT,
MUST BE GENE KAL| LAND FIL L ',',' label)

(format ftr4file " °% + ' TRA ILER FILE COULD NOT BE CREATED.')')
(format ftr4file " °% GOTO 1000')
(format ftr4file " °% ENDIF")
(setflabel (+ label 10))
(format ftr4file W RTTE(VA) ' label)
(format ftr4fiie " °% °A I ORMAT(' FINISHED CREATING THE LEGEND FILE.')' label)
(format flMfile " °% GOTO 1000'))

= > T

'O LD',

; Creates the code which opens the trailer file and writes the header
; information in it.
(defun build-trailer ()

(setf logic-unit (+ result-unit 1))
(setflabel (+ label 10))
(format ftr4file " °% W RITE(V A) ' label)
(format ftr4file " °% “A FORMAT(' ENTER COMPLETE PATH NAME Ol THE GIS TRAILER H IT
label)

(format ftr4file " °% + ' = = > ')')
(setflabel (+ label 10))
(format ftr4file " °% READ(*,°A) FNAM E' label)
(formal ftr4file " °% “A FORMAT(A30)' label)
(setflabel (+ label 10))
(format ftr4file W RITE(V A) ' label)
(format ftr4file " °% °A FOR.MAT(' DOES THE TRA ILER FILE ALREADY EXIST (Y|N)
label)

(setflabel (+ label 10))
(format ftr4file " °% R EA D (V A) ANS ' label)
(format ftr4file " °% “A FO RM A T(Al)' label)
(format ftr4file "°% C ")
(format ftr4file " °% C The trailer file is opened.')
(format ftr4file " °% IF(ANS .EQ. 'Y') THEN ')
(setf err-label (+ err-label 5))
(setf open-err err-label)
(format ftr4file O PEN (U N IT= “A,F1LE = FN A M E ,E R R = "A,IOSTAT= IOE,STATUS =
logic-unit open-err)

(format ftr4file " °%
(format ftrSfile
(format ftr5file " °%
(format ftrSfile " °%
(format ftr5file " °%
(format ftr4file
(format ftr4file "°°/b
logic-unit open-err)

(format ftr4file " ° ”o
(format ftr4file "°%
(setflabel (+ label 10))
(setf err-label (+ err-label 5))
(format ftr4file "°% C ")
(format ftr4file " °% C Blank out the file first.')
(format ftr4file ” °% DO °A I = 1,2048' label)
(format ftr4file " °% W RITE(°A ,°A ,REC= I,E R R = °A,IOST A T = IOE)'
logic-unit (+ label 5) err-label)

°A FORMAT (O')' (+ label 5))
°A W RITE(*,°A) IOE' err-label (+ crr-labcl 2))
°A FORMATC ERROR WRITING GIS TRA ILER F IL E ',/ , ' (+ crr-labcl 2))

+ ' ERROR = ,14) ')
GOTO 1000 ')

°A CO NTINUE' label)
CLOSE(°A)' logic-unit)
O PEN (U N IT= °A ,F1LE= FN A M E,ERR = "A.IOSTAT = 10E.S I AT US = O LD ','

+ ACCESS = DIRECT'.FORM = 'FO RM ATTED'.RECL = 1)')
°A W RITE(*,°A) IOE' open-err (+ open-err 2))
"A FORMAT(' ERROR OPENING GIS TRA ILER FILE',/, ' (+ open-err

+ ' ERROR = ',14)')
GOTO 1000 ')
ELSE ')

OPEN(UNlT = “A.FILE = FN AM E.ERR = "A.IOSTAT = IOE,STATUS

2))

= 'NE\V'

+ ACCESS = 'DIRECT'.FORM >
EN D IF')

'FO RM ATTED'.RECL = I)')

/iron,','n(format ftr4file
(format ftrSfile
(format ftrSfile
(format ftr5file
(format ftr5file
(format ftr4file ""%
(format ftr4file
(format ftr4file

70

°%
°%

~7o

67

logic-unit open-err)
(format ftr4file " “%
(format ftr4file " “%
(format (V4file " “%
logic-unit err-label)

(format flr4file "°%
(format ftr4file " “%
logic-unit err-label)

(format ftr4file
(format flr4file " “%
logic-unit open-err)

(formal ftr4file

+ ACCESS = DIRECT .FORM = UNFORM ATTED'.RECL = 72)')
L1NE1 = T R A IL E R ")
WRITE(“A,REC = 1,ERR = °A,IOSTAT= IOE) LINED

LINE1 = GEOLOGICAL ENGINEERING MAP00")
W RITE(°A,REC= 2.ERR = “A.IOSTAT = IOE) LINED

CLOSE(°A)' logic-unit)
0PEN (U N 1T= °A ,FILE = FNAME.ERR = “A.IOSTAT = IOE.STATUS = 'O LD ','

+ ACCESS = 'DIRECT',f ORM = 'UNFORM ATTED'.RECL = 32)'))

; Associates the numerical result values with the correct text.
(dcfun build-legend-list (cons)

(setf rec-num 64)
(cond ((eq (nth 1 (car cons)) 'FINAL-LEGEND)

(dotimes (I 256)
(cond ((member I final-values)

