Automated Translation of Digital Logic Equations into Optimized VHDL code

John Evan Stark
George Winston Zobrist
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports
Part of the Computer Sciences Commons

Recommended Citation

Stark, John Evan and Zobrist, George Winston, "Automated Translation of Digital Logic Equations into Optimized VHDL code" (1989). Computer Science Technical Reports. 70.
https://scholarsmine.mst.edu/comsci_techreports/70

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

AUTOMATED TRANGLATION OF DIGITAL LOGIC

EQUATIONS INTO OPTIMIZED VHDL CODE

J. E. Stark* and G. W. Zobrist

CSc-89-2

Department of Computer Science University of Missouri-Rolla Rolla, Missouri 65401 (314)341-4491
*This report is substantially the M.S. thesis of the first author, completed May, 1989.

Abstract

It was desired to develop an algorithm for the automated translation of finite state machines from state table form to optimized VIIDI form. To do this, algorithms are needed for reducing the state machine to simplest form, making state assigmments, producing minimal logic equations to represent the state machine, and producing VIIDI, code which describes the intended circuit. Various such algorithms were examined and a prototype program written to perform this translation.

TABLE OF CONTENTS

Page

ABSTRACT ii
ACKNOWLIEDGEMENT iii
LIST OI ILLUSTRATIONS vi
I. INTRODUCTION 1
II. FROM STATE TABLE TO LOGIC EQUATIONS 3
A. STATE TABLE SIMPLIFICATION 3

1. Removal of Unreachable States \downarrow
2. Removal of Equivalent States \downarrow
a. Implication Tables 6
b. Equivalence Sets 7
B. STATE ASSIGNMENT 8
C. KARNAUGII MAP PRODUCTION 9
D. LOGIC EQUATION PRODUCTION 12
3. Quine/McCluskey Mcthod 12
4. Prather Method. 1.4
5. Implicant Table Reduction 15
III. VIIDL DESCRIPTION OF FINITE STATE MACHINES 19
IV. CONCLUSIONS 21
BIBLIOGRAPHY 22
VITA 24
APPENDICES
A. VIIIII. 2.5
B. I'unctional Flow Diagram 27
C. VIIDL Template File 32
D. Sample Output 35
E. Meg Output Comparison 79

LIST OF ILLUSTRATIONS

Figure
 Page

1 Sequential Network . 1
2 Transition Diagram and State Table . 3
3 Algorithm for Removal of Unreachable States 4
4 Liquivalent State Removal . 5
5 Algorithm for Removal of Equivalent States by Implication Table. 6
6 Algorithm for Removal of Equivalent States by Equivalence Sets. 7
7 Karnaugh Maps . 9
8 Algorithm for each Karnaugh Map Production 11
9 Logic Equation Production . 13
10 Algorithm for Quine/McCluskey Method . 14
11 Algorithm for Prather Method . 16
12 Algorithm for Implicant Table Reduction . 17
13 Algorithm for Producing VIIDL Description 20
14 Functional Flow Diagram . 28

I. INTRODUCTION

A finite state machine is a model of a sequential logic network. The term sequential indicates that its outputs are dependent not just on its current inputs but also on past inputs. Therefore, a history of inputs must be kept. This is accomplished by use of a memory. Rather than attempt to keep track of all past inputs, a finite number of states are used, each of which represents a set of equivalent input histories. Each input causes the machine to either enter a new state or stay in the same state, and may affect the machine's output. An electrical circuit for a finite state machine includes inputs, a combinational logic part, a memory, and outputs as shown in figure 1.

Figure 1. Sequential Network

VIIDL is a hardware description language intended for the design, description, and simulation of electrical hardware systems and components. The description of an object is in two parts, an interface and an architecture. This allows for separation of function and implementation. For versatility, objects can be described by behavior,
structure, data flow, or any combination of the three architectures [13, 14]. See appendix A for a more detailed description.

The intent of this research was to provide for high level design of of electronic circuits using the finite state machine model. High level design relieves concerns for lower level details, allowing the designer to concentrate on the purpose of the design and reducing error.

Only completely specified, synchronous, single input'/single output machines were considered for the translation from state table to VIIDL form. A prototype program, FSM, to perform this translation was written using Pascal on an IBM PC [10]. The following sections outline algorithms available and identify those used for the prototype program. Complete examples of the process of translating a state table to logic equations is given in appendix D.

Input for the prototype program, read from a file, includes a short (80 character) description of the finite state machine, the number of states in the machine, and the state transitions pairs. Each transition is specificd by its next state and associated output. Since only completely specified single input/single output machines are considered, there are exactly two transitions for each state. States are assumed to be numbered sequentially starting with zero which is assumed to be the initial state. Additional input accepted directly from the user consists of the name the finite state machine is to be given in the VHDL code, the name of the file containing the state transitions, the name of the file to which the VHDL code is to be written, the type of fliplop to use and its delay time, and the implementation of the combinationat logic and its delay.

II. FROM STATE TABLE TO LOGIC EQUATIONS

A. STATE TABLE SIMPLIFICATION

A state table is a tabular description of a transition diagram listing the transitions from each state and the outputs produced either at the state (a Moore machine) or on transition to the next states (a Mealy machine--used by FSM, the prototype program) [3]. Figure 2 shows a transition diagram and corresponding state table for a finite state machine.

Q	$Q+$	Z		
	$x=0$	1	$x=0$	1
0	0	1	0	0
1	2	1	0	0
2	0	1	0	1

Figure 2. Transition Diagram and State Table

Reducing the number of states in a state machine can reduce the number of memory elements needed to represent the states of the machine and help minimize the combinational logic used to determine the machine's outputs and next states. The number of memory elements required to represent n machine states is the ceiling of $\log _{2} n$. Having fewer states than the maximum a set of memory elements could represent introduces don't-care terms into the logic, possibly simplifying it.

To reduce a state table to its simplest form, unnecessary states must be removed. These include redundant, unreachable. and equivalent states. As redundant states are a subset of equivalent states, they need not be considered separately although
algorithms exist for their removal. Unreachable states however can only be equivalent to other unreachable states and must therefore be handled scparately.

1. Removal of Unreachable States. Unreachable states are identified by forming the set of reachable states [4]. Initially, the only known reachable state, the initial state, is the sole member of this set. Then, in an iterative process, the next states of each member of the reachable set are added to the set if they are not already members. When no states are added on a pass, the set is complete. Any states not in the set are unreachable and are removed from the state table. References to these unreachable states as next states of reachable states need not be considered in this removal as there can be none.
```
Insert (Initial_State, Reachable_Set)
until No_States_Added
    No_States_Added := true
    for each Next_State of each State in Reachable_Set
        if Current_Next_State not in Reachable_Set
            Insert (C\overline{urrent_Next_State, Reachable__Set)}
            No_States_Added := false
        end if
    end for
end until
for each State in State_Table
    if Current_State not in Reachable_Set
        Remove (Current_State, State_Table)
    end if
end for
```

Figure 3. Algorithm for Removal of Unreachable States
2. Removal of Equivalent States. Equivalent states can be identified by use of equivalence sets [1] or an implication table [3, 8]. In either case all states are at first considered to be equivalent and equivalences are then ruled out. When the equivalent states of the state table have been found, all but one of the states in cach group of equivalent states are removed from the state table; in effect they are merged into one.

Q		Q+		z	
	$\mathrm{X}=0$	1	$\mathrm{X}=0$	1	
0	1	7	0	0	
1	7	0	0	1	
2	8	7	0	1	
3	7	4	0	1	
4	3	2	0	0	
7	3	7	0	1	
8	2	0	0	1	

a) state table after removal of unreachable states

b) implication table

$$
\left.\begin{array}{ll}
1=\left\{\begin{array}{ll}
0 & 4 \\
2222
\end{array}\right\} & 11=\left\{\begin{array}{ccccc}
1 & 2 & 3 & 7 & 8 \\
21 & 22 & 21 & 22 & 21
\end{array}\right\} \\
1=\left\{\begin{array}{lll}
0 & 4 \\
23 & 23
\end{array}\right\} & 11=\left\{\begin{array}{llll}
1 & 3 & 8
\end{array}\right\} \quad 111=\left\{\begin{array}{ll}
2 & 7 \\
3 & 7
\end{array}\right\}
\end{array}\right\}
$$

c) equivalence sets

c	a^{2}		z	
	$x=0$	1	$x=0$	1
0	1	2	0	0
1	2	0	0	1
2	1	2	0	1

d) with equivalent states removed

Figure 4. Equivalent State Removal

To preserve the integrity of the state table, all references to removed states as next states are replaced by the id of the state kept.
a. Implication Tables. With an implication table (figure 4b), one entry exists for each possible pairing of states, without respect to order and excluding the pairing of a state with itself. An entry is marked when its pair of states is known not to be equivalent. The first of these marks are placed on the basis of differing outputs of the states' transitions, as states with differing outputs cannot be equivalent. The remaining entries are then checked in repeated passes of the table on the basis of the next states of each entry's pair of states. If the next states to be taken on a particular input for an entry's states have been found to be not equivalent, that entry's pair of states are not equivalent and it is marked. When a pass yields no additional marks, the remaining unmarked entries indicate equivalent states.

```
for each State in State_Table except last (Current_)
    for each State in State_Table beyond Current_State (Check_)
        if Check_State.Outputs # Current_State.Outputs
            Table_Entry[Current_State, Check_State] := marked
        end if
    end for
end for
until No_Changes
    No_Changes := true
    for each State in State_Table except last (Current_)
        for each State in State_Table beyond Current_State (Check_)
            for each Input_Combination
            if Table_Entry[Current_State^Next_State[Input_Combination],
                    Current_State+Next_State[Input_Combination]] is marked
                    Table_Entry[Current_State, Check_State] := marked
                    No_Change := false
            end if
        end for
    end for
end until
```

Figure 5. Agorithm for Removal of Iquivalent States by Implication Table.
b. Equivalence Sets. When using equivalence sets (figure 4c), the states are first divided into separate sets according to the outputs of their transitions to next states. For the iterative part of this process, the states in each set are assigned a subscript for each transition indicating the set of which the transition's terminal state is a member. Each set is then broken down further into new sets for which the subscripts of all member states match. This is repeated, assigning new subscripts and dividing sets, until no more sets can be created. At this time, each set contains only equivalent states.

```
for each State in State_Table
    for each Equivalence_Set
            if Current State.Outputs = Current_Set.Specs
            Insert (Current_State, Current_Set)
            end if
    end for
end for
until No_New_Sets
    No_New_Sets := trua
    for each Input_Combination of each State of each Equivalence_Set
            for each Equivalence_Set (Current_)
                if Current_StatafNext_State[Current_Input_Combination] in Current_Set
                    Current_State.Subscript[Input_Combination] := Current_Set.ID
            end if
            end for
    end for
    for each Equivalence_Set with Cardinality > 1
            for each State in Current_Set beyond first
                if Current_State.Subscripts f First_State.Subscripts
                Remove (Current_State, Current_Sēt)
                Inserted := false
                for each New_Set split from Current_Set
                    if Current_State.Subscripts = New_Set.Specs
                    Insert (Current_State, Current_New_Set)
                    Inserted := true
                    end if
                end for
                if not Inserted
                    Create (New_Set)
                    Insert (Current_State, New_Set)
                end if
            end if
            end for
    and for
and until
```

Ïgure 6. Algorithm for Removal of Iquivalent States by liquivalence Sets.

