# Input Data Pattern Encoding for Neural Net Algorithms 

Hyeoncheol Kim

George Winston Zobrist
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports
Part of the Computer Sciences Commons

## Recommended Citation

Kim, Hyeoncheol and Zobrist, George Winston, "Input Data Pattern Encoding for Neural Net Algorithms" (1990). Computer Science Technical Reports. 68.
https://scholarsmine.mst.edu/comsci_techreports/68

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

# INPUT DATA PATTERN ENCODING FOR NEURAL NET ALGORITHMS 

*H. Kim and G. W. Zobrist
CSc-90-3

Department of Computer Science University of Missouri-Rolla Rolla, Missouri 65401 (314)341-4491

*This report is substantially the M.S. thesis of the first author, completed May 1990.


#### Abstract

First, a brief overview of neural networks and their applications are described, including the BAM (Bidirectional Associative Memory) model.

A bucket-weight-matrix scheme is proposed, which is a data pattern encoding method that is necessary to transform a set of real-world numbers into neural network state numbers without losing the pattern property the set has. The scheme is designed as a neural net so that it can be combined with other data processing neural nets. The net itself can be used as a bucket-sorting net also. This shows that traditional data structure problems can be an area that neural networks may conquer, too.

A simulation of the net combined with the BAM model on a digital computer is done to show performance of the proposed data encoding method with both non-numerical image pattern and numerical data pattern examples.


## Table of Contents

ABSTRACT ..... ii
ACKNOWLEDGEMENTS ..... iii
LIST OF FIGURES ..... vi
LIST OF TABLE ..... viii
SECTION
I Artificial Neural Networks ..... 1
A Fundamentals ..... I
1 Neurons ..... 1
2 Network operation ..... 2
3 Differences of neural computing from other computing ..... 1
B History, Properties and Their Applications ..... 3
C Bidirectional Associative Memory (BAM) ..... 7
1 Introduction ..... 7
2 Training ..... 8
3 Recalling ..... 10
II Data Encoding ..... 12
A Input Formats ..... 12
B Encoding schemes ..... 14
1 Binary scheme ..... 16
2 Bucket-Weight Matrix (BWM) scheme ..... 17
III Binary Pattern Net ..... 22
A Training step ..... 22
B Recalling step (Bucket sorting) ..... 25
C Analysis ..... 28
1 Training time and memory used ..... 28
2 Noise filtering ..... 29
IV Examples ..... 32
A Example with a numeric data pattern ..... 32
B Example with a non-numeric image pattern ..... 3.1
V Conclusion and further research ..... 43
APPENDICES ..... 45
A Programming of BAM model ..... 15
B Programming of Bucket-weight matrix scheme ..... 52
C Programming of binary pattern net (bucket sorting net) ..... 56
D The result of bucket sorting using bucket sorting net ..... 59
E The data used in examples in chapter IV-A ..... 65
REFERENCES ..... 71
VITA ..... 72

## List of Figures

1 Biological neuron ..... 1
2 Artificial neuron with activation function ..... 2
3 Topology of a BAN, showing the two fields of neurons connected by' synapses ..... 8
1 A taxonomy of nine neural nets ..... 12
5 Backpropagation nets testing with different input formats ..... 11
(5) Image recognition ..... 16
7 Training step of tinary-pattern net. The matrix $C$ is the bucket- weight matrix. $N$ numbers are encoded into $n * b$ numbers ..... 23
$8 \quad$ Recalling step of a binary-pattern net. This step is used when bucket sorting is required. The weight matrix C is from a bucket-weight matrix. ..... 26
9 The net of the recalling step for a bucket sorting. The link weights are the key of the sorting. ..... 27
10 Bucket sorting time (in milli-seconds) for the binary-pattern net. (a) when the number of data is fixed at 1000 and (b) when the number of buckets is fixed at 100 ..... 27
11 Three standard measures of scalability; problem size can be from training patterns, neurons, or synapses ..... 29
12 Trade-off between accuracy of recognition and noise-tolerance by varying bucket sizes ..... 31
13 Matrix $A$ is binary pattern matrix for company $A$, and matrix $B$ is for company B . ..... 31
14 Graphs of values in table V'I and results of recalling with different inputs ..... 35
15 Binary data extracting from a visual image pattern ..... 36
16 Two input patterns ..... 36
17 Two possible noisy patterns of pattern 2 ..... 37
18 Input pairs for training ..... 38
19 Recalling of noisy patterns and its incorrect output ..... 39
20 Extracting rector values from image pattern 1 in figure 16 ..... 39
21 Recalling of noisy patterns and its correct outputs ..... 11

## List of Tables

I Input data and its target output for backpropagation test ..... 13
II Results when 2 different types of inputs are used ..... 15
IIl 3 different types of inputs and desired outputs for 2 patterns trained by backpropagation ..... 19
IV' 3 different types of distorted inputs for 2 patterns ..... 20
$V$ Results of recalling of the trained net ..... 21
VI Weekly closing prices of company A and B ..... 33
VII Noise rates of two methods ..... 11

## I Artificial Neural Networks

## A Fundamentals

## 1 Neurons

Artificial Neural Networks are biologically inspired. Artificial Neural networks are composed of elements that perform in a manner that is analogous to the most elementary functions of the biological neuron. Figure 1 shows the corresponding components of the brain which inspired artificial neural networks.


Figure 1: Biological neuron

The neuron is the fundamental cellular unit of the nervous system and in particular the brain. Its nucleus is a simple processing unit which receives and combines signals from many other neurons through input paths called dendriles. If the combined signal is strong enough, it activates the firing of the neuron which produces an output signal; the path of the output signal is called the axon.

An estimated $10^{11}$ neurons participate in $10^{15}$ interconnections over transmission paths in the human brain. The axon (output paths) of a neuron splits up and connects to dendrites (input paths) of other neurons through a junction referred to
as a synapse. The amount of signal transferred depends on the synapse strength of the junction. This synaptic strength is what is modified when the brain learns, and the synapse can be thus considered the basic memory unit of the brain.


Figure 2: Artificial neuron with activation function

The artificial neuron was designed to mimic the first-order characteristics of the biological neuron. The artificial neuron has many input paths (dendrites) and combines the values on these input paths. The combined input is then modified by an activation function. This transfer function can be a threshold function or a continuous function of the combined input. The value output by the transfer function is generally passed directly to the output path of the neuron connected to input paths of other neurons through connection weights which correspond to the synaptic strength of neural connections. Figure 2 illustrates the above description.

## 2 Network operation

There are two main steps in the operation of a network - Learning and Recall. Learning is the process of adapting the connection weights according to a predetermined procedure so that each input vector produces the desired output vector. Learning algorithms are categorized as supervised and unsupervised. Supervised
learning requires the pairing of each input vector with a target vector representing the desired output. For each imput vector, a desired output vector is presented to the system, and the network gradually configures itself to achieve that desired input/output mapping. Hopfield nets[10] and perceptrons are trained with superrision. Such learning is generally some variation on one of three types:

1. Hebbian learning where a connection weight is incremented if the product of the excitation levels of both the input and desired output are high. That is, a neural pathway is strengthened each time it is used. In symbols:

$$
w_{i j}(n+1)=w_{i j}(n)+\alpha O U T_{i} O U T_{j}
$$

where
$w_{i j}(n)=$ the valuc of a weight from neuron ito neuron $j$ prior to adjustment $w_{i j}(n+1)=$ the value of a weight from neuron i to neuron $j$ after adjustment $\alpha=$ the learning rate coefficient
$O U T_{i}=$ the output of neuron i and input to neuron j
$O U T_{j}=$ the output of neuron j
2. delta rule learning based on reducing the error between an input and its desired output. In symbols:

$$
\begin{gathered}
\delta=T-A \\
\Delta_{i}=\eta \delta x_{i} \\
w_{i}(n+1)=w_{i}(n)+\Delta_{i}
\end{gathered}
$$

where
$\delta=$ the difference between the desired output $T$ and the actual output $A$
$\eta=$ learning rate coefficient
$\Delta_{i}=$ the correction associated with the ith input $x_{i}$
$w_{i}(n+1)=$ the value of weight $i$ after adjustment $w_{i}(n)=$ the value of weight i before adjustment
3. competitive learning in which processing elements compete among each other and the one which yields the strongest response to a given input modifies itself to become more like that input.

Unsupervised learning requires no target vector for the output. The learning algorithm modifies network weights to produce output vectors that are consistent. Nets trained without supervision, such as the Kohonen's feature-map forming nets[9], are used as vector quantizers or to form clusters. No information concerning the correct class is provided to these nets during training.

Recall refers to how the network globally processes an input vector and creates a response of an output vector.

## 3 Differences of neural computing from other computing

Artificial neural networks exhibit a surprising number of the brain's characteristics. The following are some of their capabilities and differences from traditional computing.

1. learning by examples: neural networks generate their own rules by learning from being shown examples.
2. distribuled associative memory: the difference is the was to store information. Neural computing memory is both distributed and associative. The connection weights are the memory units of a neural network. Two properties can be obtained here.
(a) generalization: once trained, a network's response can be, to a degree, insensitive to minor variations in its input. This ability to see through
noise and distortion to the pattern that lies within is vital to pattern recognition in a real-world environment.
(b) fault tolerance: because information is not contained in one place, but is distributed throughout the system. Neural nets can survive the failure of some nodes.
3. parallelism: neural architectures provide a natural model for parallelism since each neuron is an independent unit. A massively parallel architecture like the human brain can solve serially operated computer's slowing-down problems in many applications.
4. pattern recognition: ncural computing systems possess the ability to match large amounts of input information simultaneously and then generate categorical or generalized output as well as the ability to learn and build unique structures for a particular problem.
5. abstraction: some artificial neural networks are capable of abstracting the essence of a set of inputs. In one sense, with this ability to extract an ideal from imperfect inputs, it might learn to produce something that it has never seen before.

## B History, Properties and Their Applications

When the perceptron was first developed in the 1950s by Frank Rosenblatt, it created a considerable sensation. Artificial Intelligence was also affected, as the perceptron was based on biological and psychological approaches to computing architectures. AI was firmly rooted in logic and rules.

In the middle of 1960 s, Minsky and Papert showed conclusively one vital flaw in the perceptron theory. They proved that it was incapable of doing a class of problems known as the exclusive-OR. As a result, artificial neural nets and other
biologically-based approaches to computing lapsed for nearly two decades until backpropagation was invented in the early 1980s, providing a systematic means for training multilayer networks, thereby overcoming limitations presented by Minsky: After that, interest in artificial neural networks has grown rapidly over the past few years. Backpropagation has been used in many impressive demonstrations of artificial neural network capabilities such as data compression, signal processing, noisy filtering, etc. Many other network algorithms have been developed that have specific adrantages, such as counterpropagation networks, Hopfield nets, associative memory, adaptive resonance theory, Boltzmann machines, cognition and more. In general, those nets belong to three big models according to their propcrtics. A brief description of the three models[5] and their applications are giten below:

1. Associative Memory Model offers many of the computational capabilities of neural networks. This model is a mapping from data to data, a mathematical abstraction from the familiar associative structure of human and animal learning. This model can be used for simple visual processing. The network can associate or map variations of particular patterns. The model gives the network fault tolerance because input patterns are stored in a distributed fashion throughout the network.
2. Optimization Model gives solutions to very difficult combinatorial optimization problems, such as the traveling salesman problem which is an NP (nondeterministic polynomial) complete problem. This property can be used to perform many difficult tasks in computer vision, such as computing motion and brightness perception, surface interpolation, and localizing edges. This property is very important for real-time vision systems such as adaptive flight-control systems.
3. Self-organization lets neural network based systems adapt to unpredictable changes in their environment and unexpected situations that cannot be described mathematically. Self-organization is effective for dealing with problems that have a complicated or impossible-to-define algorithm, and it can be used for robotic control. Self-organization will enable control with inaccurately known mechanical structures.

