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ABSTRACT

In part I, the pulse shape characteristics generated by a Geiger Muller (GM) 

detector and recorded by an oscilloscope manually, were investigated. The objective of 

part I was (1) to find a correlation between pulse shape and the operating voltage; and (2) 

to assess if pulse shape properties followed distinct patterns comparable to detector 

deadtime findings reported by a previous study. It was observed that (1) there is a strong 

correlation between pulse shape and operating voltage, and (2) pulse shape falls in three 

distinct regions similar to detector deadtime. Furthermore, parts II and III are companions 

and share the same experimental setup designed to simultaneously measure the GM 

detector’s deadtime, and capture and record the generated pulses by an oscilloscope 

automatically. Four different pairs of radioactive sources (204Tl, 137Cs, 22Na, 54Mn) were 

used. For part II, it was observed that deadtime dependence on operating voltage followed 

a distinct pattern while using 204Tl, 137Cs, 22Na except for 54Mn.For part III, it was found 

that there is a strong correlation between deadtime behavior and several pulse shape 

properties. In addition to part I-III, part IV focused on the characterization of accident 

tolerant fuel cladding SiC for high burnup SMR core. First, reactor physics modeling for 

various accident tolerant fuel claddings was performed. It was found that SiC outperforms 

all other cladding candidates in terms of discharge burnup. Second, an experimental setup 

was designed to characterize weight loss and mechanical strength of SiC by examining the 

effects of neutron-irradiation in harsh environments. It was observed that (1) irradiated 

samples were more prone to material weight loss at higher temperatures, and (2) 

mechanical strength for control, non-irradiated, and irradiated samples were comparable.
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1. INTRODUCTION

1.1. GM DETECTOR AND DEADTIME

Detector deadtime phenomenon has been an interest in the nuclear scientific 

community for decades. After Geiger and Mueller (GM) introduced the GM detector in 

1928, and since then, the GM counter has been widely used in radiation measurement 

applications due to its simple, ease of operation, inexpensive design. The GM counter 

operates on the gas multiplication principle [1]. An initial radiation event taking place 

within the detector creates positive ion pairs and electrons. Applying a high voltage on the 

detector, electrons are accelerated towards the anode. In contrast, positive ions are 

accelerated towards the cathode if sufficient kinetic energy gained by the electron leads to 

the creation of secondary ionization, which leads to the creation of secondary and tertiary 

ionizations, which ultimately leads to the creation of Townsend avalanche [1].

Under the proper conditions, this avalanche triggers another avalanche leading to a 

self-propagating chain reaction enveloping the entire anode wire until the avalanche 

reaches a maximum size. The chain reaction is terminated when the electron strikes the 

anode wire, it creates a current. This current produces a pulse which is ultimately processed 

and counted by the pulse processing electronics. Because of the GM counter’s underlying 

principle, the pulses produced by a GM counter are generally believed to have the same 

size and shape.

For radiation events to be counted as independent events, there has to be a minimum 

separation time between two radiation incidents. The minimum separation time is known 

as deadtime, and if any radiation incident takes place before the deadtime lapses, the event 

will be lost [2]. For any detector system, deadtime depends on the operating conditions,
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pulse processing electronics, and its design [3]. Generally, the contributing factors to the 

deadtime of any detector system can be divided into (a) internal losses within the detector, 

and (b) count losses from the pulse processing circuitry [4]. In the case of a GM detector, 

the major contributor of deadtime originates from the processes with the detector itself.

Two idealized models are traditionally used in the industry and academics. These 

ideal models are known as paralyzing and non-paralyzing models introduced by Feller and 

Evans [5, 6]. Further research into the deadtime phenomenon resulted in a generalized 

model introduced by Mueller [7, 8]. A hybrid deadtime model was later introduced by 

Albert and Nelson [9] and later modified by Lee and Gardner [10] by combining the 

fundamentals of idealized models. A recent modification of the hybrid model was 

introduced by Patil and Usman [4] by introducing a paralysis factor into the mathematical 

expression.

All previous efforts were lacking any phenomenological explanation of deadtime. 

As a part of this dissertation, a detailed simultaneous observation of detector deadtime and 

various pulse shape characteristics were made. It was concluded that the common belief 

that all pulse generated in a GM counter as of the same size and shape is not correct. 

Moreover, a phenomenological basis of deadtime for a GM counter was developed and 

tested against the observation made on the pulse shape properties. Results showed that 

there are three distinct regions of detector deadtime for GM counter depending on the 

operating voltage. As a result of this experimental campaign three journal articles are 

produced in additional to 2 conference papers.

Further details are provided in Papers (I, II, III). The code for deadtime modeling 

using MATLAB in Paper (III) is also provided in Appendix A.
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1.2. ACCIDENT TOLERANT FUEL CLADDING: SILICONE CARBIDE

There has been an increased interest in accident tolerant fuel (ATF) cladding 

concepts after the 2011 Fukushima Daiichi disaster. Since then, much research & 

development programs have been launched to find a potential ATF cladding to enhance the 

safety of 4th-generation nuclear reactors as well as to replace the traditional zircaloy 

cladding. Due to the favorable characteristics of silicon carbide (SiC), such as its low 

corrosion rate, SiC has been proposed as a potential ATF cladding [11-13]. The low 

corrosion rate of SiC would make it tolerate high fuel burnups. Therefore, it will enhance 

uranium utilization. It can also enhance the safety of Light Water Reactors (LWR) and 

possibly increase its power level.

Since 1950s, zirconium-based (Zr) alloys have been chosen as fuel cladding in 

LWRs because of Zr’s lower neutron absorption cross-section compared with stainless 

steel [14-16]. Since then, the nuclear industry adopted Zr-based alloys as the cladding of 

choice in LWRs. Nevertheless, zirconium alloys at high temperatures in water shows 

accelerated material degradation due to its high corrosion rate. In fact, at high temperatures, 

the self-accelerating exothermic steam reaction of zirconium ultimately resulted in 

hydrogen production which led to hydrogen explosions and failure of three containment 

buildings in the Fukushima nuclear disaster [17-19]. After the accident, the nuclear 

industry launched serious efforts into finding an alternative ATF and cladding which could 

tolerate severe accident conditions.

SiC has several superior characteristics over zirconium alloys such as high melting 

point, high strength at elevated temperatures, heat transfer resistance, lower neutron 

absorption cross-section, and low corrosion rate. Due to these characteristics, SiC



4

demonstrates less susceptibility to hydrogen embrittlement and improved corrosion 

resistance [17-19, 20-22].

Furthermore, due to the added heat transfer resistance of SiC, nuclear fuel 

temperature can be higher. Along with the fact that Zr-based alloys cannot tolerate high 

temperatures (>800°C), this would make SiC a cladding material of choice for high burnup 

applications and Small Modular Reactor (SMR) cores [14, 20, 23-27].

Since Zr cladding can only survive the achievable burnup of 60-70 GWd/tonne 

[28-30] and long-life high burnup SMR cores would exceed 90 GWd/tonne, Zr cladding 

would not be a feasible choice [31, 32]. Hence, SiC serves as a potential ATF cladding for 

long-life high burnup SMR cores. As a part of this dissertation, SiC was examined for its 

properties in harsh reactor environment for possible application as cladding material for 

future reactors’ fuel. An experimental study was performed to collect data on degradation 

of mechanical properties of SiC when exposed to steam, high temperature and nuclear 

radiation. In the initial phase of the research a burnup simulation was performed to predict 

the higher burnup limits that SiC could withstand. It was demonstrated that SiC has obvious 

advantage in this regard over other candidate cladding materials. Subsequently, SiC was 

simultaneously exposed to pure steam and heat to study the endurance of the material 

against corrosion. In nuclear reactor application, nuclear radiation is also a significant 

factor which can possibly accelerate the corrosion process. To examine the contribution of 

nuclear radiation, additional experiments were performed to examine the endurance of SiC 

under simultaneous exposure to radiation, steam, and heat. In addition to corrosion, 

mechanical strength post exposure was also testing using burst testing method.
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Results obtained in the study are presented in 2 conference papers and 1 (Paper IV) 

journal article submitted for publication while additional manuscript(s) are under 

preparation. Paper (IV) provides the following: (1) neutronic analysis utilizing Monte 

Carlo N-Particle (MCNP), version 6.1; (2) experimental investigation for characterizing 

SiC in harsh reactor environments.

Furthermore, a sample code for the 2D subassembly lattice core used in MCNP 

simulations is provided in Appendix B. The output files from the MCNP simulations are 

substantial and extracting the results of interest is laborious and prone to human error, a 

Python code was developed to extract the final results of interest and the code is provided 

in Appendix C.
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PAPER

I. VOLTAGE DEPENDENT PULSE SHAPE ANALYSIS OF GEIGER-MULLER
COUNTER

B. Almutairi a,c, T. Akyurek b, and S. Usmana

a Department of Mining and Nuclear Engineering, Missouri University of Science &
Technology, Rolla, MO, 65401, USA

b Department of Physics, Faculty of Art and Science, Marmara University, 
34722, Kadikoy, Istanbul, TURKEY

c Environmental and Life Sciences Center, Kuwait Institute for Scientific Research,
Kuwait City 13109, KUWAIT

ABSTRACT

Detailed pulse shape analysis of a Geiger-Muller counter is performed to 

understand the pulse shape dependence on operating voltage. New data is presented to 

demonstrate that not all pulses generated in a GM counter are identical. In fact, there is 

strong correlation between the operating voltage and the pulse shape. Similar to detector 

deadtime, pulse shapes fall in three distinct regions. For low voltage region, where 

deadtime was reported to reduce with increasing voltage, pulse generated in this region 

was observed to have a fixed pulse width with a variable tail. The pulse width and fall time 

of the tail was observed to be a function of applied voltage; exponentially reducing with 

increasing voltage with an exponent of negative 6E-04 and 2E-03, respectively. The second 

region showed a pulse without any significant tail. During this time, the detector deadtime 

was earlier reported to be at its minimum. The highest voltage region demonstrated a 

different deadtime mechanism where the second pulse was reduced in width. During this
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time, the deadtime seemed to be increasing with increasing voltage. This data allows us to 

gain some unique insight into the phenomenon of GM detector deadtime not reported thus 

far. GM detector deadtime not reported thus far.

1. INTRODUCTION

Geiger-Mueller (GM) counter is one of the oldest radiation detectors which was 

introduced by Geiger and Muller in 1928 [1]. It is widely used in the measurement of 

radiation due to its inexpensive, simple, rugged design and ease of operation. The GM 

counter falls under the category of filled gas detectors. It operates on the principle of gas 

multiplication, i.e., electron and positive ion pairs are created from an initial radiation 

interaction. Due to high velocity of charged particles, secondary ionization events are 

produced. If the original ionizing event was caused by beta or alpha particles, then the fill 

gas is ionized directly; on the other hand, gamma and x-rays ionize the gas indirectly.

When a high voltage is applied to the detector, the electrons are accelerated towards 

the anode and the positive ions are accelerated towards the cathode due to the potential 

difference between the anode and cathode. The accelerated electron gains sufficient kinetic 

energy to produce secondary ionization. In additional to the secondary ionization a large 

number of atoms/molecules are left in the excited state leading to almost immediate de­

excitation of these molecules which produce photons within visible or ultraviolet range. 

Interaction of these photons with the GM cathode wall or the gas itself causes secondary 

and tertiary ionizations, eventually leads to the formation of an avalanche of ion pairs 

commonly known as Townsend avalanche [2]. Under proper conditions, an avalanche can 

trigger a second avalanche, however, at a different position within the counter. On the
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average, each avalanche can trigger at least another avalanche; thus, a self-propagating 

chain reaction that envelopes the entire anode’s wire is induced. The velocity at which the 

avalanche propagates is approximately 2-4 cm/ps [2]. At higher values of the electric field, 

within a very short time an exponentially growing number of avalanches are formed. At 

certain point when the avalanche has reached the maximum size, the chain reaction 

terminates. Because of that, all pulses produced by the GM counter are generally believed 

to be of the same amplitude and shape. The GM counter is therefore limited in its 

application and cannot be used for radiation spectroscopy [2]. Data presented here makes 

this general assumption that all GM pulses are identical questionable.

Furthermore, the collected negative charges that were produced in the detector 

results in a pulse that lasts for a few microseconds. The time it takes to collect the charge 

depends on various factors: temperature, pressure, type of gas in the detector and the 

applied voltage; whereas the duration of the pulse depends on other factors: detector 

geometry, initial ionization location within the detector and the applied voltage [3]. The 

speed at which electrons or positive ions move from their point of origin can be accurately 

predicted by;

U.£V = — 
P

(1)

where v is the drift velocity, p is the charge mobility, s is the strength of the electric field 

and p is the gas pressure. The mobility of free electrons in gases is much larger than that 

of positive ions; however, at higher electric field values, positive ion’s drift velocity 

increases slowly with the electric field until it reaches a saturation velocity. Any further 

increase in the electric field will not affect the mobility, it will remain constant over wide 

ranges of electric field and gas pressure for both the negative electron and the positive ions.
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Typical mobility for gases with a medium atomic number falls in the range of 1 to 1.5 x 

10"4 m2 atm/V. sec. and a typical drift velocity of 1 m/s occurs at 1 atm pressure and an 

electric field of 104 V/m as reported in the literature [2].

Nevertheless, free electrons and positive ions behave differently under applied 

voltage in that the former is more mobile than the latter by a factor of 1000 due to their low 

masses. Therefore, the collection time of free electrons is in the order of microseconds 

whereas the collection time of ions is in the order of milliseconds [3]. May et al. [4] 

proposed that the drift velocity of ions is inversely propositional to temperature. Other 

studies have confirmed that ion mobility is not only altered by the applied voltage but also 

by temperature [3]. Preliminary work on temperature dependence of GM counter 

performance was reported by Akyurek and co-workers [3] and will not be discussed here.

Unlike free electrons which are collected rapidly at the anode, positive ions take a 

longer time to be collected at the cathode due to their low mobility. Under proper 

conditions, the positive ions form a sheath around the anode which results in a distortion 

of the electric field. If the sheath space of positive ions around the anode is not completely 

removed, any subsequent pulse generated will be reduced in amplitude. If the distorted 

field lingers and becomes stronger in magnitude, any following radiation interaction within 

the counter may result in an undetectable pulse [3, 5]. This undetectable pulse is lost in the 

GM counter. Since radiations incidents are random in nature, it follows that many 

undetectable pulses are lost in the counter. The undetectable pulses are a consequence of a 

phenomenon called deadtime which is yet another limitation of the GM counters.
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1.1. THE DEADTIME PROBLEM

Deadtime is defined as the minimum time interval required for two consecutive 

radiation interactions in the counter to be detected as independent events. When two events 

occur within a short duration of time, less than the minimum time interval, the detector is 

unresponsive (dead); hence, the event is lost [6]. Detector deadtime had been an active area 

of research, several theoretical and experimental studies in the 30s and 40s have shown 

that the GM counter suffers from a long deadtime in the order of a few hundred 

microseconds to several milliseconds [7, 8]. For low counting rate applications, the GM 

counter has been extensively used where counting loss is rather easy to correct. On the 

other hand, for high counting rate applications, scintillation or solid-state detectors are 

better suited to perform the task because they suffer from a shorter deadtime [9]. It is for 

that reason that correction of deadtime of GM counters for high counting rate applications 

has been largely neglected until the late 1990s where the problem was reinvestigated by a 

group of researchers [10, 11]. In general, for various radiation detectors, deadtime 

phenomenon is significant at high intensity radiation applications such as in Positron 

Emission Tomography (PET) and spent fuel scanning. For gas-filled detectors, the 

investigation further continued to extend the useful counting rate range of GM counters [9, 

12, 13].

It is important to recognize that deadtime is added at all stages of signal processing. 

As can be seen in Figure 1, radiation detection system consists of a detector that produces 

the initial pulse and passes it to a series of electronic pulse processing instruments; 

preamplifier, amplifier, single channel analyzer (SCA), and then either a multichannel 

channel analyzer (MCA) or a counter records the pulse [14]. In a typical radiation detection
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system, there are two elements that contribute to total deadtime. First, the inherent 

deadtime produced by the detector’s physical process and electric circuitry. Second, the 

characteristic deadtime contributed by each electronic instrument in the system. The 

deadtime from the modern electronics is negligible as compared to the long deadtime that 

GM detectors suffer from [14, 15]. Therefore, pulse processing deadtime can be neglected 

and only the inherent deadtime of the detector is sufficient for count rate correction 

consideration.

1.2. DETECTOR DEADTIME MODELS

There are two widely used models for deadtime behavior in counting systems: the 

paralyzing model also known as the extending type; and the non-paralyzing model also 

refer to as non-extending type. These are ideal models and were first proposed by Feller

[16] and Evans [17]. The paralyzing model assumes that after the first pulse is generated, 

any radiation incident that occurs during the resolving time (deadtime) will result in losing 

the subsequent pulse and it will reset the deadtime time; thus, the deadtime is extended. 

The system, therefore, suffers from continuous paralysis until at least a duration equal to
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or greater than the deadtime lapses without the occurrence of any radiation event. The 

mathematical description derived by Feller and Evans for the paralyzing model is given 

by;

m = n .e -nT (2)

where, m  is the observed or measured count rate, n is the true count rate and t is the 

detector deadtime. The paralyzing model therefore sets the lower limit of deadtime 

behavior in counting systems. For the non-paralyzing model, any radiation event that 

occurs during the deadtime will be lost but the deadtime does not extend. In this model, the 

detector is assumed to be dead for a fixed time t following each recorded radiation event. 

The mathematical description for the relation between observed and true counts for the 

non-paralyzing model is given by;

m = n
1+n.r (3)

where definitions of m, n and t are the same as in Eq. (2). The non-paralyzing model 

therefore sets the upper limit of deadtime behavior for counting systems. These ideal 

models have been used extensively with success; however, in a limited fashion. In reality, 

true deadtime characteristics fall somewhere in between these extreme limits because real 

detectors do not follow these ideal models [6, 11, 14].

In 2000, Lee and Gardner [11] in an effort to extend the counting range of the GM 

detector proposed a hybrid model that combines both ideal models into one analytical 

expression. Mathematically, the hybrid model is given by;

m = n .e-n T P
1 + n .rnp

(4)

where r p is the paralyzing deadtime and Tnp is the non-paralyzing deadtime. In this hybrid 

model, Lee and Gardner assumed that the non-paralyzing deadtime depends on the physical
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characteristics of the detector itself. Based on this assumption, they proposed that 

paralyzing deadtime follows the non-paralyzing deadtime until a recorded amplitude is 

produced. However, they did not provide any justification for their assumption. In an effort 

to better represent the deadtime phenomenon, another hybrid model was proposed by Patil 

and Usman [12]. It was a based on single deadtime and a fixed paralysis factor / ,  

mathematically;

m = n .e- n T -f
l+n.T.(l-/) (5)

where t is the total deadtime and f  is the paralysis factor. This fixed f  is based on a 

probability that lies between 0 and 1. If the f  is 1, then the hybrid model reduces to the 

ideal paralyzing model, while if  f  is 0, then the hybrid model reduces to the ideal non­

paralyzing model. The hybrid models have successfully extended the useful counting range 

of the GM detector but only in a limited fashion. None of the models mentioned above 

have a phenomenological explanation of the deadtime; they are a mere mathematical 

convenience.

Recently, Usman and co-workers [18] demonstrated dependence of Geiger-Muller 

counter’s deadtime on operating conditions. Their phenomenological model is based on a 

large amount of data on deadtime and pulse shape properties for GM counter at varying 

operating voltages reported by Akyurek et al. [3]. The data demonstrate three different 

regions of detector deadtime with varying operating voltages, as shown in Figure 2. In the 

low voltage deadtime region, the pulse width and tail duration were monotonically 

decreasing with increasing voltage. The occurrence of long exponentially decaying tail at 

the end of the pulse is believed to be due to the existence of some stray charge carriers in 

areas of weak potential. Those stray charge carriers take a longer time to be fully collected
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by the cathode due to the existence of space charge. If another radiation event takes place 

during this period, it will be lost; however, the system may or may not get paralyzed. 

Hence, paralysis depends on physical location of the second radiation event within the 

counter in relation to the stray charge. Since the exact location of the second radiation event 

within the counter is a random process and cannot be determined, a stochastic approach 

would be needed. It was therefore concluded that the paralysis factor, should be an 

exponentially decreasing function of the applied voltage between the time of onset of the 

tail and the occurrence of the second event, unlike the fixed value proposed by Patil and 

Usman [12].

In the plateau deadtime region (middle region), it was observed that there is a fixed 

deadtime independent of the applied voltage; hence, the GM counter behaves as a non­

paralyzing detector and Eq. (3) can be used for that entire region. In the high voltage 

deadtime region, the occurrence of high concentrations of positive ions around the anode 

results in reduced electric field further which results in a weak second pulse. Because of 

the presence of higher space charge at higher voltages, longer deadtime durations were 

observed as experimental data from Akyurek et al. [3] confirmed. Therefore, GM counter 

in this region behaves as a non-paralyzing detector with deadtime monotonically increasing 

with increasing voltage. It reinforces the assumption that the GM counter is non-paralyzing 

in nature as previous studies have suggested [3, 11, 12].

Akyurek et al. [3] have shown that GM’s deadtime phenomenon is dependent not 

only on applied voltages but also on operating temperatures and fatigues which ultimately 

result in alteration of the pulse shape properties. It is therefore concluded that a single 

deadtime model is not adequate for any detector under all operating conditions, and a
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careful selection of deadtime model under certain operating conditions is essential for the 

correction of observed count rates.

Current study present additional data on GM-counter deadtime and pulse shape for 

a wide range of operating voltages using 60Co and 137Cs sources. Raw data are provided, 

and the analysis of result is shared with discussion on the variation of deadtime with 

operating voltage and pulse shape.

2. MATERIALS AND METHOD

The experimental set-up included: two sources, GM counter, preamplifier, high- 

voltage power supply, and an oscilloscope. 60Co and 137Cs were both used separately. Both
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sources were produced in February 2013 as 1 pCi strength and distributed by Spectrum 

Techniques, LLC [19].

The GM counter (Ludlum, model 133-2) was used for detecting radiation incidents

[20]. Ludlum GM is a halogen quenched, stainless steel, windowless type detector which 

is more sensitive to gamma and x-ray radiations; alpha and beta particles are mostly 

blocked by the detector’s thick walls. The typical deadtime value of this detector is reported 

by the manufacturer to fall in 50 ps range. A charge-sensitive preamplifier (Ortec, model 

142A) was connected to the connector series “C” of the GM counter through a coaxial 

cable. The preamplifier’s main function is to extract signals from the detector without 

degrading the intrinsic signal-to-noise ratio; therefore, caution was exercised to ensure 

extracting low signal-to-noise ratio by placing the preamplifier as close to the detector as 

possible [21]. For high-voltage power supply, Ortec, model 556 was used and connected 

to the bias input of the preamplifier through a coaxial cable [22]. The Ortec 556 model was 

housed in a nuclear instrumentation module (NIM) and it provides noise-free, very stable 

high voltage necessary for proper operation of the GM counter. The input voltage can be 

controlled from an adjustable ± 10 to ± 3000 Volts knob. The input power is connected 

directly from the AC line. Finally, Oscilloscope (Tektronix, model DPO3032) was 

connected to the output of the preamplifier through a coaxial cable [23]. The oscilloscope 

was connected to the PC through a USB cable and the oscilloscope’s screen image of pulses 

was saved directly to the PC. The DPO3032 has an automatic measurements mode and it 

was utilized to acquire and record train of pulses. The automatic measurements mode is 

divided into two categories: time and amplitude measurements. Table 1 lists the illustration 

of various pulse shapes and pulse characteristics definitions observed during the
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experiments. Pulse characteristics were recorded using automatic measurement capabilities 

of the oscilloscope.

Table 1. Each automatic measurement illustration of pulse definition. The rise and fall 
time along with the pulse width are time measurements while others are amplitude in the

units of volts.

# Illustration Measurement Definition

1 J ~

2

3

Rise Time

Fall Time

It is the time required for the leading edge to 
rise from the low reference value (10%) to the 
high reference value (90%) of the final value.

It is the time required for the falling edge to fall 
from the high reference value (90%) to the low 
reference value (10%) of the final value. The 
fall time is known as tail of the pulse.

Pulse Width
It is the time between the mid reference (50%) 
amplitude point of the pulse.

4
Positive
Overshoot

Positive overshoot = (Max -  High) / amplitude 
x 100%.

5
Negative
Overshoot

6 Pk-Pk

7 Amplitude

8 | - |  High

9 H £  Low

10 nr Max

Negative overshoot = (Low -  Min) / amplitude 
x 100%.

It is the absolute difference between Max and 
Min amplitude of the pulse.

It is the high value less the low value measured 
over the entire pulse.

This value used as 100% whenever high 
reference, mid reference, or low reference 
values are needed of the entire pulse.

This value used as 0% whenever high 
reference, mid reference, or low reference 
values are needed of the entire pulse.

It is the most positive peak voltage over the 
entire pulse.
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Table 1. Each automatic measurement illustration of pulse definition. The rise and fall 
time along with the pulse width are time measurements while others are amplitude in the

units of volts (cont.).

# Illustration Measurement Definition

11 - L Min It is the most negative peak voltage over the 
entire pulse.

12

13

RMS

Area

The true Root Mean Square voltage over the 
entire pulse.

It is a voltage over time measurement where the 
area over the pulse is expressed in volt-seconds. 
The area above the baseline is positive and 
negative under the baseline.

The experiment was conducted in three parts. In the first part, the GM counter was 

used to detect radiation incidents from background radiation. The voltage was set at 370 V 

because at that voltage the GM counter started to register the radiation incidents which 

were displayed simultaneously on the oscilloscope’s screen. Subsequently, starting with 

400V, measurements were taken at various voltages with a 50 V increment until 1000 V. 

The pulse/s on the screen were captured using the oscilloscope’s run/stop option for a 

duration of 100 ms. Each pulse shape characteristics was analyzed individually using the 

auto-measurement option. The data obtained from the pulse shape characteristics were 

entered manually in Microsoft Excel for further analysis; and the image of the observed 

pulse/s were saved to the PC, as shown in Figure 3. For each of the tested voltage, 15 

independent observations were made for pulse size and shape analysis.
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Figure 3. A pulse from background radiation is shown on the oscilloscope’s screen. There 
is only one pulse observed during the whole 100 ms duration.

The second part of the experiment followed the same procedure with 60Co source. 

The source was placed on a transparent plastic tray 3 cm away from the GM counter. Unlike 

background radiation where only one pulse at a time was observed on the oscilloscope's 

screen due to the low number of radiation incidents, the 60Co source had ensued multiple 

pulses which were simultaneously observed on the oscilloscope’s screen, as illustrated in 

Figure 4. To be consistent across all measurements of the second and third part of the 

experiment, we decided to capture a train of three pulses or more at a time on the 

oscilloscope screen to investigate the effect of pulse lapse time on the second pulse 

characteristics. In addition, the time between the onset of the first and second pulse was 

measured manually using the two cursors (a and b) knobs on the oscilloscope. The 

measurement started from the rising edge of the first pulse and ended at the rising edge of 

the second pulse. The time measured between the two pulses was defined as lapse time.
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The lapse time between the second and third pulse was also recorded. The train of three 

pulses that were captured was assigned as one trail. Again, a total of 15 trails were recorded 

for the 60Co source. In the third part, the same procedure was followed using 137Cs source.

Figure 4. A train of three pulses were captured in a 100ms duration for 60Co. Cursors a 
and b, on the top of the screen, show the measurement of lapse time between the first and 
second pulse. The lapse time is 262.92ms. The second pulse on the bottom of the screen

was zoomed to 2ms for detailed analysis.

3. RESULTS

All the pulses recorded were analyzed using the pulse characteristics described in

Table 1. As an example, Table 2 shows pulse properties for 370V and above while

recording background radiation. No pulses were registered by the detection system below

370V. Fall time (row 2, Table 1), pulse width (row 3, Table 1), peak to peak (row 6, Table
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1), area (row 13, Table 1), and negative overshoot (row 5, Table 1) for each pulse was 

recorded and averaged for the applied voltage for 15 independent measurements.