(setf indx (- (length final-values) (length (member I final-values))))
(setf final-text (nth 1 (member (nth indx slot-list) (.car cons))))
(setf rec-num (+ rec-num 1))
(format flr4file " “% LINE2 = '“A °“" final-text)
(format ftr4fiie W R!TE(“A ,REC = “A,ERR = “A.IOSTAT = IOE) 1.INE2'
logic-unit rec-num err-label))

(T nil)))
(dotimes (1 (- 4 (mod (length output-values) 4)))

(setf rec-num (+ rec-num 1))
(format ftr4file " “% W RITE(°A,REC= “A ,E R R = “A.IOSTAT = IOE)'
logic-unit rec-num err-label)

(format flr4file " “% +
/OaOOOOOOOQOODOOOOOODOOOCIOOOOOOOOQOOCiaDOOOOOCOOaDDOOOOOCDODOOOODO'»j|j

(T (build-legend-list (cdr cons)))))

; Ends the fortran code.
(defun build-end-code ()

(format ftr5file " °% 1000 CONTINUE')
(format ftr5file " “% EN D ')
(format ftr5file " “% ')
(close datafile)
(close flrlfile)
(close ftr2file)
(close ftr3file)
(close ftr4file)
(close ftrSfile))

APPENDIX C

FORTRAN CODE GENERATED BY THE CONVERSION EXPERT SYSTEM

no
n

no
n

^
nn

no

n

c
PROGRAM FTRGIS

CH ARA CTER*! ANS
R EAL*4 COLS
LOGICAL*4 COMP
CH ARACTER* 30 FNAME
CH ARACTER* 30 FNAME2
CH ARACTER* 128 HEADER
INTEGER*4 I
INTEGER*4 IOE
INTEGER*4 J
INTEGER*4 NUMBER
R EAL*4 ROWS
CH ARACTER'S TYPE
CHARACTER*1 PIXEL
l\T E G E R *2 GEM
INTEGER*4 SOILS
I\T E G E R *2 KARST
INTEGER*2 ARRAY1(12)
INTEGER*2 SLOPE
INTEGER*2 ARRAY2(12)
!N TEG ER*2 FLOODING
INTEGER*2 ARRAY3(12)
INTEGER *2 PLASTICITY
1NTEGER*2 ARRAY4(12)
INTEGER *2 SLS(I01,4)
CH ARA CTER'S CHOICE
CH ARACTER*72 LINE1
CH ARACTER* 32 LINE2

Asks the user which type of map they wish to produce.

WRITE(MOO)
100 FORMAT(' ENTER THE TYPE OF MAP TO BE PRODUCED'

+ ' (GENERALILAND FILL) = = > ')
REA D (*,110) TYPE

110 FORMAT(A8)

Asks the user if they have a SOILS file.
WRITE(*,280)

>80 FORMAT(' DO YOU HAVE A SOILS FILE (Y|N) = = > ')
REA D (*,290) ANS

>90 FORMAT(AI)
COMP = .FALSE.

If they do have a SOILS file then its definition file
is accessed.

IF(ANS .EQ. 'Y') THEN
COMP = .TRUE.

Initializes the SOILS overlay arrays.

DO 300 I = 1,6
ARRAY4(I) = I

300 CONTINUE
C

DO 310 I = 1,5
ARRAY3(1) = I

310 CONTINUE
C

DO 320 I = 1,4
ARRAY2(I) = I

uu
""uu uu

320 CONTINUE
C

DO 330 I = 1,3
A RR A Y l(I) = I

330 CONTINUE
C
C Asks the user to enter the SOILS definition file name
C and whether or not the file already exists.

W RITE(*,340) *
340 FORMAT'(' ENTER THE COMPLETE PATH NAME OF',

+ THE SOILS DEFINITION FILE
+ ' = = > ')

READ(*,350) FNAME
350 FORMAT(A30)

WRITE(*,360)
360 FORMATE DOES THE DEFINITION FILE ALREADY EXIST (Y|N) = = >

READ (*.370) ANS
370 FORM AT(Al)

C
C If the definition file already exists then it is
C opened and read.

IF(ANS .EQ. 'Y') THEN
OPEN(UNIT = 4,FILE = FNAM E.ERR = 860,IOSTAT= IOE,STATUS= 'OLD',

+ ACCESS = SEQUENTIAL',FORM = FORM ATTED)
READ(4,380,ERR= 865,10STAT = IOE) ((SLS(I,J),1 = 1,101),J = 1,4)

380 FORMAT(404(I1))
C
C Since the definition file does not already exist
C it is created and saved.

ELSE
OPEN(UNIT = 4,F1LE= FNAM E,ERR = 860.IOSTAT = 10 E,STATUS = NEW',

+ ACCESS = 'SEQUENTIAL',FORM = FORM ATTED)

Initializes the composite array.
DO 390 J = 1,4

DO 389 I = 1,101
SL S(U) = 0

189 CONTINUE
190 CONTINUE

Builds the composite definition file.
DO 400 I = 1,101

Asks the user to input a valid SOILS value.
W RITE(*,410)

410 FORMATE ENTER THE INTEGER SOILS VALUE - ',
+ ' ENTER 999 TO END - (FORMAT = = > X X X)',/,
+ ' = = >')

READ(*,420) SOILS
420 FORMAT(I3)

IF (SOILS .EQ. 999) GOTO 430
C
C Asks the user to enter the KARST overlay value
C which is associated with the input SOILS value.