Combinations of neural-network properties will become even more powerful. For example, a combination of self-organization and optimization can be useful for robotic-control path minimization and collision avoidance.

Neurocomputing is very powerful in many problems that humans do easily and, seemingly without thinking, such as language processing, data compressing, character recognition, pattern recognition, signal processing such as prediction and system modeling, financial and economic modeling, and optimization problems. Adaptive expert systems can be a good commercial product, which take adrantage of the prodigious pattern recognition, self-programming, learning, and fault tolerance capabilities of neural networks by using them as front ends for rule-based and knowledge-based expert systems.[8] As neural networking systems develop, they will play an important role in furthering many intelligent information processing technologies and applications.

## C Bidirectional Associative Memory (BAM)

## 1 Introduction

Human memory is often associative; one thing reminds us of another, and that, of still another. The BAM is a simple nonlinear neural-network associative memory that recalls or content-addresses stored associations $(x, y)$ by minimizing a system energy. The BAM accepts an input vector on one set of neurons and produces a related output vector on another set as the input rolls into the nearest energy min-
imum. Figure 3 shows the basic BAM configuration.[3] The BAM is a two-layer feedback network of interconnected neurons. Patterns are stored in the synapses between the neurons. The state of the neurons represents a short-term memory(STM), as it may be changed quickly by applying another input vector. The values in the weight matrix form a long-term memory (LTM) and are changeable only on a longer time scale, using techniques to be discussed later. The short-term memory (STM) reverberations gradually seep pattern information into long-term memory (LTM), the synapses between the neurons. Associative memories are fundamental computing structures of artificial neural system and can be naturally implemented on neurocomputers.


Figure 3: Topology of a BAM, showing the two fields of neurons connected by synapses

## 2 Training

In a BAM, all synaptic information is contained in an $n$-by-p connection matrix $M$ which is long-term memory. With matrix $M$ between $F_{A}$ and $F_{B}$, all inputs quickly map to a pattern of stable reverberation. The training in BAM is Hebbian
learning. A BAM learns a particular set of associations $\left(A_{1}, B_{1}\right), \ldots,\left(A_{m}, B_{m}\right)$ by summing bipolar correlation matrices. The learning scheme tends to place distinct associations $\left(A_{i}, B_{i}\right)$ at or near local energy minima. The number of patterns to be stored and recalled cannot be more that the number $n$ of neurons in $F_{A}$ or the number $p$ of neurons in $F_{B}$. BAM correlation learning improves if bipolar vectors and matrices are used instead of binary vectors and matrices. Bipolar matrices are binary matrices with -1 s replacing 0s. The bipolar version of a binary pattern $A_{1}=\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 1\end{array}\right)$ is $X_{1}=(+1-1+1-1+1-1)$. Assume that $X$ and $)^{\prime}$ will denote the respective bipolar version of the binary vectors $A$ and $B$.

The BAM learning scheme converts cach binary pattern pair $\left(A_{i}, B_{i}\right)$ to a bipolar pair $\left(X_{i}, Y_{i}\right)$, converts them into a matrix $X_{i}^{T} Y_{i}$, and then adds up the matrices $M=X_{1}^{T} Y_{1}+X_{2}^{T} Y_{2}+\ldots+X_{m}^{T} Y_{i}$ where the colume vector $X_{i}^{T}$ is the vector transpose of the row vector $X_{i}$.

Suppose two binary associations are trained in the BAM

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0
\end{array}\right) \quad B_{1}=\left(\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right) \\
& A_{2}=\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0
\end{array}\right) \\
& B_{2}=\left(\begin{array}{llll}
1 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Convert these binary pairs to bipolar pairs:

$$
\begin{aligned}
& X_{1}=\left(\begin{array}{llllll}
1 & -1 & 1 & -1 & 1 & -1
\end{array}\right) \quad Y_{1}=\left(\begin{array}{llll}
1 & 1 & -1 & -1
\end{array}\right) \\
& X_{2}=\left(\begin{array}{llllll}
1 & 1 & 1 & -1 & -1 & -1
\end{array}\right) \quad Y_{2}=\left(\begin{array}{llll}
1 & -1 & 1 & -1
\end{array}\right) .
\end{aligned}
$$

Convert these bipolar vector pairs to two bipolar correlation matrices and compute the weight matrix $M=X_{1}^{T} Y_{1}+X_{2}^{T} Y_{2}$ :

$$
\left(\begin{array}{rrrr}
1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1
\end{array}\right)+\left(\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
-1 & 1 & -1 & 1 \\
-1 & 1 & -1 & 1
\end{array}\right)=\left(\begin{array}{rrrr}
2 & 0 & 0 & -2 \\
0 & -2 & 2 & 0 \\
2 & 0 & 0 & -2 \\
-2 & 0 & 0 & 2 \\
0 & 2 & -2 & 0 \\
-2 & 0 & 0 & 2
\end{array}\right)
$$

The matrix element $m_{i j}$ indicates the symmetric synapse between neurons $u_{i}$ and $b_{i}$. The syrnapse is excitatory if $m_{i j}>0$, inhibitory if $m_{i j}<0$. An association $\left(A_{i}, B_{i}\right)$ from $M$ can be erased by adding $-\lambda_{i}^{T} Y_{i}$ to $M$. The BAM energy $E$ of association or state $\left(A_{i}, B_{i}\right)$ is $-A_{i} A / B_{i}^{T}$. In the example, $E\left(A_{1}, B_{1}\right)=E\left(A_{2}, B_{2}\right)=$ $-6$.

## 3 Recalling

Suppose that an input pattern A is presented to BAM field $F_{A}$. The n neurons across $F_{A}$ have their binary values 1 or 0 . Each neuron $a_{i}$ in $F_{A}$ fans out its binary value across the p pathways and the synaptic value $m_{i j}$ multiplies the binary value $a_{i}$. Each neuron $b_{j}$ in $F_{B}$ reccives a fan-in of input products $a_{i} m_{i j}$ from each of its $n$ synaptic connections.

$$
o_{j}=\sum_{i=1}^{n} a_{i} m_{i j}
$$

We compute the output vector, given input vector $A_{1}$.

$$
\begin{aligned}
O=A_{1}^{T} M & =\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{rrrr}
2 & 0 & 0 & -2 \\
0 & -2 & 2 & 0 \\
2 & 0 & 0 & -2 \\
-2 & 0 & 0 & 2 \\
0 & 2 & -2 & 0 \\
-2 & 0 & 0 & 2
\end{array}\right) \\
& =\left(\begin{array}{llll}
4 & 2 & -2 & -4
\end{array}\right)
\end{aligned}
$$

Now threshold this vector by applying the threshold rule :

$$
b_{i}= \begin{cases}1, & \text { if } o_{i}>0 \\ 0, & \text { if } o_{i}<0 \\ \text { unchanged, } & \text { if } o_{i}=0\end{cases}
$$

Then threshold $(O)=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$ which is the desired output $B_{1}$.
Neuron $b_{j}$ then fans out its output signal across the $n$ pathways $m_{i j}$ to each neuron $a_{i}$ in $F_{A}$. Each $a_{i}$ then generates its binary signal from all its summed inputs and sends it back to $F_{B}$. And round and round the BAM goes. Each
pass around the loop causes the system to descend toward an energy minimum, the location of which is determined by the values of the weights.

The BAM is error-correcting. For example, if an incomplete or partially incorrect vector is applied at $A$, the network tends to produce the closest memory at $B$, which may be required, but the network converges to the nearest stored memory: For example, the input $A=(011000)$ is just $A_{2}$ perturbed by 1 bit. Then $A M$ $=\left(\begin{array}{lll}2-2 & 2-2\end{array}\right) \Longrightarrow\left(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right)=B_{2}$, and thus $A$ erokes the resonant pair $\left(A_{2}, B_{2}\right)$.

## II Data Encoding

## A Input Formats

A taxonomy of nine important neural nets is presented in figure 4.[4] This taxonomy is first divided between nets with binary and continuous valued inputs. Below this, nets are divided between these trained with and without supervision.


Figure 4: A taxonomy of nine neural nets

Many association memories and classifiers, such as the Hopfield net, Hamming net, bidirectional associative memory and Carpenter/Grossberg net use binary data as their inputs. These nets are most appropriate when exact binary representations are possible as with black and white images where input elements are pixel values, or with ASCII representation of each character. These nets are less appropriate when input values are actually continuous, because a fundamental representation problem must be addressed to convert the analog quantities to binary values.[4]

Although the other nets, such as the perceptron, backpropagation and Kohonen training nets can use continuous input data, they produce better classified results
when they use binary inputs. As the data go through hidden layers, they are compressed into the range of $0 \sim 1$ by a sigmoid function or hard limit threshold of each neuron. So using binary inputs lets each neuron make a more accurate decision. Three different data patterns are tested on a backpropagation net that can use continuous inputs to see if binary inputs lead the net to a more accurate classification than continuous inputs.

Table I: Input data and its target output for backpropagation test

| pattern | continuous-valued input |  |  |  |  | desired output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pattern $\Lambda$ | 45 | 13 | 32 | 5 | 4 | 10000 |
| pattern B | 50 | 32 | 23 | 45 | 49 | 00100 |
| pattern C | 4 | 19 | 37 | 24 | 11 | 00001 |

Table I shows the continuous-valued input data and desired outputs to be tested on a backpropagation net. To represent the continuous-valued inputs with binary inputs, binary digits are used. That is, 45 is ( 0000101101 ) in binary: For each decimal number, 10 digits are used in binary in this example. So 50 neurons are used in an input layer when binary inputs are used, while 5 neurons are used when continuous-valued inputs are used. Besides the input layer, there are 3 more layers, 2 hidden layers which have 4 neurons each and an output layer which has 5 neurons. For both cases, the net is trained 10000 times, respectively. The backpropagation nets are shown in figure 5. The result is shown in table II.

As seen in table II, although pattern $C$ is classified correctly, pattern $A$ and pattern $B$ are not classified when continuous-valued inputs are used in backpropagation. Since pattern $A$ and $B$ produce the same outputs ( $\left.\begin{array}{llllll}0.5 & 0 & 0.5 & 0 & 0\end{array}\right)$ even after 10,000 training steps, there is no hope of convergence into ( 10000 ) and ( 00100 ), respectively. On the contrary, when binary inputs are used, all three


Figure 5: Backpropagation nets testing with different input formats patterns, $\mathrm{A}, \mathrm{B}$, and C are classified correctly and produce almost the same actual outputs as those desired after 10,000 training steps. So using binary inputs helps the net to recognize patterns more accurately than using continuous valued inputs. Binary inputs provide the net a better degree of fault tolerance or robustness than continuous inputs. In the example above, five real-valued numbers are distributed to 50 binary valued neurons. So damage to a few nodes out of the 50 nodes or links need not impair the overall performance significantly. Damage to few nodes out of 5 real valued nodes will cause a great damage to performance of the net.