3.1. BACKGROUND RADIATION

First, pulses due to background radiation from the GM counter were captured and 

analyzed. Table 2 displays the averages for the pulse properties as observed 

experimentally. Figure 5(a) shows the pulse width dependence on the operating voltage, 

pulse width seems to drop exponentially with increasing voltage. While for this limited 

data set, linear fit was also good but the R2 value for the exponential fit was better. The 

exponential dependence of the pulse fall time (row 2) is apparent in Figure 5(b) suggesting 

a reduced charge collection time at high operating voltage. Pulse height or peak-to-peak 

voltage as shown in Figure 5(c) seems to have a linear relationship (for background data 

only, when there is no discrete gamma energy is involved) with the operating voltage with 

a R2 = 0.99. As seen in Figure 5(d), pulse area (row 13, Table 1) for the low background 

count rate was mostly positive except for the two highest operating voltages. The 

relationship between the operating voltage and the pulse area seems to be linear with R2= 

0.985. For low count rates, the negative overshoot was also observed to be linearly 

dependent on the operating voltage as can be seen in Figure 5(e). After collecting the data 

on the background pulses, two sources, 137Cs and 60Co were introduced independently to 

investigate the effect of gamma energy on the pulse characteristics. Generally, it is believed 

that all pulses from a GM counter are identical in all their characteristics, independent of 

the radiation type and energy. We wanted to show some fine differences in the pulse 

characteristics depending on the initiating radiation energy.
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Each average is taking over 15 independently observed pulses. The background 

pulses were captured because in the measurement of deadtime, background counts are also 

collected and subtracted from the final calculations. Due to the low intensity of background 

radiation in comparison with the 137Cs and 60Co sources, only negative overshoot showed 

a linear fit as can be seen in Figure 5(e). Nevertheless, negative overshoot of the 137Cs and 

60Co sources showed no relationship because of the high intensity of the sources that 

resulted in high count rates. Hence, negative overshoot data were not included in the 

analysis of 137Cs and 60Co pulse characteristics.

Table 2. Background radiation and its pulse shape measurements using GM counter at
different applied voltages.

Voltage
(V)

Pulse Width 
(ms)

Fall Time 
(ms)

PK-PK
(V)

Area
(mVs)

Negative
overshoot

(%)
370 6.473 3.674 13.467 89.459 8.658

400 6.322 3.245 14.213 83.330 9.504

450 6.224 3.110 14.800 76.899 14.391

500 5.945 2.692 15.387 67.165 18.998

550 5.750 2.017 15.813 62.712 26.075

600 5.557 1.791 16.453 55.083 33.121

650 5.260 1.525 18.080 32.684 40.445

700 5.194 1.422 18.213 33.971 44.595

750 5.049 1.270 19.093 21.918 50.541

800 4.897 1.184 19.680 15.384 56.090

850 4.814 1.083 20.107 11.894 60.904

900 4.666 1.012 20.747 5.362 66.419



23

Table 2. Background radiation and its pulse shape measurements using GM counter at
different applied voltages (cont.).

Voltage Pulse Width Fall Time PK-PK Area Negative
overshoot

(%)
(V) (ms) (ms) (V) (mVs)

950 4.562 0.924 21.360 -3.411 67.621

1000 4.311 0.805 22.587 -23.056 71.857

Figure 5. Pulse shape measurements for background radiation using GM counter at 
different applied voltages: (a) pulse width measurements vs. voltage; (b) fall time vs. 

voltage; (c) Peak to Peak vs. voltage; (d) area of each recorded pulse vs. voltage; and (e)
negative overshoot vs. voltage.
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Figure 5. Pulse shape measurements for background radiation using GM counter at 
different applied voltages: (a) pulse width measurements vs. voltage; (b) fall time vs. 

voltage; (c) Peak to Peak vs. voltage; (d) area of each recorded pulse vs. voltage; and (e)
negative overshoot vs. voltage (cont.).

3.2. 60CO SOURCE

Second, 60Co pulses from the GM counter were analyzed. 60Co decays with a half­

life of 5.272 years emitting two discrete gammas; 1.1732 MeV (99.85%) and 1.3324 MeV 

(99.98%) [24]. Averages of pulse characteristics for 15 pulses observed with 60Co is shown 

in Table 3. Generally, data follows the similar behavior as the background except for peak 

to peak voltages. For 60Co, peak-to-peak data do seem to deviate from the linear fit, and it 

appears to show an asymptotic peak-to-peak value for higher operating voltage as shown 

in Figure 6(c). What it physically means is that, at high operating voltage a maximum peak- 

to-peak is reached and increasing operating voltage further will not impact the pulse peak- 

to-peak height. Data collection was restricted to 1000 V to avoid any permanent damage 

to the detector. The area under the curve also showed a linear dependence on the applied 

voltage. These results are quite revealing for the inside working of the GM counter and
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careful data analysis would help the radiation measurement community to gain insight on 

GM operation.

Figure 6. Pulse shape measurements for Co-60 source using GM counter at different 
applied voltages: (a) pulse width measurements vs. voltage; (b) fall time vs. voltage; (c) 

Peak to Peak vs. voltage; and (d) area of each recorded pulse vs. voltage.
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Table 3. Pulse shape data for Co-60 source using GM counter at different applied
voltages.

Voltage
(V)

Pulse Width 
(ms)

Fall Time 
(ms)

PK-PK
(V)

Area
(mVs)

370 6.267 3.367 14.213 76.541

400 5.999 3.230 14.827 63.550

450 5.851 2.765 15.173 57.649

500 5.492 2.595 16.827 36.994

550 5.305 2.207 17.573 30.140

600 5.055 2.087 18.933 10.502

650 4.778 1.927 20.613 -16.890

700 4.798 1.642 20.640 -12.466

750 4.450 1.563 22.347 -31.318

800 4.309 1.473 23.013 -54.687

850 4.190 1.368 23.600 -68.173

900 3.969 1.263 24.027 -69.202

950 3.859 1.234 24.240 -87.987

1000 3.646 1.059 24.373 -94.982

3.3. 137CS SOURCE

Lastly, 137Cs’s pulses from the GM counter were analyzed. 137Cs has a half-life of 

30.08 years and it emits one discrete gamma at 0.661 MeV (85.1%) [25]. Pulse 

characteristics averaged for 15 pulses observed with 37Cs are shown in Table 4. Generally, 

data follows the similar behavior as 60Co. However, there are some subtle differences 

between the pulses from the two gamma sources. For example, 60Co, peak-to-peak data 

seem to reach an asymptotic value which is higher than 137Cs asymptotic value. The other
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significant difference was the poor linear relationship between the pulse area and the 

operating voltage. As seen in Figure 7(d), the linear fit is perhaps not the best description 

of the data. These fine differences will be discussed in the conclusion section of the 

manuscript.

Table 4. Pulse shape data for Cs-137 source using GM counter at different applied
voltages.

Voltage
(V)

Pulse Width 
(ms)

Fall Time 
(ms)

PK-PK
(V)

Area
(mVs)

370 6.328 3.328 13.920 81.557

400 6.125 3.273 14.693 68.735

450 5.818 3.220 16.107 49.635

500 5.693 2.650 16.533 47.731

550 5.407 2.134 17.387 36.883

600 5.040 2.068 19.200 3.707

650 4.920 1.795 20.187 -7.141

700 4.810 1.596 20.453 -18.212

750 4.466 1.518 22.347 -46.443

800 4.275 1.439 22.827 -53.130

850 4.219 1.387 23.387 -58.021

900 4.124 1.156 23.493 -61.792

950 4.082 1.177 23.520 -62.491

1000 3.981 1.038 23.547 -67.129



Pe
ak

 to
 P

ea
k 

(V
) 

Pu
ls

e 
W

id
th

 (m
s)

28

Figure 7. Pulse shape measurements for Cs-137 source using GM counter at different 
applied voltages: (a) pulse width measurements vs. voltage; (b) fall time vs. voltage; (c) 

Peak to Peak vs. voltage; and (d) area of each recorded pulse vs. voltage.

4. CONCLUSION & DISCUSSION

Based on the data collected, the general belief that all pulses from a GM counter 

from any intensity, type and/or energy of radiation source are identical is questionable.
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While the pulse shape does not carry any important information for simple count rate 

application, it does have an impact on the detector deadtime behavior. When comparing 

the peak-to-peak pulse height, it is evident that both 60Co and 137Cs have an asymptote as 

shown in Figure 8. It is also difficult to draw a conclusion about the energy dependence of 

the asymptote with only two radiation sources. However, one is compelled to notice that 

60Co (with higher gamma energy) has asymptote which is higher than that of 137Cs (with 

lower gamma energy). If more data becomes available with a wide spectrum of gamma 

energies, one would be able to develop a relationship between the asymptote peak-to-peak 

voltage and gamma energy.

Figure 8. Comparison of Peak to Peak dependence of voltage for Co and Cs

Similarly, one is bound to notice that the exponent for the pulse fall time (-0.002) 

is independent of the source of radiation. For all three cases, background, 60Co and 137Cs 

the pulse fall time dependence on voltage remains unchanged. The other interesting
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observation the slower/weaker voltage dependence of the pulse width as compared to the 

pulse fall time. The exponent for pulse width was found to be -6.0E-4 for the background 

measurement while it is -8.0E-4 for both 60Co and 137Cs which is smaller than -2.0E-3 for 

the pulse fall time. What is means is that the main body of the pulse is weakly dependent 

on the applied voltage than the pulse tail.

Figure 9. Second pulse width reductions.

Furthermore, detector deadtime was earlier reported to depend on applied voltage

[3]. As discussed earlier [3], there are three distinct regions of detector deadtime. At lower 

voltages, the deadtime reduced with increasing voltage. In this region, as the data presented 

here suggests, the pulse duration (pulse width plus fall time) is also decreasing with 

increasing voltage. Consequently, the deadtime decreases with reducing pulse duration. 

This is because there is a lower probability of overlapping pulses with reduced pulse
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duration. The next region is the region of minimum constant deadtime. During this region, 

pulse tail has completely vanished, and the pulse width was observed to be its minimum. 

The lower end of this plateau region is best for GM counter operations. Increasing the 

voltage further will result in second pulse (after an initial pulse) width reduction. The 

second pulse duration reduction depends not only on the applied voltage but also on the 

time lapse between the two pulses. Figure 9 shows the screenshot of the reduced second 

pulse width, 520 ps. Based on the new data presented here there is a strong possibility that 

one could develop a pulse shape correlation for the detector deadtime.

NOMENCLATURE

GM Geiger-Mueller

v Drift Velocity

p  Mobility

E Strength of Electric Field

p Pressure

m  Observed or Measured Count Rate

n True Count Rate

t Deadtime

Tp Paralyzing Deadtime

Tnp Non-Paralyzing Deadtime

f Paralysis Factor
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ABSTRACT

A detailed analysis of Geiger Mueller (GM) counter deadtime dependence on 

operating voltage is presented in the manuscript using four pairs of radiation sources. Based 

on two-source method, detector deadtime is calculated for a wide range of operating 

voltages which revealed a peculiar relationship between the operating voltage and the 

detector deadtime. In the low voltage range, a distinct drop in deadtime was observed 

where deadtime reached a value as low as a few microseconds (22 |is for 204Tl, 26 |is for 

137Cs, 9 |is for 22Na). This sharp drop in the deadtime is possibly due to reduced 

recombination with increasing voltage. After the lowest point, the deadtime generally 

increased rapidly to reach a maximum (292 ^s for 204Tl, 277 ^s for 137Cs, 258 ^s for 22Na). 

This rapid increase in the deadtime is mainly due to the on-set of charge multiplication. 

After the maximum deadtime values, there was an exponential decrease in the deadtime

mailto:usmans@mst.edu
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reaching an asymptotic low where the manufacturer recommended voltage for operation 

falls. This pattern of deadtime voltage dependence was repeated for all sources tested with 

the exception of 54Mn. Low count rates leading to a negative deadtime suggested poor 

statistical nature of the data collected for 54Mn and the data while being presented here is 

not used for any inference.

1. INTRODUCTION

Radiation detector deadtime has been a phenomenon of interest for scientists and 

engineers for decades. For any detector system, two events must be separated by a 

minimum time interval for these events to be recorded as independent. This minimum 

separation time is called the detector deadtime.1, 2 3 Deadtime depends on the detector’s 

design, operating conditions, and the pulse processing circuitry.4 The combined deadtime 

of a measurement system is the sum of all contributing factors, including the detector’s 

intrinsic deadtime, pulse shaping time associated with the preamplifier and the amplifier, 

analog to digital conversion time, and the data sorting time (MCA) and storage time.5 A 

detailed description of the various contributors to total deadtime is included in radiation 

detector deadtime review article by Usman and Patil.5 Generally speaking, the system’s 

deadtime can be divided into two parts: 1) the internal losses in the detector itself, 2) count 

losses in the system circuitry, and pulse processing. In many cases, the deadtime is mostly 

caused by the associated electronics. However, for the case of a GM counter, the processes 

within the detector itself are the major contributors to the deadtime.

There are two idealized deadtime models: paralyzing and non-paralyzing. These 

deadtime models are traditionally used in the industry as well as in academia. According
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to the paralyzing deadtime model, each radiation event will be followed by an extendable 

deadtime. Unless the time gap between the two sequential events is greater than the 

deadtime, the subsequent event will not be recorded. In this case, the true count rate (n) is 

related to the observed or measured count rate (m) by the following expression:

m = n e -nT (1.1)

where m  is the measured or observed count rate, n is the true count rate, and r is  deadtime. 

On the other hand, for the non-paralyzing model, each radiation event will not be followed 

by an extendable deadtime; instead, it will reset to zero. The true count rate for the non- 

paralyzable model is expressed as follows:

n
m (12)(1 +  n r  )

These simple, yet useful models have been extensively discussed and utilized.1, 6 In 

1978, Muller7, 8 provided a rather simplified and generalized deadtime model. Another 

hybrid deadtime model was proposed by Albert and Nelson.9 This hybrid model was 

further developed by Lee and Gardner.10 This model uses two independent deadtimes 

combined in one equation as follows:

n e-nrp
m = (13)1 + n rN

where tp is the paralyzable deadtime, and in  is the non-paralyzable deadtime. Lee and 

Gardner10 were able to find the values of their deadtimes by using the least square fitting 

of decaying of 56Mn source. Hou and Gardner proposed an improved version of these 

deadtime models11 by further dividing the paralyzing and non-paralyzing components into 

three subcomponents. In 2009, another deadtime hybrid model was proposed by Patil and 

Usman.12 The hybrid model is mathematically expressed as follows:
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n e—nf  x
m = (1.4)

1 + n x (1 — / )

where x is the total deadtime, and it is used with a probability-based paralysis factor, f. The 

paralysis factor value can be any value between 0 and 1. If the paralysis factor is 0, then 

the hybrid model reduces to a non-paralyzing model. However, if  the paralysis factor is 1, 

then the hybrid model reduces to a paralyzing model. A graphical technique is proposed 

with a decaying source data to obtain the parameters needed for the model use.12

None of these researchers have investigated deadtime dependence on the operating 

conditions and how, if any impact aging would have on detector deadtime. Akyurek et al.4 

provided some preliminary data on deadtime dependence on operating conditions and 

aging. Literature has also been limited to the relationship between pulse shape and detector 

deadtime. While various regions of operation for gas-filled detectors are well 

documented,1, 6 not much is available in the literature, establishing a relationship between 

detector deadtime and the operating voltage. Likewise, the dependence of pulse shape on 

the operating voltage of a gas-filled detector is not sufficiently discussed in the literature. 

Another important area of detector deadtime research missing in the literature is the 

performance of proportional counter in current mode and the impact of deadtime on 

observed current. All these areas of research are important for the radiation measurement 

community and any effort in any of these areas will be welcome by the community.

Any detailed analysis of deadtime dependence on the operating voltage is likely to 

help the community develop a better understating of the fundamental phenomenon of 

deadtime and its behavior. Here we present detailed data on detector deadtime dependence 

on the operating voltage. In this research, all data was collected using four different 

radioactive sources according to the two-source method. The data collected in the current
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study shows a clear deadtime dependence on the applied voltage. Three of the radioactive 

sources showed similar pattern on voltage dependence, hinting to a possible 

phenomenological basis of this behavior. Nonetheless, the fourth radioactive source 

showed a different behavior and will be discussed further in the results and discussion 

section.

2. MATERIALS AND METHODS

2.1. MATERIALS

Figure 1a illustrates the basic experimental setup of the radiation detection system 

used to evaluate deadtime in this study. The radiation detection system encompasses; a pair 

of radioactive sources, GM counter, high voltage power supply, pre-amplifier, 

oscilloscope, amplifier, discriminator, and dual counter/timer.

Radioactive sources of each element consisted of two split sources (the shape of 

each split source is a half-circle). Four sets of radioactive sources were used in the current 

study: First, Thallium-204 (204Tl)—produced in February 2019. Second, Cesium-137 

(137Cs), Third, Sodium-22 (22Na, and Fourth, Manganese-54 (54Mn). The 137Cs, 22Na, and 

54Mn sources were all produced in May 2019. Spectrum Techniques specifically produced 

the 137Cs, 22Na, and 54Mn split sources upon our request for conducting this study. Each 

split source has an initial activity of 5 pCi.13 All experiments were conducted in June and 

July of 2019 during this time the respective source strength were approximately 204Tl=4.63 

pCi, 137Cs=4.98 pCi, 22Na=4.78 pCi and 54Mn=4.37 pCi. Nonetheless, the uncertainties of 

the initial activities of the split sources in this study did not inflict significant measurement 

or statistical errors. This can be confirmed by the fact that each radioactive split source,
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when measured individually, resulted in a similar number of registered counts by the GM 

detector. All sources used in this study had the same size and geometry. Figure 1b-e show 

the radioactive sources of each element.

A GM detector (Ludlum, model 44-7) was used to detect radiation events. The GM 

counter is a halogen quenched, end window (a thin mica window) type detector. The 

counter is able to detect alpha, beta, and gamma radiations. According to the manufacturer 

of the detector, the typical deadtime of this model is 200 ps at the recommended operating 

voltage of 900 V. The sensitivity of the detector for 137Cs is 2100 cpm/mR/hr.14 A charge- 

sensitive pre-amplifier (Ortec, model 142A) was used to extract the signals from the 

detector without degradation of the signal-to-noise ratio. The pre-amplifier was placed as 

close as possible to the detector to keep the signal degradation at its lowest. The pre­

amplifier was connected to the GM detector through a connector series “C” with a coaxial 

cable.15 A high voltage (HV) power supply (Canberra, model 3125) was connected directly 

to the AC line. The HV is capable of providing 0 to 5000 V bias voltage with 0 to 300 pA 

output current. The HV is housed in the nuclear instrumentation module (NIM) along with 

the amplifier, discriminator, and dual counter/timer. The HV was connected to the input 

bias of the pre-amplifier through a coaxial cable.16 An oscilloscope (Tektronix, model 

TBS2000) was connected directly to the pre-amplifier through a “T” connector.17 The 

oscilloscope was used to record all properties of the generated pulses by the GM counter 

after being processed by the pre-amplifier. The generated pulses recorded by the 

oscilloscope are discussed in detail in a companion paper — An amplifier (Ortec, model 

570) was used to magnify the amplitude of the pre-amplifier output pulse. The amplifier 

was connected to the pre-amplifier through a “T” connector and to the discriminator
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through a coaxial cable. The direct-reading gain factor of the amplifier is adjustable from 

X1 to X1500. In addition, the coarse gain has six-position for selecting the feedback 

resistors for the gain factor of 20, 50, 100, 200, 500, and 1K. The amplifier has a shaping 

time capability that selects the time constant for an active filter network in which the 

selections are 0.5, 1, 2, 3, 6, and 10 ps.19 An integral discriminator (Canberra, model 832) 

was utilized to produce logic output pulses when the linear input pulses amplitude from the 

amplifier exceeded a threshold. The discriminator level is adjustable from 0 to 10 V.20 The 

discriminator is connected to the counter/timer through a coaxial cable. A counter/timer 

(Ortec, model 994) was used in order to set the timer and display the number of radiation 

incidents taking place in the GM counter. The counter has a time-base option where time 

can be specified by a preset value and can range from 0.01 seconds to 990,000 seconds or

0.01 to 990,000 minutes.21

Figure 1. a) Experimental setup for the radiation detection system. b) Thallium-204 split 
sources used in the experiments. c) Cesium-137 split sources with blank disk. The blank 
disk filled the position of the second split source when counts were performed to ensure 

that scattering was unchanged. d) Sodium-22 split sources. e) Manganese-54 split
sources.
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Figure 1. a) Experimental setup for the radiation detection system. b) Thallium-204 split 
sources used in the experiments. c) Cesium-137 split sources with blank disk. The blank 
disk filled the position of the second split source when counts were performed to ensure 

that scattering was unchanged. d) Sodium-22 split sources. e) Manganese-54 split
sources (cont).

2.2. METHODS

The standard two-source measurement method was utilized for deadtime-voltage 

dependence measurements throughout this study. This method is based on measuring count 

rates at an applied voltage over three parts while using: the split sources individually; and 

a combination of the split sources. Since count losses are nonlinear in this type of 

experiment, the measured count rates of the combined sources should result in fewer 

measured counts than if split sources 1 & 2 were summed up individually. For brevity, split
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source one and split source two are called S1 and S2, respectively, while split sources 1 & 

2 combined are called S12.

Previous studies have reported that a GM counter suffers 5% or less paralysis 

factor; henceforth, the assumption of using a non-paralyzing model while using the simple 

two-source measurement method for the GM counter is justifiable.4, 5 10 The method’s 

details are outlined in the Knoll’s textbook.1 Deadtime was calculated for each applied 

voltage using the non-paralyzing model based on the following equations:

X = s1s2 — BKGs12 (2.2.a)

Y = S1S2 . (S12 +  BKG) — BKG . S12 . (S1 +  S2 ) (2.2.b)

v Y(S1+S2—S12—BKG) 
Z =  *2

(2.2.c)

X(1 — ^ 1 —Z) 
r = Y

(2.2.d)

where sx, s2, s12 are measured count rates of split source 1, split source 2, and split sources 

1 & 2 combined, respectively. BKG stands for the background counting rate measurement 

and t stands for deadtime. Since the two-source method depends on observing the 

difference between large numbers of s1 and s2, careful measurements were carried out. A 

series of experiments were conducted using 204Tl split sources at the early stage of this 

study to optimize each instrument in the detection system. The optimization is based on 

manipulating the instruments over the GM voltage range region in order to achieve a 

fractional deadtime of S12 of at least 20% and not exceeding 40%. The only instruments 

manipulated during this optimization effort were the amplifier and the discriminator. Pulse 

shape setting controlled by the amplifier exhibited the most profound impact. This was
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performed because the calculated true count rates and deadtimes become sensitive to small 

variations in measured count rates.

In this section, the details of the experimental method are presented. The split 

sources were placed on a paper on a tray in a rack (the rack—holds the radioactive sources 

and GM detector on position inside the lead shield). The position of the split sources was 

marked on the paper for the subsequent measurements. This step was performed to ensure 

that the split sources of the various elements during each experiment have the same location 

and geometry. Hence, the same solid angle applied to all of the duplicated experiments. In 

order to obtain the optimal results of deadtime, a fractional deadtime (s12 r )  of at least 

20% was designed to achieve in the GM operating range.1 Based on the results of multiple 

repeated experiments to obtain the desired fractional deadtime, it was determined that the 

optimal shelf level to hold the tray with the radioactive sources for all experiments was the 

second from the top of the rack. When the source is placed on the second shelf level, the 

distance between the source and the detector end-window is 20.65 mm. However, this was 

not the case with Manganese-54 (Mn-54) because it resulted in fewer observed count rates. 

Nevertheless, Mn-54 radioactive split sources were also placed on the second shelf in order 

to be consistent and comparable to the other utilized sources.

To attain the fractional deadtime of 20%, each instrument in the detection system 

was adjusted. Consequently, the amplifier’s gain was set at 0.5, while the coarse gain at 

1K. Even though the GM detector and radioactive sources were housed inside a lead shield 

to reduce the background radiation, the discriminator was used to reduce the background 

noise further. The discriminator level was set at 5 V. The timer was set for 30 minutes for

each experiment. The 30 minutes duration was sufficient time for counting for our purposes
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in order not to get negative deadtime values (Mn-54 did produce two negative deadtime 

and the reasoning behind will be discussed further in the next section). The lowest applied 

voltage was 570 V for all radioactive sources because it was the operating voltage where 

the GM counter started to register radiation events. However, the counts were low at 570 

V, which resulted in attaining negative deadtimes; thus, data collection started at 600 V. 

According to the manufacturer of the GM detector, the detector is prone to damage at 

higher voltages; therefore, 1200 V was the highest applied voltage investigated. This 

limited was set solely to ensure the safe operation of the GM counter for the subsequent 

experiments. Due to this high voltage limit of 1200 V, the discharge region was not 

observed where the deadtime starts to increase rapidly. The observation of discharge region 

is beyond the scope of this study.

After the radiation detection system was optimized, background radiation events 

were measured and recorded at each operating voltage from 600 to 1200 V. In order to 

investigate the deadtime-voltage relationship in detail, the applied voltages were increased 

incrementally by 50 V for all experiments. For each applied voltage, the timer was set for 

30 minutes. Background radiation incidents were also counted for 30 minutes at different 

operating voltages from 600 to 750 V with 10 V increments. These latter measurements 

were carried out after observing the unusual behavior of deadtime-voltage dependence 

measurements for the 204Tl, 137Cs, and 22Na sources at the lower applied voltage range.

Counting measurements using the radioactive sources were performed, and the 

counting rates due to the 204Tl split source were recorded. S1 was measured only with the 

blank disk. The same process was repeated using S2 with the blank disk. S1 and S2 were 

combined for the final counting measurement. The series of counting measurements (S1,
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S2, and S12) were repeated for each operating voltage from 600 to 1200 V with 50 V 

increments, and from 600 to 700 V with 10 V increments. All the data was recorded and 

entered manually in origin software for further data processing and analysis.

Similar procedures were followed methodically using the 137Cs and 22Na sources. 

However, for 22Na sources, operating voltages from 650 to 750 V with 10 V increments 

were taken instead of 600 to 700 V. The different applied voltages for 22Na sources were 

based on the shift of observed deadtime behavior at these low voltages. For the 54Mn 

sources, the same methodology was followed; however, only measurements from 600 to 

1200 V were conducted. This is because there was no noticeable deadtime behavior at 

lower operating voltages. The reason behind the difference in the applied voltage range for 

the 137Cs, 22Na, and 54Mn sources is discussed in the next section.

3. RESULTS AND DISCUSSION

3.1. THALLIUM-204 SOURCE

204Tl sources were used for the measurement of deadtime at different applied 

voltages. 204Tl decays with a half-life of 3.783 years. The probability mode of decay is 

97.08% by beta emission with decay energy of 763.4 KeV while 2.92% by electron capture 

(EC) with 344.3 KeV.22 Figure 2 shows the decay scheme of 204Tl.

Figure 3a shows voltage vs. deadtime from 600 to 1200 V, while the raw data plus 

the calculated deadtime can be seen in Table 1. At 600 V, deadtime was 200.56 ps. Above 

the initial voltage, deadtime decreased rapidly to 83.78ps at 650 V. It was noted that above 

650 V, there was a sharp increase in deadtime at 700 V with 291.53 ps. Increasing the
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voltage further showed a decrease in deadtimes until a plateau was reached from about 

1050 V to 1200 V.

Figure 2. A schematic of the 204Tl decay.

Furthermore, based on the data collected from 750 to 1050 V, it is observed that 

there is an exponential decrease. An exponential fit of this range shows a coefficient of 

determination (R2=0.98462). These findings reveal a different deadtime relationship 

behavior than that observed by a previous study conducted by Akyurek et al.4 In their study, 

deadtimes were measured at different operating voltages. But Akyurek et al. only 

investigated voltages at a narrow range— within 200 V with 10 V increments. According 

to their study, deadtime showed a linear decrease at low voltages while it plateaued in 

middle voltages only to linearly increase at higher voltages. Our detailed analysis showed 

a non-linear behavior suggesting that earlier reported linear behavior could very well be 

due to limited data points and short range of observation. This deadtime-voltage- 

dependence linear relationship was not observed in our study. This might be because, in 

our study, a more extensive range of voltages were investigated with increments of 50 V. 

It is worth mentioning that the operating voltage was not increased beyond 1200 V because
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the detector would be damaged; therefore, 1200 V was the highest applied voltage for all 

the experiments.

Table 1. Deadtime results at different operating voltages from 600 V to 1200 V. sx, s12, 
s2 are split source 1, split sources 1 & 2 and split source 2 of Thallium-204, respectively. 

CPS stands for counts per second whereas BKG stands for background radiation. 
Deadtime was calculated using the non-paralyzing model.

