
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Dec 1987

Performance Parameter Measurements of Generic Files Performance Parameter Measurements of Generic Files

Sankarraman Subramanian

George Winston Zobrist
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Subramanian, Sankarraman and Zobrist, George Winston, "Performance Parameter Measurements of
Generic Files" (1987). Computer Science Technical Reports. 71.
https://scholarsmine.mst.edu/comsci_techreports/71

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/71?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

PERFORMANCE PARAMETER MEASUREMENTS
OF GENERIC FILES

Sankarraman Subramanian and George Zobrist

CSc-87-15

*This report is substantially the M.S. thesis of the first
author, completed December, 1987.

ABSTRACT

This study discusses the performance parameter measurements of

generic files, the pile file, the sequential file, the

indexed-sequential file, the indexed file and the direct file. The

file performance measurements are compiled in a software package. The

study then describes the use of such software package as a simulation

tool in a file design environment.

V
TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. iv

I. INTRODUCTION ... 1

II. HARDWARE PARAMETERS AND QUANTITATIVE MEASURES 3

A. RECORDS AND B L O C K S 3

1. Fixed Blocking3

2. Variable Length Blocking 4

B. WASTE ... 4

C. ACCESS TIME ..5

D. SEEK TIME (S) 5

E. ROTATIONAL LATENCY (R) 5

F. BLOCK TRANSFER TIME (BTT) 6

G. UPDATING BLOCKS 7

H. QUANTITATIVE MEASURES 7

1. Record Size (R) 7

2. Fetch Record 8

3. Get-Next Record 8

4. Insert Record 8

5. Update Record 8

6. Read Entire File 9

7. Reorganization of File9

III. THE PILE F I L E .. 10

A. RECORD SIZE 10

B. FETCH RECORD 11

C. GET-NEXT RECORD 12

D. INSERT RECORD 12

E. UPDATE RECORD 12

F. READ ENTIRE F I L E 13

G. REORGANIZATION OF P I L E 14

IV. THE SEQUENTIAL FILE 15

A. RECORD SIZE 15

B. FETCH R E C O R D 16

C. GET-NEXT RECORD 16

D. INSERT RECORD 17

E. RECORD UPDATE 17

F. READ ENTIRE F I L E 18

G. REORGANIZATION OF SEQUENTIAL 18

V. THE INDEXED SEQUENTIAL F I L E 19

A. INDEX .. 19

B. O V E R F L O W ... 20

C. RECORD SIZE 21

D. FETCH R E C O R D 21

1. T fetch main 22

2. T fetch overflow 22

3. T fetch c h a i n 22

E. GET-NEXT RECORD 23

1. case 1 23

2. case 2 24

3. case 3 24

4. case 4 24

5. case 5 24

vi

F. INSERT RECORD 25

G. UPDATE RECORD 26

H. READ ENTIRE F I L E 26

I. REORGANIZATION OF F I L E 27

VI. THE INDEXED F I L E 28

A. B-TREES ... 29

B. RECORD SIZE 30

C. FETCH R E C O R D 30

D. GET-NEXT RECORD 31

E. INSERT RECORD 31

F. UPDATE RECORD 32

G. READ ENTIRE F I L E 33

H. REORGANIZATION OF F I L E 33

VII. THE DIRECT F I L E 34

A. COLLISION RESOLUTION 35

1. Linear S e a r c h 35

2. Separate Overflow 35

B. RECORD SIZE 35

C. RECORD F E T C H 36

D. GET-NEXT RECORD 36

E. INSERT RECORD 37

F. UPDATE RECORD 37

G. READ ENTIRE F I L E 38

H. REORGANIZATION OF F I L E 38

VIII. SOFTWARE ORGANIZATION 40

A. SOFTWARE MODULES 40

vii

6. case 6 24

B. ERROR CHECKING 41

Vlll
C. BATCH A C C E S S 41

D. INTERACTIVE ACCESS 42

IX. APPLICATIONS .. 43

A. RESEARCH ENVIRONMENT 43

B. TEACHING ENVIRONMENT 44

X. CONCLUSION .. 45

BIBLIOGRAPHY .. 46

VITA ... 47

APPENDICES

A. NOMENCLATURE 48

B. FILE PARAMETER MEASUREMENT USAGE NOTES 50

C. GENERIC SOFTWARE PACKAGE SOURCE CODE 58

D. R E S U L T S .. 7 7

1

Files are generally characterized by their storage organization

on external devices. Different organization leads to differences in

performance while storing and retrieving records. It is well known

that main storage access time is at least four to five orders of

magnitude faster than secondary storage access time. Hence, the

objective in any application, like a database management system [1] is

to organize the data efficiently and thereby minimize the number of

external accesses.

There is no single storage structure that is optimal for all

applications. The process of choosing a storage structure for complex

applications is nontrivial since such applications have to work within

time and size constraints. In the design phase most requirements tend

to conflict with each other. Also a given application assumes that

services are provided by the operating system for building its file

system.

The basic building block to a file system design is an analysis

of generic file organizations [2]. This analysis includes not only the

discussions on storage structure of these files but also its effects

on performance measurement of such files and hardware analysis on

which the data is stored.

In this thesis a consistent view of generic file organizations is

provided and the performance equations for generic organizations as

derived in Ref [2] are used. The performance parameters of the generic

file organizations are compiled in a software package. The package can

be used to find the performance parameters of generic files for any

I. INTRODUCTION

2

storage device. The purpose of the thesis is to demonstrate the use

of such a tool in a teaching and research environment. The earlier

chapters provide a description of each generic file. The thesis

concludes with a discussion on software organization and its

application in a teaching and research environment.

3

II. HARDWARE PARAMETERS AND QUANTITATIVE MEASURES

The hardware parameters that will be used for measures of file

system performance will be discussed here. The primary interest is in

a small number of hardware parameters like seek time (s), rotational

latency (r), block transfer time (btt) and bulk transfer rate (t').

Finally the seven quantitative measures that form the basis of the

file performance evaluation are discussed.

A. RECORDS AND BLOCKS

A record is defined as a collection of fields about an entity of

interest. It is the actual unit of information at the logical or file

level. However, to reduce the gaps that are formed, records are

grouped together to form a physical record or block. A block is the

unit of data transferred between core memory and external storage

device. Selection of optimum block size is influenced by factors like

size of buffer, time required to transfer the block and the capacity

of a track. The record size is denoted by R and the block size by B.

Since the file performance is in terms of records, some

parameters which relate block based parameters to records are

required. Records may be of fixed or variable length. The number of

records that fit into a block is known as blocking factor (Bfr).

1. Fixed Blocking. If records are of fixed length, the blocking

Factor (Bfr) is given by

Bfr (2 .1)

4

2. Variable Length Blocking. In order to manipulate records

that are variable length it is necessary to add record marks of size

P, at the beginning of each record indicating the length of the

record. With variable length blocking an average of 1/2 R is wasted

due to filling problem. The value of record size (R) is an average

value. Hence the blocking factor (Bfr) for varying length record is

Bfr
B - l x R2

R + P (2 .2)

B. WASTE

There are gaps between blocks due to hardware design and there

are unused space within blocks and various markers. The gap size (G)

due to the hardware design between each block is given by the

manufacturer. Hence the waste due to gaps (Wq) per record is

WG = G
Bfr (2.3)

There is also waste due to unused space from blocking in each block.

This is allocated to each record as Wr If the records are of fixed

length the wasted space due to blocking is less than the size of one

record (R). The value of Wr is bounded by 0 < Wjj < -g-j-- For fixed

blocking the waste per record is given by

W = Wq + WRj often ^ “"Bfr" (2-M

If the records are of variable length, on an average one half record

per block is wasted due to accommodation problem. Also each record

requires a marker entry. Hence Wr for variable length record is

R + G

5

W = P + Bfr (2.5)

C. ACCESS TIME

The time required to transfer a block is the sum of seek time

(s), rotational latency (r) and block transfer time (btt).

D. SEEK TIME fS)

Seek time is defined as the time required to position the head

mechanism over the track that contains the block to be accessed. For

the file system performance measurement a seek time provided by the

manufacturer for the disk device chosen is used.

E. ROTATIONAL LATENCY (Rl

Since the capacity of the track is quite large the tracks are

divided into units called blocks. After the disk head is positioned

at the right track there is a rotational delay incurred to reach the

desired block on the track. This delay is referred to as rotational

latency.

The average value of rotational latency (r) is one half the time

required for one rotation of disk.

r JL 60 x 10002 rpm ms (2 . 6)

6

where rpm is the disk revolutions per minute and rotational latency is

specified in milliseconds.

F. BLOCK TRANSFER TIME (BTT)

After positioning the head over the proper track and over the

beginning of the block desired, the actual data block still has to be

read from or written to the disk. The rate at which data can be

transferred is known as the transfer rate (t). This basic transfer

rate is dependent on the device used. The rate is provided by the

manufacturer. The time, required to transfer a block is known as block

transfer time (btt). It is given by

The transfer rate (t) provided by the manufacturer is an instantaneous

rate of data transfer. While reading large quantities of data we have

to account for time taken, when gaps and waste areas passes under the

head mechanism. Also, correction has to be made for seek time that

occurs at the end of each cylinder. This corrected transfer rate known

as bulk transfer rate (t') [2] is

ms (2.7)

t' = tCyi + s' characters/ms (2 .8)

t R characters/ms (2.9)(R + W)/t + s'

t_ R
2 R + W characters/ms (2 . 10)

7

G. UPDATING BLOCKS

Updating data in a block is an expensive operation because it

requires at least one read and one write operation. During an update

operation the block containing the desired record is read into main

memory, desired changes to the fields of the record are made and the

block is written back into its original position. Inserting a record

to the end of the file is similar to an update operation. The last

block is read into core memory, the record is inserted into the block

and the block is rewritten. In either case, if the necessary

insertion or changes can be made fast enough, the block can be

rewritten during the next disk revolution. Such rewrite operation will

take one revolution or approximately

Trw = 2r (2.11)

if time to update in memory is « 2r

H. QUANTITATIVE MEASURES

There are seven quantitative measures necessary for evaluating

each of the five file organization methods. The seven measures are :

1. Record Size (IQ. This contains the amount of storage

required for the record. This includes the amount of space occupied by

the actual data, the pointers and record markers, if any, to represent

the record and any index or pointer overhead that was built for

purpose of efficient access.

8

2. Fetch Record. Fetching a record is a two step process. The

actual location of the record and then the reading of the block into

the buffer. We assume that the retrieval of a record is random and no

preparation for such a fetch has been made. Tp gives the time to fetch

a record.

3. Get-Next Record. Records that are related are usually

fetched together. Successor records are obtained more efficiently, if

locality of data is strong. This quantitative measure will give the

time to fetch the next record within the file. T^ denotes time to get

the next record.

4. Insert Record. Since most files are volatile, new data

records need to be added for the file to remain up to date. Also, the

writing operation involves more overhead than reading because the

write operation is actually a read and rewrite operation. Adding

records to the end of the file is easy, but if data is clustered in

the file according to a field, records have to be shifted to

accommodate the insertion of the new record. Tj gives the time to

update a file by inserting a record.

5. Update Record. Tjj gives the time to update a record by

changing the data within the stored record. It takes more time to

update a record where changes are made to the key field. Such an

update is done by marking the record as deleted and inserting one in

sequence, with the updated key field.

9

6. Read Entire File. In some applications, reading the entire

file is often done at regular intervals. This might be done for

preparing payroll at the end of a month or to produce a list of

records that matches an uncommon search attribute. gives the time

for exhaustive reading of the entire file.

7. Reorganization of File. It is necessary to clean up files

periodically for removing deleted records and rearranging inserted

ones. The time between such reorganization depends both on application

requirements and the type of file organization used. Ty gives the time

needed for reorganization of the file.

10
III. THE PILE FILE

The pile file does not possess an efficient data organization.

The data records in the pile file are stored in the order of their

arrival. Records may be of variable length and individual data

elements between records may be completely different. The pile file

may be visualized as a repository of not necessarily related

information. Individual fields in a record of a pile file are actually

an attribute name - value pair. Thus the data record will be of the

form

name=SANKAR, number=81621, height=170;

Information is retrieved from a pile file by specifying some

attributes as search argument and retrieving other attributes as goal

data. A pile file is used in places where data is not easy to

organize or where data is collected prior to processing.

A. RECORD SIZE

In a pile file additional overhead is encountered since we need

to store the attribute name for each data field in a record. On the

other hand, individual fields unrelated to the record need not be

stored at all. The effect is a relatively high density when data

elements collected are heterogeneous and low density when data

elements collected are homogeneous. Each data element also needs two

different characters to mark the end of an attribute name and a data

value. Assuming the average length of description of an attribute as

11
'A' and data value as *V' , the expected average length of a pile

record is given by

R = a'(A + V + 2) (3.1)

B. FETCH RECORD

Since the records in the pile file are not grouped into any

order, the time required to locate a record is high. The desired

record may be the first one or the last one. The expected average

then, is the sum of all the times to reach and read any of the blocks,

divided by the number of choices.

Average blocks read = £ — (3.2)
i b

if b » 1 and i = 1 b

The time to read this number of blocks sequentially using Eq.2.10 is

given by the number of blocks to be read times the time to read one

block

TF = i * b x ± (3.3)

Tp = y x n x - p - since nR = bB (3.4)

The use of bulk transfer rate is appropriate here because we read the

file sequentially passing over gaps and cylinder boundaries until the

desired block is read.

12
C. GET-NEXT RECORD

Records are not kept in any order in the pile file. They are

stored in the order of their arrival. The successor record may be

anywhere in the file, in which case, it is similar to a fetch request.

The time required to find the successor record is

TN = TF = J -xnx-?L (3.5)

D. INSERT RECORD

Records are inserted (added) to the end of the file. If the

address of the end of the file is known, a new record is added to the

end of the file and the end pointer is updated. The time for insert

will then be the sum of the times to read a block, the time to append

the record and the time to rewrite it.

Tj = s + r + btt + TRW (3.6)

Assuming that Time to rewrite is equal to 2 * r from EQ.2.11

Tj = s + 3r + btt (3.7)

E. UPDATE RECORD

Since the pile file may consist of records that are unrelated and

records may not have similar sets of elements, updating a record is

done by fetching the old record, marking the record as invalid and

inserting a new one (probably larger) at the end of the file.

13

TU = TF + TRW + TI (3.8)

(3.9) Tu = -i- x n x + s + 5r + btt

In the case of deletion of a record the Tj term drops off.

F. READ ENTIRE FILE

An exhaustive search of the entire file is twice as costly as a

single fetch, if the order of retrieval of the records does not matter

However, if the file has to be read serially according to some

attribute, the cost is n times an individual fetch. Hence,

Tx = n x Tp Since the cost is extremely high, an alternate method is

to sort the file according to the search attribute and then

exhaustively read the sorted file.