119 W RITE(*,I20)
120 FORMATE ENTER THE ASSOCIATED KARST VALUE ',/,

+ ' CHOICES: (YES NO W A T ER)',/,
+ ' = = >')

READ (M 30) CHOICE
130 FORMAT(A5)

IF (CHOICE .EQ. YES') THEN
SLS(SO !LS,l) = 1

ELSEIF (CHOICE .EQ. 'NO') THEN
SLS(SO ILS.l) = 2

ELSEIF (CHOICE .EQ. W ATER) THEN

SLS(SO ILS,l) = 3
ELSEIF (CHOICE .EQ. ' ') THEN

SLS(SO ILS.l) = 0
ELSE

GOTO 119
ENDIF

C
C Asks the user to enter the SLOPE overlay value
C which is associated with the input SOILS value.

159 WR1TE(M60)
160 FORMATC ENTER THE ASSOCIATED SLOPE VALLE ',/,

+ ' CHOICES: (< 5% 5-30% > 30% WATER)
+ ' = = >')

READ(*,170) CHOICE
170 FORMAT(A5)

IF (CHOICE .EQ. ' < 5%') THEN
SLS(S01LS.2) = 1

ELSEIF (CHOICE .EQ. '5-30%') THEN
SLS(SO!LS,2) = 2

ELSEIF (CHOICE EQ. '> 3 0 % ') THEN
SLS(SOtLS,2) = 3

ELSEIF (CHOICE .EQ. WATER) THEN
SLS(SOii.S,2) = 4

ELSEIF (CHOICE .EQ. ' ') THEN
SLS(S01LS,2) = 0

ELSE
GOTO 159

ENDIF
C
C Asks the user to enter the FLOODING overlay value
C which is associated with the input SOILS value.

199 W RITER,200)
200 FORMATC ENTER THE ASSOCIATED FLOODING VALUE ',

+ ' CHOICES: (NONE FREQ RARE OCC WATER) ',/,
+ ' = = > ')

READC.210) CHOICE
210 FORMAT(A5)

IF (CHOICE .EQ. 'NONE') THEN
SLS(SOILS,3) = 1

ELSEIF (CHOICE .EQ. FREQ) THEN
SLS(SOILS,3) = 2

ELSEIF (CHOICE .EQ. 'RARE') THEN
SLS(SOILS,3) = 3

ELSEIF (CHOICE .EQ. OCC) THEN
SLS(S01LS,3) = 4

ELSEIF (CHOICE .EQ. WATER') THEN
SLS(SOILS,3) = 5

ELSEIF (CHOICE .EQ. ' ') THEN
SLS(SOILS,3) = 0

ELSE
GOTO 199

ENDIF
C
C Asks the user to enter the PLASTICITY overlay value
C which is associated with the input SOILS value.

239 WRITE(*,240)
240 FORMATC ENTER THE ASSOCIATED PLASTICITY VALUE

+ ' CHOICES: (< 10 10-20 20-30 30-40 >40 WATER) V.
+ ' = = > ')

READC.250) CHOICE
250 FO RM A ! (A5)

IF (CHOICE .EQ. ' < 10') THEN
SLS(SOILS,4) = 1

ELSEIF (CHOICE .EQ. '10-20') THEN
SLS(SOILS,4) = 2

ELSEIF (CHOICE .EQ. '20-30') THEN
SLS(SOILS,4) = 3

ELSEIF (CHOICE .EQ. '30-40') THEN
SLS(SOILS,4) = 4

ELSEIF (CHOICE .EQ. >40) THEN
SLS(SOILS,4) = 5

ELSEIF (CHOICE .EQ. WATER) THEN
SLS(SOILS,4) = 6

ELSEIF (CHOICE .EQ. ' ') THEN
SLS(SOILS,4) = 0

ELSE
GOTO 239

ENDIF
400 CONTINUE
430 CONTINUE

C
C Saves the definition file.

WRITE(4,440,ERR = 870,IOSTAT = IOE) ((SLS(I.J).I = 1,I01),J = 1,4)
440 FORMAT(404(II))

ENDFILE(4)
ENDIF
CLOSE(4)

C
C Since a composite file is not being used the user is asked
C if they have the necessary non-composite files.

ELSE
W RITER,450)

450 FORMATC DO YOU HAVE (PLASTICITY FLOODING SLOPE KARST) FILES
+ ' (Y|N) = = > ')

READ(*,460) ANS
460 FORM AT(Al)

C
C Since there are non-composite files the definition file
C name is asked for and whether or not the file already exists.

IF(ANS .EQ. 'Y') THEN
WRITE(*,470)

470 FORMATC ENTER COMPLETE PATH NAME OF THE DEFINITION FILE
+ ' = = > ')

READ(*,480) FNAME
480 FORMAT(A30)

WRITE(*,490)
490 FORMATC DOES THE DEFINITION FILE ALREADY EXIST (Y|N) = = > ')

READ(*,500) ANS
500 FORM AT(Al)

C
C The definition file is opened and read.