VOL­
TAGE

(V)

S1
(CPS)

S12
(CPS)

S2
(CPS)

BKG
(CPS)

DEADTIM E
(S)

600 598.14 ± 0.57 1067.33 ± 0.77 597.23 ± 0.57 0.14 ± 0.00 2.00e-04 ± 7.88e-07

610 645.02 ± 0.59 1128.46 ± 0.79 627.04 ± 0.59 0.17 ± 0.00 1.99e-04 ± 7.36e-07

620 865.17 ± 0.69 1492.02 ± 0.91 882.30 ± 0.70 0.24 ± 0.01 1.95e-04 ± 5.34e-07

630 884.64 ± 0.70 1530.54 ± 0.92 899.36 ± 0.70 0.29 ± 0.01 1.85e-04 ± 5.07e-07

640 885.14 ± 0.70 1596.81 ± 0.94 880.69 ± 0.69 0.31 ± 0.01 1.19e-04 ± 4.16e-07

650 870.36 ± 0.69 1617.07 ± 0.94 864.50 ± 0.69 0.32 ± 0.01 8.37e-05 ± 3.78e-07

660 818.16 ± 0.67 1606.33 ± 0.94 844.49 ± 0.68 0.31 ± 0.01 4.19e-05 ± 3.51e-07

670 815.44 ± 0.67 1586.81 ± 0.93 800.42 ± 0.66 0.32 ± 0.01 2.24e-05 ± 3.46e-07

680 796.17 ± 0.66 1466.09 ± 0.90 791.46 ± 0.66 0.32 ± 0.01 1.04e-04 ± 4.47e-07

690 793.72 ± 0.66 1378.83 ± 0.87 815.62 ± 0.67 0.32 ± 0.01 2.07e-04 ± 5.95e-07

700 829.44 ± 0.67 1343.46 ± 0.86 841.35 ± 0.68 0.34 ± 0.01 2.91e-04 ± 7.25e-07

750 979.92 ± 0.73 1524.16 ± 0.92 971.86 ± 0.73 0.39 ± 0.01 2.87e-04 ± 6.44e-07

800 1023.18 ± 0.75 1683.34 ± 0.96 1041.96 ± 0.76 0.39 ± 0.01 2.19e-04 ± 5.00e-07

850 1107.85 ± 0.78 1801.61 ± 1.00 1083.49 ± 0.77 0.42 ± 0.01 1.97e-04 ± 4.42e-07

900 1130.41 ± 0.79 1881.12 ± 1.02 1121.53 ± 0.78 0.50 ± 0.01 1.74e-04 ± 3.98e-07

950 1146.96 ± 0.79 1920.77 ± 1.03 1161.72 ± 0.80 2.70 ± 0.03 1.74e-04 ± 3.84e-07

1000 1191.06 ± 0.81 2014.12 ± 1.05 1194.91 ± 0.81 2.02 ± 0.03 1.54e-04 ± 3.46e-07

1050 1208.53 ± 0.81 2041.47 ± 1.06 1254.10 ± 0.83 10.65 ± 0.07 1.65e-04 ± 3.47e-07
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Table 1. Deadtime results at different operating voltages from 600 V to 1200 V. s l3 s12, 
s2 are split source 1, split sources 1 & 2 and split source 2 of Thallium-204, respectively. 

CPS stands for counts per second whereas BKG stands for background radiation. 
Deadtime was calculated using the non-paralyzing model (cont.).

VOL­
TAGE

(V)

S1
(CPS)

S12
(CPS)

S2
(CPS)

BKG
(CPS)

DEADTIM E
(S)

1100 1223.97 ± 0.82 2081.71 ± 1.07 1270.07 ± 0.84 13.62 ± 0.08 1.56e-04 ± 3.30e-07

1150 1254.76 ± 0.83 2092.49 ± 1.07 1290.33 ± 0.84 13.99 ± 0.08 1.67e-04 ± 3.41e-07

1200 1258.86 ± 0.83 2123.45 ± 1.08 1287.81 ± 0.84 12.75 ± 0.08 1.53e-04 ± 3.21e-07

Next, deadtime between 600 V and 670 V with 10 V increments showed a rapid 

decrease and followed by a rapid increase from 670 to 700 V. This rapid decrease and 

increase of deadtime is not reported in the literature. Therefore, we investigated this range 

more in detail from 600-700 V, as can be seen in Figure 3c. Count rates in this voltage 

range is shown in Figure 3d. From 600 to 630, deadtime showed a slight decrease, followed 

by a rapid decrease from 630-670 V, where it showed the lowest calculated deadtime of 

22.43ps. Next, deadtime started to increase to its highest value at 700 V.

Figure 3b shows count rates vs. voltage. Split sources 1 & 2 (S12) combined 

produced more radiation events than if only one split source is used; hence, we will discuss 

S12 throughout this study. At 600 V, S12 resulted in 1067 counts/sec. However, at 650 V, 

the count rate increased significantly, with a total of 1617 counts/sec. This rather high- 

count rate at a low voltage is mainly due to the fact that observed deadtime was very low, 

which means that the detector was able to count more radiation events.

Similar to the observed exponential behavior of the deadtime curve between 750­

1050 V, count rates also showed an exponential behavior; however, it was increasing with
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increasing applied voltages. The exponential fits can be seen in Figure 3b, while the 

parameters for S1, S12, S2 are shown in Table 2. As voltages increased further, count rates 

increased correspondingly.

The increasing exponential count rate behavior is observed only at higher applied 

voltages. Nonetheless, the count rate showed different behavior in the narrow range (600 

to 700 V). Count rates increased from 600 V to 620 V and plateaued until 670 V, and then

it slightly decreased.
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(a)

Figure 3. a) Deadtime vs. voltage for the 204Tl source for the wider range of voltages. 
Also, the parameters of the exponential fit are shown in the table under the deadtime 

curve. b) Count rate vs. voltage with exponential fits imposed on the curves. c) Deadtime 
vs. voltage for the 204Tl source for the narrow voltages range. d) Counts vs. voltage for

the 204Tl for low voltages.
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(c)

(d)

Figure 3. a) Deadtime vs. voltage for the 204Tl source for the wider range of voltages. 
Also, the parameters of the exponential fit are shown in the table under the deadtime 

curve. b) Count rate vs. voltage with exponential fits imposed on the curves. c) Deadtime 
vs. voltage for the 204Tl source for the narrow voltages range. d) Counts vs. voltage for

the 204Tl for low voltages (cont.).

Table 2. Parameters of the exponential model fit of Figure 3b using Thallium-204 split 
sources S1, S12, and S2. The table was generated through exponential curve fitting 

analysis using Origin software version (2019b).

MODEL EXPONENTIAL

EQUATION y  = y0 + A * e (R°*x')

SOURCE # S1 S12 S2

Y0 1288.32 ± 66.78 2170.03 ± 55.72 1905.53 ± 757.71

A -9035.23 ± 10164.42 -34160.91 ± 21091.19 -2142.82 ± 99.87
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Table 2. Parameters of the exponential model fit of Figure 3b using Thallium-204 split 
sources S1, S12, and S2. The table was generated through exponential curve fitting 

analysis using Origin software version (2019b) (cont.).

MODEL EXPONENTIAL

R0 -0.004 ± 0.001 -0.005 ± 9.16e-4 -0.0011 ± 0.001

R-SQUARE 0.98026 0.99472 0.9914

ADJ. R- 
SQUARE

0.97039 0.99208 0.9871

3.2. CESIUM-137 SOURCE

137Cs sources were used to measure deadtime at a wide range of operating 

voltages— 600 to 1200 V. 137Cs is produced by nuclear fission in a nuclear reactor. It has a 

half-life of 30.08 years, and it is both a beta emitter and gamma emitter. The probability 

mode of decays is the following: A) about 94.7% by beta emission to 137mBa with decay 

energy of 514.03 KeV. B) 137mBa has a half-life of 153 seconds, and it decays into the 

ground state 137Ba about 85.1% with 661.659 KeV.22 Figure 4 shows the decay scheme of 

137Cs.

Figure 5a shows the deadtime vs. voltage measurements using 137Cs sources for the 

wider range of voltages— 600 to 1200 V. It is clearly seen that deadtime due to 137Cs 

sources revealed similar behavior as measured from 204Tl sources, though with different 

deadtime values. Table 3 shows the split sources and the calculated deadtime for the 

different applied voltage using 137Cs. At 600 V, 650 V, 750 V, deadtimes were 190 ps, 

105.45 ps, and 277.49 ps, respectively. Deadtime at 600 V using 137Cs sources was 5% 

higher than the measured deadtime at 600 V using the 204Tl sources; on the other hand, at 

650 V deadtime using 137Cs sources was significantly higher with 20.5%. At 700 V,
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deadtime using 137Cs sources was 5% lower than deadtime using 204Tl sources. From 750 

to 1050 V, it is observed that the decrease in deadtime revealed an exponential similar to 

204Tl sources experiments. The exponential fit at this range shows a coefficient of 

determination (R2=0.98454). As the applied voltages were increased further, deadtime 

plateaued.

Figure 4. A schematic of the 137Cs decay

Table 3. Deadtime results for the applied voltages 600 to 1200 V. S1, S12, S2 are Source 
1, Source 1 & 2 and Source 2 of Cesium-137, respectively. Deadtime was calculated

using the non-paralyzing model.

VOL­
TAGE

(V)

S1
(CPS)

S12
(CPS)

S2
(CPS)

BKG
(CPS)

DEADTIM E
(S)

600 591.39 ± 0.57 1089.86 ± 0.77 624.35 ± 0.58 0.14 ± 0.00 1.90e-04 ± 7.56e-07

610 605.16 ± 0.57 1115.29 ± 0.78 646.64 ± 0.59 0.17 ± 0.00 1.95e-04 ± 7.42e-07

620 715.18 ± 0.63 1257.70 ± 0.83 728.45 ± 0.63 0.24 ± 0.01 2.04e-04 ± 6.55e-07

630 987.75 ± 0.74 1662.10 ± 0.96 936.74 ± 0.72 0.29 ± 0.01 1.64e-04 ± 4.41e-07

640 990.67 ± 0.74 1686.28 ± 0.96 930.96 ± 0.71 0.31 ± 0.01 1.45e-04 ± 4.14e-07

650 924.31 ± 0.71 1707.70 ± 0.97 952.59 ± 0.72 0.32 ± 0.01 1.05e-04 ± 3.70e-07
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Table 3. Deadtime results for the applied voltages 600 to 1200 V. S1, S12, S2 are Source 
1, Source 1 & 2 and Source 2 of Cesium-137, respectively. Deadtime was calculated 

using the non-paralyzing model (cont.).

VOL­
TAGE

(V)

S1
(CPS)

S12
(CPS)

S2
(CPS)

BKG
(CPS)

DEADTIM E
(S)

660 944.41 ± 0.72 1724.72 ± 0.97 888.21 ± 0.70 0.31 ± 0.01 6.81e-05 ± 3.35e-07

670 935.35 ± 0.72 1705.71 ± 0.97 869.93 ± 0.69 0.32 ± 0.01 6.45e-05 ± 3.38e-07

680 869.93 ± 0.69 1651.37 ± 0.95 818.53 ± 0.67 0.32 ± 0.01 2.64e-05 ± 3.29e-07

690 849.92 ± 0.68 1607.71 ± 0.94 814.24 ± 0.67 0.32 ± 0.01 4.20e-05 ± 3.51e-07

700 855.42 ± 0.68 1399.72 ± 0.88 881.72 ± 0.69 0.34 ± 0.01 2.77e-04 ± 6.79e-07

750 959.95 ± 0.73 1557.57 ± 0.93 989.98 ± 0.74 0.39 ± 0.01 2.58e-04 ± 5.90e-07

800 1058.15 ± 0.76 1743.53 ± 0.98 1076.19 ± 0.77 0.39 ± 0.01 2.09e-04 ± 4.72e-07

850 1112.75 ± 0.78 1880.39 ± 1.02 1134.34 ± 0.79 0.42 ± 0.01 1.73e-04 ± 3.97e-07

900 1165.28 ± 0.80 1971.50 ± 1.04 1179.11 ± 0.80 0.50 ± 0.01 1.61e-04 ± 3.65e-07

950 1199.31 ± 0.81 2012.33 ± 1.05 1219.45 ± 0.82 2.70 ± 0.03 1.66e-04 ± 3.59e-07

1000 1230.46 ± 0.82 2079.25 ± 1.07 1256.23 ± 0.83 2.02 ± 0.03 1.57e-04 ± 3.38e-07

1050 1254.48 ± 0.83 2118.65 ± 1.08 1305.68 ± 0.85 10.65 ± 0.07 1.60e-04 ± 3.30e-07

1100 1288.00 ± 0.84 2156.02 ± 1.09 1333.43 ± 0.86 13.62 ± 0.08 1.62e-04 ± 3.26e-07

1150 1319.07 ± 0.85 2209.92 ± 1.10 1359.38 ± 0.86 13.99 ± 0.08 1.55e-04 ± 3.11e-07

1200 1339.27 ± 0.86 2215.37 ± 1.10 1365.60 ± 0.87 12.75 ± 0.08 1.61e-04 ± 3.17e-07

Next, the differences in deadtime results, specifically at 650 V between 137Cs 

sources and 204Tl sources, prompted us to investigate this range in more detail. Figure 5c 

shows that deadtime from 600 to 620 V increased slightly and then dropped sharply to 

reach the lowest deadtime of 26.41 ps at 680 V. It is worth noting that the lowest deadtime 

for 204Tl sources was at 670 V, while for the 137Cs sources, lowest was at 680 V. This small 

shift can be attributed to the fact that 137Cs is both a beta and gamma emitter. After 680 V,
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deadtime increased slightly to 42.01 gs at 690 V. Further, deadtime increased significantly 

at 700 V to reach 277.49 gs, which is the highest observed deadtime for the 137Cs 

experiment. It is also worth noting that deadtimes for 680 and 690 V were below 50 gs 

unlike with 204Tl sources where deadtimes were above 100 gs for the same applied 

voltages.

Henceforth, it is concluded that there are three distinct deadtime regions in the 

examined broad range of voltages: I) Region 1: lower voltages (600 to 700 V) where 

deadtime decreases rapidly then increases. II) Region 2: middle voltages (750 to 1050 V) 

where deadtime shows a decreasing exponential behavior. III) Region 3: higher voltages 

(1100 to 1200 V) where deadtime reveals a plateau behavior, as shown in Figure 5a. On 

the other hand, count rates showed the opposite behavior to deadtime in region 1 & 2, 

increasing rather than decreasing with increasing voltages. Nonetheless, count rates in 

region 3 showed a slight increase rather than a plateau, as indicated in Figure 5b. 

Furthermore, the exponential fits and the parameters for S1, S12, S2 in region two are 

presented in Table 4

Figure 5d shows counts vs. voltage for region 1. One can notice that there is a slight 

increase in the number of counts from 600 V to 620 V, followed by a significant increase 

at 630 V and then it plateaued up to 670 V. In the plateau region, a higher number of counts 

were recorded using 137Cs sources compared to 204Tl sources. A decrease in observed 

counts followed the plateau region where the calculated deadtime was at a maximum at 

700 V for the 137Cs sources.
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Figure 5. a) Deadtime vs. voltage for the 137Cs source for the broad range of voltages. 
Parameters of the exponential fit are shown in the table under the deadtime curve. The 

parameters were generated using Origin software version (2019b). b) Counts vs. voltage 
with exponential fits imposed on the curves. c) Deadtime vs. voltage from 600-700 V 

range. d) Counts vs. voltage for the 137Cs for the narrow voltages range.
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Figure 5. a) Deadtime vs. voltage for the 137Cs source for the broad range of voltages. 
Parameters of the exponential fit are shown in the table under the deadtime curve. The 

parameters were generated using Origin software version (2019b). b) Counts vs. voltage 
with exponential fits imposed on the curves. c) Deadtime vs. voltage from 600-700 V 

range. d) Counts vs. voltage for the 137Cs for the narrow voltages range (cont.).

Table 4. Parameters of the exponential model fit of Figure 5b using Cesium-137 S1, S12, 
S2. The table was generated through exponential curve fitting analysis using Origin

software version (2019b).

MODEL EXPONENTIAL

EQUATION y  = y0 + A * e (R°*x')

SOURCE S1 S12 S2

Y0 1316.135 ± 14.99 2191.399 ± 24.16447 1486.62 ± 81.33

A -24934.86 ± 8515.02 -109809.37 ± 47646.2833 -5255.24 ± 2394.57

R0 -0.0056 ± 4.99e-4 -0.00688 ± 6.143e-4 -0.0031 ± 8.117e-4

R-SQUARE 0.99846 0.99787 0.99538

ADJ. R- 
SQUARE

0.9977 0.9968 0.99307
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3.3. SODIUM-22 SOURCE

22Na sources were used to measure deadtime at a wide range of voltages— 600 to 

1150 V. Again operating voltages above 1200 V were not investigated to prevent any 

permanent damage to the GM, hence, 1150 V was the last investigated voltage for 22Na. 

Sodium-22 has a half-life of 2.6018 years, and it is a positron-emitting isotope. 22Na is a 

human-made isotope by the bombardment of aluminum target or high purity magnesium 

with protons.23 22Na decays to an excited state of neon with a 9.5% probability via electron 

capture (EC) with a decay energy of 1567.67 KeV. However, it decays mainly via positron 

emission (90.33%) with decay energy of 545.67 KeV, as can be seen in Figure 6. After 

only 3.7 picoseconds, the excited neon decays by emitting a 1274.54 KeV gamma.

Figure 7a shows the deadtime vs. voltage measurements using 22Na sources for the 

wider range of voltages of 600 to 1200 V. Additionally, the exponential model fit 

parameters are provided under the curve. Table 5 shows CPS for each source and the 

calculated deadtime at each applied voltage. The deadtime behavior at the lower voltages 

for 22Na showed behavior similar ton 137Cs and 204Tl sources. However, there was a minor 

shift in the outcomes at this range. Contrary to deadtime results of 137Cs and 204Tl where 

the maximum recorded deadtimes were at 700 V, the maximum calculated deadtime for 

22Na in the wider range was 257.98 gs at 750 V. The minor shift in the highest calculated 

deadtime for 22Na at 750 V can be attributed to the fact that 22Na is a positron-emitting 

isotope. Since deadtime for 22Na at 700 V was also lower than deadtime at 600 V, we 

selected to investigate the narrow operating voltages from 650 to 750 V instead of 600 to

700 V.
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Figure 6. A schematic 22Na decay.

Furthermore, deadtime at the operating voltages of 750 to 1050 V followed the 

same exponential decrease behavior. The exponential fit exhibited a coefficient of 

determination (R2=0.99385), as can be seen in Figure 7b. The R-square of the exponential 

fit for 22Na was higher than that of 137Cs and 204Tl. This can be explained by the fact that 

the starting point for the exponential fit was 750 V rather than 700 V. At higher voltages, 

1100 and 1150 V, the calculated deadtimes were observed to be steadily increasing rather 

than showing the plateau behavior comparable to the 137Cs and 204Tl experiments. 

However, only two measurements are not sufficient to draw a conclusion to whether an 

increasing or plateau behavior is to be observed. The missing measurement at 1200 V 

would have confirmed the progressive increasing or plateauing behavior in this region.

Furthermore, it can be seen from Figure 7b that the count rates at each applied 

voltage using 22Na were higher than the observed count rates using 137Cs and 204Tl. The 

count rate behavior for 22Na followed the same pattern as for 137Cs and 204Tl. Table 6 shows 

the parameters of the exponential fits for counts at middle voltages for S1, S12, and S2.
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Table 5. Deadtime results at operating voltages from 600 to 1200 V. S1, S12, S2 are 
Source 1, Source 1 & 2 and Source 2 of Sodium-22, respectively. Deadtime was 

calculated using the non-paralyzing model.

VOL­
TAGE

(V)

S1
(CPS)

S12
(CPS)

S2
(CPS)

BKG
(CPS)

DEADTIM E
(S)

600 623.48 ± 0.58 1199.82 ± 0.81 724.41 ± 0.63 0.14 ± 0.00 1.84e-04 ± 6.71e-07

650 959.61 ± 0.73 1816.09 ± 1.00 1097.42 ± 0.78 0.32 ± 0.01 1.29e-04 ± 3.67e-07

660 929.47 ± 0.71 1830.89 ± 1.00 1065.83 ± 0.76 0.17 ± 0.00 9.04e-05 ± 3.29e-07

670 872.54 ± 0.69 1793.95 ± 0.99 996.40 ± 0.74 0.24 ± 0.01 4.48e-05 ± 3.04e-07

680 839.82 ± 0.68 1764.89 ± 0.99 939.34 ± 0.72 0.29 ± 0.01 8.94e-06 ± 2.91e-07

690 832.63 ± 0.68 1596.55 ± 0.94 913.802 ± 0.71 0.31 ± 0.01 1.07e-04 ± 4.05e-07

700 857.24 ± 0.69 1571.25 ± 0.93 908.06 ± 0.71 0.34 ± 0.01 1.39e-04 ± 4.44e-07

710 877.32 ± 0.69 1513.23 ± 0.91 938.18 ± 0.72 0.31 ± 0.01 2.20e-04 ± 5.56e-07

720 907.80 ± 0.71 1505.05 ± 0.91 983.32 ± 0.73 0.32 ± 0.01 2.71e-04 ± 6.29e-07

730 935.71 ± 0.72 1530.81 ± 0.92 1019.66 ± 0.75 0.32 ± 0.01 2.84e-04 ± 6.39e-07

740 955.96 ± 0.72 1568.76 ± 0.93 1044.12 ± 0.76 0.32 ± 0.01 2.75e-04 ± 6.13e-07

750 975.47 ± 0.73 1615.62 ± 0.94 1064.31 ± 0.76 0.39 ± 0.01 2.57e-04 ± 5.72e-07

800 1062.51 ± 0.76 1837.12 ± 1.01 1171.41 ± 0.80 0.39 ± 0.01 1.93e-04 ± 4.31e-07

850 1125.76 ± 0.79 1982.75 ± 1.04 1234.43 ± 0.82 0.42 ± 0.01 1.61e-04 ± 3.64e-07

900 1168.58 ± 0.80 2062.00 ± 1.07 1301.54 ± 0.85 0.50 ± 0.01 1.60e-04 ± 3.49e-07

950 1198.30 ± 0.81 2125.34 ± 1.08 1326.16 ± 0.85 2.70 ± 0.03 1.48e-04 ± 3.22e-07

1000 1238.27 ± 0.82 2187.16 ± 1.10 1379.59 ± 0.87 2.02 ± 0.03 1.50e-04 ± 3.16e-07

1050 1272.30 ± 0.84 2237.94 ± 1.11 1411.80 ± 0.88 10.65 ± 0.07 1.47e-04 ± 3.00e-07

1100 1295.83 ± 0.84 2261.37 ± 1.12 1451.83 ± 0.89 13.62 ± 0.08 1.54e-04 ± 3.04e-07

1150 1317.95 ± 0.85 2278.95 ± 1.12 1467.29 ± 0.90 13.99 ± 0.08 1.57e-04 ± 3.05e-07
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Next, Figure 7c shows deadtime vs. voltage for the narrow range— 650 to 750 V. It 

is observed that from 650 to 680 V, deadtime is rapidly decreasing. Similar to the 137Cs 

experiment, the lowest deadtime was at 680 V with a deadtime of only 8.94 ps. This is the 

lowest calculated deadtime obtained from using the radioactive sources in this study. After 

680 V, deadtime started to increase up to 730 V where deadtime peaked for the 22Na 

sources at 284.31 ps. It is noteworthy that the lowest calculated deadtimes for 22Na 

compared to 137Cs and 204Tl were 66.14% and 60.14% lower, respectively, whereas the 

highest deadtimes were 2.4% higher and 2.53% lower, respectively. It is, therefore, 

concluded that at lower voltages, the lowest deadtime using 22Na is significantly lower than 

that of the calculated deadtimes using 137Cs and 204Tl.

Lastly, counts at lower applied voltages for 22Na showed different behavior than 

for 137Cs and 204Tl, as can be seen in Figure 7d. From 650 to 680 V, there was slight 

decrease in count numbers followed by a sharper drop at 690 V. Afterward, there was a 

steady number of counts from 700 to 750 V.

(a)
Figure 7. a) Deadtime vs. voltage for the 22Na source from 600-1150 V. Parameters of the 

exponential fit are shown in the table under the deadtime curve. The parameters were 
generated using Origin software version (2019b). b) Counts vs. voltage with exponential 
fits imposed on the curves. c) Deadtime vs. voltage for the 22Na source from 650-750 V 

range. d) Counts vs. voltage for the 22Na for the narrow voltages range.
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Figure 7. a) Deadtime vs. voltage for the 22Na source from 600-1150 V. Parameters of the 

exponential fit are shown in the table under the deadtime curve. The parameters were 
generated using Origin software version (2019b). b) Counts vs. voltage with exponential 
fits imposed on the curves. c) Deadtime vs. voltage for the 22Na source from 650-750 V 

range. d) Counts vs. voltage for the 22Na for the narrow voltages range (cont.).
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Table 6. Exponential model fit curve parameters of S1, S12, S2 for Sodium-22 as can be 
seen from Figure 7b. The table was generated through exponential curve fitting analysis

using Origin software version (2019b).

MODEL EXPONENTIAL

EQUATION y  = y0 + A * e (R°*x')

SOURCE S1 S12 S2

Y0 1363.77 ± 34.86 2302.59 ± 28.09 1515.34 ± 42.30

A -11618.9 ± 5675.0 -150918.7 ± 76795.4 -15297.8 ± 8330.1

R0 -0.0045 ± 7.544e-4 -0.0072 ± 7.158e-4 -0.0047 ± 8.326e-4

R-SQUARE 0.99626 0.99718 0.99549

ADJ. R- 
SQUARE

0.99439 0.99577 0.99323

3.4. MANGANESE-54 SOURCE

Lastly, 54Mn sources were used to compute deadtime from 600 to 1200 V. 54Mn has 

a half-life of 312.2 days. The primary decay mode for 54Mn is via EC with a 99.99% 

probability, followed by photon emission of 834.85 KeV. The daughter isotope is a stable 

54Cr. With a lower probability mode of beta decay (0.000093%), 54Mn decays to 54Fe, 

which is also a stable isotope. Nonetheless, with even lower probability mode of decay 

(5.7E-7%), 54Mn decays to 54Cr via positron emission.22, 23, 24 Figure 8 shows the reduced 

decay scheme of 54Mn.

Table 7 shows the number of counts of S1, S12, and S2 of 54Mn and its calculated 

deadtimes. It is observed that the number of CPS is significantly lower than the CPS from 

204Tl, 137Cs, and 22Na split sources. The lowest CPS of S12 using 54Mn sources at 600 V 

was 94.55%, 94.66%, 95.15% lower than 204Tl, 137Cs, and 22Na, respectively. At the lower



63

voltages, the maximum computed deadtime for 54Mn was 1.65 ms at 600 V, followed by 

an exponential decrease to reach the lowest deadtime of 486 ps at 1050 V. Although the 

CPS of S12 were steadily increasing at higher voltages, deadtime showed negative values 

in 1100 to 1150 V range. In addition, at 1200 V, deadtime had a very high value. The 

reason for the negative and high deadtimes at these high voltages is due to the high number 

of observed counts due to background radiation. The BKG showed a rapid increase in the 

number of counts from 1100-1200 V. When the GM counter registered even higher 

amounts of BKG events at 1200 V, the calculated deadtime showed significantly higher 

value with 11.1 microseconds. Figure 9a. illustrates the calculated deadtimes of 54Mn 

radioactive sources as a function of applied voltages.

Figure 8. A reduced schematic 54Mn decay.25

Table 7. Deadtime results at operating voltages from 600 to 1200 V. S1, S12, S2 are 
Source 1, Source 1 & 2 and Source 2 of Manganese-22, respectively. Deadtime was 

calculated using the non-paralyzing model.

VOL­
TAGE

(V)

S1 S12 S2 BKG DEADTIM E
(CPS) (CPS) (CPS) (CPS) (S)

600 29.96 ± 0.12 58.15 ± 0.17 31.27 ± 0.13 0.17 ± 0.01 1.64e-03 ± 5.07e-05

600 29.96 ± 0.12 58.15 ± 0.17 31.27 ± 0.13 0.17 ± 0.01 1.64e-03 ± 5.07e-05
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Table 7. Deadtime results at operating voltages from 600 to 1200 V. S1, S12, S2 are 
Source 1, Source 1 & 2 and Source 2 of Manganese-22, respectively. Deadtime was 

calculated using the non-paralyzing model (cont.).