Sorting : There are external routines which can be performed in

0(n log2 n) steps. The log2 n term refers to the number of passes over

the file after initially sorting the values in each block. In

subsequent passes the sorted blocks are merged into a sorted sequence

of blocks until the entire file is merged. Each sort step involves a

block read and a block write operation. The time required to perform

the sort over the entire file is the product of the time to sort the

records within a block and the time to merge the sorted blocks into

Tjr = 2 x Tp = n x -p- <sequential> (3.10)

sorted sequence

14

TSOrt(n) = 2 x b x btt + 2 x b x f log2 bl btt (3.11)

Tsort(n) = 2 x n x [l + log2(-g2-)] (3.12)

The time to exhaustively read the file serially is

TX = TSort(n) + TxSeq (3.13)

G. REORGANIZATION OF PILE

Reorganization of the pile file is done periodically by removing

the records that are marked as deleted or changed and reblocking the

remaining records into a new file. If the number of records added

between reorganization is 'o' and number of deletion is 'd', the time

to reorganize the file is

TY = (n + o)-~- + (n + o — d)-^- (3.14)

Here o equals n(insert) + v and d equals n(delete) + v where

n(insert) is the number of records inserted, n(delete) is the number

of records deleted and v is the number of records updated.

15

IV. THE SEQUENTIAL FILE

Records in the sequential file are ordered into a sequence known

as key sequence. The key for each record is defined as one or more

fields within the record that uniquely distinguishes the record from

every other record in the file. The records in a sequential file are

of fixed length and each record contains the same number of

attributes.

One of the disadvantages of this file organization involves

updating of records in the file. Records have to be moved in the main

file, to accommodate insertion of a new one to maintain the key

sequence. Also, changes to the key field of a record disturbs the

sequence.

Insertion of a new record into the sequential file is handled by

placing the records in the order of arrival in a separate transaction

log file. At the time of reorganization a batch update is performed

by reading records from both the main and log file. Records are merged

into a new file in key sequence.

A. RECORD SIZE

Unlike pile file, attribute name need not precede data value

because all the records in the sequential file contain the same number

of attributes occupying the same position within the record. If 'a'

is the number of attributes and 'V" is the average length of the data

values, the record size is given by

R a x V (4.1)

16

There are two methods for fetching a record from a sequential

file. If the search argument is not the key attribute, at least half

of the main file and the overflow file has to be searched. If 'o' is

the number of records that can be accommodated in the overflow file

then the time to fetch a record is given by

B. FETCH RECORD

If search argument is the key attribute then a binary search

technique is adopted to access the data desired in the main file. In

the binary search technique, during each pass the search space is

dissected by half until the desired record is found. Also the overflow

overflow file, on an average half of it is searched to locate the

desired record. In this case

C. GET-NEXT RECORD

Since records are kept in sequence the next record is already

available in the buffer. For every Bfr records the next block must be

transferred into core memory to obtain the next record.

TF1 = \ (n + o)x^- (4.2)

file has to be searched. Since new records are appended to the

Tf2 = lo g2(-ijf7> * <s + r + b tt) + - i . (4.3)

t n
btt
Bfr (4.4)

17

Insertion of new records into the sequential file is done by

appending the records to the overflow file and periodically

D. INSERT RECORD

sequential file. The cost incurred in reorganization should be

included in the cost of insertion.

E. RECORD UPDATE

The time to update a record that involves no changes to the key

field is sum of the time to fetch the record and the time to rewrite

it. However, if changes to the key field are necessary, the update is

done by inserting two records to the overflow file. One is the updated

record and the other a flag record indicating the deletion of the old

one.

reorganizing the main file and the overflow file into a single

Tj — s + r + btt -+- + —~ (4.5)

Tj = s + 3r + btt H— — <using Eq.2.11> (4.6)

Tu = TF + T! (4.7)

Ty = 1°S2(gfr) * (s + r + btt) + ~ (4.8)

18

F. READ ENTIRE FILE

Reading of the entire file is done by sorting the overflow file

into key sequence and then reading the main file and the overflow file

sequentially.

Tx = Tsort(o) + (n + o) x (4.9)

where Tsort is given by Eq.3.12.

G. REORGANIZATION OF SEQUENTIAL

This involves sorting the overflow file and then merging both the

main file and the sorted file into a new sequential file. Merging

requires reading both the main and the overflow file and writing to a

new file.

tY = Tsort(o) + (n + o) x + nnew x (4.10)

where n(new) = n(old) + n(insert) - d and T(sort) is given by Eq.3.12.

19

V. THE INDEXED SEQUENTIAL FILE

Indexed sequential file is an improvement on the sequential file

organization. It provides better random access to individual records

by means of an index to the primary file. Also insertion of new

records are handled differently than in a sequential file

organization. When records are inserted, pointer adjustments are made

to allow efficient serial reading of the file. The indexed sequential

file has three major components: the sequential file, the index and

the overflow area. The structure of the data file is similar to the

sequential file seen in a previous chapter.

A. INDEX

The important benefit of building an index to the main file is

efficient access of individual records. An index is a set of entries

each containing two fields. One is the key attribute of the record and

the other a pointer to the location of the record. Indexes are kept in

a serial order according to the key attribute. The first level index

pointers will contain the address of data records. Additional indexes

are built to index the previous levels until the top level master

index occupies one block. This block is brought into core memory when

the file is opened.

By using block anchors each index entry can refer to a block of

records in the main file, instead of a single record. Individual

records are found by searching within the block. This would reduce the

number of index entries to n/Bfr. An important parameter of an index

is its fanout ratio. It is defined as the number of blocks (in a block

20
anchored index), a block of index entries can reference. It is given

by

In a hardware oriented index design there are usually two level

of indexes. The first one will reference individual cylinders and the

second one references the blocks inside that cylinder. The number of

index level required is

B. OVERFLOW

Insertion in the indexed sequential file is handled by using a

technique called push through. This provides efficient serial access

to the entire file according to the key attribute. Extra space is

provided in each cylinder to insert new records. Addition of new

records will require only rotational latency but not a seek overhead.

Push through : Each block of records contain an overflow

pointer. Records are maintained in key sequence in the primary file.

Insertion of a new record might lead to moving of records within the

block. The record at the end of the block gets pushed to the overflow

area. Each record in the overflow area contains a pointer. The pushed

through record is placed in the overflow area in the next space

available but pointer adjustments are made to maintain serial access

y (5 .1)

x (5 .2)

to the record.

21

Each record requires space for 'a' data values and a pointer

entry 'P'. In the main file the pointer in individual records can be

used as a marker for deleted records. The record size is

R = aV + P (5.3)

C. RECORD SIZE

Also space occupied by the index must be accounted for in each record.

The number of blocks occupied by the first level index is

Bj =
n -t
Bfr

y
(5.4)

Subsequent levels are obtained by dividing previous levels by the

fanout ratio until the value of b^ becomes one. The space for index is

then

SI = (bx^ + bi2 + + 1)B (5.5)

The space for each record is

Rtotal = R + "ifR + "if (5.6)

D. FETCH RECORD

The index is used to locate the records. The record will be found

in either 1. the main file, or 2. directly in the overflow file as the

first record, or 3. indirectly in the overflow file by following a

chain.

22
1. T fetch main. The main index is already in core memory and

hence (x -1) index levels must be accessed. If all index levels are

placed in the same cylinder as the data, accessing index levels

requires only rotational latency and the time for reading a block. The

time required for locating a record in the main file is

Tpmain = s + (x — l)(r + btt) + r + btt (5.7;

2. T fetch overflow. If o' is the number of records the file

has received since the file was reorganized with 'n* records, the

probability of overflow per record is

Pr,., = ---— - o' usually taken as 0.5o. (5.8)ov n + o'

Fetching a record that is placed first in the chain in the overflow

area is

Tpoverflow = Pov(r + btt) (5.9)

Space for overflow is provided in the same cylinder.

3. T fetch chain. Records that are pushed from the primary

block to the overflow area are placed in a chain to the primary block.

The length of each chain is

Lc = Pov x Bfr if Bfr » 1 (5.10)

Assuming that (Lc - 1) records are placed in different blocks the

number of additional block access required to locate the desired

record is ((Lc — 1) + l)/2. Therefore

23

(5 .11)

Time to fetch a record is

lp Tpmain + ̂ overflow 1* Tpchain (5 .12)

(5 .13)

E. GET-NEXT RECORD

To locate the next record there are number of possibilities

depending on the location of the predecessor and successor records.

There are several cases and evaluation of different cases is based on

the probability of occurrence of the event. For a detailed analysis

the following notations are useful.

P<j. the current record is in primary data block = 1 — PQV

Pjj. the successor record is in same data block = 1 — 1/Bfr

Pm . there is no insertion into the block = 1 - Pov

Pc; the next block is in the same cylinder = 1 — 1//?

where /? is number of cylinders per block.

Pj. the current overflow record is not the last in chain = 1 — 1/LC

1. case 1. Current record is in the main file and successor

record is in the same block.

(Pd) * (pb)

(1 - Pov) * (1 ~ 1 /Bfr)

24

2. case 2. Current record is the last one in the block, there

are no insertion to the block and next record is the first one in next

block.

(Pd) x (! - pb) x (pm) x (pc) x (r + btt)
(1 - Pov) x (1/Bfr) x (1 - Pov) x (1 - 1 //?) x (r + btt)

3. case 3. Current record is the last one in the block, there

is no insertions to the block and next record is in a new block on

another cylinder.

(pd) x (1 - pb> x (pm) x (1 - pc) x (s + r + btt)

(1 “ Pov) x (!/Bfr) x (1 - Pov) x (1 //?) x (s + r + btt)

4. case 4 . Current record is the last one in the block, there

is an insertion and successor record is in the overflow block.

(pd) x (1 - pb) x (1 - pm) x (r + btt>

(1 - Pov> x (1lBfr) x (Pov) x (1//?) x (s + r + btt)

5. case 5 . Current record is an inserted record and successor

record is on another overflow block and obtained by following the

chain.

(1 - Pd) x (Px) x (r + btt)

(pov) x (! - 1/Lc) x (r + btt)

6. case 6 . Current record is an inserted record in the overflow

area but last in the chain and next record is obtained from the next

block in main file.

(1 - Pd) x (1 - Pj) x (r + btt)

(Pov) x (1/LC) x (r + btt)

25

If cylinder seek is ignored and overflow area is in the same cylinder,

the time to get next record is

t n
n + o'Bfr
(n + o')Bfr (r + btt) (5.14)

F. INSERT RECORD

When a new record is added, the overflow area of the cylinder

needs to be accessed. Either the new record or the last record in the

primary block gets pushed to the overflow area. Pointer adjustments

are made to maintain serial access. Accessing the overflow block in

the same cylinder would require a rotational latency and a block read

only.

The time to insert a record would then require time to fetch the

predecessor record, time to rewrite the block with the inserted

record, time to access the overflow block and time to rewrite that

block with the pushed through record.

T x = TF + T ^ + r + btt + T ^ (5.15)

Tj = Tp + 5r + btt <using Eq.2.11> (5.16)

26

Analysis of a general case that allows changes to any field in

the record would require fetching the record, rewriting the record

with a marker to indicate deletion and inserting the record with the

field updated.

G. UPDATE RECORD

H. READ ENTIRE FILE

Serial reading of the entire file according to the key attribute

is is easier in this file organization since seriality is maintained

even between records in the overflow area by use of pointers. The

index can be ignored. The time to read the entire file is

TU = tF + Trw + TI (5.17)

Tjj = 2 x Tp + 7r + btt (5.18)

TX = TF + (n + o' - l)Tn (5.19)

n + o'Bfr
Bfr x (r + btt) <serial> (5.20)

Reading the file sequentially would require

(5.21)

27

I. REORGANIZATION OF FILE

Reorganization of the entire file requires reading the primary

and overflow file and rewriting them into a single new file after

omitting the records that were deleted. Assuming records chained to

the overflow area are on different blocks, accessing records in the

chain would require a rotational latency and a block access. Also a

new index is built after reorganization.

Ty = (r + btt) 4- (n + o' - d)-p- + <o prime = 0.8 o> (5.22)

28

VI. THE INDEXED FILE

In an indexed file records are not ordered by the key attribute.

The placement of a record is influenced by factors such as ease of

data management or reliability. Access to individual records is only

through one or more indexes. If an index is available for all the

attributes in the file, the file is called a fully inverted file. The

records can be placed anywhere in the file as long as a pointer exists

in some index to fetch the record. The record can be of varying

length.

An index for an indexed file consists of a set of entries, one

for each record in the file. Block anchors cannot be used in this

organization since records are not sequential. The entries themselves

are ordered by attribute values, each entry consisting of an attribute

name and a pointer to the location of the record. A successor record

in an indexed file is accessed only through use of an index.

The index can be exhaustive or selective. Exhaustive indexes have

pointers for every record in the file. Selective ones have pointers

only for records whose values are significant. Usually a file has at

least one exhaustive index to enable processing of all the records in

the file.

A major problem with the indexed organization is the need to

update indexes when records are inserted, deleted or changed. It would

require insertion, deletion, or both, of an index entry in the

appropriate block. In order to allow dynamic changes to the index

structure a structure known as a B-tree [3] is used.

29

A. B-TREES

In a B-tree each index block contains a set of entries. The entries

consist of an attribute name and a pointer value. At the level one

index all pointers determine the location of the data record. Indexes

are built to index previous levels. In this case the index pointers

points to the address of lower level blocks. The B-tree index blocks

are at least half full. The effective fanout varies from y/2 and y.

When a record is inserted, an entry is made in the appropriate

index block in the level one index. If the block is full, a new block

is acquired and half the entries are moved from the full block to the

new one. This is termed as block split. An entry for the record

inserted is made to the appropriate block. Also, a new entry is made

at level two to point to the newly acquired block. This new entry is

the former Vy/ 2 + i taken from the split block. If the block at level

two is full the sequence may propagate to the root block which itself

would split into two leading to a new root block.

Deletion of records would lead to removal of entries. If the

density of the index is less than y/2, the adjacent block is

inspected. If sum of the number of entries in both index blocks is

less than y, the blocks are combined into a single block. Similarly

this sequence might lead to the removal of the root block itself.

Given there are n' records with indexable attributes then the

number of levels is given by

x (6 .1)

30

B. RECORD SIZE

The space required for each record in the main file is

Rmain = a'(A + V + 2) (6.2)

Let 'a* be the total number of attributes in the file and a ’ be

the average number of attributes per record. The average number of

index entries referring to data records is

n' - n-J- (6.3)

The size of each index is V^ncjex + P. The space occupied by each

indexes for level one is

(Vindex f R)SI-, = n'-- ^ QeX--- - (6.4)dens
The total space for all indexes for all levels is

S I t o t a l = a 2" (6-5)

Rtotal = Rmain + a Rindex (6.6)

C. FETCH RECORD

A record is fetched only through the use of index. Each index

level is assumed to be on a separate cylinder. The index and data

occupy different cylinders. The time to fetch a record is then

Tp = x(s + r + btt) + s + r + btt = (x + l)(s + r + btt) (6.7)

where x is given by Eq.6.1

31

The index block last used is kept in core memory and hence time

to fetch the next record would incur only a block fetch.

