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ABSTRACT

The origin of the blue emission in SrTiO3 has been investigated as a function of irradiation fluence,
electronic excitation density, and temperature using a range of ion energies and masses. The emis-
sion clearly does not show correlation with the concentration of vacancies generated by irradiation
but is greatly enhanced under heavy-ion irradiation. The intensity ratio of the 2.8 and 2.5 eV bands is
independent of fluence at all temperatures, but it increases with excitation rate. The 2.8 eV emission
is proposed to correspond to a transition from conduction band states to the ground state level of

the self-trapped exciton center.
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A novel mechanism attributes the origin of the intriguing blue band in SrTiO3 to a non-localized
transition of the self-trapped exciton center from conduction band states to the ground level.

1. Introduction

Strontium titanate (SrTiO3) is a model transition metal
oxide, receiving intensive attention due to its many
applications. This multifunctional perovskite ceramic has
remarkable physical and chemical properties, includ-
ing high temperature superconductivity, photocatalytic
behavior and ‘colossal’ magnetoresistance [1-4]. It is
often considered to constitute the basis for oxide-based
microelectronics [5]. The electronic and optical behavior
is presently an active and controversial field of research
[6-9]. The luminescence spectra under a variety of
excitation sources, including UV light [8-18], X-rays
[19], electrons [20] and ion-beams [21,22], show three
main bands centered at 2.0 eV (red), 2.5eV (green) and
2.8eV (blue). A detailed study using ion-beam irradia-
tion experiments has concluded that the red band is due

to d-d transitions between an excited level in the con-
duction band (CB) with mostly 3d(t5g) character and
an in-gap 3d(eg) level associated with an electron self-
trapped as Ti>T adjacent to an oxygen vacancy (Ti*T-Vg
center) [23-28], as illustrated in Figure S1 (see sup-
plementary data online). It is generally accepted that
the green 2.5eV emission band is associated with a
triplet-singlet optical transition of a self-trapped exci-
ton (STE) [8,9,19,29]. The situation for the 2.8 eV band is
more controversial. A number of proposals on the origin
of this emission have been advanced, including its rela-
tionship with oxygen vacancies [9-11]. Several authors
[11,12,17] have proposed that the blue band may be asso-
ciated with a transition from the conduction band min-
imum (CBM) to the in-gap level of a self-trapped hole
(STH) [30]; whereas others [6] suggest a transition from
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a self-trapped polaron level at oxygen vacancies to the
valence band (VB). Due to disagreement and inconclu-
sive identification on the origin of the blue emission band
peaked at 2.8 eV, it appears relevant to tackle this puz-
zling scenario with an alternative strategy using ion beam
induced luminescence or ionoluminescence (IL). Ion exci-
tation has several key advantages over other excitation
sources, which have not been, so far, sufficiently recog-
nized: 1) it is a real-time in-situ technique with a very
broad energy excitation spectrum in contrast to laser
pulses; 2) it allows for an adjustable balance between the
generation of point defects (associated mostly with elastic
collisions) and electronic excitation, which can be modi-
fied through the choice of mass and energy of the incident
ion; and 3) it has an easily adjustable excitation rate to
investigate the role of electronic excitation density on the
emissions.

2. Materials and methods

High-purity, epi-polished, stoichiometric SrTiO3 (001)
single crystals, provided by MTI Corporation Ltd., were
irradiated in the Ion Beam Materials Laboratory (IBML
UT-ORNL) at the University of Tennessee, Knoxville
[31]. The irradiation setup along with the temperature
control and the spectroscopic characterization have been
described previously [21-23,32,33]. The relevant irradia-
tion parameters, including electronic excitation densities
and total number of oxygen vacancies generated per inci-
dent jon [34], are summarized in Table 1 (also Supple-
mental Material). Note that the electron-hole densities
induced in this work are comparable to those induced in
pulsed laser experiments.

3. Results and discussion

The 2.8 eV band is clearly enhanced relative to the 2.5 eV
band with increasing excitation rate, a key finding of this
work, when the emission spectra corresponding to irra-
diation with 8 MeV O and 18 MeV Cl ions are compared.
Figure S2 (see supplementary data online) illustrates
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the representative emission spectra with several incident
ions at low fluence (~ 10!! cm~2) and different temper-
atures, together with the decomposition into three Gaus-
sian bands, as previously described [21,22]. The above
results appear similar to those obtained in SrTiO3 under
pulsed laser irradiation using different pulse energies
[12], where it was found that the integrated light emis-
sion intensity grows linearly with excited carrier density
up to around 5 x 10! cm™3 (excitation density below
1 mJ/cm?), where it starts reaching saturation.