VOL­
TAGE

(V)

S1
(CPS)

S12
(CPS)

S2
(CPS)

BKG
(CPS)

DEADTIM E
(S)

650 67.39 ± 0.19 123.98 ± 0.26 67.24 ± 0.19 0.32 ± 0.01 1.24e-03 ± 1.77e-05

700 74.21 ± 0.20 138.16 ± 0.27 74.91 ± 0.20 0.36 ± 0.01 1.03e-03 ± 1.48e-05

750 78.29 ± 0.20 144.38 ± 0.28 78.23 ± 0.20 0.39 ± 0.01 1.04e-03 ± 1.40e-05

800 80.09 ± 0.21 150.08 ± 0.28 80.22 ± 0.21 0.46 ± 0.01 8.19e-04 ± 1.26e-05

850 83.63 ± 0.21 156.65 ± 0.29 83.49 ± 0.21 0.48 ± 0.01 7.69e-04 ± 1.18e-05

900 86.33 ± 0.21 161.93 ± 0.29 86.36 ± 0.21 0.68 ± 0.01 7.29e-04 ± 1.11e-05

950 86.75 ± 0.21 165.16 ± 0.30 87.62 ± 0.22 0.54 ± 0.01 6.08e-04 ± 1.06e-05

1000 88.50 ± 0.22 167.92 ± 0.30 88.15 ± 0.22 0.89 ± 0.02 5.36e-04 ± 1.01e-05

1050 88.88 ± 0.22 168.36 ± 0.30 88.58 ± 0.22 2.10 ± 0.03 4.85e-04 ± 9.68e-06

1100 89.22 ± 0.22 167.66 ± 0.30 87.58 ± 0.22 11.82 ± 0.08 -2.24e-04

1150 90.18 ± 0.22 169.21 ± 0.30 88.33 ± 0.22 17.28 ± 0.09 -7.38e-04

1200 89.83 ± 0.22 168.22 ± 0.30 90.04 ± 0.22 62.17 ± 0.18 1.11e-02

Next, it is observed from Figure 9b that the number of counts at low voltages 

showed different behavior than from the other sources. However, in the middle voltages 

range, counts demonstrated a similar exponential increase behavior to that of the other 

sources. Table 8 shows the parameters of the exponential model fits. At 600 V, counts for 

S12 were very low, followed by a significant increase of counts at 650 V. Then counts 

followed a steady exponential increase until 1050 V. Counts at higher operating voltages 

plateaued from 1100 to 1200 V; although, deadtimes were out of characteristics at these 

higher voltages.
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Figure 9. a) Deadtime vs. voltage for the 1 * * 54Mn source from 600-1200 V. Parameters of 
the exponential fit are shown under the deadtime curve. The parameters were generated 
using Origin software version (2019b). b) Counts vs. voltage with exponential fits being

superimposed on the curves.
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Table 8. Exponential model fit parameters of S1, S12, S2 for Manganese-54 Source 
(Figure 9b data). The parameters are generated by curve fitting analysis using Origin

software version (2019b).

MODEL EXPONENTIAL

EQUATION y = y0 + A * e(R°*x')

Y0 92.53 ± 2.7589 175.84 ± 3.22 91.49 ± 2.15

A -588.87 ± 688.42 -1689.72 ± 1200.67 -1007.45 ± 1288.91

R0 -0.0049 ± 0.001 -0.005 ± 0.001 -0.0057 ± 0.001

R-SQUARE 0.98023 0.99301 0.979

ADJ. R- 
SQUARE

0.97035 0.98951 0.9685

The experiment utilizing the 54Mn sources resulted in negative values for deadtime, 

at high voltages due to the small number of counts. Deadtime measurements using 54Mn 

sources could be improved by either using stronger sources by placing the sources on shelf 

number 1 of the rack instead of shelf number 2. However, for the purpose of evaluating all 

the sources in similar geometry, the 54Mn sources were placed precisely on the second 

shelf, where other sources were located while performing the experiments. Figure 10 shows 

a comparison of fractional deadtimes of the sources used in this study. The 204Tl, 137Cs, and 

22Na sources from 800 V and above (including GM operating region) are within the 

acceptable range of fractional deadtime— at least 20% and does not exceed 40%. However, 

for the 54Mn sources, fractional deadtimes were always below 20%, excluding the high 

fractional deadtime at 1200 V of 187%. Hence, it is determined that the data generated 

using 54Mn sources are not reliable and should not be used to draw further inferences.



67

Figure 10. Fractional deadtimes of 204Tl, 137Cs, 22Na, and 54Mn sources as a function of 
applied voltages with reference lines at 20 and 40%.

4. CONCLUSIONS

The new data collected and reported is quite revealing. It shows a different behavior 

of deadtime phenomena, which is not previously discussed in the literature. At low voltage 

range, a peculiar yet repeatable general deadtime behavior was observed for various 

radiation sources tested in the experimental research for the GM counting system. After a 

range of almost constant values, deadtime dropped to a minimum at 650-680 V range 

before increasing back to a maximum value. The observed peak of deadtime value is 

observed in the range of 700-750 V. Subsequent to the maximum value, there seems to be 

an exponential drop in the deadtime, reaching a low asymptotic value during the 

manufacturer’s suggested operating voltage range of GM counter use (850-1000 V). 

Furthermore, we also investigated higher operating voltages (1000-1200 V) but did not 

surpass 1200 V to ensure the safe operation of the GM detector. Therefore, we did not
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observe the discharge region, where counts increase rapidly. Overall, this behavior of the 

GM detector’s deadtime has not been reported earlier in the literature.

The observed fall followed by the rapid rise and final exponential fall of deadtime 

can have a plausible explanation in light of the general behavior of gas-filled detector’s 

regions of gaseous ionization and charge multiplication.

Figure 11. The figure shows different types of interactions of charged species in a gas 
filled detector. In the left-hand side of the represented equations are the interacting 

special while the right-hand side are the product of these interactions. The + and -  circles 
represent the positive and negative ions, respectively. The n circles represent a neutral 

atom or a molecular. The e- circle represents the electrons.26

At very low voltage, after initial ionizations take place, free electrons and positive 

ions drift and diffuse before being collected. At these low voltages, the count rate is low, 

and not all the events are recorded mainly due to the recombination of positive ions and 

electrons. Figure 11 shows an illustration of the different types of interactions of charged 

species. As the voltage increases from these minimal values, there is an observed increase

in the count rates and a decrease in the deadtime. The reduced collection time with
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increasing voltage is the reason for deadtime reduction. A minimum deadtime is reached 

at the point when the collection time is minimum without any significant charge 

multiplication. Increasing the voltage further results in charge multiplication, which is 

caused by the high drift velocity and consequently impacts the energy of electrons. Since 

each generated pulse is the sum of a larger number of charge carriers, the collection time 

increases; therefore, deadtime increases. This positive relationship between the operating 

voltage and deadtime is observed due to the loss of proportionality. Due to the loss of 

proportionality, no further increase in deadtime is possible. After the maximum is reached, 

deadtime starts to decrease with increasing the applied voltages with an exponential 

behavior. Increasing the voltage further results in no significant additional charge 

multiplication. On the other hand, increasing the voltage reduces the collection time; 

therefore, deadtime is reduced. The well-known exponential behavior is observed in this 

range. At 900 V, which is the recommended operating voltage of the detector, a low 

asymptotic value of deadtime is observed.

This level of detailed GM deadtime analysis has not been reported in the literature. 

It is hoped that this work will further enhance the radiation measurement’s community 

understanding of the phenomenon and remedial strategy for dealing with detector deadtime 

problems.
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ABSTRACT

A detailed analysis of several pulse shape properties generated by a Geiger Mueller 

(GM) detector and its dependence on applied voltage is examined. The two-source method 

was utilized to measure deadtime of the counting system while simultaneously capturing 

pulse shape parameters on an oscilloscope. A wide range of operating voltages (600-1200 

V) was investigated using three radioactive sources (204Tl, 137Cs, 22Na). This study aims to 

investigate the relationship between operating voltage, pulse shape properties, and 

deadtime of the GM detector. Based on the collected data, it is found that deadtime 

decreases due to recombination processes while the pulse width increases due to low 

applied voltages. It is also observed that rise and fall time are at their highest at low 

voltages. This was due to the applied voltage was not strong enough. Therefore, the 

collection time and pulse tail are longer, which ultimately resulted in longer deadtime.
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Increasing the voltage further would result in gas multiplication, where deadtime and pulse 

width are observed to be increasing. After reaching the maximum point of deadtime, it 

starts to exponentially decrease until a plateau is reached. In this region, it is observed that 

detector deadtime and operating voltage show a strong correlation with positive pulse 

width, rise and fall time, cycle mean, and area. Therefore, this study confirms the 

relationship between detector deadtime, operating voltage, and pulse shape properties.

1. INTRODUCTION

In 1908, Ernest Rutherford and Hans Geiger attempted to count the number of alpha 

particles emitted by a radium sample. To perform the task, they designed a simple 

apparatus where an individual alpha particle passing through a gas-filled tube (counter) is 

amplified due to ionization processes. With applying high voltages, a cascade of ions was 

created due to the passage of alpha particles. The ions are then attracted toward a central 

wire (anode) in the tube, which produced a pulse of electric charge that is counted by an 

electrometer.1 The apparatus they used is now known as a ‘proportional counter,’ which 

operates on the gas multiplication principle. After twenty years, Geiger and his 

undergraduate student, Muller, improved the apparatus, which ultimately led to the 

invention of the Geiger-Muller (GM) counter. It does not detect only alpha particles but 

also beta and gamma rays; however, it does not differentiate which type of radiation it is 

detecting. GM counter has been widely used in radiation measurement applications since 

then.2 The abundant use of the GM counter can be attributed to several key features, such 

as its simple, low-cost design, its ease of operation, and portability.
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Furthermore, for the GM counter to detect and record two independent radiation 

incidents, there has to be a minimum time interval between two radiation events. In this 

short interval time, the detector is unresponsive (dead). Any radiation event that takes place 

within this short interval time will be lost (uncounted). Several studies have shown that the 

GM counter suffers from a large deadtime compared to other radiation detectors such as 

solid-state detectors and scintillators.2, 3 4 The large deadtime that the GM counter suffers 

from can be from a few microseconds to more than a few milliseconds.5, 6 Moreover, the 

deadtime phenomenon in radiation detectors has been studied as early as the 1940s. 

Research on the deadtime phenomenon since then has recognized several factors that affect 

phenomenon, such as the detector’s specifications and design, pulse processing of the 

detection measurement system, and operating conditions.7 Mainly, two factors contribute 

toward the deadtime of a radiation detection system: (I) the inherent deadtime of the 

detector itself known as intrinsic deadtime, and (II) the collective deadtime that results 

from pulse processing instruments.8

The pulse processing electronics of a typical radiation detection system include a 

detector, preamplifier, amplifier, discriminator, counter, and multi-channel analyzer 

(MCA). Nonetheless, for the GM detector, the contribution factor of deadtime from the 

pulse processing electronics is negligible compared with the detector’s processes. Hence, 

the intrinsic deadtime is the major contributor to the final deadtime for any GM counting 

system. Therefore, intrinsic deadtime is sufficient for deadtime correction measurements

for the case of GM counter.
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Due to the fact that radiation events are random, many radiation incidents go 

undetected due to the deadtime phenomenon. Subsequently, several deadtime models have 

been proposed for count rate corrections of the radiation detection system.

1.1. DEADTIME MODELS

For count rate correction consideration, there are two traditional deadtime models: 

(1) the paralyzing, and (2) non-paralyzing models. These two idealized models are 

employed extensively in the industry and academia. Both models were derived by Feller9 

and Evans.10 The paralyzing model assumes that each radiation event taking place within 

the detector would extend the resolving time (deadtime). If a subsequent radiation event 

occurs within the extended time, it will not be detected— the count is lost. For that reason, 

the paralyzing model is known as an extending type. For a radiation event to be counted, 

there has to be a minimum gap time between two radiation events so that the continuous 

paralysis of the detector system has lapsed. The proposed paralyzing model, henceforth, 

attempts to correct the measured count rates. The mathematical description of the 

paralyzing model is seen in Eq. (1.1).

m = n e-nr (1.1)

where n is the true count rate, m  is the measured count rate, r is  deadtime. In contrast, the 

non-paralyzing model (known as non-extending type) is based on the assumption that each 

radiation event taking place within the detector will be followed by deadtime. However, 

when a subsequent interaction takes place during this deadtime, there is no extension of 

deadtime. Unlike the paralyzing model’s assumption of continuous paralysis of the detector 

when a radiation event is detected, the non-paralyzing model assumes that the detector is
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dead only for a fixed time following the detection of a radiation event. The mathematical

expression for the non-paralyzing model is given in Eq. (1.2).

n
m = TTT----- 7 (12)(1 +  n x ) v ’

Further investigation of the deadtime phenomenon in 1978 resulted in a generalized 

deadtime model derived by Muller.11, 12 By combining the fundamentals of the idealized 

models, a hybrid deadtime model was later developed by Albert and Nelson,13 which, in 

turn, was enhanced by Lee and Gardner14. They used Manganese (56Mn) radioactive source 

method for measuring deadtime. Along with the assumption that the non-paralyzing model 

precedes the paralyzing model, Lee and Gardner applied the least fitting square method on 

the data generated from their experiment. The mathematical expression of the hybrid model 

is given in Eq. (1.3). In an effort to improve the hybrid model further, Patil and Usman6 

proposed another modification by introducing a probability-based paralysis factor (/) . The 

paralysis factor was proposed to be between 0 and unity. Eq. (1.4) shows the mathematical 

expression of their modified hybrid model.

n e -n xp
m = -----------1 + n xN (13)

n e -n f  x 
1 +  n  x (1 — f ) (14)

where r p is the paralyzing deadtime, Tnp is the non-paralyzing deadtime, x is the total 

deadtime, and f  is the probability-based paralysis factor. It is worth noting that if  the f  is 

set to 0, the modified hybrid model reduces to the non-paralyzing model, while if  f  is set 

to 1, equation 1.4 reduces to the paralyzing model. Additionally, if  the f  is set to 0.5,

deadtime behavior will be lying between the paralyzing and non-paralyzing models. In
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order to estimate f ,  Patil and Usman proposed a graphical technique. Details of the 

graphical technique is beyond the scope of this paper and can be found elsewhere.6

1.2. DEADTIME BEHAVIOR

It was pointed out that the two ideal deadtime models (paralyzing and non­

paralyzing) are mathematical convenience rather than phenomenologically based.6, 15 As 

discussed earlier,8 non-paralyzing model is merely using the first term(s) of Taylor 

expansion of the paralyzing model. Yousaf et al.15 developed a simulation code to test 

various deadtime models, ideal and hybrid. We programed the same comparison in 

MATLAB “Sim-Pulse V1.2” (version R2018b), to simulate a short decaying radioactive 

source (Barium, 137mBa, with a half-life of 153.12 s) to illustrate the various deadtime 

behaviors according to the deadtime models discussed in section 1.1. 137mBa is widely 

utilized for half-life measurement experiments. To demonstrate that the choice of model is 

significant only when the true count rate is high or the deadtime is long, three cases were 

simulated, as shown in Table 1. For GM counters where the deadtime is rather long, the 

choice of model is significant even at low count rates, but the general consensus is that GM 

behaves like an ideal non-paralyzing detector.14 The behavior of other types of detectors 

must be carefully evaluated at high count rates before applying any count rate correction.

From Figure 1, it can be seen that when deadtime is low, there is little loss of counts 

(case 1), and the choice of model has no serious consequence. However, when deadtime is 

higher, all models diverge (Case 2 and 3). The paralyzing and non-paralyzing models 

always set the lowest and highest limits for count rate measurements, respectively. It is 

worth addressing that these traditional models have been applied commonly in radiation
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detection.16 Previous studies6, 17, 18 have shown that true deadtime behavior falls somewhere 

between the idealized models.

Table 1. Total deadtimes used for simulations for each of the 3 cases. P stands for the 
Paralyzing model and NP for the non-paralyzing model. In Lee & Gardner’s model, NP 
stands for the non-paralyzing model followed by paralyzing, whereas PN is the opposite.

Model P NP Lee & Gardner 
(NP, PN)

Patil & Usman (NP, 
PN) ( f  =50%)

Case 1
Total deadtime 
C^s) 10 10 5 + 5 50%

Case 2
Total deadtime 
C^s) 200 200 100 +100 50%

Case 3
Total deadtime 
C^s) 1000 1000 500 + 500 50%

Figure 1. Different deadtime behaviors according to five models.
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1.3. PULSE SHAPE CHARACTERISTICS

In the radiation measurement community, it is widely believed that the pulses 

produced in a GM detector carry no useful information due to the fact that the generated 

pulses have the same amplitude.4, 16 However, this belief was recently questioned7, 19 

investigated pulse shape properties while varying applied voltages. It is worth noting that 

Akyurek and co-worker’s7 investigation of the pulse shape was performed to confirm the 

hypothesis that at low voltages, deadtime decreases with increasing voltages until a plateau 

is reached and after that, at higher voltages deadtime increases. Their study focused on 

pulse duration (pulse width) and the time interval between two pulses (gap time). The 

investigated operating voltages were in the range of 800 V. It was revealed that at low 

voltages, pulse width decreases with increasing operating voltage. This reduction of pulse 

width was attributed to smaller charge collection and hence reduced deadtime. Moreover, 

at higher operating voltages, the second pulse after a long width pulse was observed to be 

of short duration. This reduction in the second pulse was attributed to smaller charge 

production for the second event during the recovery time. Although the initial work by 

Akyurek and co-worker’s7 was very interesting, it lacked the analysis of several other 

important pulse shape properties such as amplitude, fall time, rise time, area, and positive 

pulse width. It is also worth noting that the generated pulses in their study were manually 

captured using an oscilloscope. The use of automatic measurements offered by an advanced 

oscilloscope would have shown more details on pulse shape properties.

In an effort to study the generated pulse properties from a GM counter even further, 

we designed an experiment that used two different radioactive sources: Cobalt-60 (60Co) 

and Cesium-137 (137Cs). The details of the study were discussed elsewhere.19 The
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recommended operating voltage specified by the manufacturer for that particular GM 

detector (Ludlum, model 133-2) was 550 V. A wide range of voltages— 300 V to 1000 V 

was examined without reaching too high. Nonetheless, we did not examine the pulses at 

higher voltages due because the high voltage would possibly damage the detector. It was 

concluded that pulses from both of the radioactive sources behaved similarly in which pulse 

width and fall time were exponentially decreasing with increasing the operating voltages. 

In contrast, peak to peak (Pk to Pk) increased with increasing voltages until an asymptote 

was observed at the highest operating voltages. Pulse shape dependence on operating 

voltage for a GM counter was discussed in detail, but simultaneous measurement of 

deadtime and pulse shape was missing for that earlier work. Therefore, no relationship 

between deadtime and pulse shape could be deduced from the earlier work.19

The purpose of this work is to examine pulse shape properties and its relationship 

with observed deadtime more in-depth. An experiment was designed where deadtime and 

generated pulses were simultaneously measured and recorded. Four different radioactive 

sources were used: Thallium-204 (204Tl), 137Cs, 22Na, and Manganese-54 (54Mn). 

Measurements of deadtime and its associated behavior were discussed in our previous 

research paper.20 Based on the findings, the phenomenological basis of deadtime 

manifestation was presented. Three distinct ranges of deadtime phenomenon depending on 

the operating voltage were identified, and for each range, a phenomenological model was 

presented. For the GM detector tested in the study, these regions were: (I) region 1 (600­

650 V), (II) region 2 (700-750 V), and (III) region 3 (750-1200 V).

The limited literature is available about deadtime dependence on applied voltages 

but not much discussion is available about the relationship between pulse shape generated
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in a GM counter and detector deadtime. Therefore, this study appears to be the first attempt 

to present information on correlation between GM deadtime and pulse shape which would 

be very helpful for the radiation measurement community for better understanding the 

deadtime phenomenon. The results will validate our hypothesis that deadtime phenomena 

at different operating voltages are phenomenologically different.

2. MATERIALS AND METHODS

2.1. MATERIALS

Figure 2 shows a schematic of the experimental setup used to measure the deadtime 

of the GM detector and record the output train of pulses due to radiation incidents. The 

counting system in this experiment consisted of radioactive half-disk sources, GM detector, 

high-voltage power supply, preamplifier, oscilloscope, amplifier, integral discriminator, 

dual counter/timer, and a PC.

The radioactive sources used in this experiment are (a) Thallium-204 (204Tl), (b) 

Cesium-137 (137Cs), and (c) Sodium-22 (22Na). These sources were designed and produced 

specifically by Spectrum Techniques LLC. upon our request to conduct this study. 204Tl 

was produced in February 2019, while the other two radioactive sources were produced in 

May 2019. Each source consists of two sealed half-disk sources, as can be seen in Figure

2. From now and onward, we will refer to the half-disk source as a split source. The initial 

activity of each split source was 5 pCi, with ±20% uncertainties.21 Due to the fact that the 

radioactive sources are not short-lived isotopes (seconds, minutes, hours) no correction to 

the deadtime due to decay during measurement was needed.22 To ensure that the 

uncertainties associated with each split source do not result in significant statistical errors,
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we conducted several evaluations of each split source of the three isotopes. The outcomes 

showed that each split source resulted in a similar number of observed counts. Hence, the 

uncertainties did not inflict significant statistical errors. We used the same size and 

geometry to minimize errors from measuring the radioactive sources.

The GM detector (Ludlum, model 44-7) used in this study is a halogen quenched, 

end window type detector. The end window is made out of a thin mica layer to detect not 

only gamma radiation but also alpha and beta rays. The recommended operating voltage of 

this GM detector is 900 V, while the typical deadtime associated with this model is 200 ps, 

as specified by the manufacturer.23 The low-noise charge-sensitive preamplifier (Ortec, 

model 142A) was connected through “E” input with a connector series “C” with a short 

coaxial cable to the GM detector.24 To minimize noise and maintain the preamplifier’s 

stability, it was placed as close as possible to the detector. The preamplifier’s capacitor 

feedback is 1 pF while the pulse tail decays to the baseline in 500 ps. In addition, the 

preamplifier’s bias input was connected to the high-voltage (HV) power supply. Also, the 

preamplifier was taped to the same location for the subsequent experiments.

The HV power supply (Canberra, model 3125)25 is housed in the nuclear 

instrumentation module (NIM), and it is directly connected to the AC line. The oscilloscope 

(Tektronix, model TBS2000) was connected to the preamplifier through a “T” connector 

to capture and record the generated pulses directly from the preamplifier.26 The purpose is 

to capture and record the pulse shape properties generated from the GM detector without 

going through the other pulse processing electronics (amplifier, integral discriminator, dual 

counter/timer). The oscilloscope’s output was connected to a PC where an O-scope utility 

software (provided by Tektronix.inc, version 1.5) was used to record measurements of the
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pulse shape properties automatically. The amplifier (Ortec, model 570) was connected to 

the preamplifier through a “T” connector using a coaxial cable.27 The amplifier serves two 

purposes in general: (1) to amplify the pulse coming from the preamplifier, and (2) to shape 

the pulse and eliminate the long exponential tail of the pulse processed by the preamplifier 

so that pile up of pulses are reduced. Besides, the amplifier was connected to the integral 

discriminator (Canberra, model 83 2).28 The discriminator was used to produce logic pulses 

when the linear input pulse’s amplitude processed by the amplifier exceeds a threshold. 

The discriminator was connected directly to the dual counter/timer (Ortec, model 994).29 

The dual counter/timer was used to measure the number of registered counts. The timer 

was set to 30 minutes for each experiment, and it was used to start and end registering 

counts from radiation incidents automatically.

Lead Shield
%

n  / i  *7

Oscilloscope
(O-Scope Software)

C ounterPre-Amplifier Amplifier Discriminator
I imer

Rack Holder
High Voltage

Radioactive Power Supply

Figure 2. A schematic of the experimental setup for the radiation counting system.

2.2. TWO SOURCE METHOD

In this current study, we utilized the two-source method to measure deadtime 

dependence on operating voltages. The principle behind this method is that when two



84

radioactive sources are combined, they will result in fewer observed count rates than if 

each radioactive source measured individually and summed up. The loss of counts from 

observing the combined radioactive sources is attributed to deadtime. In our study, we used 

two split sources for each radioactive isotope. Split source one is referred to as S1, while 

split source two is S2 . Combined, they are abbreviated as S12. Since the GM detector is 

commonly known to behave as non-paralyzable, and it suffers from <5% of the paralysis 

factor, applying the non-paralyzable model for calculating deadtime-voltage dependence 

in our study is, therefore, justified.6, 8 14 The derivation of the two-source method is well 

documented in Knoll’s textbook.4 Since this study focuses on pulse shape analysis, a 

detailed description of instrumentation optimizations and deadtime measurements are 

outlined in an earlier paper.20

In addition to the three radioactive isotopes (204Tl, 137Cs, 22Na) used in this study, 

we also examined 54Mn split sources. However, due to short half-life 54Mn, the sources 

seem to have decayed away at a level of unacceptable statistical uncertainty. At high 

voltages, deadtime measurements for 54Mn showed negative values. Further, when 

fractional deadtime (s12 r )  criterion of between 20% and 40% was used to determine the 

reliability of deadtime measurements,19 54Mn did not meet the acceptability criterion 

(exceeding 40%). On the other hand, we found that fractional deadtimes obtained from 

investigating 204Tl, 137Cs, and 22Na sources were within the acceptable range. Hence, the 

generated pulse shape properties that were acquired from using 54Mn sources were 

excluded from this study and should not be used to draw any conclusions.20
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2.3. OSCILLOSCOPE

The oscilloscope (Tektronix, model TBS2000)26 was used in this experiment to 

display and record the train of pulses generated by the GM detector. The oscilloscope’s 

channel one input was connected to the preamplifier through a “T” connector with a coaxial 

cable. In contrast, the output was connected directly to the PC to process the data in real­

time. Table 2 shows the definition for each pulse property collected and analyzed in this 

study. The bandwidth of the oscilloscope was in full mode. The oscilloscope’s probe type 

was voltage, while the probe’s attenuation factor was 10X. The record length for the 

acquiring option was 20M points, while the sample rate was 500 MS/s. The Horizontal 

Scale (time per major horizontal division) was set to 200 ps/div while the Vertical Scale 

was 50 V/div. To automatically record waveform data, we used the triggering mechanism 

in which the rising edge trigger condition was selected. The trigger delay mode time was 

set to negative values in order to capture more waveform data. The trigger source was set 

to channel 1 with a 20V slope. The input signal coupling method for the oscilloscope was 

(DC), which means it passes both the AC and DC signal components. Besides, it passes 

the trigger signal without filtering it to the trigger circuit.

Furthermore, the data collection duration for each radioactive split source (Si and 

S2) was 30 minutes, and 30 minutes for combined sources (S12). Data logging by the O- 

scope software was set to 15 seconds, which means a total of 120 data points for each pulse 

property were recorded. It is worth noting that since radiation incidents are random, then 

random signals must be treated statistically. Hence, each pulse property’s averages at the 

specified operating voltage for each experiment were calculated and analyzed. Figure 3a 

shows a train of pulses captured while using 204Tl at low operating voltages. It is observed
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that the fall time at 600 V is long. However, at higher operating voltages, as shown in 

Figure 3b, it is seen that fall time is very short. This behavior is also observed while using 

137Cs and 22Na sources. In the subsequent section, we discuss this behavior and its 

association with deadtime.

Table 2. Pulse shape measurements with their definitions. These definitions derived from 
Tektronix’s manual for the TBS2000 oscilloscope.

Pulse Property Definition

Amplitude It is a measurement over the entire waveform in which it is the 
average high value o f  the pulse less the average low value. Its unit is 
volts.

Area The area over the entire waveform and measured in volts-seconds. It is 
positive for measurements above ground and negative below the 
ground.

Cycle Mean The arithmetic mean over the first cycle.

Fall Time
Time measurement in seconds that is measured from the high 
reference value (90%) to the low reference value (10%) o f  the final 
value o f  the pulse. This is known as the tail o f  the pulse with an 
exponential decay.

Frequency The first cycle in a waveform and measured in hertz (Hz).

Positive Pulse Width The distance (time) between the mid reference (50%) o f  the pulse

Positive Duty This is a calculated measurement and not measured directly. It is the 
ratio o f  the positive pulse width to the signal period in percent.

Rise Time Time measurement where it starts from the low reference value (10%) 
o f  the leading edge o f  the pulse to the high reference value (90%) o f  
the final value.
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(a)

(b)

Figure 3. Train of pulses captured by the oscilloscope using combined sources for: (a)
204Tl at 600 V; (b) 204Tl at 1200 V.