The use of equivalent sets was chosen over an equivalence table for the prototype program because the data structure grows less quickly. With n states in a machine, there will be exactly n entries in at most n equivalence sets while an implication table would have n^{2} entrics with $\frac{\left(n^{2}-n\right)}{2}$ entries used.

B. STATE ASSIGNMENT

In the circuit implementation of a finite state machine, each state is represented by a binary n-tuple which is a concatenation of the values of the memory elements when the machine is in that state, n being the number of memory elements. The choice of these n-tuples, or state assignments, can affect the minimization of the combinational logic part of the circuit. For a given machine there are 2^{n} possible state assignments. Story [12] gives the number of possible combinations of assignments as

$$
\frac{\left(2^{n}-1\right)!}{\left(2^{n}-R\right)!n!}
$$

where R is the number of states in the machine. Thus as the number of states grows large, the number of possible state assignments and their possible combinations grows very large.

Currently, there is no method for determining an optimal state assignment without comparing the results of assignments through trial and error. Story $|11|$ does offer a method of reducing the number of assignments which need to be checked. His approach produces optimum combinations of state assignment columns. The number of distinct columns which need to be considered is

$$
\frac{1}{2} \sum_{i=R-2^{n}!}^{2^{n+1}}\binom{R}{i}
$$

which still grows quickly. The prototype program uses the natural assignment method which consists of numbering the states sequentially starting with zero.

C. KARNAUGH MAP PRODUCTION

Karnaugh map representations of the machine outputs and next state signals are created to help in the production of the logic equations [3, 8]. Two maps are required for each JK or RS flipflop, or one for each D flipflop, and one is required for each state machine output. Figure 7 shows the production of I and K maps for one memory element of a finite state machine.

Figure 7. Karnaugh Maps

Story [12] gave formulas for linding on-cells and don't-care-cells lor the Karnaugh maps for JK flipflops:

$$
\begin{gather*}
J=\sum_{j=0}^{R-1}\left(1-y_{j}\right) Q_{j} \sum_{i=0}^{2^{m}} y_{j i}^{+} X_{i}+d\left[\sum_{j=0}^{R-1} y_{j} Q_{j}+\sum_{j=R}^{2^{n}} Q_{j}\right] \tag{1}\\
K=\sum_{j=0}^{R-1} y_{j} Q_{j} \sum_{i=0}^{2^{m}}\left(1-y_{j i}^{+}\right) X_{i}+d\left[\sum_{j=0}^{R-1}\left(1-y_{j}\right) Q_{j}+\sum_{j=R}^{2^{n}} Q_{j}\right] \tag{2}
\end{gather*}
$$

In the equations, j is the state table row index, i is the input index, R is the number of states, n is the number of flipflops, m is the number of inputs. Where Story used r and W, y and y^{+}represent the current and next state values of the flipflop; QX (rather than SX used by Story) represents the cell number of the map (a concatenation of machine state and input), Q represents a grouping of cell numbers (two cells for a single input machine) for unused states when the input values do not matter, and d (Story uses 0.5) indicates don't-care-cells. The formulas simply define the maps. The summations can be thought of as listings of map cells; the multiplication of two summations as their intersection. For example, the equation for the Karnaugh map of the set signal of a JK flipflop specifies that the on-cells are those in which the current value of the flipflop y is 0 and the next value y^{+}is to be 1 . The don't-care-cells are specified as those for which the values of both y and y^{+}are 1 and all those for unused states. Formulas for RS and D flipflops can be written similarly:

$$
\begin{gather*}
S=\sum_{j=0}^{R-1}\left(1-y_{j}\right) Q_{j} \sum_{i=0}^{2^{m}} y_{j i}^{+} X_{i}+d\left[\sum_{j=0}^{R-1} y_{j} Q_{j} \sum_{i=0}^{2^{m}} y_{j i}^{+} X_{i}+\sum_{j=R}^{2^{n}} Q_{j}\right] \tag{3}\\
R=\sum_{j=0}^{R-1} y_{j} Q_{j} \sum_{i=0}^{2^{m}}\left(1-y_{j i}^{+}\right) X_{i}+d\left[\sum_{j=0}^{R-1}\left(1-y_{j}\right) Q_{j} \sum_{i=0}^{2^{m}}\left(1-y_{j i}^{+}\right) X_{i}+\sum_{j=R}^{2^{n}} Q_{j}\right] \tag{4}\\
D)=\sum_{j=0}^{R-1} Q_{j} \sum_{i=0}^{2^{m}} y_{l}^{\prime} \cdot X_{i}+d \sum_{j=K}^{2^{n}} Q_{j} \tag{5}
\end{gather*}
$$

The type of memory element chosen for a circuit can also affect the minimization of the combinational logic part of the circuit. The only method of determining which type will yield minimal results is trial and error. There are however only a limited number of common types available.

```
for each FlipFlop
    Mask := 2 ** *(Current_FlipFlop)
    for each Input_Combination of each State in State_Table
        Cell_ID := 2 ** #(Inputs) * Current_Input_Combination
        Y_Current := RShift (Current_State.ID and Mask, #(Current_FlipFlop))
        Y_Next := RShift (Current_StatefNext_State[Input_Combination] and Mask,
                        #(Current_FlipFlop))
        select (Y_Current i: Y_Next)
            case '00': Insert (Current KMap, Cell_ID, don't_care)
            case '01': Insert (Current_MMap, Cell_ID, on)
                                Insert (Current_KMap, Cell_ID, don't_care)
            case '10': Insert (Current_JMap, Cell_ID, don't_care)
                Insert (Current_KMap, Cell_ID, on)
            case '11': Insert (Current_JMap, Cell_ID, don't_care)
        end select
    end for
    for each Input_Combination of each unused State_Assignment
        Cell.ID := 2 %* (Inputs) Current_State.ID + Current_Input_Combination
        Insert (Current_JMap, Cell_ID, don't_care)
        Insert (Current_KMap, Cell_ID, don't_care)
    end for
end for
for each Output
    for each Input_Combination of each State in State_Table
        Cell_ID := 2 ** #(Inputs) * Current_State.ID + Current_Input_Combination
        Mask := 2 ** #(Current_Output)
        if Current_State.Output[Input_Combination] and Mask \not=0
            Insert (Current_Output_Map, Cell_ID, on)
        end if
    end for
    for each Input_Combination of each urused State_Assignment
        Cell_ID := 2 ** #(Inputs) * Current_State.ID + Current_Input_Combination
        Insert (Current_Output_Map, Cell_ID, don't_care)
    end for
end for
```

Figure 8. Algorithm for each Karnaugh Map Production

The decision of which type of 型flop to use in the VIIDI. description is left to the user of the program, as other factors than just minimization may be relevant. No provision is made for mixing flipfop types in a single machine circuit. The prototype program can produce VIIDL descriptions using JK, KS, or I) type llipflops. Maps are
represented internally by a list of on-cells and a list of don't-care-cells. All cells not listed are off.

D. LOGIC EQUATION PRODUCTION

It is desirable that the logic equations describing a finite state machine have both a minimal number of gates and a minimal number of gate levels. Decreasing the number of gates decreases production costs while decreasing the number of gate levels increases speed of operation. Toward these goals the prototype program produccs minimal two-level sum of products equations (disjunctive normal form) using only NOT, AND, and OR operations.

Two procedures were considered for the production of equations, the Quine/McCluskey and Prather Methods. Both start with the individual cells of the Karnaugh map and seek to combine them into the largest possible groupings. Larger cell groups can be represented in the equation by fewer terms with fewer literals, decreasing the number of gates and gate inputs necessary in the implementation of the circuit.

1. Quine/McCluskey Method. The standard procedure for producing logic equations from Karnaugh maps is the Quine/McCluskey method [5, 7] (figure 9b). With this method a list of the on-cells and don't-care-cells of the map, called implicants, is made. They are grouped according to the number of 1 bits in their binary representations. Each implicant in each group is then combined with as many implicants in the following group (those implicants with one more I bit) as possible, forming new implicants which are grouped separately, again according to numitur oi I bits. The process is repeated with cach list of new implicants until no more combinations are possible.

Figure 9. I.ogic Equation Production

An implicant may be combined with another if their binary representations match in all but one position (e.g. 0010 and 0110). The bit position in which the two differ is replaced by a don't-care-symbol (e.g. 0-10 or 0×10). In combinations involving implicants with don't-care positions, the don't-care positions must match exactly in both implicants (e.g. 0-10 and 0-11). The implicants which were combined to form new implicants are marked as such. When no new implicants can be formed, an implicant table is made from the implicants which have not been marked. Reduction of an implicant table to form an equation is explained below.

```
for each Map
    for each On_Cell and each Don't_Cara_Cell of Map
        18its := \overline{1Bit_Count (*(Cur_Cell))}
        Insert (Cur_Cell, Imp_Group[1Bits])
    end for
    Cur_Imp_List := 1st_Imp_List
    until No_Combinations
        for each Implicant of each Imp_Group except last of Cur_Imp_List
            No_Combinations := true
            for each Implicant of Next Imp_Group
                if Check_Implicant can combine with Current_Implicant
                New_Implicant := Combine (Check_Implicant, Current_Implicant)
                Insert (New_Implicant, New_Implicant_Group[Current_Group_1Bits])
                Mark (Curreñt_Implicant_Group)
                No_Combinations := false
            end if
            end for
        end for
        Current_Implicant_List := New_Implicant_List
    end until
    for each Implicant of each Implicant_List
        if Current_Implicant not marked
            Insert (Current_Implicant, Implicant_Table)
        end if
    end for
end for
```

Figure 10. Algorithm for Quine/McCluskey Method
2. Prather Method.. A modification of the Quine/McCluskey method was given by Prather [6] (figure 9c). This technique identifies essential cells (prime implicants) by attempting to complete for each on-cell of the Karnaugh map the n-cell indicated
by adjacent on-cells and don't-care cells. If this n-cell can be completed, it is essential to the equation. If not, then the basic (nonessential) cells which cover the cell in question can be found by attempting to complete the n-cell without one or more of the original adjacent cells. First all essential n-cells are found and the cells they cover marked. Then all basic cells are found for those on-cells not yet covered and used to form an implicant table which is reduced in the manner explained below.

An n-cell is completed by checking to see if all the necessary cells are either on or don't-care. The on-cells and don't-care-cells adjacent to the cell to be covered are identified first. The number of these adjacent cells indicates the size of the n-cell and, as a power of two, the number of individual map cells covered (e.g. three adjacent cells indicate a 3 -cell covering eight map cells, zero indicates a 0 -cell covering one map cell). The next group of cells are identified by adding the delta (adjacent cell id minus original cell id) of each cell in the current group of the n-cell to cach of the following adjacent cells. New groups of cells are found until one contains only a single map cell at which time the n -cell is complete, or until an indicated map cell is neither an on-cell nor a don't-care-cell. If the n-cell cannot be completed, an attempt to find basic cells can be made by omitting each of the original adjacent cells, one at a time, whose delta was involved in identifying the cell which failed to compete the n-cell.

