
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Jul 1984

CIEGEN: A System for Testing Knowledge Base Compilation CIEGEN: A System for Testing Knowledge Base Compilation

Heuristics on a Microcomputer Heuristics on a Microcomputer

Jayne D. Ward

Billy E. Gillett
Missouri University of Science and Technology

Arlan R. Dekock
Missouri University of Science and Technology, adekock@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ward, Jayne D.; Gillett, Billy E.; and Dekock, Arlan R., "CIEGEN: A System for Testing Knowledge Base
Compilation Heuristics on a Microcomputer" (1984). Computer Science Technical Reports. 69.
https://scholarsmine.mst.edu/comsci_techreports/69

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/69?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

CIEGEN: A SYSTEM FOR TESTING
KNOWLEDGE BASE COMPILATION HEURISTICS

ON A MICROCOMPUTER

Jayne D. Ward*, Bill E. Gillett,
and Arlan R. DeKock

CSC-84-10

Department of Computer Science
University of Missouri-Rolla

Rolla, MO 65401 (314)-341-4491

*This report is substantially the M.S.
the first author, completed July,

thesis of
1984.

11

ABSTRACT

The expert system has proven itself to be a valuable
aid in diagnosing and treating problems in domains requiring
expertise. The commercial world has been alerted to this
fact and the thrust is to make the expert system portable
and available on small computers.

The goal of this research has been to lay the
groundwork for a domain independant expert system builder on
a microcomputer. The result of this effort was CIEGEN, a
system consisting of a rule compiler, inference engine, and
rule generator developed on the IBM PC. It is domain
independant, responsible for transforming a knowledge base
of rules into heuristic based decision trees, and capable of
performing backward chaining consultations.

The system is also heuristic independant, allowing a
knowledge base to be compiled by different heuristics and
compared using the log created by the inference engine. A
subgoal of the development of CIEGEN has been to study the
heuristics used to compile a knowledge base because the
efficiency of the expert system is based on the intelligence
of the heuristic. The heuristic used by EMYCIN was
implemented and compared with a heuristic developed by the
author. For the six types of knowledge based generated by
CIEGEN's rule generator, EMYCIN's heuristic, on the average,
executed more quickly.

Ill

TABLE OF CONTENTS

Page
ABSTRACT...ii
LIST OF TABLES..v

I . INTRODUCTION.. 1
II. RELATED LITERATURE....................................4

A. RULE COMPILATION............................... 4
B. EXPERT SYSTEM BUILDING TOOLS................... 6

III. SYSTEM DESIGN... 7
A. RULE BUILDER.................................... 7

1. RULES.......................................8
2 . CYCLING.................................... 9

a. FIRST ORDER CYCLING..................9
b. SECOND ORDER CYCLING............... 12

3. RANDOM NUMBER GENERATOR.................12
4. PARAMETERS............................... 14

B. RULE COMPILER.................................. 15
1. ALGORITHM................................ 16
2. DATA STRUCTURES..........................17

a. DECISION TREES..................... 17
b. DECISION TREE LISTS............... 18

C. HEURISTICS FOR ANTECEDENT SELECTION.......... 18
1. MOST OFTEN OCCURRING.................... 19
2. MINIMUM AVERAGE ANTECEDENT.............. 19

D. INFERENCE ENGINE.............................. 21
IV. EXAMPLE CONSULTATION................................ 22

I V

V. SUMMARY OF RESULTS AND CONCLUSIONS............... 24
VI. FURTHER RESEARCH SUGGESTIONS...................... 32

BIBLIOGRAPHY... 33
VITA.. 35
APPENDIX A ... 36

V

LIST OF TABLES

Table page
I . CONSULTATION RESULTS................................. 29

1

I . INTRODUCTION

The field of Artificial Intelligence (AI) is a subfield
of Computer Science and was founded for the purpose of
creating systems that could acquire and apply knowledge to
problem solving- Researchers discovered, upon attempting to
write a program that incorporated intelligence, that very
little was understood about the acquisition and storage of
knowledge in the human brain. Therefore, one goal of the
field is to uncover underlying mechanisms of human
intelligence through the developments in AI. The diversity
of what constitues intelligence has led to the creation of
areas of research in, for example, natural language
understanding [1, 2, 3], robotics [4], vision [5], and
knowledge engineering [6].

Knowledge engineering, specifically the building of
expert systems, is the area of AI that directly relates to
this research. The difference between an expert system and
a traditional computer program is demonstrated by the types
of problems it solves. An expert system typically solves
ill structured problems, or problems with incomplete data.
It does not solve problems requiring "number crunching" or
problems that can be solved by plugging values into a
formula as some of the traditional data processing programs.

Expert systems solve problems that require expertise in
the areas of, for example, diagnosis, interpretation of
data, monitoring, repair, and design. Expertise implies a
combination of heuristics or rules of thumb, textbook

2

knowledge, and reasoning. Expert systems use self-knowledge
or meta-knowledge enabling them to reason about their
solutions and they typically have explanation facilities to
justify their solutions. The expert system asks the user
for information it needs to solve the problem and allows the
user to ask it questions, just as the human expert operates.

Expert systems have been built in many diverse domains.
Three examples of expert systems and their domains are:
DENDRAL determines molecular structures of unknown compounds
[7, 8, 93, MYCIN diagnoses infectious diseases [9, 10, 113,
and PROSPECTOR gives advice on finding ore deposits from
geological data C123*

The most desirable way to build an expert system is
through a domain independant tool insuring the separation of
the knowledge and the control structures. A desirable
feature of this tool is the ability to build an expert
system on a microcomputer making it convenient for most
people in the commercial field.

This paper describes a system, CIEGEN, which was
designed with an emphasis on the features of domain
independance, portability, and efficiency. CIEGEN,
consisting of a rule compiler, inference engine, and rule
generator, aids the user in building an efficient knowledge
base on the IBM PC.

The knowledge base contains the expertise used to solve
problems in a particular domain such as medicine or geology.
A popular representation for the expertise is rules of the

3

form: if (condition) then (action), because of their
modularity, representing single "chunks" of knowledge.
Other representations of knowledge include frames and
semantic nets, but these will not be addressed in this
paper.

In CIEGEN, these rules are transformed into a
representation that will execute more efficiently by a
process called rule compilation. Rules are compiled into
decision trees which effectively allow parallel execution of
several rules at once. The antecedent (condition) chosen as
a branch of the decision tree is selected by a heuristic.
Since the heuristic is responsible for the efficiency of the
knowledge base it is important to be able to compare the
results of different heuristics. This need is provided by
CIEGEN.

Literature related to the compilation process and
expert systems are reviewed in Chapter II. Chapter III
describes CIEGEN's rule generator, compiler, and inference
engine. Demonstrating the usefulness of CIEGEN, two
heuristics for rule compilation are compared in this paper.
One heuristics is currently in use by an expert system
builder, EMYCIN, and the other heuristic was developed by
the author. Both of these are described in Chapter III. An
example of the compilation and consultations are given in
Chapter IV. The results of this research are summarized in
Chapter V and suggestions for further research are given in
Chapter VI.

4

II. RELATED LITERATURE

A. RULE COMPILATION
Many researchers agree, that as larger knowledge bases

are required for expert systems, techniques such as rule
compilation will become mandatory [9], Heuristic
compilation is equivalent to establishing the search
strategy. The exception to the equivalency is the meta
knowledge that may be applied at execution time to alter the
search path. As knowledge bases become large it is
necessary to perform intelligent searches to keep costs from
exponentially increasing. It is also important to eliminate
redundancy in testing of similar patterns in rules which
constitutes the fundamental compilation algorithm.

Researchers working with the EMYCIN system conducted a
study comparing consultation times of expert systems using
compiled knowledge bases with consultation times of
intepreted knowledge bases. Results showed that the inter
question or "think time" was cut close to half for the
systems PUFF, SACON, and MYCIN [13].

These systems were backward chaining or goal directed
systems. This means that a goal is established, rules
concluding about this goal are gathered, and the conditions
in these rules become the new subgoals. This process
continues until all conditions in a rule are known, the
needed actions are executed. To compile a backward chaining
knowledge base means that all rules concluding about a
single parameter are located in one decision tree. Rather

than searching the knowledge base for all rules concluding
about a particular parameter, the inference engine simply
travels down the branches of the decision tree.

5

Compilation has also proven effective in the data
driven or forward chaining systems. A data driven system
begins with known values in what is called working memory,
matches the left hand side of the rules with the known
values and draws conclusions from those rules. The
conclusions enter working memory and cause other rules to be
candidates for execution. The problem with these systems is
that with large knowledge bases, the matching process is
very slow because it has to repeatedly check elements in
working memory. Data driven systems have been reported to
spend over nine-tenths of their run time performing the
matches [9J .

The most common attempt at improving the efficiency of
these systems, known as production systems, has been by
combining indexing with interpretations of the left hand
sides. A successful implementation of the compilation
process has been developed by Forgy [14] which is the Rete
Match Algorithm. The compiler exploits the properties of
similar conditions and the fact that individual productions
only change a few facts in memory. Forgy showed, through
his studies, that by compiling the productions, the
execution time was cut by several orders of magnitude.

6

B. EXPERT SYSTEM BUILDING TOOLS
An expert system building tool is a domain independant

system allowing the development of expert systems in several
domains. They prompt the knowledge engineer or expert for
rules (knowledge), parameters (goals), and definitions of
the parameters. They provide the control structure for the
expert system, which includes the inference engine and
compiler (if this technique is used).

The level of interaction between the user and the
system varies among different systems. For example, EMYCIN
prompts its user with a terse Abbreviated Rule Language
which is a cross between LISP and English. Teiresias [15,
163 interacts with its user in reasonable English. One
limitation of this system, due to the difficulty of parsing
English, is the assumption that a dictionary and knowledge
base have already been established and the user is merely
editing the knowledge base. Other systems such as KAS [9]
are not as versatile and were developed specifically for use
with an expert system (PROSPECTOR).

7

III. SYSTEM DESIGN

CIEGEN is a system consisting of a compiler, inference
engine, and automatic rule generator. The knowledge base
used for this research was generic in the sense that the
rules consist of arbitrary alphabetic letters with no
particular meaning assigned to them. The reason for using a
generic knowledge base as opposed to a particular domain was
to permit clearer recognition of the results from the
compiler.

CIEGEN was developed on an IBM PC and written in
IQLISP [17]. Since the IQLISP environment occupies
approximately 106k bytes of RAM, the machine should be
equipped with at least 256k of RAM.

In order to conduct this research a total of six
packages were needed. They include the Rule Builder, the
Rule Compiler, Inference Engine, one of the heuristics for
compilation: Heurisl (Most_Often_Occurring), Heuris2
(Minimum Average Antecedent), Rules which is a general
utility package used by all other packages, and FLOAT which
is a package to enable real arithmetic.

A. RULE BUILDER
The decision to mechanically generate rules was made

to allow control over certain parameters describing the
knowledge base. Some of those parameters are: the number
of rules, the number of unique consequents, the number of

8

antecedents per rule and the number of knowns per rule.
Another factor leading to the decision to automatically
generate rules was to be able to maintain randomness and to
avoid creating rules that would favor one heuristic over
another.

1. Rules
The rule (A B C ==> D) is read as:

[If A and If B and If C are true then conclude D is true],
so that if A or B or C is false then no conclusion is made.
Similarly, a rule involving a "not" (where # = "not") such
as (# A B C ==> D) reads "not" A and B and C in order to
conclude D is true.

In CIEGEN, the structure of a rule is a LISP list
((A B C) D) where the CAR of the rule is the list of antece
dents and the CADR of the rule is the conclusion.

Each rule will have only one consequent and its
certainty factor will be one (assuming no probability is
involved). This first constraint could be changed by
allowing the conclusion to be a list rather than an atom and
the latter by making the certainty factor a property of the
rule. However, for the purpose of studying different
heuristics for compiling rules, the former structure proved
sufficient.

As rules are generated, certain information about them
is stored. For example, the total number of antecedents and
the number of knowns are stored in an array called ANT_INFO

9

to be used for examination and for the Minimum Average
Antecedent heuristic. Also stored is each upper case letter
used in a rule. An upper case letter represents something
that is unbound, it will have a set of rules concluding
about it. For example, suppose the first two rules in the
knowledge base are [((P G L i) A) ((F e d M) A)]. The
first and second rows of ANT_INFO would be as follows:

A 1 4 P G L
A 2 4 F M , where the ASCII values of the

the letters are used because the array is all integer
(A = 65, P = 80, G = 71, L = 76, F = 70, M = 77). The
lower case letters are used to represent known values. They
are initially given to be true or false corresponding to
information asked of a user in a typical expert system
consultation. Therefore, they do not have rules concluding
about them.