3. RESULTS AND DISCUSSION

3.1. PULSE SHAPE ANALYSIS

In an earlier study,20 a two-source method was used to calculate GM counter 

deadtime for a wide range of operating voltages. Results showed an interesting relationship 

between the operating voltage and the detector deadtime for a low operating voltage range.
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As the operating voltage was increased further after reaching a minimum value, deadtime 

started to increase rapidly to reach a maximum. After the maximum value, when the 

operating voltage was increased further, an exponential decrease in the deadtime was 

observed, leading to an asymptotic. This behavior of deadtime variation with operating 

voltage dependence was consistent for three different radiation sources.

Based on these results, three distinct regions of the GM counter deadtime 

phenomenon were observed. At low operating voltage, the applied voltage is not sufficient 

to rapidly collect all charges initially produced by the ionization of the gas. Therefore, 

significant recombination of electrons and positive ions takes place before charge 

collection. At these low voltages, recorded pulses are weak; hence, not all radiation events 

are recorded. As the operating voltage is increased in this region, the collection efficiency 

increases, and collection time reduced. This ultimately leads to a decrease in deadtime 

while increasing the voltage.

After reaching a minimum deadtime at the highest operating voltage in this region, 

the operating voltage reaches a point where the velocity of the ions and the election is high 

enough for charge multiplication. Now a larger number of charge carriers are available, 

leading to stronger pulses. Since more charge has to be collected, a rapid increase in 

deadtime is observed in this intermediate operating voltage range. Because increasing 

voltage in this range increases charge multiplication, deadtime continues to increase with 

increasing the voltage until the loss of multiplication proportionality. In this intermediate 

region, the increasing operating voltage is expected to reduce deadtime while increasing 

the pulse strength until no further increase in deadtime is possible due to the loss of 

proportionality.
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In the high operating voltage range, deadtime starts to exponentially decrease after 

reaching a maximum value. This exponential decrease in deadtime with increasing 

operating voltages is because no additional charge multiplication is possible. Hence, the 

collection time is reduced. The recommended operating voltage GM counter is at the low 

asymptotic value of deadtime in this region.

Previous studies attempted to obtain a relationship between applied high voltage 

and deadtime,7, 19 but the relationship between pulse shape properties and deadtime for GM 

detector has not been investigated. Therefore, a comprehensive experimental campaign 

was designed and executed to collect data on deadtime and the various parameters 

describing the pulse shape. For this study, we only focused on the high voltage/GM region 

as that is of primary interest to many applications. For this study, 204Tl, 137Cs, 22Na sources 

were used to examine the relationship between applied high voltage, GM counter deadtime, 

and pulse shape properties.

Figure 4a shows positive pulse width with respect to applied high voltage. At 600 

V, it is seen that the pulse width is at its shortest. As discussed above, in this region, 

recombination is significant; hence, the charge collection is incomplete, and not many 

pulses are detected. At 700 V, the ionization process takes place; thus, the generated pulse 

is larger. From 700 to 750 V, the gas multiplication process took over and resulted in the 

widest pulse width. As the voltage is increased further, gas multiplications resulted in 

producing Townsend avalanches; hence, the pulse starts to shrink in width. Furthermore, 

it can be seen from Eq. (3.1) that the duty cycle depends on the pulse width and the period; 

henceforth, there is a direct relationship between the period of the pulse and pulse width.
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Figure 4(a, h) show that the pulse width decreases while the duty cycle is almost constant 

after 700 V.

Pulse w ith
Duty Cyc' e =  Period (31)

Furthermore, the pulse at the output of the charge-sensitive preamplifier (such as 

the preamplifier used in this experiment) is equal to the detector’s charge collection time 

in the ideal case. From Figure 4b, it can be seen that the rise time at low voltages is 

relatively high. This is because, at these low voltages, recombination processes were 

prominent, and not many radiation events detected. From 700V and onward, the voltage 

increase combined with the ionization process resulted in faster collection time. Therefore, 

it is observed in this region that rise time is exponentially decreasing with increasing 

operating voltage.

Next, it can be seen from Figure 4c that fall time is at its highest at low voltages. 

This means that the pulse had a longer tail because the applied voltage is not strong enough. 

Therefore, the charge collection time is longer, which agrees with the rise time observation. 

At low voltages, not many radiation incidents are detected, so the overshoot (negative or 

positive) is too small; hence, the tail is longer. As voltage is increased further, it is observed 

that fall time is exponentially decreasing because more radiation events are being detected.

Moreover, it can be seen from Figure 4d that amplitude is at its lowest at 600 V. 

The reason behind this is that recombination processes did not produce a full charge (weak 

current). Nonetheless, stronger pulses are produced as voltages increased further due to the 

detection of more radiation incidents. The Townsend avalanches are continuously 

produced until a sheath of positive ions are formed around the anode, which results in 

decreasing the electric field below the point where additional gas multiplication cannot
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occur. The process finishes when the GM counter produces the same total number of 

positive ions being created by the incident radiation. At this point, the GM counter will 

generate the same amplitude for each output pulse. This outcome can be precisely observed 

after 700 V, as shown in Figure 4d.

Figure 4e shows the frequency of the pulses as a function of applied voltages. The 

shape of frequency behavior is similar to the shape of the observed radiation counts with 

increasing voltages. For the region of interest, 750 V and above, it is seen that as the 

frequency is increased, more counts are detected. The higher the voltage, the faster a pulse 

is detected, while the shorter distance between pulses is observed.

Furthermore, the definition of cycle mean is the arithmetic mean over the first cycle 

in the waveform or the first cycle in the gated region. The cycle mean is a part of the 

amplitude measurement category, as explained in the oscilloscope manual. Figure 4f shows 

the cycle mean as a function of operating voltages. The cycle mean behavior is similar to 

the deadtime behavior of the GM detector, where the deadtime tends to exponentially 

decrease after 750 V. The area of a pulse can be calculated as amplitude times pulse width. 

It is observed from Figure 4g the area is decreasing exponentially after 750 V. This is 

expected because the amplitude is constant while the pulse width is exponentially 

decreasing after 750 V. Looking at the figures of “Area” and “Cycle mean” with respect to 

applied high voltage, it is observed that they follow a similar behavior of deadtime.

Positive duty is defined in signals as pulse width divided by the period times 100%. 

It is a calculated value not directly measured. For instance, it is seen from Figure 4h that at 

600 V, the positive duty cycle is approximately 30%, which means that the pulse width 

occupies 30% of the period or the signal is ‘on’ 30%. Hence, the pulse width is short at this
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voltage, as observed in Figure 4a. At 650 V, positive duty is 50%, which means the pulse 

width occupies half of the period. From 750 V and onward, positive duty for combined 

radioactive sources is above 55%, which means the signal is ‘on’ 55% of the time, and it 

is exponentially decreasing with increasing voltages.

Figure 4i shows the full size of the positive pulse (rise time + pulse width + fall 

time). When all of these properties are added together, it is observed that from 600 V to 

1200 V, the full positive pulse is exponentially decreasing. This behavior is also in 

agreement with the findings of our previous study.19 Table 3 summarizes the statistics of 

the fit lines in Figure 4. Since this study focuses on higher applied voltages and the GM 

region, the exponential fittings were performed from 750-1200 V.

Figure 4. Different parameters with respect to applied high voltage for pulse shape
analysis.
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Figure 4. Different parameters with respect to applied high voltage for pulse shape
analysis (cont.).

Figure 5 shows the result of some detailed statistical analysis of the results. Since 

the GM region is of primary interest to many applications, we focused on high applied 

voltages (from 750-1200 V). Also, since results from individual radioactive sources show
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similar behavior when combined sources are used, we focused our correlations analysis on 

combined sources.

Table 3. Statistical parameters for best fit lines in Figure 4. OriginPro software (version
2020b) was used to derive best fit lines.

EXPONENTIAL FITTING M ODELS
Pulse Property Positive Pulse W idth
Equation y  = To +  A * e (R°*x)
Source 204Tl S12 137Cs S12 60Co S12
Y0 2.20E-4 ± 2.79E-6 2.23E-4 ± 2.98E-6 2.21E-4 ± 3.2E-6
A 0.0270 ± 0.00577 0.110 ± 0.0395 0.239 ± 0.109
R0 -0.0066 ± 2.91E-4 -0.0084 ± 4.78E-4 -0.0095 ± 6.1E-4
R-Square 0.99851 0.99687 0.99657
Pulse Property Rise Time
Equation y  = y 0 + A * e (R°*x)
Source 204Tl S12 137Cs S12 60Co S12
Y0 3.39E-6 ± 9.83E-8 3.43E-6 ± 2.51E-8 3.43E-6 ± 2.3E-8
A 2.33E-5 ± 9.14E-5 0.094 ± 0.44 0.033 ± 0.14
R0 -0.0058 ± 0.0054 -0.016 ± 0.0062 -0.015 ± 0.0054
R-Square 0.6386 0.8511 0.8858
Pulse Property Fall Time
Equation y  = To +  A * e (R°*x)
Source 204Tl S12 137Cs S12 60Co S12
Y0 1.68E-5 ± 1.16E-6 1.91E-5 ± 1.39E-6 2.15E-5 ± 8.6E-7
A 0.00498 ± 0.00158 0.0117 ± 0.00586 0.0455 ± 0.0200
R0 -0.0062 ± 4.37E-4 -0.0073 ± 6.76E-4 -0.0091 ± 5.9E-4
R-Square 0.99649 0.99273 0.99664
Pulse Property Frequency
Equation y  = To +  A * e (R°*x)
Source 204Tl S12 137Cs S12 60Co S12
Y0 105526.0 ± 3603694.8 3043.73 ± 310.95 3232.99 ± 157.1
A -105991.0 ± 3602417.9 -27797.8 ± 38118.4 -69897.5 ± 6264
R0 -2.73E-5 ± 9.55E-4 -0.0040 ± 0.0020 -0.0051 ± 0.0012
R-Square 0.97506 0.91143 0.9757
Pulse Property Cycle Mean
Equation y  = To +  A * e (R°*x)
Source 204Tl S12 137Cs S12 60Co S12
Y0 20.13 ± 1.63 22.51 ± 0.36 18.51 ± 10.20
A 6460.2 ± 9949.4 5.96E7 ± 7.55E7 835.30 ± 2228.2
R0 -0.0076 ± 0.0021 -0.01956 ± 0.00168 -0.0046 ± 0.0039
R-Square 0.9381 0.99131 0.80486
Pulse Property Area
Equation y  = yo + a * e (R°*x)
Source 204Tl S12 137Cs S12 60Co S12
Y0 -0.154 ± 0.019 -0.047 ± 0.018 -0.012 ± 0.017
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Table 3. Statistical parameters for best fit lines in Figure 4. OriginPro software (version 
2020b) was used to derive best fit lines (cont.).

EXPONENTIAL FITTING M ODELS
Pulse Property Area
A 274.04 ± 83.42 927.10 ± 351.57 885.89 ± 273.52
R0 -0.0073 ± 4.12E-4 -0.0088 ± 5.07E-4 -0.0087 ± 4.1E-4
R-Square 0.9973 0.99666 0.99825
Pulse Property Positive Duty
Equation y  = yo + a * e (R°*x)
Source 204Tl S12 137Cs S12 60Co S12
Y0 54.66 ± 0.88 55.78 ± 0.15 53.72 ± 5.65
A 1771.764 ± 2910.64 6.37E7 ± 8.92E7 294.57 ± 878.59
R0 -0.0070 ± 0.0022 -0.021 ± 0.0019 -0.0043 ± 0.0044
R-Square 0.92379 0.99083 0.75704
Pulse Property Full Positive Pulse
Equation y  = y 0 + A * e (R°*x)
Source 204Tl S12 137Cs S12 22Na S12
Y0 2.41E-4 ± 3.09E-6 2.461E-4 ± 3.54E-6 2.47E-4 ± 4.0E-6
A 0.03197 ± 0.00592 0.1185 ± 0.03808 0.28506 ± 0.125
R0 -0.007 ± 2.54E-4 -0.008 ± 4.32E-4 -0.001 ± 5.89E-4
R-Square 0.9989 0.9974 0.9968
Pulse Property Full Positive Pulse
Voltage Range 600-1200 V
Equation y  = yo + a * e (R°*x)
Source 204Tl S12 137Cs S12 22Na S12
Y0 2.017E-4 ± 2.61E-5 2.14E-4 ± 1.88E-5 2.16E-4 ± 1.3E-5
A 0.0071 ± 0.0024 0.0129 ± 0.0042 0.0201 ± 0.0051
R0 -0.004 ± 5.97E-4 -0.005 ± 5.57E-4 -0.006 ± 4.31E-4
R-Square 0.9829 0.9870 0.9942

Furthermore, various pulse shape characteristics were examined for their 

dependence on the operating voltage and its relation to deadtime. Figure 5a shows a 

negative correlation between the operating voltage and the “Positive Pulse Width.” For all 

three radioactive sources (204Tl, 137Cs, 22Na), the value of the coefficient ranges from -0.94 

to -0.90, which is a very strong correlation. However, for all three sources, a weaker 

correlation between -0.80 to -0.71 was observed with deadtime. Based on the data, one can 

deduce that there is a strong positive correlation between pulse width and deadtime with 

coefficients ranging between 0.96 to 0.95, as shown in Figure 5a. This means that longer
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the pulse width, the higher the probability for overlapping pulses; hence, deadtime is at its 

maximum point (at 750 V) when pulse width is observed to be at its maximum width, as 

can be seen in Figure 4a. As the applied voltage increases, the shorter the pulse width, the 

more counts are measured. Since, above 750 V the detector starts to operate in the GM 

region, hence, deadtime starts to decrease exponentially after 750 V until a plateau reached, 

as shown in Figure 4a.

When observing Figure 5b, one is bound to notice a strong negative correlation 

between the operating voltage and the pulse “Rise Time” with coefficients ranging between 

-0.78 to -0.72 for combined sources. Again, there is a positive correlation between 

deadtime and the pulse “Rise Time.” This means that the smaller the “Rise Time”, the 

faster is the collection time of charge due to the increased applied voltage; hence, deadtime 

shows an exponential decrease until a plateau reach, as shown in Figure 4b.

Similar results were recorded (Figure 5c) for the correlation between the operating 

voltage and the pulse “Fall Time,” with the only difference that the correlation was stronger 

with the operating voltage (-0.95 to -0.91). Also, pulse “Fall Time,” show a strong 

correlation with deadtime (0.95 to 0.94) Almost identical results were observed for the 

operating voltage correlation with “Cycle Mean,” “Full Positive Pulse,” and “Area” (Figure 

5d-f).

Nevertheless, the results for the pulse “Frequency” correlation with operating 

voltage is quite interesting, as shown in Figure 5g. A strong positive correlation is observed 

(between +0.98 to +0.91) for all sources. This means that increasing the operating voltage 

increases the count rate. Furthermore, at high frequency, count rate increases, leading to 

the higher probability for overlapping pulses; however, because the voltage is higher in
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which the GM detector operates in the GM region, the deadtime plateau. Pulse “Frequency” 

and deadtime show a negative correlation between -0.86 to -0.79, as shown in Figure 5g.
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Figure 5. Correlation coefficients for pulse shape characteristics and operating voltages 
from 750 to 1200 V. S12 stands for combined radioactive sources. DT stands for

deadtime.
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Figure 5. Correlation coefficients for pulse shape characteristics and operating voltages 
from 750 to 1200 V. S12 stands for combined radioactive sources. DT stands for

deadtime (cont.).

4. CONCLUSIONS

To the best of authors’ knowledge, this is the first attempt to correlate GM counter 

operating voltage with pulse shape characteristics and detector deadtime. Based on the data 

collected in this study, one can draw the following conclusions:

• The general belief that for any GM counter pulse amplitude, pulse shape and 

deadtime is constant for the entire operating voltage range is incorrect, as recently 

shown by Akyurek7 and Almutairi.19 At low voltages, deadtime decreases with 

increasing voltages then increases with increasing the voltages further until a 

maximum deadtime is reached. Then it exponentially decreases until a plateau is 

reached.

• Akyurek and co-worker’s7 provided some interesting data but their work lacked the 

analysis of several other important pulse shape properties such as amplitude, fall 

time, rise time, area, and positive pulse width.
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• Data on deadtime and the various pulse parameters were simultaneously collected 

using 204Tl, 137Cs, 22Na sources to examine the relationship amongst the applied 

high voltage, GM counter deadtime, and pulse shape properties.

• Based on the data, three distinct deadtime phenomenon depending on the operating 

voltage are observed.

• At low voltage, the deadtime is caused by charge recombination. Therefore, 

increasing the voltage increases pulse width and reduces deadtime.

• It can be seen in Figure 4c that rise and fall time are at their highest at low voltages. 

This means that the pulse had a longer tail because the applied voltage is not strong 

enough. Therefore, the charge collection time is longer, leading to the long 

deadtime. Both pulse width and deadtime reduces with increasing voltage in this 

region.

• When the voltage is high enough for charge multiplication, the deadtime and pulse 

positive width start to increase. This is due to the fact that more time is needed to 

collect larger number of charge carriers.

• At the end of the proportionality region, no additional multiplication is possible due 

to the reduced spaced field intensity after reaching the maximum deadtime.

• After the point of maximum deadtime, there is an exponential drop in deadtime in 

the GM region until a plateau is reached.

• Operating voltage and detector deadtime exhibit strong correlation with various 

pulse properties like positive pulse width, rise and fall time, cycle mean, full 

positive pulse, and area.
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ABSTRACT

Accident tolerant fuel (ATF) cladding is one of the most active area for research to 

advance the global contribution of nuclear energy since ATF will ensure and enhance the 

reactor safety allowing long refueling cycles and higher burnup. Silicon Carbide (SiC) is 

one material that can potentially be a solution to this long-standing challenge. This study 

offers both computational reactor physics modeling and experimental investigation to 

examine the behavior of SiC in nuclear reactor environment. With recent interest in Small 

Modular Reactors (SMR), this study selected SMR compact core as a reference assembly 

for Computational Burnup Modeling (CBM). Results of CBM suggest that SiC cladding 

will provide highest burnup and maximum uranium utilization. Therefore, subsequent 

experimental investigations focused on SiC only. Rhode Island Nuclear Science Center 

(RINSC)’s was used to investigate effects of irradiation on sintered tubular SiC material
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samples at 1atm, initially at 120°C, followed by high temperatures between 850°C and 

1350°C to simulate harsh reactor environment.

Experimental analyses of (a) weight loss and (b) burst testing are considered for 

SiC samples. For the weight loss experiment, we have considered both types of samples: 

(1) Non-irradiated and (2) Neutron-irradiated samples. Weight loss was found to be 

dependent on sample geometry. Irradiated samples show ~2-10% higher weight loss per 

area than that of the non-irradiated samples. Besides, considering the medium flow rate 

(less than 10 g/min), it has been observed that the irradiated samples exhibit ~10-40% 

higher weight loss than that of the non-irradiated samples over temperatures of 120°C, 

850°C to 1350°C. It is also seen that material loss rates are generally more sensitive at 

higher temperatures than at lower temperatures, and irradiated samples are more prone to 

weight loss. Furthermore, for the burst testing experimental investigations, experiments 

were conducted for (1) As-received samples (2) Non-irradiated samples and (3) Irradiated 

samples. Considering the three types of samples, it was observed that the maximum and 

minimum peak load values are ~70% higher and ~60% lower than the average peak load 

while fracture hoop stress is consistently ~70-75% higher than the internal pressure for all 

as-received samples. Experimental and computational investigations suggest that SiC is a 

viable candidate for ATF cladding material.

1. INTRODUCTION

After the 2011 Fukushima Daiichi nuclear disaster, various research and 

development (R&D) programs have been devoted to finding a potential ATF cladding. 

Silicon Carbide has been proposed as a potential ATF cladding.1, 2 3 Due to SiC’s lower
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corrosion rate, it might tolerate higher fuel burnups. In addition, SiC has favorable 

characteristics in which it can enhance reactor safety, increase fuel burnup, and possibly 

enhance the power level of Light Water Reactors (LWRs). These favorable characteristics 

make SiC a potential ATF cladding that can outperform the traditional Zirconium (Zr)- 

based alloy cladding of nuclear fuel. Zirconium alloys have been used as fuel cladding in naval 

reactors since the 1950s because it has lower neutron absorption cross-section than stainless 

steel.4, 5 6 In the 1960s, the nuclear industry began adopting zirconium alloys as a cladding 

material, and since then, it became the cladding of choice for LWRs worldwide. However, 

zirconium alloys show unfavorable characteristics in the water at high temperatures, such as 

increased corrosion rate and material degradation. This, in turn, imposes limits on their in­

core residence time. Besides, in severe accident scenarios, the self-accelerating of the 

exothermic steam-zirconium reaction at high temperatures of 1200°C is one of the 

significant weaknesses of zirconium alloys.7, 8 9 Not only does it generate a large amount of 

heat, but it also produces hydrogen gas as a product of the reaction.10 Hydrogen is an 

extremely flammable gas, and it can ignite and creates an explosion once it has contact with 

hot surfaces with a minimum temperature of 520-720C. It is worth noting that Hydrogen 

initiated several hydrogen-air chemical explosions due to the reaction between steam and 

nuclear fuel cladding. This ultimately resulted in the failure of three of the reactor 

containment buildings in the Fukushima nuclear accident. The accident led the industry to 

seriously consider redesigning fuel and cladding in an effort to tolerate accident 

conditions.

Simply put, SiC possesses several relatively favorable characteristics over zirconium 

alloys. These characteristics include the following: (1) higher melting point (2,730C); (2)
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higher strength at elevated temperature (>1,600°C); (3) lower neutron absorption cross-section, 

(4) higher dimensional stability when exposed to radiation; and (5) less chemical reactions 

due to fuel and coolant interactions. Because of these characteristics, SiC shows improved 

corrosion resistance and reduced susceptibility to hydrogen embrittlement.7, 8 9 11, 12, 13 MIT4, 

5 has investigated the use of multi- layered SiC composite for the possible application in 

LWR fuel cladding. Their study concluded that SiC composite could withstand irradiation 

with minimal material degradation and endure high temperatures without failure. In 

addition, since SiC cladding does not creep down towards the fuel, the fuel gap remains 

open. This, in turn, adds heat transfer resistance and, therefore, the nuclear fuel temperature 

can be higher such as in the application of advanced high-burnup SMR cores in which the 

current Zr-based alloys cannot be of practical use.4, 5 11, 14, 15, 16, 17, 18

While zircaloy cladding currently in use can survive the achievable burnup of 60-70 

GWd/tonne,19, 20, 21 attaining 15 years’ long-life core would exceed the discharge burnup of 

90 GWd/tonne. This leads to limit the cladding design by a significant margin. Therefore, 

the typical Zr cladding will not be a feasible choice, and improvements in nuclear 

fuel/cladding design are warranted to facilitate higher burnup.22, 23

This paper investigates the behavior of alternative cladding for long-life core (15­

20+ years), suitable for applications such as in small modular reactor (SMR) or marine 

propulsion.22, 24, 25 Relying on both computational modeling and experimental analyses 

feasibility of accident-tolerant claddings are investigated. The first part of this study 

considers the reactor physics modeling of the 2D assembly of soluble-boron-free (SBF) 

SMR core. The computational modeling investigates several potential accident-tolerant 

cladding candidates in order to find the best cladding that exhibits the highest achievable
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discharge burnup, a dominant factor for determining core lifetime. Based on the results of 

the first part (neutronic analyses), SiC is chosen as the cladding material for its lower neutron 

capture and higher burnup potential. The second part of this study experimentally analyzed 

the behaviors of both irradiated and non-irradiated SiC. Sintered tubular SiC was used as 

the material of choice for the experimental campaign. Sintered SiC were exposed to 

oxidizing environments containing pure steam at 1 atm 120°C, and subsequently at higher 

temperatures (850C  to 1350C) to simulate the harsh environment in a nuclear reactor. 

This harsh reactor environment is known to cause weight loss and mechanical strength 

degradation4, 5 in SiC. The fact that SiC tubes are not available that matches the geometry 

of Zr cladding, it was necessary to study the samples of various thicknesses and surface 

areas to understand the effect of sample geometry on material degradation.

It is worth noting that:

• The main objective of this work is to understand the fundamental behavior of SiC 

in terms of weight loss and mechanical strength, which provides us with a clear 

indication of the SiC behavior under the harsh environment.

• The SiC experiments were conducted at the Rhode Island Nuclear Science Center, 

which permitted irradiation and conduct of the experiments for a maximum of 8 

hours/day. This, however, does not prevent us from understanding the material 

properties.

• Several studies3, 26, 27 have shown that steam pressure, up to 20.43 atm, has a limited 

effect on the oxidation behavior on SiC. Hence, we conducted our study at 1 atm 

partial pressure.
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• Uncertainty quantification and statistical analyses are out of the scope of this paper, 

although authors reported some standard deviation and error for the samples). A 

detailed error and statistical analyses will be reported in a future work.

• A detailed discussion of the obtained results from the Neutron Activation Analysis 

(NAA) is out of the scope of this study.

2. CLADDING SELECTION FOR HIGH BURNUP APPLICATION: 
NEUTRONIC INVESTIGATION

Our previous studies20, 21, 24, 28 focused on homogeneously mixed UO2 fuel in a 

13X13 assembly 29 and confirmed that 15% of initial uranium enrichment is required for 

achieving a burnup of 100 GWd/tonne, which will be necessary for a core lifetime of 15 

effective full power years (EFPY). This means that the 15-EFPY fuel cycle leads to very 

high (average) discharge burnups (ca. 100 GWd/tonne), which are far beyond the current 

operating experience in Pressurized Water Reactors (PWRs). In addition, considering the 

radial and axial power peaking factors, higher local burnup values are expected to elevate 

the performance demand for Accident Tolerant Fuel (ATF) cladding material.

For various candidate claddings, a 2D assembly-level with specific fissile loading 

was simulated to study the maximum attainable discharge burnup. For high burnup, our 

neutronic analyses used 15% and 19.9% enrichment for UO2 fuel, which is significantly 

higher than the current industry practice. Due to high interest in light-water SMR reactors, 

a compact 13X13 assembly was modeled using MCNP 6.1, as shown in Figure 1.20, 21, 24, 28 

Table 1 shows the design parameters for the 2D lattice of the proposed SMR core.30, 31, 32,

33, 34, 35
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Figure 1. 13X13 geometry layout of the 2D subassembly lattice along with pin cell layout
for a PWR-SMR reactor core.

Table 1. Design parameters of proposed SMR core.20, 21, 24, 28, 29

Design Parameters Values

Thermal power (MWth) 333

Assembly array 13X13

Center-to-center pitch (cm) 1.265

Pellet thickness (mm) 8.19

Cladding +  gap thickness (mm) 0.66

Total rod diameter (mm) 9.5

Pitch/diameter (P/D) ratio 1.33

Side length of an assembly (m) 0.1645

Area of an Assembly (cm2) 300

Hydrogen to Heavy Metal (H/HM) ratio 3.99

Soluble boron concentration (ppm) 0
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Figure 2a and 2b show k »  vs. bumup for 15% and 19.9% enrichment, respectively, 

for various cladding materials. It can be seen that UO2 fuel with SiC cladding achieves the 

highest discharge burnup (BD). All other ATF candidate cladding materials fall sufficiently 

short of SiC and Zr claddings. For both the 15% and 19.9% enrichments, SiC outperforms 

Zr cladding in terms of BD. This superior performance is attributed to the additional 

neutron moderation in SiC due to the presence o f carbon atom along with the lower thermal 

capture cross-section of silicon in comparison with zirconium. In addition, it has been 

observed for both fissile enrichments that SiC outperforms APMT, FeCrAl, SS 

(considering both SS304 and SS310), and Zircaloy (considering both Zr-2 and Zr-4) 

claddings by ~7%, ~6%, ~10%, and ~5%, respectively.

(a)

Figure 2. Reactivity vs. burnup for UO2 fuel: (a) 15% enrichment; (b) 19.9% enrichment.
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Figure 2. Reactivity vs. bumup for UO2 fuel: (a) 15% enrichment; (b) 19.9% enrichment
(cont.).

Reactivity behavior is examined further in Figures 3a and 3b by considering BD 

penalty and gain. In these figures, the difference in reactivity (in pcm) is presented using 

SiC as reference cladding. Fundamentally, it has been consistently observed that the 

highest achievable burnup is obtained following this pattern: SiC > Zr > FeCrAl > APMT 

> SS. The physical explanations of this pattern were well explained in a previous 

literature.25 FeCrAl falls short of SiC and Zr, mainly due to the presence o f iron. 