The kinetics of the 2.8 eV band as a function of irra-
diation fluence offers new insights into the origin of this
emission. Figure 1 illustrates the evolution of the 2.8 and
2.5eV emission band yields under irradiation with sev-
eral incident ions at different temperatures. The emission
yield of the 2.8 eV blue band (Y3p), as well as that for the
2.5eV green band (Yg), rapidly increases with fluence
(even though difficult to appreciate and evaluate in the
figures) and reaches an essentially constant (steady-state)
level after a fluence of ~ 10! cm™2, typically associ-
ated with the establishment of a steady-state concentra-
tion of electron-holes (e-h) pairs. The initial evolution of
such bands is considerably faster than that for the 2.0 eV
band (not shown) confirming previously reported results
[21-23] that associated this band to the generation of
isolated vacancies during irradiation. The corresponding
evolution of the emission yield for the green band is also
shown in Figure 1 for comparison purposes. The simi-
lar evolution for both bands suggests a close correlation
between them. In order to explore more quantitatively
this correlation, Figure 2 plots the ratio, pp;g = Yp/Yg,
between the integrated peak areas of the blue and green
luminescence bands as a function of ion fluence at var-
ious temperatures. The ratio remains relatively constant
as a function of fluence, with a small dispersion in the
data of about 1% for lighter ions and 5-10% for the case
of heavier ions and lower temperatures. These devia-
tions can be expected due to heavy band overlap and the
rapid evolution of the yields with fluence, especially at
low temperatures. This figure confirms that pp/¢ is inde-
pendent of fluence at these temperatures. Moreover, this

Table 1. Irradiation parameters calculated using SRIM (version 2012) full-cascade simulations [34].

lon, Energy Semax F(x 10'? Ne_p (x G(x 10'® e-h Total Oxygen
(MeV) Rp (1em) (keV/nm) Eioniz (MeV) cm—2s7 1) 10% e-h/ion) cm~2s7 1) Erecoils (MeV) vacancies
H,3 54.00 0.14 298 2.20 0.37 0.82 1.64 x 1073 11.42
0,8 3.70 3.21 7.85 0.90 0.98 0.88 0.13 756.43
Si, 15 4.00 6.14 14.64 0.64 1.83 1.17 037 2002.95
Cl, 18 415 7.31 17.47 0.44 2.18 0.96 0.54 2816.96
Ti, 18 415 8.31 17.05 0.44 2.13 0.95 0.95 4749.95

Rp is the projected ion range, Se,may is the maximum electronic stopping power and Ejopi; stands for energy deposited into the electronic system per incident ion. F
is the average irradiation flux. N._p, or single-ion excitation rate g, is the average number of e-h pairs generated by every single ion impact along Ry. G, the overall
electronic excitation rate, represents the carrier (e-h) populations generated per unit time extended throughout R, (see Supplemental Material). E,ec,ii; represents
the total energy transferred per incident ion to target atoms (Sr, Ti and O) integrated along Ry, and Total Oxygen vacancies is the total number of oxygen vacancies

produced per incident ion integrated along Rj.
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Figure 1. Kinetics of the emission bands at 2.8 eV (a-c) and 2.5 eV (d-f) as a function of ion fluence for different excitation rates (ions and

energies) at different temperatures (RT, 170 and 100 K).

ratio pp/¢ clearly increases with the excitation rate, i.e.
the 2.8 eV band is enhanced relative to the 2.5 eV band as
the electronic excitation density increases, corroborating
the case of laser pulse excitation [12-14].

Based on these novel results, we attribute the 2.8 eV
band to optical transitions between CB levels and the
localized STE ground state level. The CB levels become
densely populated during the strong electronic excitation
provided by heavy-mass and high energy ion-beam irra-
diation, which may account for a significant emission at
2.8 eV. This model states that both the blue and green
bands are ascribed to transitions of the STE center, from
either unbound (2.8 eV emission) or bound (2.5 eV emis-
sion) excited states, in accordance with the electronic
levels scheme for all the optical transitions considered
in Figure 3. The coexistence between these two types of
transitions can only be achieved under high electronic
excitation rates, such as those achieved by pulsed-laser
or ion-beam irradiation. In accordance with this new
model, the position of the localized excited STE level with
respect to the CBM should match the difference between

the energies of the blue (Eg) and green (Eg) emissions
(leaving aside lattice relaxations), i.e. around 0.3-0.35 V.
On the other hand, the position of the ground state above
the maximum of the VB for the two (green and blue)
transitions would also be around Eg-Eg ~ 0.35eV (Egq
~ 3.25eV being the energy gap of SrTiO3), suggesting a
rather symmetrical position of the two STE levels inside
the forbidden gap. Possible non-radiative Auger transi-
tions that have been suggested by lifetime and integrated
light intensity measurements for the 2.8eV emission
[12,17,18] are also indicated in Figure 3.