The Prather method was the method chosen for the prototype program because it works at the integer level when dealing with cell id's rather than at the bit level. With the Prather method there is no need to count the bits in binary representations or check that all but one bit position of two numbers match.
3. implicant lable Reduction. The rows of an implicamt table are the implicants arranged so that priority is given to the number of on-cells covered and the number of don't-care positions (indicating fewer literals and thus fewer gate inputs). The

```
Find_1st_Group (Cell_To_Cover, NCell)
    for each Cell adjacent to Cell_To_Cover
        if Current_Cell is On or Don't_Care
            Insert (Current_Cell, 1st_Gröup)
        end if
    end for
end Find_lst_Group
Complete_NCell (Cell_To_Cover, NCell)
    Current_Group := 15t_Group
    until Current_Group has only one Cell or Failure
        Failure := false
        for each Cell in Current_Group except last (Current_)
            for each Cell following Current_Cell in Current_Group (Check_)
                    Indicated_Cell := Map_Cell[Check_Cell_ID + Current_Cell.Delta]
                    if Indicated_Cell is On or Don't_Care
                    Insert (Indicated_Cell, Next_Group)
                    else
                    Failure := true
                    Delta_History := Indicated_Cell_ID - Cell_TO_Cover_ID
                    end if
            end for
        end for
        Current_Group := Next_Group
    end until
    if Failure
        return (Delta_History)
end Complete_NCell
Find_Basic_Cells (NCell)
    Complete_NCell (Cell_To_Cover, 1st_Group, Delta_History)
    if Complete
        Insert (Implicant, Implicant_Table)
    else
        for each Delta in Delta_History
            Remove (Cell[Delta], lst_Group)
            Complete_NCell (Cell_To_Cover, 1st_Group, Delta_History)
        end for
    end if
end Find_Basic_Cells
for each Map
    for each On_Cell in Map
        Find_1st_Group (Current_On_Cell, NCell)
        Complete_NCell (Current_On_Cell, NCell)
        if Complete
            Insert (Term (Min_Cell (NCell), Max_Cell (NCell)), Associated_Equation)
            Mark (Current_On_C्ell)
        end if
    end for
    for each On_Cell not marked in Map
        Find_lst_G_Goup (Current_On_Cell, NCell)
        Find_Basic_Cells (Current_On_Cell, NCell)
    end for
end for
```

Figure 11. Algorithm for Prather Method
columns of the implicant table are labeled by the on-cells of the map. Entries of a row which are in columns that represent on-cells covered by that row's implicant are marked

```
until Implicant_Table is empty
    sort Implicant_Table by Cell_Size within Columns_Covered
    for each Implicant in Implicant Table (Current_)
        for each Implicant in Implicant_Table beyond Current_Implicant (Check_)
            if Current Implicant dominates Check_Implicant
            Remove (Check_Implicant, Implicant_Table)
        end if
        end for
    end for
    Reduced := false
    for each Implicant in Implicant_Table
        if Current_Implicant alone covers a Column
            for each Column covered by Current_Implicant (Delete_)
                Remove (Delete_Column, Implicant_Table)
            end for
                Remove (Current_Implicant, Implicant_Table)
                Reduced := true
        end if
    end for
    if not Reduced
        Count := (Implicants)
        for each Column in Implicant_Table
            if *(Implicants covering Current_Column) < Count
                    Count := #(Implicants covering Current_Column)
                    Select_Column := Current_Column
            end if
        end for
        for each Implicant in Implicant_Table until Reduced
            if Current_Implicant covers Select_Column
            for each Column covered by Current Implicant
                Remove (Current_Column, Implicant_Table)
            end for
            Remove (Current Implicant, Implicant_Table)
            Reduced := true
        end if
        end for
    end if
end until
```

Figure 12. Algorithm for Implicant Table Reduction

A prime implicant is one which alone covers an on-cell (is the only implicant with an entry in that column marked before any reduction is done). Prime implicants ane essential to the equation and are removed from the table along with the columns they
cover and become the basis of the equation. All remaining columns are now covered by two or more implicants. With the Prather method prime implicants (essential cells) are recognized upon completion and not added to the implicant table but directly become a term of the equation.

If an implicant is dominated, it may be removed from the table without effect. One implicant dominates another if, for every column covered by the second, the first also covers that column. If two implicants dominate cach other and one has fewer don't-care positions, it should be the one removed; otherwise the decision is arbitrary. If removing dominance from the table leaves columns which are covered by only one remaining implicant, those implicants should be selected--removed from the table along with the columns they cover and added to the equation. If no columns are covered by only one remaining implicant, then an implicant must be chosen by another method. Normally the implicant chosen is the one highest in the table covering a column having the least number of implicants covering it. The process of removing dominance and chosing implicants is repeated until the implicant table is empty. While the now complete equation may not be unique, it is minimal.

III. VHDL DESCRIPTION OF FINITE STATE MACHINES

As mentioned before, the circuit implementation of a finite state machine consists of inputs, outputs, a memory, and a combinational logic part. In a VIIDI description of this circuit the inputs and outputs make up the entity declaration part, its interface. The memory and the combinational logic are defined by an the entity's architecture, the body of the description. The memory will be represented by flipflops for which standard, predefined descriptions exist that can be used. The combination logic part can be constructed from either discrete gates or a programmable logic array. If VHDL's behavioral type of description is used, the only difference is the number of inputs as a PLA does not require negated inputs. Thus the description of a finite state machine can be standardized, requiring only information concerning the number of inputs, outputs, and memory elements, and the necessary logic equations.

The VHDL code description of the state machine is produced with the use of a template file (appendix C) containing markers indicating where machine specific information is needed. Markers in the template are set off from the code by brackets. When, in copying the VHDL code file from the template to the output file, a marker is found, it is identified and replaced by the appropriate substitution string. Substitution strings, with the exception of the actual logic equations, are determined from parameters prior to writing the VHDL code file. The logic equations are formulated from their internal representation and written when the logic marker is found.

The prototype translation program produces two files as output. One is a trace of its operation including the initial state table, simplified state tables, Karnaugh map representations, essential cells and implicant tabies for those equations with nonessential cells, complete equations, and timing of operation. The other file is the VIIDL source code description of the finite state machine, a combination of structural

```
Set_Substitutions (Parameters)
Read (Text)
for each Marker in Text
    Replace (Current_Marker, Substitution_String[Current_Marker])
end for
Write (Text)
```

Figure 13. Algorithm for Producing VIIDI. Description
and behavioral descriptions. VIIDL version 7.2 was used for this filc. Syntax was checked for correctness with the VIIDL Analyzer. Sample output for these files can be found in appendix D.

IV. CONCLUSIONS

The logic equations for the the finite state machines in the examples shown in appendix I) were checked for correctness and if from a text, compared to the solution given where possible. The example solutions were also compared (see appendix I) with the output of Meg [9], a state machine equation generator.

The VHDL output file can be used as a source file for simulation or simply as a circuit description. The output of four of the examples in appendix D (examples 1,5, 6, and 7) were run with the 1076/B VIIDL Simulator. As the original VIIDL code was version 7.2 , some minor changes were required to make the machines run. They did, however, perform as expected.

Following are some possible extensions to the program. Λ graphical finite state machine editor used as an input interface would make input easier for the designer. The handling of asynchronous, multi-input/'multi-output, and incompletely specified state machines would make the program more realistic in terms of use. Version 7.2 of VIIDL was used for the prototype program as that was the latest version of the analyser available. The most recent version would be desired for actual use. Also, standard library components for the flipflops would make the designs more compatible with existing systems and allow greater device independence. The examination of various state assignments would ensure that the final logic equations were indeed the minimal possible. Interfacing the VIIDI with EDIF [2] would allow for a standard graphical representation of the electrical circuit.

BIBLIOGRAPHY

1. Dietmeyer, Donald L. "Synchronous Sequential Networks", in Logic Design of Digital Systems. Allyn and Bacon, Inc., 2nd cd., 1978.
2. EDIF Electronic Design Interchange Format. Electronic Industrics Association, Ver. 20 0, May 1987.
3. Hill, Fredrick J. and Gerald R. Peterson. Introduction to Switching Theory and Logical Design. John Wilcy and Sons, 3rd ed., 1981, pp. 96-337.
4. Hopcroft, John E. and Jeffrey D. Ullman. "Simplification of Context-Free Grammars", in Introduction to Automata Theory, Languages, and Computation. Addison-Wessley Publishing Company, 1979.
5. McCluskey, Jr., E. J. "Minimization of Boolean Functions", The Bell System Technical Journal. Vol. 35, November 1956, pp. 1417-1444.
6. Prather, Ronald. "Computational Aids for Determining the Minimal Form of a Truth Function", Journal of the Association for Computing Machinery. Vol. 7, No. 4, October 1960, pp. 299-310.
7. Quine, W. V. "The Problem of Simplifying Truth Functions", The American Mathematical Monthly. Vol. 59, No. 8, October 1952, pp. 521-531.
8. Roth, Charles II. Fundamentals of Logic Design. West Publishing Company, 2nd ed.. 1979, pp. 221-349.
 California, 1986 ed., December 1985.
9. Stark, John Evan. "FSM, Source listing", Internal Report, University of Missouri - Rolla, 1989.
10. Story, James R. "State Assignment Optimization for Synchronous Sequential Machincs", Ph.D. disscrtation, University of Alabama, Tuscaloosa, May 1971.
11. Story, James R. ct. al. "Optimum State Assignment for Synchronous Sequential Circuits", IEEE Transactions on Computers. Vol. C-21, No. 12, December 1972, pp. 1365-1373.
12. VHDL Language Reference Manual. Intermetrics, Inc., Ver. 7.2, August 198.5.
13. VHDL Language Reference Manual. CAD Language Systems, Inc., Ver. 1076, B, May 1987.

VITA

John Evan Stark (born January 20, 1965) attended secondary school in Chillicothe, Missouri, graduating in May 1983. He received a Bachelor of Science degree in Computer Science from Northeast Missouri State University in May 1987. He is currently a candidate for a Master of Science degree in Computer Science at the University of Missouri - Rolla, working as a graduate research assistant. While in school, he has been active in the local chapters of the Λ ssociation for Computing Machinery and Kappa Mu Epsilon, an honorary mathematics society.

APPENDIX A

VHDL

VHIDI. (VIISIC: I Iardware Description Language) [13, 14] is a language that can be used for the design, description, and simulation of electrical systems and components. An entity is the basic design unit. It can be any object from a simple gate to an entire electrical system. Each entity description is composed of two parts, its interface and its architecturc. More than one architecture for an entity, which share a single interface, can exist to allow for multiple descriptions of that entity.

The interface of an entity defines its inputs and outputs, both physical and logical, by direction and data type. Directions include in, out, bi-directional, buffered, and unknown. Data types can be standard predefined types (bit, boolean, integer, real, character) or user-defined types. Logical inputs, called generics, allow a single entity to model several identical and yet unique components of a design (e.g. the ROM chips of a memory board). The interface of an entity can also declare items visible only within the entity (c.g. data types, constants, subprograms).

An architecture is identified by its own name as well as by the name of the entity which it describes. The body of each architecture has a declarative part and a statement part. An entity can be described using one or more of three styles provided: structural, data-flow, and behavioral. Structural descriptions give a hierarchical arrangement of components, each of which is itself an entity with its own interface and architecture. Data-now descriptions list concurrent signal assignments which represent the flow of data through the entity. Bchavioral descriptions use sequential processes, similar to high level computer programs, to describe the operation of the entity.