IF(ANS .EQ. 'Y') THEN
OPEN(UNIT = 4,FILE = FNAM E,ERR = 875,IO STA T=IO E,STA TU S='O LD ',

+ ACCESS = SEQUENTIAL'.FORM = 'FO RM A TTED)
READ(4,S10,ERR = 880,IOSTAT = IOE) (ARRAY4(I),I = 1,6)

510 FORMAT(I3,I3,I3,I3,I3,I3)
READ(4,520,ERR = 880,IOSTAT= IOE) (ARRAY3(I),I = 1,5)

520 FORMAT(I3,13,13,13,13)
READ(4,530,ERR = 880.1OSTAT = IOE) (ARRAY2(I),1 = 1,4)

530 FORMAT(I3,13,13,13)
READ(4,540,ERR= 880,IOSTAT = IOE) (ARRAY1(I),I = 1,3)

540 FORMAT(I3,13,l3)
C
C The definition file is created and saved.

ELSE
OPEN(UNIT = 4,FILE = FNAM E,ERR = 875,IOSTAT= JOE.STATUS = NEW',

+ ACCESS = SEQUENTIAL',FORM = 'FORM ATTED')
C
C Asks the user to set the integer values associated
C with the given KARST choices.

n
n

WRITE(*,140)
140 FORMAT(' ENTER THE INTEGER VALUES WHICH REPRESENT',

+ ' THE KARST CHOICES: ',/,
+ ' (YES NO WATER) ',/,
+ ' (USE FORMAT = = = > XX X XXX XXX)',/,
+ ' = = >')

READ (*,150) (ARRAY1 (I),I = 1,3)
150 F0RMAT(I3,1X,I3,1X,I3)

C
C Asks the user to set the integer values associated
C with the given SLOPE choices.

WRITE(*,180)
180 FORMATC ENTER THE INTEGER VALUES WHICH REPRESENT',

+ ' TH E SLOPE CHOICES: ',/,
+ ' (< 5% 5-30% > 30% WATER) ',',
+ ' (USE FORMAT = = = > XXX XXX XXX)',/,
+ ' = = >')

READ(*,190) (ARRAY2(I),I= 1,4)
190 FO RM AT(I3,lX,I3,lX,I3,lX ,I3)

C
C Asks the user to set the integer values associated
C with the given FLOODING choices.

WRITE(*,220)
220 FORMATC ENTER THE INTEGER VALUES WHICH REPRESENT',

+ ' THE FLOODING CHOICES: ',/,
+ ' (NONE FREQ RARE OCC WATER) ',/,
+ ' (USE FORMAT = = = > X X X XX X XXX)',./,
+ ' = = >')

READ(*,230) (ARRAY3(I),I = 1,5)
230 FORM AT(13, IX ,13, IX ,13, IX ,13, IX ,13)

C
C Asks the user to set the integer values associated
C with the given PLASTICITY choices.

WR!TE(*,260)
260 FORMATC ENTER THE INTEGER VALUES WHICH REPRESENT',

+ ' THE PLASTICITY CHOICES: ',/,
+ ' (< 10 10-20 20-30 30-40 > 40 WATER) ',/,
+ ' (USE FORMAT = = = > XX X XXX XXX)',/,
+ - = = > ')

READ(*,270) (ARRAY4(I),I — 1,6)
270 FO RM A T(l3,lX ,I3,lX ,I3,lX ,I3,lX ,I3,lX ,13)

WRITE(4,510,ERR = 885.IOSTAT = IOE) (ARRAY4(I),1 = 1,6)
WRITE(4,520,ERR = 885,IOSTAT= IOE) (ARRAY3(I).I = 1,5)
WRITE(4,530,ERR = 885.10STAT = IOE) (ARRAY2(I).l = 1,4)
WRITE(4,540,ERR = 885,IOSTAT = IOE) (ARRAY1 (I),I = 1,3)
ENDFILE(4)

ENDIF
CLOSE(4)

C
C Since neither the composite file or all of the
C non-composite files are available an error message
C is output and processing is stopped.

ELSE
W RIT£(*,570)

570 FORMATC CANNOT PRODUCE A GEM FILE './,
+ ' ~ CRITICAL DATA FILES ARE NOT AVAILABLE.)

GOTO 1000
ENDIF

ENDIF

Opens the input and output files.
IF (COMP) THEN

W RITE(*,580)
580 FORMATC ENTER THE SOILS FILE NAME « = > ')

REA D (*.590) FNAME

no
on

no

n
on

74

590 FORMAT(A30)
OPEN(UNIT = 3,FILE = FNAM E,ERR = 900.1OSTAT = IOE.STATUS = OLD',

+ ACCESS = DIRECT'.FORM = UNFORMATTED ,RECL = 4)
C
C Reads the number of cols and rows of input that
C need to be processed.

REA D (3,REC= 5.ERR = 905,IOSTAT= IOE) COLS
RLAD(3,REC = 6,ERR = 905.IOSTAT = IOE) ROWS
CLOSE(3)
OPENfUNIT = 3,FILE = FNAM E,ERR = 900.IOSTAT = IOE.STATUS = 'OLD',

+ A CC ESS= D lRECT',FO RM = UNFORMATTED ,R E C L = 128)
W RITER,600)

600 FORMATE ENTER THE GEM FILE NAME = = > ')
READ (*,6I0) FNAME2

610 FORMAT(A30)
WRITE(*,620)

620 FORMATE DOES THE GEM FILE ALREADY EXIST (Y|N) = = > ')
READ(*,630) ANS

630 FORM AT(Al)

The GEM file is opened.
IF(ANS .EQ. Y) THEN

OPEN(UNIT = 11,FILE = FNAM E2.ERR = 910,IOSTAT = IOE.STATUS = OLD',
+ ACCESS = DIRECT'.FORM = UNFORM ATTED'.RECL = 128)
ELSE

O PEN (UN IT= 11,FILE =FN A M E 2,E R R = 910,IOSTAT= IOE.STATUS = NEW ,
+ ACCESS = DIRECT'.FORM = UNFORM ATTED'.RECL = 128)
ENDIF

Reads the header information from the SOILS file
and writes it to the output file.