Furthermore, APMT exhibits lower burnup than FeCrAl. This is attributed to the presence 

of high resonance absorbing material molybdenum. SS-based claddings exhibit the lowest 

burnup due to the presence of iron, molybdenum, and nickel.
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(a)

(b)

Figure 3. Akro from SiC clad vs. bumup: (a) 15% enrichment; (b) 19.9% enrichment.
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In order to confirm the neutron capture and reactivity behavior of the candidate 

cladding, we calculated the beginning-of-life (BOL) flux spectrum. Derived from the 

normalized flux spectrum, we have calculated the normalized flux ratio of the candidate 

claddings with respect to the flux values of SiC in the thermal energy range, where our 

reference core is a LWR. For the flux calculations, we have not considered Zr-2 and 304SS 

since these naturally exhibit a similar flux associated with Zr-4 and 310SS. It can be 

observed from Figure 4a and 4b that SiC exhibits the softer spectrum due to the less 

absorption neutron capture probability than that of the other claddings. The neutron flux 

clearly explains reactivity behavior.

One of the primary requirements for a long core lifetime is the utilization of higher 

fissile enrichment in the reactor core. It can be seen that although traditional Zr cladding 

can survive until a maximum of 70 GWd/tonne, higher fissile enrichment leads to much 

higher BD (above 100 GWd/tonne). From Figure 5, it can be observed that 15% fissile 

enrichment generally leads to 105 GWd/tonne to 117 GWd/tonne for the candidate 

claddings to achieve at least 15 years of core lifetime (according to our previous studies). 

Nevertheless, if we do not want to violate the enrichment constraint and also increase the 

core lifetime even longer (longer than 15 years), we can utilize 19.9% enrichment to obtain 

the highest achievable core lifetime while not exceeding the enrichment limit of 20%. It is 

clear from Figure 5 that the utilization of 19.9% enrichment leads to a burnup of around 

135-150 GWd/tonne, which is ~30% higher than that for 15% enrichment. The traditional 

zircaloy cannot survive this higher burnup. Therefore, an accident-tolerant cladding would 

be required for our proposed application.
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Energy (eV)

(a)

(b)

Figure 4. Beginning-of-life normalized flux ratio with reference to SiC in thermal energy 
range: (a) 15% enrichment; (b) 19.9% enrichment.
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Figure 5. Discharge burnup for different claddings for 15% and 19.9% enrichment along
with their difference (%).

Our previous studies20, 21, 24, 28 showed that around 100 GWd/tonne (on assembly- 

level), the core life can be extended to 15 years or more. Accordingly, it can be assumed 

that Zr would not be an appropriate choice for our long lifetime core since it will suffer 

from a cladding failure at higher burnups and temperatures. Furthermore, it can also be 

observed from our discussion that unlike SiC, all other claddings prevent us from getting 

the maximum benefit of higher enrichment utilization due to their higher neutron capture 

in comparison with SiC. Hence, only SiC cladding stands out as the potential candidate for 

our SMR application. Going forward, we limited our experimental research to SiC cladding 

only.



115

3. CURRENT RESEARCH STATUS OF SILICON CARBIDE

DOE’s nuclear program showed an interest in SiC as a potential ATF cladding for 

the purpose of replacing traditional Zr-based alloys.1, 36, 37 Therefore, information on SiC’s 

microstructural properties under irradiation is essential. Other crucial properties that warrant 

further investigations are (1) interaction of SiC materials with coolant; (2) extent of the 

possible synergy of environmental conditions; and (3) irradiation under high temperatures.37 

Furthermore, Zr-based alloys under high- burnup applications exhibit several unfavorable 

material characteristics, including fission gas release, ballooning, bursting, and cracking. 

Henceforth, an alternative ATF cladding that outperforms Zr-based alloys under normal 

operating conditions and severe accidents is critically needed. The findings of this study 

suggest that SiC can overcome some of the challenges faced by Zr-based cladding. Several 

types of SiC are available in the industry as well as academia, such as monolithic, fiber, and 

ceramic matrix composites.37, 38 Each of these types has distinct mechanical strength, 

radiation resistance, thermal, and chemical properties depending on its fabrication 

technique. In a recent study,37, 39 Idaho National Laboratory (INL) reviewed key factor 

issues for the possible deployment of SiC in advanced LWR fuel development. Their study 

discussed some of the SiC fabrication techniques, benefits, outstanding issues, and 

provided projections of SiC’s current technology development status. Additionally, INL 

conducted significant developmental efforts to characterize silicon carbide materials as well 

as investigated their feasibility in nuclear environments. INL consistently demonstrated the 

advantages of SiC materials as a cladding material instead of Zr-based alloys. Furthermore, 

INL used a MELCOR code, a severe accident analysis computer code developed at Sandia
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National Laboratory in New Mexico for the U.S. Nuclear Regulatory Commission,37, 40 to 

simulate the Three Mile Island (TMI-2) accident. The simulations involved a loss of coolant 

accident (LOCA) scenario where the code assumed the full replacement of Zr-alloy 

materials with SiC ceramics and used existing data on SiC properties. The results showed 

an improvement in the reactor coping time with SiC materials compared to Zr-alloys.

The experimental data on SiC might still be insufficient to confidently adjudicate SiC 

as the new reliable cladding system. Moreover, technology gaps of SiC still exist, particularly 

for SiC composite materials. Nonetheless, early observation indicates the potential adoption 

of SiC components in nuclear environments. Additionally, even though the report focuses 

mainly on the use of SiC in LWRs, a study41 by ORNL has also suggested that SiC can not 

only be used in long-life PWR-type reactors but also be potentially used in fluoride salt 

reactors.

4. EXPERIMENTAL METHOD

Experimental analyses of (a) weight loss42, 43, 44 and (b) burst testing45 are considered 

for SiC samples in this study. The weight loss experiment utilized the nuclear research 

reactor at Rhode Island Nuclear Science Center (RINSC) in the USA, a 2 Mega-Watt, light 

water-cooled, pool-type reactor. The burst testing experiment is conducted at the 

mechanical engineering department facility of the University of Rhode Island.

A total of 150 SiC samples were used in this experimental campaign. SiC 

specimens were manufactured by the pressureless46’ 47 sintering of submicron silicon carbide 

powder in a proprietary extruding process.48 The sintering process results in a self-bonded and
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95% dense fine-grained (less than 10 m) SiC product. Monolithic tubular SiC samples were 

obtained from Saint-Gobain Inc.48

The SiC samples are SE grade Hexoloy with a density of 3.05 g/cm3. The reported 

dimensions of the SiC samples by Saint-Gobain Inc. are 13 mm Height (H), 14 mm Outer 

Diameter (OD), 12.44 mm Inner Diameter (ID), and 1.56 mm Thickness (T). However, we 

observed a slight variation in samples’ dimensions due to fabrication tolerance. The SiC 

specimens’ dimensions were measured by using a calibrated micrometer (Mitutoyo, model 

number 293-340-30CAL) with ±0.00005 inch accuracy. Therefore, in the burst testing 

section, we reported the measurements of the SiC specimens’ dimensions in inches.

Out of the 150 provided SiC specimens, 44 samples were chosen randomly and 

tested for impurity using Neutron Activation Analysis (NAA) method.49 A pneumatically 

timed-controlled tube (known as the rabbit system) was used to bombard the 44 samples 

(each trial utilized four samples) with neutrons inside the core of the research reactor. After 

exposure to the neutrons, the samples were deposited in a lead-shielded box in order for the 

radioactivity to reach acceptable limits for safe handling. A Geiger-Muller counter was used 

to detect the level of radioactivity of the SiC samples. Then, the gamma-ray spectroscopy 

detected the radioactivity of each sample using a High-Purity Germanium detector (HPGe); 

hence, the consecrations of elemental compositions in the SiC specimens were detected. It 

is found that concentrations of impurities are negligible. Discussing in detail the results 

from performing the NAA is beyond the scope of this study.

Furthermore, a total of 106 specimens were used for weight loss and burst testing 

experiments. The samples were divided into 23 groups: 12 groups were labeled as “non­

irradiation samples,” and 11 groups were labeled as “neutron-irradiation samples.” Each
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group consisted of 4 SiC samples. Furthermore, a total of 14 SiC specimens were labeled 

“as-received samples” in which they were used as control samples (not exposed to steam, 

heat, or neutron irradiation). All the samples were decontaminated by immersing them in a 

deionized (DI) water for 3 minutes in the ultrasonic cleaner (Model VGT-2000). Samples 

were further decontaminated using 10% methanol and left to dry. The cleaned, dried SiC 

specimens were weighed using a Mettler Balance (Type H16) prior to heat and steam 

exposure.

In the case of control samples, they were decontaminated and weighed. Since they 

were assigned as control samples, they were not used for the weight loss experiment; however, 

they were designated for burst testing in order to determine their strength. Further details 

are discussed in the results section. In the case of the non-irradiated experiment, the samples 

were decontaminated and weighed. Then, they were inserted into the sample holder, which 

can hold a maximum of 4 samples. The sample holder is made of alumina ceramic, and it has 

a cap with two threaded holes to allow steam to be delivered to the samples in and out through 

the alumina rods that can handle high temperatures. The sample holder was then inserted 

into the heating coil to simulate reactor temperature by utilizing the electric heater.

The experimental setup was located at the Left 3rd (L3) beam port of the nuclear 

research reactor at RINSC, as shown in Figure 6. Radiation shielding bricks were designed 

and used to maintain safe conditions for personnel. A heat plate was used to heat deionized 

water for steam generation. Since the real reactor environment is not considered in this 

experiment, the steam generator provided a continuous flow of pure steam at 5.63 g/min 

with 1 atm partial pressure for each experiment’s duration. The steam mass flow of 5.63 

g/min was measured with ±5% accuracy by dividing the mass deficit of the water by the
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duration of steam generation. The sample holder’s inserted samples were heated using a 

Robust Radiator (RHUL-MP2125-4 Model, which is capable of reaching temperatures up to 

1700°C) and exposed to a pure steam environment for 8 hours. The robust radiator can reach 

a maximum power of 1425 Watts, and it requires a 220 V power supply. The robust radiator 

is enclosed in a FiberFree(TM) ceramic refractory.

A power transformer, temperature, and process controller unit (Eurotherm Bpan-O- 

120T Model 2416) was utilized for the following tasks: (1) to heat the SiC specimens to the 

desired temperature; (2) to maintain the same temperature for the duration of the 

experiment; and (3) to cool down the temperature gradually after the end of the experiment. 

The gradual cooling down process takes an hour, where temperatures were decreased in 

5 0 C  degrees increments. It is worth addressing here

that when the duration of the experiment lapsed (8 hours), the steam generator was 

disconnected; hence, the samples were not exposed to steam while cooling the SiC samples 

gradually.

Furthermore, a thermocouple (TC) of type B (capable of measuring temperatures up 

to 1700°C) was inserted through a hole made specifically for the TC to monitor and 

maintain temperature. After an hour of cooling down of the specimens, samples were 

removed from the heater and left overnight to dry. The day after each experiment, the SiC 

samples were weighed for weight loss analysis. In the case of the “neutron-irradiated 

samples,” the same procedures were followed in which the samples were exposed to steam 

and high temperatures, but with simultaneous neutron irradiation at the L3 beam port of the 

nuclear reactor. The nuclear reactor power was in the range of 1.85-2 MW and the neutron 

flux at the L3 beam port was measured using the gold foil activation technique. The neutron
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flux was determined to be 4.37E8 (neutrons/cm2/s) within 1% absolute accuracy. 

Therefore, the maximum neutron fluence in which the irradiated samples were exposed to 

was a fluence of 1.23E13 (neutrons/cm2).

Furthermore, from a practical perspective, SiC strength is an essential parameter in 

the design of nuclear fuel rod safety. Hence, we measured the strength of SiC tubular samples 

by a destructive type of test known as “burst testing”45 by utilizing a burst testing machine 

(Model Vishay, Tensile Testing Machine). For performing the tests, polyurethane rods were 

utilized that had the same diameter; however, the height was cut carefully to acquire a 

specific volume for each tubular SiC specimen. In order to find the optimal rod height so 

that when the rod is compressed, it would not barrel out of the tubular SiC specimen several 

trials were conducted. After finding the optimal volume, each rod was inserted into the 

hollow volume of the tubular SiC sample, where a load of stainless steel was applied on the 

rod compressively. This controlled load results in the expansion of the plug radially, which 

exerts tensile loads on the specimen walls. As soon as the load makes contact with the 

polyurethane rod, the PC takes readings of the force applied. The speed at which the load 

was exerted is 2.00 (mm/min). This destructive type of test is used to simulate the internal 

pressurization of the SiC specimens. The internal pressure (Pf ) is calculated as follows:

Ff
Pf n(rp)2 (4.1)

where Ff  is the peak load at which the specimen is fractured, and rp  is the radius of the 

polyurethane rod. For calculating the fracture hoop stress,50, 51 the thin-walled approach50 

was used since the tubular SiC wall is almost 10% of the tube diameter. The fracture hoop

stress is, therefore, calculated as follow:
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Pf
° e j  = ------------

Lthickness
(4.2)

where rm is the radius of SiC tube. The rm is measured from the center of wall thickness, 

and tthickness is wall thickness.4, 5

It is worth addressing that a total of 5 SiC samples gave misleading results due to the 

polyurethane rod being cut smaller than intended in which the stainless steel rod excreted 

force directly on the top of SiC tube which resulted in higher peak load readings. Figure 7 

shows SiC tubular specimens after being bursted. Figure 7a and 7b show the difference 

between a successful and failed test in which results from the failed test show rather high 

peak load values.

5. RESULTS AND ANALYSIS OF EXPERIMENTS

5.1. WEIGHT LOSS

Weight loss is one of the critical physical properties indicative of material’s strength; 

therefore, ceramic SiC cladding must exhibit minimal weight loss under reactor operating 

conditions for long SMR core lifetime. The results reported here are limited to non­

transient analyses. For the weight loss experiment, we divided the samples into two groups: 

(1) non-irradiated and (2) neutron-irradiated samples to further examine the effect of 

neutron irradiation on weight loss mechanism.

It is well known that weight loss is a surface phenomenon,42, 43, 44 therefore, 

geometry is likely to play a significant role. Therefore, we observed the change of weight 

(per area) for the samples under investigation. Likewise, the phenomenon is also 

temperature dependent; hence, data are desired at different temperatures. Throughout the
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“weight loss” experiments, we considered this term as “weight loss per area” to understand 

how the weight of the samples is affected per area.

(a)

(b)

Figure 6. Experimental setup: (a) L3 beam port location where the experiment was 
conducted; (b) A close up of the beam port where samples were exposed to steam while

heated by the robust heater.
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(a) (b)

Figure 7. SiC tubes after performing burst testing: (a) A successful bursted SiC specimen; 
(b) Heavily shattered SiC tube which indicates a failed burst test.

We considered 48 non-irradiated samples for the weight loss experiment and associated 

standard deviation (SD) values are provided. In this case, our sample sizes range between 

0.415-0.438 inch (SD=0.00415), 0.545-0.566 inch (SD=0.00321), and 0.526-0.590 inch 

(SD=0.0169) for internal diameter, outer diameter, and heights of the samples, respectively. 

In this experiment, weight loss is directly proportional to the surface area, which is in range 

between 1.57-1.77 inches2 (SD=0.0522). Figure 8a shows that weight loss per area is 

mostly ranged between 0 to -0.1 mg/cm2. It is seen that weight loss between the samples in 

the periphery of -0.1 mg/cm2 varies between 2-6%  which can be attributed to the variation 

in the sample dimensions.

Furthermore, weight loss behavior is also investigated for the total 44 irradiated 

samples. In this case, internal diameter, outer diameter, and heights range between 0.414­

0.431 inch (SD =0.003), 0.541-0.567 inch (SD=0.005), and 0.489-0.580 inch (SD=0.019), 

respectively for the 44 samples. It has been observed that the overall volume of the irradiated 

samples is 1.15%-4.88% lower than that of the non-irradiated samples. It can be seen in
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Figure 8b that the weight loss behavior is consistent between the irradiated and non- 

irradiated samples, where weight loss per area is mostly ranged between 0-0.1 mg/cm2. 

The average weight loss for the sample showing non-zero loss was 0.1 mg/cm2 and the 

inter-variation within the samples showing weight loss was in the range of 5-7%. Most 

importantly, it is also observed that the irradiated samples show 2-10% higher weight loss per 

area than that of the non-irradiated samples.

Figure 8. Weight loss per area for: (a) Non-irradiated samples; (b) Irradiated samples.
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Figure 9. Mean, standard deviation, and standard error for the irradiated and non-
irradiated samples.

Since there are differences in the dimensions of the irradiated and non-irradiated 

samples, there are apparent uncertainties that need to be addressed; therefore, we calculated 

mean, SD, and standard error (SE) for the irradiated and non-irradiated samples, as shown 

in Figure 9. It can be observed that average weight loss is 15% higher for irradiated 

samples, as expected. However, irradiated samples show a 7% lower SD and 5% lower SE 

values for the weight loss per area.

Moreover, since temperature is one of the prime factors influencing the weight loss 

of the SiC cladding, we have evaluated the average weight loss of SiC material with respect 

to temperature, as shown in Figure 10a and Figure 10b. We have considered a medium flow 

rate (less than 10 g/min) in order to be consistent with the reactor operating flow rate. The 

results show that the irradiated samples exhibit 10-40% higher weight loss than that of the 

non-irradiated samples over the range of the associated temperatures. It is also observed that
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material loss rates are generally more sensitive at a higher applied temperature than at lower 

applied temperatures.

Temperature dependence on weight change between irradiated and non-irradiated 

samples is shown in Figure 11. It can be seen that at lower temperatures and up to 

1000°C, positive values are observed, which means the irradiated samples are more prone 

to weight loss. Up to 1000C, radiation is more uniform since the sample size is almost 

unaffected by the radiation due to the accident tolerant behavior of the SiC sample (unlike 

Zr cladding). In the reactor environment after 1000C, the fuel and cladding materials are 

prone to different underlying effects such as fission gas release, porosity, and the possibility 

of blunt/crack, which are responsible for not having a uniform distribution of radiation 

through the samples mainly due to the poor thermal contact. It means that up to 1000C, 

SiC samples are more tolerant towards radiation, which is also proven by the previous 

literature and future study will consider the associated uncertainty quantification analysis.4,

5, 6, 8, 14

5.2. BURST TESTING

Burst testing45 has been performed in terms of peak load force, internal pressure, and 

fracture hoop stress through- out this study. Peak load force is defined as the load at which 

the specimen is fractured. The fracture hoop stress is the force exerted on every particle in 

the cylinder wall in both directions (axial and radial). Peak load (N), internal pressure (MPa), 

and fracture hoop stress (MPa) are investigated for three types of samples: 1. as-received; 

2. non-irradiated; 3. irradiated samples. The influence of temperature on sample strength 

was also considered for irradiated and non-irradiated samples. It should be noted that the 

Grubbs test52, 53 was performed in order to confirm that two outliers exist in the data. It was
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found that at the 0.05 significance level,52, 53 the highest values of interest are significant 

outliers for the non-irradiated (sample 30) and irradiated (sample 1). Therefore, these 

outliers were replaced with the mean of the group for this analysis of the same temperature. 

These were true outliers, and the reason behind this is mainly due to an error while cutting 

the polyurethane rod. The error resulted in producing the final volume of the polyurethane 

rod being smaller than the calculated volume for the rod to be inserted in the SiC tubular 

samples for performing the burst testing experiment. Since the polyurethane rod volume 

was small for these samples, it resulted in high peaking loads because the stainless steel rod 

from the burst testing machine had more contact with the SiC tubular samples while 

compressing.

Figure 10. Temperature dependence for samples: (a) Non-irradiated; (b) Irradiated.
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(b)

Figure 10. Temperature dependence for samples: (a) Non-irradiated; (b) Irradiated
(cont.).

Figure 11. Weight loss dependence on temperature.
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5.2.1. As-Received Samples. The burst testing analyses are initiated in our test 

facility for the as-received samples in order to understand the sample strength without being 

exposed to pure steam, high temperatures, and neutron irradiation. Table 2 shows as- 

received sample information for burst testing. In the case of as-received samples, internal 

diameter, outer diameter, heights and surface area range between 0.418-0.433 inch 

(SD=0.005), 0.551-0.560 inch (SD=0.003), 0.517-0.587 inch (SD=0.017), and 1.542-1.760 

inch2 (SD=0.055), respectively. By considering the dimensional uncertainties, It has been 

observed that the samples show SD between 0.002 to 0.055, and SE ranges from 0.001 to 

0.015.

It can be seen for as-received samples that peak load values of SiC samples are 

mostly in the range of 5000 N, as shown in Figure 12. However, two samples (as-received 

sample 3 and 32) show considerably higher load of 20K N mainly due to error while cutting 

the polyurethane rods. Excluding these two data sets of 20K N, it can be seen that the 

maximum and minimum peak load values are 6890 N and 1718 N, respectively which are 

70% higher and 60% lower than the average peak load of 4045 N. In addition, the samples 

exhibit SD values of 1436 N and SE of 383 N.

Table 2. As-received sample parameters for weight loss and burst testing.

As-received sample number ID (in) OD (in) H (in)

1 0.433 0.556 0.554

2 0.424 0.555 0.55

3 0.424 0.559 0.571

4 0.423 0.559 0.539

21 0.426 0.559 0.549
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Table 2. As-received sample parameters for weight loss and burst testing (cont.).

As-received sample number ID (in) OD (in) H (in)

22 0.429 0.56 0.559

23 0.429 0.56 0.552

24 0.422 0.552 0.542

31 0.418 0.553 0.532

32 0.418 0.552 0.548

33 0.425 0.553 0.587

34 0.418 0.553 0.547

35 0.422 0.552 0.517

36 0.42 0.551 0.561

Figure 12. Peak load values with Grubbs test for as-received samples.

Internal pressure and fracture hoop stress are also evaluated, as can be seen in Figure 

13 a. Fracture hoop stress, also known as breaking stress, is the stress at which a specimen fails
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via fracture.51, 54, 55 This is usually determined for a given specimen by a tensile test,56 which 

charts the stress. In order to be consistent with all the findings from the burst testing samples, 

fracture stress is calculated by using the thin-wall approach since the wall thickness of the 

tubular SiC samples are roughly 10-15% of the tube diameter.

-received Sample Number

(a)

■imimmmmmmmi
4 21 22 23 24 31 32 33 34 35

As-received Sample Number

(b)

Figure 13. (a) Internal pressure and fracture hoop stress for as-received samples; (b) 
Difference between pressure and fracture hoop stress for as-received samples.
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Excluding samples 3 and 32, which show significantly higher than average values, 

Figure 13a shows that internal pressure and fracture stress range between 19-77 MPa (SD= 

15.8) and 69-285 MPa (SD= 15.8), respectively, which demonstrates the fact that the highest 

and lowest ranges of fracture stress values are 72% higher than that of the internal pressure. 

It can also be seen that fracture hoop stress is consistently 70-75% higher than the internal 

pressure for all the as-received samples (as can be seen in Figure 13b). These results are well 

expected since internal pressure is the pressure experienced by the samples’ internal 

surface, whereas fracture hoop stress is the highest tolerant stress faced by the samples 

before bursting.

5.2.2. Non-Irradiated Samples. Non-Irradiated samples are examined for the peak 

load testing using the University of Rhode Island’s mechanical engineering facilities. Table 

3 shows non-irradiated sample information for burst testing. The non-irradiated samples 

are 48 in total and the highest temperature achieved is 1350°C. In the case of 48 non- 

irradiated samples, internal diameter, outer diameter, heights and surface area range 

between 0.415-0.438 inch (SD=0.004), 0.545-0.566 inch (SD=0.003), 0.526-0.590 inch 

(SD=0.017) and 1.570-1.769 inch2 (SD=0.052), respectively.

Figure 14a shows that the peak load for most of the samples lies between 5000 to 

10000 N. However, one sample shows a peak load in the vicinity of 40K N. After 

performing the Grubbs test, it can be seen that this sample is a true outlier. The outlier 

result can be attributed to the error while cutting the polyurethane rod that was used for 

burst testing. This, in turn, resulted in higher than average of the other samples (as 

confirmed in Figure 14b). Therefore, the result from sample 30 was replaced with the mean 

of the samples heated to the same temperature. Besides, it can be observed that the peak
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load of non-irradiated SiC samples are 45% higher than the as-received samples. 

Furthermore, the maximum and minimum peak load values for non-irradiated samples are 

9273 N (sample 30) and 2080 N (excluding the high values of sample 11 and 46), 

respectively, which are 30% higher than the respective as-received samples. It is 

worthwhile mentioning that the non-irradiated samples exhibit higher SD values than as- 

received samples (SD= 1436 N vs. 2000 N).

Excluding the high values of sample 11 and 46, Figure 15a shows that internal 

pressure and fracture stress of non-irradiated samples range between 23-160 MPa and 91­

410 MPa, respectively, which demonstrates the fact that non-irradiated samples show at 

least 20% higher internal pressure and fracture stress values than as-received samples. In 

addition, consistent with the results of “as-received samples”, we see that fracture stress 

values of non-irradiated samples are almost 70-75% higher than the internal pressure (as 

seen in Figure 15b), whereas the margin of difference was 70-77% for the as-received 

samples.

It is important addressing that the higher strength following the exposure to steam 

arises from the crack blunting effect,4 which is mainly due to the formation of SiO2 via 

oxidation and these findings are in well agreement with the previous studies.4, 57, 58

5.2.3. Irradiated Samples. Neutron irradiated information for 44 samples 

examined with burst testing are shown in Table 4. Internal diameter, outer diameter, heights 

and surface area for irradiated samples range between 0.380-0.431 inch (SD=0.001), 

0.541-0.567 inch (SD=0.001), 0.489-0.580 inch (SD=0.03) and 1.474-1.743 inch2 

(SD=0.09), respectively. It was observed that SiC tubular samples used for neutron
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irradiation are smaller in dimensions than as-received and non-irradiated samples. The SiC 

samples allocated for irradiation show SE (0.001-0.009).

Table 3. Sample parameters for non-irradiated weight loss and burst testing experiments.

Temperature (c°) Non-Irradiated sample number IN (in) OD (in) Height (in)
2 0.417 0.552 0.589

120 3 0.426 0.555 0.539
4 0.428 0.549 0.541
5 0.422 0.554 0.587
6 0.423 0.555 0.58

850
7 0.438 0.566 0.549
8 0.438 0.555 0.573
9 0.425 0.553 0.538
10 0.425 0.557 0.566

900
11 0.416 0.555 0.539
12 0.415 0.55 0.556
13 0.427 0.554 0.565
14 0.425 0.548 0.56

950
15 0.42 0.554 0.539
16 0.424 0.545 0.545
17 0.424 0.55 0.543

1000 18 0.425 0.554 0.54
19 0.424 0.558 0.579
21 0.426 0.557 0.565
22 0.422 0.554 0.57

1050
23 0.422 0.552 0.565
24 0.425 0.554 0.548
25 0.424 0.554 0.552
26 0.424 0.558 0.535

1100
27 0.424 0.554 0.568
28 0.426 0.552 0.526
29 0.424 0.553 0.564
30 0.424 0.557 0.548

1150
31 0.427 0.551 0.566
32 0.422 0.554 0.559
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Table 3. Sample parameters for non-irradiated weight loss and burst testing experiments
(cont.).

Temperature (c°) Non-Irradiated sample number IN (in) OD (in) Height (in)
33 0.424 0.553 0.588
34 0.424 0.554 0.577

1200
35 0.42 0.554 0.574
36 0.424 0.551 0.538
37 0.42 0.556 0.557
38 0.424 0.554 0.545

1250
39 0.42 0.551 0.567
40 0.419 0.554 0.59
41 0.425 0.556 0.54
42 0.423 0.552 0.555

1300
43 0.419 0.557 0.538
44 0.425 0.556 0.552
45 0.423 0.556 0.534
46 0.425 0.557 0.538

1350
47 0.423 0.555 0.566
48 0.426 0.555 0.553

(a)

Figure 14. (a) Peak load for non-irradiated samples; (b) Grubbs test results for non-
irradiated samples.
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Figure 14. (a) Peak load for non-irradiated samples; (b) Grubbs test results for non-
irradiated samples (cont.).