D. GET-NEXT RECORD

E. INSERT RECORD

Records are inserted in any free area. The time to insert into

the main file is referred to as Tjata After the record is inserted,

all a' indexes referring to existing attributes of this record must

be updated. This would require searching of all the index levels for

each of the a' indexes from the root. Appropriate entry is made in

level one block to point to the inserted record. This is referred to

as Tj[ncjex The probability Ps that this block is split is l/(y/2) =

2/y. If the block is split, a new block is fetched and entries are

distributed between the split block and new one. This would require

rewriting of split and new blocks. This is referred to as TSpj£t The

time required to insert a record is then

T^ = s + r + btt if yeff » 1. (6.8)

^1 — Tcjata + a/(Tindex + ̂ s^split) (6.9)

Tj = s + r + btt + Tj^ + a'(x(s + r + btt) + Tj^

+ "y”(s + r + btt + 2Trw)) (6 .10)

32

F. UPDATE RECORD

An update changes one data record and aUpdate indexes. A record

is updated in a indexed file by marking it as deleted and inserting

the record in a new place. This would require fetching the record,

rewriting it with a marker as deleted and writing a new copy with

necessary changes. If the field updated is far removed from the

previous one, an entry into the level one index would occur on a

different block. This requires searching for and rewriting two index

blocks. The old entry is removed from one block and a new entry is

inserted into another. Also, inserting or deleting entries from a

block might lead to split or join of blocks.

Since the record is inserted in a new area (a' — aUpdate) indexes

must be fixed. The pointers in these indexes must be changed to

reflect the new location. Therefore time to update a record is

TU = Tp + Trw + TnewC0py +
2 x aupdateC^index + ̂ s^split) +

(a' — aupdate)(^f ixpointer) 11)

Ty = (x + l)(s + r + btt) + + s + r + btt + Tr^

+ 2aUpdate(x(s + r + btt) + T ^ + -̂ -(s + r + btt + T^))

+ (a' - aupdate)<x(s + r + btt) + ̂ rw) (6.12)

33

G. READ ENTIRE FILE

The indexed file is unsuitable for exhaustive searches. When

required, an exhaustive index is used to search the entire file. A

brute force approach using such index would cost

TX = T F + (n-l)Tn (6.13)

H. REORGANIZATION OF FILE

Indexed files are not as dependent on reorganization as other

files. Reorganization is done to remove any poorly distributed

indexes. If the data file is also reorganized it would require

reading the old file, writing a new one and reconstructing the

indexes. Reconstruction of an index is done by reading the file and

collecting all the attributes then sorting them and building an index

from the sorted file. Time to reconstruct one index is

TYi = TX + Tsort(n') + -̂ 7" <one index> (6.14)

Time required to reorganize the data and all indexes is

Ty = 2 x T^ + aTy^ < data and indexes> (6.15)

34

VII. THE DIRECT FILE

The direct file is not an extension of the file organizations

seen earlier. In this organization the records are located by means

of an address obtained by performing a computation on the key

attribute of the record. The address thus obtained is a relative

address within the file. Access to the records is only through this

single key attribute. Records related to each other by key sequence

hardly appear in physical sequence. The space occupied by a record is

referred to as a slot in the direct file. Generally slots are grouped

together to form a bucket. The size of a bucket equals the size of a

block. In general, extra slots are provided while allocating file

space to accommodate insertion.

The procedure adopted to compute the address may be termed

deterministic, which generates unique addresses, or non-deterministic,

which generates mostly unique addresses but does not guarantee it.

Deterministic algorithms are difficult to construct and are not stable

with record insertions. On the other hand, when adopting

non-deterministic procedures different keys may sometimes generate the

same address. This is referred to as collision. Additional cost is

incurred when adopting non-deterministic procedures. The cost can be

minimized by grouping slots into buckets in the main file. The bucket

is searched first to identify an empty slot. If the bucket is full,

collision resolution is adopted to place the record.

35

A. COLLISION RESOLUTION

The two common strategies for resolving collisions are linear

search and separate overflow.

1. Linear Search. In this method successive blocks are searched

to find an empty slot. Since extra space is provided in the file an

empty slot will be found eventually. This method avoids additional

seek time but tends to cluster overflows.

2. Separate Overflow. In this method records that cause bucket

overflow are placed in a separate overflow file, with linkage from the

primary bucket. This would require an additional seek to locate the

overflow file but does not cluster overflows.

In the file analysis 'm' slots are provided for 'n' data records

(m > n). The number of slots per bucket varies depending on the

record size and block size. The overflow file is assumed to

accommodate 'o' records. A pointer is provided for each record to

allow linkage to the overflow file. The same entry can be used as a

marker to indicate a deleted record.

B. RECORD SIZE

If 'a' is the average number of attributes in the file and 'V' is

the average attribute size, the record size is given by

(m + o) (aV + P) <separate overflow>R n (7-1)

36

R = -|j-(aV + P) <open search >

C. RECORD FETCH

(7.2)

The time required to fetch a record is sum of a seek, latency and

a block fetch. If there is a collision, another block fetch is

required. The value is

Tp = s + r + btt +■ p(s 4- r + btt) (7.3)

where p is the probability of collision. The value of 'p' for a

single slot bucket is given by

p = < separate overflow>

p = -4- -■n— - < linear search >r 2 m — n

The value of 'p' for multi-slot buckets is fully discussed in Ref [4].

D. GET-NEXT RECORD

Since the records are placed randomly from the address obtained

from the key transformation algorithm, the get-next record is similar

to fetch record.

TN = Tp (7.4)

Tfj = s 4- r +- btt 4- p(s + r + btt) (7.5)

37

E. INSERT RECORD

When records are inserted, the primary bucket is fetched first.

The bucket is searched to locate an empty slot. If an empty slot is

found the record is inserted in the bucket. If not additional fetches

are required to find an empty slot. The probability that the initial

slot is filled, for a single slot bucket is given by

plu = 1 — en/m < separate overflow >

pl„ = — < linear search >r u m

For multiple slots per bucket the value of plu is given in Ref

[4]. The cost of insertion is the sum of the cost of finding a empty

slot in the initial fetch and the cost when it is full.

Tj = s + r + btt + Tj^ + (1 - plu) (s + r + btt) (7.6)

F. UPDATE RECORD

The time to update a record that does not change the key field is

sum of fetching a record and rewriting it with the updated fields. The

value is

TU = TF + Trw

Tjj = s + 3r + btt + p(s + r + btt) (7.7)

38

G. READ ENTIRE FILE

The direct file is not well suited for exhaustive reading. When

required the entire file address space is read including the overflow

file. The time to read exhaustively is

TX =(m + o) (7.8)

In case of linear search the term 'o', the size of the overflow

file, drops off.

H. REORGANIZATION OF FILE

Reorganization of a direct file is necessary if the number of

additions to the file has increased to the point where the density n/m

has exceeded design goals. More space 'm' has to be provided for the

reorganized file and the key-transformation algorithm needs to be

rewritten. Reorganization requires reading the file exhaustively and

loading the file back into new slots.

Ty = T x + T load (7.9)

Time for loading : The loading cost can be reduced by sorting

the file to be loaded. The key attribute of each record is transformed

to unique addresses by the key transformation algorithm. This address

is appended to each record. The records are then sorted by this

address. Sorted records are then loaded into the new file after

39

removing the address part which was appended earlier. Time to load is

^load = ^sort + ^

where Tsort is given by Eq.3.12 and Tx by Eq.7.8

40

VIII. SOFTWARE ORGANIZATION

A package, GENERIC, was developed to calculate the seven

performance parameters of the five file organizations. The package was

compiled and stored in the IBM 4341 system library at UMR. Anyone

with relevant EXEC files and permission can access the package from a

CMS environment. The procedure to access the package is explained in

file performance parameter manual available from computer science

department and attached as an Appendix B .

The language used for coding the program was PL/1. The reason for

choosing PL/1 was because the language provides different formats for

input and output, several builtin routines to calculate mathematical

functions and ease of error checking and control capabilities.

A. SOFTWARE MODULES

The main module displays the names of the five file organization

and passes the control to the file module that was called. Three

modules are associated with each of the five file organization. They

are the file input module, the file parameter calculation module and

the file result display module. Several other routines common to all

file modules, are used to calculate the blocking factor, block

transfer rate and the bulk transfer rate.

Values like the seek time, latency, transfer rate and gap size

are dependent on the disk device. The values for each different disk

device is kept separately in a file called DISK PARM. The user is

prompted to choose a disk device. The parameters for the device chosen

41

are read from the file. New devices can be tested by adding the

required values to the file.

B. ERROR CHECKING

For the program to behave as desired it is important that the

user provide correct and meaningful values. However, the package has

several error checking statements to check the input values and inform

the user of any illegal ones. It checks for type mismatch, value out

of range and run-time overflow errors. Also the program checks for

errors like a given record size exceeding the given block size. Most

of the errors are handled using PL/1 ON statements.

C. BATCH ACCESS

Additional work is needed to access the package in batch mode

[Appendix B]. The package expects the values to be placed in a file,

one value per line, starting in the first column. Since the nature and

the number of the input value may vary depending on the file

organization, the following procedure was adopted. The user will be

provided with five input file templates. The file name of each of them

is called INPUT and the filetype is one of PILE, SEQ, INDSEQ, IND and

DIR. Input values must be entered in these files starting at the first

column. A description is provided on the right side of the line to

indicate what value is required on the left side. The package can be

accessed through a NETSUB command from CMS. The results are sent back

to the user reader files.

42

D. INTERACTIVE ACCESS

In this mode the user is prompted to choose a file organization.

Then the user is asked to enter pertinent input values for the file

organization chosen. If an error occurs, the program displays an error

message and stops. Otherwise, the parameters are calculated and the

results are displayed along with the given input values.

43

IX. APPLICATIONS

This chapter discusses the effective use of the software package

as an application tool in a teaching and a research environment. It

should be borne in mind that the output times provided by the package

for a file design are average values. Also the package assumes that

the given file design under consideration conforms to the view

provided in earlier chapters. If the file organization design varies

slightly from the one provided, the package may require changes such

as addition or deletion of seek or latency times to tailor it to the

environment. A major advantage of the package is it provides an

environment for testing various file designs without going through the

laborious process of physically building the design. Also the input

parameters for the file can be changed and the behavior of the file

can be studied. In this way it acts as a simulation tool.

A. RESEARCH ENVIRONMENT

A large information systems stores its data as files. The

information system may be a simple single file system or a complex

database management system [4] involving multiple files. The choice of

a file organization depends on the kinds of retrieval to be performed.

Each file system application has diverse requirements which must be

met. Some examples are fast retrieval, efficient updates, and time to

reorganize the file. Sometimes a given design may be adopted to

conform to general requirements as compared to exceptions, like

compromising the time to update for time to fetch a record. After

noting the application systems requirements and constraints, the

package can be used as a tool to choose a file design.

44

The first step is to use the package to find the performance

parameters of a file design. Then the values produced can be checked

to see if they are within the specified requirements. The package can

then be used as a simulation tool to find the file design behavior

under different conditions like an increase in record size, block size

and file size. The decision to increase the block size may depend on

the size of the buffer available. The same procedure can be adopted

for other file organizations. The different values from file designs

would help in weighing the different costs and to choose the optimal

file design for a given application.

B. TEACHING ENVIRONMENT

Most information system and database design courses deal with

physical file design. The class is exposed to generic file designs.

However, it is difficult for the students to have an adequate feel for

the issues involved with theoretical exposure alone. The package can

be used as a tool by the students to gain a practical exposure to the

file design problem. With the help of the package, the user can

understand a file design problem better. The package would show the

user how a file design behaves under different conditions. In a

database design project, with the help of the package, the user can

provide a detailed report of the database physical file design

analysis.

45

X. CONCLUSION

A framework of five generic file organizations was provided. A

package to measure the performance parameters of the file

organizations for different storage devices was developed. The use of

such packages as a simulation tool in a research and teaching

environment was described. A listing of the program is provided in

Appendix C and a test run is provided in Appendix D.

The graphics support to the package is the next development to be

considered. Graphical interpretation of a file design, or data, is

much easier to understand than raw data itself. The support could

include showing in graphics the storage structure of the main file,

overflow file, chaining of records, building of indexes, and

propagation of an index split. Also provision can be made to generate

graphs from the output values provided by the package. These graphs

could show the effect of block size on fetch time for a file

organization. The graph can be overlaid with the same effect for a

different file organization.

The design can be extended to include multi-list file and can be

tested with a practical file design implementation like VSAM.

46

BIBLIOGRAPHY

1. Date, C.J., An Introduction to Database Systems. Fourth Edition,

Addision and Wesley, 1982.

2. Widerhold, Gio, Database Design. McGraw-Hill, 1983.

3. Comer, D. , "The Ubiquitous B-tree", ACM Computing Survey 11, No.

2, June 1979, pp.440-445.

4. Knuth, D.E., The art of Computer Programming. Vol 3: Sorting and

Searching, Addision and Wesley, 1973.

5. Tremblay, J.P. and Sorenson, P.G., An Introduction to Data

Structures With Applications. McGraw-Hill, 1976.

6. Martin, J., Computer Data-Base Organization. Prentice-Hall, 1975.

47

VITA

Sankarraman Subramanian was born on April 4,1960 in Madras,

India. He received his primary and secondary school education in Don

Bosco Matriculation school, Madras, India. In July 1978, he entered

Annamalai University, Chidambaram and received his Bachelor of

Engineering degree in Mechanical Engineering in July, 1983.

He has been enrolled in the Graduate school of the University of

Missouri-Rolla since August 1984 in the Department of Computer

Science. During this period of time he has held the position of

graduate research assistant in the Department of Computer Science and

Department of Electrical Engineering.

48

APPENDIX A

NOMENCLATURE

A

a

a'

B

b

btt

Bfr

G

m

n

o

P

P

R

r

SI

s

TF

T I

t n

^sort

Tu

average length of attribute name.

total number of attributes in a file.

average number of attributes in a record.

block size.

number of blocks.

block transfer time.

blocking factor.

gap size.

number of slots available in the file,

number of records in the file.

number of records that can be accomodated in the overflow

file.

space for pointer.

probability of collision.

space required to represent the record.

rotational latency time.

space provided for index.

average seek time for the device.

time to fetch a record.

time to insert a record.

time to get the next record.

time to sort the file.

time to update a record.

49

T x time to read the file.

t y time to reorganize the file.

t ’ bulk transfer rate.

V average length of the attribute.

w waste due to gaps per record.

X number of levels in an index-structure

y fanout ratio.

50

APPENDIX B

FILE PARAMETER MEASUREMENT USAGE NOTES

INTRODUCTION

This document is intended for the users who would like to find
out the performance parameters of the five generic file organizations
the pile file, the sequential file, the indexed-sequential file, the
indexed file and the direct file by accessing the package GENERIC
from their CMS account. The package can be run in batch only. Seven
quantitative measures are provided for each of the files. They are:

R the amount of storage required for a record.
Tp the time needed to fetch an arbitrary record from the file.
Tjyj the time to get the next record within the file.
Tj the time to update the file by inserting a record.
% the time to update the file by changing a record.
Tx the time needed for exhaustive reading of the entire file.
Ty the time needed for reorganization of the file.

