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Integrated microsphere whispering gallery mode
probe for highly sensitive refractive index measurement

Hanzheng Wang,a Lei Yuan,a Cheol-Woon Kim,b Jie Huang,a Xinwei Lan,a and Hai Xiaoa,*
aClemson University, Department of Electrical and Computer Engineering, Clemson, South Carolina 29634, United States
bMO-SCI Corporation, 4040 HyPoint North, Rolla, Missouri 65401, United States

Abstract. We report an integrated whispering gallery mode microresonator–based sensor probe for refractive
index sensing. The probe was made by sealing a borosilicate glass microsphere into a thin-wall glass capillary
pigtailed with a multimode optical fiber. The intensities of the resonant peaks were found decreasing exponen-
tially (linearly in a log scale) with the increasing refractive index of the medium surrounding the capillary. The
sensing capability of the integrated probe was tested using sucrose solutions of different concentrations and the
resolution was estimated to be about 2.5 × 10−5 in the index range of 1.3458 to 1.3847. The integrated sensor
probe may prove useful in many chemical and biological sensing applications where highly sensitive refractive
index monitoring is needed. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.55.6.067105]
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1 Introduction
Fiber optic refractive index (RI) sensors have many impor-
tant applications in chemical and biological sensing.1,2 In
most practical applications, a fiber RI sensor is preferred
to operate in a single-ended probe configuration, or a reflec-
tion-mode operation, for convenient sensor insertion and
installation. In addition, it is preferred that the sensor probe
has good mechanical strength so that the repeated insertion
into the sample will not break the probe. Another important
feature that is very much desired is the linear relationship
between the RI and the sensor output. Many RI sensors
have good sensitivity but a nonlinear response. The calibra-
tion of such a nonlinear sensor becomes quite cumbersome
when quantitative measurement is required. In addition, the
measurement accuracy varies in different RI ranges.

Over the years, many approaches have been explored
including (but not limited to) interferometers,3–5 fiber gra-
tings,6,7 long period fiber gratings,8–10 surface plasmonic
resonance devices,11 multimode interference devices,12 attenu-
ated total internal reflectance sensors,13,14 extraordinary opti-
cal transmission devices,15 photonic crystal fibers,16 and
whispering gallery mode (WGM) optical microresonators17

and microlasers.18 These fiber optic devices have a small
size and can be used to measure the RI of a sample with a
small volume. In general, fiber optic RI sensors have shown
relative measurement resolution somewhere between 10−5

and 10−4 refractive index units (RIUs), depending on the spe-
cific technologies being used. This resolution can satisfy most
of the application needs.

In recent years, high-Q WGM optical microresonators
have attracted great interests due partially to their broad
applications toward highly sensitive detection of chemical
and biological quantities.17–23 Light can be effectively
trapped inside these small, low-loss, and rotationally sym-
metric optical resonators. As a result, the light-environment

interaction is accumulated to achieve high detection sensitiv-
ity as the light circulates many times around the circumfer-
ence of the resonator. The effective index of the WGM is a
function of the RI of the medium surrounding the microre-
sonator. As such, a microresonator can be used for RI sens-
ing by monitoring its resonance spectrum. This mechanism
has been widely used for label-free biological sensing.

However, the highly sensitive microresonators are not
easy to use in practical applications. One of the reasons is
the necessity of using a thin fiber taper with a diameter of
about 1 to 2 μm to couple the light into and out of the res-
onator. The thin taper is extremely fragile and the coupling
requires complicated adjustments. Due to the same reason,
most WGM resonators work in transmission mode, making
them less convenient in field applications.

Recently, we proposed a fiber pigtailed thin wall
capillary coupler for the excitation of microsphere optical
microresonator.24 Comparing with other coupling methods
(e.g., prisms and fiber tapers), the alignment-free well-sup-
ported coupling structure allows the WGM resonator to oper-
ate in a convenient reflection mode. The coupler-resonator
integrated device has shown a great potential for various
sensing applications. In this study, we report our studies
on using such an integrated WGM resonator probe for highly
sensitive RI measurement.

2 Sensor Structure, Fabrication, and Sensing
Mechanism

Figure 1 shows the structure of the integrated WGM resona-
tor probe and the method of interrogation. The coupler
was made by fusion splicing a capillary tube (Polymicro
Technologies, LLC, ID/OD 75∕150 μm) to a multimode
fiber (Corning, Inc. 62.5∕125 μm). At the joint point, a
cone shape was formed. A borosilicate glass microsphere
with low coefficient of thermal expansion (∼3 × 10−6 K−1

at 20°C) was inserted into the capillary till in contact with
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the capillary wall at the cone portion. The far end of the
capillary was then sealed by arc and the entire structure was
chemically etched using hydrofluoric acid (Acros Organics,
20%) to reduce the wall thickness down to about 2 μm. The
detailed fabrication process and parameters can be found in
our previous publication.24

To interrogate the integrated microresonator sensor, the
light from a tunable laser (Agilent, HP-8168F) was coupled
into the sensor through a 50/50 fiber coupler. The light
propagating in the multimode fiber entered the capillary
thin wall at the cone-shaped joint. The WGMs of the micro-
sphere were excited by the evanescent waves of the light
propagating along the capillary thin wall.24 At the opposite
side, the light was coupled out from the microsphere and
propagated backwards through the multimode fiber coupler
to reach the photodetector (Agilent 8163A). As the tunable
laser scanned through its available spectrum range, the res-
onance spectrum was acquired. As mentioned early, the inte-
grated probe is alignment free and operates in a convenient
reflection-mode, which is preferred in many sensing
applications.

