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INTRODUCTION

Research reactor is a powerful tool because of its wide
contribution, almost to each field of science. It’s considered
to be an essential element for advancing research, develop-
ment and improvement in nuclear industry [1]. The main
goal of research reactor is to produce neutrons which are
beneficially used for a wide range of applications such as
industrial, agricultural, medical, etc [1]. Neutron spectrum
impact it uses. Commonly, neutrons with low energy level,
up to 0.5 eV, called thermal neutrons where neutrons with
intermediate energy level, ranging from 0.5 eV to 0.10 MeV,
called epithermal "resonance" neutrons and neutron with high
energy level, above 0.10 MeV, called fast neutron [1, 2]. Ther-
mal and epithermal neutrons can be used for a wide range
of purposes such as basic irradiation experiments, neutron
radiography, radiolysis, neutron activation analysis, low-scale
isotope production and etc [1, 2]. Fast neutrons can be used
for investigating radiation damages, advance test of materials
behavior and large-scale isotope production [1, 2].

Research reactors are generally categorized by its utiliza-
tion [1, 2]. However, according to research reactors database
of the International Atomic Energy Agency (IAEA), research
reactors are characterized by its power level and neutrons ca-
pabilities [2]. To this point, the neutron flux magnitude is
linearly proportional to the reactor power level [2]. Therefore,
the utilization of research reactor depends on its power level
and flux magnitude alongside flux energy spectrum obtained
in irradiation facilities inside the research reactors. The de-
sired neutron spectrum should play a major role in designing
a research reactor.

In the traditional design of thermal research reactors, ther-
mal and epithermal neutrons are sufficiently produced [1].
In contrast, the fast neutrons are significantly limited due to
the highly moderating environment [1]. The prevailing de-
signs either focused on thermal or fast spectrum [1, 2]. The
sustenance of fast neutrons in thermal research reactors is con-
sidered to be one of the challenges. This sort of challenge
presents the need for high-power research reactor containing
high flux facilities. Knowing that both thermal and hard spec-
tra are needed, therefore, a combination of both spectrums in
a flexible core configuration would allow for a diversity of
irradiation experiments.

MSTR CURRENT DESIGN & CONFIGURATION

The Missouri University of Sciences and Technology Re-
actor (MSTR) is pool-type research reactor used for training
and educating nuclear students along with research purposes

[3]. MSTR operates up to 200 kilowatt (kW) [3]. Light-water
is used for moderation and natural convective heat removal [3].
MSTR uses materials-test-reactor (MTR) type fuel. The grid
plate is 9x6 aluminum array [3]. The core consists of nineteen
fuel elements and three irradiation facilities along with the
one source holder [3]. Four of the fuel elements are used for
reactor power control (control rods) [3]. The current MSTR
core configuration is presented in Fig. 1 [4].
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Fig. 1. MSTR Current Core Configuration.

Each of the fuel element is 87 cm tall and has a cross-
sectional area of 7.62 cm x 7.62 cm, see Fig. 2. (A). Each
of the fuel elements consist of 18 curved fuel plates. Every
fuel plate contains U3Si2-Al "meat" (19.75% 235U enriched)
sandwiched by aluminum clad [3]. The four elements used
for reactor power control (control rods) are the same in design
of the fuel element except the 10 middle fuel plates were
removed to accommodate the control rods insertion, see Fig.
2. (B). Three of these are shim-safety rods which made of
1.5% natural-boron stainless steel [3]. The forth one is the
regulating rod which made of stainless steel SS304 [3]. The
three irradiation facilities are bare rabbit tube (BRT), cadmium
rabbit tube (CRT) and hot cell (HC). More details about the
MSTR designs is documented in reference 3 and 4 of the
current study.

SCOPE OF WORK

The goal of this study is to overcome the attendant rigidity
of the traditional design of MSTR and provide adaptability and
flexibility in supporting a wide variety of advance experiments
and research. This can be achieved by investigating a concep-
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Fig. 2. Standard Fuel Element (A) and Control Rod (B).

tual upgrade of MSTR core design and configuration. In the
presented study, the conceptual upgrade generally involves
neutronic evaluation which will be discussed in the follow-
ing sections. However, the conceptual upgrade comes with
inevitable key considerations specially in term of thermohy-
draulic: for example, the heat removal/cooling requirements.
For a comprehensive conceptual upgrade study, the thermo-
hydraulic aspects must be studied and analyzed. This will be
done in a future work, separate from the current study.