A maximum temperature of 1300°C was achieved for irradiated samples. We could 

not achieve higher temperatures due to the malfunction of the coil in the heater. From 

Figure 16a, it is observed that for the irradiated samples, the peak load (N) is ranged 

between 5000-10000 N, which is similar to the range of non-irradiated and as-received 

samples (5000-9000 N). However, sample 1 shows a high peak load with 22593 N. After 

performing the Grubbs test, it is found that sample 1 is a true outlier. Hence, its value is 

exchanged with the temperature group mean as addressed previously. The Grubbs test 

results can be seen in Figure 16b. Furthermore, the maximum and minimum peak load 

values for non-irradiated samples are 11617 N and 2324 N, respectively, which are 10­

15% higher than the respective non-irradiated samples. Irradiated samples exhibit
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significantly lower SD values than as-received and non-irradiated samples. It is also seen 

in Figure 17a that maximum fracture stress and internal pressure values are 468 MPa and 

131 MPa, respectively, where fracture stress is 75% higher than the internal pressure 

(Figure 17b). This finding is consistent with respective non-irradiated and as-received 

samples. Most importantly, the maximum fracture stress and internal pressure values 

exhibit SD of 13 and 4 MPa, respectively, which are comparable to the non-irradiated 

samples.

2 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 22 23 24 26 27 28 30 31 32 34 35 36 38 39 40 42 43 44 46 47 48 

Non-irradiated Sam ple Num ber

(a)

Figure 15. (a) Pressure and fracture hoop stress for non-irradiated samples; (b) Difference 
between pressure and fracture hoop stress for non-irradiated samples.
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Table 4. Sample parameters for irradiated weight loss and burst testing experiments.

Temperature (c°) Irradiated sample number ID (in) OD (in) Height (in)

1 0.424 0.555 0.543

2 0.422 0.555 0.54
120

3 0.426 0.556 0.541

4 0.419 0.556 0.521

5 0.423 0.554 0.578

6 0.423 0.554 0.549
850

7 0.423 0.557 0.577

8 0.42 0.554 0.539

9 0.429 0.554 0.58

10 0.42 0.555 0.567
900

11 0.42 0.555 0.562

12 0.426 0.557 0.542

13 0.419 0.554 0.555

950 14 0.424 0.554 0.565

15 0.421 0.549 0.573

16 0.423 0.557 0.557

17 0.423 0.561 0.544

18 0.424 0.549 0.576
1000

19 0.424 0.543 0.546

20 0.424 0.557 0.545

21 0.42 0.55 0.515

22 0.424 0.555 0.55
1050

23 0.429 0.559 0.489

24 0.421 0.548 0.549

25 0.425 0.567 0.554

26 0.421 0.554 0.554
1100

27 0.431 0.544 0.518

28 0.424 0.553 0.553

29 0.424 0.553 0.54

30 0.428 0.558 0.537
1150

31 0.429 0.558 0.539

32 0.429 0.559 0.512
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Table 4. Sample parameters for irradiated weight loss and burst testing experiments
(cont.).

Tem perature (c°) Irradiated sample num ber ID (in) OD (in) Height (in)

37 0.418 0.554 0.547

38 0.42 0.554 0.523
1250

39 0.424 0.55 0.564

40 0.425 0.552 0.543

41 0.423 0.553 0.554

42 0.424 0.552 0.561
1300

43 0.426 0.557 0.556

44 0.42 0.554 0.552
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Figure 16. (a) Peak load for irradiated samples; (b) Grubbs test results for irradiated
samples.



140

(a)

(b)

Figure 17. (a) Internal pressure and fracture hoop stress for irradiated samples; (b) 
Difference between pressure and fracture hoop stress for irradiated samples.

Furthermore, internal pressure and fracture hoop stress for non-irradiated and 

irradiated samples with respect to temperature can be seen in Figure 18. The maximum 

internal pressure (average) and fracture stress (average) over the temperature ranges are 

comparable (90 N and 340 MPa) for both the non-irradiated and irradiated sample types; 

however, irradiated samples show slightly higher values.
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(a)

(b)

Figure 18. Internal pressure and fracture hoop stress with respect to temperature: (a) non-
irradiated samples; (b) irradiated samples.
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6. CONCLUSIONS

This paper investigates the behavior of accident-tolerant cladding for long-life 

SMR core for the possible application of marine propulsion of 15-20+ years. This study is 

divided into two parts: (1) reactor physics modeling of the accident-tolerant cladding 

candidates, and (2) experimental analyses of silicon carbide cladding material. Reactor 

physics modeling (first part of the study) confirms the following:

• Silicon carbide cladding exhibits a higher initial reactivity in SMR core than that 

of the other accident-tolerant candidate claddings.

• Silicon Carbide cladding provides the highest achievable discharge burnup in SMR 

core out of all other accident-tolerant candidate claddings, making this cladding the 

natural choice for experimental investigation.

For the experimental investigation (the second part of the study), weight loss, and 

burst testing of the tubular sintered SiC samples at 1 atm with a temperature range of 120°C, 

850°C to 1300C are examined. For the weight loss experiment, we have considered two 

types of samples: (1) non-irradiated and (2) neutron-irradiated samples. The key results are 

the following:

• Weight loss is sensitive to the sample dimensions, and irradiated samples show 2­

10% higher weight loss per area than that of the non-irradiated samples.

• Considering the medium flow rate (less than 10 g/min), irradiated samples exhibit 

10-40% higher weight loss than that of the non-irradiated samples over the range 

of temperatures (120°C, 850°C to 1350C).

• Material loss rates are generally more sensitive at a higher temperature than at lower 

temperatures, and irradiated samples are more prone to weight loss.
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For the burst testing investigations, experiments are conducted for (1) As-received 

samples (2) Non-irradiated samples, and (3) Irradiated samples. The key results are:

• Fracture hoop stress is consistently 70-75% higher than the internal pressure for all 

the as-received samples.

• The maximum internal pressure (average) and fracture stress (average) over the 

temperature ranges are comparable for both the non-irradiated and irradiated 

sample types; however, irradiated samples show slightly higher values.

Hence, based on the experimental and computational investigations, it is concluded 

that SiC has the potential to be a preferred accident-tolerant cladding material choice for 

the long lifetime reactor core operation.

It is worth emphasizing that the SiC experiments were conducted in the Rhode 

Island Nuclear Science Center. Although SiC material will be utilized for long-life and 

high burnup cores, SiC experiments are limited to 8 hours to understand its fundamental 

behavior in terms of weight loss and mechanical strength, which provides us a clear 

indication of the SiC behavior under the harsh environment.

Future work will consider the following:

• Extend the reactor physics modeling from a 2D assembly investigation to a 

whole core.

• Associated uncertainty quantification analysis of the samples.

• Operational extension (up to 72 hours) of the experiments in one of the US

National Labs.
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• In order to understand the micro-structural properties of the SiC specimens 

used in this experiment, we will investigate the SiC materials’ properties 

using Scanning electron microscopy (SEM), Raman spectroscopy, and 

Electron paramagnetic resonance spectroscopy (EPR).
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SECTION 

2. CONCLUSION

This dissertation explores the physical behavior and characterization of neutron- 

irradiated accident tolerant nuclear fuel cladding for high burnup application of small 

modular reactor core as well as characterizing radiation detector deadtime. Testing of GM 

counter was added to this effort to ensure safe handling of neutron-irradiated materials. 

Since GM detector is generally used as survey meter in similar situations, deadtime was 

investigated for the reliability of GM counters. At high count rates, GM detectors suffer 

from deadtime phenomenon in which a number of radiation events go undetected, as 

described in previous sections. These undetected events lead to an underestimation of dose 

rate and possible health risk. Therefore, a fundamental understanding of deadtime behavior 

is crucial. This led to the design of the first study.

In the first study, the pulse shape properties generated by a GM detector due to 

radiation exposure were investigated. Background radiation and two radioactive sources 

(137Cs and 60Co) were examined in this study. An oscilloscope was utilized to capture and 

record the pulse shape properties manually.

This study was performed in order to: (1) understand pulse shape dependence on 

operating voltage, (2) confirm that not all pulses generated by a GM counter are identical 

(3) assess if these pulse shape properties follow distinct patterns similar to deadtime 

behavior reported by a previous study, as discussed in previous sections. Deadtime 

observation study concluded that there are three distinct deadtime regions depending on 

the operating voltage. In the first region, at low applied voltages, deadtime is reduced with
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increasing voltage. In this region, it is found that pulse width and fall time were also 

decreasing with increasing voltage. In the second region, the region of constant minimum 

deadtime, it was found that the pulse tail has vanished while pulse width was observed to 

be at its minimum. In the third region, at higher applied voltages, it is seen that the second 

pulse (after initial pulse) showed a reduction in its width.

Furthermore, this study confirmed that the general belief that all pulses generated 

by a GM detector due to radiation exposure are identical is questionable. Also, based on 

the data collected, it is inferred that there is a strong correlation between pulse shape 

properties and detector deadtime. Results from this work was published in Paper I. 

However, in order to identify a relationship between pulse shape properties, operating 

voltage, and detector deadtime, a more robust experiment design was required. This 

ultimately led to the design of the second study.

In the second study, to better understand the behavior of deadtime, simultaneous 

measurements of deadtime and pulse shape characteristics were required to develop a 

relationship between operating voltage, deadtime, and pulse shape properties. This study 

was divided into two parts. The first part evaluated deadtime dependence on operating 

voltage, while the second part analyzed pulse shape properties. In order to accomplish these 

two tasks and generate more data for in-depth analysis of deadtime and pulse shape 

properties, the oscilloscope used to capture and record the pulses was set to automatic 

measurement. Also, four radioactive sources (204Tl, 137Cs, 22Na, 54Mn) were utilized for 

deadtime measurement based on the two-source method.

For the first part, a peculiar relationship between deadtime and the operating 

voltage was observed. At 650 V, deadtime reached a minimum value for three radioactive
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sources (22 ps for 204Tl, 26 ps for 137Cs, 9 ps for 22Na). This minimum value at low voltage 

range is possibly due to reduced recombination processes. Increasing the voltage further, 

deadtime increased rapidly to reach its maximum value at approximately 750 V for all three 

radioactive sources (22 ps for 204Tl, 26 ps for 137Cs, 9 ps for 22Na). This behavior is mainly 

attributed to the on-set of gas multiplication processes. After the maximum deadtime value, 

an exponential decrease in deadtime was observed until a plateau was reached. This plateau 

region falls under the manufacturer’s recommended region for the operation of the GM 

counter. This deadtime behavior was observed using three sources with the exception of 

54Mn source in which low count rates measured from 54Mn resulted in negative deadtime 

values. Therefore, data collected using 54Mn was not used for drawing a conclusion.

For the second part of this study, a detailed analysis of several pulse shape 

properties and their dependence on the operating voltage while investigating their 

correlation with detector deadtime were performed. The study’s objective was to find a 

correlation between deadtime, pulse shape properties, and operating voltage. Since the GM 

region is of primary interest for many applications, the pulse shape correlation investigation 

focused on the high applied voltages.

It is observed that the recorded pulse shape properties follow a distinct pattern in 

relation to deadtime. “Positive Pulse Width” showed a strong negative correlation for all 

three sources (between -0.94 to -0.90) with operating voltage. However, a weaker 

correlation for the three sources was observed between deadtime and operating voltage 

(between -0.80 to -0.71). Therefore, it is inferred from the data that there is a positive

correlation between “Positive Pulse Width” and deadtime.
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Furthermore, a positive correlation between “Rise Time” and deadtime was 

observed. Also, “Fall time” showed a stronger negative correlation with the operating 

voltage (between -0.95 to -0.91) and a strong positive correlation with deadtime (between 

0.95-0.94). Similar results were observed for “Cycle Mean,” “Full Positive Pulse,” and 

“Area” properties. The results from “Frequency” show a negative correlation with 

deadtime (between -0.79 to -0.86) and a strong positive correlation with the operating 

voltage (between 0.98 to 0.91). This is in agreement with the observation that as applied 

voltages increased, more counts are measured by the detector. This study confirmed that 

operating voltage and detector deadtime exhibit a strong correlation with several pulse 

shape properties.

Furthermore, the SiC study was divided into two parts. In the first part, 

computational reactor physics modeling using Monte Carlo N-Particle (MCNP), version

6.1, was performed. It was performed to investigate the neutronics of various accident 

tolerant nuclear fuel cladding candidates for high burnup application of the proposed low 

enriched uranium SMR core due to the increasing interest in SMRs worldwide. Therefore, 

this study selected a compact pressurized water reactor SMR core as a reference 2D 13X13 

assembly. Uranium dioxide (UO2) was chosen as fuel for the compact SMR core with two 

different fissile enrichments: 15% and 19.9%. SiC and other alternative accident tolerant 

fuel (ATF) claddings (APMT, FeCrAl, SS-204, SS310) along with the traditional zircaloy 

claddings (Zr-2, Zr-4) were investigated in terms of discharge burnup. The burnup 

simulation results showed that SiC as an alternative ATF cladding material provides the 

highest achievable burnup as well as the maximum uranium utilization. This is due to the 

presence of carbon atoms, which provide additional moderation of neutrons; besides, the
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lower thermal capture cross-sections of silicon. In addition, reactivity behavior was 

investigated by considering both discharge burnup penalty and gain. The results confirmed 

that SiC outperforms all other alternative cladding materials: Zr, FeCrAl, APMT, and SS. 

Therefore, SiC was chosen for further investigation as a potential ATF cladding for the 

high burnup SMR core application.

In the second part of the study, an experimental investigation to characterize SiC in 

terms of weight loss and mechanical strength was conducted. The 2 MW, light water- 

cooled, pool-type nuclear research reactor at the Rhode Island Nuclear Science center 

(RINSC) was utilized to irradiate SiC with neutrons in harsh environments (in pure steam 

at 1 atm at various applied high temperatures (120°C, 850°C to 1350°C). The experiments 

were conducted at the beam port. The flux at the beam port was determined to be 4.3E8 

(neutrons/cm2/s).

To draw useful conclusions, SiC samples were divided in three groups. As- 

received group which provided the base-line properties, while the second group (heat and 

steam exposure) provided property degradation in the absence of radiation. Finally, the 

third group of specimens were exposed to radiation in addition to steam and heat to mimic 

reactor environment. The weight loss experiment results showed that irradiated samples 

show a 2-10% higher weight loss per area than non-irradiated samples. Also, the results 

show that the material loss rate is more sensitive at higher temperatures and that irradiated 

specimens are more prone to weight loss. For the mechanical test, burst testing experiment 

was chosen to investigate SiC’s strength. The results show that maximum internal pressure 

and fracture stress for non-irradiated and irradiated SiC specimens over the applied 

temperatures were comparable. Details of these results can be seen in Paper IV.
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First, characterization of the SiC material included the following: (1) Scanning 

Electron Microscope, (2) Raman Spectroscopy, and (3) Electron Paramagnetic Resonance 

(EPR). Nevertheless, due to time constraint and my employee’s (Kuwait Institute for 

Scientific Research, KISR) requirement to resume working physically in the State of 

Kuwait, the final results from these techniques were not included in this dissertation. 

Furthermore, the results need more in-depth analysis. Hence, a subsequent paper will be 

submitted after analyzing the results from these already completed studies.

The SEM was utilized to perform tests on 3 selected SiC specimens. The selection 

of SiC specimens considered (I) as-received samples, (II) non-irradiated samples for 

extreme cases (temperature of 850°C and 1300°C), and neutron-irradiated samples selected 

from the same temperature groups. The main purpose of utilizing SEM is to detect the 

presence of oxide films at the microstructural level in order to characterize the oxidation 

behavior.

Using different magnification scales, oxidation films on the control sample were 

not detected. This was performed on the control sample, which was not exposed to steam 

or heat, in order to compare the results with non-irradiated and irradiated samples (exposed 

to steam and heat). Nonetheless, crack and striation of the external SiC surface were 

observed, as shown in Figure 3.1a. The reason behind the striation pattern can be attributed 

to the extruding process while producing the SiC tubular specimen. Also, cracking on the 

SiC tube was observed which can be attributed to the burst testing experiment. Figure 3.1b 

shows that the bulk of the external surface of the tube reveals hierarchical porosity (nano- 

and microporosity) as well as microsized carbon inclusions with particular elongated

3. FUTURE WORKS
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shape. Most of the residual porosity in the tube is observed along the grain boundaries and 

triple junctions indicating that the SiC is still not fully consolidated during processing. 

Also, it is seen that the SiC grains range in sizes between 5 to 20 microns. Nevertheless, 

the black spots observed in Figure 3.1b could be carbon inclusion and not porosity. 

Therefore, Raman Spectroscopy was needed to investigate the source of these spots. 

Furthermore, SEM was also utilized to investigate the internal surface of the SiC tube.

(a)

(b)

Figure 3.1. SEM images of the as-received SiC tubular sample: (a) the external surface of 
the SiC tube; (b) the internal surface of the specimen.
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Figure 3.2a shows the inner surface of the SiC tube which has a significant amount 

of topographical texturing. This surface is comprised by a complex forest of micro-sized 

needle, plate, and tubular structures, as shown in Figure 3.2b. A comparison between the 

samples seems to show some difference in the roughness of the inner surface with 

temperature, although a more detailed analysis will be needed to assess that hypothesis.

(a)

(b)

Figure 3.2. SEM images of as-received SiC tube sample: (a) topographical texturing 
along with edge; (b) a magnified SEM micrograph where needle, plate, and tubular

structures are shown.
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Figure 3.3 shows SEM results of the irradiated SiC sample at 1300oC using the 

polished cross section technique while Figure 3.4 shows non-irradiated sample. No 

significant changes between the samples were observed. An oxide phase was not present 

according to the BSEM micrographs. The reason behind this can be that the oxidation stage 

was still at an early stage and the oxide layer is beyond the resolution of the SEM (in the 

high magnifications X80000). Another reason for not detecting an oxide layer might be 

due to the accidental removal o f the oxide layer while polishing the cross-section samples.

Figure 3.3. Edge SEM image o f the neutron irradiated SiC external tube at 1300C.

Figure 3.4. Edge SEM image o f as-received SiC external tube.
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Furthermore, analysis of the results obtained from the Raman Spectroscopy and 

EPR would provide supplementary information. The findings from SEM, Raman 

spectroscopy, and EPR will be reported to a peer reviewed journal by the end of this 

calendar year.

Second, to ensure the safety of the nuclear system, uncertainty quantification (UQ) 

is emphasized by the nuclear engineering community. A preliminary UQ assessment has 

been performed in order to understand the uncertainty of reactor core physics parameters 

and how it affects the core output parameters. In order to perform the task, a polynomial 

chaos method (PCM) of 3rd degree polynomial has been used for SiC and Zr (zircaloy-4) 

cladding candidates for the high burnup SMR core. Initially, two input uncertainties of the 

SMR core parameters have been considered to perform UQs: (1) cladding density, and (2) 

cladding thickness with 10% uncertainty. However, quantifying the ‘combined’ effect of 

uncertainties is essential in the nuclear system. It needs a large number of simulations for 

UQ and needs to be factored-in to improve the UQ methodology. Table 3.1 (as part of the 

preliminary assessment) shows the original input parameters for both SiC and Zr cladding 

candidates. In this calculation, new input parameters were generated by utilizing the 

3rd degree order of PCM, which resulted in 16 new inputs, as shown in Table 3.2. The new 

input parameters were injected into MCNP to perform the new simulations. However, this 

UQ study is currently under investigation. It is expected that the outcome of this analysis 

will be reported to a peer-reviewed platform by the end of this calendar year.

Table 3.1. Input uncertainties for SiC and Zr-4 cases.

Parameters Mean Uncertainty
SiC Case
Density 2.58 10%
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Table 3.1. Input uncertainties for SiC and Zr-4 cases (cont.).

Parameters Mean Uncertainty
Thickness 0.655 10%
Parameters Mean Uncertainty
Zr-4 Case
Density 6.56 10%
Thickness 0.655 10%

input densities and thicknesses for SiC and Zr-4 cand
generated by the PCM.

SiC density Zr-4 density Cladding
Thickness

2.3578 5.9951 0.0599

2.4923 6.337 0.0599

2.6677 6.783 0.0599

2.8022 7.1249 0.0599

2.3578 5.9951 0.0633

2.4923 6.337 0.0633

2.6677 6.783 0.0633

2.8022 7.1249 0.0633

2.3578 5.9951 0.0677

2.4923 6.337 0.0677

2.6677 6.783 0.0677

2.8022 7.1249 0.0677

2.3578 5.9951 0.0711

2.4923 6.337 0.0711

2.6677 6.783 0.0711

2.8022 7.1249 0.0711
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MATLAB CODE FOR DEADTIME MODELS
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X File  input 1: launcher.m 
clear  a l l ; 
clc ;

d i s p ( ' Please the model you would l ike to run’); 
d i sp ( 'E n te r  1 for Non-Paralyzing Model'); 
d i s p ( ' Enter 2 for Paralyzing Model1); 
d i s p ( ‘Enter 3 for Lee-Gardner - PN Model'); 
d i s p ( ' Enter 4 for Lee-Gardner - NP Model'); 
d i s p ( ' Enter 5 for Patil-Usman Model'); 
d i s p ( ' Anything else will  e x i t ' ) ;

f i g u r e () ; 
hold on
i  = 1; 
while i < S
i = inpu t ('Model number: ' ) ;  
i f  i == 1
[nonParalyzingni , nonParalyzingmi] = nonParalyz( ) ; 
e l s e i f  i  == 2
[Paralyzingni , Paralyzingmi] = ParalyzO; 
e l s e i f  i == 3
[leeGardnerPnNi, leeGardnerPnMi] = LeeGardnerPN(); 
e l s e i f  i == 4
[leeGardnerHpNi , leeGardnerNpMi] = LeeGardnerNP() ; 
e l s e i f  i  — 5
[PatilUsmanni , PatilUsmanmi] = PatilUsman() ; 
else
d i s p ( 'Sorry,  wrong model number, please t ry  again' )
end
end

X Fi le  input 2: launcher2.m
[nonParalyzNi, nonParalyzMi] = nonParalyz( ) ; 
[paralyzNi, paralyzMi] = ParalyzO;
[leeGardnerPnNi, leeGardnerPnMi] = LeeGardnerPN( ) ;
[ leeGardnerHpNi, leeGardnerNpMi] = LeeGardnerNP( ) ; 
[PatilUsmanNi, PatilUsmanMi] = PatilUsman( ) ;
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f i g u r e ();
p l o t CleeGardnerNpNi, leeGardnerNpMi, leeGardnerPnNi, leeGardnerPnMi 

, nonParalyzNl , nonParalyzMi, paralyzNi, paralyzMi, PatilUsmanNl 
, PatilUsmanHi) ;

legend('NP', 'PN', 'Mon Paralyzing', 'Paralyzing', 'AlmutairiUsman' 
, ' PatilUsman');

xlabel('True Count Rate'); 
ylabel('Measured Count Rate1);

’/„ Fi le  input 3: nonParalyz.m
funct ion [ niRecord, miRecord ] = nonParalyzO
countRi = inpu t ( 'Enter  the i n i t a l  count ra te  ( c t / s )  : ' ) ;
binSizeR = inpu t ( ' Enter the bin size (sec) : ' ) ;
tnor = inpu t ( 'Enter  the Non-Paralyzing Deadtime (sec) : ' ) ;
tHalfR = inpu t ( 'Ente r  half  l i f e  (sec) :  ' ) ;
l a r  = log(2)/tHalfR;  % Act ivi ty  [1/sec]
t t r  -  tnor;
niRecord = [];
miRecord = [];
ttRe cord = [] ;
excelOutput = [ ] ;
notFinished = 1;

while notFinished 
% I n i t i a l i z e  
ni = 1;
mi = 0 ;
t t  = 0;

while t t  < binSizeR
ramp = r a n d ( ) ; X Gat a random number 
deltaTr  = -log(ramp)/countRi; 
t t  = t t  + deltaTr;
ni = ni + 1;

i f deltaTr > t t r  
mi = mi + 1;
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t t r  = tnor;  
else
t t r  = t t r - d e l t a T r ; 
end

end

niRecord = [niRecord, n l ] ;
miRecord = [miRecord, mi];
ttRecord = [ttRecord, t t ] ;
excelOutput = [excelOutput; n i , mi];
countRi = countRi * exp(-binSizeR * l a r ) ;
i f  ni < 15
notFinisbed = 0; to f in i sh  and ex is t  the loop a f t e r  ni<15 counts 
end

end End of while loop

p l o t (niRecord, miRecord); 
t i t l e f 'N o n  Para lyz ing1); 
x labe l( 'True  Count Rate1); 
y l a b e l ( 1 Measured Count Ra te1); 
legend

‘///."/.this sect ion for saving the r e s u l t s  in excel f i l e  in a specif ied 
folder'/////,

filter = {'*.xlsx' ;
fullFileWame = uiputfile(filter); 
xlswrite(fullFileName , excelOutput);

end

'/. Fi le  input 4: Paralyz.m
funct ion [ niRecord, miRecord ] = Paralyz( )
% Get input from user
CountRi = i n p u t ( 'Enter the i n i t a l  count ra te  ( c t / s ) :  ' ) ;
BinsizeR = input ( 'Enter  the bin size (sec) : ' ) ;
paralyzDeadtime = i n p u t ( ‘Enter the Paralyzing Deadtime (sec) : ' ) ;
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THALFR = inpu t ( ’Enter half  l i f e  (sec) :  ' ) ;  
lar  = log(2)/THALFR; '/„ Activi ty [1/sec]
CCountR = CountRI;
paralyzedTimeRemaining = paralyzDeadtime;

excelOutput = [ ] ; 
niRe cord = [ ] ; 
miRecord = [ ] ; 
ttRe cord = [ ] ; 
notFinished = 1;

while notFinished

7, I n i t i a l i z e  
trueCounts = 1; 
measCounts = 0; 
t  = 0;

while t  < BinsizeR
7. Compute how long i t  has been since the previous in te rac t ion  
DeltaTR = - l o g (rand( ) ) /CCountR; 
t  = t  + DeltaTR; 
trueCounts = trueCounts + 1;
% Detector counts the event only i f  i t  is no longer paralyzed 
i f  DeltaTR > paralyzedTimeRemaining 
measCounts = measCounts + 1; 
end

7, Reset the de tector  dead time 
paralyzedTimeRemaining = paralyzDeadtime;

end

niRecord = [niRecord, trueCounts];  
miRecord = [miRecord, measCounts]; 
ttRecord = [ttRecord, t ] ;
excelOutput = [excelOutput; trueCounts,  measCounts];
7» Compute the decay rate  for the next t imestep
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CCountR = CCountR * exp(-BinsizeR * l a r ) ;

i f  trueCounts < 15 
notFinished = 0; 
end

end ’/. End of while loop

p l o t (niRecord, miRecord); 
t i t l e ( ' Pa ralyz ing ' ); 
x l a b e l ( ’True Count Rate1); 
y l a b e l ( 1 Measured Count Rate1); 
legend

*/.%’/.th is  sect ion for saving the r e s u l t s  in excel f i l e  in a specif ied 
folder*/.’/."/.

f i l t e r  = { ' * .x l s x ' ; 1 *.* 1} ; 
fullFileName = u i p u t f i l e ( f i l t e r ); 
xlswrite(ful lFi leName , excelOutput);

end

’/. Fi le  input 5: LeeGardnerPN.m
funct ion [ niRecord, miRecord ] = LeeGardnerPN( )
*/» Get input from user
CountRI = inpu t ( 'Enter  the i n i t a l  count ra te  ( c t / s )  : ' ) ;
BinsizeR = inpu t ( 'Ente r  the bin size (sec) : ' ) ;
TPOR = inpu t ( 'Enter  the Original Paralyzing Deadtime ( s e c ) ' ) ;
TNOR = inpu t ( 'Enter  the Original Non-Paralyzing Deadtime ( s e c ) ' ) ;  
THALFR = inpu t ( 'Ente r  half  l i f e  (sec) :  ' ) ;

lar  = log (2) /THALFR; 7. Activi ty [1/sec]
TPR=TP0R;
TNR=TN0R;
TTR = TNR + TPR;

excelOutput = []; 
niRecord = [];
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miRecord = []; 
t tRecord = [] ; 
notFinished = 1;

while notFinished

% I n i t i a l i z e  
NI = 1;
MI = 0; 
t t  = 0;

while t t  < BinsizeR

ramp = randQ; "/. Get a random number 
DeltaTR = - log(ramp)/CountRI;

t t  = t t  + DeltaTR;
HI = NI + 1;
TTR= TNR + TPR;

if  DeltaTR < TPR
•/.MI = M I;

TPR = TPOR;
TNR = TNOR;
e l s e i f  DeltaTR < TTR
*/.MI=MI

TPR = 0 .0 ;
TNR = TNR - DeltaTR; 

else
MI= MI+1;
TPR=TP0R;
TNR=TN0R; 
end

end

niRecord = [niRecord, NI] ;
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miRecord = [miRecord, MI]; 
ttRecord = [ t tRecord, t t ] ; 
excelOutput = [excelOutput; NI, MI];