3 Experiments
The integrated probe was immersed in a sucrose solution
under room temperature to study its response to surrounding
RI changes. The RI of the solution was changed by increas-
ing the sucrose concentrations. The sucrose concentrations
of the solution were adjusted to 1.00, 5.00, 8.00, 10.00,
12.00, 14.00, 16.00, 18.00, 20.00, 22.00, 26.00, 28.00,
30.00, and 32.00 in weight percentage, which gave the RIs
of the liquid to be 1.3344, 1.3403, 1.3458, 1.3479, 1.3510,
1.3541, 1.3573, 1.3606, 1.3639, 1.3672, 1.3706, 1.3740,
1.3775, 1.3811, and 1.3847, respectively.25

Figure 2 shows the resonance spectrum of an integrated
WGM probe immersed in deionized (DI) water. The boro-
silicate glass microsphere inside the probe has a diameter
of 69 μm. The spectrum shows a clear periodic resonance
pattern. The Q-factor was calculated to be 2.55 × 104 at
the resonance wavelength of 1533.06 nm where the related
full width at half maximum (FWHM) was 0.06 nm and the
free spectrum range was 7.69 nm.

4 Results and Discussions
The mode order numbers are also provided in Fig. 2.
Compared to fused silica glass microspheres excited by a
fiber taper, the Q-factor of the integrated resonator probe

was significantly lower. The low Q-factor can be attributed
to following possible reasons. From the coupling perspec-
tive, the glass sphere was in contact with the inner surface of
the capillary. Compared to a fiber taper coupling approach,
the capillary gap-free coupling with long sphere-waveguide
contact interaction may not support critical coupling.
Thus, the higher contact loss could lower the Q.24 From
the material aspect, the borosilicate glass microsphere had
a higher optical loss comparing to the fused silica micro-
sphere. The microsphere surface roughness and unevenness
might also contribute to a higher scattering loss and lower Q.

The evanescent field of the thin capillary waveguide is
redistributed when the RI of the surrounding medium
changes. As a result, the light coupling between the capillary
wall and the microsphere is influenced by the RI of the sur-
rounding medium.

Figure 3 shows the full resonance spectra when the RI
changed from 1.3344 to 1.3847 by increasing the sucrose
concentration from 1.00 to 32.00 in weight percentage.
During the test, the sucrose solution was under constant stir-
ring to ensure a uniform concentration. The resonance spec-
trum did not have observable changes even when the solution
was under constant stirring, indicating the good mechanical
stability of the integrated WGM probe.

As shown in Fig. 3, the intensities of the resonance peaks
decreased significantly when the RI of the surrounding
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Fig. 1 Schematic of thin wall capillary coupled borosilicate glass
microsphere resonator for RIU sensing.
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Fig. 2 Reflection resonance spectrum of the thin wall capillary
coupled borosilicate glass microsphere with a diameter of 69 μm.
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Fig. 3 Resonance spectra of the integrated probe at different refrac-
tive indices by varying the sucrose concentrations.
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medium increased. The resonance spectral positions did not
have observable changes. The results indicated that the light
coupling between the capillary wall and the microsphere was
influenced dramatically.

To understand the influence of RI on the light coupling
between the microsphere and capillary wall, the resonance
peak intensities as a function of the liquid RIs are plotted
in Fig. 4. Three different WGMs modes in the wavelength
range of 1550 to 1560 nm were selected, including TE
(v ¼ 1, l ¼ 204), TM (v ¼ 1, l ¼ 203), and TE (v ¼ 2,
l ¼ 204) as shown in the inset of Fig. 4 (highlighted with
dash circles and numerical labels).

As shown in Fig. 4, in the range of RI variations, the over-
all peak intensities decreased monotonically. Except for the
first two RI values, the relationship between the RI and peak
intensities followed a linear curve in a log scale or exponen-
tial in the linear scale. The linear regressions of the three
lines (excluding the first two RI values) resulted in slopes
of −386, −413, and −436 dBs per unit RI for the peak 1,
2, 3 lines, respectively. The coefficients of determination
(or the R-squared values) of the curve fittings were 0.993,
0.995, and 0.996 for the peak 1, 2, 3 lines, respectively, indi-
cating good linear relations (in a log scale) of the data points.