## B Encoding schemes

Many current neural net algorithms are developed for pattern recognition. It is natural to feed the nets a pattern for its input, and the nets will consider a set of input data as one pattern. How to extract data from an input pattern is important, no matter whether it is an image pattern or a numeric valued pattern.

If the input pattern is an image pattern, it is rather easy to get binary data from the image pattern. Figure 6 shows a set of binary inputs for the letter $A$ drawn on a grid.[1] If a line passes through a square, the corresponding neuron's

Table II: Results when 2 different types of inputs are used

| inputs | testing patterns | actual outputs |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| continuous inputs | pattern A | 0.51 | 0.01 | 0.49 | 0.01 | 0.01 |
|  | pattern B | 0.51 | 0.01 | 0.49 | 0.01 | 0.01 |
|  | pattern C | 0.01 | 0.0 | 0.0 | 0.0 | 0.99 |
| binary inputs | pattern $A$ | 0.99 | 0.01 | 0.0 | 0.01 | 0.01 |
|  | pattern B | 0.0 | 0.0 | 0.99 | 0.0 | 0.01 |
|  | pattern C | 0.01 | 0.0 | 0.01 | 0.0 | 0.99 |

input is one; otherwise, that neuron's input is zero.
In many real-world problems of practical interest, the patterns to be trained and recalled in a neural net are described by a set of decimal numbers rather than ready-to-use binary numbers from a visual image pattern. For example, suppose that we want to implement a sysiem that analyzes the stock price in a stock market using a neural network. The data to be used in the neural net algorithm is weekly closing stock prices of a company for a certain period, which is an array of decimal numbers, not binary numbers. And the data set has its own unique pattern. It is more natural to tell a neural net algorithm the pattern, not just data itself because the current algorithms are developed to be good at pattern recognition. There could be several different types of patterns according to the properties and purposes of the applications. The pattern used here is one that depends on the trend (up or down) of data value. For example, a set of data $\{2,4,8,11\}$ is real data which has an "ascending order" pattern. $\{12,14,23,40\}$ has a "ascending order" pattern also. But it is a little different from the former one because the ratio of rate is different. Even though there are some applications in which a data


Figure 6: Image recognition
value itself is important, most applications use a pattern of the data, not just the value itself. Therefore, we must have a means to encode real-valued numbers into binary neural state numbers without losing its pattern. The converted binary data should have the same pattern that the real data had.

A new scheme is proposed to represent real-valued numbers by neuron state binary numbers, which is essential in solving numerical problems on ncural networks. One way of mapping the positive integer space onto the neuron state space will be shown before the new transformation method is considered. Comparisons of the two schemes with examples will be considered also.

## 1 Binary scheme

The easiest way of converting numbers into binary data is to use binary digits. For example, 9 is expressed by 1001 . This scheme is used in examples in the previous section to show the performance of binary inputs orer continuous valued inputs.

A number $N$ uses $\left\lceil\log _{2}(N+1)\right\rceil$ bits to express itself in binary. If the number of elements of a data set is $D$, then $D *\left\lceil\log _{2}(N+1)\right\rceil$ bits are required. Despite the simplicity, this scheme has the following problems when it is used in neural net algorithms.

- Not noise-tolerant : Even a small distortion in a value might give rise to a large error in the binary number represented. For example, if a number i (0111) decreases by 1 to 6 (0110), only 1 digit is contarninated in the binary number. What if the number 7 increases by 1 to 8 ? The 0111 becomes 1000. All of the 4 digits are contaminated completely even though the decimal number has just a single digit of noise.
- Not fault-tolerant : Even a single failure in a highly significant bit gives rise to a large error in the number represented. For example, if the most significant bit of ( $\left.\begin{array}{llllll}0 & 0 & 1 & 1 & 0 & 1\end{array}\right)$ which is 15 in decimal is corrupted, it becomes ( 001101 ) which is 13 .
- Obscure whole pattern : It is a set of data, not an element of the set, that has a pattern. Converting each decimal number into a binary number can not represent the pattern that the set has. You can not see the forest for the trees.


## 2 Bucket-Weight Matrix (BWM) scheme

Each element from a data set with a certain range of values is expressed with a number of buckets. The bucket corresponding to the element's value is set to 1 , and the rest are set to 0 . The number of buckets is determined by the degree of distortion tolerance to be used in an application. For example, if the input values of a pattern range from 0 to 8 and the number of buckets is 4 , then (the range of input values) $/($ the number of buckets $)=(8-0) / 4=2$ is the
size of each bucket as well as the size of distortion tolerated. The first bucket corresponds to values from 0 to 2 , and the second bucket is for values from 2 to 1 , and so on. Since there are 4 buckets, each number is represented by $\&$ digits, and each digit represents each bucket. If the bucket contains the number, it is set to 1, and the other buckets, that is, digits are set to 0 . A number 4 is represented by 0100 , and 7 is represented by 0001 because the number 4 belongs in second bucket and the number 7 in fourth bucket. So the elements whose values are in the same bucket's range are represented the same. A number 3 is represented by 0100 just like a number 4 because the second bucket represents elements whose values are more than 2 and less than or equal to 1. Noise filtering ability can be obtained in this way:

Doing this for every element makes a so-called bucket-weight matrix for the data set. The matrix has a property of the pattern that the data set had. Besides the pattern keeping ability; this scheme has a good noise-filtering ability and works cren with negative numbers and fractional numbers. This scheme will be discussed in the next chapter in more detail.

The following example will show how well the two schemes filter distorted patterns. Table III shows the three different input types from the three different schemes mentioned above for two patterns to be learned by backpropagation. The assumption of input data range and bucket numbers in a BW M scheme representation are the same as the ones mentioned above. These input data will be learned separately with the same desired outputs for each pattern. The nets are trained 10,000 times with the inputs, respectively. Table IV shows the distorted inputs of the data in table III. The bold faced digits are the ones contaminated by a change of 1 in the decimal input value.

As seen in table IV, for a small distortion in a decimal number, that is, $7 \longrightarrow$ 8 , the data using the binary scheme are corrupted completely, that is, $0111 \longrightarrow$

Table III: 3 different types of inputs and desired outputs for 2 patterns trained by backpropagation

| pattern | scheme | inputs |  |  | desired outputs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pattern A | non-binary | 7 | 4 | 2 | 1 | 0 |
|  | binary | 0111 | 0100 | 0010 |  |  |
|  | BIVM | 0001 | 0100 | 1000 |  |  |
| pattern B | non-binary | 2 | 5 | 6 | 0 | 1 |
|  | binary | 0010 | 0101 | 0110 |  |  |
|  | BWM | 1000 | 0010 | 0010 |  |  |

1000, while the data using the BWM scheme are not corrupted. This is the worst case of the binary scheme because a small distortion in non-binary input causes $100 \%$ of the binary bits to be corrupted. The worst case in the BWM scheme is when a distorted number is out of its original bucket. In pattern $B$ of table III and table IV, the number 5 belongs to the third bucket, and the distorted number 4 belongs to the second bucket. So the BWM scheme input 0010 becomes 0100 , that is, at most 2 bits are changed in the worst case of the BWM scheme no matter how long the inputs are. These three different types of inputs are recalled, and the results are illustrated in table $V$.

As seen in table $V$, the binary scheme could not filter the distorted inputs of pattern A while the other two schemes corrected the input errors and produced correct outputs. The distorted input of pattern $A$ using the binary scheme produce wrong outputs which are closer to the desired outputs of pattern $B$ and cause the net to make a wrong decision. From the results of table II and table $V$, it is shown that the BWM scheme helps a net's accuracy of classification over continuous inputs and helps noisy filtering and fault-tolerance capabilities over a

Table IV: 3 different types of distorted inputs for 2 patterns

| pattern | scheme | noisy inputs |  |  | desired outputs |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | non-binary | 8 | 4 | 2 |  |
| pattern A | binary | 1000 | 0100 | 0010 | 1 |

binary scheme.
In next chapter, this BWM scheme will be implemented in a neural net called the Binary Patlern Net, and a bucket sorting method using the net will be given, too.

Table V': Results of recalling of the trained net

| pattern | scheme | actual outputs |  |  |  | desired output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w /$ correct inputs | $w /$ noisy inputs |  |  |  |
| pattern A | binary | 0.99 | 0.01 | $\mathbf{0 . 2 2}$ | $\mathbf{0 . 7 8}$ | 1 |
|  | non-binary | 0.99 | 0.01 | 0.99 | 0.01 |  |
|  | BWM | 0.99 | 0.01 | 0.99 | 0.01 |  |
|  | bon-binary | 0.01 | 0.99 | 0.01 | 0.99 |  |

## III Binary Pattern Net

The Bucket-weight matrix scheme, which was proposed in the previous section briefly, converts a set of input numbers into a set of neural net state binary numbers without losing its unique pattern. This scheme is implemented in a neural net-like algorithm so that this net can be combined with other nets, which would be nets that have real world data processing ability. This binary pattern net can be used as a bucket sorting net as will be shown later in this chapter.

A constant number of buckets are generated according to the range of values in an input data set. Each element goes to its bucket and makes the bucket value 1 and the others 0. A (number of buckets) * (number of clements) matrix is obtained after all of the elements in the set are put in their buckets. The pattern in the data set is determined according to how big and where, relatively, in the set each element is. Like other nets, the operation of this net has 2 steps, the training step and the recalling step. Since the bucket-weight matrix is generated in the training step, the bucket-weight matrix scheme is performed in this step. The recalling step is necessary for bucket sorting of the data set.

## A Training step

In this step, a set of numbers becomes a set of binary pattern numbers. Figure 7 illustrates the training model of the Binary Pattern Net.

Going through this net, $n$ numbers become $n * b$ binary numbers that are the bucket-weight matrix. The neurons in the first layer have input numbers, and the connection weights from the first layer to the second layer are initialized with $B_{i}$ that is the upper limits of buckets. The summation function of each neuron in the second layer is $N e t_{i j}=A_{j}-B_{i}$, and the transfer function is a threshold function that is shown in figure 7. The $N e t_{i j}$ value represents the distance between an element, $A_{j}$, and a bucket boundary; $B_{i}$. The transfer function in the $C$ layer is a

```
A() = input data element
n = the number of elements in the input data
max = the maximum value of the input data range
min = the minimum value of the input data range
b = the number of buckets
B(i) - ((max-min+1)/b) *i
```



Figure 7: Training step of binary-pattern net. The matrix $C$ is the bucket-weight matrix. $N$ numbers are encoded into $n * b$ numbers
winner-take-all style, that is, $C_{i j}$ is set to 1 for the winner of all the elements of j , 0 for the rest. In this way, the $n * b$ bucket-weight matrix has $n$ is and ( $n * b-n$ ) 0 s , and there is only one 1 in each row.