The VIIDL environment includes an analyzer, reverse analyzer, simplifier, simulator, design library, and design library manager. The analyzer checks VIIDI source code for syntactic errors and translates it to an intermediate form which can be stored in the design library for future reference. The reverse analyser can reconstruct the VIIDL code from the intermediate form of a unit in the design library. The simplifier reorganizes the hardware description, binding components to entities in preparation for simulation. The simulator computes successive signal values of a design, called waveforms, in a combination event-driven, continuous fashion. The design library manàger integrates the elements of the VIIDL environment.

APPENDIX B

FUNCTIONAL FLOW DIAGRAM

This appendix contains a functional flow diagram of the prototype program IS.M.

Figure 14. Functional Flow Diagram

Figure 14. Functional Flow Diagram, cont.

Figure 14. Functional Flow Diagram, cont.

Figure 14. Functional Flow Diagram, cont.

APPENDIX C

VHDL TEMPLATE FILE

This appendix contains the template file used by the prototype program in producing the VHDL description of the finite state machinc.

```
entity {Name}
    ( X: in Bit_Vector;
        2: out Bit_vector;
        Clk: in Bit) is
end {Name};
architecture {Arch} of {Name} is
    B1: block
        component [ff}_FlipFlop
            port ({Ctrl} in Bit;
                Q: out Bit;
                Qnot: out Bit;
                Clk: in Bit);
        component [Comb]
            port (Inputs: in Bit_Vector:
                Outputs: out Bit_Vector );
        signal Ycur: Bit_Vector (0 to [FlopIn]);
        signal Ynext: Bit_Vector (0 to {FlopOut});
    begin
        Ycur([FlopInRangel) <= X({InRange]);
        Z([OutRange}) <= Ynext([FlopOutRange]);
        for I in O to [Flop] generate
            Mem: {ff}_FlipFlop
                port ( Y'next({NextI}), {Ctrl2} Ycur({CurI}), {Qnot}, Clk );
        end generate;
        Comb: {Comb}
            port ( Ycur, Ynext );
    end block;
end {Arch};
entity {ff}_FlipFlop
    ( [Ctrl] in Bit;
        Q: out Bit;
        Qnot: out Bit;
        Clk: in Bit) is
end {ff}_FlipFlop;
architecture Behavior of {ff}_FlipFlop is
    B1: block {Guard}
    begin
        P1: process {Sens}
            variable Qhold: static Bit := 'O';
        begin
            if Guard then
                Qhold := {ff_Logic};
                Q<= Qhold after {ff_Time} ns;
                Qnot <= not Ohold after {ff_Time} ns;
            end if;
        end process;
    end block:
end Bahavior;
entity [Comb]
```

```
    ( Imputs: in Bit_Vector;
    Outputs: out Bit_Vector, is
end {Comb];
```

architecture Behavior of [Comb] is

B1: block
begin [Logic]
end block;
end Behavior:

APPENDIX D

SAMPLE OUTPUT

This appendix contains output from sample runs of the prototype program.
detect '101'
initial state table

Q	Q+		2		
	$1 \mathrm{x}=0$	1	\| $\mathrm{X}=$	0	1
0	13	1	10	0	0
1	12	5	10	0	0
2	10	1	10	0	1
3	13	4	10	0	0
4	12	5		0	0
5	16	4	,	0	0
6	10	1	I	0	1

with unreachable states removed

sets of equivalent states

$$
\begin{aligned}
& 1=\left\{\begin{array}{llll}
& 0 & 3 &] \\
3 & =\{ & 1 & 4 \\
5
\end{array}\right] \\
& 2=\left\{\begin{array}{llll}
& 6 & \}
\end{array}\right]
\end{aligned}
$$

minimized state table

0	$0+$		z	
	$1 \mathrm{x}=0$	1	$x=0$	1
0	10	1	0	0
1	12	1	0	0
2	10	1	0	1

Karnaugh maps

Ja 1: 2
dc: $\begin{array}{llll}7 & 6 & 5 & 4\end{array}$
Ka 1: 54
dc: $\begin{array}{llllll}7 & 6 & 3 & 2 & 1 & 0\end{array}$

Jb $\begin{array}{rllll}1: & 5 & 1 & & \\ \text { de: } & 7 & 6 & 3 & 2\end{array}$

Kb 1: 2
dc: $\begin{array}{lllllll}7 & 6 & 5 & 4 & 1 & 0\end{array}$

20 1: 5
de: 76
complete equation
$J a=B X^{\circ}$
complete equation
$K a=1$
complete equation
$J b=x$
complete equation
$K b=X^{\prime}$
complete equation

$$
Z 0=A X
$$

logic equations
$\mathrm{Ja}=\mathrm{BX}{ }^{\prime}$
$K a=1$
$\mathrm{Jb}=\mathrm{x}$
$K b=X$.
$Z O=A X$
elapsed time: 0.66 sec
writing VMDL code file
elapsed time: $\quad 3.52 \mathrm{sec}$

```
entity Detect_101
    C X: in Bit_Vector;
        2: out Bit_Vector;
        Clk: in Bit) is
end Detect_101;
```

architecture PLA_Structure of Detect_101 is
B1: block
component JK FlipFlop
port (J, \bar{K} : in Biti
Q: out Bit;
Qnot: out Bit;
Clk: in Bit);
component Programmable_Logic_Array
port (Inputs: in Bit_Vector;
Qutputs: out Bit_Vector);
signal Ycur: Bit_Vector (0 to 2);
signal Ynext: Bit_Vector (0 to 4);
begin
Ycur(2) <= X(0);
$Z(0)<=Y$ next(4);
for I in 0 to 1 generate
Mem: JK_Flipflop
port (Ynext(2*I), Ynext(2*I+1), Ycur(I), open, Clk);
end generate;
Comb: Programmable_Logic_Array
port (Ycur, Ynext);
end block;
end PLA_Structure;
entity JK_FlipFlop
(J, K: in Bit;
Q: out Bit;
Qnot: out Biti
Clk: in Bit) is
end JK_FlipFlop;
architecture Behavior of JK_FlipFlop is
B1: block (Clk $=\cdot 1$ ' and not Clk'Stable)
begin
P1: process (Guard)
variable Qhold: static Bit $:=0^{\prime}$;
begin
if Guard then
Qhold : = (J and not Qhold) or (not K and Qhold);
$Q<=$ Ohold after 50 ns ;
Qnot < $=$ not Qhold after 50 ns ;
end if:
end process:
end block:
end Behavior;
entity Programmable_Logic_Array

C Inputs: in Bit_Vector;
Outputs: out Bit_Vector, is
end Programmable_Logic_Array;
architecture Behavior of Programmable_Logic_Array is
B1: block
begin
Outputs(0) <= Inputs(1) and not Inputs(2) after 40 ns ;
Outputs(1) <= 1;
Outputs(2) <= Inputs(2) after 40 ns;
Outputs(3) < not Inputs(2) after 40 ns ;
Outputs(4) < Inputs(0) and Inputs(2) after 40 ns ; end block;
end Behavior:

Dietmeyer, p313 M3

initial state table

Q	Q+		z		
	$1 \mathrm{x}=0$	1	$1 \times=$	0	1
0	12	2	I	0	0
1	10	0	I	0	1
2	15	3	1	0	0
3	11	1	I	0	0
4	10	0	1	0	0
5	14	1	1	0	0
6	14	3	1	0	0
7	15	5	1	0	0

with unreachable states removed

sets of equivalent states

$1=1$	0
$6=1$	4
$5=1$	2
$3=1$	3
$4=1$	5
$2=$ \{	1

minimized state table

0	Q+			z		
	$1 \mathrm{x}=$	0	1	\| $\mathrm{x}=$	0	1
0	1	2	2	10	0	0
1	1	0	0	10	0	1
2	1	5	3	10	0	0
3	1	1	1	1	0	0
4	1	0	0	1	0	0
5	I	4	1	1	0	0

```
Karnaugh maps
    Ja 1: 4
        dc: 15 14 14 13 12 1% 11 10
    Ka 1: 11 9 8
    dc: }\begin{array}{llllllllllllllll}{15}&{14}&{13}&{12}&{7}&{6}&{5}&{4}&{3}&{2}&{1}&{0}
    Jb 1: 1 0
    dc:
    Kb 1: 7 6 4
    dc:
    lc 1: 5 4
        dc: 15
```

```
    Kc 1: 10 3 2
    dc: 15 14
    20 1: 3
        dc: 15 14, 13 12
complete equation
    Ja}= BC'X'
complete equation
    Ka = C' + X
complete equation
    Jb=A'C'
complete equation
    Kb}=\mp@subsup{X}{}{\prime}+
complete equation
    Jc}=\textrm{B
essential cells
    Kc= = ''B'
implicant table
    implicant | columns covered
-------------+-----------------------
            1--0 | 10
            -0-0 1 10
complete equation
        Kc=AX' + A'B'
complete equation
    ZO = A'B'CX
logic equations
    Ja = BC'X'
    Ka = C' + X
    Jb = A'C'
    Kb}=\mp@subsup{X}{}{\prime}+
    Jc = B
    Kc = AX' + A'B'
    ZO = A'B'CX
elapsed tima: }\quad1.43\textrm{sec
writing VHDL code file
elapsed tima: }\quad4.56\textrm{sec
```

```
entity Dietmeyer_M3
    ( X: in Bit_Vector;
        2: out Bit Vector;
        Clk: in Bit) is
end Dietmeyer_M3;
```

architecture Discrete_Structure of Dietmeyer_M3 is
B1: block
component JK_FlipFlop
port (J,K: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit);
component Discrete_Gates
port (Inputs: in Bit_Vector;
Outputs: out Bit_Vector);
signal Ycur: Bit_Vector (0 to 6);
signal Ynext: Bit Vector (0 to 6);
begin
Ycur(6) <= $X(0)$;
$Z(0)<=Y$ next (6);
for I in 0 to 2 generate
Mem: JK_FlipFlop
port (Ynext(2*I), Ynext(2*I+1), Ycur(2*I), Ycur(2*I+1), C1k);
end generate;
Comb: Discrete_Gates
port (Ycur, Ynext);
end block;
end Discrete_Structure;
entity JK_FlipFlop
(J, K: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit) is
end JK_FlipFlop;
architecture Behavior of JK_FlipFlop is
B1: block (Clk = 'l' and not Clk'Stable)
begin
P1: process (Guard)
variable Ohold: static Bit : $=0^{\circ}$;
begin
if Guard then
Qhold : = (J and not Qhold) or (not K and Qhold);
Q <= Qhold after 50 ns ;
Qnot < $=$ not Qhold after 50 ns ;
end if;
end process;
end block;
end Behavior;
(Inputs: in Bit_Vector; Outputs: out Bit_Vector) is end Discrete_Gates;

```
architecture Behavior of Discrete_Gates is
    B1: block
    begin
        Outputs(0) <= Inputs(2) and Inputs(5) and not Inputs(6) after 20 ns;
        Qutputs(1) <= (Inputs(5)) or (Inputs(6)) after 40 ns;
        Outputs(2) <= Inputs(1) and Inputs(5) after 20 ns;
        Outputs(3) <= (not Inputs(6)) or (Inputs(4)) after 40 ns;
        Outputs(4) <= Inputs(2) after 20 ns;
        Outputs(5) <= (Inputs(0) and not Inputs(6)) or (Inputs(1) and Inputs(3)) after 40 ns;
        Outputs(6) <= Inputs(1) and Inputs(3) and Inputs(4) and Inputs(6) after 20 ns;
    end block;
end Behavior;
```

```
Dietmeyer, p316 M44
```