2. Cycling
a. First Order Cycling is something that is expected

to happen if nothing is done to prevent it. First order
cycling is demonstrated as follows:

B C D ==> A
A E F ==> B .

So in order to conclude A the value of B is needed, but in
order to conclude B the value of A is required. This prob
lem was initially eliminated by allowing only letters that
appear later in the alphabet be candidates for antecedents.

10

For example, to conclude A, B - Z are candidates, and to
conclude B, C - Z are candidates.

Lower case letters a - e are also candidates to be
chosen as antecedents. One reason for the lower case
letters is to increase the size of the antecedent bucket,
providing something to choose from when antecedents are
needed for conclusions later in the alphabet. For example,
rules to conclude about X have only Y and Z, Y has only Z,
and Z has no letters to choose from if the lower case
letters are not included.

After analyzing the resulting rules generated by this
method, it was felt that part of the randomness was lost by
restricting the bucket of candidates. Letters later in the
alphabet appeared often in the earlier rules which favored
one heuristic over another.

Thus, a decision was made to a 1 1 ow eye 1 ing to occur by
keeping the antecedent bucket the same throughout the rule
generation. After all rules had been generated, a check for
first order cycling was made and corresponding rules were
eliminated from the knowledge base. To demonstrate this,
suppose we have the rule (Z C P G ==> H). This method says
to check the rules concluding about C to see if H was used
as an antecedent. If it was, as in the rule (X H S D ==>
C), then a cycle exists and the rule (Z C P G ==> H) is
removed from the knowledge base. If H did not appear in the
rules concluding about C, rules about G are similarly
examined. Rules about Z and P are not important at this

11

point since they appear later in the alphabet than H and
will be tested later. If later tests find that one of them
uses H in their antecedent list then that rule will be
eliminated. The decision to eliminate the current rule (Z C
P G ==> H) rather than the previous rule (X H S D ==> C) was
made arbitrarily, recognizing the fact that the previous
rules had already been check for cycling and were all right.

Control over the number of rules in the knowledge base
was lost by this method because many rules were being
eliminated. In some cases, an entire ruleset (for example,
all rules concluding about H) was removed. This means that
either H would have to be tagged undeterminable, or would
have to be given a value of true or false since there were
no rules to conclude about it.

The method chosen for rule generation allowed second
and higher order cycling to occur by keeping the antecedent
bucket the same throughout the rule generation. This method
differs from the previous one in that the check for first
order cycling was done as the antecedents were generated.

For example, suppose the antecedent candidate C is
generated for the current rule concluding about H. To test
for first order cycling, the antecedents used in the rules
concluding about C are scanned for an H. If an H is used as
an antecedent in a rule concluding about C, then C is
discarded as a candidate for an antecedent in the current
rule being generated. If the antecedent candidate generated
had been an I, or any letter later in the alphabet than H,

12

it would have been accepted as an antecedent. The reason
for this is because the rules concluding about I - Z have
not been generated yet and do not pose a threat to the
cycling problem at this point.

b. Second Order Cycling is also expected. An example
of such is:

B C D ==> A
E F G ==> B
A H J ==> E.

Since E does not appear in the antecedent list for A, this
set of rules pass the first order cycling test. The first
two rules pass the second order test, but the third rule
causes a cycle. For example, B is needed to conclude A, E
is needed for B, but A is needed for E. It is possible that
a cycle would not occur until the fourth, fifth, sixth or
higher rule was generated.

It was decided that the amount of time spent checking
for cycles higher than first order would be greater than the
benefits gained from such a check. Instead, the inference
engine was given the responsibility to check for higher
order cycling and to take note when this occurred.

3. Random Number Generator
Unfortunately, IQLISP does not have a built in random

number generator. However, it does have a function called
DTIME that generates hundredths of seconds since midnight,
which would be something like 58245 at 9:00 a.m.. The

13

function DTIME produced rules like (E F G H ==> A)
which does not give the appearance of being randomly
generated. The reason for this is due to the fact that the
function DTIME is linear. Adding a delay between generation
times eliminated adjacent antecedents but was not effective
in altering the linearity.

The next random number generator examined was one that is
currently called RANDU and is as follows:

SUBROUTINE RANDU (IX,IY,YFL)
IY = IX * 65539
IF (IY) 5,6,6

5 IY = IY + 2147483647 + 1
6 YFL = IY

YFL = YFL * .4656613E-9
RETURN
END

It involves very large numbers and relies on the fixed
overflow mechanisms of the system. This just means that it
is possible to get negative numbers which is the reason for
the check for a negative number in line 3. However, IQLISP
will allow a number to have 77000 digits and will most
likely run out of working memory before a number is
generated. An error such as "stack exceeds 64 k " will
appear on the screen when this happens.

Rather than trying to modify this algorithm, another
was chosen and is as follows:

14

SUBROUTINE RANDOM (A)
MULT = 25211
BASE = 32768
A = MOD [(A * MULT) , BASE]
RETURN
END

The % function is the IQLISP equivalent to the MOD function
which takes the remainder of a division.

This method generates a number between 0 and 1,
therefore requiring the FLOAT.LSP package to be loaded into
memory before running. The random number is then multiplied
by one plus the interval of numbers desired, and the integer
portion is added lower bound giving an antecedent candidate,
for example, between A and Z.

4. Parameters
As mentioned in the section on rule building, a user

has a certain amount of control over the number of
conclusions and the number of rules per conclusion wanted.
For example, suppose rules to conclude about (A - J) and
four rules for each conclusion are desired. This way, each
conclusion (A - J) will have four rules concluding about it.

The number of antecedents per rule was arbitrarily
chosen randomly to be between two and four. The random
number generator RANDOM, mentioned previously, is used to
produce this number.

After the antecedent has passed all of the tests,

15

another number between one and ten is randomly generated.
The purpose of this number is to decide whether to add a
"not" symbol to the antecedent just generated. If the
number generated is one, then the antecedent is negated.
Therefore, on the average, every tenth antecedent generated
will be transformed into its negation. This number may be
increased or decreased if other distributions are desired.

The symbol chosen to represent a "not" is the pound
sign (#). An ideal symbol, the tilde ~, was initially
chosen, but IQLISP has its own system meanings for the
tilde. It uses it to continue a line and is recognized as a
comment delimiter.

B. RULE COMPILER
As mentioned in the literature review, it is possible

to incorporate much of the search strategy at compile time.
The goal is to organize the rules in a way that decreases
the amount of work the inference engine has to do at
consultation time.

The amount of knowledge incorporated into the compil
ation depends on the heuristic being used. The heuristic's
responsibility is to determine the order in which the
antecedents will be tested. The heuristics will be dis
cussed in further detail in the next section. However, in
this section, the selection of an antecedent is assumed to
be arbitrary.

16

1. Algorithm
The basic rule compiler algorithm is :

Compile (ruleset)
For all R in ruleset for which the list of antecedents is
empty, do

(1) output conclusion of R;
(2) remove R from ruleset.

While R is non-empty do
(3) select an antecedent, say C, from the list

of antecedents of some rule;
(4) output a branch, using antecedent C as the

conditional;
(5) on the true side of the branch;

compile all rules that contain an antecedent
C after deleting C from each;

(6) on the negated side of the branch;
compile all rules that contain an antecedent
#C after deleting #C from each;

(7) remove from ruleset those rules compiled in
(5) and (6) .

A ruleset is a set of rules all concluding about the same
thing. For example, a ruleset concluding about A might be
as follows;
[((H V I d)A) ((E H)A) ((C D #H)A) ((B C E F)A)]

The steps to compile this ruleset are given below
The ruleset is not empty, so steps 1 and 2 are skipped.

17

3. Suppose H is chosen.
4. H is the branch output (it is actually the top of the

tree).
5. On the true side, compile the new ruleset which is:

[((V I d) A) ((E) A)].
This ruleset is not empty, skip steps 1 and 2.
3. Suppose E is chosen.
4. A branch for E is output.
5. On the true side of E, compile new ruleset:

C (() A)].
1. The new ruleset is empty, so the

conclusion A is output.
6. There is no negated side (rules involving #E).
7. New ruleset : C ((V I d) A)].

The process continues, putting out branches for the rest of
the antecedents in the ruleset, until the tree looks like:

H _ B
E . ____ C ____ C

A d D ____ E
V A ____ F

_____ I A
A

where the indicates a sequential list of trees.

2. Data Structures
a. Decision Trees are represened as follows :

(antecedent (if ant. is true) (if ant. is false)). A
conclusion may have more than one decision tree associated
with it. In the previous example, there were two associated
with A - one tree with H at the top, and one with B at the

18

top. Therefore, each conclusion is associated with a
decision tree list.

b. Decision Tree Lists are bound to the name of the
conclusion which is represented by an asterisk with the
consequent. For example, *A = [(H (if H is true) (if H is
false)) (B (if B is true) (if B is false)) 3 . To find out if
H is true or false, its decision tree has to be examined
which may itself be a decision tree list.

This structure eliminates all negation symbols from the
rulesets by having a true decision tree list and a false
decision tree list. The need for sequential trees was
discovered as more complicated rulesets were experimented
with, and this structure will handle any number of
sequential trees.

C. HEURISTICS FOR ANTECEDENT SELECTION
The most important part of the compile algorithm is the

selection of the antecedent to put out as a branch. In the
section on compiling, the selection of an antecedent was
assumed to be arbitrary. This section presents two
heuristics that were investigated, each of which approach
the selection process in very different ways.

The first heuristic was used by van Melle in EMYCIN.
It is straightforward and uses no knowledge about the
relationship among the rules. The second heuristic
incorporates knowledge about the rules generated,

19

specifically, the average number of antecedents required to
conclude about a parameter.

1. Most Often Occurring
The reasoning behind this heuristic is that an

antecedent appearing in the most rules must be important and
therefore should be placed at the top of the tree. To
exhibit this heuristic, assume the same ruleset as before:
[((H V I d)A) ((E H)A) ((C D #H)A) ((B C E F)A)].

A new list is made from the ruleset list containing each
antecedent and the number of times it appears in the
ruleset. For example,
C (H 3) (V 1) (I 1) (d 1) (E 2) (C 2) (D 1) (F 1)]

Note that the interest is in how many times an antecedent
is used, disregarding how it was used (negation). Therefore,
H would be chosen as the first antecedent (branch).

2. Minimum Average Antecedent
This heuristic examines the relationship between the

antecedent in the current ruleset with those in the rest of
the knowledge base.

The reasoning is to choose the antecedent that, on the
average, requires the least amount of work to determine its
value. For example, if the average number of antecedents
needed to conclude G is two and the average number of ante
cedents needed to conclude H is four, then G will be chosen.

The number of antecedents required for a particular

20

rule is readily available from the array ANT_INFO as
discussed in the section on rules. The total number of
antecedents minus the number of knowns is the number of
antecedents that will be inferred to conclude a particular
rule. For example, in the rule ((H V I d) X) the total
number of antecedents is four, the number of knowns is one.
Therefore, the number of antecedents needed to conclude X is
three.

An extremely misleading assumption to make is that the
number of antecedents required to conclude X is only three.
This implies that the number of antecedents required to
conclude H is one, the number to conclude V is one and the
number to conclude I is one which is possible, but unlikely.

To rectify this problem, the rules with H, V, and I as
consequents must be examined. Then the rules whose
consequents are the antecedents in H, V, and I must be
examined and new averages calculated. As can be seen, this
is an n-order problem. For this research, averages were
calculated three times in addition to the averages
calculated during generation of the rules. The decision to
calculate averages an additional three times was chosen
arbitrarily. However, consultation results (number of IFs)
were very close, in some cases identical, between the
knowledge bases compiled with second and third averages
indicating a point of diminishing return.

21

D. INFERENCE ENGINE
The inference engine's job, if the compiler performed

correctly, is trivial. It retrieves the decision trees
built by the compiler, examining either the true side or
false side of the tree depending on the value of the current
antecedent. Recall that a decision tree takes the form:
*A = ((a (true side) (false side)) (sequential trees)),
where a = antecedent, (true side) or (false side) can be a
list of decision trees. So if the antecedent is true, the
inference engine recurs with the CAR of the true side. If
that returns false or undeterminable, the next tree (still
on the true side of the antecedent) is examined. If there
are no more trees (possible ways to conclude the antecedent)
then "undeterminable" is returned from the true side and
also to *A if there are no more sequential trees.
Therefore, using the example in section B.I., the compiled
decision trees are structured as follows:
*A = [(decision tree #1) (decision tree #2)]

= [(H (true side)(false side)) (B (true side) (false
side))]

= [(H ((decision tree 1) (decision tree 2)) (false
side))
(B (true side) (false side = nil))]

= [(H ((E (A) n i 1)(d ((V ((I (A) nil)) nil)) nil))
(C ((D (A) nil)) nil) <= false side of H

) <== end of decision tree # 1
(B ((C ((E ((F (A) nil)) nil)) nil)) nil) II

22

IV. EXAMPLE CONSULTATION

Suppose the following set of rules are under
consideration :
[(((b c d) F) ((I H)F)) (((F #H) G) ((a J)G))
(((e J)H) ((g I b)H)) (((#G a)l) ((#f e b)l))
(((F e)J) ((#F I)J))].