Example We have a set of data which has 5 elements $\{7,3,11,5,1\}$. Suppose the range of input data values is $0 \sim 12$, and the number of buckets is 4 .

We can show the process with matrix manipulation.
$A(i ; i=1,5)=7,3,11,5,1$
$\mathrm{B}(\mathrm{i} ; \mathrm{j}=1,4)=\frac{12}{4} i=3,6,9,12$
Definition of $\Theta: \operatorname{Net}(\mathrm{i}, \mathrm{j})=\mathrm{A}(\mathrm{i}) \ominus \mathrm{B}(\mathrm{j})$ is defined as $N e t_{i j}=A_{i}-B_{j}$.

$$
\begin{aligned}
\text { Net }_{i j} & =\left(\begin{array}{c}
7 \\
3 \\
11 \\
5 \\
1
\end{array}\right) \ominus\left(\begin{array}{llll}
3 & 6 & 9 & 12
\end{array}\right) \\
& =\left(\begin{array}{cccc}
4 & 1 & -2 & -5 \\
0 & -3 & -6 & -9 \\
8 & 5 & 2 & -1 \\
2 & -1 & -4 & -7 \\
-2 & -5 & -8 & -11
\end{array}\right) \\
\text { Out }_{i j} & =\left\{\begin{array}{cccc}
-\infty, & \text { if } N e t_{i j}>0, \\
N e t_{i j}, & \text { otherwise. }
\end{array}\right. \\
& =\left(\begin{array}{cccc}
-\infty & -\infty & -2 & -5 \\
0 & -3 & -6 & -9 \\
-\infty & -\infty & -\infty & -1 \\
-\infty & -1 & -4 & -7 \\
-2 & -5 & -8 & -11
\end{array}\right) \\
C_{i j} & =\left\{\begin{array}{cccl}
1, & \text { if the largest in } \mathrm{i}^{\text {th }} \text { row } \\
0, & \text { otherwise. }
\end{array}\right. \\
& =\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The final matrix C is the bucket-weight matrix. The binary digits of each row represent each number of the data set. $A_{1}, 7$, is represented by $0010, C_{1 j, j=1 \ldots 4}$
that is first row of matrix $C ; A_{2}, 3$, is transformed to $1000, C_{2 j, j=1 \ldots 4}$ and so on. Each column represents a bucket. The binary matrix $C$ has the pattern that the continuous ralued data set $A$ had.

## B Recalling step (Bucket sorting)

In general, a bucket sort has three phases, which we may call distribution, sorting buckets, and combining buckets.[11] Suppose there are $k$ buckets. During the distribution phase, each key is examined. Then it docs some work to indicate in which bucket the key belongs. In the second phase, an algorithm is used to sort buckets by a comparison of keys. The third phase requires that the keys be copied from the buckets into one file. If the distribution of the keys is known in adrance, the range of keys to go into each bucket can be adjusted so that all buckets receive an approximately equal number of keys.

In this recalling step, the unsorted numbers in the input set of the training step are distributed into buckets by the values. The bucket size can be adjusted. If this recalling step is recursively used to create smaller and smaller buckets or if a large number of buckets is used, then all of the keys can be sorted completely in the first phase, that is, this recalling step, even though this seems inefficient in terms of the amount of space needed.

Figure 8 illustrates the recalling model of a binary pattern net. The input numbers are the numbers in set $A$, and the weight matrix used is the bucketweight matrix from the training step of this net.

Example This example is the same as the one in the training step.

Definition of $\otimes: \mathrm{S}(\mathrm{i}, \mathrm{j})=\mathrm{A}(\mathrm{i}) \otimes \mathrm{C}(\mathrm{i}, \mathrm{j})$ is defined as $S_{i j}=A_{i} * C_{i j}$.

$$
\text { Sorted matrix } S_{\mathrm{ij}}=\left(\begin{array}{lllll}
7 & 3 & 11 & 5 & 1
\end{array}\right) \otimes\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$



Figure 8: Recalling step of a hinary-pattern net. This step is used when bucket, sorting is required. The weight matrix C is from a bucket-weight matrix.

$$
=\left(\begin{array}{cccc}
0 & 0 & 7 & 0 \\
3 & 0 & 0 & 0 \\
0 & 0 & 0 & 11 \\
0 & 5 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Each column represents a bucket. The first bucket contains 1 and 3 ,the second bucket has 5 , and so on. In this way the input data are bucket-sorted in this recalling step. Figure 9 shows the nets of this example.

The 1,000 numbers generated by a random number generator are distributed into buckets by this net on a serially operated computer, and the results are in the appendix D. Figure 10 illustrates the graph of running time of bucket sorting in this net.


Figure 9: The net of the recalling step for a bucket sorting. The link weights are the key of the sorting.


Figure 10: Bucket sorting time (in milli-seconds) for the binary-pattern net. (a) when the number of data is fixed at 1000 and (b) when the number of buckets is fixed at 100

## C Analysis

The performance of the net will be discussed in this section. The following are the properties of this net.

1. Encoding a set of real world numbers into a set of neural net state binary numbers without losing its unique pattern.
2. Good noise-filtering ability:
3. Linear complexity, Scalability.

## 1 Training time and memory used

Figure 10 shows that training time increases linearly with the number of elements or the number of buckets; that means that the computational-complexity function of a bucket-weight matrix net is linear. In the training step, suppose $n$ is the number of elements and b is the number of buckets..$f(n) \ominus B(b)$ becomes an $n * \ell$ matrix, and it requires $n * b$ multiplications and an average of $1 / 2 * n * b$ comparisons. In general, since the number of buckets, $b$, is constant, the training time is linear of $n$. So the complexity of the net when it is simulated on a serially operated computer is $O(n)$, which means this net is scalable. Scalable, in this case, refers to the ability of a neural network developed on a digital computer to be enlarged casily to perform larger real-world tasks. When we want to enlarge a small experimental neural network into a real-world application, scalability becomes important. The graph in figure 11 compares three scalability standards. [7] If you improve a training algorithm from exponential to polynomial scalability, you will significantly increase the number of patterns you can train. The bucket-weight matrix net has linear scalability, which is an improvement over polynomial scalability:

The number of bits or neurons required in the BWM scheme depends on the number of buckets ( $b$ ) and the number of elements in the set ( $n$ ). It requires $b * n$

Iraining time or memory used


Figure 11: Three standard measures of scalability; problem size can be from training patterns, neurons, or synapses
bits to express the set of data. Each element requires b bits regardless whether it is a large number or not. Generally, the memory used is linear in the problem size if $b$ is constant. The numbers of neurons increases $b * 100(\%)$ because $n$ continuous valued numbers become $b * n$ binary numbers. This might limit the possibility of covering large numbers of elements using a small number of neurons, but for a neural computer it is not a fatal disadvantage because the use of ample neurons with much redundancy is the key to improving its computational capability and system stability[6].

## 2 Noise filtering

This binary weight matrix net has a noise-filtering ability. The elements whose values belong to the same bucket are represented by same binary bits in the BWM scheme. So a little change of a value within the bucket size does not affect its binary result. The bucket size determines the noise-tolerance range and the bucket size is determined by the number of buckets. For example, consider the example data in the previous section, which is $\{7,3,11,5,1\}$ and a bucket size of 3 . If the first element 7 is contaminated by two units, it becomes 9 . The resulting bucket weight matrix is the same because both 7 or 9 belong to the third bucket. But if
the 7 is changed to 6 , a different binary matrix is obtained because 6 belongs to the second bucket, not to the third bucket. So the number which is on the border of each bucket has a half chance to be filtered according to its noise direction. Figure 12 shows a graph of the trade-offs between noise tolerance and accuracy of pattern recognition with the data used in the example of the training step. Different bucket-weight matrices for different bucket numbers or bucket sizes are shown in the figure also. In figure 12, by connecting the 1 s in the matrices, the similarity of input data pattern $A$ and converted binary data $C$ can be found.

Though the noise filtering ability is decreasing as the bucket size gets very small, the number of affected bits in the resulting binary matrix is 2 at most. Compared to the number of total bits, 2 bits are very few. These few distortions can surely be filtered out in the main neural net algorithms that are going to use the binary matrix as its input data patiern data. Since most neural net algorithms have noise filtering ability, this net will increase the ability a lot when this net is combined with those nets.
$A=\{7,3,11,5,1\}$

b：the number of buckets
s：buckel size
123456789101112

|  | 12 | 345 | 567 | 89 | 9101112 | Bucket－welght malrix | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1这㽬 |  |  | 納縓 |  | 1 | 0 |
| $b=1$ |  |  |  |  | 济縭济《萦 | 1 | 0 |
| $s=12$ |  |  | 緕納䌊 |  |  | 1 | 0 |
|  |  |  |  | 匈栒紋 |  | 1 | 0 |
|  |  |  |  |  |  | 1 | ${ }^{(1)}$ |
|  |  |  |  |  | 3畐縭图 | 01 | 06 |
| $b=2$ | 全 | ＂894090 | 䖝窗 |  |  | 10 | 00 |
| \＄$=6$ |  |  |  |  |  | 01 | 15 |
|  |  |  | 衸侪 |  |  | 10 | 90 |
|  |  | ＊젳 |  |  |  | 10 | 60 |
|  |  |  | － | 藋詻 |  | 010 | （1） |
| $b=3$ |  | － |  |  |  | 100 | Qbo |
| $8=4$ |  |  |  |  | 这 | 001 | 010 |
|  |  |  | － | 卒淬 |  | 010 | （1） |
|  | \＆ |  |  |  |  | 100 | 000 |
|  |  |  | 敢 |  |  | 0010 | 080 |
| $b=4$ |  |  |  |  |  | 1000 | C000 |
| $8=3$ |  |  |  | 17 | －${ }^{\text {and }}$ | 0001 | 0090 |
|  |  |  | 校 |  |  | 0100 | 090 |
|  | 絯 |  |  |  |  | 1000 | 0000 |
|  |  |  | 紋 | 成 |  | 000100 | 00190 |
| $b=6$ |  | － |  |  |  | 010000 | dShooo |
| $8=2$ |  |  |  |  | ＋ | 000001 | 000006 |
| $8=2$ |  |  | \％ |  |  | 001000 | 009000 |
|  |  |  |  |  | 1 | 100000 | （100000 |
|  |  |  | ［ |  |  | 000000100000 | 000000800000 |
| $b=12$ |  | 0 |  |  |  | 001000000000 | 0000000000 |
| $8=1$ |  |  |  |  | 自 | 000000000010 | 0000000000 |
|  |  |  |  |  |  | 000001000000 | 000010000000 |
|  |  |  |  |  |  | 10000000000 | 100000000000 |

Figure 12：Trade－off between accuracy of recognition and noise－tolerance by vary－ ing bucket sizes

## IV Examples

The bucket-weight scheme connected to the BAM model is simulated. The scherne is implemented in the training step of a binary pattern net. Two examples will be shown here; one is a pattern recognition with a non-visual numeric-ralued pattern, and the other is with a visual image pattern.

## A Example with a numeric data pattern

Recognition of some patterns of stock prices in a stock market is performed here. The data collected are weekly closing prices of 2 companies, A and B, for 12 wecks. The 12 week stock prices of each company have their own pattern of the trend of prices, and we want to classify the patterns with the BAM model. Table VI shows the raw data of 2 companies.