initial state table

with unreachable states removed

0	Q+			Z		
	1		1	\| $\mathrm{X}=$	0	1
0	1	1	2	1	0	0
1	1	3	4	1	0	0
2	1	5	6	1	0	0
3	1	7	8	1	0	0
4	1	9	10	I	0	0
5	1	11	12	1	0	0
6	1	13	14	1	0	0
7	1	0	0	I	0	0
8	1	0	0	1	0	1
9	1	0	0	1	0	1
10	1	0	0	1	0	1
11	1	0	0	1	0	0
12	1	0	0	1	0	1
13	1	0	0	1	0	1
14	1	0	0	1	0	1

sets of equivalent states

$$
\begin{aligned}
& 1=\{ \\
& 8
\end{aligned}=\left\{\begin{array}{llll}
& 0 & \} \\
6 & =\{ & 11 &
\end{array}\right\}
$$

minimized state table

6	1	0	0	1	0	0
7	1	0	0	1	0	1

Karnaugh maps

Sa	$\begin{array}{r} 1: \\ d c: \end{array}$	7 11	$\begin{array}{r} 6 \\ 10 \end{array}$	5	$\begin{aligned} & 3 \\ & 8 \end{aligned}$	
Ra	1:	15	14	13	12	
	dc:	4	2	1	0	
Sb	1:	11	10	9	8	2
	dc:	7	6	4		
Rb	1:	15	14	13	12	5
	dc:	3	0			
Sc	1:	9	8	5	4	0
	dc:	11	10	7	2	
Rc	1:	15	14	6	3	
	dc:	13	12	1		
20		15				
	dc:					

essential cells
$\mathbf{S a}=A^{\prime} B X+A^{\prime} B C$
implicant table

implicant \mid columns covered	
$0-11$	3
-011	3

complete equation
$S a=A^{\prime} C X+A^{\prime} B X+A^{\prime} B C$
complete equation
$\mathbf{R a}=A B$
essential cells
$S b=B^{\prime} C^{\prime} X+A B^{*}$
implicant table
implicant \mid columns covered
$0-10 \mid$
$-010 \mid$
complete equation
$S b=A^{\prime} C X^{\prime}+B^{\prime} C^{\prime} X+A B^{\prime}$
complete equation
$R b=B C^{\prime} X+A B$

```
essential cells
    Sc = AB'
impiicant table
    implicant | columns covered
~------------+-------------------------
        -0-0 1 0
        -0001 0
        0-00 1 0 4
        010-1 4 5
        01-1 | 5
complete equation
    Sc = A'BC' + A'C'无' + AB'
complete equation
    Rc = A'B'X + BCX' + AB
complete equation
    ZO = ABCX
logic equations
    Sa}=\mp@subsup{A}{}{\prime}CX+\mp@subsup{A}{}{\prime}BX+\mp@subsup{A}{}{\prime}B
    Ra=AB
    Sb = A'CX' + B'C'X + AB'
    Rb = BC'X + AB
    Sc = A'BC' + A' C' }\mp@subsup{A}{}{\prime}+A\mp@subsup{B}{}{\prime
    Rc = A'B'X + BCX' + AB
    ZO = ABCX
elapsed time: 2.47 sec
writing VHDL code file
elapsed time: }5.54\textrm{sec
```

```
entity Dietmeyer_M4
    ( X: in Bit_Vector;
        Z: out Bit_vector;
        Clk: in Bit) is
end Dietmeyer_MM;
architecture PLA_Structure of Dietmeyer_M4 is
    B1: block
        component RS_FlipFlop
            port ( S, 友: in Bit;
                Q: out Bit;
                    Qnot: out Bit;
                        Clk: in Bit );
        component Programmable_Logic_Array
            port ( Inputs: in Bit_Vector;
                Qutputs: out Bit_Vector );
        signal Ycur: Bit Vector (0 to 3);
        signal Ynext: Bit_Vector (0 to 6);
    begin
        Ycur(3) <= X(0);
        Z(0) <= Ynext(6);
        for I in 0 to 2 generate
            Mem: RS_FlipFlop
                port (Ynext(2*I), Ynext(2*I+1), Ycur(I), open, Clk );
        end generate;
        Comb: Programmable_Logic_Array
        port ( Ycur, Ynext );
    end block;
end PLA_Structure;
```

```
entity RS_FlipFlop
    ( S, R: in Bit;
        Q: aut Bit;
        Qnot: out Bit;
        Clk: in Bit) is
end RS_FlipFlop;
```

architecture Behavior of RS_FlipFlop is
B1: block
begin
P1: process (R, S)
variable 0hold: static Bit $:=0^{\prime \prime} ;$
begin
if Guard then
Qhold := S or (not R and Qhold);
$Q<=$ Qhold after 50 ns ;
Onot < $=$ not Ohold after 50 ns;
end if;
end process;
end block;
end Behavior;

```
    ( Inputs: in Bit_Vector;
    Outputs: out Bit_Vector ) is
end Programmable_Logic_Array;
architecture Behavior of Programmable_Logic_Array is
    B1: block
    begin
        Outputs(0) <= (not Inputs(0) and Inputs(2) and Inputs(3)) or
(not Inputs(0) and Inputs(1) and Inputs(3)) or
(not Inputs(0) and Inputs(1) and Inputs(2)) after 40 ns;
    Outputs(1) <= Inputs(0) and Inputs(1) after 40 ns;
    Outputs(2) <= (not Inputs(0) and Inputs(2) and not Inputs(3)) or
(not Inputs(1) and not Inputs(2) and Inputs(3)) or (Inputs(0) and not Inputs(1)) after 40 ns;
    Outputs(3) <= (Inputs(1) and not Inputs(2) and Inputs(3)) or
(Inputs(0) and Inputs(1)) after 40 ns;
    Outputs(4) <= (not Inputs(0) and Inputs(1) and not Inputs(2)) or
(not Inputs(0) and not Inputs(2) and not Inputs(3)) or (Inputs(0) and not Inputs(1)) after 40 ns;
    Outputs(5) <= (not Inputs(0) and not Inputs(1) and Inputs(3)) or
(Inputs(1) and Inputs(2) and not Inputs(3)) or (Inputs(0) and Inputs(1)) after 40 ns;
    Outputs(6) <= Inputs(0) and Inputs(1) and Inputs(2) and Inputs(3) after 40 ns;
    end block;
end Behavior;
```

Dietmeyer, p315 M5
initial state table

0	Q+		z		
	\| $\mathrm{X}=0$	1	$1 \mathrm{x}=0$	0	1
0	0	4	1	0	0
1	10	4	1	0	0
2	I	5	1	0	1
3	1	5	1	0	1
4	12	6	1	0	1
5	\| 2	6	1	0	1
6	13	7	1	0	1
7	13	7	I	0	1

with unreachable states removed

Q	$0+$		Z		
	$\mathrm{x}=0$	1	$1 \mathrm{x}=$	0	1
0	10	4	I	0	0
1	10	4	1	0	0
2	1	5	1	0	1
3	1	5	1	0	1
4	12	6	1	0	1
5	\| 2	6	I	0	1
6	13	7	1	0	1
7	13	7	1	0	1

sets of equivalent states

$$
\left.\begin{array}{l}
1=\left\{\begin{array}{lllll}
1 & 0 & 1 & \} \\
2 & =\{ & 2 & 3 & \} \\
3 & =\{ & 4 & 5 & 6
\end{array} 7\right.
\end{array}\right\}
$$

minimized state table

0	Q+		z	
	$x=0$	1	$x=0$	1
0	0	2	0	0
1	0	2	0	1
2	1	2	0	1

Karnaugh maps

$$
\begin{array}{rrrrrrr}
\text { Sa 1: } & 3 & 1 & & & \\
& d c: & 7 & 6 & 5 & \\
\text { Ra } 1: & 4 & & & & \\
& \text { dc: } & 7 & 6 & 2 & 0 & \\
\text { Sb } 1: & 4 & & & & \\
& d c: & 7 & 6 & & & \\
\text { Rb } 1: & 3 & 2 & & & \\
& \text { dc: }: & 7 & 6 & 5 & 1 & 0 \\
\text { Zo } 1: & 5 & 3 & & &
\end{array}
$$

$$
S a=x
$$

```
complete equation
    \(\mathbf{R a}=\mathrm{X}^{\prime}\)
complete equation
    \(\mathrm{Sb}=\mathrm{AX}\).
essential cells
    \(\mathrm{Rb}=0\)
implicant table
    implicant \(\mid\) columns covered
-------------+-------------------1
    0~~ 23
    \(-1-1 \quad 2 \quad 3\)
    \(--1 \mid 3\)
complete equation
```

 \(R b=A^{\prime}\)
 complete equation
$Z O=B X+A X$
logic equations
$\mathrm{Sa}=\mathrm{x}$
$\mathrm{Ra}=\mathrm{X}^{\prime}$
$\mathbf{S b}=A X^{\prime}$
$R b=A^{\prime}$
$Z 0=B X+A X$
elapsed time: 1.16 sec
writing VHDL code file
elapsed time: 4.18 sec

```
entity Dietmeyer MS
    C X: in Bit_Vector;
        Z: out Bit_Vector;
        Clk: in Bit) is
end Dietmeyer_M5;
```

architecture Discrete_Structure of Dietmeyer_M5 is
B1: block
component RS_FlipFlop
port (S, R : in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit);
component Discrete_Gates
port (Inputs: in Bit_Vector;
Outputs: out Bit_Vector);
signal Ycur: Bit_Vector (0 to 4);
signal Ynext: Bit_Vector (0 to 4);
begin
Ycur(4) $<=X(0)$;
$Z(0)<=Y n e x t(4)$;
for I in 0 to 1 generate
Mem: RS_FlipFlop
port (Ynext(2*I), Ynext(2*I+1), Ycur(2*I), Ycur(2*I+1), Cik);
end generate;
Comb: Discrete Gates
port (Ycur, Ynext);
end block;
end Discrete_Structure;
entity RS_FlipFlop
(S, R : in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit) is
end RS_FlipFlop;
architecture Behavior of RS_FlipFlop is
B1: block
begin
P1: process (R, S)
variable Qhold: static Bit $:={ }^{\prime} 0^{\prime} ;$
begin
if Guard then
Qhold : $=S$ or (not R and Qhold);
Q <= Qhold after 50 ns;
Qnot < $=$ not Qhold after 50 ns ;
end if;
and proces5;
end block;
end Behavior;

```
    ( Inputs: in Bit Vector;
    Outputs: out Bit_Vector ) is
end Discrete Gates;
```

architecture Behavior of Discrete_Gates is
B1: block
begin
Outputs(0) <= Inputs(4) after 20 ns;
Outputs(1) <= not Inputs(4) after 20 ns;
Outputs(2) <= Inputs(0) and not Inputs(4) after 20 ns;
Outputs(3) <= Inputs(1) after 20 ns ;
Outputs(4) $<=$ (Inputs(2) and Inputs(4)) or (Inputs(0) and Inputs(4)) after 40 ns;
end block;
end Behavior;