Note that each ruleset has two rules concluding about the
conclusions F, G, H, I, and J. They will be compiled under
the assumption that antecedents will be chosen in the order
of (F #F G #G H #H I #1 J # J) . However, if any rule con
tains a known (lower case letter) it will be chosen first.

The consultation begins with the user specifying the
values of the lower case antecedents. For this research,
all lower case letters were set to be true. This was to
enable consistency since different combinations of "trues"
and "falses" will produce different results. For this
example, it is assumed that the goals for the consultation
are G and H.

The results of the compilation and consultation follow.
*F = (((b ((c ((d (F) NIL)) NIL)) NIL) (H ((I (F) NIL))

NIL)))
*G = (((a ((J (G) NIL)) NIL) (F ((H NIL (G))) NIL)))
*H = (((b ((g ((I (H) NIL)) nil)) nil) (e ((J (H) NIL))NIL)))
*1 = (((a ((G NIL (I))) NIL) (b ((f NIL ((e (I) NIL))))

NIL)))
*j = (((e ((F (J) NIL)) NIL) (F NIL ((I (J) NIL)))))

23

INFERENCE ENGINE LOG:

(SET_TREES '(a b c d e f g) ‘**TRUE**)

(INFER (QUOTE G))
a is known to be true
Attempting to satisfy J

e is known to be true
Attempting to satisfy F

b is known to be true
c is known to be true
d is known to be true

F is deduced to be true
J is deduced to be true

G has been deduced to be true after 7 IFs

(INFER (QUOTE H))
b is known to be true
g is known to be true
Attempting to satisfy I

a is known to be true
Attempting to satisfy G

a is known to be true
Attempting to satisfy J

e is known to be true
Attempting to satisfy F

b is known to be true
c is known to be true
d is known to be true

F is deduced to be true
J is deduced to be true

G is deduced to be true
I cannot be determined
b is known to be true
e is known to be true
f is known to be true
I cannot be determined
I cannot be determined
I cannot be determined
H cannot be determined
H cannot be determined
e is known to be true
J is known to be true
H has been deduced to be true after 16 IFs

24

V. SUMMARY OF RESULTS AND CONCLUSIONS

This paper presented a system, CIEGEN, developed as a
tool for building expert systems on a microcomputer and as a
valuable aid for research on rule compilation. It was
written in IQLISP and implemented on the IBM PC.

The main purpose of CIEGEN's rule generator is for use
in research on rule compilation because it allows the
generation of parameterized knowlege bases.

In CIEGEN, the knowledge base can be described by the
number of parameters to be concluded about, the number of
knowns per knowledge base, the number of rules per
conclusion, and the number of antecedents per rule. These
characteristics are input to the Rule Builder which keeps
track of the number of knowns per rule, the total number of
antecedents per rule, the unknowns or antecedents to be
inferred per rule, and the average number of antecedents
used per rule as rules are generated. In order for a
generated antecedent to be accepted, it must guarantee not
to cause first order cycling. If first order cycling is
detected, it is discarded and another antecedent is
generated.

After the rules have been generated, they are compiled
into a form that will hopefully execute more efficiently.
Rule compilation is the process of transforming a knowledge
base consisting of rules to a knowledge base of decision
trees. The transformation effectively takes place by
choosing an antecedent to be placed at the top of the tree,

25

gathering all of the rules using this antecedent, choosing
another antecedent as a branch, gathering those rules using
this antecedent, continuing the process until a rule has had
all of its antecedents chosen as branches, then printing the
conclusion as a leaf node. At this point, those rules
containing the negation of the antecedents output as
branches are gathered and the process is repeated, forming
the right side of the tree. As mentioned previously, this
technique has been implemented in EMYCIN, tested against the
technique of interpreting rules, and shown to cut inter
question time close to half for the expert systems MYCIN,
PUFF, and SACON.

The efficiency of the resulting decision trees depends
on the method of selecting the antecedents. The author
developed a heuristic (Minimum Average Antecedent) for
selecting antecedents based on knowledge gathered at
generation time. The heuristic forces those antecedents
requiring the least amount of work, on the average, to be
chosen first. The amount of work is determined by the
number of antecedents needed to be inferred in order to
conclude the antecedent in the current rule.

This heuristic was compared with a heuristic (Most
Often Occurring) used by EMYCIN. The Most Often Occurring
heuristic chooses the antecedent that appears in the most
rules. The heuristic is based upon the idea that if it is
used in the most rules, it must be important and should be
placed nearest the top of the tree.

26

The efficiency of the two heuristics was measured by
the number of IFs executed during a consultation with each
knowledge base. The performance of a consultation is the
responsibility of CIEGEN's inference engine. The inference
engine consists of a series of procedures which examine the
decision trees built by the rule compiler and counts the
number of antecedents it has to infer before a conclusion
can be made. The inference engine retrieves the decision
tree list of the parameter typed in by the user (what is
to be inferred, which can be the negation of a parameter),
then recursively examines the decision trees of the
antecedents in the original tree until a conclusion is made.

An antecedent's decision tree will only be examined
once and at that time the value is bound to the antecedent.
It is possible to need the value of an antecedent that is
being inferred, thus creating a cycle. When this happens,
the inference engine notes that the current path cannot be
continued and retrieves the next decision tree in the list
if one exists.

The inference engine traces the paths led by the
decision trees and outputs the total number of nodes it
visited with the value of the parameter being inferred. The
value of the parameter will either be “true" or
"undeterminable". The parameter will be undeterminable if
its decision trees were involved in cycles preempting it
from making a conclusion, or if the only path available
required the parameter to be false.

27

The fact that the parameters are never concluded to be
false (unless the negation of the parameter is being
inferred) is not obvious with the emphasis on a generic
knowledge base. The parameters could represent parts of
more complex rules. For example, concluding "A" to be true
could represent the conclusion "it is true that the bacteria
is not present." Similarly, concluding "B" to be true could
represent that the bacteria is present. A rule requiring
that the bacteria is not present would use "A" instead of
"#B" and vice versa. Therefore, it is possible to generate a
realistic knowledge base with all non—negated antecedents
and conclusions that are true.

Some parameters describing the knowledge base were held
constant and some were allowed to vary. For each knowledge
base, four rules were generated for each letter in the
alphabet (A-Z) and two to four antecedents were created for
each rule. These numbers were arbitrarily chosen, as a
knowledge base consisting of 104 rules was considered to be
a reasonable size. Knowledge bases permitting negations
were generated with the number of knowns varying among 5, 7,
and 14. Another set of knowledge bases were generated
witholding negations and varying the number of knowns among
5, 7, 14, and 21.

For each number of knowns, there were five knowledge
bases generated and tested. The intent for varying the
number of knowns was to test whether either heuristic would
be affected by giving it more information. The goals of

28

each consultation were assumed to be A-E, so the averages,
shown in Table I, are based on the total number of IFs
required to infer these five parameters. The right side of
Table I shows the results of consultations performed on
knowledge bases without negations in the rules. The reason
for restricting negations from the knowledge base was
because the second heuristic Minimum Average Antecedent did
not take into account the fact that parameters are never
deduced to be false.

Overall, the Most Often Occurring heuristic performed
consultations in the least number of IFs. As the number of
knowns increased, Most Often Occurring's average increased.
The author suggests that this is because there are fewer
common antecedents as the number of knowns are increased.
In other words, the number of antecedents to choose from
ranged from 26 to 28 to 35 which means that there will be
less repetitive antecedents in the rules. However, in the
case where the number of knowns and the number of parameters
to be inferred were equal, Most Often Occurring's average
dropped rather than increased. This may be due to the fact
that because there are so many knowns in the knowledge base
the actual cause of the decrease is obscured.

The Minimum Average Antecedent heuristic explicitly put
knowns closest to the top of the decision tree. This means
that if there are knowns in a rule, they will be tested
first. Therefore, it is expected that as the number of
knowns increases, the overall average will decrease. The

29

TABLE I

CONSULTATION RESULTS

AVERAGE NUMBER OF IFs

Antecedent Antecedent
selection interval selection interval
(negations permitted) (negations withheld)

HEURISTIC 26 28 35 26 28 35 42

Most Often 75 81 84 76 118 123 65
Occurring
Minimum
Average 152 132 98 123 126 91 74

Antecedent

30

Often Occurring heuristic did not explicitly place knowns
first, it merely placed rules containing knowns closest to
the top.

As mentioned previously, the Minimum Average Antecedent
algorithm did not take into account the possibility of
failures. It makes the assumption that the conclusions made
will be true. Since parameters are never concluded to be
false, if a rule requires the negation of an antecedent to
be true, the rule will fail. In this case the average
number of antecedents to conclude a parameter no longer
makes sense. Possibly incorporated into this heuristic
should be a penalty for those parameters that have "nots"
present with their antecedents. The other alternative is
the one previously mentioned, letting the parameters or
antecedents represent things more complicated than true or
false.

Data concerning times of the system were also
collected. The average amount of time to generate a
knowledge base was twenty minutes. The average amount of
time to compile a knowledge base was 31 minutes for the Most
Often Occurring heuristic and 29 minutes for the Minimum
Average Antecedent. The slight difference may be attributed
to the calculations that are done by the Most Often
Occurring heuristic tallying the number of times an
antecedent appears in the rules. An additional thirteen
minutes were required to calculate averages for the Minimum
Average Antecedent heuristic. An interesting note to make

31

is that a slightly more complicated heuristic took almost
40% more time to compile.

As demonstrated by the comparison of these two
heuristics, CIEGEN is a convenient tool for research and an
in depth analysis of heuristics. Information about the
rules such as the number of antecedents, values of
antecedents, number of rules, and number of knowns is
readily available and can easily be varied or held constant.
The system is not only domain independant, but is heuristic
independant so that heuristics can be easily inserted into
the system for testing and comparison with other compilation
heuristics.

32

VI. FURTHER r e s e a r c h s u g g e s t i o n s

CIEGEN provides a base for interesting work in at least
three areas. A natural extension to the work presented in
this thesis are the following areas:
As a research tool -

- a statistical analysis of the interactions between
parameters

- a study of additional heuristics
an addition to the Minimum Average Antecedent
heuristic to incorporate negations

- a study of the complexity of heuristics vs. compile
time

As groundwork for an expert system -
explanation capabilities for the inference engine

- the incorporation of uncertainty in the rules
the allowance of more complex rules with multiple
conclusions

In the generation of rules -
the incorporation of more knowledge about cycling,
rather than just checking for first order

- the incorporation of a learning mechanism
CIEGEN provides the groundwork for each of these areas.

33

BIBLIOGRAPHY

1. Barr, Avron and Edward Feigenbaum. The Handbook of
of Artificial Intelligence, vol. 1. California:William Kaufmann, Inc, 1981.

2. Hendrix, Gary G. and Earl D. Sacerdoti, "Natural
Language Processing: The Field in Perspective," Byte
6, 9 (1981), 304-352.

3. Winograd, Terry. Language as a Cognitive Process.
Massachusetts : Addison-Wesley Publishing Co., 1983.

4. Prendergast, Dan. "A General Purpose Robot Control
Language," Byte, 9, 1 (1984), 122-133.

5. Cohen, Paul R. and Edward Feigenbaum. The Handbook of
Artificial Intelligence, vol. 3. California: William
Kaufman, Inc., 1982.

6. Feigenbaum, E. A. "The Art of Artificial Intelligence :
Themes adn Case Studies of Knowledge Engineering,"
Report : STAN-CS-77-621, Computer Science Department,
Stanford University, Stanford, California.

7. Barr, Avron and Edward Feigenbaum. The Handbook of
Artificial Intelligence, vol.2. California: William
Kaufman, Inc., 1982.

8. Buchanan, Bruce and Edward Feigenbaum. "DENDRAL and
META-DENDRAL: Their Application Dimension," Artificial
Intelligence, 11 (1978), 5-24.

9. Buchanan, Bruce and Tom M. Mitchell. "Model Directed
Learning of Production Rules." Report: HPP 77-6.
Heuristic Programming Project, Computer Science Depart
ment, Stanford University, Stanford, California.

10. Hayes-Roth, Frederick and others. Building Expert
Systems. Massachusetts: Addison-Wesley Publishing
Co., 1983.

11. Farley, A. M. "Issues in Knowledge Based Problem
Solving," IEEE Transactions System Man and Cybernetics
SMC—10, 8 (1980), 446-459.