The BAM model uses bipolar numbers for its inputs, but the data we have in this example is not bipolar. So we need a scheme to convert the raw data into bipolar data. The bucket-weight matrix scheme will be used for this example. A bucket-weight matrix will be generated in a training step of the binary pattern net. The matrix is used as an input set in the BAM. In a binary pattern net, suppose that 16 buckets are used so that the bucket size is $(323.98-177.35) / 16=9.16$ because the raw data is in the range 177.35 to 323.98 as seen in table VI. With this bucket size, the BWM scheme will have the noise-tolerance rate of $9.16 \mathrm{t} /(323.98$ 177.35) $* 100=6.25 \%$. The final binary data, that is, bucket-weight matrix obtained in a training step of the binary pattern net are in figure 13. These data are trained in the BAM model with auto-associations of the two patterns.

## Results

Figure 14 shows a graph of the trend (up and down) of the values in table VI and graphs of results of recalling with some incomplete inputs. The association model produces the complete output, the following stock prices, given the partial inputs,

Table V'l: Weekly closing prices of company $\Lambda$ and $B$

|  | Company $A$ | Company B |
| :---: | :---: | :---: |
| $1^{\text {tt }}$ week | 177.35 | 265.84 |
| $2^{\text {nd }}$ week | 198.25 | 264.38 |
| $3^{\text {rd }}$ week | 221.89 | 257.72 |
| $4^{\text {th }}$ week | 249.01 | 249.01 |
| $5^{\text {th }}$ week | 271.47 | 239.56 |
| $6^{\text {th }}$ week | 260.91 | 231.62 |
| $7^{\text {th }}$ week | 262.13 | 229.54 |
| $8^{\text {th }}$ week | 295.73 | 229.97 |
| $9^{\text {th }}$ week | 310.07 | 241.03 |
| $10^{\text {th }}$ week | 316.61 | 260.90 |
| $1^{\text {th }}$ week | 300.01 | 300.01 |
| $12^{\text {th }}$ week | 251.43 | 323.98 |

the first 3 weeks' prices as seen in graph (a). Graph (b) shows the correct output, given noisy inputs. The noise in graph (c) is filtered in the binary-pattern net already before it goes to the BAM net. Since the BAM net has noise filtering property, a double noise filtering system can be obtained by using the two nets together. Another noisy input is tested in graph (d), which is a mixed input of pattern A and B. Appendix E has all of the input data and output data used in these tests. The program codes used in these tests are in appendix $A$ and $B$.

$$
A=\left[\begin{array}{llllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Figure 13: Matrix $A$ is binary pattern matrix for company $A$, and matrix $B$ is for company B.

## B Example with a non-numeric image pattern

In many image recognition problems, the most common way to extract binary image numbers is illustrated in figure 15 which shows a set of inputs for a shape drawn on a grid. If a line passes through a square, the corresponding neuron's input is one; otherwise, that neuron's input is zero.

Even though this method is simple to get binary input numbers from an image pattern, it has unexpected side effects in terms of noise problems. This will be discussed by testing two patterns with the BAM model. Two different patterns in figure 16 will be trained and tested to be classified in the BAM model.


Figure 14: Graphs of values in table $V I$ and results of recalling with different inputs


Figure 15: Binary data extracting from a visual image pattern


- Pattern 1 -

- Pattem 2 -

Figure 16: Two input patterns


Figure 17: Two possible noisy patterns of pattern 2
Say that pattern 2 is corrupted by one square horizontally and vertically as seen in figure 17. The horizontal noise of pattern 2 causes just one square to be changed while vertical noise causes seven squares to be changed even though both of them make just one square of noise. Figure 17 explains this. This sideeffect will result in a wrong pattern classification. The two patterns in figure 16 are trained in an auto-association manner like figure 18. After that, the two patterns distorted by one square in height are tested, and totally wrong outputs are obtained. Figure 19 shows the output results. The noisy input of pattern 1 has 13 squares identical to pattern 1 while it has 16 squares identical to pattern 2 ; that is, the input pattern is $15 \%$ more closely matched to pattern 2 than pattern 1. So wrong classification is performed. The same goes for the result of noisy input of pattern 2 and its wrong output. So another data extracting method is necessary to overcome this unexpected side effect. Vector values to represent the patterns can be used in this case.

Figure 20 illustrates one particular example of how to extract vector values


Association of pattern1


Association of pattern2

Figure 18: Inpul pairs for training
that have directions and scalar values from pattern 1. Suppose that the scalar value represents the number of squares. As seen in figure 18, the two patterns are composed of three lines each. The differences of the two patterns are the heights of the patterns and which side is open. Suppose that the starting point to extract vector values of lines is the end point of the upper line. Consecutive vectors begin at the end of previous vectors. The vector data obtained in this way is $(-5,-4,+4)$ for pattern 1 and $(+5,-3,-4)$ for pattern 2 . Since the data is non-binary numerical, the scheme proposed in chapter III-A is used to convert the data into binary format. Suppose 5 buckets are used in this case. Then the bucket size is 2 since the maximum is +5 , minimum is -5 , and there are 5 buckets So the upper limits of the buckets $B=\{-3,-1,1,3,5\}$. The two bucket-weight matrices from the two vector data are

$$
\text { pattern }=(-5,-4,+4)
$$



Nolsy pattern of pattern1 and its wrong output pattern


Noisy pattern of pattern2 and It's wrong output pattern

Figure 19: Recalling of noisy patterns and its incorrect output


Figure 20: Extracting vector values from image pattern 1 in figure 16

$$
\begin{aligned}
\text { Net }_{i j} & =\left(\begin{array}{c}
-5 \\
-4 \\
+4
\end{array}\right) \ominus\left(\begin{array}{ccccc}
-3 & -1 & 1 & 3 & 5
\end{array}\right) \\
& =\left(\begin{array}{ccccc}
-2 & -4 & -6 & -8 & -10 \\
-1 & -3 & -5 & -7 & -9 \\
7 & 5 & 3 & 1 & -1
\end{array}\right) \\
\text { Out } t_{i j} & =\left(\begin{array}{ccccc}
-2 & -4 & -6 & -8 & -10 \\
-1 & -3 & -5 & -7 & -9 \\
-\infty & -\infty & -\infty & -\infty & -1
\end{array}\right) \\
\text { bucket weight matrix for pattcrn } 1 & =\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

The bucket weight matrix for pattern 2 can be obtained in the same way as above.

$$
\left.\begin{array}{rl}
\text { pattern } 2 & =(+5, \\
\text { bucket weight matrix for pattern } 2 & =\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{array}\right)
$$

The vector values of the two noisy input patterns in figure 19 are $(-5,-3,+4)$ and $(+5,-4,-4)$, respectively. And their bucket-weight matrices are cxactly same as the ones above. This means the noise is filtered in a bucket-weight matrix scheme before going through the BAM model. Even if there are many buckets and each bucket size is small, the number of input elements contaminated by a pattern noise is two at most. Two elements of noise in the matrix is small enough that the BAM model can surely filter it because the BAM model has a noise filtering ability:[3] The results in this way are shown in figure 21. This method is cluser to the human's pattern recognition method as we classify the two patterns by their rough shape, that is, whether the right side is open or the left side is open, not by their precise lengths and angles. In this way, we can recognize scaled patterns and rotated patterns easily while the first method cannot help it.

The two methods mentioned above can be compared in terms of noisy rate of input binary data. Suppose that an input pattern is distorted by one unit and


Figure 21: Recalling of noisy patterns and its correct outputs
the binary input data from the pattern has $n * n$ elements. Table VII compares the rates of corruption of the converted binary inputs caused by the distortion of the original input pattern.

Table VII: Noise rates of two methods

| method | best case | worst case |
| :--- | :--- | :--- |
| first method | $1 /(n * n) * 100(\%)$ | $2 / n * 100(\%)$ |
|  |  | $2 /(n * n) * 100(\%)$ |

The best case in the first method is the case of noise 1 in figure 17 , and the worst case is the noise 2 case in the figure. In the case of the second method that uses vector inputs, the BWM scheme filters most of the small errors if the errors are in the noise-tolerance range. At worst, 2 bits in the bucket-weight matrix are
changed regardless the size of the matrix.

## V Conclusion and further research

Nost current neural network algorithms have considerable power in pattern recognition. A method that extracts a particular pattern from real world data as closely as possible to the human's pattern extracting method surely increases the neural networks' pattern recognition ability. In this thesis, one of the input data encoding methods, the bucket-weight matrix scheme, is discussed and tested with both a visual image pattern and a non-visual numeric pattern. The results show that this scheme is a very encouraging and effective data extracting method. This scheme provides a means to make neural net state input data from a numerical data pattern, avoids unexpected side effects that might happen in a data encoding procedure, and has a good error-correcting property:

The binary-pattern net that implements the scheme can be used as a bucketsorting net also. The procedure and results of a bucket-sorting net are shown in this report, and this gives us a positive possibility of another application of noural networks. That is, neural computing can contribute to many traditional data structure problems such as sorting, searching, indexing and the hashing function as well as pattern recognition problems. Since the basic structure and procedure of neural networks is parallel and distributed, some problems of data structures such as timing and fault tolerance can be solved with these neural networks properties. In implementing the algorithms on a parallel machine, there are some problems to be solved such as communication time problems. The under-construction neurocomputers that are electrical or optical implementations of neural networks will surely solve these problems and open a new area of the computer world.

The adaptive expert system is a very encouraging application of neural networks. The expert system is the most successful one in terms of the practice of artificial intelligence. The strong point of the expert system is its inference abilitywhile the neural network has a powerful recognition ability. So the combining of
the two abilities, recognition and inference, will approach a hurnan's brain capability: There is no doubt that this neural network will contribute to humankind's life as well as many artificial intelligence application areas.