INPUT

Six files will be sent to your VMA student account. Five of them
by the name INPUT PILE, INPUT SEQ, INPUT INDSEQ, INPUT IND and INPUT
DIR. Receive these files into your user mini-disk. You are required
to enter values in these input files. Choose the appropriate files
for entering data. For example if you want to find performance
parameter of pile file xedit INPUT PILE for entering data. All input
files contain a set of values starting on column 1 on the left and
description on the right indicating what these value stands for and
also the range of values accepted. For entering data to any of the
files just change values on the left side beginning in column 1. Do
not change the description on the right or the order in which values
appear. Meaningful data must be given. For example while entering
block size care must be taken to enter values that are within the
minimum and maximum range allowed for the device chosen and must also
be greater than the record size. The sixth file is named GENERIC
EXEC. Receive the file in your user disk.

51

The contents of the GENERIC EXEC file is shown below;

/* THIS IS AN EXAMPLE OF HOW TO RUN THE GENERIC PROGRAM */
'CP LINK C2816CSC 191 305 RR RETRY'
'ACC 305 T'
/* CHANGE FILETYPE AFTER INPUT IN THE NEXT LINE. FOLLOW IT WITH A' */
'EXEC GENERIC2 INPUT PILE A'
'REL 305'
'CP DET 305'

The output is send to your rdr. you can PEEK and NETPRT the rdr
file.

ACCESSING THE PACKAGE

Every time before submitting the job through NETSUB from CMS you
have to make one change in the GENERIC EXEC file. The ft in the line
'EXEC GENERIC2 INPUT ft A ’
is changed to one of these PILE, SEQ, INDSEQ, IND or DIR. Depending
on the ft the appropriate input values will read from the file. Now
to access the package type in from CMS

NETSUB GENERIC EXEC (SYS(EXECUTE) FILES(INPUT ft) RES(PLI)
where the filetype ft - may be PILE,SEQ, INDSEQ, IND or DIR. The ft
should match the one in GENERIC EXEC file.

In the following pages you will find input data required for
each file organization . We have followed that by defining a problem
for that file and have shown the results obtained by using the
package.

The following data are required for pile file model performance
parameter measurements. You have to enter the data in the file INPUT

OUTPUT

THE PILE FILE

PILE .

1
1024
100000
4

file type (1 .. 5) 1 for pile file
block size (bytes) (1..99999) (B)
of records in the main file (1..9999999) (n)
pointer size (1..99) (P)

52

10
20
25

avg # of attributes per record (1 ..99) (a')

10000
5000
3000
1

attribute_name length (bytes) (1..300) (A)
attribute value length (bytes) (1..300) (V)
it of inserts between reorganization (1..99999)
of deletes between reorganization (1..99999)
// of updates between reorganization (1.. 99999)
type of device (T..4)

1 for IBM 3380 Disk Pack
2 for IBM 2319 Disk Pack
3 for IBM 851 8" Floppy Disk
4 for IBM 9 Track Magnetic Tape

Example;

Consider a pile file with following data

a) Block Size = 1024 bytes.
b) Number of records = 100,000 varying length
c) Average number of attributes/record (a') = 10.
d) Average attribute name length = 20 bytes.
e) Average attribute value length = 25 bytes.
f) Average number of inserts between reorganization = 10,000 (rec)
g) Average number of deletes between reorganization = 5,000 (rec)
h) Average number of updates between reorganization = 3,000 (rec)
g) use IBM 3380 Disk pack

Calculate the seven measure of performance Tp.Tj^.Tj,

The program prints out the input data entered and then the seven measure
of performance. The output should look like this;

PILE FILE INPUT DATA

Block Size;
Total number of records in the main file;
Average # of attributes per record;
Average attribute_name length;
Average attribute_value Length;
Average // of inserts between reorganization;
Average # of deletes between reorganization;
Average // of updates between reorganization;

10.000 records
5.000 records
3.000 records

10 attr.
20 bytes
25 bytes

1,024 bytes
100,000 records

PILE FILE PERFORMANCE PARAMETERS

53

Blocking factor; 2.00 records

Block transfer rate (btt); 0.34 ms

Bulk transfer rate (t1); 963.11 char/ras

Record size; 470.00 bytes

File size; 47000000.00 bytes

t f 24400.10 ms

t n 24400.10 ms

TI 41.24 ms

T u 24457.94 ms

Tj£ (Serial read) 48800.20 ms

Tj£ (Sequential read) 626800.20 ms

Ty 106384.00 ms

THE SEQUENTIAL FILE

The following data are required for sequential file model performance
parameters measurements, parameter measurements. You have to enter the
data in the file INPUT SEQ.

2
1024
1 0 0 0 0 0
10
47
10000
5000
3000
1

file type (1 .. 5) 2 for sequential file
block size (bytes) (1..99999) (B)
of records in the main file (1..9999999) (n)
of attributes per record (1..99) (a)
attribute value length (bytes) (1..300) (V)
of inserts between reorganization (1..99999)
of deletes between reorganization (1..99999)
of updates between reorganization (1..99999)
type of storage device (1..4)

1 for IBM 3380 Disk Pack
2 for IBM 2319 Disk Pack
3 for IBM 851 8" Floppy Disk
4 for IBM 9 Track Magnetic Tape

Example:

Consider the same example given for the pile file with the following
changes.

54

a) Number of attributes per record = 10
b) Average attribute_value length = 47 bytes.

This makes record length = 470 bytes the same as that of pile file.

The program prints out the input data and then the seven measure
of performance. The output should look like this

SEQUENTIAL FILE INPUT DATA

Block Size;
Total number of records in the main file;
of attributes per record;
Average attribute_value Length;
Average # of inserts between reorganization
Average # of deletes between reorganization
Average # of updates between reorganization

SEQUENTIAL FILE PERFORMANCE PARAMETERS

1,024
100,000
10
47
10,000
5.000
4.000

bytes
records
attr.
bytes
records
records
records

Blocking factor; 2.00 records

Block transfer rate (btt); 0.34 ms

Bulk transfer rate (t'); 963.11 char/ms

Record size; 470.00 bytes

File size; 47000000.00 bytes

Overflow file size; 9870000.00 bytes

Tp (Search argument is not the key); 29524.12 ms

Tp (Search argument is the key); 5508.64 ms

t n 0.48 ms

Tl 51.58 ms

TU 29575.70 ms

TX 166100.00 ms

Tv 217300.00 ms

THE INDEXED SEQUENTIAL FILE

55

The following data are required for Indexed Sequential file model
performance parameters measurements. You have to enter the data in the
file INPUT INDSEQ.

3
512
100000
10
15
4
8000
5000
7000
2

file type (1 .. 5) 3 for index-sequential file
block size (bytes) (1..99999) (B)
of records in the main file (1..9999999) (n)
of attributes per record (1..99) (a)
attribute value length (bytes) (1..300) (V)
pointer size(1..99) (P)
of inserts between reorganization (1..99999)
of deletes between reorganization (1..99999)
of updates between reorganization (1..99999)
TYPE OF STORAGE DEVICE (1..4)

1 for IBM 3380 Disk Pack
2 for IBM 2319 Disk Pack
3 for IBM 851 8" Floppy Disk
4 for IBM 9 Track Magnetic Tape

Example;

Consider an indexed sequential file with a block size 512 bytes. The
records are of fixed length with average value length of 15 bytes and
10 attributes per record. Allow a pointer size of 4 bytes. Pointer field
is found in the record in the indexed level and in the records in the
main file(They act as links to overflow records to maintain the sequence
chain). Let the average number of inserts, deletes and updates be
8,000, 5,000 and 7,000 records.

Calculate the seven measure of performance.

The program prints out the input data and then the seven measure
of performance. The output should look like this

INDEXED SEQUENTIAL FILE INPUT DATA

Block Size; 512 bytes
Total number of records in the main file; 100,000 records
of attributes per record 10
Average attribute_value length; 15 bytes
Pointer Size; 4 bytes
Average # of inserts between reorganization; 8,000 records
Average # of deletes between reorganization; 5,000 records
Average # of updates between reorganization; 7,000 records

INDEXED SEQUENTIAL FILE PERFORMANCE PARAMETERS

56

Blocking factor; 3.00 records

Block transfer rate (btt) 1.64 ms

Bulk transfer rate (t1); 108.00 char/ms

Record size; 154.00 bytes

File size; 15400000.00 bytes

Overflow file size; 2310000.00 bytes

Index file size; 684032.00 bytes

t f 134.33 ms

t n 5.37 ms

T I 198.47 ms

T u 357.80 ms

T}r (Serial) 577403.96 ms

T^ (Sequential) 163981.48 ms

t y 740568.13 ms

THE INDEXED FILE

The following data are required for Indexed file model performance
parameters measurements. Enter the data in the file INPUT IND

4
512
100000
2
10
14
7
6
6
4
69
4
2

file type (1 .. 5)
block size (bytes) (1..99999) (B)
if of records in the main file (1..9999999) (n)
record format (1..2) 1 for fixed 2 for variable
avg if of attributes per record (1 ..99) (a')
total if of attributes in the file (1..99) (a)
attribute name length (bytes) (1..300) (A)
attribute value length (bytes) (1..300) (V)
index attribute length in index file (1..999) (V index)
pointer size (1..99) (P)
density of index file(50..100) (dens)
average if of attributes to be updated(1. . 99) (a update)
type of storage device (1..4)

1 for IBM 3380 Disk Pack
2 for IBM 2319 Disk Pack
3 for IBM 851 8" Floppy Disk
4 for IBM 9 Track Magnetic Tape

57

THE DIRECT FILE

The following data are required for Direct file model performance
parameters measurements. Enter the data in file INPUT DIR

5
1024
100000
150000
2
10
25
1

6

file type (1 .. 5)
block size (bytes) (1..99999) (B)
of records in the main file (1..9999999) (n)
of slots in the main file (1..9999999) (m)
collision resolution (1..2) l--0pen addr. 2--chaining.
attributes per record (1 ..999) (a)
attribute value length (bytes) (1..999) (V)
type of storage device (1..4)

1 for IBM 3380 Disk Pack
2 for IBM 2319 Disk Pack
3 for IBM 851 8" Floppy Disk
4 for IBM 9 Track Magnetic Tape

pointer size (1..99) (P) reqd. only on chained ovflw.

APPENDIX C

GENERIC SOFTWARE PACKAGE SOURCE CODE

^PROCESS OPTIONS MAR(2,72,1);
(SIZE): CALC:
PROCEDURE OPTIONS(MAIN);

/* MAIN PROCEDURE

DECLARE
(A_PRIME,
A,
A_UPD,
ATTR_LEN,
VALUE_SZ,
BLOCK_SZ,
VALUE_INDX_SZ) FIXED DECIMAL(11,2),

(REC_SZ,
BFR)
(PTR_SZ,
N,
M)
(OV_FLW_SZ,
NO_INSRT,
NO_DLTE,
NO_UPDTE,COLL_TYPE)
FILE_TYPE
DISP_TYPE

DECLARE (REC_FRMT,
DISK_TYPE)

FIXED DECIMAL(9,2),

FIXED DECIMAL(11,2),

FIXED DECIMAL(11,2)
FIXED DECIMAL(2),
FIXED DEC(l);

FIXED DEC(11,2);
DECLARE

WASTE
TRW
BTT
T PRIME

FIXED DECIMAL(9,2) ,
FIXED DECIMAL(8,2),
FIXED DECIMAL(9,2),
FIXED DECIMAL(7,2);

DECLARE
S
R
GAP
TRNSFR_RTE
DENSITY
SIZEF

FIXED DECIMAL(10,2),
FIXED DECIMAL(8,2),
FIXED DECIMAL(8,2),
FIXED DECIMAL(8,2),
FIXED DECIMAL(11,2),
BIT(l);

DECLARE INFILE STREAM FILE INPUT,
SYSIN STREAM FILE INPUT,
SYSPRINT PRINT FILE OUTPUT,
(LOG,LOG2,DEC,ABS,EXP,FLOOR,CEIL,ONSOURCE) BUILTIN

DCL FLAG CHAR(3);
ON ERROR

BEGIN;

59

ON ERROR SYSTEM;
IF FLAG = ’1' THEN

PUT FILE(SYSPRINT) LIST ('RECORD SIZE OF A SINGLE RECORD ' | |
'EXCEEDS BLOCK SIZE. THIS IS NOT POSSIBLE WITH UNSPANNED'||
' BLOCKING');

IF FLAG = '2' THEN
PUT FILE(SYSPRINT) LIST (' INPUT VALUE OUT OF RANGE');

IF FLAG = '3' THEN
PUT FILE(SYSPRINT) LIST (' # OF RECORDS + # NO OF INSERTS *||

'+ # OF DELETES IS NEGATIVE. ERROR');
IF FLAG = '4' THEN
PUT FILE(SYSPRINT) LIST ('# OF UPDATE ATTRIBUTES EXCEEDS '||

'TOTAL # OF ATTRIBUTES .’);
IF FLAG = '5' THEN
PUT FILE(SYSPRINT) LIST (’VALUE SIZE AND POINTER SIZE EXCEEDS '||

'BLOCK SIZE. INDEX FOR A RECORD CANNOT FIT IN A BLOCK.');
IF FLAG = '6' THEN
PUT FILE(SYSPRINT) LIST ('VALUE SIZE OF INDEX AND POINTER SIZE' | |

’ EXCEEDS BLOCK SIZE. INDEX FOR A RECORD CANNOT FIT IN A BLOCK.');
END;

ON CONVERSION BEGIN;
PUT FILE(SYSPRINT) LIST (’INVALID NUMERIC FIELD =',ONSOURCE);
EXIT;

END;
GET LIST (FILE_TYPE);
SELECT (FILE_TYPE);

(1) CALL E NTER_PILE_DATA;WHEN
WHEN
WHEN
WHEN (4)
WHEN

(2) CALL ENTER_SEQUEN_DATA;
(3) CALL ENTER_ISEQ_DATA;

CALL ENTER_INDXD_DATA;
CALL ENTER_DIRECT_DATA;(5)

OTHERWISE DO;
PUT SKIP LIST ('WRONG

END;
FILE_TYPE ENTERED’); EXIT;

END;
CALL DISK_PARM;
CALL RECORD_SZ;
IF (FILE_TYPE = 2) | (FILE_TYPE = 3) | (FILE_TYPE = 5) THEN

REC_FRMT = 1;
IF (FILE_TYPE = 1) THEN REC_FRMT = 2;
CALL BLKING_FACT_CALC((REC_FRMT),(BLOCK_SZ),BFR,(GAP).WASTE);
CALL BLOCK_TRNSFR_RTE_CALC(BTT,TRW,(R),(BLOCK_SZ),(TRNSFR_RTE));
CALL T_PRIME_CALC((REC_SZ),(WASTE),T_PRIME);
SELECT (FILE_TYPE);