REA D (3,REC= 1,ERR = 905.IOSTAT= IOE) HEADER
W RITE(11 ,REC = 1 ,ERR = 915.IOSTAT = IOE) HEADER
CLOSE(3)
C LO SE (ll)
OPEN(UNIT = 3.FILE = FNAM E,ERR = 900,IOSTAT= IOE.STATUS = 'OLD',

+ ACCESS = 'DIRECT',FORM = FORM ATTED'.RECL = 1)
OPEN(UNIT = 11, FILE = FNAM E2.ERR = 9IO,IOSTAT= IOE.STATUS = 'OLD',

+ ACCESS = DIRECT'.FORM = FORM ATTED'.RECL = 1)

Calulates the number of bytes of input data.
NUM BER = lNT(COLS * ROWS) + 128

Opens the input and output files.
ELSE

WRITE(*,640)
640 FORMAT(' ENTER THE PLASTICITY FILE NAME = = > ')

READ(*,650) FNAME
650 FORMAT(A30)

OPEN(UNIT = 7,FILE = FNAM E.ERR = 920,IOSTAT= IOE.STATUS = OLD',
+ ACCESS = DIRECT .FORM = FORM ATTED'.RECL = 1)

W RITE(*,660)
660 FORMATC ENTER THE FLOODING FILE NAME = = > ')

READC.670) FNAME
670 FORMAT(A30)

OPEN(UNIT = 8,FILE = FNAM E.ERR = 925.1GSTAT = 10E.STATUS = OLD',
+ ACCESS = DIRECT'.FORM = 'FORM ATTED'.RECL = 1)

W RITE(*,680)
680 FORMATC ENTER THE SLOPE FILE NAME = = > ')

R EA D (*.690) FNAME
690 FORMAT(A30)

OPEN(UNIT = 9,FILE = FNAM E.ERR = 930.IOSTAT = 10E.STATUS = 'OLD',
+ ACCESS = DIRECT'.FORM = FORM ATTED'.RECL = 1)

W RITE(*,700)
700 FORMATC ENTER THE KARST FILE NAME = = > ')

no

nn
o

nn

nn
n

no

75

READ(*,710) FNAME
710 FORMAT(A30)

O PEN (UN IT= 10,FILE= FNAM E,ERR = 935,IOSTAT = IOE.STATUS = OLD',
+ ACCESS = DIRECT'.FORM = UNFORMATTED'.RECL = 4)

C
C Reads the number of cols and rows of input that
C need to be processed.

READ (10,REC= 5,ERR = 940.1OSTAT = IOE) COLS
READ (10.REC= 6,ERR = 940,IOSTAT= IOE) ROWS
CLOSED 0)
O PEN (UN IT= 10,FILE = FNAM E.ERR = 935.IOSTAT = IOE.STATUS = 'OLD',

+ ACCESS = DIRECT'.FORM = 'UNFORM ATTED'.RECL = 128)
W RITE(*,720)

720 FORMATC ENTER THE GEM FILE NAME = = > ')
REA D (\730) FNAME2

730 FORMAT(A30)
W RITEC.740)

740 FORMATC DOES THE GEM FILE ALREADY EXIST (Y|N) = = > ')
READ(*,750) ANS

750 FORM AT(Al)

The GEM file is opened.
1F(ANS .EQ. 'Y') THEN

OPEN(UNIT = 11,FILE = FNAM E2.ERR = 945,IOSTAT = IOE.STATUS = OLD',
+ ACCESS = DIRECT'.FORM = UNFORMATTED'.RECL = 128)
ELSE

O PEN (UN IT= 11,FILE= FNAME2.ERR = 945,IOSTAT = IOE.STATUS = NEW',
+ ACCESS = DIRECT'.FORM = 'UNFORM ATTED'.RECL = 128)
ENDIF

Reads the header information from the KARST file
and writes it to the output file.

READ (10,REC= 1,ERR = 940,IOSTAT= IOE) HEADER
W RITE(11,REC= 1,ERR = 950,IOSTAT = IOE) HEADER
CLOSE(IO)
CLOSED I)
O PEN(UNIT= 10,FILE= FNAM E,ERR = 935,IOSTAT= IOE,STATUS ='O LD ',

+ ACCESS = DI RECT'.FORM = 'FORM ATTED'.RECL = 1)
O PEN (U N IT= I1 ,F IL E = FNAM E2,ERR = 945,IOSTAT= IOE.STATUS = OLD',

+ ACCESS = DIRECT'.FORM = FORM ATTED'.RECL = 1)

Calulates the number of bytes of input data.
NUM BER = INT(COLS * ROWS) + 128

ENDIF
DO 770 I = 129.NUMBER

Reads the input from the SOILS file and converts
it into seperate overlay values.