## Appendix A

Programming of the B.AM model

```
B. Kosko's BAM model [3] is programmed in C language here.
/*
**************************************************************
************* ************
************* BIDIRECTIDN ASSOCIATIVE MEMORY ************
************** ************
************* By Hyeoncheol Kim ************
************* 1990 ************
************* ************
***************************************************************
********************************************************************/
#include <stdio.h>
#include <math.h>
\begin{tabular}{ll} 
\#define Number 2 & \(/ *\) The number of the patterns*/ \\
\#define In_element 20 & \(/ *\) The number of the input elements \(* /\) \\
\#define Out_element 20 & \(/ *\) The number of the output elements \(* /\) \\
\\
\\
\hline\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
\end{tabular}
DEFINING THE GLOBAL VARIABLES AND ARRAYS FOR MAIN PROGRAM
*********************************************************************/
float M[In_element][Out_element]; /* The trained connections */
main(){
```

```
/**********************************************************************
```

/**********************************************************************
DEFINING THE LOCAL VARIABLES AND ARRAYS FOR MAIN PROGRAM ******************************************************************/
$\Pi$ char ans,fn1[10], fn2[10]; /* The name of the inputs */
\Pi int flg,i, j, n; /* Integer Variables */
\Pi float input[Number][In_element], output[Number][Out_element];
ПППП /* Variables for input and output*/
float M1[In_element][Out_element];
/* Variable for connection */

```
\(\Pi\) FILE *in_file, *out_file, *fopen(), *fclose();

READ IN THE INPUT DATA AND THE NAME OF THE THO FILES;
INPUT AND OUT PUT

П for (i=0;i<ln_element;i++)\{
П for ( \(j=0 ; j<O u t\) _element \(; j++\) ) \{
\(\Pi M[i][j]=0.0\);
П \}
П \}
\(\Pi\) /* The initial values of the connection */
\(\Pi\) for \((n=0 ; n<N u m b e r ; n++)\{\)
\(\Pi\)
\(\Pi\) printf("Enter the file name of input dataln");
\(\Pi\) gets (fn1);
\(\Pi\) in_file \(=\) fopen(fn1,"r");
П if (in_file == NULL) \{
\(\Pi\) printf("Error Opening \(\backslash n "\) );
\(\Pi\) exit(1);
П \}
\(\Pi\) /* Read in the first data for the associative memory */
\(\Pi\) printf("Enter the file name of target output dataln");
\(\Pi\) gets (fn2) ;
П out_file = fopen(fn2,"'r");
I if(out_file \(==\) NULL) \(\{\)
II printf("Error Opening \(\backslash n\) ");
П exit(2);
\(\Pi\) \}
/* Read in the second data for the associative menory */
\(\Pi\) for (i=0;i<In_element;i++)\{
\(\Pi\) fscanf(in_file, "\%f", \&input[n][i]);
\(\Pi\) if (input \([n][i]==0.0\) ) \(\{\)
\(\Pi\) input \([\mathrm{n}][\mathrm{i}]=-1.0\);
ППП \}
else\{
\(\Pi\) input[n][i] \(=1.0\);
\(\Pi \quad\}\)
ПППП \}
/* With hard limit threshold, transform the data into the bipolar */
for (i=0;i<Out_element; i++) \{
\(\Pi\) fscanf(out_file, "\%f", koutput[n][i]);
\(\Pi\) if (output \([n][i]==0.0\) ) \(\{\)
\(\Pi\) output \([\mathrm{n}][\mathrm{i}]=-1.0\);
```

пПп
}
else{
n output[n][i] = 1.0;
\Pi }
пппп }

```
    /* With hard limit threshold, transform the data
        into the bipolar */
```

\Pi for(i=0;i<In_element;i++){
| for(j=0;j<Out_element;j++){
n M1[i][j] = input[n][i]*output[n][j];
\Pi }
| }
\Pi /* Constructing the connection for the hetero associative memory */
| for(i=0;i<In_element;i++){
| for(j=0;j<Out_element;j++){
П M[i][j] = M[i][j] +M1[i][j];
| }
II}
| } /* The N patterns have been learned */
printf("*** End of Training Step ! ***\n");
do{
flg=0;
RECALL(); /* procedure of recalling the data with arbitrary input */
printf("Another test?(y/n)\n"); gets(ans); if (ans=='y') flg=1;
}while(flg=1);

```
\(\Pi\) \} /* This is the end of the main function */

```

char fn1[10], fn2[10];
int i, j, k, l;
float input[In_element], output[Out_element];
float buffer, check[In_element];
FILE *in_file, *out_file, *fopen(), *fclose();
/*********************************************************************
\Pi READ IN THE NAME OF THE DATA FILE
****************************************************************************)
printf("Enter the Name of the input file for recalling\n");
gets(fn1);
in_file = fopen(fn1,"r");
if(in_file == NULL){
printf("Opening Error\n");
exit(4);
}
printf("Enter the Name of the out file for recalling\n");
gets(fn2);
out_file = fopen(fn2,"r");
if(out_file == NULL){
printf("Opening Error\n");
exit(4);
}
/********************************************************************
CHANGING THE ELEMENTS INTO BIN.
BY LETTING THEM GO THROUGH THE THRESHOLD
****************************************************************/
for(i=0;i<In_element;i++){
fscanf(in_file,"%f",kinput[i]); /* initial value of input[] */
ппп }
for(i=0;i<Out_element;i++){
fscanf(out_file,"%f\n", \&output[i]); /* initial value of output[] */
\#пn }

```
```

*********************************************************************/
do{
for(i=0;i<In_element;i++){
check[i] = input[i];
mmп }
ППП /* Initializing the checking variables */
buffer = 0.0;
for(i=0;i<Out_element;i++){
buffer = 0.0;
for(j=0;j<In_element;j++){
buffer = buffer + input[j]*M[j][i];
}
if( buffer > 0.0 ){
output[i] = 1.0;
\Pi\Pi }
if( buffer < 0.0 ){
output[i] = 0.0;
\Pi\Pi } /* if buffer = 0.0, output[] is not changed */
}
\PiMn /* The output at the first layer */
for(i=0;i<In_element;i++){
buffer = 0.0;
for(j=0;j<Out_element;j++){
buffer = buffer + M[i][j]*output[j];
ППП }
if( buffer > 0.0 ){
input[i] = 1.0;

## }

if( buffer < 0.0 ){
input[i] = 0.0; /* If buffer = 0.0, input[] is not changed */
\#M }
IIIM }
\#M| /* The output at the second layer */
buffer = 0.0;
for(i=0;i<In_element;i++){
if(check[i] != input[i]){
buffer = buffer +1.0;
}
ппп!
}while(buffer !=0.0);

```
```

printf("output: \n");
for(i=0;i<Out_element;i++){
if ((i%5)==0) printf("\n");
printf("%.Of ",output[i]);
}
printf("\n");
/* THIS IS THE END OF THE RECALLING PROCEDURE */
}

```

\section*{Appendix B \\ Programming of Bucket-weight matrix scheme}

Bucket-weight matrix scheme in chapter II-B is programmed in C language.
```

/********************************************************
\#include <stdio.h>
\#include <math.h>
\#define max_sor 100 /* Number of input elements */
\#define max_bk 1000 /* Number of groups (buckets) */
main(){
char irum[10];
int i,j,bk,flg,no_element;
float flt,ind_keys[max_bk],in_data[max_sor],
train[max_sor] [max_bk];
double mx,mn,scale,offset;
FILE *in_file, *out_file, *ifp, *ofp, *fopen(), *fclose();
printf("Enter the input file name :\n"); /* raw input data */
gets(irum);
ifp = fopen(irum, "r");
ofp = fopen("conv.o", "w");
if (ifp == NULL | ofp == NULL){
printf("Error in opening file\n");
exit(1);
}
/* convert raw data to scaled data */
no_element = 0;
mx = 0.0; mn = 9999999.0;
while ( fscanf(ifp,"%f",\&flt) == 1 ) {
no_element = no_element + 1;
if (flt < mn) mn = flt;
if (flt > mx) mx = flt;
}

```
```

scale = 8 / (mx-mn);
offset = 1 -scale*mn;
printf("scale = %.4f, offset = %.4f\n", scale, offset);
fseek(ifp, 01, 0);
while (fscanf(ifp,"%f",\&flt)== 1){
fprintf(ofp, "%.3f\n", flt*scale+offset);
}
fclose(ifp); fclose(ofp);
bk = 16; /* number of buckets */
ind_keys[0] = 1.5;
for (i=1;i<bk;i++) {
ind_keys[i] = ind_keys[i-1] + 0.5;
}
in_file = fopen("conv.0","r");
if(in_file == NULL){
printf("Error in opening file\n");
exit();
}
for (i=0;i<no_element;i++){
fscanf(in_file,"%f\n",\&in_data[i]);
printf(" %.Of ",in_data[i]);
}
printf("\n");
printf("Enter the file name for a pattern table
(exept conv.i, conv.0) :\n");
gets(irum);
out_file = fopen(irum,"w");
if(out_file == NULL){
printf("Error in opening file\n");
exit();
}

```
/* making pattern table of binary data from the scaled data */
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\) no_element;i++)\{
flg=0;
for ( \(\mathrm{j}=0 ; \mathrm{j}<\mathrm{bk} ; \mathrm{j}++\) ) \(\{\)
    if (flg==1) \{train[i][j]=0.0;\}
    else \{
```

train[i][j]=in_data[i]-ind_keys[j];
if (train[i][j]>0.0) {train[i][j]=0.0;}
else {train[i][j]=1.0; flg=1;}
}
}
}

```
```

for (i=0;i<no_element; i++){
for (j=0;j<bk; j++){
fprintf(out_file,"%.Of ",train[i][j]);
}
fprintf(out_file,"\n");
}
for (i=0;i<no_element; i++){
for (j=0;j<bk; j++){
printf(" %.of ",train[i][j]);
printf("\n");
}

```
\} /* end of program */

\section*{Appendix C}

Programming of binary pattern nct (bucket sorting net)

The binary pattern net in chapter III-B is programmed in Clanguage for bucket sorting.

```

\#include <stdio.h>
\#include <math.h>
\#include "types.h"
\#include "macros.h"
\#include "clocks.c"

```
\#define max_sor 1000 /* Number of elements to be sorted */
\#define max_gv 100 /* Number of groups */
main()\{
    char \(\mathrm{fn}[10]\);
    int i,j,ttime,flg, Sor_element;
    float ind_keys[max_gv],sor_data[max_sor],
        train[max_sor] [max_gv];
    float gv, mx
    FILE *in_file, *fopen();
    printf("Enter the \# of data to be sorted:\n");
    gets(c);
    Sor_element=atoi(c); /* number of data to be sorted */
    printf("Enter the maximum value: \(\backslash n^{\prime \prime}\) ); /* suppose minimum is 0 */
    gets(c);
    max=atoi(c);
    printf("Enter the 'G' value (\# of buckets): \(\backslash n^{\prime \prime}\) );
    gets(c);
    gv=atoi(c);
    for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{gv} ; \mathrm{i}++\) ) \(\{\)
    ind_keys[i] \(=(\operatorname{mx} *(i+1)) / g v ;\)
        \}
```