WHEN (1) DO;
CALL DIS PLAY_PILE_DATA;
CALL PILE;

END;
WHEN (2) DO;

CALL DISPLAY_SEQ_DATA;
CALL SEQUENTIAL;

END;
WHEN (3) DO;

CALL DISPLAY_INDSEQ_DATA;
CALL INDEXED_SEQUENTIAL;

END;
WHEN (4) DO;

CALL DISPLAY_INDXD_DATA;
CALL INDEXED;

END;
WHEN (5) DO;

CALL DISPLAY_DIRECT_DATA;
CALL DIRECT;

END;
OTHERWISE

PUT LIST ('ERROR IN FILE TYPE');
END;

J vV vV A- vV '}% k vV vV 'A 'A ■< t vV vV A1 vV iV ■/» v* ■« vV /* vV <V'/»' *A vV v* 7 *« vV "A1 vV A" 'A1 "A11* <V «V 7* « »

** READ INPUT DATA FOR PILE FILE **
xy. . j ii-J.. j r . X .L.tm x .ju.r..r..jr■ .jr..j. jr.x .j l x .jl jljn j.,jNx.̂ i,.j , x j

ENTER_PILE_DATA : PROCEDURE;

GET FILE(SYSIN) EDIT(BLOCK_SZ) (COL(l), F(6));
CALL VALID(1,99999,BLOCK_SZ,'BLOCK SIZE ');
GET FILE(SYSIN) EDIT(N) (COL(1),F(8)) ;
CALL VALID(1,9999999,N,' NO OF RECORDS');
GET FILE(SYSIN) EDIT (PTR_SZ)(COL(1) ,F(3)) ;
CALL VALID (1,99,PTR_SZ,' POINTER SIZE');
GET FILE(SYSIN) EDIT(A_PRIME) (COL(1),F(4));
CALL VALID (1,99,A_PRIME AVERAGE # OF ATTRIBUTES’);
GET FILE(SYSIN) EDIT(ATTR_LEN) (COL(1),F(4)) ;
CALL VALID (1,300,ATTR_LEN,' ATTRIBUTE_NAME LENGTH');
GET FILE(SYSIN) EDIT (VALUE_SZ) (COL(1),F(4));
CALL VALID (1,300,VALUE_SZ,’ ATTR IBUTE_VALUE LENGTH');
GET FILE(SYSIN) EDIT(NO_INSRT) (COL(l),F(6)) ;
CALL VALID (1,99999,NO_INSRT,’ # OF INSERTS');
GET FILE(SYSIN) EDIT(NO_DLTE) (COL(1),F(6));
CALL VALID (1,99999, NO_DLTE, ' // OF DELETES');
GET FILE(SYSIN) EDIT(NO_UPDTE) (COL(1),F(6));
CALL VALID (1,99999,NO_UPDTE,' # OF UPDATES');
GET FILE (SYSIN) EDIT(DISK_TYPE) (COL(1),F(2));
CALL VALID(1,4,DISK_TYPE,'DISK TYPE');

END ENTER_PILE_DATA;

** READ INPUT DATA FOR SEQUENTIAL FILE **
•k-k-klcis-k-irk-it-k-k-k-k-k-itifk-kk k k k k -ir ifk itlrh -k M '-k -k -k iHlifk-k-k-k-k-k-k f

ENTER_SEQUEN_DATA : PROCEDURE;
GET FILE(SYSIN) EDIT(BLOCK_SZ) (COL(l), F(6));
CALL VALID(1,99999,BLOCK_SZ,'BLOCK SIZE ');
GET FILE(SYSIN) EDIT(N) (COL(1),F(8));
CALL VALID(1,9999999,N,’ NO OF RECORDS');
GET FILE(SYSIN) EDIT(A) (COL(1),F(4)) ;
CALL VALID (1,99,A,' TOTAL # OF ATTRIBUTES');
GET FILE(SYSIN) EDIT (VALUE_SZ) (COL(1),F(4));
CALL VALID (1,300,VALUE_SZ,' ATTRIBUTE_VALUE LENGTH');
GET FILE(SYSIN) EDIT(NO_INSRT) (COL(1),F(6));
CALL VALID (1,99999, NO_INSRT, ' // OF INSERTS');
GET FILE(SYSIN) EDIT(NO_DLTE) (COL(l),F(6));
CALL VALID (1,99999 ,NO_DLTE,' // OF DELETES');
GET FILE(SYSIN) EDIT(NO_UPDTE) (COL(l),F(6));

CALL VALID (1,99999,NO_UPDTE,' it OF UPDATES');
GET FILE (SYSIN) EDIT(DISK_TYPE) (COL(1),F(2));
CALL VALID(1,4,DISK.TYPE,'DISK TYPE’);

END ENTER_SEQUEN_DATA;

** READ INPUT DATA FOR INDEXED SEQ FILE **
^ ^ v V ^ ^ ^ - - * - ^ - - t̂ - - * f * . t . » * * * * * ^ j

ENTER_ISEQ_DATA : PROCEDURE;
GET FILE(SYSIN) EDIT(BLOCK_SZ) (COL(l), F(6));
CALL VALID(1,99999,BLOCK_SZ,'BLOCK SIZE ');
GET FILE(SYSIN) EDIT(N) (COL(1),F(8));
CALL VALID(1,9999999,N,' NO OF RECORDS');
GET FILE(SYSIN) EDIT(A) (COL(1),F(4));
CALL VALID (1,99,A,' TOTAL # OF ATTRIBUTES');
GET FILE(SYSIN) EDIT (VALUE_SZ) (COL(1),F(4));
CALL VALID (1,300,VALUE_SZ,' ATTRIBUTE.VALUE LENGTH');
GET FILE(SYSIN) EDIT (PTR.SZ)(COL(1),F(3));
CALL VALID (1,99,PTR.SZ,’ POINTER SIZE');
GET FILE(SYSIN) EDIT(NO.INSRT) (COL(l),F(6));
CALL VALID (1,99999,NO_INSRT,' it OF INSERTS’);
GET FILE(SYSIN) EDIT(NO_DLTE) (COL(l),F(6));
CALL VALID (1,99999,NO_DLTE,' # OF DELETES');
GET FILE(SYSIN) EDIT(NO.UPDTE) (COL(1),F(6));
CALL VALID (1,99999 ,NO_UPDTE, ' it OF UPDATES');
GET FILE (SYSIN) EDIT(DISK_TYPE) (COL(l),F(2));
CALL VALID(1,4,DISK_TYPE,'DISK TYPE');

END ENTER.ISEQ_DATA;
/******** .V*:*^******^*************************

READ INPUT DATA FOR INDEXED FILE

ENTER_INDXD.DATA : PROCEDURE;
GET FILE(SYSIN) EDIT(BLOCK.SZ) (COL(l), F(6));
CALL VALID(1,99999,BLOCK.SZ,'BLOCK SIZE ’);
GET FILE(SYSIN) EDIT(N) (COL(1),F(8));
CALL VALID(1,9999999,N,' NO OF RECORDS');
GET FILE (SYSIN) EDIT(REC_FRMT) (COL(1),F(2));
CALL VALID (1,2,REC.FRMT,' RECORD FORMAT');
GET FILE(SYSIN) EDIT(A.PRIME) (COL(1),F(4)) ;
CALL VALID (1,99,A_PRIME, ' AVERAGE it OF ATTRIBUTES');
GET FILE(SYSIN) EDIT(A) (COL(1),F(4));
CALL VALID (1,99,A,' TOTAL it OF ATTRIBUTES’);
GET FILE(SYSIN) EDIT(ATTR.LEN) (COL(1),F(4));
CALL VALID (1,300,ATTR_LEN,’ ATTRIBUTE.NAME LENGTH');
GET FILE(SYSIN) EDIT (VALUE.SZ) (COL(1),F(4));
CALL VALID (1,300,VALUE_SZ,' ATTRIBUTE.VALUE LENGTH');
GET FILE(SYSIN) EDIT (VALUE.INDX.SZ) (COL(l),F(4));
CALL VALID (1,999.VALUE.INDX.SZ,' ATTRIBUTE.VALUE LENGTH');
GET FILE(SYSIN) EDIT (PTR.SZ) (COL(1),F(3));
CALL VALID (1,99,PTR.SZ,’ POINTER SIZE’);
GET FILE(SYSIN) EDIT (DENSITY) (C0L(1),F(4));
CALL VALID (50,100,DENSITY,' DENSITY ');
GET FILE(SYSIN) EDIT(A.UPD) (COL(1),F(4));
CALL VALID (1,999,A.UPD,’ ATTRIBUTE UPDATE');

GET FILE (SYSIN) EDIT(DISK.TYPE) (COL(1),F(2));
CALL VALID(1,4,DISK_TYPE,'DISK TYPE');

62

END ENTER_INDXD_DATA;

READ INPUT DATA FOR DIRECT FILE
.J.J-4 .J—»__I—J—L.JU.I..1.J.J.J.********* j

ENTER_DIRECT_DATA : PROCEDURE;
GET FILE(SYSIN) EDIT(BLOCK_SZ) (COL(l), F(6));
CALL VALID(1,99999,BLOCK_SZ,'BLOCK SIZE ');
GET FILE(SYSIN) EDIT(N) (COL(1),F(8));
CALL VALID(1,9999999,N,’ NO OF RECORDS');
GET FILE(SYSIN) EDIT(M) (COL(1),F(8));
CALL VALID(1,9999999,M,' NO OF RECORDS');
GET FILE (SYSIN) EDIT(COLL_TYPE) (COL(1),F(2));
CALL VALID (1,2,COLL_TYPE, ' COLLISION TYPE');
GET FILE(SYSIN) EDIT(A) (COL(1),F(4));
CALL VALID (1,99,A,' TOTAL # OF ATTRIBUTES');
GET FILE(SYSIN) EDIT (VALUE_SZ) (COL(1),F(4));
CALL VALID (1,300,VALUE_SZ,’ ATTRIBUTE_VALUE LENGTH’);
GET FILE (SYSIN) EDIT(DISK_TYPE) (COL(1),F(2));
CALL VALID(1,4,DISK_TYPE,'DISK TYPE’);
IF COLL_TYPE = 2 THEN

DO;
GET FILE(SYSIN) EDIT (PTR_SZ) (SKIP(5),COL(1),F(3));
CALL VALID (1,99,PTR_SZ,' POINTER SIZE');

END;
END ENTER_DIRECT_DATA;

** CHECK RANGE OF INPUT DATA **

VALID: PROCEDURE (LBOUND,HBOUND,VALUE, VAR);
DCL (HBOUND,

VALUE,
LBOUND) FIXED DECIMAL(11,2),
VAR CHAR(*) ;

IF (VALUE < LBOUND) | (VALUE > HBOUND) THEN
DO;

FLAG = ' 2' ;
PUT LIST (VAR);
SIGNAL ERROR;

END;
END;
/***
** GET DISK PARAMETERS FROM FILE
**
DISK_PARM : PROCEDURE;
DECLARE TEMP FIXED DEC(2,0);

GET FILE (INFILE) EDIT (TEMP) (COL(l),F(1,0));
DO WHIIEMPDJSK_TYPE

GET FILE (INFILE) EDIT (TEMP) (C0L(1),F(1,0));
END;
GET FILE(INFILE) EDIT (S,R,GAP,TRNSFR_RTE) (COL(3),F(10,2)

COL(15),F(8,2),COL(25),F(8,2),COL(35),F(8,2));
END DISK_PARM;
** DISPLAY PILE INPUT DATA **

63

DISPLAY_PILE_DATA : PROCEDURE;
PUT SKIP(2) FILE(SYSPRINT) EDIT(*PILE FILE INPUT DATA') (C0L(20),A);
PUT SKIP(O) FILE(SYSPRINT) EDIT('_____________________ ') (C0L(20),A);

PUT FILE(SYSPRINT) SKIP(3) EDIT('BLOCK SIZE: ',BLOCK_SZBYTES')
(COL(10),A,COL(60),P 'ZZZ,ZZ9',X(1),A);

PUT SKIPC2) FILE(SYSPRINT) EDIT('TOTAL NUMBER OF RECORDS ',
'IN THE MAIN FILE:’,N,'RECORDS’) (COL(10),A,A,COL(60),P'Z,ZZZ,ZZ9',

X(1),A);
IF (REC_FRMT = 1) THEN
PUT SKIP(2)FILE(SYSPRINT) EDIT('RECORD T Y P E : F I X E D LENGTH RECORDS’)

(COL(10),A,COL(65),A);
ELSE
PUT SKIP(2)FILE(SYSPRINT) EDIT('RECORD TYPE:’,
'VARYING LENGTH RECORDS') (COL(IO),A,C0L(65),A);

IF REC_FRMT = 2 THEN
PUT SKIP(2) FILE(SYSPRINT) EDIT(' POINTER SIZE: ',PTR_SZ,'BYTES')

(COL(10),A,COL(60),F(3),X(1),A);
PUT SKIP(2) FILE(SYSPRINT) EDIT('AVERAGE # OF ATTRIBUTES PER RECORD:’,

A_PRIME) (COL(10),A,COL(60),P ’ZZZ,ZZ9 ’);
PUT FILE(SYSPRINT) EDIT(’AVERAGE ATTRIBUTE_NAME LENGTH:’,ATTR_LEN,
’BYTES’) (SKIP(2),COL(10),A,COL(60),P'ZZZ,ZZ9’,X(1),A);
PUT FILE(SYSPRINT) EDIT(’AVERAGE ATTRIBUTE_VALUE LENGTH:',VALUE_SZ,
'BYTES') (SKIP(2),COL(10),A,COL(60),P'ZZZ,ZZ9' ,X(1),A);
PUT FILE(SYSPRINT) EDIT ('AVERAGE NUMBER OF INSERTS BETWEEN '||
'REORGANIZATION',NO_INSRT) (SKIP(2),COL(10),A,COL(60),P 'ZZZ,ZZ9');
PUT FILE(SYSPRINT) EDIT ('AVERAGE NUMBER OF DELETES BETWEEN '||
'REORGANIZATION',NO_DLTE) (SKIP(2),COL(10),A,COL(60),P ’ZZZ,ZZ9’);
PUT FILE(SYSPRINT) EDIT ('AVERAGE NUMBER OF UPDATES BETWEEN '||
'REORGANIZATION',NO_UPDTE) (SKIP(2),COL(10),A ,COL(60),P 'ZZZ,ZZ9');

PUT PAGE FILE(SYSPRINT);
END DIS PLAY_PILE_DATA;
/**
** DISPLAY SEQUENTIAL FILE INPUT DATA **
* * * * * * * * A ,* * * * * * * '* * * * * * * " * * * * * * * V r * " * * * * * * '* * 'A ^ r * * '* '* * * * * j

DISPLAY_SEQ_DATA : PROCEDURE;
PUT SKIP(2) FILE(SYSPRINT) EDIT('SEQUENTIAL FILE INPUT DATA')
(COL(20),A);
PUT SKIP(O) FILE (SYSPRINT) EDIT('____________________________')
(C0L(20),A);
PUT FILE(SYSPRINT) SKIP(3) EDIT('BLOCK SIZE: ',BLOCK_SZ,'BYTES')