. Van Melle, W. "MYCIN : A Knowledge Base Consultation
Program for Infectious Disease Diagnosis," International
Journal of Man—Machine Studies, 10 (1978), 313—322.

12

34

BIBLIOGRAPHY (continued)

13. Van Melle, W. "A Domain Independant Production Rule
System for Consultation Programs," STAN-CS-80-820,
Stanford, California, June, 1980.

14. Forgy, Charles, L. "Rete: A Fast Algorithm for the Many
Pattern / Many Object Pattern Match Problem," Artificial
Intelligence, 19 (1982), 17-37.

15. Davis, Randall. "Interactive Transfer of Expertise:
Acquisition of New Inference Rules," Artificial
Intelligence, 12, 2 (1979), 121-157.

16. Davis, Randall and Douglas Lenat. Knowledge Based
Systems in Artificial Intelligence. New York:
McGraw-Hill International Book Co., 1982.

17. IQLISP Reference Manual. Washington: Integral Quality,
1983.

35

VITA

Jayne Denise Ward was born on February 16, 1960 in
Springfield, Missouri where she also received her primary
and secondary education. She graduated cum laude from
Southwest Missouri State University in Springfield, Missouri
with a Bachelor of Science in Computer Science and Mathe
matics in May, 1982.

She has been enrolled in the Graduate School of the
University of Missouri-Rolla since August, 1982. Since
June, 1983 she has been employed by the United States Geo
logical Survey in Rolla, Missouri and has held a Graduate
Teaching Assistantship in the Department of Computer Science
from August, 1983 to May, 1984. During May and June, 1984,
she has held a Research Assistantship in the Department of
Computer Science. She is a member of the honor societies
Upsilon Pi Epsilon, Kappa Mu Epsilon, and Sigma Pi Sigma as
well as a student member of the American Association for
Artificial Intelligene and the Association for Computing
Machinery.

36

APPENDIX A
CIEGEN PACKAGES

37

PACKAGE "COMPILER.LSP

RC
Arguments :

Called by
Calls
RETURNS

(DEF 'RC
’[LAMBDA (

[PROG ()
(SETQ *PARMS* NIL)
(SETQ SESSIONFILE

(OUTPUT FILENAME))
(PRINTC ’"RULES SUBMITTED:" SESSIONFILE)
(PRINTC '"RULES SUBMITTED:")
(TERPRI NIL SESSIONFILE)
(TERPRI NIL SESSIONFILE)
(TERPRI)
(TERPRI)
(PP PARTITION_LIST SESSIONFILE)
(PP PARTITION_LIST)
(TERPRI NIL SESSIONFILE)
(TERPRI)
(PRINTC '"RESULTS OF COMPILATION:" SESSIONFILE)
(PRINTC '"RESULTS OF COMPILATION:")
(TERPRI NIL SESSIONFILE)
(TERPRI)
(DO PARTITION_LIST)
(CLOSE SESSIONFILE)
(TERPRI)
(RETURN 'END OF COMPILATION)]])

PARTITION_LIST — a list of partitions,
FILENAME — filename (in double quotes)
specifying a disk file to receive the
listing produced by the compiler,
the user
DO
the compilation. RC is the function that
causes rules to be compiled. The user should
type, for example, (RC PL "B:RC3") which will
cause the partition list PL to be compiled
and output to be sent to the screen and to the
file B :RC3

'ARTITION LIST FILENAME)

Arguments

Called by
Calls
RETURNS

DO
PARTITION_LIST — a list of rule partitions
(a complete set of input rules grouped by
conclusion parameters)

RC, itself
COMPILE, itself
passes each partition to COMPILE. DO puts an
extra set of parentheses around the output of
COMPILE making it a decision tree list

38

(DEF * DO
‘[LAMBDA (PARTITION_LIST)

[PROG (P)
(COND

[(NULL PARTITION LIST)
(RETURN 'DONE)7

[T
(SETQ P

(CAR PARTITION_LIST))
(SETQ OUTFILE

(OUTPUT "B.-OUTFILE"))
(PRINC '"(“ OUTFILE)
(COMPILE P)
(PRINC '")" OUTFILE)
(CLOSE OUTFILE)
(SETQ INP

(INPUT "B:OUTFILE"))
(SETQ TREENAME

(READLIST (CONS
(EXPLODE (CADAR P)))))

(SET TREENAME
(READ INP))

(CLOSE INP)
(PRINT TREENAME SESSIONFILE)
(PP (EVAL TREENAME) SESSIONFILE)
(PRINT TREENAME)
(PP (EVAL TREENAME))
(SET (READLIST (CONS '"l"

(EXPLODE (CADAR P))))
(EVAL TREENAME))

(SETQ *PARMS*
(CONS (CADAR P) *PARMS*))

(DO (CDR PARTITION LIST))
(RETURN 'DONE)])]]7

Arguments
Called by
Calls

RETURNS

COMPILE
RULESET — A rule partition (a list of rules

concluding about a particular ant)
DO, itself
CONCLUDE_ALL_W_SATISFIED_PREMISES, ALL_NOT_
SATISFIED, SELECT_A_CLAUSE, UNNEGATED, DEL_
RULE_SET, FIND_ALL, REMOVE, NEGATION
a decision tree list

(DEF ‘COMPILE
’[LAMBDA (RULESET)

[PROG (C K)
(CONCLUDE_ALL_W_SATISFIED_PREMISES RULESET)
(SETQ K

(ALL NOT SATISFIED RULESET))
CONTINUE

(COND

39

[(NULL K)
(RETURN 'DONE)]

[T
(SETQ C

(SELECT_A_CLAUSE K))
(PRINC '"[" OUTFILE)
(COND

C(UNNEGATED C)
(PRIN C OUTFILE)
(PRINC '"(" OUTFILE)
(COMPILE (DEL RULESET C

T f i n d_a l l C K)))
(PRINC '")" OUTFILE)
(SETQ K

(REMOVE C K))
(PRINC '"(" OUTFILE)
(COMPILE (DEL RULESET (NEGATION C)

Tf i n d _a l l (NEGATION C) K)))
(PRINC '")" OUTFILE)
(SETQ K

(REMOVE (NEGATION C) K))]CT
(PRIN (NEGATION C) OUTFILE)
(PRINC '"(" OUTFILE)
(COMPILE (DEL RULESET (NEGATION C)

Tf i n d _a l l (NEGATION C) K)))
(PRINC '")" OUTFILE)
(SETQ K

(REMOVE (NEGATION C) K))
(PRINC '"(" OUTFILE)
(COMPILE (DEL RULESET C

Tf i n d _a l l C K)))
(PRINC *")" OUTFILE)
(SETQ K

(REMOVE C K))])
(PRINC OUTFILE)
(GO CONTINUE)])]])

NEGATION
Arguments
Called by
Calls
RETURNS

ANT — an antecedent
COMPILE
system functions only
the negation of the antecedent. This function
is used by the compiler to specify rules which
contain the negation of a particular ant.

(DEF 'NEGATION
'[LAMBDA (ANT)

(COND
[(NULL ANT)

NIL]
[(EQUAL (CAR (EXPLODE ANT))

(CDR (EXPLODE ANT)))]

40

' "#")
(READLIST

[T
(READLIST (CONS '"#"

(EXPLODE ANT)))])])

Arguments
Called by
Calls
RETURNS

ALL_W_SATISFIED_PREMISES
RULESET — a rule partition
CONCLUDE_ALL_W_SATISFIED_PREMISES
itself
a list of all conclusions which have satis
fied premises (a nil antecedent list)•

(DEF 'ALL W_SATISFIED_PREMISES
'[LAMBDA TRULESET)

(COND
[(NULL RULESET)

NIL]
[(NULL (CAAR RULESET))

(CONS (CADAR RULESET)
(ALL W SATISFIED_PREMISES (CDR RULESET)))]

[T
(ALL W SATISFIED PREMISES (CDR RULESET))])])

CONCLUDE ALL W SATISFIED PREMISES
Arguments
Called by
Calls
RETURNS

RULESET — a rule partition
COMPILE
ALL_W_SATISFIED_PREMISES, PRINT_EACH
construction of leaf nodes. Prints each
element returned by ALL_W_SATISFIED_PREMISES

(DEF ’CONCLUDE_ALL_W_SATISFIED_PREMISES
'[LAMBDA (RULESET)

(COND
[(NULL (ALL_W_SATISFIED_PREMISES RULESET))

NIL]
[T (PRINT_EACH (ALL W SATISFIED_PREMISES RULESET)

OUTFILE)] 7TT

Arguments
Called by
Calls
RETURNS

ALL_NOT_SATISFIED
RULESET — a rule partition
COMPILE, itself
itselfeverything in the rule partition that does not
have a nil antecedent list, (another partition
list)

41

(DEF 1ALL_NOT_SATISFIED
'[LAMBDA (RULESET)

(COND
[(NULL RULESET)

NIL]
[(NULL (CAAR RULESET))

(ALL NOT SATISFIED (CDR RULESET))]
[T

(CONS (CAR RULESET)
(ALL_NOT_SATISFIED (CDR RULESET)))])])

REMOVE
Arguments
Called by
Calls
RETURNS

CLAUSE — an antecedent, RULESET — a rule
partition

COMPILE, itself
ANT_IS_IN_RULE, REMOVE
a partition list which is RULESET without the
rules that reference CLAUSE

(DEF 'REMOVE
'[LAMBDA (CLAUSE RULESET)

(COND
[(NULL RULESET)

NIL]
[(ANT_IS_IN_RULE CLAUSE

(CAR RULESET))
(REMOVE CLAUSE

(CDR RULESET))]
[T

(CONS (CAR RULESET)
(REMOVE CLAUSE

(CDR RULESET)))])])

Arguments
Called by
Calls
RETURNS

P RINT_EACH
LST — a list of parameters
CONCLUDE_ALL_W_SATISFIED_PREMISES, itself
itself
prints each of the elements in LST to OUTFILE

(DEF 'PRINT_EACH
'[LAMBDA (LST)

(COND
[(NULL LST)

'DONE]
[T

(PRIN (CAR LST) OUTFILE)
(PRINT EACH (CDR LST))])])

UNNEGATED
Arguments : ANT an antecedent

42

Called by : COMPILE
Calls : LISP builtin functions only
RETURNS : T if the antecedent is unnegated, NIL

otherwise
(DEF ’UNNEGATED
'[LAMBDA (ANT)

(COND
[(EQUAL

(CAR (EXPLODE ANT)))
NIL]

[T
T])])

43

PACKAGE "IE.LSP

INFER
Arguments
Called by
Calls

RETURNS

(DEF 'INFER
' [LAMBDA (PARM)

[PROG (TEMP)
(TERPRI NIL IELOG)
(SETQ IM_WORKING_ON NIL)
(COND

[(UNNEGATED PARM)
(COND

[(IS_KNOWN TO_BE_TRUE PARM)
(r e t u r n Te n d c o n s u l t a t i o n p a r m

"r(T 1)))]
[(IS_KNOWN TO_BE_FALSE PARM)

(r e t u r n Te n d c o n s u l t a t i o n p a r m
”r(F 1)))]

[(IS_KNOWN TO_BE_UNDET PARM)
(r e t u r n Te n d c o n s u l t a t i o n p a r m~(u 1)))]

[T
(SETQ TEMP

(INFER_LIST PARM
(EVAL (READLIST (CONS

(EXPLODE PARM))))
0 0 NIL))

(RETURN (END_CONSULTATION PARM TEMP))])]
[T

(COND[(IS_KNOWN TO_BE_TRUE (NEGATION PARM))
(r e t u r n T e n d c o n s u l t a t i o n p a r m

"r(F 1)))]
[(ISJKNOWN TO_BE_FALSE (NEGATION PARM))

(r e t u r n Te n d c o n s u l t a t i o n p a r m
"*" (T 1)))]

[(IS_KNOWN TO_BE_UNDET (NEGATION PARM))
(r e t u r n T e n d c o n s u l t a t i o n p a r m

^(U 1)))]

PARM — a parameter
The user.
UNNEGATED, IS_KNOWN_TO_BE_TRUE, IS_KNOWN_TO_
BE_FALSE, IS_KNOWN_TO_BE_UNDET, INFER_LIST,
END_CONSULTATION, OPPOSITE, NEGATION
INFER is the top level function for the
inference engine. The user calls the function
with the parameter whose truth value is
desired. The inference engine then displays
a trace of the traversal of the knowledge base
as it infers the parameter.