    printf("Enter the file name to be searched :\n");
    gets(fn);
    in_file = fopen(fn,"r");
    if(in_file == NULL){
    printf("Error in opening file\n");
    exit();
    }
    for (i=0;i<Sor_element;i++){
    fscanf(in_file,"%f\n",&sor_data[i]);
    printf(" %.Of ",sor_data[i]);
    if((i%13) == 0) printf("\n");
}
printf(" will be sorted! \n");
clock_init();
CLOCK_START(TOTAL_TIME);
/* training step and making sorted table */
for (i=0;i<Sor_element;i++){
flg=0;
for (j=0;j<gv;j++){
if (flg==1) {train[i][j]=0.0;}
else {
train[i][j]=sor_data[i]-ind_keys[j];
if (train[i][j]>0.0) {train[i][j]=0.0;}
else {train[i][j]=sor_data[i]; flg=1;}
}
}
}
ttime=clock_val(TOTAL_TIME);
printf("\n Time is : %d \n",ttime);
/* printing sorted data from the table */
for (i=0;i<gv; i++){
printf("\nbucket %d :",i);
for (j=0;j<Sor_element; j++){
if (train[j][i]!=0.0) printf(" %.0f ",train[j][i]);
}
}
} /* end of program */

```

Appendix D
The result of bucket sorting using sorting net

The results of bucket sorting using bucket sorting net in chapter III-B is shown here. 1,000 random numbers are bucket-sorted.

Enter the \# of data to be sorted:
1000
Enter the maximum value:
1000
Enter the ' \(G\) ' value (\# of buckets):
100
Enter the file name to be searched :
sordata
\begin{tabular}{lcccccccccccc}
176 & 309 & 535 & 948 & 172 & 702 & 226 & 495 & 125 & 84 & 390 & 277 & 368 \\
983 & 535 & 766 & 646 & 767 & 780 & 823 & 152 & 625 & 315 & 347 & 917 & 520 \\
401 & 607 & 785 & 932 & 870 & 867 & 675 & 758 & 582 & 389 & 356 & 200 & 827 \\
416 & 464 & 979 & 126 & 213 & 958 & 737 & 409 & 780 & 758 & 957 & 28 & 319 \\
757 & 243 & 590 & 43 & 956 & 319 & 59 & 442 & 915 & 572 & 119 & 570 & 252 \\
496 & 237 & 477 & 406 & 873 & 427 & 358 & 382 & 43 & 161 & 522 & 697 & 97 \\
401 & 773 & 245 & 343 & 230 & 298 & 305 & 887 & 37 & 651 & 399 & 676 & 733 \\
938 & 233 & 838 & 967 & 779 & 432 & 674 & 809 & 159 & 280 & 135 & 864 & 750 \\
208 & 140 & 295 & 803 & 219 & 563 & 716 & 198 & 990 & 250 & 431 & 755 & 861 \\
895 & 978 & 395 & 432 & 127 & 458 & 238 & 986 & 653 & 604 & 242 & 455 & 790 \\
79 & 476 & 153 & 246 & 945 & 614 & 988 & 477 & 800 & 744 & 381 & 480 & 527 \\
98 & 594 & 347 & 143 & 780 & 711 & 446 & 705 & 95 & 963 & 551 & 740 & 579 \\
638 & 782 & 188 & 302 & 283 & 684 & 293 & 565 & 418 & 307 & 445 & 566 & 488 \\
607 & 416 & 130 & 256 & 36 & 977 & 115 & 378 & 647 & 350 & 553 & 358 & 565 \\
476 & 164 & 615 & 172 & 555 & 292 & 872 & 835 & 845 & 896 & 595 & 541 & 168 \\
655 & 691 & 264 & 107 & 815 & 191 & 423 & 352 & 839 & 137 & 263 & 177 & 480 \\
380 & 505 & 503 & 352 & 526 & 121 & 520 & 607 & 733 & 557 & 344 & 802 & 591 \\
267 & 671 & 552 & 789 & 888 & 890 & 68 & 801 & 907 & 644 & 165 & 301 & 166 \\
285 & 842 & 536 & 36 & 207 & 21 & 358 & 621 & 520 & 546 & 154 & 823 & 33 \\
26 & 378 & 616 & 20 & 627 & 915 & 375 & 729 & 396 & 982 & 597 & 112 & 222 \\
799 & 871 & 738 & 14 & 740 & 418 & 362 & 204 & 183 & 76 & 116 & 159 & 788 \\
40 & 791 & 599 & 403 & 229 & 183 & 614 & 332 & 605 & 964 & 378 & 184 & 300 \\
514 & 54 & 144 & 10 & 885 & 958 & 626 & 956 & 631 & 39 & 351 & 146 & 106 \\
84 & 27 & 946 & 920 & 908 & 866 & 149 & 172 & 68 & 651 & 737 & 102 & 160 \\
94 & 122 & 25 & 762 & 957 & 28 & 647 & 108 & 428 & 310 & 19 & 885 & 758 \\
510 & 166 & 763 & 881 & 500 & 875 & 735 & 235 & 52 & 605 & 876 & 504 & 678 \\
989 & 605 & 496 & 590 & 895 & 45 & 883 & 108 & 520 & 579 & 10 & 387 & 477 \\
193 & 508 & 775 & 354 & 698 & 913 & 671 & 706 & 427 & 21 & 213 & 948 & 503 \\
194 & 645 & 128 & 265 & 336 & 704 & 38 & 954 & 755 & 874 & 634 & 244 & 636 \\
850 & 237 & 721 & 339 & 50 & 485 & 897 & 242 & 528 & 494 & 855 & 346 & 124 \\
216 & 115 & 363 & 204 & 436 & 828 & 510 & 820 & 411 & 871 & 713 & 644 & 581 \\
953 & 461 & 521 & 359 & 326 & 9 & 978 & 432 & 176 & 159 & 534 & 578 & 314 \\
342 & 158 & 437 & 243 & 201 & 720 & 220 & 195 & 423 & 774 & 831 & 245 & 5 \\
514 & 346 & 82 & 705 & 260 & 351 & 536 & 869 & 304 & 79 & 454 & 377 & 465 \\
829 & 24 & 904 & 198 & 633 & 129 & 236 & 600 & 647 & 840 & 843 & 157 & 214 \\
624 & 435 & 569 & 90 & 381 & 724 & 511 & 795 & 883 & 101 & 660 & 549 & 728
\end{tabular}
\(\begin{array}{lllllllllllll}451 & 841 & 774 & 386 & 833 & 627 & 620 & 440 & 225 & 246 & 496 & 623 & 73\end{array}\)
\(\begin{array}{lllllllllllll}133 & 62 & 720 & 851 & 973 & 659 & 957 & 351 & 577 & 641 & 957 & 927 & 435\end{array}\) \(\begin{array}{lllllllllllll}587 & 851 & 408 & 294 & 844 & 650 & 898 & 595 & 389 & 470 & 190 & 126 & 468\end{array}\) \(\begin{array}{lllllllllllll}693 & 992 & 726 & 980 & 669 & 719 & 377 & 85 & 49 & 27 & 552 & 986 & 341\end{array}\) \(\begin{array}{lllllllllllll}844 & 131 & 381 & 789 & 95 & 756 & 522 & 154 & 853 & 954 & 375 & 514 & 121\end{array}\) \(\begin{array}{lllllllllllll}869 & 842 & 652 & 978 & 967 & 504 & 144 & 297 & 529 & 869 & 734 & 761 & 300\end{array}\) \(\begin{array}{lllllllllllll}588 & 88 & 390 & 122 & 597 & 518 & 303 & 908 & 675 & 786 & 926 & 788 & 366\end{array}\) \(\begin{array}{lllllllllllll}560 & 380 & 778 & 749 & 629 & 247 & 814 & 16 & 468 & 448 & 498 & 326 & 249\end{array}\) \(\begin{array}{lllllllllllll}447 & 391 & 914 & 881 & 503 & 209 & 914 & 190 & 179 & 753 & 860 & 820 & 838\end{array}\) \(\begin{array}{lllllllllllll}928 & 355 & 950 & 339 & 687 & 855 & 424 & 655 & 248 & 42 & 394 & 625 & 423\end{array}\) \(\begin{array}{lllllllllllll}764 & 52 & 567 & 411 & 3 & 558 & 969 & 890 & 837 & 764 & 968 & 758 & 872\end{array}\) \(\begin{array}{lllllllllllll}805 & 849 & 360 & 112 & 178 & 276 & 555 & 725 & 377 & 469 & 454 & 695 & 700\end{array}\) \(\begin{array}{lllllllllllll}58 & 188 & 798 & 307 & 819 & 531 & 909 & 127 & 24 & 741 & 72 & 714 & 609\end{array}\) \(\begin{array}{lllllllllllll}449 & 325 & 632 & 898 & 944 & 742 & 474 & 77 & 702 & 660 & 113 & 165 & 497\end{array}\) \(\begin{array}{lllllllllllll}557 & 258 & 673 & 934 & 558 & 933 & 692 & 767 & 31 & 953 & 616 & 820 & 241\end{array}\) \(\begin{array}{lllllllllllll}14 & 224 & 869 & 538 & 454 & 332 & 334 & 37 & 327 & 753 & 108 & 271 & 832\end{array}\) \(\begin{array}{lllllllllllll}757 & 382 & 779 & 742 & 769 & 804 & 89 & 878 & 523 & 814 & 88 & 262 & 376\end{array}\) \(\begin{array}{lllllllllllll}498 & 224 & 18 & 19 & 814 & 521 & 624 & 291 & 518 & 876 & 610 & 321 & 655\end{array}\) \(\begin{array}{lllllllllllll}599 & 285 & 714 & 933 & 677 & 609 & 1 & 844 & 713 & 773 & 74 & 874 & 31\end{array}\) \(\begin{array}{lllllllllllll}612 & 814 & 628 & 895 & 420 & 650 & 237 & 326 & 275 & 251 & 880 & 475 & 465\end{array}\) \(\begin{array}{lllllllllllll}70 & 755 & 28 & 104 & 978 & 367 & 608 & 538 & 678 & 448 & 644 & 627 & 142\end{array}\) \(\begin{array}{lllllllllllll}380 & 675 & 511 & 780 & 444 & 560 & 934 & 555 & 749 & 559 & 735 & 771 & 184\end{array}\) \(\begin{array}{lllllllllllll}758 & 596 & 752 & 230 & 802 & 637 & 123 & 991 & 408 & 957 & 924 & 266 & 627\end{array}\) \(\begin{array}{lllllllllllll}708 & 262 & 24 & 326 & 804 & 730 & 122 & 845 & 853 & 312 & 597 & 322 & 408\end{array}\) \(\begin{array}{lllllllllllll}978 & 399 & 629 & 127 & 715 & 882 & 409 & 943 & 182 & 921 & 167 & 834 & 730\end{array}\) \(\begin{array}{lllllllllllll}981 & 894 & 279 & 999 & 994 & 190 & 13 & 802 & 378 & 347 & 149 & 535 & 47\end{array}\) \(\begin{array}{lllllllllllll}375 & 290 & 808 & 760 & 433 & 693 & 531 & 640 & 622 & 110 & 177 & 219 & 635\end{array}\) \(\begin{array}{lllllllllllll}375 & 420 & 850 & 204 & 343 & 892 & 823 & 838 & 277 & 260 & 37 & 797 & 264\end{array}\) \(\begin{array}{llllllllllllll}353 & 568 & 797 & 768 & 544 & 978 & 383 & 905 & 127 & 703 & 476 & 542 & 883\end{array}\) \(\begin{array}{lllllllllllll}379 & 24 & 793 & 572 & 426 & 262 & 42 & 564 & 761 & 517 & 48 & 327 & 959\end{array}\) \(\begin{array}{lllllllllllll}56 & 251 & 986 & 723 & 920 & 866 & 687 & 998 & 237 & 857 & 964 & 578 & 957\end{array}\) \(\begin{array}{lllllllllllll}379 & 849 & 541 & 503 & 800 & 919 & 367 & 290 & 877 & 31 & 78 & 585 & 189\end{array}\) \(\begin{array}{lllllllllllll}930 & 240 & 678 & 421 & 471 & 174 & 835 & 593 & 671 & 224 & 998 & 819 & 296\end{array}\) \(\begin{array}{lllllllllllll}415 & 696 & 709 & 221 & 357 & 153 & 983 & 268 & 730 & 37 & 410 & 745 & 198\end{array}\) \(\begin{array}{lllllllllllll}844 & 659 & 406 & 94 & 367 & 155 & 52 & 718 & 227 & 534 & 482 & 600 & 932\end{array}\) \(\begin{array}{lllllllllllll}790 & 31 & 557 & 438 & 714 & 392 & 908 & 673 & 710 & 959 & 666 & 996 & 583\end{array}\) \(\begin{array}{lllllllllllll}402 & 72 & 66 & 403 & 685 & 311 & 78 & 27 & 268 & 736 & 842 & 373 & 684\end{array}\) \(\begin{array}{lllllllllllll}469 & 675 & 48 & 234 & 708 & 571 & 424 & 999 & 583 & 618 & 739 & 904 & 913\end{array}\) \(\begin{array}{lllllllllllll}132 & 338 & 42 & 701 & 480 & 638 & 983 & 713 & 50 & 909 & 281 & 988 & 352\end{array}\) \(\begin{array}{lllllllllllll}465 & 904 & 610 & 708 & 367 & 799 & 611 & 499 & 221 & 320 & 317 & 444 & 169\end{array}\) \(\begin{array}{lllllllllll}727 & 5 & 883 & 672 & 479 & 207 & 511 & 166 & 550 & 503 & 568\end{array}\) will be sorted!

Time is : 3391 ms

Result of bucket-sorting :


383
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline bucket 39 & 399 & 395 & 396 & 391 & 394 & 399 & 392 & & & & \\
\hline \multirow[t]{2}{*}{bucket 40} & 401 & 409 & 406 & 401 & 403 & 408 & 408 & 408 & 409 & 410 & 406 \\
\hline & 402 & 403 & & & & & & & & & \\
\hline bucket 41 & 416 & 418 & 416 & 418 & 411 & 411 & 420 & 420 & 415 & & \\
\hline bucket 42 & 427 & 423 & 428 & 427 & 423 & 424 & 423 & 426 & 421 & 424 & \\
\hline bucket 43 & 432 & 431 & 432 & 436 & 432 & 437 & 435 & 440 & 435 & 433 & 438 \\
\hline bucket 44 & 442 & 446 & 445 & 448 & 447 & 449 & 448 & 444 & 444 & & \\
\hline bucket 45 & 458 & 455 & 454 & 451 & 454 & 454 & & & & & \\
\hline bucket 46 & 464 & 461 & 465 & 470 & 468 & 468 & 469 & 465 & 469 & 465 & \\
\hline \multirow[t]{2}{*}{bucket 47} & 477 & 476 & 477 & 480 & 476 & 480 & 477 & 474 & 475 & 476 & 471 \\
\hline & 480 & 479 & & & & & & & & & \\
\hline bucket 48 & 488 & 485 & 482 & & & & & & & & \\
\hline bucket 49 & 495 & 496 & 500 & 496 & 494 & 496 & 498 & 497 & 498 & 499 & \\
\hline bucket 50 & 505 & 503 & 510 & 504 & 508 & 503 & 510 & 504 & 503 & 503 & 503 \\
\hline \multirow[t]{2}{*}{bucket 51} & 514 & 520 & 520 & 520 & 520 & 514 & 511 & 514 & 518 & 518 & 511 \\
\hline & 517 & 511 & & & & & & & & & \\
\hline bucket 52 & 522 & 527 & 526 & 528 & 521 & 522 & 529 & 523 & 521 & & \\
\hline bucket 53 & 535 & 535 & 536 & 534 & 536 & 531 & 538 & 538 & 535 & 531 & 534 \\
\hline bucket 54 & 541 & 546 & 549 & 544 & 542 & 541 & 550 & & & & \\
\hline \multirow[t]{2}{*}{bucket 55} & 551 & 553 & 555 & 557 & 552 & 552 & 560 & 558 & 555 & 557 & 558 \\
\hline & 560 & 555 & 559 & 557 & & & & & & & \\
\hline bucket 56 & 570 & 563 & 565 & 566 & 565 & 569 & 567 & 568 & 564 & 568 & \\
\hline bucket 57 & 572 & 579 & 579 & 578 & 577 & 572 & 578 & 571 & & & \\
\hline bucket 58 & 582 & 590 & 590 & 581 & 587 & 588 & 585 & 583 & 583 & & \\
\hline \multirow[t]{2}{*}{bucket} & 594 & 595 & 591 & 597 & 599 & 600 & 595 & 597 & 599 & 596 & 597 \\
\hline & 593 & 600 & & & & & & & & & \\
\hline \multirow[t]{2}{*}{bucket 60} & 607 & 604 & 607 & 607 & 605 & 605 & 605 & 609 & 610 & 609 & 608 \\
\hline & 610 & & & & & & & & & & \\
\hline bucket 61 & 614 & 615 & 616 & 614 & 620 & 616 & 612 & 618 & 611 & & \\
\hline \multirow[t]{2}{*}{bucket 6} & 625 & 621 & 627 & 626 & 624 & 627 & 623 & 629 & 625 & 624 & 628 \\
\hline & 627 & 627 & 629 & 622 & & & & & & & \\
\hline bucket 63 & 638 & 631 & 634 & 636 & 633 & 632 & 637 & 640 & 635 & 638 & \\
\hline bucket 64 & 646 & 647 & 644 & 647 & 645 & 644 & 647 & 641 & 650 & 650 & 644 \\
\hline bucket 65 & 651 & 653 & 655 & 651 & 660 & 659 & 652 & 655 & 660 & 655 & 659 \\
\hline bucket 66 & 669 & 666 & & & & & & & & & \\
\hline \multirow[t]{2}{*}{bucket 67} & 675 & 676 & 674 & 671 & 678 & 671 & 675 & 673 & 677 & 678 & 675 \\
\hline & 678 & 671 & 673 & 675 & 672 & & & & & & \\
\hline bucket 68 & 684 & 687 & 687 & 685 & 684 & & & & & & \\
\hline bucket 69 & 697 & 691 & 698 & 693 & 695 & 700 & 692 & 693 & 696 & & \\
\hline \multirow[t]{2}{*}{bucket 70} & 702 & 705 & 706 & 704 & 705 & 702 & 708 & 703 & 709 & 710 & 708 \\
\hline & 701 & 708 & & & & & & & & & \\
\hline \multirow[t]{2}{*}{bucket 71} & 716 & 711 & 713 & 720 & 720 & 719 & 714 & 714 & 713 & 715 & 718 \\
\hline & 714 & 713 & & & & & & & & & \\
\hline bucket 72 & 729 & 721 & 724 & 728 & 726 & 725 & 730 & 730 & 723 & 730 & 727 \\
\hline bucket 73 & 737 & 733 & 740 & 733 & 738 & 740 & 737 & 735 & 734 & 735 & 736 \\
\hline
\end{tabular}

739


\section*{Appendix E}

The data used in example in chapter IV-A

All of the input data and outputs used for the tests in chapter I \({ }^{\prime}\)-A are shown here; the raw data that is weekly closing stock prices of company A and B. corresponding bucket weight matrices obtained by the binary pattern net programin appendix 2, and the output obtained by the BAM program in appendix 1.

\section*{(1) Company A}
```

