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INTRODUCTION

The Missouri University of Sciences and Technology Re-
actor (MSTR) is pool-type research reactor which operates up
to 200 kilowatt (kW). MSTR used for training and educating
nuclear engineering students at Missouri S&T [1]. A several
of nuclear researches and irradiation experiments have been
conducted in MSTR for example, neutron activation analysis
(NAA), neutron radiography, radiolysis, image processing, etc.
MSTR initial criticality took place on December 9, 1961. The
first power level that MSTR operates at, was 10 kW. The
power level alongside the core configuration was upgraded to
the current ones, see Fig. 1 [1, 2]. MSTR used light-water
for moderation and natural convective heat removal. MSTR
core consists of 9×6 aluminum array grid plate, nineteen fuel
elements, one source holder, a single beam port and three
irradiation facilities namely, bare rabbit tube (BRT), cadmium
rabbit tube (CRT) and hot cell (HC) [1, 2].
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Fig. 1. MSTR Current Core Configuration.

Each fuel element has 87 cm height and an almost square
cross-sectional area of 7.62 cm × 7.62 cm [1, 2]. There is
a cylindrical nose piece attached at the bottom of each fuel
element for allowing it to be plug into the grade plate, see
Fig. 2. (A). There are eighteen curved fuel plates inside each
fuel elements. Each fuel plate consists of 0.51mm thick fuel
meat sandwiched by 0.38mm thick aluminum clad [1, 2].
The fuel meat is uranium silicide "U3Si2-A1" 19.75% 235U
enriched. Four of the nineteen fuel elements are used for
reactor power control (control rods), see Fig. 1 [1, 2]. The
four control rods are like the design of the fuel element except
the 10 central fuel plates were removed to accommodate the

control rods insertion, see Fig. 2. (B). Three of the control
rod are shim-safety rods and the forth one is a regulating rod.
Shim-safety rods are made of 1.5% natural-boron stainless
steel and use for controlling nuclear fission and shut-downing
the reactor [1, 2]. The regulating rod are made of stainless
steel SS304 and used to maintain stable reactor power.

Fig. 2. Standard Fuel Element (A) and Control Rod (B).

SCOPE OF WORK

The goal of this study is the enhancement of the current
traditional design of MSTR for supporting advance irradia-
tion experiments and researches. The objectives behind the
enhancement are; 1) the achievement of high neutron flux
and 2) the adaptability and flexibility in core configuration.
The adaptability and flexibility allow configuring the core for
both high-power core configuration and low-power core con-
figuration. By shuffling the reactor core components around
the core alongside changing the reactor power level, the user
would be able to shift from low-power to high-power core
configuration. The high-power core configuration is presented
in a separate study. The tasks for achieving these objectives
involve a modification factors which will be discussed in detail
in the following section.

Once the model is designed and set up, a general neutronic
evaluation was carried for the validate of the model. The
neutronic evaluation was performed using Monte Carlo N-
particle Code (MCNP), version 5 [3]. Burnup calculation is a
crucial element for neutronic evaluation therefore, it will be
done in future work, separate from the presented study. The
natural convective heat removal was assumed to be sufficient
for removing the generated heat.
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MSTR LOW-POWER CONFIGURATION (MSTR-LPC)

The current MSTR designs was the base of the presented
study. The MSTR low-power configuration (MSTR-LPC) in-
volves several modification factors. For the proposed model
(MSTR-LPC), criticality calculation was performed using the
current MSTR fuel meat "U3Si2-Al" and showed subcritical
core. Therefore, the first modification was changing the fuel
meat type. The considered fuel meat type is uranium-10 wt%
molybdenum metallic alloy (U-10Mo) with 19.75% 235U en-
richment. The reasons for considering U-10Mo are due to;
it’s very high uranium density (16.09 g/cm3), stability and
predictable irradiation behavior [4, 5]. A thin zirconium layer
of 25.4 µm-thick (1 mil) surrounded the U-10Mo meat, see
Fig. 3. The reason of adding the zirconium layer is to prevent
reaction between the aluminum and U10Mo foil [4, 5].
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Fig. 3. Middle-Cut-View of a single fuel plate containing
U-10Mo Meat surrounded by thin zirconium layer, aluminum
clad and light water.

Second modification is the design of a flux trap (FT)
facility. The FT is positioned at the central region of the
reactor core. A centrally located FT takes advantage of the
higher neutrons population. The FT design is a cylinder with
a radius of 3.2 cm, 59.055 cm tall and placed inside an empty
standard fuel element shell. In MSTR-LPC, the design of BRT
and CRT remain unchanged. Both are the same in design of
the ones in current MSTR. Third modification is the inclusion
of additional irradiation facilities which are FT to be inside the
graphite block (FT-GB), BRT to be inside the graphite block
(BRT-GB) and CRT to be inside the graphite block (CRT-GB).
The FT-GB is the same design of FT (explained previously)
except the empty standard fuel element shell was filled with
graphite. Same goes for BRT-GB and CRT-GB.