(COL(10),A,COL(60),P'ZZZ,ZZ9',X(1),A);
PUT FILE(SYSPRINT) SKIP(2) EDIT('TOTAL NUMBER OF RECORDS ',
'IN THE MAIN FILE:',N,'RECORDS') (COL(10),A,A,COL(60),P 'Z,ZZZ,ZZ9',

X(3),A);
PUT FILE(SYSPRINT) SKIP(2) EDIT(' if OF ATTRIBUTES PER RECORD',

A) (COL(10),A,COL(60),P'ZZZ,ZZ9');
PUT FILE(SYSPRINT) EDIT('AVERAGE ATTRIBUTE_VALUE LENGTH:',VALUE_SZ,
'BYTES') (SKIP(2),COL(10),A,C0L(60),P'ZZZ,ZZ9’,X(3),A);
PUT FILE(SYSPRINT) EDIT ('AVERAGE NUMBER OF INSERTS BETWEEN '||
’REORGANIZATION',NO_INSRT) (SKIP(2),COL(10),A,C0L(60),P'ZZZ,ZZ9');
PUT FILE(SYSPRINT) EDIT ('AVERAGE NUMBER OF DELETES BETWEEN '||
'REORGANIZATION',NO_DLTE) (SKIP(2),COL(10),A,COL(60),P' ZZZ,ZZ9');
PUT FILE(SYSPRINT) EDIT ('AVERAGE NUMBER OF UPDATES BETWEEN ’||
'REORGANIZATION',NO_UPDTE) (SKIP(2),COL(10),A,COL(60),P'ZZZ,ZZ9');

PUT PAGE FILE(SYSPRINT);

64

END DISPLAY_SEQ_DATA;

** DISPLAY IND SEQ FILE INPUT DATA
i V A i V < V « 5 > V J i) V V i « V V » v * v V « V V * « i . J — I— L X J — ,-J----LJ.J.J__17
DISPLAY_INDSEQ_DATA : PROCEDURE;
PUT SKIP(2) FILE(SYSPRINT) EDIT('INDEXED SEQUENTIAL FILE INPUT DATA')
(C0L(20),A);
PUT SKIP(O) FILE (SYSPRINT) EDIT('____________________________________ ')
(C0L(20),A);
PUT FILE(SYSPRINT) SKIP(3) EDIT(’BLOCK SIZE: ’,BLOCK_SZBYTES')

(COL(10),A,C0L(60),P'ZZZ,ZZ91,X(1),A);
PUT FILE(SYSPRINT) SKIP(2) EDIT('TOTAL NUMBER OF RECORDS ',
’IN THE MAIN F I L E , N , 'RECORDS') (COL(10),A,A,COL(60),P 'Z ,ZZZ,ZZ9',

X(1),A);
PUT FILE(SYSPRINT) SKIP(2) EDIT(' # OF ATTRIBUTES PER RECORD’,

A) (COL(10),A,COL(60),P'ZZZ,ZZ9');
PUT FILE(SYSPRINT) EDIT(’AVERAGE ATTRIBUTE_VALUE L E N G T H V A L U E _ S Z ,
'BYTES') (SKIP(2),COL(10),A,COL(60),P'ZZZ,ZZ9',X(3),A);
PUT FILE(SYSPRINT) SKIP(2) EDIT(’ POINTER SIZE: ',PTR_SZ,’BYTES')

(COL(10),A,C0L(6Q),F(3),X(3),A);
PUT FILE(SYSPRINT) SKIP(2)EDIT (’AVERAGE NUMBER OF INSERTS 'j|
’BETWEEN REORGANIZATION’,NO_INSRT) (COL(10),A,COL(60),P ’ZZZ,ZZ9');
PUT FILE(SYSPRINT) SKIP(2) EDIT ('AVERAGE NUMBER OF DELETES '||
’BETWEEN REORGANIZATION',NO_DLTE) (COL(10),A,COL(60),P’ZZZ,ZZ9');
PUT FILE(SYSPRINT) SKIP(2) EDIT ('AVERAGE NUMBER OF UPDATES '||
'BETWEEN REORGANIZATION',NO_UPDTE) (COL(10),A ,COL(60),P 'ZZZ,ZZ9') ;

PUT PAGE FILE(SYSPRINT);
END DISPLAY_INDSEQ_DATA **

** DISPLAY INDEXED INPUT DATA
**********^
DISPLAY_INDXD_DATA : PROCEDURE;
PUT SKIP(2) FILE(SYSPRINT) EDIT(’INDEXED FILE INPUT DATA')
(C0L(20),A);
PUT SKIP(O) FILE(SYSPRINT) EDIT('________________________ ’)
(C0L(20),A);
PUT FILE(SYSPRINT) SKIP(3) EDIT('BLOCK SIZE: ',BLOCK_SZ,'BYTES')

(COL(10),A,COL(55),P'ZZZ,ZZ9',X(1),A);
PUT FILE(SYSPRINT) SKIP(2) EDIT('TOTAL NUMBER OF RECORDS ',
'IN THE MAIN FILE:',N,'RECORDS') (COL(10),A,A,COL(55),P'Z,ZZZ,ZZ9',

X(1),A);
IF REC_FRMT = 1 THEN

PUT FILE(SYSPRINT) EDIT('RECORD T Y P E : F I X E D LENGTH RECORDS ’)
(SKIP(2),COL(10),A,COL(55),A);

ELSE
PUT FILE(SYSPRINT) EDIT('RECORD T Y P E : V A R Y I N G LENGTH RECORDS ')
(SKIP(2),COL(10),A,COL(55),A);
PUT FILE(SYSPRINT) SKIP(2) EDIT(' POINTER SIZE: ',PTR_SZ,'BYTES')

(COL(10),A,COL(55),F(3),X(1),A);
PUT FILE(SYSPRINT) SKIP(2) EDIT('AVERAGE # OF ATTRIBUTES PER RECORD:',

A_PRIME) (COL(10),A,COL(55),P'ZZZ,ZZ9');
PUT FILE(SYSPRINT) SKIP(2) EDIT('TOTAL # OF ATTRIBUTES IN THE FILE:',

A) (COL(10),A,COL(55),P'ZZZ,ZZ9');
PUT FILE(SYSPRINT) EDIT('AVERAGE ATTRIBUTE_NAME L E N G T H A T T R _ L E N ,
'BYTES') (SKIP(2),C0L(10),A,C0L(55),P’ZZZ,ZZ9',X(3),A);

65

PUT FILE(SYSPRINT) EDIT(’AVERAGE ATTRIBUTE_VALUE LENGTH:',VALUE_SZ,
'BYTES') (SKIP(2),COL(10),A,COL(55),P 'ZZZ,ZZ9' ,X(3),A);
PUT FILE(SYSPRINT) SKIP(2) EDIT('AVERAGE LENGTH OF INDEX ATTRIBUTE:',
VALUE_INDX_SZ,'BYTES’) (COL(10),A,COL(55),P 'ZZZ,ZZ9',X(3),A);

PUT FILE(SYSPRINT) SKIP(2) EDIT('AVERAGE # OF UPDATE ATTRIBUTES: ',
A_UPD) (COL(10),A ,COL(55),P 'ZZZ,ZZ9 ’) ;

PUT FILE(SYSPRINT) SKIP(2) EDIT('DENSITY OF INDEX FILE: ',
DENSITY,’%') (COL(10),A,COL(55),P'ZZZ,ZZ9' ,X(1) ,A);

PUT PAGE FILE(SYSPRINT);
END DISPLAY_INDXD_DATA;
y***********************^****************fr
** DISPLAY DIRECT INPUT DATA **
****»**«m*********A‘*******^**««********«** j
DISPLAY_DIRECT_DATA : PROCEDURE;
PUT SKIP(2) FILE(SYSPRINT) EDIT(’DIRECT FILE INPUT DATA’)

(COL(20),A);
PUT SKIP(O) FILE(SYSPRINT) EDIT('________________________ ’)
(COL(20),A);
PUT FILE (SYSPRINT) SKIP(3) EDIT('BUCKET SIZE: ',BLOCK_SZ,’BYTES')

(COL(10),A,COL(55),P'ZZZ,ZZ9',X(1),A);
PUT FILE(SYSPRINT) SKIP(2) EDIT('TOTAL NUMBER OF RECORDS ’,
'IN THE MAIN FILE:’,N,'RECORDS') (COL(10),A, A,COL(55),P'Z,ZZZ,ZZ9’,

X(1),A);
PUT FILE(SYSPRINT) EDIT('TOTAL NUMBER OF SLOTS FOR THE RECORDS '||
’IN THE MAIN FILE:’,M,’RECORDS’) (SKIP(2),COL(10),A, COL(55),

P ’Z,ZZZ,ZZ9’,X(1),A);
IF COLL_TYPE= 1 THEN
PUT FILE(SYSPRINT) EDIT(’COLLISION RESOLUTION TYPE’,’OPEN ADDRESSING1)

(SKIP(2),COL(10),A,COL(55) , A) ;
ELSE
PUT FILE(SYSPRINT) EDIT('COLLISION RESOLUTION TYPE:','CHAINED ACCESS')

(SKIP(2),COL(10),A,COL(55),A) ;
PUT FILE(SYSPRINT) EDIT('# OF ATTRIBUTES PER RECORD:',

A) (SKIP(2),COL(IO),A,COL(55),P'ZZZ.ZZ9') ;
PUT FILE(SYSPRINT) EDIT('AVERAGE ATTRIBUTE_VALUE LENGTH:',VALUE_SZ,
'BYTES') (SKIP(2),COL(10),A,COL(55),P'ZZZ,ZZ9' ,X(1),A);
IF COLL_TYPE = 2 THEN

PUT FILE(SYSPRINT) EDIT(' POINTER SIZE: ',PTR_SZ,'BYTES')
(SKIP(2),COL(10),A,COL(55),F(3),X(1),A);

END DIS PLAY_DIRE CT_DATA;
/*
/* DISPLAY BTT,BFR,T_PRIME VALUES */

DISP_COMMON_DATA: PROCEDURE;
FMT: FORMAT(SKIP(2),COL(10),A,COL(55),F(15,2),X(1),A);
PUT SKIP(l) EDIT ('BLOCKING FACTOR: ',BFR,'RECORDS’) (R(FMT));
PUT EDIT ('BLOCK TRANSFER RATE (BTT): ’,BTT,’MS') (R(FMT));
PUT EDIT('BULK TRANSFER RATE (T PRIME): ',T_PRIME,'CHAR/MS’) (R(FMT))
END DISP_COMMON_DATA;

/* RECORD SIZE MODULE */

RECORD_SZ: PROCEDURE;
IF (FILE_TYPE = 1) | (FILEJTYPE = 4)
THEN

66
REC_SZ = A_PRIME * (ATTR_LEN + VALUE_SZ +2);

IF (FILE_TYPE = 2) | (FILE_TYPE = 3)
THEN

REC_SZ = A * VALUE_SZ;
IF (FILE_TYPE = 5) THEN

IF COLL_TYPE = 1 THEN
REC_SZ = A * VALUE_SZ ;
ELSE
REG_SZ = A * VALUE_SZ + PTR_SZ;

END RECORD_SZ;

BLOCK TRANSFER RATE MODULE

B LOCK_TRNSFR_RTE_CALC:
PROCEDURE(BTT,TRW,R ,BLOCK_SZ,TRNSFR_RTE);

DECLARE
BTT FIXED DECIMAL(9,2) ,
BLOCK_SZ FIXED DECIMAL(7),
TRW FIXED DECIMAL(8,2),
TRNSFR_RTE FIXED DECIMAL(8,2),
R FIXED DECIMAL(8,2);

BTT = BLOCK_SZ / TRNSFR_RTE;
TRW = 2 * R ; /* FOR NOW*/
END BLOCK_TRNSFR_RTE_CALC;

v********** j
/* BLOCKING FACTOR MODULE */
j ***i
BLKING_FACT_CALC:

PROCEDURE(REC_FRMT,BLOCK_SZ,BFR,GAP, WASTE) ;

DECLARE
REC_FRMT FIXED DECIMAL(l),
BFR FIXED DECIMAL(9,2),
BLOCK_SZ FIXED DECIMAL(7),
WASTE FIXED DECIMAL(9,2),
GAP FIXED DECIMAL(4);

IF REC_FRMT = 1 THEN DO;
BFR = FLOOR(BLOCK_SZ / REC_SZ);
IF BFR <= 0 THEN
DO;
FLAG = *1* ;
SIGNAL ERROR;

END;
WASTE = GAP / BFR;

END;
ELSE DO;
BFR = FLOOR((BLOCK_SZ - (0.5 * REC_SZ)) / (REC_SZ + PTR_SZ));
IF BFR <= 0 THEN

DO;
FLAG = ’ 1’ ;
SIGNAL ERROR;

END;
WASTE = PTR_SZ + (0.5 * REC_SZ + GAP) /BFR;

END;
END BLKING_FACT_CALC;

T_PRIME_CALC:
PROCEDURE(REC_SZ,WASTE,T_PRIME);
DECLARE

REC_SZ FIXED DECIMAL(6),
WASTE FIXED DECIMAL(5,2),
T_PRIME FIXED DECIMAL(7,2);

T_PRIME = 0.5 * TRNSFR_RTE * (REC_SZ / (REC_SZ + WASTE))
END T_PRIME_CALC;

t* ******** ****̂ ;

•***■
SORT MODULE
* A <V AA A A A A A/*

j n*V A 'A- A A

SORT: PROCEDURE(NN,BFR,BTT)
RETURNS (FIXED DECIMAL (15,2));

DECLARE NN FIXED DECIMAL(11,2),
BFR FIXED DECIMAL(9,2),
B FIXED DECIMAL(8),
BTT FIXED DECIMAL(9,2);

DECLARE N FIXED DECIMAL(8);
N = NN;
B = CEIL(N / BFR);
RETURN (2 * B * BTT * (1 + CEIL(LOG2 (B))));
END SORT;
j * h * * * * * * * * * * * * * * * * * * ■ r * * * V :**■ r**V
** PILE FILE CALCULATIONS

***/
*/

***/

** ***
**

PILE: PROCEDURE;
DECLARE

(TF,
TN,
TI,
TU,
TXSE,
TXSQ,
TY,

FILE._SZ) FIXED DECIMAL (15,2);
DECLARE 0 FIXED DEC(7),

D FIXED DEC(7),
NNEW FIXED DEC(7);

REC_SZ = A_PRIME * (ATTR_LEN + VALUE_SZ + 2);
FILE_SZ = N * REC_SZ;
TF = 0.5 * N * REC_SZ / T_PRIME;
TN = TF;
TI = S + R + BTT + TRW;
TU = TF + TRW + TI;
TXSE = 2 * TF;
TXSQ = SORT(N,BFR,BTT) + TXSE;