IF (COMP) THEN
READ(3,550,REC = I,ERR = 890.IOSTAT = IOE) PIXEL

150 FORM AT(Al)
SOILS = JCHAR(PIXEL)
KARST = SLS(SO ILS,l)
SLOPE = SLS(SOILS,2)
FLOODING = SLS(SOILS,3)
PLASTICITY = SLS(SOILS,4)

Reads the input from the non-composite files.
ELSE

READ (7,560,REC= I,E R R = 895,IOSTAT= IOE) PIXEL
PLASTICITY = ICHAR(PIXEL)
READ (8,560,REC= l,ERR = 895,IOSTAT= IOE) PIXEL
FLOODING = ICHAR(PIXEL)
READ (9,560,REC= I,E R R = 895,IOSTAT= IOE) PIXEL
SLOPE = ICHAR(PIXEL)

76

READ(10,560,REC = 1,ERR = 895.IOSTAT = IOE) PIXEL
KARST = ICHAR(PIXEL)

560 FORMAT(Al)
ENDIF
IF(PLASTICITY .EQ. A RRA Y4(5)) THEN

GEM = 13
ELSEIF(((FLOODING .EQ. A R R A Y 3(I))

+ .OR. (FLOODING .EQ. A RR A Y3(3)))
+ .AND. (SLO PE .EQ. A RR A Y 2(1))
+ .AND. (PLASTICITY .EQ. A RRA Y4(1))
+ .AND. (KARST .EQ. A RR A Y1(2))) THEN

GEM = 12
ELSEII'(((FLOODING .EQ. ARRAY3(1))

+ .OR. (FLOODING .EQ. A RR A Y3(3)))
+ .AND. (SLOPE .EQ. A RR A Y2(2))
+ .AND. (PLASTICITY EQ. A RRA Y4(2))
+ .AND. (KARST .EQ. ARRAY 1(2))) THEN

GEM = 11
ELSEIF(SLOPE .EQ. A RR A Y 2(3)) THEN

GEM = 10
ELSEIF(KARST .EQ. A R R A Y i(I)) THEN

GEM = 9
ELSEIF(((FLOODING .EQ. A R R A Y 3(1))

+ OR. (FLOODING .EQ. A R R A Y 3(3)))
+ .AND. (SL O P E .EQ. ARRAY2(2))
+ .AND. (PLASTICITY .EQ. A RR A Y4(4))
+ .AND. (KARST .EQ. A RR A Y! (2))) THEN

GEM = 8
ELSEIF(((FLOODING .EQ. A R R A Y 3(1))

+ .OR. (FLOODING .EQ. A R R A Y 3(3)))
+ .AND. (SLOPE .EQ. A R R A Y 2(2))
+ .AND. (PLASTICITY .EQ. A RR A Y 4(1))
+ .AND. (KARST .EQ. A R R A Y 1(2))) THEN

GEM = 7
ELSE1F(((FLOODING ,EQ. A R R A Y 3(1))

+ .OR. (FLOODING .EQ. A RR A Y 3(3)))
+ .AND. (SLOPE .EQ. A R R A Y 2(2))
+ .AND. (PLASTICITY .EQ. A RR A Y4(3))
+ .AND. (KARST .EQ. A R R A Y 1(2))) THEN

GEM = 6
ELSE1F(((FLOODING .EQ. A RR A Y 3(2))

+ .OR. (FLOODING .EQ. A RR A Y 3(4)))
+ .AND. (SLO PE .EQ. A RRA Y2(1))
+ .AND. (PLASTICITY .EQ. A RRA Y4(3))
+ .AND. (K A R ST .EQ. ARRAYI(2))) THEN

GEM = 5
ELSEIF(((FLOODING .EQ. A R R A Y 3(1))

+ OR. (FLOODING .EQ. ARRAY3(3)))
+ .AND. (SLOPE .EQ. ARRA Y2(1))
+ .AND. (PLASTICITY .EQ. A RR A Y4(3))
+ .AND. (K A R ST .EQ. A R R A Y 1(2))) THEN

GEM = 4
ELSEIF(((FLOODING .EQ. A R R A Y 3(1))

+ .OR. (FLOODING .EQ. ARRAY3(3)))
+ .AND. (SL O P E .EQ. A RRA Y2(1))
+ .AND. (PLASTICITY .EQ. ARRAY4(2))
+ .AND. (KARST .EQ. ARRAY 1(2))) THEN

GEM = 3
ELSEIF(((FLOODING .EQ. A R R A Y 3(2))

+ .OR. (FLOODING .EQ. A R R A Y 3(4)))
+ .AND. (SL O P E .EQ. A RRA Y2(1))
+ .AND. (PLASTICITY .EQ. A RR A Y 4(1))
+ .AND. (KARST .EQ. A R R A Y 1(2))) THEN

GEM = 2
ELSE1F(((FLOODING .EQ. A R R A Y 3(2))

+ .OR. (FLOODING .LQ. A RRA Y3(4)))
+ .AND. (SLO PE .EQ. ARRAY2(1))
+ .AND. (PLASTICITY .EQ. ARRAY4(2))
+ .AND. (KARST .EQ. A RRA Y1(2))) THEN

GEM = 1
ELSE

GEM = 0
ENDIF
PIXEL « CHAR(GEM)
W RITE(11,760,REC= I,ERR = 955,IOSTAT = IOE) PIXEL

760 FORM AT(Al)
770 CONTINUE

C LO SE (ll)
W RITE(*,780)