For a further quantitative interpretation of the kinet-
ics, a definite model is needed. We assume that the main
decay channel for the free carrier density is the formation
of STEs through bimolecular e-h recombination followed
by their associated green (2.5eV) emission. Simultane-
ously, a monomolecular decay channel for free carriers to
STEs levels accounts for the blue emission. We ignore any
irradiation-induced defects, such as oxygen vacancies.
This assumption is justified as long as the concentra-
tion of carriers, either electrons (e) or holes (h), is much
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Figure 2. Evolution of the ratio (pg/G) between the blue and
green emission yields as a function of ion fluence for different
excitation rates at different temperatures (RT, 170 and 100 K).

higher than that for defects. This is expected for suffi-
ciently high overall excitation rates G, around or above
102 cm =2 s, comparable to those obtained under high
power light pulses (see Table 1). This coexistence of
bimolecular and monomolecular processes to account for
the data on the emission lifetimes and yields as func-
tions of excitation rate has been previously suggested
by previous workers [13,14]. However, the strong over-
lap between the blue and green emission bands prevents
quantitative separation of the two decay channels and the
assignment of each to definite emissions (either green
or blue). Previously reported data [13] on the photo-
luminescence spectra of pure and Nb-doped SrTiOs,
which showed a clear enhancement of the blue emis-
sion over the green one, are consistent with our current
ion-beam results and the present model. Due to the elec-
tron donor character of Nb, the doped samples contain
a much higher free electron concentration and, there-
fore, the corresponding blue emission for these samples
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Figure 3. Proposed mechanisms for the main luminescence
emissions at 2.5 eVand 2.8 eV. The blue (2.8 eV) and green (2.5 eV)
luminescence emissions are, both, related to transitions of the
STE center. (a) The radiative spontaneous annihilation of the STE
is responsible for the green emission band. (b) The blue emis-
sion band is attributed to a radiative recombination of unbound
states of the STE (i.e. free electrons in the CB) to the ground state
level of the center. Possible alternative non-radiative channels for
electronic Auger transitions to higher CB levels are indicated by
dashed lines.

is strongly enhanced. For un-doped samples, a simple
model, described below, predicts that the ratio, pp/e;
between the two emission yields at 2.8 and 2.5 eV should
evolve with the square-root of the excitation rate. For the
ion fluxes considered in this work (~ 101 em~2s71), the
ion trajectories and subsequent excitation processes are
essentially uncoupled, temporally and spatially, so that
one can treat the effects of various incident ions as inde-
pendent events. Therefore, in order to meaningfully com-
pare the role of the different ions and energies on the ratio
pB/G>one should use the excitation rate corresponding to
a single ion, i.e. g = N,_j, (see Table 1). This assumption
is also reasonable given the fast dynamics (the lifetime,
7, for the 2.8 eV emission is on the nanosecond time-
scale) of the optical processes. In order to simulate the
kinetics, one may proceed as follows: the evolution of
the total carrier (e, h) and STE populations per incident
ion in the irradiated volume, ignoring spatial variations
along the ion projected range (Rp), can be described by
the following rate equations:

dN, _ dNy, _ )

q a8 eN® M
dN.

dStTE = aN2(t) — BNszz(b) 2)

with o being the recombination rate of carriers into
STEs, B the light emission probability per unit of time
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Figure 4. Dependence of pg/ on single-ion excitation rate (Ne_p)
at different temperatures (RT, 170 and 100 K), revealing the sub-
linear behavior on the excitation rate. Dots are averaged values
extracted from data plotted in Figure 2 and the solid line corre-
sponds to a square-root dependence. The dashed line represents
a linear best fit.

(reciprocal of the STE lifetime, 7 [9,10]), and g = N,_p,
the excitation rate per incident ion, extended through-
out Rp. N,_j values for the different ions are given
in Table 1. The electron-hole (e-h) recombination rate,
o, may be temperature dependent (through the elec-
tron-hole transport or tunneling processes to recombine
into STEs). In the scale of the experiments under study, a
steady state is rapidly reached:

1
_ (&) _g
No,e = (a) > Noste = 5 3)
Within this simple scheme, the overall yields for the green
(Yg) and blue (Yp) emissions will be (ignoring possible
self-absorption of the light):

Yc o« BNo,ste x g (bimolecular channel) (4)
Yp o Ny NsrE X g% g (monomolecular channel) (5)

and the ratio between the yields is finally obtained as,

Y, 1
/OB/G=—BO<g2- (6)
Yg

Thus, at constant temperature the ratio should evolve
with the excitation rate following a square-root depen-

dence, as g%. Figure 4 shows that the yields ratio pp/g
reasonably fits a square-root dependence on the single-
ion excitation rate, N,_j, which is consistent with the
prediction of the above kinetic analysis. Therefore, the
data confirms the physical model proposed for the STE
and supports the assignment of the 2.8 eV emission to
free carrier-STE recombination. One should remark that
the situation under ion beam irradiation is not strictly
equivalent to that under laser pulse excitation, since the

individual photons are essentially coupled and cannot be
separated in space or time.

4. Conclusion

In summary, a key result of the present study is that, the
blue (2.8 V) and green (2.5 eV) luminescence emissions
are both related to transitions of the STE center, involv-
ing either localized states (2.5 eV), or pairs of localized
and band states (2.8 eV). This represents a novel fea-
ture associated to the high electronic excitation densities
achieved by both pulsed laser and ion beam irradiations.
A new model for the blue emission is proposed consist-
ing of a radiative transition from un-bound (CB) states to
the ground STE level. Consequently, the two emissions
(green and blue) are associated with the same localized
center and imply the STE annihilation. The analysis pre-
sented here provides a unified description of the emis-
sion mechanisms and demonstrates the unique potential
of ionoluminescence to unravel the rich and complex
variety of effects associated with electronic carriers and
oxygen vacancies in SrTiO3.
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