Dietmeyer, p351 5.2-7a

initial state table

0	Q+		2	
	$\mathrm{x}=0$	1	\| $\mathrm{X}=0$	1
0	11	7	10	0
1	7	0	10	1
2	8	7	10	1
3	7	4	10	1
4	13	2	10	0
5	6	7	10	0
6	2	5	10	1
7	3	7	10	1
8	2	0	10	1

with unreachable states removed

sets of equivalent states

$$
\left.\begin{array}{l}
1=\left\{\begin{array}{lll}
1 & 0 & 4 \\
2 & =\{ & 1 \\
3 & 8 \\
3 & =\{ & 2
\end{array}\right]
\end{array}\right\}
$$

minimized state table

Karnaugh maps

Da $\begin{array}{rrrr}1: & 5 & 2 & 1 \\ d c: & 7 & 6 & \end{array}$
Db $\begin{array}{rrr}1: & 4 & 0 \\ d c: & 7 & 6\end{array}$
20 1: $5 \quad 3$
complete equation

```
Da = B'X + BX'
```

complete equation
$D t=B^{\prime} X^{\prime}$

```
complete equation
    ZO = BX + AX
logic equations
    Da = B'X + BX.
    Db = B'X.
    ZO}=BX+A
elapsed time: 0.71 sec
writing VHDL code file
elapsed time: }3.68\textrm{sec
```

```
entity Dietmeyer_A
    (X: in Bit_Vector;
        Z: out Bit_Vector;
        Clk: in Bit) is
end Dietmeyer_A;
architecture PLA_Structure of Dietmeyer_A is
    81: block
        component D_FlipFlop
            port (D: in Bit;
                    Q: out Bit;
                    Qnot: out Bit;
                            Clk: in Bit );
        component Programmable_Logic_Array
            port ( Inputs: in Bit_Vector;
                Outputs: out Bit_Vector);
    signal Ycur: Bit_Vector (0 to 2);
    signal Ynext: Bit_Vector (0 to 2);
    begin
        Ycur(2) <= X(0);
        Z(0) <= Ynext(2);
        for I in 0 to 1 generate
            Mem: D_FlipFlop
                port ( Ynext(I), Ycur(I), open, Clk );
        end generate;
        Comb: Programmable_Logic_Array
            port ( Ycur, Ynext );
    end block;
end PLA_Structure;
entity D_FlipFlop
    ( O: in Bit;
        Q: out Bit;
        Qnot: out Bit;
        Clk: in Bit ) is
end D_FlipFlopi
architecture Behavior of D_FlipFlop is
    B1: block (Clk = '1' and not Clk'Stable)
    begin
        P1: process (Guard)
            variable Qtold: static Bit := '0';
        begin
            if Guard then
                Qhold := D;
                Q <= Qhold after 50 ns;
                Qnot <= not Ohold after 50 ns;
            end if;
        end process;
    end block;
end Behavior;
```

 (Inputs: in Bit Vector;
 Outputs: out Bit_Vector) is
 end Programmable_Logic_Array;

```
architecture Behavior of Programmable_Logic_Array is
    B1: block
    begin
        Outputs( 0 ) < (not Inputs(1) and Inputs(2)) or (Inputs(1) and not Inputs(2)) after 40 ns;
        Outputs(1) <= not Inputs(1) and not Inputs(2) after 40 ns;
        Outputs(2) <= (Inputs(1) and Inputs(2)) or (Inputs(0) and Inputs(2)) after 40 ns;
    end block;
end Behavior;

Dietmeyer, p351 5.2-7b
initial state table
\begin{tabular}{ccccccc}
0 & \(1 x=0^{0+}\) & 1 & \(1 x=0^{2}\) & 1 \\
\hdashline 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 3 & 2 & 1 & 0 & 0 \\
2 & 1 & 3 & 2 & 1 & 0 & 1 \\
3 & 1 & 0 & 1 & 1 & 0 & 0
\end{tabular}
with unreachable states removed

sets of equivalent states
\(\left.\begin{array}{l}1=\left\{\begin{array}{lll}0 & 3 & \} \\ 3 & =\{ & 1\end{array}\right\}\end{array}\right\}\)
\(3=\left\{\begin{array}{ll}1\end{array}\right\}\)
\(2=\{2\}\)
minimized state table
\begin{tabular}{|c|c|c|c|c|}
\hline \(Q\) & \multicolumn{2}{|c|}{\(0+\)} & \multicolumn{2}{|c|}{\(z\)} \\
\hline & \(1 \mathrm{x}=0\) & 1 & \(x=0\) & 1 \\
\hline 0 & 10 & 1 & 0 & 0 \\
\hline 1 & 10 & 2 & 0 & 0 \\
\hline 2 & 10 & 2 & 0 & 1 \\
\hline
\end{tabular}

Karnaugh maps
Da 1: 5 3
dc: 76

Db 1: 1
dc: 76
20 1: 5
dc: 76
complete equation
\(D a=8 x+A x\)
complete equation
\[
D b=A^{\prime} B^{\prime} X
\]

\section*{complete equation}
```

 Da= BX + AX
 D6 = A'B'X
ZO}=A

```
elapsed time: \(\quad 0.33 \mathrm{sec}\)
writing VHDL code file
elapsed time: \(\quad 3.29 \mathrm{sec}\)
```

entity Dietmeyer_B
(X: in Bi\overline{t}vector;
Z: out Bit_Vector;
Clk: in Bit`) is
end Dietmeyer_B;
architecture Discrete_Structure of Dietmeyer_B is
B1: block
component D_FlipFlop
port (D: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit);
component Discrete_Gates
port (Inputs: in Bit_Vector;
Outputs: out Bit_Vector);
signal Ycur: Bit_Vector (0 to 4);
signal Ynext: Bit_Vector (0 to 2);
begin
Your(4) <= X(0);
Z(0) <= Ynext(2);
for I in 0 to 1 generate
Mem: D_FlipFlop
port (Ynext(I), Ycur(2*I), Ycur(2*I+1), Clk);
end generate;
Comb: Discrete_Gates
port (Ycur, Ynext);
end block;
end Discrete_Structure;

```
entity D_FlipFlop
    ( D: in Bit;
        Q: out Bit;
        Qnot: out Bit;
        Clk: in Bit) is
end D_FlipFlop;
architecture Behavior of D_Flipflop is
    B1: block (Clk \(=\) '1' and not Clk'Stable)
    begin
        P1: process (Guard)
            variable Qhold: static Bit \(:=\cdot 0^{\prime} ;\)
        begin
            if Guard then
                Qhold := D ;
                \(0<=\) Onold after 50 ns;
                Onot \(<=\) not Qhold after 50 ns ;
            end if;
        end process;
    end block;
end Behavior;
```

 (Inputs: in Bit_Vector;
 Outputs: out Bit_Vector) is
 end Discrete_Gates;

```
```

architecture Behavior of Discrete_Gates is
B1: block
begin
Outputs(0)<= (Inputs(2) and Inputs(4)) or (Inputs(0) and Inputs(4)) after 40 ns;
Outputs(1) <= Inputs(1) and Inputs(3) and Inputs(4) after 20 ns;
Outputs(2) <= Inputs(0) and Inputs(4) after 20 ns;
end block;
end Behavior;

```
```

Kohavi, p291 detect '0101'
initial state table

```

with unreachable states removed

sets of equivalent states
\[
\left.\begin{array}{l}
1=\left\{\begin{array}{ll}
1=\{ \\
4=\{ & 1
\end{array}\right\} \\
3=\{2
\end{array}\right\}
\]
minimized state table


\section*{Karnaugh maps}
\[
\begin{aligned}
& \text { Ja 1: } 3 \\
& \text { de: } \begin{array}{lllll}
7 & 6 & 5 & 4
\end{array} \\
& \text { Ka 1: } 6 \begin{array}{r}
5 \\
\text { dc: } \\
3
\end{array} \\
& \text { dc: } 3 \quad 210 \\
& \text { Jb } \begin{array}{rllll}
1: & 4 & 0 & & \\
d c: & 7 & 6 & 3 & 2
\end{array} \\
& \text { Kb 1: } 73 \\
& \text { dc: } 5 \quad 4 \quad 1 \quad 0 \\
& 20 \text { 1: 7 } \\
& \text { dc: }
\end{aligned}
\]
complete equation
\[
J a=B X
\]
complete equation
\[
K a=B \cdot X+B X^{\circ}
\]
```

complete equation
Jb = X'
complete equation
Kb = X
complete equation
ZO = ABX
logic equations
Ja = Bx
Ka = B'X + Bx.
Jb}=\mp@subsup{X}{}{\prime
Kb}=
ZO = ABX
elapsed tima: 0.49 sec
writing VHDL code file
elapsed tima: 3.46 sec

```
```

entity Detect_0101
C X: in Bit_Vector;
Z: out Bit_Vector;
Clk: in Bit`) is
end Detect_0101;
architecture PLA_Structure of Detect_0101 is
B1: block
component JK_FlipFlop
port (J,K: in Bit;
Q: out Biti
Qnot: out Bit;
Clk: in Bit);
component Programmable_Logic_Array
port (Inputs: in Bit_Vector;
Outputs: out Bit_Vector);
signal Ycur: Bit_Vector (0 to 2);
signal Ynext: Bit_Vector (0 to 4);
begin
Ycur(2) <= X(0);
Z(0) <= Ynext(4);
for I in 0 to 1 generate
Mem: JK_FlipFlop
port (Ynext(2*I), Ynext(2*I+1), Ycur(I), open, Clk);
end generate;
Comb: Programmable_Logic_Array
port (Ycur, Ynext);
end block;
end PLA_Structure;

```
entity JK_FlipFlop
    ( J, K: in Bit;
        Q: out Bit;
        Qnot: out Bit;
        Clk: in Bit) is
end JK_FlipFlop;
architecture Behavior of JK_FlipFlop is
    B1: block (Clk \(=\) '1' and not Clk'Stable)
    begin
        P1: process ( Guard)
        variable Qhold: static Bit \(:=10\);
        begin
            if Guard then
                Qhold : \(=\) ( \(J\) and not Qhold) or (not \(K\) and Qhold);
                Q < \(=\) Qhold after 50 ns;
                Qnot < not Qhold after 50 ns;
            end if;
        end process;
    end block:
end Behavior;
( Inputs: in Bit_Vector;
Outputs: out Bit_Vector ) is
end Programmable_Logic_Array;
architecture Behavior of Programmable_Logic_Array is
B1: block
begin
Outputs(0) <= Inputs(1) and Inputs(2) after 40 ns ;
Outputs(1) <= (not Inputs(1) and Inputs(2)) or (Inputs(1) and not Inputs(2)) after 40 ns;
Outputs(2) \(<=\) not Inputs(2) after 40 ns ;
Outputs(3) <= Inputs(2) after 40 ns ;
Outputs(4) <= Inputs(0) and Inputs(1) and Inputs(2) after 40 ns ;
end block;
end Behavior;

Kohavi, p295 modulo 8 counter
initial state table
\begin{tabular}{|c|c|c|c|c|}
\hline Q & \multicolumn{2}{|c|}{\(0+\)} & \multicolumn{2}{|c|}{Z} \\
\hline & \(x=0\) & 1 & \(x=0\) & 1 \\
\hline 0 & 0 & 1 & 0 & 0 \\
\hline 1 & 1 & 2 & 0 & 0 \\
\hline 2 & 2 & 3 & 0 & 0 \\
\hline 3 & 3 & 4 & 0 & 0 \\
\hline 4 & 4 & 5 & 0 & 0 \\
\hline 5 & 5 & 6 & 0 & 0 \\
\hline 6 & 6 & 7 & 0 & 0 \\
\hline 7 & 7 & 0 & 0 & 1 \\
\hline
\end{tabular}
with unreachable states removed
\begin{tabular}{c:cc:cc}
0 & \(0+\) & 0 & 1 & \(x=\) \\
0 & 1 \\
\hdashline 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
2 & 2 & 3 & 0 & 0 \\
3 & 3 & 4 & 0 & 0 \\
4 & 4 & 5 & 0 & 0 \\
5 & 5 & 6 & 0 & 0 \\
6 & 6 & 7 & 0 & 0 \\
7 & 7 & 0 & 0 & 1
\end{tabular}
sets of equivalent states
\[
\left.\begin{array}{l}
1=\left\{\begin{array}{ll}
1 & 0
\end{array}\right\} \\
8=\{1
\end{array}\right\}
\]
minimized state table
\begin{tabular}{c:cc:cc}
0 & \(0+\) & \(0^{2}\) \\
& \(x=\) & 1 & \(x=\) & 1 \\
\hdashline 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
2 & 2 & 3 & 0 & 0 \\
3 & 3 & 4 & 0 & 0 \\
4 & 4 & 5 & 0 & 0 \\
5 & 5 & 6 & 0 & 0 \\
6 & 6 & 7 & 0 & 0 \\
7 & 7 & 0 & 0 & 1
\end{tabular}

\section*{Karnaugh maps}
\(\begin{array}{llllllllll}\text { Da } & 1: & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7\end{array}\) \(d e:\)

Db 1: \(14 \begin{array}{llllllll}14 & 13 & 12 & 11 & 6 & 5 & 4 & 3\end{array}\) de:

Dc \(\begin{array}{llllllllll}1: & 14 & 13 & 10 & 9 & 6 & 5 & 2 & 1\end{array}\) de:
```