IF ((N + NO_INSRT- NO_DLTE) < 1) THEN
DO;
FLAG = ’4';
SIGNAL ERROR;

END;
0 = NO_INSRT + NO_UPDTE;
D = NO_UPDTE + NO_DLTE;
T Y = (N + O + N + O - D) * REC_SZ / T_PRIME;

CALL PILE_DISP;
RETURN;

** PILE RESULTS DISPLAY **

PILE_DISP: PROCEDURE;
PUT SKIP(2) EDIT ('PILE FILE PERFORMANCE PARAMETERS') (C0L(20),A)
PUT SKIP(O) EDIT ('__________________________________ ') (COL(20) , A)
CALL DISP_COMMON_DATA;
RFMT: FORMAT(COL(10),A,COL(55),F(15,2),X(1),A) ;
PUT SKIP(2) EDIT ('RECORD SIZE: ',REC_SZ,'BYTES') (R(RFMT));
PUT SKIP(2) EDIT (’FILE SIZE: ',FILE_SZ,’BYTES') (R(RFMT));
PUT SKIP(2) EDIT ('TF ',TF,'MS') (R(RFMT));
PUT SKIP(2) EDIT ('TN',TN,'MS') (R(RFMT));
PUT SKIP(2) EDIT ('TI',TI,'MS*) (R(RFMT));
PUT SKIP(2) EDIT (*TU',TU,'MS') (R(RFMT));
PUT SKIP(2) EDIT (*TX (SEQUENTIAL READ)',TXSE, 'MS') (R(RFMT));
PUT SKIP(2) EDIT ('TX (SERIAL READ)’,TXSQ,'MS')

(R(RFMT));
PUT SKIP(2) EDIT ('TY',TY,'MS’) (R(RFMT));
END PILE_DISP;
END PILE;
/•
* SEQUENTIAL FILE CALCULATIONS

t***- t*****-**- t - j — i — i \ 7 > T C 4 'I
SEQUENTIAL: PROCEDURE;

DECLARE
(TF1,
TF2,
TN ,
TU,
TI,
TX,
TY,
FILE_SZ,
0_FILE_SZ)

declare
0_N
N_NEW
REC_S Z

REC_SZ = A * VALUE_SZ;
FILE_SZ = N * REC_SZ;
IF ((N + N0_INSRT - N0_DLTE) < 1) THEN

DO;
SIZEF = 'l'B;
SIGNAL ERROR;

END;

FIXED DEC(15,2);

FIXED DECIMAL (11,2),
FIXED DECIMAL (9),
FIXED DECIMAL (7);

69

0_N = NO_INSRT + NOJDLTE + 2 * NO_UPDTE;
0_FILE_SZ = 0_N * REC_SZ;
/* WHEN SEARCH ARGUMENT IS NOT THE KEY */
TF1 = 0.5 * (N + 0_N) * (REC_SZ / T_PRIME);
/* WHEN SEARCH ARGUMENT IS THE KEY */

TF2 = (LOG2CN / BFR) * (S + R + BTT)) + 0.5 * (0_N) *
(REC_SZ / T_PRIME);

TN = REC_SZ / T_PRIME;
TX = SORT(0_N, BFR,BTT) + ((N + 0_N) * REC_SZ / T_PRIME);
N_NEW = N + NO_INSRT - NO_DLTE;
TY = S0RT(0_N,BFR,BTT) + (N + 0_N + N_NEW) * REC_SZ / T_PRIME;
/* INSERTION TAKES PLACE IN THE LOG FILE ONLY. */
TI = S + R + BTT + TRW + TY / 0_N ;
TU = TF1 + TI;
CALL SEQ_RES_DISP;
RETURN;

/**** :*** ****** S r * * * * * * * * * * * * '

SEQUENTIAL FILE RESULTS DISPLAY
********* 7

SEQ_RES_DISP: PROCEDURE;
RFMT: FORMAT(COL(10),A,COL(55),F(15,2),X(1),A);
PUT SKIP(2) EDIT ('SEQUENTIAL FILE PERFORMANCE PARAMETERS')

(COL(20),A);
PUT SKIP(O) EDIT ('__ ')

(COL(20),A);
CALL DISP_COMMON_DATA;
PUT SKIP(2) EDIT ('RECORD SIZE: ',REC_SZ,'BYTES') (R(RFMT));
PUT SKIP(2) EDIT ('FILE SIZE: ',FILE_SZ,'BYTES') (R(RFMT));
PUT SKIP(2) EDIT('OVERFLOW FILE SIZE: ’,0_FILE_SZ,'BYTES') (R(RFMT));
PUT SKIP(2) EDIT ('TF (SEARCH ARGUMENT IS NOT THE KEY): '.TFl/MS')
(R(RFMT));
PUT SKIP(2) EDIT ('TF (SEARCH ARGUMENT IS THE KEY): ’,TF2,’MS')
(R(RFMT));
PUT SKIP(2) EDIT (’TN
PUT SKIP(2) EDIT ('TI
PUT SKIP(2) EDIT ('TU
PUT SKIP(2) EDIT ('TX
PUT SKIP(2) EDIT ('TY
END SEQ_RES_DISP;
END SEQUENTIAL;

',TN,’MS') (R(RFMT));
',TI,'MS') (R(RFMT));
',TU,'MS') (R(RFMT));
’,TX,’MS’) (R(RFMT));
',TY,'MS') (R(RFMT));

** INDEXED SEQUENTIAL CALCULATIONS

INDEXED_SEQUENTIAL
DECLARE
FAN_OUT
NO_OF_LVLS
(0_PF,
N_F,

P_OF_OV)
(SI,
rec_sz,
REC_TOT)
0_N

DECLARE

PROCEDURE;

FIXED DEC(7),
FIXED DECIMAL(3),

FLOAT DEC(6),

FIXED DECIMAL(15,2),
FIXED DEC(10,2);

70

(INDEX,
TOT_INDEX,
INDEX_BLKS) FIXED DECIMAL(8),
0_PRIME FIXED DEC(8,2);

DECLARE
(TF,TFO,TFC,TFM,
TN,
TI,
TU,
TXSQ,TXSE,
TY,
0_FILE_SZ,
FILE_SZ) FIXED DEC(15,2);

0_N = NO_INSRT + NO_UPDTE;
FAN_OUT = FLOOR(BLOCK_SZ / (VALUE_SZ + PTR_SZ));
IF FAN_OUT = 0 THEN

DO;
FLAG = '5’;
SIGNAL ERROR;

END;
INDEX = CEIL(N / BFR); /* # OF INDEX ENTRIES IN LEVEL 1 */
INDEX_BLKS = CEIL(INDEX / FAN_OUT); /* SPACE FOR ENTRIES IN LEVEL 1 */
TOT_INDEX = INDEX_BLKS;
DO WHILE;(INDEX_BLKS
INDEX_BLKS = CEIL (INDEX_BLKS / FAN_OUT);
TOT_INDEX = TOT_INDEX + INDEX_BLKS;

END;
SI = TOT_INDEX * BLOCK_SZ;
REC_SZ = A * VALUE_SZ + PTR_SZ;
0_FILE_SZ = 0_N * REC_SZ;
REC_TOT = REC_SZ + (0_N / N) * REC_SZ + (SI / N);
FILE_SZ = REC_SZ * N;
NO_OF_LVLS = CEIL(LOG (CEIL(N / BFR)) / LOG (FAN_OUT));
0_PRIME = 0.5 * 0_N;
0_PF = 0_N / 2 ;
N_F = N + 0_PRIME;
P_OF_OV = 0_PF / (N_F);
TFM = S + R + (NO_OF_LVLS -1) * (R + BTT) + R + BTT;
TFO = P_OF_OV * (S + R + BTT);
TFC = 0.5 * BFR * P_OF_OV * P_OF_OV * (R + BTT);
TF = TFM + TFO + TFC;
TN = ((1 - P_OF_OV) / BFR + P_OF_OV) * (R + BTT);
TI = TF + 2 * TRW + R + BTT;
TU = TF + TRW + TI;
TXSE = TF + (N + 0_PRIME - 1) * TN;
TXSQ = (N + 0_N) * REC_SZ / T_PRIME;
TY = (N + 0_PRIME * BFR) / BFR * (R + BTT) +

(N + 0_N - N0_DLTE) * REC_SZ / T_PRIME + (SI / T_PRIME);
CALL INDSEQ_RES_DISP;
RETURN;

** INDEXED SEQUENTIAL RESULTS DISPLAY **

INDSEQ_RES_DISP: PROCEDURE;
RFMT: FORMAT(COL(10),A,COL(55),F(15,2),X(1) , A);

PUT SKIP(2) EDIT ('INDEXED SEQUENTIAL FILE PERFORMANCE PARAMETERS')
(COL(20),A);

PUT SKIP(O) EDIT ('___ ')
(COL(20),A);

CALL DISP_COMMON_DATA;
PUT SKIP(2) EDIT ('RECORD SIZE: ',REC_SZ,'BYTES') (R(RFMT));
PUT SKIP(2) EDIT ('FILE SIZE: ',FILE_SZ,'BYTES') (R(RFMT)) ;
PUT SKIP(2) EDIT ('OVERFLOW FILE S I Z E 0 _ F I L E _ S Z ,'BYTES’) (R(RFMT))
PUT SKIP(2) EDIT ('INDEX FILE SIZE: ',SI,’BYTES') (R(RFMT));
PUT SKIP(2) EDIT ('TF
PUT SKIP(2) EDIT ('TN
PUT SKIP(2) EDIT ('TI
PUT SKIP(2) EDIT (’TU

',TF,'MS') (R(RFMT))
',TN,'MS') (R(RFMT))
',TI,'MS') (R(RFMT))
',TU,'MS') (R(RFMT)) :

PUT SKIP(2) EDIT ('TX(SERIAL) '.TXSE,'MS') (R(RFMT));
PUT SKIP(2) EDIT ('TX(SEQUENTIAL) ',TXSQ,'MS') (R(RFMT));
PUT SKIP(2) EDIT (’TY: ',TY,'MS') (R(RFMT));
END INDSEQ_RES_DISP;
END INDEXED_SEQUENTIAL;

** INDEXED FILE CALCULATIONS **

INDEXED: PROCEDURE;
declare

SI FIXED DECIMAL(15,1),
SI_TOT FIXED DECIMAL(15,1),
NO_OF_LEVEL FIXED DECIMAL(9),
REC_TOT FIXED DECIMAL(15,2),
EF_FANOUT FIXED DECIMAL(9,2),

FIXED DECIMAL (7),
FIXED DECIMAL (8,7),
FIXED DEC (11,2),
FIXED DECIMAL (3),
FIXED DECIMAL (3,2),
FIXED DECIMAL (13,2),
FIXED DECIMAL (13,2),
FIXED DECIMAL (13,2),

X FIXED DECIMAL (15,2),
T_FIXPTR FIXED DECIMAL (13,2);

DECLARE (TF,
TN,
Til, TI2, TI,
TU,
TXSE, TXSQ,
TY, TYI,
FILE_S Z,
REC_SZ) FIXED DEC (15,2);

IF (A_UPD > A) THEN
DO;

FLAG = '4';
SIGNAL ERROR;

END;
DENS = DENSITY / 100;
N_PRIME = N * A_PRIME / A;
FANOUT = FLOOR (BLOCK_SZ / (VALUE_INDX_SZ + PTR_SZ));
IF FANOUT = 0 THEN

FANOUT
DENS
N_PRIME
I
PROB_SPLIT
T_NEWCOPY
T_INDEX
T SPLIT

72

DO;
FLAG = '6' ;
SIGNAL ERROR;

END;
EF_FANOUT = DENS * FANOUT;
NO_OF_LEVEL = CEIL(LOG (N_PRIME) / LOG(EF_FANOUT));
SI_TOT = N_PRIME * (VALUE_INDX_SZ + PTR_SZ) / DENS;
SI = SI_TOT;
I = 1;
DO WHILE (I < NO_OF_LEVEL);
SI = CEILCSI / EF_FANOUT);
SI_TOT = SI_TOT + SI;
1 = 1 + 1 ;

END;
REC_SZ = A_PRIME * (ATTR_LEN + VALUE_SZ + 2);
REC_TOT = REC_SZ + SI_TOT / N;
FILE_SZ = REC_SZ * N + SI_TOT;
TF = (NO_OF_LEVEL + 1) * (S + R + BTT);
TN = S + R + BTT;
PROB_SPLIT = (2 / EF_FANOUT);
Til = (1 + A_PRIME * (NO_OF_LEVEL + PROB_SPLIT)) *

(S + R + BTT);
TI2 = (1 + A_PRIME * (1 + DEC((4 / EF_FANOUT),9,2))) * TRW;
TI = Til + TI2;
T_NEWCOPY = S + R + BTT + TRW;
T_INDEX = NO_OF_LEVEL * (S + R + BTT) + TRW;
T_SPLIT = (S + R + BTT + TRW);
T_FIXPTR = NO_OF_LEVEL * (S + R + BTT) + TRW;
TU = TF + TRW + T_NEWCOPY + 2 * A_UPD * (T_INDEX +
DEC((PROB_SPLIT * T_SPLIT),9,2)) + (A_PRIME - A_UPD) * T_FIXPTR;
/* FOLLOWING SERIAL READING */
TXSE = (TF + (N - 1) * TN) / 3600000;
/* FOLLOWING SPACE ALLOCATION */
TXSQ = (CEIL(N / BFR) * (S + R + DEC((BLOCK_SZ / T_PRIME),15,2)))

/ 3600000;
TYI = TXSQ + (SORT(N_PRIME,EF_FANOUT,BTT) / 3600000)

+ (SI_TOT / T_PRIME) / 3600000;
TY = (2 * TXSQ) + A * TYI;

CALL IND_RES_DISP;
RETURN;

/*-k***-k***-k*-k**-k****-k*-k*-i;**-k-}~!'*-irk-k-k*±-.\-*-i<**********:*-it*
** INDEXED RESULTS DISPLAY **
* * * * * * * * * * * * * * * * * * * ■ * * * * * * * * * * * ■ * - * j

IND_RES_DISP: PROCEDURE;
RFMT: FORMAT(COL(10),A,COL(55),F(15,2),X(1),A);
CALL DISP_COMMON_DATA;
PUT SKIP(2) EDIT ('INDEXED FILE PERFORMANCE PARAMETERS')

(COL(20),A);
PUT SKIP(O) EDIT ('_____________________________________ ')

(COL(20),A) ;
PUT SKIP(2) EDIT ('RECORD SIZE: ',REC_SZ,’BYTES') (R(RFMT));
PUT SKIP(2) EDIT ('FILE SIZE: ',FILE_SZ,'BYTES') (R(RFMT));
PUT SKIP(2) EDIT ('INDEX FILE SIZE: ', SI_TOT,'BYTES’) (R(RFMT));
PUT SKIP(2) EDIT ('TF: '.TF.'MS') (R(RFMT));
PUT SKIP(2) EDIT ('TN: ’,TN,’MS') (R(RFMT));