780 FORMAT(' FINISHED CREATING RESULT.)
C
C Opens and starts the Trailer file.

WRITF.(*,790)
790 FORMATC ENTER COMPLETE PATH NAME OF THE GIS TRAILER FILE

+ ' = = > ')
READ(*,800) FNAME

800 FORMAT(A30)
W RITE(*,8I0)

810 FORMATC DOES THE TRAILER FILE ALREADY EXIST (Y|N) = = > ')
READ(*,820) ANS

820 FORM AT(Al)
C
C The trailer file is opened.

IF(ANS .F.Q. Y') THEN
O PEN (U N IT=12,FILE = FNAM E.ERR = 960.IOST AT = IOE.STATUS = OLD',

+ ACCESS = DIRECT'.FORM = FORM ATTED'.RECL = 1)
ELSE

OPEN(UNIT = 12,FILE = FNAM E,ERR = 960,IOSTAT = IOE.STATUS = NEW',
+ ACCESS = DIRECT'.FORM = FORM ATTED'.RECL = 1)
ENDIF

C
C Blank out the file first.

DO 830 I = 1,2048
W RITE(12,835,REC= I,E R R = 965,10STAT= IOE)

835 FORMAT('O')
830 CONTINUE

CLOSE(I2)
O PEN (U N lT=-12,FILE= FNAM E.ERR = 960.IOST AT = IOE.STATUS = 'OLD',
+ ACCESS = DIRECT'.FORM = UNFORM ATTED'.RECL = 72)
LINE1 = T R A IL E R '
W RITE(12,REC= l.ERR = 965JOSTAT = IOE) LINE1
LINE1 « GEOLOGICAL ENGINEERING MAP"'
W RITE(12,REC= 2.ERR = 965.10STAT = IOE) LINE1
CLOSE(12)
OPEN(UNIT = 12,FILE = FNAM E.ERR = 960,IOSTAT = IOE.STATUS = OLD',
+ ACCESS = 'DIRECT'.FORM = UNI O RM A TTED ',RECL= 32)

C
C Puts the values in the trailer file.

IF (TYPE .EQ. GENERA L ') THEN
LINE2 = 'Background0'
W RITE(12,REC= 65,ERR = 965,IOSTAT= IOE) LINE2
LINE2 = CLASS IA°'
W RITE(12,REC= 66,ERR = 965,IOSTAT= IOE) LINE2
LINE2 = CLASS IB°'
W RITE(12,REC = 67.ERR = 965.IOSTAT = IOE) LINE2
LINE2 = CLASS ID°'
W RITE(12,REC= 68,ERR = 965,IOSTAT= IOE) LINE2
LINE2 = 'CLASS IE°'
WR1TE(12.REC = 69.ERR = 965.IOSTAT = IOE) LINE2
LINE2 = CLASS IF”

78

W RITE(12.REC = 70,ERR = 96SJOSTAT = IOE) LINE2
LINE2 = CLASS IG°'
W RITE(12,REC = 71,ERR = 965.IOSTAT = IOE) LINE2
LINE2 = CLASS IIA°'
WRITE(12,REC = 72,ERR = 965,IOSTAT= IOE) LINE2
LINE2 = CLASS 11B°'
W RITE(12,REC = 73,ERR = 965,IOSTAT = IOE) LINE2
LINE2 = 'CLASS 1IC°'
W RITE(12,REC= 74,ERR = 965,IOSTAT = IOE) LINE2
LINE2 = CLASS IID°'
WRITE(12,REC = 75,ERR = 965,IOSTAT = IOE) LINE2
I IM F ? = 'P I ASS 11 F “'
W RITE(12,REC= 76,ERR = 965,IOSTAT= IOE) LINE2
LINE2 = CLASS 1IF°'
W RITE(12,REC= 77,ERR = 965,IOSTAT= IOE) LINE2
L1NE2 = CLASS XC°
WRITE(12,REC = 78,ERR = 965,IOSTAT = IOE) LINE2
WRITEO 2.REC = 79,ERR = 965.IOSTAT = IOE)

j / 0 0 0 0 0 O O Q 0 O O 0 0 0 C 0 0 0 0 O 0 O 0 0 0 0 O 3 0 O 0 0 /

WRITE(12,REC = 80,ER R= 965,IOSTAT= IOE)
f SOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO/