 Z0 1: 15
 dc:
 complete equation
Da = A'BCX + AB' + AC' + AX'
complete equation
Db = B'CX + BC' + BX'
complete equation
Dc= C'X + CX'
complete equation
ZO = ABCX
logic equations
Da = A'BCX + AB' + AC' + AX'
Db = B'CX + BC' + BX'
DC=C'X + CX'
ZO = ABCX
elapsed time: 1.21 sec
writing VHDL code file
elapsed time: 4.40 sec

```
```

entity Modulo_8
(X: in Bit_Vector;
Z: out Bit_Vector;
Clk: in Bit`) is
end Madulo_8;
architecture PLA_Structure of Modulo_8 is
81: block
component D_FlipFlop
port (D: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in .Bit);
component Programmable_Logic_Array
port (Inputs: in Bit Vector;
Outputs: out Bit_Vector);
signal Ycur: Bit_Vector (0 to 3);
signal Ynext: Bit_Vector (0 to 3);
begin
Ycur(3) <= X(0);
Z(0) <= Ynext(3);
for I in 0 to 2 generate
Mem: D_FlipFlop
port' (Ynext(I), Ycur(I), open, Clk);
end generate;
Comb: Programmable_Logic_Array
port (Ycur, Ynext);
end block;
end PLA_Structure;
entity D_FlipFlop
(D: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit) is
end D_FlipFlop;
architecture Behavior of D_FlipFlop is
B1: block (Clk = '1' and not Clk'Stable)
begin
P1: process (Guard)
variable Qhold: static Bit := '0';
begin
if Guard then
Qhold:= D;
Q <= Qhold after 50 ns;
Qnot <= not Qhold after 50 ns;
end if;
end process;
end block;
end Behavior;

```
entity Programmable_Logic_Array
```

 (Inputs: in Bit_Vector;
 Outputs: out Bit_Vector) is
 end Programmable_Logic_Array;
architecture Behavior of Programmable_Logic_Array is
B1: block
begin
Outputs(0) <= (not Inputs(0) and Inputs(1) and Inputs(2) and Inputs(3)) or
(Inputs(0) and not Inputs(1)) or (Inputs(0) and not Inputs(2)) or
(Inputs(0) and not Inputs(3)) after 40 ns;
Outputs(1) <= (not Inputs(1) and Inputs(2) and Inputs(3)) or
(Inputs(1) and not Inputs(2)) or (Inputs(1) and not Inputs(3)) after 40 ns;
Outputs(2) <= (not Inputs(2) and Inputs(3)) or (Inputs(2) and not Imputs(3)) after 40 ns;
Outputs(3) <= Inputs(0) and Inputs(1) and Inputs(2) and Inputs(3) after 40 ns;
end block;
end Behavior;

```

Kohavi, p299 parity bit generator
initial state table
\begin{tabular}{cccccc}
\(Q\) & 1 \\
& \(x=0\) & 1 & \(1 x=\) & \(0^{Z}\) & 1 \\
\hdashline 0 & 1 & 1 & 2 & 0 & 0 \\
1 & 1 & 3 & 4 & 0 & 0 \\
2 & 1 & 4 & 3 & 0 & 0 \\
3 & 1 & 5 & 6 & 0 & 0 \\
4 & 1 & 6 & 5 & 0 & 0 \\
5 & 1 & 0 & 0 & 1 & 0 \\
6 & 1 & 0 & 0 & 1 & 1
\end{tabular}
with unreachable states removed
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Q & \multicolumn{3}{|c|}{Q+} & \multicolumn{3}{|c|}{2} \\
\hline & | \(\mathrm{X}=\) & 0 & 1 & \(1 \mathrm{x}=\) & 0 & 1 \\
\hline 0 & 1 & 1 & 2 & I & 0 & 0 \\
\hline 1 & 1 & 3 & 4 & , & 0 & 0 \\
\hline 2 & 1 & 4 & 3 & I & 0 & 0 \\
\hline 3 & 15 & 5 & 6 & 1 & 0 & 0 \\
\hline 4 & 1 & 6 & 5 & 1 & 0 & 0 \\
\hline 5 & 1 & 0 & 0 & 1 & 0 & 0 \\
\hline 6 & 1 & 0 & 0 & 1 & 1 & 1 \\
\hline
\end{tabular}
sets of equivalent states
\(\left.\begin{array}{l}1=\left\{\begin{array}{lll}1 & 0 & \} \\ 7 & =\{ & 5\end{array}\right\} \\ 5=\{ \\ 6=\{ \\ 3\end{array}\right\}\)
minimized state table
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Q} & \multicolumn{2}{|c|}{Q+} & \multicolumn{3}{|c|}{2} \\
\hline & \(1 x=0\) & 1 & \(1 \mathrm{x}=\) & 0 & 1 \\
\hline 0 & 11 & 2 & 10 & 0 & 0 \\
\hline 1 & 13 & 4 & 10 & 0 & 0 \\
\hline 2 & 14 & 3 & 1 & 0 & 0 \\
\hline 3 & 15 & 6 & 1 & 0 & 0 \\
\hline 4 & 16 & 5 & 1 & 0 & 0 \\
\hline 5 & 10 & 0 & I & 0 & 0 \\
\hline 6 & 10 & 0 & 1 & 1 & 1 \\
\hline
\end{tabular}

Karnaugh maps
Sa 1: \(\begin{array}{lllll}7 & 6 & 4 & 3\end{array}\) dc: \(\begin{array}{llll}15 & 14 & 9 & 8\end{array}\)

Ra 1: \(13 \quad 12 \quad 11 \quad 10\) dc: \(\begin{array}{lllllll}15 & 14 & 5 & 2 & 1 & 0\end{array}\)

Sb 1: 8 2 1 dc: \(\begin{array}{llll}15 & 14 \quad 7 \quad 5\end{array}\)

Rb \(\quad 1: \begin{array}{lllll}13 & 12 & 6 & 4\end{array}\) dc: \(\begin{array}{llllllll}15 & 14 & 11 & 10 & 9 & 3 & 0\end{array}\)
```

 Sc 1: 9 5 0
 dc: 15 14 6 2
 Rc 1: 11 10 7 3
dc: 15 14 13 13 12 8
Z0 1: 13 12
dc: 15 14
complete equation
Sa}=\mp@subsup{A}{}{\prime}CX+\mp@subsup{A}{}{\prime}B\mp@subsup{X}{}{\prime
complete equation
Ra=AC + AB
complete equation
Sb = A'C'X + A'B'CX' + AB'C'X'
essential cells
Rb}=BX
implicant table
implicant I columns covered
-------------+----------------------
11-- | 13
1--1 13
complete equation
Rb}=AB+BX
complete equation
Sc = A'B'昂 + A'BC'X + AB''C'X
essential cells
Rc = CX
implicant table
implicant | columns covered
1-1- | 10
1--0 | 10
complete equation
RC = AC + CX
complete equation
ZO=AB
logic equations
Sa= A'CX + A'BX'

```
```

 Ra = AC + AB
 Sb = A'C'X + A'B'CX' + AB'C'X'
 RO}=AB+BX
    ```

```

 Rc = AC + CX
 ZO = AB

```
elapsed time: 1.76 sec
writing VHDL code file
elapsed time: \(\quad 4.83 \mathrm{sec}\)
```

entity parity
(X: in Bit Vector;
Z: out Bit_Vector;
Clk: in Bit) is
end parity;
architecture PLA_Structure of parity is
B1: block
component RS_FlipFlop
port (S, R: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit);
component Programmable_Logic_Array
port (Inputs: in Bit_Vector;
Outputs: out Bit_Vector);
signal Ycur: Bit_Vector (0.to 3);
signal Ynext: Bit_Vector (0 to 6);
begin
Ycur(3) <= X(0);
Z(0) <= Ynext(6);
for I in O to 2 generate
Mem: RS_FlipFlop
port (Ynext(2*I), Ynext(2*I+1), Ycur(I), open, Clk);
end generate;
Comb: Programmable_Logic_Array
part (Ycur, Ynext);
end block;
end PLA_Structure;

```
```

entity RS_FlipFlop

```
entity RS_FlipFlop
    ( S, R: in Bit;
    ( S, R: in Bit;
        Q: out Bit;
        Q: out Bit;
        Qnot: out Biti
        Qnot: out Biti
        Clk: in Bit ) is
        Clk: in Bit ) is
end RS_FlipFlop;
end RS_FlipFlop;
architecture Behavior of RS_FlipFlop is
    B1: block
    begin
        P1: process ( R, S )
            variable Qhold: static Bit := '0';
        begin
            if Guard then
                Qhold := S or (not R and Qhold);
                Q <= Qhold after 50 ns;
                Qnot <= not Qhold after 50 ns;
            end if;
        end process;
    end block;
end Behavior;
```

entity Programmable_Logic_Array
(Inputs: in Bit_Vector; Outputs: out Bit_Vector) is end Programmable_Logićc_Array;
architecture Behavior of Programmable_Logic_Array is