[T
(SETQ TEMP

44

(OPPOSITE (INFER_LIST (NEGATION PARM)
(EVAL (READLIST (CONS '"*"

(EXPLODE (NEGATION
PARM))))

) 0 0 NIL)))
(RETURN (END CONSULTATION PARM TEMP))])])]])

INFER_LIST
Argruments : PARM — a parameter, DT_LIST — a decision

tree list which is to be used to determine
the truth of the parameter, COUNT — the
count of IFs processed so far, SPACE_COUNT —
controls the indentation of messages printed
as the inference process progresses, GIVE__UP-
controls whether a message should be printed
indicating that the parameter cannot be de
termined. It is possible to arrive at a
place in the knowledge base where the DT_LIST
NIL, but there are still decision trees to be
searched. (This is due to having sequences
decision trees.) GIVE_UP will be T if INFER_
LIST has just called itself directly and will
be NIL otherwise (INFER2 made the call) .
INFER, INFER2, itself
PRINT_LINE, INFER2, itself
if the parameter is determined to be true or
false, then the search stops and INFER_LIST
returns the truth and count value fount. If
the parameter cannot be determined using one
decision tree, the remaining decision trees
used until the parameter is determined or
there are no more decision trees in the list.

(DEF 'INFER_LIST
'[LAMBDA (PARM DT_LIST COUNT SPACE_COUNT GIVE_UP)

[PROG (TEMP)
(RETURN (COND[(NULL DT_LIST)

(COND
[GIVE_UP

(PRINT_LINE SPACE_COUNT PARM
'"cannot be determined")

(SET (READLIST (CONS
(EXPLODE PARM)))

' **UNDET**)
(SETQ IM_WORKING_ON

(DEL_CURR GOAL IM_WORKING_ON PARM))
(CONS ^U

(LIST (ADD1 COUNT)))]
[T

(CONS 'U
(LIST COUNT))])]

Called by
Calls
RETURNS

45

[(EQUAL 'U
(CAR (SETQ TEMP

(INFER2 PARM
(CAR DT LIST) COUNT

s p a c e _c o u n t 7)))
(INFER_LIST PARM

(CDR DT_LIST)
(CADR TEMP) SPACE COUNT T)]

[T
TEMP]))]])

Arguments

Called by
Calls
RETURNS

INFER2
PARM — the parameter to be determined, DT --
a decision tree to be used in determining PARM
COUNT — the count of IFs seen so far, SPACE_
COUNT — indentation value for messages
INFER_LIST
I S_KN OWN_T 0_B E_T RUE, I S_KNOWN__TO_BE_FALSE,
I S__KNOWN_TO_BE_UNDET, PRINT_LINE, INFER__LIST
the truth and count pair indicating the result
of its search. (see INFER_LIST) It searches
a single decision tree.

(DEF 1INFER2
'[LAMBDA (PARM DT COUNT SPACE_COUNT)

[PROG (TEMP)
(RETURN (COND

[(ATOM DT)
(COND

[(EQUAL PARM DT)
(SET (READLIST (CONS '

(EXPLODE PARM)))
' **TRUE**)

(CONS 'T
(LIST COUNT))]

[T
(TERPRI)
(SPACES SPACE_COUNT)
(PRINC '"malformed decision

tree")
(COND

[ECHO_ON?
(TERPRI NIL IELOG)
(SPACES SPACE_COUNT IELOG)
(PRINC '

"malformed decision
IELOG)]

[T
NIL])

(LIST 'U COUNT)])]
[(IS KNOWNTO_BE_TRUE (CAR DT))

tree")

46

(PRINT_LINE SPACE_COUNT
(CAR DT)
'"is known to be true")

(INFER_LIST PARM
(CADR DT)
(ADD1 COUNT) SPACE_COUNT NIL)]

[(lS_KNOWN_TO_BE_FALSE (CAR DT))
(PRINT_LINE SPACE_COUNT

(CAR DT)
'"is known to be false")

(INFER__LIST PARM
(CADDR DT)
(ADD1 COUNT) SPACE_COUNT NIL)]

[(lS_KNOWN_TO_BE_UNDET (CAR DT))
(PRINT_LINE SPACE_COUNT

(CAR DT)
'"is known to be undeterminable")

(CONS 'U
(LIST (ADD1 COUNT)))]

[T
(COND

[(NULL (MEMBERS (CAR DT)
IM_WORKING_O N))

(SETQ IM_WORKING ON
(CONS (CAR DTT IM_WORKING_ON))

(TERPRI)
(SPACES SPACE_COUNT)
(PRINC ’"Attempting to satisfy ")
(PRIN (CAR DT))
(COND

[ECHO_ON?
(TERPRI NIL IELOG)
(SPACES SPACE_COUNT IELOG)
(PRINC ‘"Attempting to

satisfy " IELOG)
(PRIN (CAR DT) IELOG)]

[T
NIL])

(COND
[(EQUAL 'T

(CAR (SETQ TEMP
(INFER LIST (CAR D T)

TEVAL (READLIST
(CONS '"*"

(EXPLODE (CAR DT))))) COUNT
(+ 2 SPACE_COUNT) NIL))))

(PRINT_LINE SPACE_COUNT
(CAR DT)

'"is deduced to be true")
(SETQ IM_WORKING_ON

(DEL_CURR GOAL IM WORKING_ONTcar dt)T)
(INFER_LIST PARM

(CADR DT)

47

(ADD1 (CADR TEMP))
SPACE_COUNT NIL)]

[(EQUAL 'F
(CAR TEMP))

(PRINT_LINE SPACE_COUNT
(CAR DT)

'"is deduced to be false")
(SETQ IM_WORKING_ON

(DEL_CURR GOAL IM WORKING_ON
T c a r d t)T)

(INFER__LIST PARM
(CADDR DT)
(ADD1 (CADR TEMP))

SPACE COUNT NIL)]
[T

(LIST 'U
(CADR TEMP))])]

[T
(PRINT_LINE SPACE_COUNT

(CAR DT)
’"is involved in a cycle")

(CONS 'U
(LIST (ADD1 COUNT)))])]))]])

OPPOSITE
Arguments

Called by
Calls
RETURNS

TRUTH_AND_COUNT — a pair, or list of two
elements, containing the "truth" of a
parameter and the count of the number of IFs
processed in extablishing the truth.
INFER
builtin functions only
the negation of the parameter and the same
count

(DEF ‘OPPOSITE
'[LAMBDA (TRUTH_AND_COUNT)

(COND
[(ATOM TRUTH_AND_COUNT)

(PRINT '"malformed truth and count value")
(COND

[ECHO_ON?
(PRINT '"malformed truth and count value" IELOG)]

[T
NIL])

(NIL)]
[(EQUAL 'T

(CAR TRUTH_AND_COUNT))
(CONS 'F(CDR TRUTH_AND_COUNT))]

[(EQUAL 'F
(CAR TRUTH_AND_COUNT))

(CONS 'T(CDR TRUTH_AND_COUNT))]
[(EQUAL 'U

48

(CAR TRUTH_AND_COUNT))
TRUTH_AND_COUNT]
(PRINT '"malformed truth and count value")
(COND

[ECHO_ON?
(PRINT '"malformed truth and count value" IELOG)]

[T
NIL])

(NIL)])])

I

IS KNOWN TO BE TRUE
Arguments
Called by
Calls
RETURNS

PARM — a parameter
INFER, INFER2
builtin functions only
T if the decision tree list corresponding to
the parameter PARM is bound to the value
TRUE, corresponding to PARM being known
to be true. Returns NIL otherwise.

(DEF 'IS_KNOWN_TO_BE_TRUE
'[LAMBDA (PARM)

(EQUAL '**TRUE**
(EVAL (READLIST (CONS

(EXPLODE PARM)))))])

IS_KNOWN_TO_BE_FALSE
(Similar to IS_KNOWN_TO_BE_TRUE)
(DEF 'IS_KNOWN TO_BE_FALSE
'[LAMBDA (PARMT

(EQUAL '**FALSE**
(EVAL (READLIST (CONS '

(EXPLODE PARM)))))])

IS_KNOWN_TO_BE_UNDET
(similar to IS_KNOWN_TO_BE_TRUE)
(DEF 'IS_KNOWN TO_BE_UNDET
'[LAMBDA (PARMT

(EQUAL '* *UNDET* *
(EVAL (READLIST (CONS

(EXPLODE PARM)))))])

SET TREES

49

Arguments
Called by
Calls
RETURNS

PARMLIST — a list of parameters, VAL — a
value
the user, itself
itself
the decision tree list set equal to the value
VAL.

(DEF 1SET_TREES
'[LAMBDA (PARMLIST VAL)

(COND
[(NULL PARMLIST)

’FINE]
[T

(SET (READLIST (CONS(EXPLODE (CAR PARMLIST)))) VAL)
(SET_TREES (CDR PARMLIST) VAL)
'FINED)])

IT
Arguments
Called by
Calls
RETURNS

none
the user.
TREE_INIT
the reinitialization of decision tree lists
without recompilation of rules.

(DEF 'IT
'[LAMBDA ()

(TREE_INIT *PARMS*)])
TREE_INIT

Arguments : PARMLIST — a list of parameters
Called by : IT, itself
Calls : itself
(DEF 1TREE_INIT
’[LAMBDA (PARMLIST)

(COND
[(NULL PARMLIST)

’SURE]
[T

(SET (READLIST (CONS(EXPLODE (CAR PARMLIST))))
(EVAL (READLIST (CONS ' ”1”

(EXPLODE (CAR PARMLIST))))))
(TREE INIT (CDR PARMLIST))•sure!)])

PRINT_LINE
Arguments : SPACE_COUNT — how many spaces to indent the

50

Called by
Calls
RETURNS

printed line, THING — the thing to be printed
MSG — a message to be printed with the value of THING
INFER_LIST, INFER2, END__CONSULTAT I ON
builtin functions
a line of text to be printed as part of the
trace of execution of the inference engine.

(DEF 'PRINT_LINE
'[LAMBDA (SPACE_COUNT THING MSG)

[PROG ()
(TERPRI)
(SPACES SPACE_COUNT)
(PRIN THING)
(SPACES 1)
(PRINC MSG)
(COND

[ECHO_ON?
(TERPRI NIL IELOG)
(SPACES SPACE_COUNT IELOG)
(PRIN THING IELOG)
(SPACES 1 IELOG)
(PRINC MSG IELOG)]

[T
NIL])]])

END CONSULTATION
Arguments
Called by
Calls
RETURNS

PARM — a parameter, PAIR — a truth and count
pair
INFER
PRINT_LINE
prints some final information that appears
after the inference engine has accomplished
it can.

(DEF 'END CONSULTATION
'[LAMBDA TPARM PAIR)

[PROG ()
(TERPRI)
(COND

[ECHO_ON?
(TERPRI NIL IELOG)]

[T
NIL])

(PRINT_LINE 0 PARM
(COND

[(EQUAL 'T
(CAR PAIR))

'"has been deduced to be true"]
[(EQUAL 'F

(CAR PAIR))
'"has been deduced to be false"]

51

[T
1"is undeterminable"2)) (PRINC after ")

(PRIN (CADR PAIR))
(PRINC *" IFs")
(TERPRI)
(TERPRI)
(COND

Ce c h o _ o n ?
(PRINC '" after " IELOG)
(PRIN (CADR PAIR) IELOG)
(PRINC *" IFs" IELOG)
(TERPRI NIL IELOG)]

[T
NIL])

(RETURN 'CONSULTATION ENDED)]])

NEGATION
ANT — an antecedent
INFER
builtin functions only
the negation of the parameter (antecedent).
This function allows a user to infer the value
of a negated parameter. The unnegated form is
inferred and the answer is returned negated.
(The decision trees built by the rule compiler
never contain negated parameters.)