ELSEIF O'YPE .EQ. LAN D FILL) THEN
LINE2 = 'Background0'
WRITE(12,REC = 65,ERR = 965,10STAT = IOE) LINE2
LINE2 = NO WAY”'
\VRITE(12,REC= 66,ERR = 965,IOSTAT = IOE) LINE2
LINE2 = 'VERY POOR”'
W RITE(12,REC= 67,ERR = 965,!OSTAT = IOE) LINE2
LINE2 = POOR”'
W RITE(12,REC= 68,ER R= 965,10STAT = IOE) L1NE2
LINE2 = GOOD0'
W RITE(12,REC= 69,ERR = 965.IOSTAT = IOE) LINE2
LINE2 = GOOD0'
W RITE(12,REC= 70,ERR = 965,IOSTAT= IOE) LINE2
LINE2 = GOOD0'
W RITE(12,REC = 71,ERR = 965,IOSTAT = IOE) LINE2
LINE2 = GOOD0'
W RITE(I2,REC= 72,ERR = 965,10STAT= IOE) LINE2
L1NE2 = 'VERY GOOD0'
W RITE(12,REC= 73,ER R = 965,IOSTAT= IOE) LINE2
LINE2 = 'NO WAY0'
W RITE(12,REC= 74,ER R= 965.IOSTAT = IOE) LINE2
LINE2 = 'GOOD0'
W RITE(12,REC= 75,ER R= 965,IOSTAT= IOE) LINE2
LINE2 = GOOD0'
W RITE(12,REC=76,ERR = 965,I0ST A T =10E) LINE2
LINE2 = GOOD0'
W RITE(12,REC = 77,ER R = 965,IOSTAT = IOE) LINE2
LINE2 = POOR0'
W RITE(12,REC=78,ERR = 965,IOSTAT= IOE) LINE2
W RITE(12,REC= 79,ERR = 965,10STAT= IOE)

| SO0000000000000000000000000000000'

W RITE(12,REC= 80,ER R = 965,lOSTAT= IOE)
j SOOOOOOOOOOOOQOOO0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 /

ELSE
CL0SE(12)
W RITER ,840)

840 FORMAT(ERROR - MAP TYPE INCORRECT,
MUST BE GENERALILAND FILL',/,
+ ' TRA ILER FILE COULD NOT BE CREATED.)

GOTO 1000
ENDIF
W RITE(*,850)

850 FORMATC' FINISHED CREATING THE LEG EN D FILE.)

u
u

79

GOTO 1000

File Error Messages.
860 W RITE(*,862) IOE
862 FORMAT^ ERROR OPENING SOILS ',/,

+ ' DEFINITION FILE, ERROR = ,14)
GOTO 1000

865 WRITEC.867) IOE
867 FORMATC ERROR READING SOILS ',/,

+ ' DEFINITION FILE, ERROR = ',14)
GOTO 1000

870 WRITE(*,872) IOE
872 FORMATC ERROR WRITING SOILS ',/,

+ ' DEFINITION FILE, ERROR = ',14)
GOTO 1000

875 WR1TE(‘ ,877) IOE
877 FORMATC ERROR OPENING (PLASTICITY FLOODING SLOPE KARST)

+ ' DEFINITION FILE, ERROR = ,14)
GOTO 1000

880 W RITE(*,882) IOE
882 FORMATC ERROR READING (PLASTICITY FLOODING SLOPE KARST)

+ ' DEFINITION FILE, ERROR = ,14)
GOTO 1000

885 WRITE(*,887) IOE
887 FORMATC ERROR WRITING (PLASTICITY FLOODING SLOPE KARST)

+ ' DEFINITION FILE, ERROR = ,14)
GOTO 1000

890 W RITE(*,892) IOE
892 FORMATC ERROR READING SOILS FILE INPUT, ERROR = ,14)

GOTO 1000
895 WRITE(*,897) IOE
897 FORMATC ERROR READING A NON-COMPOSITE FILE, ERROR = ',14)

GOTO 1000
900 WRITE(*,902) IOE
902 FORMATC ERROR OPENING SOILS FILE, ERROR = ,14)

GOTO 1000
905 WRITE(*,907) IOE
907 FORMATC ERROR READING SOILS FILE HEADER, ERROR = ',14)

GOTO 1000
910 WRITE(*,912) IOE
912 FORMATC ERROR OPENING GEM FILE, ERROR = ,14)

GOTO 1000
915 WRITEC.917) IOE
917 FORMATC ERROR WRITING GEM FILE HEADER, ERROR = ,14)

GOTO 1000
920 WRITEC.922) IOE
922 FORMATC ERROR OPENING PLASTICITY FILE, ERROR = ',14)

GOTO 1000
925 WR1TE(*,927) IOE
927 FORMATC ERROR OPENING FLOODING FILE, ERROR = ,14)

GOTO 1000
930 WRITE(*,932) IOE
932 FORMATC ERROR OPENING SLOPE FILE, ERROR = ,14)

GOTO 1000
935 W RITE(*,937) IOE
937 FORMATC ERROR OPENING KARST FILE, ERROR = ',14)

GOTO 1000
940 W RITE(*,942) IOE
942 FORMATC ERROR READING KARST FILE HEADER, ERROR = ,14)

GOTO 1000
945 WRITE(*,947) IOE
947 FORMATC ERROR OPENING GEM FILE, ERROR = ,14)

GOTO 1000
950 W RITE(*,952) IOE
952 FORMATC ERROR WRITING GEM FILE HEADER, ERRO R = ,14)

GOTO 1000
955 W RITE(*,957) IOE
957 FORMATC ERROR WRITING GEM FILE, ERROR =

GOTO 1000
960 W RITE(*,962) IOE
962 FORMATC ERROR OPENING GIS TRAILER FILE',/,

+ ' ERROR = ,14)
GOTO 1000

965 W RITE(‘ ,967) IOE
967 FORMATC ERROR WRITING GIS TRAILER FILE',/,

+ ' ERROR = ,14)
GOTO 1000

1000 CONTINUE
END

	Development of an Expert System to Convert Knowledge-based Geological Engineering Systems into Fortran
	Recommended Citation

	tmp.1605284236.pdf.iCrvf