Forth factor is the reconfiguration of the reactor core, see
Fig. 4. The design of grid plate was maximized to be 9×9
aluminum array. The core consists of eight fuel elements, four
control rods and six irradiation facilities namely, FT, BRT,
CRT, FT-GB, BRT-GB, CRT-GB. A graphite blocks is in-
cluded in the left side of the core (see Fig. 4) to help reflecting
neutrons back to the core. The control rods designs remain

unchanged. The only changes in the control rods are the con-
centration of the boron in stainless steel. Boron concentration
have been raised to 12.6% for an effective shutdown. The
position of some components of the MSTR-LPC core were
envisioned to remain unchanged in order to minimize shuffling
requirements when switching to high-power core configura-
tion.

GB: Graphite Block FE: Fuel Element CR#: Control Rod
BRT: Bare Rabbit Tube CRT: Cadmium Rabbit Tube BRT-GB: BRT Inside
GB FT-GB: FT Inside GB CRT-GB: CRT Inside GB

Fig. 4. MSTR-LPC Core Configuration.

MCNP SIMULATION

The model of MSTR-LPC (as of Fig. 4) was set up using
MCNP5. The MCNP simulation was performed for neutronic
evaluation which includes neutron multiplication factor (ke f f ),
void effects and the safety shutdown margin. Also, the neu-
tron flux profile was determined. A KCODE criticality cal-
culation was performed with 20,000 particles per cycle, 300
active cycles and 20 discarded cycles. Tally F4:n was used for
the determination of flux. For the cross-section data library,
ENDF/B-VI (.70c) was used for all isotopes in the model.

RESULTS AND DISCUSSION

Neutron Multiplication Factor (Ke f f ), Void Effects and
Safety Shutdown Margin

The determination of ke f f performed at room tempera-
ture (293.6 k) with control rods fully withdrawn. The deter-
mined ke f f is 1.05568 with an estimated standard deviation
of 0.00037. The determination of void effect is based on the
ingress of water in places designed to be void. The following
facilities have void places: FT, BRT, CRT, FT-GB, BRT-GB
and CRT-GB. By water ingress to these facilities, ke f f drop to
1.05219 with an estimated standard deviation of 0.00034. The
reason for that drop is due to the introduction of additional ab-
sorption and moderation "water ingress". The negative effect
of absorption overcome the positive effect of moderation.

A serval assumption has been applied for the safety shut-
down margin; 1) two pair control rods are the shutdown control
rods, 2) the third control rod is the extra shutdown control rod
and 3) the fourth control rod is the regulating control rod. All
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the control rods positions (see Fig. 4) have been tested for
the determination of optimum positions for the pair shutdown
control rods, extra shutdown control rod and the regulating
control rod. Full insertion of CR1 and CR2 was determined
as the most effective pair shutdown control rods. The ke f f in
this case was 0.95910 with an estimated standard deviation of
0.00036. CR4 and CR3 were assigned to be the extra shutdown
control rods and the regulating rod respectively. The control
rod worth of CR1 and CR2 (the paired shutdown control rods)
are plotted in Fig. 5.

Fig. 5. The Worth of CR1 and CR2 (pair shutdown control
rods).

Neutron Flux Profile and Capabilities

Fig. 6 presented the neutron flux profile of the MSTR-
LPC core. The picture of the actual core of MSTR-LPC is
transparent over neutron flux profile for a better visualization.
Fig. 6 showed a horizontal line of symmetry. This provides
flexibility in positioning irradiation facilities either on the
upper or lower sides of the core, considering XY-view. As can
be seen in Fig. 6, the highest neutron flux region (in darkest
red color) is the middle region of the core which is the FT
region. At the FT region, the total neutron flux calculated by
MCNP is 1.03×1013 ± 1.54×1011 n cm2 s−1. For the BRT and
CRT, the total neutron flux calculated by MCNP are 6.41×1012

± 5.83×1011 n cm2 s−1 and 3.22×1012 ± 4.12×1011 n cm2 s−1

respectively. For irradiation facilities in graphite block (FT-
GB, BRT-GB and CRT-GB) the total neutron flux calculated
by MCNP are 6.56×1012 ± 1.56×1011 n cm2 s−1, 7.09×1012

± 6.63×1011 n cm2 s−1 and 4.91×1012 ± 5.01×1011 n cm2 s−1

respectively.

SUMMARY AND CONCLUSION

The goal of the described work was the enhancement of
the current traditional design of MSTR for supporting advance
irradiation experiments and researches. This was achieved by
considering a several of modification factors for the achieve-
ment of high neutron flux. Other consideration is increasing
the number of irradiation facilities in the core to allow for

Fig. 6. Neutron Flux Profile for MSTR-LPC Core.

multiple irradiation facilities. A primer objective of the pre-
sented model (MSTR-LPC) is the adaptability and flexibility
in core configuration which allow shifting from low-power to
high-power core configuration by shuffling the reactor core
components around the core alongside changing the reactor
power level.

Neutronic evaluation results for the MSTR-LPC model
showed that the reactor can sustain criticality. However, bur-
nup calculation is a crucial element and it will to be evaluated
in future work. For the safety shutdown margin, CR1 and
CR2 were assigned to be the pair shutdown control rods and
it showed an effective shutdown of the reactor. CR4 and CR3
were assigned to be the extra shutdown control and regulat-
ing control rods respectively. As of the neutron flux profile
and capabilities, the MSTR-LPC model presented a horizon-
tal line of symmetry which provides flexibility in positioning
irradiation facilities. The presented MSTR-LPC model prove
its capability and flexibility of supporting advance irradiation
experiments and researches.
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