MSTR HIGH-POWER CONFIGURATION (MSTR-
HPC)

The current MSTR designs will be the base of MSTR
high-power configuration (MSTR-HPC). However, MSTR-
HPC involves important modification factors. First factor,
uprating the power level to 2 MegaWatt (MW) to facilitate
higher neutron flux. Second factor, changing the fuel meat
type to uranium-10 wt% molybdenum metallic alloy (U-10Mo)
with 19.75% 235U enrichment. The reasons behind the selec-
tion of U-10Mo are; it’s very high uranium density (16.09
g/cm3), stability and predictable irradiation behavior [5]. Thin
zirconium layer of 25.4 µm-thick (1 mil) will surround the
U-10Mo meat from all sides as well as the top and bottom,
see Fig. 3. The goal of the thin zirconium layer is to avoid
delamination and to prevent reaction between the aluminum
and U-10Mo foil which could lead to swelling in case of high
burnup and fission rate [5].

Third factor is the design of a flux trap (FT) facility to be
positioned at the central region of the reactor core. The flux
trap concept facilitates concentration and enhancement of flux
in a specific region. A centrally located FT takes advantage of
the higher neutrons population. The FT design is a cylinder
with a radius of 3.2 cm, 59.055 cm tall and placed inside an
empty standard fuel element shell.

Forth factor is the reconfiguration of the reactor core
which adopted the compact core concept, see Fig. 4. The
grid plate redesigned to be 9x9 aluminum array. The core
contains four fuel elements, four control rods and three
irradiation facilities namely, FT, BRT and CRT. The design
of BRT and CRT remain unchanged. The core is surrounded
by a graphite blocks for neutron reflection purpose and the
achievement of critical core, see Fig. 4. The control rods
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Fig. 3. Middle-Cut-View of a single fuel plate containing
U-10Mo Meat surrounded by thin zirconium layer, aluminum
clad and light water.

designs remain unchanged except the concentration of the
boron in stainless steel which have been raised to 2.00% for
an effective shutdown.
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Fig. 4. MSTR-HPC Core Configuration.

MCNP SIMULATION

Based on Fig. 4 – MSTR-HPC core configuration, the
model was designed and set up using Monte Carlo N-particle
Code (MCNP), version 5 [6]. The simulation was performed
to evaluate and determine; 1) the neutron multiplication factor
(Ke f f ), 2) void effects, 3) the safety shutdown margin and
more importantly 4) the neutron flux map and capabilities over
the reactor core and inside the irradiation facilities. A KCODE
criticality calculation was performed with 20000 particles per
cycle, 300 active cycles, and 20 discarded cycles. Tally F4:n
was used for the determination of flux. For the cross-section
data library, ENDF/B-VI (.70c) was used for all isotopes in
the model.
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RESULTS AND DISCUSSION

Neutron Multiplication Factor (Ke f f ), Void Effects and
Safety Shutdown Margin

The Ke f f determination are evaluated in a room temper-
ature ∼ 293.6 K along with the control rods fully withdrawn
"excess reactivity". Ke f f determined to be 1.02239 with an
estimated standard deviation of 0.00036. Herein study the
interest is to see of such configured core would be critical or
not. Thus, burnup calculations are crucial element for neu-
tronic evaluation. This will be done in a future work. Void
effect is determined by water ingress to places designed to be
void namely, FT, BRT and CRT. After doing so, Ke f f drops to
1.01670 with an estimated standard deviation of 0.00036. The
Ke f f drop is due to the positive void reactivity effect in the
graphite-moderated water-cooled system. The water ingress to
the void facilities introduce additional absorption and modera-
tion in the core. The negative effect of absorption overcome
the positive effect of moderation.

For the safety shutdown margin, two pair of control rods
are assumed to be the shutdown control rods, the third one
is the extra shutdown control rod and the fourth one is the
regulating control rod. The pair shutdown control rods are
tested in all of four control rods positions, see Fig. 4. The
effective pairs shutdown control rods are determined to be
in the position of CR1 and CR2, see Fig. 4. With a full
insertion of CR1 and CR2, Ke f f determined to be the lowest
among other positions which is 0.93395 with an estimated
standard deviation of 0.00037. Similarly, Ke f f tests has been
applied for the other control rods positions (CR3 and CR4)
for determining the optimum position for the extra shutdown
control rods and the regulating rods. Therefore, CR4 was
assigned to be the extra shutdown control rods and CR3 was
assigned to be the regulating rod. The control rod worth of
CR1 and CR2 (the pair shutdown control rods) are plotted in
Fig. 5.