(DEF 'NEGATION
’[LAMBDA (ANT)

(COND
[(NULL ANT)

NIL]
[(EQUAL (CAR (EXPLODE ANT))

I

(READLIST (CDR (EXPLODE ANT)))]
[T

(READLIST (CONS '"#"
(EXPLODE ANT)))])])

Arguments
Called by
Calls
RETURNS

Arguments

Called by
Calls
RETURNS

ECHO
FILENAME — the name of a file (in double
quotes) which is to receive the text generated
by INFER, IT or SET__TREES
the user.
builtin functions only
ECHO captures keyboard input and passes that
input to EVAL. However, any text that is
generated is also placed in FILENAME. This
continues until the user requests that the

echo be turned off, or the user invokes a
function which is not one of INFER, IT or
SET TREES

(DEF 'ECHO
'[LAMBDA (FILENAME)

[PROG (TEMP)
(SETQ ECHO__ON? T)
(SETQ IELOG

(OUTPUT FILENAME))
(PRINTC '"INFERENCE ENGINE LOG:" IELOG)
(TERPRI NIL IELOG)

LOOP
(PRINTC '"+")
(PRINTC '"+" IELOG)
(SETQ TEMP

(READ))
(COND

[(EQUAL TEMP
'ECHO_OFF)

(SETQ ECHO_ON? NIL)
(PRINC '"END OF LOG." IELOG)
(CLOSE IELOG)
(TERPRI)
(RETURN 'ECHO OFF)]

[(OR (ATOM TEMPT
(EQUAL (CAR TEMP)

'INFER)
(EQUAL (CAR TEMP)

'SET_TREES)
(EQUAL (CAR TEMP)

'IT))
(PRIN TEMP IELOG)
(PRINT (PRIN (EVAL TEMP)) IELOG)
(TERPRI)
(TERPRI NIL IELOG)
(GO LOOP)]

[T
(SETQ ECHO_ON? NIL)
(PRINC '"END OF LOG." IELOG)
(CLOSE IELOG)
(PRIN (EVAL TEMP))
(TERPRI)
(TERPRI)
(RETURN 'ECHO OFF)])]])

Arguments

Called by
Calls
RETURNS

DEL_CURR_GOAL
LIST — the list of parameter currently bei
inferred which is IM_WORKING_ON, ELE — the
parameter that has just been inferred
INFER2
builtin functions only
an updated IM_WORKING_ON list

(DEF 'DEL CURR_GOAL
'[LAMBDA TLIST ELE)

(COND
[(NULL LIST)

NIL]
[(EQUAL (CAR LIST) ELE)

(CDR LIST)]
[T

(CONS (CAR LIST)
(DEL CURR GOAL (CDR LIST) ELE))])])

54

PACKAGE "RULE BUILDER.LSP

Arguments :

Called by
Calls
RETURNS
(DEF 'K_B
[LAMBDA (NC NS NP FILENAME HEURISTIC_NUMB)

[p r o g (r e s u l t s)
(SETQ ANT_INFO

(ARRAY 2 105 8))
(SETQ LIST_OF_AVER_ANT NIL)
(SETQ TL_RULES 0)
(SETQ LIST OF ASKFIRST
•((a)(b)(c)(d)(e)(#a)(#b)(#c)(#d)(#e)))

(SETQ RESULTS
(APPEND (KNOWLEDGE_BASE NC NS NP 1)

(KNOWLEDGE_BASE 4 0 26 6)))
(SETQ OP

(OUTPUT FILENAME))
(PP RESULTS OP)
(CLOSE OP)
(RETURN RESULTS)3 3)

K_B
NC — number of complex rules, NS — number of
simple rules, NP — number of parameters to
be concluded about, FILENAME — file in double
quotes to send rules to when generated
the user
KNOWLEDGE_BASE
the knowledge base

KNOWLEDGE BASE
Arguments

Called by
Calls
RETURNS

N COMPLEX — number of complex rules,
N~SIMPLE — number of simple rules, N_CONCL —
number of conclusions, BEG — place in
alphabet to begin
K_B
K_B_C REATO R
the knowledge base

(DEF 'KNOWLEDGE_BASE
'[LAMBDA (N_COMPLEX N_SIMPLE N_CONCL BEG)

(K B CREATOR BEG N CONCL N__COMPLEX N_SIMPLE)])

K_B_C REATO R
Arguments : L — parameter will be generating rules about,

NUMBER OF_PAR — total number of conclusions,
N COMPLEX — number of complex rules,
N~SIMPLE — number of simple rules

Called by : KNOWLEDGE_BASE

55

Calls : GENERATE_RULES, itself
RETURNS : knowledge base
(DEF 'K_B CREATOR
’[LAMBDA Tl NUMBER_OF_PAR N_COMPLEX N_SIMPLE)

(COND
[(LE L NUMBER_OF PAR)

(APPEND (LIST TGENERATE RULES 2 L N_COMPLEX NIL))
(K_B_CREATOR (+ 1 Lj NUMBER_OF_PAR N_COMPLEX
N SIMPLE))]

[T
NIL])])

MEMBERS
Arguments :
Called by :
CALLS :
RETURNS :
(DEF 'MEMBERS
'[LAMBDA (ELEMENT LST)

(COND
[(NULL (MEMBER ELEMENT LST))

NIL]
[T

T])])

ELEMENT — an antecedent to be tested, LST —
the list being tested for ELEMENT
CONSISTENCY
MEMBER
T if ELEMENT is in LST, NIL otherwise

GENERATE RULES
Arguments

Called by
Calls
RETURNS

N ANT — lower bound of interval of antecedent
L— — current conclusion, N_RULES -- number of
rules to generate for this conclusion
K_B_CREATOR
RANDOM_NUMBER, CREATE_LIST, COUNT_ANT
the list of rules concluding about L

(DEF 'GENERATE_RULES
'[LAMBDA (N_ANT L N_RULES FLAG)

[PROG (I J K M N)
(SETQ I 1)

LOOP
(SETQ J

(FIX (+ N ANTT * (RANDOM_NUMBER) 3))))
(SETQ K 1)
(SETQ N NIL)
(COND

[(LE I N_RULES)
(SETQ M(CONS (CONS (SETQ LIST__OF_ANT

56

(CREATE_LIST J K N L))
(LIST (READLIST (LIST (ASCII (+ L 64))

)))) M))(SETQ TL_RULES
(ADD1 TL_RULES))

(COUNT_ANT TL_RULES
(+ L 64) J LIST_OF_ANT)

(SETQ I
(+ I D)(GO LOOP)]

(SETQ LIST_OF_AVER_ANT
(APPEND (LIST (CONS (READLIST (LIST
(ASCII (+ L 64))))

(LIST (FIND AVER_ANT 1 N_RULES
)))7 LIST_OF_AVER_ANT))

(NOTE_LIST_OF_ANT_USED M)
(SETQ LIST_S0_FAR NIL)
(RETURN (REVERSE M))])]])

Arguments

Called by
Calls
RETURNS

COUNT_ANT
ARRAY_NUMBER — array number in ANT_INFO,
CONCLUS — current conclusion, MAX_NO_ANT —
number of upper case letters in rule,
LIST__OF_ANT — list of antecedents in rule
GENERATE_RULES
NUMB E R_0 F_LOW E R_CAS E
NIL, the purpose is to store information in
ANT INFO

(DEF 'COUNT_ANT
1CLAMBDA (ARRAY_NUMBER CONCLUS MAX_NO_ANT LIST_OF_ANT)

CPROG ()
(STORE (ANT_INFO ARRAY NUMBER

* 1) c o n c l u s T
(STORE (ANT INFO ARRAY_NUMBER

’ 2)
(NUMBER_OF_LOWER__CASE LIST_OF_ANT 0))

(STORE (ANT INFO ARRAY_NUMBER
"r3) MAX_NO_ANT)

(COND
[(GT (- MAX_NO_ANT

(ANT_INF0 ARRAY_NUMBER 2)) 0)
(STORE_REQ_ANTS 1

(- MAX_NO_ANT
(ANT_INFO ARRAY_NUMBER 2)) ARRAY_NUMBER)])

(RETURN)]])
NUMBER_OF_LOWER_CASE

Arguments : LIST_OF_ANT — list of antecedents in rule,
NUMBER — counter for the number of lower case

57

antecedents in rule
Called by : COUNT_ANT
Calls : itself
RETURNS : the number of lower case antecedents in rule
(DEF 'NUMBER_OF_LOWER_CASE
'[LAMBDA (LIST_OF_ANT NUMBER)

(COND
[(NULL LIST_OF_ANT)

NUMBER]
[(GE (CHRVAL (CAR LIST__OF_ANT)) 97)

(NUMBER_OF_LOWER CASE (CDR LIST_OF_ANT)
(ADD1 NUMBERT)]

[(EQUAL
(CAR (EXPLODE (CAR LIST_OF_ANT))))

(COND[(GE (CHRVAL (READLIST (CDR (EXPLODE (CAR
LIST_OF_ANT))))) 97)

(NUMBER__OF_LOWER CASE (CDR LIST_OF_ANT)
(ADD1 NUMBERT)]

[T
(NUMBER OF_LOWER_CASE (CDR LIST_OF_ANT)

NUMBER)])]
[T (NUMBER OF LOWER CASE (CDR LIST_OF_ANT) NUMBER)])])

CREATE LIST
Arguments

Called by
Calls
RETURNS

J — number of antecedents for this rule,
K — counter of number of antecedents gener
ated so far, N — NIL, L — current conclu
sionGENERATE_RULES
itself, CONSISTENCY, NUMBER_REFORM
the list of antecedents for a rule

(DEF 'CREATE_LIST
'[LAMBDA (J K N L)

(COND
[(LE K J)

(CONS (SETQ TEMP(CONSISTENCY L N))
(CREATE_LIST J

(+ 1 K)(CONS (CHRVAL (NUMBER_REFORM TEMP)) N) L))]
[T

NIL])])

NUMBER_REFORM
Arguments : TEMP — an antecedent
Called by : CREATE_LIST

58

Calls : LISP buildin functions
RETURNS : its purpose is to strip the "not" symbol from

an antecedent to be used in the list of ants
generated for the rule so far

(DEF 'NUMBER_REFORM
'CLAMBDA (TEMP)

(COND
[(EQUAL ■"#"

(CAR (EXPLODE TEMP)))
(READLIST (CDR (EXPLODE TEMP)))3

[T
TEMP3)3)

CONSISTENCY
Arguments
Called by
Calls
RETURNS

L — the current conclusion, N — the list of
antecedents generated so far
C REATE_L1ST
MEMBERS, TEST_FOR_NOT, LOOK_AT_ANTS_USED_BY
an antecedent

(DEF ‘CONSISTENCY
'[LAMBDA (L N)

[PROG (CONCL)
(SETQ CONCL

(+ 64 L))
LOOP

(SETQ PRELIM
(FIX (+ 56(* (RANDOM_NUMBER) 35))))

(COND
[(EQUAL PRELIM CONCL)

(GO LOOP)3
[(MEMBERS PRELIM N)

(GO LOOP)3
[(LT PRELIM 70)

(SETQ PRELIM
(+ PRELIM 41))

(COND
[(MEMBERS PRELIM N)

(GO LOOP)3
[T

(RETURN (TEST_FOR_NOT PRELIM))3)3
[(LE PRELIM CONCL)

(COND
[(EQUAL (LOOK_AT_ANTS_USED_BY (READLIST

(LIST (ASCII PRELIM)))
(READLIST (LIST (ASCII CONCL))))

' T)
(GO LOOP)3

[T
(RETURN (TEST FOR NOT PRELIM))3)3

59

[T
(RETURN (TEST FOR NOT PRELIM))])]])

TEST FOR NOT
Arguments
Called by
Calls
RETURNS

PRELIM — the antecedent just generated
CONSISTENCY
LISP builtin functions
a negated antecedent averaging 1 in 10

DEF 'TEST_FOR_NOT
[LAMBDA (PRELIM)

(COND
[(EQUAL (FIX (+

(SETQ PRELIM
(READLIST
(EXPLODE

[T
(SETQ PRELIM

(READLIST

1
(* (RANDOM_NUMBER) 10))) 1)

(CONS
(READLIST (LIST (ASCII PRELIM

)))))))]

(LIST (ASCII PRELIM))))])])

PRINT STATS
Arguments
Called by
Calls
RETURNS

FILENAME — filename, in double quotes, of file
that will contain the information in ANT_INFO
the user
PRIN_ARR
outputs the contents of ANT_INFO

(DEF ‘PRINTJSTATS
*[LAMBDA (FILENAME)

[PROG (K)
(SETQ OF

(OUTPUT FILENAME))
(SETQ K 1)

LOOP
(COND

[(LT K 105)
(PRINT_ARR 1 7 K)
(SETQ K

(ADD1 K))
(GO LOOP)]

[T
(CLOSE OF)])

(RETURN)]])

60

PRIN ARR
Arguments
Called by
Calls
RETURNS

INDEX — counter, MAX — number of columns,
K — current row in array
PRINT_STATS
itself, builtin functions
prints elements of array ANT_INFO to a file

(DEF 'PRIN_ARR
'[LAMBDA (INDEX MAX K)

(COND
[(LE INDEX MAX)

(SETQ ANS
(ANT_INFO K INDEX))

(PRIN ANS OF)
(SPACES 3 OF)
(PRINT ARR (ADD1 INDEX) MAX K)]

[T
(TERPRI NIL OF)])])

Arguments

Called by
Calls
RETURNS

LOOK_AT_ANTS_USED_BY
ANT CANDIDATE — antecedent candidate,
CURR CONCL — conclusion of the rule the
antecedent is being tested for
CONSISTENCY
FIND_CORRECT_ANT_LIST
T if the current conclusion appears as an
antecedent in a rule concluding about the
ANT CANDIDATE, NIL otherwise

(DEF 'LOOK_AT_ANTS_USED_BY
'[LAMBDA (ANT CANDIDATE CUR_C0NCL)