```
    B1: block
    begin
        Outputs(0) <= (not Inputs(0) and Inputs(2) and Inputs(3)) or
(not Inputs(0) and Inputs(1) and not Inputs(3)) after 40 ns;
        Outputs(1) <= (Inputs(0) and Inputs(2)) or (Inputs(0) and Inputs(1)) after 40 ns;
        Outputs(2) <= (not Inputs(0) and not Inputs(2) and Inputs(3)) or
(not Inputs(0) and not Inputs(1) and Inputs(2) and not Inputs(3)) or
(Inputs(0) and not Inputs(1) and not Inputs(2) and not Inputs(3)) after 40 ns;
        Outputs(3) <= (Inputs(0) and Inputs(1)) or (Inputs(1) and not Inputs(3)) after 40 ns;
        Outputs(4) <= (not Inputs(0) and not Inputs(1) and not Inputs(3)) or
(not Inputs(0) and Inputs(1) and not Inputs(2) and Inputs(3)) or
(Inputs(0) and not Inputs(1) and not Inputs(2) and Inputs(3)) after 40 ns;
        Outputs(5) <= (Inputs(0) and Inputs(2)) or (Inputs(2) and Inputs(3)) after 40 ns;
        Outputs(6) <= Inputs(0) and Inputs(1) after 40 ns;
    end block;
end Behavior;
```


benchmark, Modulo12

initial state table

with unreachable states removed

sets of equivalent states

$$
\begin{aligned}
& 1=[0] \\
& 12=\{1\} \\
& 11=\left[\begin{array}{ll}
{[} & 2
\end{array}\right] \\
& 10=\left[\begin{array}{ll}
{[} & 3
\end{array}\right] \\
& 9=\left[\begin{array}{ll}
4
\end{array}\right] \\
& 8=\left[\begin{array}{ll}
5
\end{array}\right] \\
& 7=\{6\} \\
& 6=\{7\} \\
& 5=\{8\} \\
& 4=\left[\begin{array}{ll}
9
\end{array}\right] \\
& 3=\{10\} \\
& 2=\{11\}
\end{aligned}
$$

minimized state table

| Q | Q+ | | z | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 $\mathrm{x}=0$ | 1 | $1 \mathrm{x}=$ | 0 | 1 |
| 0 | 10 | 1 | 1 | 0 | 0 |
| 1 | 11 | 2 | 1 | 0 | 0 |
| 2 | - 2 | 3 | 1 | 0 | 0 |
| 3 | 13 | 4 | 1 | 0 | 0 |
| 4 | 14 | 5 | , | 0 | 0 |
| 5 | 15 | 6 | 1 | 0 | 0 |
| 6 | 16 | 7 | 1 | 0 | 0 |
| 7 | 7 | 8 | 1 | 0 | 0 |

```
    rilrrillll
Karnaugh maps
    Sa 1: 15
        dc: 31 30 29 28 27 26 25 24 22 21 20 19 18 17 16
    Ra 1: 23
        dc: 31 30 29 28 27 26 25 24 14 13 12 11 10 9, 9
    Sb 1: 7
        dc: 31 30 29 28 27 26 25 24 14 13 12 11 10 9, 8
    Rb 1: 15
```



```
    Sc 1: 19 11 3
        dc: 31 30 29 28 27 26 25 24 22 21 20 14 13 12 6 5 5 4
    Rc 1: 23 15 7
        dc: 31 30 29 28 27 26 25 24 18 17 16 10
    Sd 1: 21 17 13 9, 5 1
        dc: 31 30 29 28 27 26 25 24 22 18 14 10
    Rd 1: 23 19 15 11 7 7 3
        dc: 31 30 29 28 27 26 25 24 20 16 12 8 4 4 0
    20 1: 23
    dc: 31 30 29 28 27 26 25 24
complete equation
    Sa = BCDX
essential cells
    Ra=0
implicant table
    implicant | columns covered
        1-111 | 23
        -0111 | 23
complete equation
        Ra= ACDX
complete equation
    Sb = A'B'CDX
complete equation
    Rb = BCDX
complete equation
    Sc = C'DX
```

```
complete equation
    Rc = CDX
complete equation
    Sd}= D'
complete equation
    Rd = DX
complete equation
    zo = ACDX
logic equations
    Sa = BCDX
    Ra = ACDX
    Sb = A.B'CDX
    Rb = BCDX
    Sc = C'DX
    Rc}=\operatorname{COX
    Sd = D'X
    Rd = DX
    zo = ACOX
elapsed time: 2.19 sec
writing VHDL code file
elapsed time: }5.21\textrm{sec
```

```
entity Modulo_12
    ( X: in 8it_Vector;
        Z: out Bit_Vector;
        Clk: in Bit ) is
end Modulo_12;
architecture Discrete_Structure of Modulo_12 is
    B1: block
        component RS_FlipFlop
            port (S, 后: in Bit;
                Q: out Bit;
                    Qnot: out Bit;
                Clk: in Bit );
        component Discrete_Gates
            port ( Inputs: in Bit_Vector;
                Outputs: out Bit_Vector );
        signal Ycur: Bit_Vector (0 to 8);
        signal Ynext: Bit_Vector (0 to 8);
    begin
        Ycur(8) <= X(0);
        Z(0)<= Ynext(8);
        for I in 0 to 3 generate
            Mem: RS_FlipFIOp
                port (Ynext(2*I), Ynext(2*I+1), Ycur(2*I), Ycur(2*I+1), Clk );
    end generate;
    Comb: Discrete_Gates
        port ( Ycur, Ynext );
    end block;
end Discrete_Structure;
entity RS_FlipFlop
    ( S, R: in Bit;
        O: out Bit;
        Qnot: out Bit;
        Clk: in Bit ) is
end RS_FlipFlop;
architecture Behavior of RS_FlipFlop is
    B1: block
    begin
        P1: process ( R,S )
            variable Ohold: static Bit := 'O';
        begin
            if Guard then
                Qhold := S or (not R and Qhold);
                Q <= Onold after 50 ns;
                Qnot <= not Qhold after 50 ns;
            end if;
        end process;
    end block;
end Behavior;
```

```
    ( Inputs: in Bit_Vector;
    Outputs: out Bit_Vector ) is
end Discrete_Gates;
architecture Behavior of Discrete_Gates is
    B1: block
    begin
        Outputs(0) <= Inputs(2) and Inputs(4) and Inputs(6) and Inputs(8) after 20 ns;
        Outputs(1) <= Inputs(0) and Inputs(4) and Inputs(6) and Inputs(8) after 20 ns;
        Outputs(2) <= Inputs(1) and Inputs(3) and Inputs(4) and Inputs(6) and Inputs(8) after 20 ns;
        Outputs(3) <= Inputs(2) and Inputs(4) and Inputs(6) and Inputs(8) after 20 ns;
    Outputs(4) <= Inputs(5) and Inputs(6) and Inputs(8) after 20 ns;
    Outputs(5) <= Inputs(4) and Inputs(6) and Inputs(8) after 20 ns;
    Outputs(6) <= Inputs(7) and Inputs(8) after 20 ns;
    Outputs(7) <= Inputs(6) and Inputs(8) after 20 ns;
    Outputs(8) <= Inputs(0) and Inputs(4) and Inputs(6) and Inputs(8) after 20 ns;
    end block;
end Behavior;
```


APPENDIX E

MEG OUTPUT COMPARISON

Meg [9] is a finite state machine equation generator. It translates a Mealy model description of a finite state machine into logic equations in several formats, including truth tables and boolean equations. In comparing FSM output to Meg output, some differences must be accounted for. Meg does not attempt to minimize the input state machine so it must be input in simplified form if the results of Meg and FSM are to be comparable. Meg does not consider unused state assignments as don't-care states so only state machines without unused states assignments will produce the similar results from both Meg and FSM. Also, Meg itself does not minimize the equations it produces. This must be done by another program such as Espresso.

The following is an example run with Meg. It corresponds to the third example in appendix D. Given first is the machine description used as input. Meg then produces a state table and logic equations. In the equations produced, symbols generated by Meg end with an asterisk, an exclamation mark preceding a symbol indicates negation, the ampersand signifies conjunction, and the vertical bar signifies disjunction. Following the equations of is a PLA map produced by Espresso. Logic equations for this PLA map in the form used by FSM are also given.

```
INPUTS: X;
OUTPUTS: 2;
QO: IF X THEN Q1 ELSE QO;
Q1: IF X THEN Q2 ELSE 01;
Q2: IF X THEN Q3 ELSE Q2;
Q3: IF X THEN Q4 ELSE Q3;
04: IF X THEN 05 ELSE 04;
Q5: IF X THEN Q6 ELSE Q5;
06: IF X THEN Q7 ELSE Q6;
Q7: IF X THEN QO(Z) ELSE Q7;
```

SUMTMARY INFORTATION GENERATED BY MEG FROM FILE fsm08.meg

```
INPUTS:
    i00: x
    s00: StBiton (msb)
    s01: StBit1k
    s02: StBit2* (1sb)
```

OUTPUTS:
n02: StBit2" (1sb)
no1: StBitl\#
noo: StBiton (msb)
000: 2
State Table
$\begin{array}{llllllll}1 & s & s & s & n & n & n & 0 \\ 0 & 0 & 1 & 2 & 2 & 1 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 00 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 00\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & Q 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & Q 1\end{array}$
$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & Q 2 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 02\end{array}$
$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 03 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 03\end{array}$
$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & Q_{4} \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & Q_{4}\end{array}$
$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 05 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 05\end{array}$
$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 06 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 06\end{array}$
$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 07 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 07\end{array}$
INORDER=
X
StBiton
StBit1年
StBit2m;
OUTORDER=
St8it2*
StBitim
StBit0*
Z;
St8it2思=
(: KR StBitome StBitime StBit2m)
(X StBiton StBitingisteit2*)
(!xa stBitonegstaitime StBit2m)

```
    ( Xe StBit0*&!StBit2#&!StBit2*)!
    (!X&!StBit0#& StBitl*& StBit2*)|
    ( X&!StBit0*& StBit1*&!StBit2*)|
    (!x&!StBit0*&!StBit1#& StBit2*)|
    ( X&!StBit0*&!StBit1M&!StBit2*);
StBit1*=
    (!X& StBit0*& StBit1*E StBit2*)|
    ( X& StBitO## StBitl*R!StBit2*)|
    (!X& StBit0*& StBitl*&!StBit2*)|
    ( X& StBit0*&!StBit1*& StBit2*)|
    (!X&!StBit0*& StBit1*& StBit2*)|
    ( X&!StBit0*& StBit1*&!StBit2*)|
    (!X&!StBit0*& StBit1*e!StBit2*)|
    ( X&!StBitO*&!StBit1*& StBit2*);
StBit0*=
    (!x& StBito*& StBit1*& StBit2*)|
    ( x& StBit0*& StBit1*&!StBit2*)|
    (!X& StBit0*& StBit1*&!St8it2*)|
    ( X& StBit0*&!StBit1*(StBit2*)|
    (!x& StBitO#&!StBit1*& StBit2#)|
    ( X& StBitO*&!StBit1*&!StBit2*)|
    (!X& StBitO*&!StBit1*&!StBit2*)|
    ( x&!StBitO*& StBit1*R StBit2*);
z=
    ( X& StBito*& StBit1*R StBit2*);
```

```
.ilb X StBit0* StBitl* StBit2*
.ob StBit2* StBitl* StBitom Z
.i 4
.04
.p 10
10110010
11110001
01-- 0010
1-01 0100
-1-0 0010
0-1-0100
1--0 1000
-10- 0010
0--1 1000
--10 0100
.e
ZO = XABC
Da = XA'BC + X'A + AC' + AB'
Db = XB'C + X'B + BC'
Dc = XC' + X'C
```