CountRI = CountRI * exp(-BinsizeR * l a r ) ;
i f  NI < 15 % k i l l  anything less than 15 counts
notFinished = 0;
end

end l  End of while loop

p l o t (niRecord, miRecord); 
t i t l e ( 1Lee-Gardner PN1); 
xlabelC'True Count Ra ts ' ) ;  
y l a b e l ( ' Measured Count Rate ' ) ;  
legend

’/.'/."/.this sect ion for saving the r e s u l t s  in excel f i l e  in a specif ied 
f older"/„"/„%

f i l t e r  = { 1 * . xlsx ' ; '* .* ' ]■ ; 
fullFileName = u i p u t f i l e ( f i l t e r ) ; 
xlswri te(fullFileNama , excelDutput);

end

X Fi le  input 6: LeeGardnerNP.m
funct ion [ niRecord, miRecord ] = LeeGardnerPN( )
% Get input from user
CountRI = inpu t ( 'Enter  the i n i t a l  count ra te  ( c t / s ) :  ' ) ;
BinsizeR = inpu t ( ' Enter the bin size (sec) :  ' ) ;
TPOR = inpu t{'Enter the Original Paralyzing Deadtime ( s e c ) ' ) ;
TNOR = inpu t ( 'Ente r  the Original Non-Paralyzing Deadtime ( s e c ) ' ) ;  
THALFR = inpu t ( 'Enter  half  l i f e  (sec) :  ' ) ;

l a r  = log (2) /THALFR; '/ Activi ty [1/sec]
TPR=TP0R;
TNR=TN0R;
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TTR = TNR + TPR;

excelOutput = [ ] ; 
niRe cord = [] ; 
miRecord = [ ] ; 
t tRecord = [];

notFinished = 1;

while notFinished

l  Initialize 
HI -  1;
HI = 0; 
t t  = 0;

while t t  < BinsizeR

ramp = randQ; % Get a random number 
D e l t a T R  = - l o g ( r a m p ) / C o u n t R I ;

t t  = t t  + DeltaTR;
HI = HI + 1;
TTR= TNR + TPR;

if  DeltaTR < TPR 
7, MI = HI;
TPR = TPQR;
TNR = TNOR;
e l s e i f  DeltaTR < TTR
2HI-NI
TPR=0.0;
TNR = TNR - DeltaTR;

else
MI= HI+1;
TPR=TP0R;
TNR=TN0R;
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end

end

niRecord = [niRecord, NI]; 
miRecord = [miRecord, MI]; 
ttRecord = [ ttRecord, t t ] ; 
excelOutput = [excelOutput ; NI, MI];

CountRI = CountRI * exp(-BinsizeR * l a r ) ;
i f  NI < 15 X kill anything less than 15 counts
notFinished = 0;
end

end 7. End of while loop

p l o t (niRecord, miRecord); 
t i t l e ( ‘Lee-Gardner PN' ) ; 
x labe l( 'True  Count Rate ' ) ;  
y l a b e l ( ' Measured Count Ra te ' ) ;  
legend

XXXthis section for saving the results in excel file in a specified 
folderXXX 

f i l t e r  = { ' *.xlsx' 
fullFileName = u i p u t f i l e ( f i l t e r ) ; 
xlswrite(ful lFi leName , excelOutput);

end

7. Fi le input 7: PatilUsman.m
funct ion [ niRecord, miRecord ] = PatilUsman( )
X Get input from user
CountRI = inpu t ( 'Ente r  the i n i t a l  count ra te  ( c t / s )  : ' ) ;
BinsizeR = inpu t ( ' Enter the bin size (sec) :  ' ) ;
TPOR = inpu t ( 'Ente r  the Paralyzing Deadtime (sec) :  ' ) ;
TNOR = inpu t ( 'Ente r  the Non-Paralyzing Deadtime (sec) :  ' ) ;
THALFR = inpu t ( 'Ente r  half  l i f e  (sec) :  ' ) ;
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PFR = input ( 'Enter  the PFR (between 0 and lj : paralys is
factor

lar = log (2) /THALFR; "/„ Activi ty [1/sec]
CCountR = CountRI; % This is  po int less
TTDR= TPOR + TNOR;
TTR = TTOR;
PFR=0.50; X th is  is  para lys is  factor  can be changed, in th is

case i t s  50%

excelOutput = [ ] ; 
niRecord = [] ; 
miRecord = [] ; 
ttRecord - [] ; 
notFinished = 1;

while notFinished 
% I n i t i a l i z e  
NI — 1;
MI = 0;
t t  - 0;

while t t  < BinsizeR
ramp = r an d ( ) ; % Get a random number
DeltaTR = - log (ramp) /CCountR; 
t t  = t t  + DeltaTR;
NI = NI + 1;
i f  DeltaTR > TTR 
MI = MI + 1;
TTR=TT0R; 
else
if  ramp > PFR
TTR = TTR - DeltaTR;
else
TTR=TT0R; 
end

end
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end

niRecord = [niRecord, NI] ; 
miRecord = [miRecord, HI]; 
ttRecord = [ttRecord, t t ]  ; 
excelOutput = [excelOutput ; NI, MI];

CCountR = CCountR * exp(-BinsizeR * lar) ; 
i f  NI < 15 
notFinished = 0;
end

end % End of while loop

p l o t (niRecord, miRecord); 
t i t l e ( ' P a t i l  Usman'); 
xlabelC'True Count Rate ' ) ;  
y l a b e l ( ’Measured Count Rate ' ) ;  
legend

XXXthis sect ion for saving the r e s u l t s  in excel f i l e  in a specif ied 
folder"/,"/,"/,

f i l t e r  = {  1 *. x l s x ; 
fullFileName = u i p u t f i l e ( f i l t e r ) ; 
xlswriteCfullFileName , excelOutput);

end



APPENDIX B.

MCNP CODE FOR SIC NEUTRONICS
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1. MCNP 6 CODE TO CALCULATE Krc AND DISCHARGE BURNUP

The following sections 1.1 and 1.2 includes MCNP 6.1 sample input codes. The 

sample codes shown below are only for SiC cladding material. Same input codes were used 

for other cladding materials; however, the density is changed along with associated 

material’s card for the cladding. In addition, to assign different enrichment, such as 19.9%, 

the material’s card for the nuclear fuel is changed. The same approach is followed for 

calculating flux at beginning of life (BOL).

1.1 CODE FOR SIC CLADDING MATERIAL WITH 15% ENRICHMENT

set title "Burnup for SMR-15% Enrichment" 
c Cell Cards
c -------------------------------------------------------------------------------------------------
c The next cells defines pin G
1 1 -0.707 -1 u=1 imp:n=1 $ Water
2 2 -6.88547 1 -2 u=1 imp:n=1 $ cladGT
3 1 -0.707 2 u=1 imp:n=1 $ Water
c The 
4

next cells defines pin U 
3 -9.619 -3 u=2 imp:n=1 vol=94.3 $ Fuel

5 4 -2.58 3 -4 u=2 imp:n=1 vol=32.58 $ cladF of SiC
6 5 -7.08208 4 -5 u=2 imp:n=1 $ cladCrsn
7 1 -0.707 5 u=2 imp:n=1 $ Water
c The 
8

next cells defines pin I 
1 -0.707 -6 u=3 imp:n=1 $ Water

9 6 -6.56 6 -7 u=3 imp:n=1 $ cladI Zr
10 2 -6.88547 7 -8 u=3 imp:n=1 $ cladGT
11 1 -0.707 8 u=3 imp:n=1 $ Water
c -----
50 1 -0.707 -20 u=4 imp:n=1 $ water
12 0 -9 10 -11 12 u=12 imp:n=1 lat=1 fill=-7:7 -7:7 0:0 $ square lattice-pin

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 2 2 2 2 2 2 2 2 2 2 2 2 2 4
4 2 2 2 2 2 2 1 2 2 2 2 2 2 4
4 2 2 1 2 2 2 2 2 2 2 1 2 2 4
4 2 2 2 2 2 2 2 2 2 2 2 2 2 4
4 2 2 2 2 1 2 1 2 1 2 2 2 2 4
4 2 2 2 2 2 2 2 2 2 2 2 2 2 4
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4 2 1 2 2 1 2 3 2 1 2 2 1 2 4 
4 2 2 2 2 2 2 2 2 2 2 2 2 2 4 
4 2 2 2 2 1 2 1 2 1 2 2 2 2 4 
4 2 2 2 2 2 2 2 2 2 2 2 2 2 4 
4 2 2 1 2 2 2 2 2 2 2 1 2 2 4 
4 2 2 2 2 2 2 1 2 2 2 2 2 2 4 
4 2 2 2 2 2 2 2 2 2 2 2 2 2 4 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

13 0 -13 14 -15 16 80 -90 imp:n=1 fill=12 $ square assembly
15 0 #13 imp:n=0 $ outside world
c -------------------------------------------------------------------------------------------------
c surface cards
1 cz 0.433
2 cz 0.612
3 cz 0.4095
4 cz 0.475
5 cz 0.476638
6 cz 0.572
7 cz 0.612
8 cz 0.617179
9 px 0.632675 $ 1st side of the square lattice
10 px -0.632675 $ 2nd side of the square lattice
11 py 0.632675 $ 3rd side of the square lattice
12 py -0.632675 $ 4th side of the square lattice
*13 px 8.266775 $ 1st side of the square assembly
*14 px -8.266775 $ 2nd side of the square assembly
*15 py 8.266775 $ 3rd side of the square assembly
*16 py -8.266775 $ 4th side of the square assembly
*80 pz -89.5 $ Bottom of half-core
*90 pz 89.5 $ Top of half-core
20 cz 100

c Data Cards
burn time= 10 40 50 100 200r

mat=3 power==2.976 pfrac==1.0 203r bopt=1.0 -24 -1 $ Tier 3 Burnup
omit==3 4 6014 7016 8018 9018
matvol=14333.567

c Materials
m1 1001.53c-0.1119 $ water @ 600K

8016.53c -0.8881 $ water @ 600K
mt1 lwtr.16t $ Thermal scattering
c cladGT @ 600K ENDF/B-VII.1
m2 26056.81c -0.5756 $ Fe

24052.81c -0.1895 $ Cr-52
28058.81c -0.2244 $ Ni-58
25055.81c -0.006 $ Mn-55
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14028.81c -0.0045 $ Si 28
m3 92235.82c -0.13077 $ Fuel @ 900K "2006

92238.82c -0.75051 $ Fuel @ 900K "2006
8016.82c -0.11872 $ Fuel @ 900K "2011

c cladF @ 600K ENDF/B-VII.1
m4 14028.81c -0.7008 $ Si

6000.81c -0.2992 $ C
c cladCrsn @ 600K ENDF/B-VII.1
m5 26056.81c -0.203 $ Fe

24052.81c -0.203 $ Cr-52
28058.81c -0.594 $ Ni-58

c cladI @ 600K ENDF/B-VII.1
m6 40090.81c -1 $ Zr
kcode 5000 1.0 50 250 $ Criticality card
ksrc 1.3 0 0 $ source in the fuel

1.2. MCNP 6 Code for SiC cladding material to calculate Flux at BOL

set title "Flux for SMR-15% Enrichment" 
c Cell Cards
c ----------------------------------------------------
c The next cells defines pin G
1 1 -0.707 -1 u=1 imp:n=1 $ Water
2 2 -6.88547 1 -2 u=1 imp:n=1 $ cladGT
3 1 -0.707 2 u=1 imp:n=1 $ Water
c The 
4

next cells defines pin U 
3 -9.619 -3 u=2 imp:n=1 vol=94.3 $ Fuel

5 4 -2.58 3 -4 u=2 imp:n=1 vol=32.58 $ cladF of APMT
6 5 -7.08208 4 -5 u=2 imp:n=1 $ cladCrsn
7 1 -0.707 5 u=2 imp:n=1 $ Water
c The 
8

next cells defines pin I 
1 -0.707 -6 u=3 imp:n=1 $ Water

9 6 -6.56 6 -7 u=3 imp:n=1 $ cladI Zr
10 2 -6.88547 7 -8 u=3 imp:n=1 $ cladGT
11 1 -0.707 8 u=3 imp:n=1 $ Water
c -----
50 1 -0.707 -20 u=4 imp:n=1 $ water
12 0 -9 10 -11 12 u=12 imp:n=1 lat=1 fill=-7:7 -7:7 0:0 $ square lattice-pin

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 2 2 2 2 2 2 2 2 2 2 2 2 2 4
4 2 2 2 2 2 2 1 2 2 2 2 2 2 4
4 2 2 1 2 2 2 2 2 2 2 1 2 2 4
4 2 2 2 2 2 2 2 2 2 2 2 2 2 4
4 2 2 2 2 1 2 1 2 1 2 2 2 2 4
4 2 2 2 2 2 2 2 2 2 2 2 2 2 4
4 2 1 2 2 1 2 3 2 1 2 2 1 2 4
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4 2 2 2 2 2 2 2 2 2 2 2 2 2 4
4 2 2 2 2 1 2 1 2 1 2 2 2 2 4
4 2 2 2 2 2 2 2 2 2 2 2 2 2 4
4 2 2 1 2 2 2 2 2 2 2 1 2 2 4
4 2 2 2 2 2 2 1 2 2 2 2 2 2 4
4 2 2 2 2 2 2 2 2 2 2 2 2 2 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

13 0 -13 14 -15 16 80 -90 imp:n=1 fill=12 $ square assembly
15 0 #13 imp:n=0 $ outside world

c surface cards
1 cz 0.433
2 cz 0.612
3 cz 0.4095
4 cz 0.475
5 cz 0.476638
6 cz 0.572
7 cz 0.612
8 cz 0.617179
9 px 0.632675 $ 1st side of the square lattice
10 px -0.632675 $ 2nd side of the square lattice
11 py 0.632675 $ 3rd side of the square lattice
12 py -0.632675 $ 4th side of the square lattice
*13 px 8.266775 $ 1st side of the square assembly
*14 px -8.266775 $ 2nd side of the square assembly
*15 py 8.266775 $ 3rd side of the square assembly
*16 py -8.266775 $ 4th side of the square assembly
*80 pz -89.5 $ Bottom of half-core
*90 pz 89.5 $ Top of half-core
20 cz 100

c Data Cards
c Materials

m1 1001.53c-0.1119 $ water @ 600K
8016.53c -0.8881 $ water @ 600K

mt1 lwtr.16t $ Thermal
c cladGT @ 600K ENDF/B-VII.1
m2 26056.81c -0.5756 $ Fe

24052.81c -0.1895 $ Cr-52
28058.81c -0.2244 $ Ni-58
25055.81c -0.006 $ Mn-55
14028.81c -0.0045 $ Si 28

m3 92235.82c -0.13077 $ Fuel @ 900K "2006"
92238.82c -0.75051 $ Fuel @ 900K "2006"
8016.82c -0.11872 $ Fuel @ 900K "2011"

c cladF @ 600K ENDF/B-VII.1
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m4 14028.81c -0.7008 
6000.81c -0.2992

c cladCrsn @ 600K ENDF/B-VII.1 
m5 26056.81c -0.203

24052.81c -0.203 
28058.81c -0.594

c cladI @ 600K ENDF/B-VII.1 
m6 40090.81c -1
kcode 10000 1.0 100 350 
ksrc 1.3 0 0

$ Si 
$ C

$ Fe 
$ Cr-52 
$ Ni-58

$ Zr

$ Initial source in the fuel
c ------------------------------------------------------------------------------------------------
f4:n 4 $ Flux avg. over cell 4
E0 1.00000e-9 1.05925e-9 1.12202e-9 1.18850e-9 1.25893e-9 & 

1.33352e-9 1.41254e-9 1.49624e-9 1.58489e-9 1.67880e-9 & 
1.77828e-9 1.88365e-9 1.99526e-9 2.11349e-9 2.23872e-9 & 
2.37137e-9 2.51189e-9 2.66073e-9 2.81838e-9 2.98538e-9 & 
3.16228e-9 3.34965e-9 3.54813e-9 3.75837e-9 3.98107e-9 & 
4.21697e-9 4.46684e-9 4.73151e-9 5.01187e-9 5.30884e-9 & 
5.62341e-9 5.95662e-9 6.30957e-9 6.68344e-9 7.07946e-9 & 
7.49894e-9 7.94328e-9 8.41395e-9 8.91251e-9 9.44061e-9 & 
1.00000e-8 1.05925e-8 1.12202e-8 1.18850e-8 1.25893e-8 & 
1.33352e-8 1.41254e-8 1.49624e-8 1.58489e-8 1.67880e-8 & 
1.77828e-8 1.88365e-8 1.99526e-8 2.11349e-8 2.23872e-8 & 
2.37137e-8 2.51189e-8 2.66073e-8 2.81838e-8 2.98538e-8 & 
3.16228e-8 3.34965e-8 3.54813e-8 3.75837e-8 3.98107e-8 & 
4.21697e-8 4.46684e-8 4.73151e-8 5.01187e-8 5.30884e-8 & 
5.62341e-8 5.95662e-8 6.30957e-8 6.68344e-8 7.07946e-8 & 
7.49894e-8 7.94328e-8 8.41395e-8 8.91251e-8 9.44061e-8 & 
1.00000e-7 1.05925e-7 1.12202e-7 1.18850e-7 1.25893e-7 & 
1.33352e-7 1.41254e-7 1.49624e-7 1.58489e-7 1.67880e-7 & 
1.77828e-7 1.88365e-7 1.99526e-7 2.11349e-7 2.23872e-7 & 
2.37137e-7 2.51189e-7 2.66073e-7 2.81838e-7 2.98538e-7 & 
3.16228e-7 3.34965e-7 3.54813e-7 3.75837e-7 3.98107e-7 & 
4.21697e-7 4.46684e-7 4.73151e-7 5.01187e-7 5.30884e-7 & 
5.62341e-7 5.95662e-7 6.30957e-7 6.68344e-7 7.07946e-7 & 
7.49894e-7 7.94328e-7 8.41395e-7 8.91251e-7 9.44061e-7 & 
1.00000e-6 1.05925e-6 1.12202e-6 1.18850e-6 1.25893e-6 & 
1.33352e-6 1.41254e-6 1.49624e-6 1.58489e-6 1.67880e-6 & 
1.77828e-6 1.88365e-6 1.99526e-6 2.11349e-6 2.23872e-6 & 
2.37137e-6 2.51189e-6 2.66073e-6 2.81838e-6 2.98538e-6 & 
3.16228e-6 3.34965e-6 3.54813e-6 3.75837e-6 3.98107e-6 & 
4.21697e-6 4.46684e-6 4.73151e-6 5.01187e-6 5.30884e-6 & 
5.62341e-6 5.95662e-6 6.30957e-6 6.68344e-6 7.07946e-6 & 
7.49894e-6 7.94328e-6 8.41395e-6 8.91251e-6 9.44061e-6 & 
1.00000e-5 1.05925e-5 1.12202e-5 1.18850e-5 1.25893e-5 & 
1.33352e-5 1.41254e-5 1.49624e-5 1.58489e-5 1.67880e-5 &
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1.77828e-5 1.88365e-5 1.99526e-5 2.11349e-5 2.23872e-5 & 
2.37137e-5 2.51189e-5 2.66073e-5 2.81838e-5 2.98538e-5 & 
3.16228e-5 3.34965e-5 3.54813e-5 3.75837e-5 3.98107e-5 & 
4.21697e-5 4.46684e-5 4.73151e-5 5.01187e-5 5.30884e-5 & 
5.62341e-5 5.95662e-5 6.30957e-5 6.68344e-5 7.07946e-5 & 
7.49894e-5 7.94328e-5 8.41395e-5 8.91251e-5 9.44061e-5 & 
1.00000e-4 1.05925e-4 1.12202e-4 1.18850e-4 1.25893e-4 & 
1.33352e-4 1.41254e-4 1.49624e-4 1.58489e-4 1.67880e-4 & 
1.77828e-4 1.88365e-4 1.99526e-4 2.11349e-4 2.23872e-4 & 
2.37137e-4 2.51189e-4 2.66073e-4 2.81838e-4 2.98538e-4 & 
3.16228e-4 3.34965e-4 3.54813e-4 3.75837e-4 3.98107e-4 & 
4.21697e-4 4.46684e-4 4.73151e-4 5.01187e-4 5.30884e-4 & 
5.62341e-4 5.95662e-4 6.30957e-4 6.68344e-4 7.07946e-4 & 
7.49894e-4 7.94328e-4 8.41395e-4 8.91251e-4 9.44061e-4 & 
1.00000e-3 1.05925e-3 1.12202e-3 1.18850e-3 1.25893e-3 & 
1.33352e-3 1.41254e-3 1.49624e-3 1.58489e-3 1.67880e-3 & 
1.77828e-3 1.88365e-3 1.99526e-3 2.11349e-3 2.23872e-3 & 
2.37137e-3 2.51189e-3 2.66073e-3 2.81838e-3 2.98538e-3 & 
3.16228e-3 3.34965e-3 3.54813e-3 3.75837e-3 3.98107e-3 & 
4.21697e-3 4.46684e-3 4.73151e-3 5.01187e-3 5.30884e-3 & 
5.62341e-3 5.95662e-3 6.30957e-3 6.68344e-3 7.07946e-3 & 
7.49894e-3 7.94328e-3 8.41395e-3 8.91251e-3 9.44061e-3 & 
1.00000e-2 1.05925e-2 1.12202e-2 1.18850e-2 1.25893e-2 & 
1.33352e-2 1.41254e-2 1.49624e-2 1.58489e-2 1.67880e-2 & 
1.77828e-2 1.88365e-2 1.99526e-2 2.11349e-2 2.23872e-2 & 
2.37137e-2 2.51189e-2 2.66073e-2 2.81838e-2 2.98538e-2 & 
3.16228e-2 3.34965e-2 3.54813e-2 3.75837e-2 3.98107e-2 & 
4.21697e-2 4.46684e-2 4.73151e-2 5.01187e-2 5.30884e-2 & 
5.62341e-2 5.95662e-2 6.30957e-2 6.68344e-2 7.07946e-2 & 
7.49894e-2 7.94328e-2 8.41395e-2 8.91251e-2 9.44061e-2 & 
1.00000e-1 1.05925e-1 1.12202e-1 1.18850e-1 1.25893e-1 & 
1.33352e-1 1.41254e-1 1.49624e-1 1.58489e-1 1.67880e-1 & 
1.77828e-1 1.88365e-1 1.99526e-1 2.11349e-1 2.23872e-1 & 
2.37137e-1 2.51189e-1 2.66073e-1 2.81838e-1 2.98538e-1 & 
3.16228e-1 3.34965e-1 3.54813e-1 3.75837e-1 3.98107e-1 & 
4.21697e-1 4.46684e-1 4.73151e-1 5.01187e-1 5.30884e-1 & 
5.62341e-1 5.95662e-1 6.30957e-1 6.68344e-1 7.07946e-1 & 
7.49894e-1 7.94328e-1 8.41395e-1 8.91251e-1 9.44061e-1 & 
1.00000e+0 1.05925e+0 1.12202e+0 1.18850e+0 1.25893e+0 & 
1.33352e+0 1.41254e+0 1.49624e+0 1.58489e+0 1.67880e+0 & 
1.77828e+0 1.88365e+0 1.99526e+0 2.11349e+0 2.23872e+0 & 
2.37137e+0 2.51189e+0 2.66073e+0 2.81838e+0 2.98538e+0 & 
3.16228e+0 3.34965e+0 3.54813e+0 3.75837e+0 3.98107e+0 & 
4.21697e+0 4.46684e+0 4.73151e+0 5.01187e+0 5.30884e+0 & 
5.62341e+0 5.95662e+0 6.30957e+0 6.68344e+0 7.07946e+0 & 
7.49894e+0 7.94328e+0 8.41395e+0 8.91251e+0 9.44061e+0 &
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1.00000e+1 1.05925e+1 1.12202e+1 1.18850e+1 1.25893e+1 & 
1.33352e+1 1.41254e+1 1.49624e+1 1.58489e+1 1.67880e+1 & 
1.77828e+1 1.88365e+1 2.00000e+1



APPENDIX C.

PYTHON CODE FOR EXTRACTING OUTPUT RESULTS
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import pandas as pd 
import numpy as np 
import re
import t k in t e r  as tk 

from tk in t e r  import f i l e d ia log  
root = tk . Tk 0  
r o o t . withdraw ()

# open browser using tk in t e r  to choose your output f i l e  
x = f i l e d i a l o g . askopenfilename()

# find table s t a r t  pat terns

pa t t e rn  = r e . compile("step durat ion time power keff flux ave.nu ave 
.q burnup source") 

s t a r t_ l i n e s  = []
for i ,  l ine in enumerate(open(x)):
for match in r e . f i n d i t e r ( p a t t e r n , l ine) :
s t a r t _ l i n e s . append(i+1)

pr in t  ('Found on l ine °/»s : ‘/„s ' % ( i + 1, mat ch . group ()))

# find table end pat terns
pa t t e rn  = r e . compile( "nuclide data are sorted by increasing zaid 

for  materia l")  
end_lines = []
for i ,  l ine  in enumerate(open(x)):
for match in r e . f i n d i t e r ( p a t t e r n , l ine) :
end_l ines . append(i + 1)

pr in t  ('Found on l ine °/,s : %s ' "/„ ( i  + 1, mat ch . group ()))

# This will  ex tract  the f in a l  table in the output f i l e  

s t a r t_ l in e  = s t a r t _ l i n e s [-1]
end_line - end_l ines[-1]

# l ines  containing the table
lineArray = np . arange( s t a r t _ l i n e , end_line)
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import pandas as pd 
import numpy as np 
import re
import t k in t e r  as tk 

from tk in t e r  import f i l e d ia log  
root = tk . Tk () 
root-wit  hdravO

# open browser using t k in t e r  to choose your output f i l e  
x = f i l e d i a l o g . askopenfi lename()

# find table  s t a r t  pat terns

pa t t e rn  = r e . compile( ”step durat ion time power keff flux ave.nu ave 
.q burnup source") 

s t a r t_ l in e s  = []
for i ,  l ine in enumerate(open(x)) : 

for match in r e . f i n d i t e r ( p a t t e r n , l ine ) :  
s t a r t _ l i n e s . append(i+l)

p r in t  ('Found on l ine %s : °/„s 1 % ( i  + 1, mat ch. group ()))

# find table  end pat terns
pa t t e rn  = r e . compile( ”nuclide data are sorted by increasing zaid 

for m a te r i a l ”) 
end_lines * []
for i ,  l ine  in enumerate(open(x)) :
for match in r e . f i n d i t e r ( p a t t e r n , l ine) :
end_l ines . append(i+1)

pr in t  ('Found on l ine %s : 7,s ' "/„ ( i  + 1, mat ch . group ()))

# This wil l  ex tract  the f ina l  table  in the output f i l e  

s t a r t_ l i n e  = s t a r t _ l i n e s [-1]
end_line = end_l ines[-1]

# l ines  containing the table
lineArray = np. a r a n g e ( s t a r t l i n e , e n d l i n e )
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# Save the r e s u l t s  In a tex t  f i l e
y = f i l e d i a l o g . asksaveasfi lename( i n i t i a l d i r  = t i t l e  = "Select

f l i e " , f i letypes = ( ( " tex t  f i l e s " , " *. t x t " ) , ( "al l  f i l e s " , " * . * " ) ) )

# save the table
with open(y, 'w') as output: 

fp = open(x)
for i ,  l ine in enumerate( f p ) :
i f  i >= s t a r t _ l i n e - l  and i<end_l ine -2 :
p r i n t ( l ine)

ou tpu t . wr i te ( l ine)
p r in t ( ' J o b  i s  done. Please,  check your r e su l t s  Vn' )

f in  = open(y, "r+") 
data= f in .  r ead ()
data= d a ta . r e p l a c e ( 1 step durat ion time power keff flux ave.nu ave.q 

burnup source ' ,  'Step Duration Time Power keff Flux ave.M 
ave.q Burnup Source')

data= d a ta . r e p l a c e ( 1(days)(days)(MW)(GWd/MTU)(nts/sec)’ , 'Days Days 
Mtf(Gwd/HTU)(nts/sec)' ) 

i f  d a t a :
p r i n t ('The job is  done \ n 1) 
else :
p r i n t ( ' error  ocurred \ n 1) 
f i n . close ()

# save headers replacements by overwriting the same text  f i l e  

fin= open(y, ' wt ' )

# overwrite the f in a l  data and close f i l e ,  
f i n .wri te(data)
f in . c lo se O
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