The general trends of the exponential RI–intensity rela-
tion can be qualitatively explained by the asymmetric wave-
guide model depicted in Fig. 5, where, for simplicity, a slab
waveguide (nG) is used to represent the glass capillary wall.
The two sides of the slab waveguide are air (nA ¼ 1) and
liquid (nL), respectively. The effective RI (neff ) of the guided
waves propagating inside the slab waveguide need to satisfy
the following total internal reflection condition:

EQ-TARGET;temp:intralink-;e001;63;411neff ≥ nL ≥ nA: (1)

The penetration depth (d) of the evanescent wave on the air
side is given as

EQ-TARGET;temp:intralink-;e002;63;360d ¼ λ

4π
ðn2eff − n2AÞ−1∕2; (2)

where λ is the wavelength in vacuum.

When the liquid RI (nL) increases, the effective index of
the guide wave (neff ) needs to increase correspondingly to
satisfy Eq. (1). Based on Eq. (2), the increased neff will result
in a reduced penetration depth. The evanescent field intensity
Ie (z) decays exponentially with the perpendicular distance z
from the interface

EQ-TARGET;temp:intralink-;e003;326;587IeðzÞ ¼ Ie0 exp

�
−
z
d

�
; (3)

where Ie0 is the evanescent field intensity at z ¼ 0.
Equation (3) indicates that the evanescent field intensity
drops exponentially as the penetration depth decreases.

The resonance peak intensity of the integrated resonator is
determined by the total quality factor (QT) of the system,
which includes the contributions of both the internal quality
factor (QI) and the external (or coupling) quality factor (QE),
given as

EQ-TARGET;temp:intralink-;e004;326;454

1

QT

¼ 1

QI

þ 1

QE

: (4)

QE is determined by the coefficient of light coupling between
the capillary wall and the microsphere, which is proportional
to the integral of the evanescent field over their overlapping
area. In our case, QE decreases exponentially with the
increasing RI of the surrounding medium (i.e., the liquid).

The last procedure in sensor fabrication was to etch the
capillary in an HF solution (whose RI was about the
same as that of the DI water) while the resonance spectrum
was observed in real time.23 The etching was stopped when
the resonance peaks reached their maximum intensities and
the system was at the under coupling condition (QE > QI).
As a result, the change in QE was less influential on QT

because QI’s contribution is still substantial. When QE con-
tinue decreases, the peak intensities dropped exponentially
with the increasing liquid RIs at the lower portions of the
curves in Fig. 4. It should be noted that QE may have a
chance to decrease until QE ¼ QI, then the critical coupling
condition happens. However, the peak intensities of the spec-
tra may not be observed due to the low signal-to-noise ratio
and detection limit of the power meter. Overall, the above
description only provides a qualitative explanation of the
exponential RI–intensity relation. More precise understand-
ing can be obtained by modeling and simulations, which are
beyond the scope of this study.

The exponential (or linear in a log scale) RI–intensity
relation is particularly useful for RI sensing because it
makes the sensor calibration and data interpretation easy.
Most optical power meters can easily achieve a measurement
resolution of 0.01 dB. Based on the slopes shown in Fig. 4,
we estimated that the RI sensing resolution of the sensor was
about 2.5 × 10−5 RIU. This resolution satisfies the needs in
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Fig. 4 Resonance peak intensities as functions of the RIs of the sur-
rounding medium. The slope and R-squared values are based on the
linear regressions of the curves excluding the first two points of each
line. Inset: resonance spectrum showing the three peaks analyzed.
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Fig. 5 Illustration of the asymmetric waveguide model for qualitative
understanding of the RI–intensity relation.
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most applications. Another advantage of the reported sensor
is its sealed and integrated structure. As shown in Fig. 3, the
mechanical vibrations resulted from liquid stirring did not
affect the reading at all. The reflection-based operation
makes the probe easy to use.

5 Conclusions
In summary, an integrated WGM microresonator-based
probe was developed for RI sensing. The probe was made
by sealing a borosilicate glass microsphere into a thin-
wall glass capillary pigtailed with a multimode optical fiber.
The capillary wall was etched in an HF solution until the
system reached the critical coupling condition where the res-
onance peaks had maximum intensities. When used for RI
sensing, the increasing RI of the surrounding medium
reduced the penetration depth of the evanescent field of the
capillary wall waveguide. Consequently, the external (or
coupling) Q decreased and the intensities of the resonance
peaks dropped. When the WGM probe was off the critical
coupling condition, the peak intensities were found decreas-
ing exponentially (linear in a log scale) with the increasing
RI. This linear in a log scale relation makes it easy to cal-
ibrate and interpret the sensor. The measurement resolution
was estimated to be about 2.5 × 10−5 RIU in the index range
of 1.3458 to 1.3847, with the assumption of 0.01 dB reso-
lution in optical power measurement. Of course, the RI
measurement range can be adjusted during the sensor fabri-
cation process. The integrated WGM probe was structurally
stable, easy to operate, and useful in chemical and biomedi-
cal sensing.
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