(FIND_CORRECT_ANT_LIST ANT CANDIDATE CUR_CONCL
LIST OF ANT & THEIR CONCL)7)

Arguments

Called by
Calls
RETURNS

FIND_CORRECT_ANT_L1ST
ANT CANDIDATE — antecedent candidate,
CUR-CONCL — conclusion of current rule,
LIST — list of conclusions and the antecedents
used by them
LOOK_AT_ANT S_U S ED_B Y
itself, builtin functions
T if CUR CONCL appears as an antecedent in a
rule concluding about ANT_CANDIDATE, NIL
otherwise

(DEF 'FIND_CORRECT_ANT_LIST
'[LAMBDA (ANT_CANDIDATE CUR_CONCL LIST)

(COND
[(NULL LIST)

6 1

NIL J
[(EQUAL (CAAR LIST) ANT_CANDIDATE)

(COND
[(NULL (MEMBER CUR_CONCL

(CDAR LIST)))
NIL]

[T
T])]

[T
(FIND_CORRECT_ANT LIST ANT_CANDIDATE CUR_CONCL

(CDR LIST))])T)

Arguments
Called by
Calls
RETURNS

NOTE_LI ST__OF_ANT_USED
LIST_OP_RULES — the list of rules concluding
about the same parameter
GENERATE__RULES
itself
a list of the antecedents used in the rules
concluding about one parameter

(DEF *NOTE_LIST_OF_ANT_USED
'[LAMBDA (LIST_OF_RULES)

(SETQ LIST_OF_ANT_&_THEIR_CONCL
(APPEND (LIST (APPEND (LIST (READLIST (LIST (ASCII
(+ L 64)))))

(MAKE_LIST_FROM RULES LIST_OF_RULES)))
LIST OF ANT & THEIR CONCL)TD)

MAKE LIST FROM RULES
Arguments
Called by
Calls
RETURNS

RULELIST
NOTE_LIST_OF_ANT_USED
PASS_ANT_LIST, itself
the list of antecedents used in the rules

(DEF ’MAKE_LIST_FROM_RULES
'[LAMBDA (RULELIST)

(COND
[(NULL RULELIST)

LIST_SO_FAR]
CT

(PASS_ANT_LIST (CAAR RULELIST))
(MAKE LISTFROM RULES (CDR RULELIST))])])

Arguments
Called by
Calls
RETURNS

PA S S_ANT_L1ST
ANTLIST — list of antecedents of one rule
MAKE_LIST_F ROM_RULES
ANT_TO_CHECK, itself
an updated list of antecedents

62

(DEF 'PASS_ANT_L1ST
'[LAMBDA (ANTLIST)(COND

[(NULL ANTLIST)
LIST_SO_FAR]

[(ANT_TO_CHECK (CAR ANTLIST))(SETQ LIST_SO_FAR
(CONS ANT_TO_ADD LIST_SO FAR)) (PASS ANT LIST (CDR ANTLIST)!][T

(PASS ANT LIST (CDR ANTLIST))])])

ANT TO CHECK
Arguments
Called by
Calls
RETURNS

ANT — antecedent to check
PAS S_ANT_L1ST
MEMBER
a list of antecedents with ANT added to it if
it is not already present. The list contains
antecedents with no negation symbols

(DEF ’ANT TO_CHECK
1[LAMBDA TANT)

(COND
[(EQUAL

(CAR (EXPLODE ANT)))
(COND

[(NULL (MEMBER (READLIST (CDR (EXPLODE ANT)))
LIST_SO_FAR))

(SETQ ANT_TO_ADD
(READLIST (CDR (EXPLODE ANT))))

T]
[T

NIL])]
[T

(COND
[(NULL (MEMBER ANT LIST_SO_FAR))

(SETQ ANT_TO_ADD ANT)
T]

[T
NIL])])])

RANDOM NUMBER
Arguments
Called by
Calls
RETURNS

none
CONSISTENCY
builtin functions
a random number between 0 and 1

(DEF 'RANDOM_NUMBER
*[LAMBDA ()

[PROG ()

63

(SETQ MULT 25211)
(SETQ BASE 32768)
(SETQ SEED

(% (* MULT SEED) BASE))
(RETURN (/ (FNORM SEED 0)

(FNORM BASE 0)))]])

64

PACKAGE "RULES.LSP”

FIND ALL
Arguments
Called by
Calls
RETURNS

: ANT — an antecedent, RULESET — a rule
partition

: COMPILE, itself
: ANT_IS_IN_RULE, itself
: the list of all rules which have ANT as an
antecedent.

(DEF 1FIND_ALL
'[LAMBDA (ANT RULESET)

(COND
[(NULL RULESET)

NIL]
[(ANT IS_IN_RULE ANT

T c a r RULESET))
(CONS (CAR RULESET)

(FIND_ALL ANT
(CDR RULESET)))]

[T
(FIND_ALL ANT

(CDR RULESET))])])

ANT IS IN RULE
Arguments
Called by
Calls
RETURNS

ANT — an antecedent, RULE — a rule
FIND_ALL
ANT_IS_IN_L1ST
Predicate - T if the antecedent is present in

in the rule, NIL otherwise.
(DEF ‘ANT IS_IN_RULE
'[LAMBDA TANT RULE)

(ANT IS_IN_LIST ANT
T c a r r u l e))])

ANT_IS_IN_LIST
Arguments : ANT — an antecedent, LIST_ANT — a list of

antecedents
Called by : ANT_IS_IN_RULE, itself
Calls : itself
RETURNS : Predicate. T if the antecedent is in the list

of antecedents, NIL otherwise.
(DEF 'ANT IS_IN_LIST
'[LAMBDA TANT LIST_ANT)

(COND
[(NULL LIST ANT)

65

NIL]

[(EQUAL (CAR LIST ANT) ANT)
T]

[T
(ANT IS_IN_LIST ANT

Tc d r LIST ANT))])])

DEL RULE
Arguments
Called by
Calls
RETURNS

ANT — an antecedent, RULE — a rule
DEL_RULESET
DEL_ANT_LIST
The rule which is RULE without antecedent ANT

(DEF 'DEL_RULE
'[LAMBDA (ANT RULE)

(COND
[(NULL RULE)
NIL]

[T
(CONS (DEL ANT_LIST ANT

T c a r r u l e))
(CDR RULE))])])

DEL ANT LIST
Arguments
Called by
Calls
RETURNS

ANT — an antecedent, ALIST — an antecedent
list
DEL_RULE, itself
itselfthe antecedent list which is ALIST with all of
the occurrences of ANT removed.

(DEF 'DEL ANT_LIST
'[LAMBDA TANT ALIST)

(COND
[(NULL ALIST)
NIL]

[(EQUAL (CAR ALIST) ANT)
(DEL ANT_LIST ANT

Tc d r a l i s t))]
[T

(CONS (c a r a l i s t)(DEL ANT LIST ANT
T c d r a l i s t)))])])

66

DEL RULESET
Arguments
Called by
Calls
RETURNS

ANT — an antecedent, RULESET — a rule
partition (list of rules)
COMPILE, itself
DEL_RULE, itself
the rule set which is RULESET with ANT removed
from the antecedent list of each rule.

(DEF * DEL RULESET
'[LAMBDA TANT RULESET)

(COND
[(NULL RULESET)

NIL]
[T

(CONS (DEL RULE ANT
Tc a r r u l e s e t))

(DEL RULESET ANT
Tc d r r u l e s e t)))])])

67

PACKAGE "HEURS1.LSP

SELECT A CLAUSE
Arguments
Called by
Calls
RETURNS

RULESET — a rule partition, or list of rules
concluding about the same parameter
COMPILEMOST_OFTEN_OCCURRING, RULE_GROUP_TALLY
an antecedent which will be placed nearest
the top of a decision tree. In this package
the heuristics used is the antecedent that
appears in the most rules will be placed
nearest the root of the tree.

(DEF 'SELECT_A_CLAUSE
‘[LAMBDA (RULESET)

[PROG ()
(SETQ SET(CHECK_RULESET_FOR_ASKFIRST LIST__OF_ASKFIRST RULESET))
(COND

[(NULL SET)(RETURN (MOST OFTEN_OCCURRING (RULE_GROUP_TALLY
~ RULESET)))]

[T(RETURN (MOST OFTEN OCCURRING (RULE_GROUP_TALLY SET)
7) 3)337

MOST_OFTEN_OCCURRING
TALLYLIST — a list of antecedent/count pairs
SELECT_A_CLAUSE
MOSTthe antecedent whose count in tallylist is the
orcfitcst. If two antecedents tie, the
"leftmost" one in TALLYLIST is returned

(DEF 'MOST_OFTEN_OCCURRING
'[LAMBDA (TALLYLIST)

(MOST TALLYLIST NIL 0)3)

Arguments
Called by
Calls
RETURNS

Arguments

Called by
Calls
RETURNS

MOST
T L I S T_a tally list, CLAUSE — the clause
which has been determined to be the most often
occurring (so far), COUNT — the count of this
parameterMOST OFTEN_OCCURRING, itself
itselfthe antecedent with the highest count. MOST
does the work described under MOST_OFTEN__OCCUR.

68

(DEF ‘MOST
’[LAMBDA (TLIST CLAUSE COUNT)

(COND
[(NULL TLIST)

CLAUSE3
[(GT (CADAR TLIST) COUNT)

(MOST (CDR TLIST)
(CAAR TLIST)
(CADAR TLIST))3 [T

(MOST (CDR TLIST) CLAUSE COUNT)3)3)

TALLY
Arguments :

Called by
Calls
RETURNS

(DEF ’TALLY
'[LAMBDA (ANTECEDENT TALLYLIST)

(COND
C(NULL TALLYLIST)

(LIST (LIST ANTECEDENT 1))3
[(EQUAL (CAAR TALLYLIST) ANTECEDENT)

(CONS (LIST ANTECEDENT(ADD1 (CADAR TALLYLIST)))
(CDR TALLYLIST))3

[(EQUAL (CAAR TALLYLIST)
(NEGATION ANTECEDENT))

(CONS (LIST ANTECEDENT(ADD1 (CADAR TALLYLIST))))3
[T (CONS (CAR TALLYLIST)(TALLY ANTECEDENT

(CDR TALLYLIST)))3)3)

ANTECEDENT — an antecedent which we want to
update tally for, TALLYLIST — a list of
antecedent/count pairs
LIST_TALLY, itself
NEGATION, itself
a tally list which contains an updated entry
for ANTECEDENT. If there was no entry for
ANTECEDENT, then one is built with a count of
1. If a negated antecedent is found, the
entry is updated for the unnegated antecedent

Arguments
Called by
Calls
RETURNS

LIST_TALLY
ANT LIST — a list of antecedents, TLIST
tally list RULE_TALLY, itself
TALLY, itselfperforms the TALLY function for each
antecedent in ANT_LIST

a

69

(DEF 'LIST_TALLY
'[LAMBDA (ANT_LIST TLIST)

(COND
[(NULL ANT_LIST)

TLIST]
[T

(LIST_TALLY (CDR ANT_LIST)
(TALLY (CAR ANT LIST) TLIST))])])

Arguments
Called by
Calls
RETURNS

RULE_TALLY
RULE — a rule of the form (antecedent-list
consequent), TLIST — a tally list
RULE_GROUP_TALLY
LIST_TALLY
calls LIST_TALLY to process its antecedent
list

(DEF 'RULE_TALLY
’[LAMBDA (RULE TLIST)

(COND
[(NULL RULE)

RULE]
[T

(LIST TALLY (CAR RULE) TLIST)])])

Arguments
Called by
Calls
RETURNS

RULE GROUP TALLY
R_GROUP — a rule group
SELECT_A_C LAUSE, itself
RULE)TALLY, itself
a tally list of all the
R GROUP. This function
by successively calling
rule in R GROUP

(a list of rules)

antecedents used in
processes each rule
RULE TALLY for each

(DEF 1RULE_GROUP_TALLY
'[LAMBDA (R_GROUP)

(COND
[(NULL R_GROUP)
NIL]

[T (RULE TALLY (CAR R_GROUP)(RULE GROUP_TALLY (CDR R_GROUP)))])])

CHECK_ANT_LIST
Arguments : AF — a list of known parameters (askfirst) ,

ANT LIST — a list of antecedents of a rule
Called by :
Calls : ANT IS IN LIST

RETURNS

70

: T if there is an askfirst parameter, NIL
if there is not

(DEF ’CHECK_ANT_LIST
' [LAMBDA (AF ANT__LIST)

(COND
[(NULL ANT_LIST)

NIL]
[(ANT IS IN LIST (CAR ANT LIST) AF)

T]
[T

(CHECK_ANT_LIST AF
(CDR ANT LIST))])])