Fig. 5. The Worth of CR1 and CR2 (pair shutdown control
rods).

Neutron Flux Map and Capabilities

The neutron flux profile for MSTR-HPC core is presented
in Fig. 6. It can be seen, that the picture of actual core
configuration is transparent over the flux profile for a better
visualization. More importantly, Fig. 6 presents a symmetry
core which allow flexibility in positioning the irradiation facil-
ities either at the upper or lower side of the core (considering
XY-View). The central region of the reactor core has the high-
est neutron flux (in darkest red color) which is the FT zone.
At the FT region, the total neutron flux calculated by MCNP
is 1.42×1014 ± 1.81×1012 n cm2 s−1. For the BRT and CRT,
the total neutron flux calculated by MCNP are 8.25×1013 ±

6.62×1012 n cm2 s−1 and 4.22×1013 ± 4.77×1012 n cm2 s−1

respectively.

Fig. 6. Neutron Flux Profile for MSTR-HPC Core..

Table I. presents a comparison of total neutron flux ob-
tained at irradiation facilities for both the current MSTR core
configuration (as of Fig. 1) and the MSTR-HPC core con-
figuration (as of Fig. 4). For the current MSTR core, the
MCNP simulation performed under the same conditions of
MSTR-HPC MCNP simulation except the power level-200
kW. As a comparison result, clearly the MSTR-HPC core
allows achieving a very high neutron flux on all irradiation
facilities, see Table I. Keeping in mind that MSTR-HPC core
has only 8 fuel-bearing elements in comparing to the current
MSTR core which has 19 fuel-bearing elements. However, for
MSTR-HPC, the designs of irradiation facilities mainly the FT
has room for improvement towards optimizing and achieving
higher neutron flux.

SUMMARY AND CONCLUSION

The goal of the described work was to overcome the at-
tendant rigidity of the traditional design of MSTR and provide
adaptability and flexibility in supporting a wide variety of ad-
vance experiments and research. Several modification factors
have been considered. The main purpose for considering such
modification factors is to allow achievement of high neutron
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TABLE I. Comparison of Total Neutron Flux at Irradiation Facilities for Both Configurations.

Current MSTR Core MSTR-HPC Core
Irradiation Facilities

HC BRT CRT FT BRT CRT

Total Neutron Flux (n cm2 s−1) 9.01E12
± 6.77E11

5.26E12
± 4.79E11

1.73 E12
± 2.82E11

1.42 E14
± 1.81E12

8.25E13
± 6.62E12

4.22 E13
± 4.77E12

flux. These factors are; 1) uprating the power level to 2 MW,
2) changing the fuel meat type to U-10Mo, 3) designing a FT
facility at the central region of the reactor core and 4) recon-
figuring the reactor core to adopt a compact core concept. The
justifications of considering each factor have been explained
in the body of this study. The model was designed and set up
using Monte Carlo N-particle Code (MCNP), version 5. A
general neutronic evaluation were performed.

The determined Ke f f for MSTR-HPC was 1.02239 with
an estimated standard deviation of 0.00036. The Ke f f determi-
nation was evaluated in a room temperature ∼ 294.6 K along
with all control rods fully withdrawn. For the void effects "wa-
ter ingress", Ke f f drops to 1.01670 with an estimated standard
deviation of 0.00036. Based on the Ke f f , the pair shutdown
control rods were assigned to CR1 and CR2. The extra shut-
down control rods and regulating rod were assigned to CR4
and CR3 respectively. For FT, BRT and CRT, the total neu-
tron flux calculated by MCNP were 1.42×1014 ± 1.81×1012

n cm2 s−1, 8.25×1013 ± 6.62×1012 n cm2 s−1 and 4.22×1013

± 4.77×1012 n cm2 s−1 respectively. The MSTR-HPC core
allows achievement of high neutron flux on all irradiation facil-
ities with only 8 fuel-bearing elements. MSTR-HPC proves its
capabilities and flexibility in supporting advance experiments
and researches. In future work, thermohydraulic evaluations
and burnup calculations will be perform for a comprehensive
conceptual upgrade of MSTR.
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