73

PUT SKIP(2) EDIT ('TI: ',TI,'MS') (R(RFMT));
PUT SKIP(2) EDIT ('TU: ’,TU,’MS') (R(RFMT));
PUT SKIP(2) EDIT('TX(SERIAL): ’,TXSE,'HOURS’) (R(RFMT));
PUT SKIP(2) EDIT (*TX(BY BLOCK ALLOCATION)',TXSQ,'HOURS') (R(RFMT));
PUT SKIP(2) EDIT('TY(INDEX ONLY):',TYI,'HOURS') (R(RFMT));
PUT SKIP(2) EDIT ('TY(FILE): ',TY,'HOURS') (R(RFMT));
END IND_RES_DISP;
END INDEXED;
/' t******- *****v ******** ;■*******-

DIRECT FILE CALCULATIONS

PROCEDURE;
**/

FIXED DECIMAL (7,2),
FIXED DECIMAL (7,4),
FIXED DECIMAL (9,2),
FIXED DEC(8),
FLOAT DEC(6),
FLOAT DEC(6);

DIRECT:
DECLARE
P
P1U
REC_SZ
0_N
CN
C_PRIME

DECLARE
(TF,
TN,
TI,
TU,
TX,
TLOAD,
TY,
0_FILE_S Z,
FILE_SZ)

DCL ALPHA FLOAT DEC(6);
ALPHA = N / M;
IF COLL_TYPE = 1 THEN
DO;
FILE_SZ = M *
REC SZ = A *

FIXED DEC(15,2);

/* OPEN ADDRESSING */

A * VALUE_SZ;
VALUE_SZ;

CALL ACCS(2,ALPHA,BFR,CN,C_PRIME);
P1U = N / M;
P = CN;

END;
IF COLL_TYPE = 2 THEN /* SEPERATE CHAINING */
DO;
P1U = 1 - EXP(N/M);
0_N = N - M * P1U;
FILE_SZ = (M + 0_N) * (A * VALUE_SZ + PTR_SZ);
REC_SZ = A * VALUE_SZ + PTR_SZ;
0_FILE_SZ = 0_N * REC_SZ;
CALL ACC S(1,ALPHA,BFR,CN,C_PRIME);
P = CN;
P1U = C_PRIME;

END;
TF = (S + R + BTT) * P;
TN = TF;
TI = (S + R + BTT + TRW) * P1U;
TU = TF + TRW;
IF COLL_TYPE = 1 THEN

0_N = 0;
TX = (M + 0_N) * (R + WASTE) / T_PRIME;
TLOAD = SORT(N,BFR,BTT) + TX;
TY = TX + TLOAD;
CALL DIRECT_RES_DISP;
RETURN;
j j. j. -1- . r. j. .y> .1. .t-. ■ .t. .l j, ,r. .r j jl>

** DIRECT RESULTS DISPLAY
,« -» .«,» ,P.-« » J.4 .JL ». .1i * « * « * « * « » ♦ * < * < » < » < » <> o « v » < * *% « » « t « t < « * * # * r t « < » < * 3 k J i 4 t A « k < « n l /

DIRECT_RES_DISP: PROCEDURE;
RFMT: F0RMAT(C0L(10),A,C0L(55),F(15,2),X(1),A);
PUT SKIP(2) EDIT ('DIRECT FILE PERFORMANCE PARAMETERS’)

(COL(20), A);
PUT SKIP(O) EDIT ('__________________________________ ')

(C0L(20),A);
CALL DIS P_C0MM0N_DATA;
PUT SKIP(2) EDIT ('RECORD SIZE: ',REC_SZ,'BYTES')(R(RFMT));
PUT SKIP(2) EDIT ('FILE SIZE: * 1,FILE_SZ,'BYTES') (R(RFMT));
IF C0LL_TYPE = 2 THEN
PUT SKIP(2) EDIT ('OVERFLOW FILE SIZE: ',0_FILE_SZBYTES')
(R(RFMT));
PUT SKIP(2) EDIT (’TF
PUT SKIP(2) EDIT (’TN
PUT SKIP(2) EDIT (’TI
PUT SKIP(2) EDIT (’TU
PUT SKIP(2) EDIT ('TX
PUT SKIP(2) EDIT ('TY
END DIRECT_RES_DISP;
END DIRECT;
/

’.TF.'MS') (R(RFMT))
'.TN.'MS') (R(RFMT))
',TI,'MS') (R(RFMT))
',TU,’MS') (R(RFMT))
’,TX,'MS') (R(RFMT))
',TY,'MS') (R(RFMT))

JL.I—I.J.J.

CALCULATION OF EXTRA ACCESSES FOR DIRECT FILES

ACCS: PROCEDURE(CODE,ALPHA,B2,CN,C_PRIME);
DECLARE B FLOAT DEC(6),B2 FIXED DEC(9,2),

ALPHA FLOAT DEC(6),
T

NEW_T
OLD_T

CN
C_PRIME

I
TEMP
CODE

B = B2;
IF CODE = 1 THEN

FLOAT DEC(6),
FLOAT DEC(6),
FLOAT DEC(6),
FLOAT DEC(6),
FLOAT DEC(6),
FLOAT DEC(6),
FLOAT DEC(6),
FIXED DEC(3);

DO;
IF B >= 190 THEN
DO;
CN = 1;
C_PRIME =1;
END;
ELSE
DO;
CALL TERM (ALPHA,B,TEMP);
CALL TB(ALPHA,B,TEMP, T);

75

CN = 1 + C(1 “ 0.5 * B * (1 - ALPHA)) * T)
+ (TEMP / 2 * R(ALPHA ,B));

C_PRIME = 1 + ALPHA * B * T;
END;

END;
IF CODE = 2 THEN
DO;

IF B > 150 THEN
CN = 1;

ELSE
DO;

CN = 1;
1 = 1;
NEW_T =0.0;
DO UNTIL (ABS(NEW_T - OLD_T) < 0.00001);

OLD_T = NEW_T;
CALL TERM(ALPHA,I * B.TEMP);

CALL TB(ALPHA,I * B ,TEMP,NEW_T) ;
CN = CN + NEW_T;
1 = 1 + 1;

END;
END;

END;
R: PROCEDURE(ALPHA,B) RETURNS (FLOAT DEC(6));
DECLARE ALPHA FLOAT DEC(6),

B FLOAT DEC(6),
COUNT FIXED DEC(4),
OLD_SUM FLOAT DEC(6),
NEW_SUM FLOAT DEC(6),
TERM FLOAT DEC(6);

OLD_SUM = 0;
COUNT = B + 1;
NEW_SUM = B / COUNT;
TERM = NEW_SUM;
DO WHILE((NEW_SUM - OLD_SUM) > 0.001);

OLD_SUM = NEW_SUM;
COUNT = COUNT + 1;
TERM = TERM * B * ALPHA / COUNT;
NEW_SUM = OLD_SUM + TERM;

END;
RETURN (NEW_SUM);
END R;

TERM: PROCEDURE (ALPHA,B,TEMP);
DECLARE ALPHA

B
TEMP
I

FLOAT DEC(6),
FLOAT DEC (6),
FLOAT DEC(6),
FLOAT DEC(6);

/* CALCULATE TEMP = (EXP(-B* ALPHA) * (B**B) *
TEMP = EXP(-B * ALPHA);
DO I = 1 TO B; /* TEMP = TEMP * (B**B) */
TEMP = TEMP * B / I;

(ALPHA**B) / FACT(B) */

END;
TEMP = TEMP * (ALPHA ** B);
END TERM;

TB: PROCEDURE (ALPHA,B,TEMP,T);

76

DECLARE B FLOAT DEC(6),
ALPHA FLOAT DEC(6),
T FLOAT DEC(6),
TEMP FLOAT DEC(6);

T = TEMP * (1 - (1 - ALPHA) * R(ALPHA,B));
END TB;
END ACCS;
END CALC;

Contents of DISK PARM file

seek latency gap t rate(t) device

1 16.00 8.30 524.00 3000.00 IBM3380
2 60.00 12.50 200.00 312.00 IBM2319
3 141.00 83.30 60.00 62.00 IBM 851 8" FLOPPY
4 90000.0 250.00 600.00 120.00 IBM 9 TRACK MAGNETIC TAPE

77

APPENDIX D

RESULTS

PILE FILE INPUT DATA

BLOCK SIZE:
TOTAL NUMBER OF RECORDS IN THE MAIN FILE:
RECORD TYPE:
POINTER SIZE:
AVERAGE # OF ATTRIBUTES PER RECORD:
AVERAGE ATTRIBUTE_NAME LENGTH:
AVERAGE ATTRIBUTE_VALUE LENGTH:
AVERAGE NUMBER OF INSERTS BETWEEN REORGANIZATION
AVERAGE NUMBER OF DELETES BETWEEN REORGANIZATION
AVERAGE NUMBER OF UPDATES BETWEEN REORGANIZATION

4,096 BYTES
100.000 RECORDS

VARYING LENGTH RECORDS
4 BYTES
8
11 BYTES
13 BYTES
5.000
5.000
5.000

PILE FILE PERFORMANCE PARAMETERS

BLOCKING FACTOR: 18.00 RECORDS
BLOCK TRANSFER RATE (BTT): 1.36 MS
BULK TRANSFER RATE (T PRIME): 1263.77 CHAR/MS
RECORD SIZE: 208.00 BYTES
FILE SIZE: 20800000.00 BYTES
TF 8229.34 MS
TN 8229.34 MS
TI 42.26 MS
TU 8288.20 MS
TX (SEQUENTIAL READ) 16458.68 MS
TX (SERIAL READ) 228031.16 MS
TY 34563.25 MS

78

SEQUENTIAL FILE INPUT DATA

BLOCK SIZE:
TOTAL NUMBER OF RECORDS IN THE MAIN FILE:
OF ATTRIBUTES PER RECORD
AVERAGE ATTRIBUTE_VALUE LENGTH:
AVERAGE NUMBER OF INSERTS BETWEEN REORGANIZATION
AVERAGE NUMBER OF DELETES BETWEEN REORGANIZATION
AVERAGE NUMBER OF UPDATES BETWEEN REORGANIZATION

3,072 BYTES
10,000 RECORDS

5
20 BYTES

100
100
150

SEQUENTIAL FILE PERFORMANCE PARAMETERS

BLOCKING FACTOR: 30.00 RECORDS
BLOCK TRANSFER RATE (BTT): 1.02 MS
BULK TRANSFER RATE (T PRIME): 1277.03 CHAR/MS
RECORD SIZE: 100.00 BYTES
FILE SIZE: 1000000.00 BYTES
OVERFLOW FILE SIZE: 50000.00 BYTES
TF (SEARCH ARGUMENT IS NOT THE KEY): 411.10 MS
TF (SEARCH ARGUMENT IS THE KEY): 231.77 MS
TN: 0.07 MS
TI: 44.92 MS
TU: 456.02 MS
TX: 1030.08 MS
TY: 1813.08 MS

79

INDEXED SEQUENTIAL FILE INPUT DATA

BLOCK SIZE:
TOTAL NUMBER OF RECORDS IN THE MAIN FILE:
it OF ATTRIBUTES PER RECORD
AVERAGE ATTRIBUTE_VALUE LENGTH:
POINTER SIZE:
AVERAGE NUMBER OF INSERTS BETWEEN REORGANIZATION
AVERAGE NUMBER OF DELETES BETWEEN REORGANIZATION
AVERAGE NUMBER OF UPDATES BETWEEN REORGANIZATION

1,024 BYTES
10,000 RECORDS

5
20 BYTES
4 BYTES

100
100
150

INDEXED SEQUENTIAL FILE PERFORMANCE PARAMETERS

BLOCKING FACTOR: 10.00 RECORDS
BLOCK TRANSFER RATE (BTT): 0.34 MS
BULK TRANSFER RATE (T PRIME): 984.25 CHAR/MS
RECORD SIZE: 104.00 BYTES
FILE SIZE: 1040000.00 BYTES
OVERFLOW FILE SIZE: 26000.00 BYTES
INDEX FILE SIZE: 25600.00 BYTES
TF: 41.88 MS
TN: 0.95 MS
TI: 83.72 MS
TU: 142.20 MS
TX(SERIAL) 9659.68 MS
TX(SEQUENTIAL) 1083.05 MS
TY: 10818.49 MS

80

INDEXED FILE INPUT DATA

BLOCK SIZE: 4,096 BYTES
TOTAL NUMBER OF RECORDS IN THE MAIN FILE: 100,000 RECORDS
RECORD TYPE: VARYING LENGTH RECORDS
POINTER SIZE: 4 BYTES
AVERAGE # OF ATTRIBUTES PER RECORD: 8
TOTAL # OF ATTRIBUTES IN THE FILE: 11
AVERAGE ATTRIBUTE_NAME LENGTH: 10 BYTES
AVERAGE ATTRIBUTE_VALUE LENGTH: 13 BYTES
AVERAGE LENGTH OF INDEX ATTRIBUTE: 13 BYTES
AVERAGE # OF UPDATE ATTRIBUTES: 5
DENSITY OF INDEX FILE: 69 %

BLOCKING FACTOR: 19.00 RECORDS
BLOCK TRANSFER RATE (BTT): 1.36 MS
BULK TRANSFER RATE (T PRIME): 1266.67 CHAR/MS

INDEXED FILE PERFORMANCE PARAMETERS

RECORD SIZE: 200.00 BYTES
FILE SIZE: 21801870.00 BYTES
INDEX FILE SIZE: 1801870.00 BYTES
TF: 102.64 MS
TN: 25.66 MS
TI: 795.60 MS
TU: 1382.24 MS
TX(SERIAL): 0.71 HOURS
TX(BY BLOCK ALLOCATION) 0.04 HOURS
TY(INDEX ONLY): 0.04 HOURS
TY(FILE): 0.52 HOURS

81

DIRECT FILE INPUT DATA

BUCKET SIZE:
TOTAL NUMBER OF RECORDS IN THE MAIN FILE:
TOTAL NUMBER OF SLOTS FOR THE RECORDS IN THE

COLLISION RESOLUTION TYPE:
OF ATTRIBUTES PER RECORD:
AVERAGE ATTRIBUTE_VALUE LENGTH:
POINTER SIZE:

1,024 BYTES
10.000 RECORDS

MAIN FILE:
12.000 RECORDS

CHAINED ACCESS
7

20 BYTES
5 BYTES

DIRECT FILE PERFORMANCE PARAMETERS

BLOCKING FACTOR:
BLOCK TRANSFER RATE (BTT):
BULK TRANSFER RATE (T PRIME):
RECORD SIZE:
FILE SIZE:
OVERFLOW FILE SIZE:
TF:
TN:
TI:
TU:
TX:
TY:

7.00 RECORDS
0.34 MS

989.31 CHAR/MS
145.00 BYTES

5453305.00 BYTES
3713305.00 BYTES

28.82 MS
28.82 MS
62.13 MS
45.42 MS

3160.97 MS
17982.57 MS

	Performance Parameter Measurements of Generic Files
	Recommended Citation

	tmp.1604524636.pdf.FcocH