LOOK_AT_RULE
Arguments : AF — list of known parameters, RULE —

being examined
Called by :
Calls : CHECK_ANT_LIST
RETURNS :
(DEF ’LOOK_AT_RULE
'[LAMBDA (AF RULE)

(CHECK_ANT_LIST AF
(CAR RULE))])

CHECK_RULESET_FOR_ASKFIRST
Arguments : AF — list of known parameters, RULESET

list of rules
Called by :
Calls : LOOK_AT_RULE, itself
RETURNS :
(DEF 'CHECK_RULESET_FOR_ASKFIRST
'[LAMBDA (AF RULESET)

(COND
[(NULL RULESET)

NIL]
[(LOOK_AT_RULE AF

(CAR RULESET))
(CONS (CAR RULESET)

(CHECK_RULESET_FOR ASKFIRST AF
(CDR RULESET))T]

[T
(CHECK_RULESET_FOR ASKFIRST AF

(CDR RULESET))7)])

rule

PACKAGE "HEURIS 2.LSP

71

SELECT A CLAUSE
Arguments
Called by
Calls
RETURNS

RULESET — a partition list
COMPILE
TRAVEL_LIST_MIN_ANT
an antecedent to be put out as a branch

(DEF 'SELECT_A_CLAUSE
'[LAMBDA (RULESET)

(COND
C(NULL (SETQ CLAUSE

(TRAVEL_LIST_MIN_ANT RULESET LIST_OF_ASKFIRST)))
(TRAVEL LIST MIN ANT RULESET LIST OF MIN ANT)3

[T
CLAUSEJ)3)

CREATE AVERAGES
Arguments
Called by
Calls
RETURNS

none
K_B
REORDER, NEW_AVERAGES, ADD_NOTS
an updated LIST_OF_AVER_ANT after calculating
averages three times

(DEF 'CREATE_AVERAGES
*[LAMBDA ()

[PROG ()(SETQ LIST_OF_ANTS NIL)
(SETQ AVER_ONE

(REORDER 0 4(LIST_OF_AVER_ANT)))
(SETQ LIST_OF_ANTS NIL)
(SETQ AVER_TWO

(REORDER 0 16(NEW_AVERAGES 6 26 AVER_ONE)))
(SETQ LIST__OF_ANTS NIL)
(SETQ AVER_THREE

(REORDER 0 64(NEW_AVERAGES 6 26 AVER TWO)))
(RETURN (ADD NOTS AVER_THREE))3J)

Arguments

Called by
Calls

NEW AVERAGES
cm __ letter to begin calculating averages,
FIN — letter to stop calculating averages
AVER LIST — current list of average
antecedents
CREATE AVERAGES
EVAL FOR ALL_RULES, itself

(Z)

72

RETURNS : an updated list of averages
(DEF 'NEW AVERAGES
’[LAMBDA XST FIN AVER LIST)

(COND
[(GT ST FIN)

NIL]
[T

(SETQ NEW_SUM_&_AVER
(EVAL_FOR_ALL_RULES 1 N_RULES ST 0 AVER LIST)) (COND “
[(GE (% NEW_SUM_&_AVER N_RULES) 2)

(SETQ NEW_SUM &_AVER
(+ (FIX (7 NEW SUM & AVER N RULES)) 1))] [T

(SETQ NEW SUM_&_AVER
(FIX T/ NEW_SUM_&_AVER N_RULES)))])

(SETQ NEW_AVER
(CONS (CONS (READLIST (LIST (ASCII (+ ST 64))))

(LIST NEW_SUM &_AVER))
(NEW AVERAGES (ADD1 ST7 FIN AVER LIST)))])])

EVAL_FOR_ALL_RULES
: IND — index, NUMB_RULES — number of rules to

evaluate, BLK — previous block of rules in
ANT_INFO, R_SUM — sum of averages for rules,
AVER_LIST — current list of averages

: NEW_AVERAGES
: CALC_NEW_NUMB, itself
: the new sum of antecedents

(DEF 'EVAL_FOR_ALL_RULES
'[LAMBDA (IND NUMB_RULES BLK R_SUM AVER_LIST)

(COND
[(GT IND NUMB_RULES)

R_SUM]
[T

(COND
[(EQUAL (SETQ N ANTS(- TANT INFO (+ IND BLK) 3)

(ANT INFO (+ IND BLK) 2))) 0)
(EVAL_FOR_ALL_RULES (ADDl IND) NUMB_RULES BLK
R_SUM AVER_LIST)]

[T
(SETQ R_SUM

(+ R SUM . _TCALC_NEW NUMB (+ IND BLK) N_ANTS 0
AVER LISTT)) t,tî(EVAL_FOR_ALL_RULES (ADDl IND) NUMB_RULES BLK

R SUM AVER LIST)])])])

Arguments

Called by
Calls
RETURNS

73

CALC NEW NUMB
Arguments

Called by
Calls
RETURNS

ARR_NO — array number, N_ANTS — number of
antecedents that have to be inferred, ANT_SUM
— sum of antecedents, AVER_LIST — current
average of antecedents
EVAL_FOR_ALL_RULES
GET_NUMB_OF_NEEDED_ANTS, itself
new sum of antecedents

(DEF 'CALC_NEW_NUMB
'[LAMBDA (ARR_NO N_ANTS ANT_SUM AVER_LIST)

(COND
[(GT N_ANTS 0)

(SETQ ANT SUM(+ (GET NUMB OF NEEDED ANT (ANT INFO ARR_N0 - _ _ ~ T+ 3 N_ANTS))
AVER_LIST) ANT_SUM))

(CALC NEW NUMB ARR_NO(SUB1 N_ANTS) ANT_SUM AVER_LIST)J
[T
ANT SUM])])

Arguments

Called by
Calls
RETURNS

REORDER
ST — lowest average in list of antecedents,
pjjj — highest average in list of antecedents,
LIST — current list of averages
CREATE_AVERAGES
PICK OUT _ , _a list of averages in ascending order

(DEF 'REORDER
'[LAMBDA (ST FIN LIST)

(COND
[(LE ST FIN)(PICK OUT ST LIST)

(REORDER (ADDl ST) FIN LIST
[T

LIST OF ANTS])])

]

Arguments
Called by
Calls
RETURNS

PICK OUT
THESE_CONCL — current average, LIST list
of averages
REORDER
itselflist of conclusions with the current average

(DEF 'PICK_OUT'[LAMBDA (THESE_CONCL LIST)
(COND

74

[(NULL LIST)
LIST_OF_ANTS]

[(EQUAL (CADAR LIST) THESE__CONCL)
(SETQ LIST_OF_ANTS

(APPEND LIST_OF_ANTS
(LIST (CAR LIST))))

(PICK_OUT THESE CONCL
(CDR LIST))T

[T
(PICK_OUT THESE CONCL

(CDR LIST))7)])

STORE_REQ_ANTS
Arguments : ST — counter, N_ANTS — number of antecedents

to be stored, ARR_NUMB — array number
Called by :
Calls : WHAT_THE_ANT_IS, itself
RETURNS : nothing, the purpose is to store information

about the rules in ANT_INFO
(DEF ‘STORE_REQ_ANTS
'[LAMBDA (ST N_ANTS ARR_NUMB)

(COND
[(LE ST N ANTS)

(s t o r e "Ca n t i n f o a r r_n u m b
T+ ST 3))(WHAT THE_ANT_IS LIST_OF_ANT ST 1))

(STORE REQ ANTS (ADDl ST) N_ANTS ARR_NUMB)])])

Arguments
Called by
Calls
RETURNS

WHAT_THE_ANT_IS
LIST — list of antecedents, N_TO_FIND numb
er of antecedents to store, COUNT index
STORE_REQ_ANTS
itself
an antecedent

(DEF ' WHAT_THE_ANT__I S
'[LAMBDA (LIST N_TO_FIND COUNT)

(COND
[(NULL LIST)

NIL]
[(EQUAL "'#"(CAR (EXPLODE (CAR LIST))))

(COND
[(LT (CHRVAL (READLIST (CDR (EXPLODE

(CAR LIST))))) 97)
(COND

[(EQUAL COUNT N_TO_FIND)(CHRVAL (READLIST (CDR EXPLODE
(CAR LIST)))))]

75

(WHAT_THE_ANT_IS (CDR LIST) N TO FIND (ADDl COUNT))])] “ “[T
(WHAT_THE_ANT_IS (CDR LIST N TO FIND COUNT))])] [T - -

(COND
C(LT (CHRVAL (CAR LIST)) 97)

(COND
[(EQUAL COUNT N_TO_FIND)

(CHRVAL (CAR LIST))]
[T

(WHAT_THE_ANT_IS (CDR LIST) N_TO_FIND
(ADDl COUNT))])]

[T
(WHAT_THE_ANT_IS (CDR LIST) N_TO_FIND

COUNT)])])])

[T

FIND_AVER_ANT
Arguments : INDEX — index to array number, N_RULES—

number of rules for a particular conclusion
Called by :
Calls : builtin functions
RETURNS : new average
(DEF 'FIND_AVER_ANT
'[LAMBDA (INDEX N_RULES)

[PROG ()
(SETQ SUM 0)

LOOP
(COND

[(LE INDEX N_RULES)
(SETQ SUM

(+ SUM . , , „,(- (ANT INFO (+ (- TL^RULES INDEX) 1) 3)
(ANT INFO (+ (— TL RULES INDEX) 1) 2))))

(SETQ INDEX
(ADDl INDEX))

(GO LOOP)]
[T

(COND[(GE (% SUM N RULES) 2)(RETURN (+ TFIX (/ SUM N_RULES)) 1))]
[T

(RETURN (FIX (/ SUM N_RULES)))])])]])

Arguments

ADD_NOTS
ORDERED_LIST — list of conclusions and
averages
CREATE AVERAGESCalled by

Calls : itself
RETURNS : the ordered list with negations
(DEF 'ADD_NOTS
’[LAMBDA (ORDEREDJLIST)(COND

[(NULL (CAR ORDEREDJLIST))
NIL]

[t
(APPEND (APPEND (LIST (CAR ORDERED LIST))

(LIST (CONS (READLIST ICONS
(EXPLODE (CAAR ORDEREDJLIST))))
(LIST (CADAR ORDERED LIST)))))

(ADD NOTS (CDR ORDERED LIST)))])]7

GET NUMB OF NEEDED ANT
Arguments
Called by
Calls
RETURNS

ANT — current antecedent, LIST
antecedents and their averages
CALC_NEW_NUMB
itself
the average for ANT

(DEF 'GET NUMB_OF_NEEDED_ANT
'[LAMBDA TANT LIST)

(COND
[(NULL LIST)

NIL]
[(GE ANT 97)

0]
[(EQUAL ANT

(CHRVAL (CAAR LIST)))
(CADAR LIST)]

[T (GET NUMB_OF_NEEDED_ANT ANT
Tc d r l i s t))])])

list of

Arguments
Called by
Calls
RETURNS

TRAVEL_LIST_MIN_ANT
R GROUP — a partition list, LIST_ANTS li
of antecedents and their averages
SELECT A CLAUSELOOK FOR_ANT_IN_RULESET, itself
nothing

(DEF 1 TRAVELJLI ST J*1IN_ANT
'[LAMBDA (R_GROUP LIST_ANTS)

(COND[(NULL LIST_ANTS)
[(LOOK FOR_AHT_IN_RULESET (CAAR LIST_ANTS) R_GROUP)

(CAAR LIST_ANTS)]

77

[T
(TRAVEL_LIST_MIN_ANT R GROUP

(CDR LIST ANTS))])!)

Arguments
Called by
Calls
RETURNS

LOOK_FOR_ANT_IN_RULESET
ANT — an antecedent, R_GROUP — a partition
list
TRAVEL_LIST_MIN_ANT
ONE_RULE, itself
T if antecedent is found, NIL otherwise

(DEF 'LOOK_FOR_ANT_IN RULESET
'[LAMBDA (ANT R_GROUPj

(COND
[(NULL R_GROUP)
NIL]

[(ONE RULE ANT
Tc a r r_g r o u p))

T]
[T (LOOK_FOR_ANT_IN RULESET ANT

(CDR R GROUPT)])])

Arguments
Called by
Calls
RETURNS

ONE_RULE
ANT — antecedent, RULE — a rule
LOOK_FOR_ANT_IN_RULESET
itselfT if a match is found between an antecedent
in a rule and in the list of antecedents

(DEF 'ONE RULE
'[LAMBDA TANT RULE)

(COND
[(MEMBER ANT

(CAR RULE))
T]

[T
NIL])])

	CIEGEN: A System for Testing Knowledge Base Compilation Heuristics on a Microcomputer
	Recommended Citation

	tmp.1604326858.pdf.UO0a9