Weekly closing stock prices for company A :

```
177.35
198.25
221.89
249.01
271.47
260.91
262.13
295.73
310.07
316.61
300.01
251.43

Binary input data obtained by Binary Pattern Net for company A :

1000000000000000000
0010000000000000000
000001100000000000000
000000000010000000000
000000000000001000000
000000000000110000000
000000000000110000000
000000000000000010000
000000000000000000010
00000000000000000001
000000000000000000100
0000000000100000000
(2) Company B

Weekly closing stock prices for company B :
265.84
264.38
257.72
249.01
239.56
231.62
229.54
229.97
241.03
260.90
300.01
323.98

Binary input data obtained by Binary Pattern Net for company B :
0000000001000000
0000000001000000
0000000010000000
0000000100000000
0000001000000000
0000010000000000 0000010000000000 0000010000000000 0000001000000000 0000000001000000 0000000000000100 0000000000000001

\section*{(3) Partial Input for company A}

Weekly closing prices for the first three weeks for company A :
177.35
198.25
221.89
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Binary input data obtained by Binary Pattern Net for partial input :
1000000000000000
0010000000000000
```

00000100000000000000
0000000000000000000000
000000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
0000000000000000000000
000000000000000000000
00000000000000000
Output obtained by BAM for partial input :
1000000000000000000
0}00110000000000000000000
000001100000000000000
00000000010000000000
0000000000000011000000
000000000000110000000
00000000000110000000
0000000000000000110000
0000000000000000000110
0000000000000000000 1
0}0000000000000000110
0000000000100000000

```

\section*{(4) Noisy input for company A}

Weekly closing prices with noise for company A :
177.35
198.25
221.89
249.01
271.47
\(251.00 \rightarrow\) noise
262.13
295.73
310.07
320.61 -> noise
300.01
251.43

Binary input data obtained by Binary Pattern Net for noisy input :
\[
\begin{array}{llllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]

Output obtained by BAM for noisy input :
1000000000000000 0010000000000000 0000100000000000 0000000100000000 0000000000100000 0000000001000000 0000000001000000 0000000000001000 0000000000000010 0000000000000001 0000000000000100 0000000010000000
(5) Mixed input of company \(A\) and company B

Mixed prices for company A and B :
177.35
198.25
221.89
249.01
239.56
231.62
229.54
229.97
241.03
260.90
300.01
323.98

Binary input data obtained by Binary Pattern Net for mixed input :
1000000000000000 0010000000000000 0000100000000000 0000000100000000 0000001000000000 0000010000000000 0000010000000000 0000010000000000 0000001000000000 0000000001000000 0000000000000100 0000000000000001

Output obtained by BAM for mixed input :
0000000001000000 0000000001000000 0000000010000000 0000000100000000 0000001000000000 0000010000000000 0000010000000000 0000010000000000 0000001000000000 0000000001000000 0000000000000100 0000000000000001

\section*{REFERENCES}
1. Wasserman, P.D., Neural Compuling: Theory and Practice, Van Nostrand Reinhold, 1989.
2. Klimasauskas, C.C., NeuralHorks:An Introduction to Neural Computing, NeuralWare Inc., 1988.
3. Kosko, B., Constructing an Associative Memory, Byte, September, 1989, 137-14.1.
4. Lippmann, R.P., An Introduction to Computing with Neural Nets, lEEE ASSP Magazine, April, 1987.
5. Josin, G., Neural-Nelwork Heuristics, Byte, October, 1987, 183-192.
6. Takeda, M., and Goodman, J.W., Neural Networks for computation:number representations and programming complexity, Applied Optics, Vol.25, No.18, (15 September, 1986).
7. Morse, K.G., In an Upscale World, Byte, August, 1989, 222-223.
8. Rosenfeld, E., Neurocomputing - A New Indusiry, IEEE proceedings, IV' 831-838.
9. Kohonen, T., Self-Organization and Associative Memory, Springer-Verlag, Berlin, 1984.
10. Hopfield, J.J., Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proc. Natl. Acad. Sci. USA, Vol.79, 2554-2558, April, 1982.
11. Baase, S., Computer Algorithms, Addison-Wesley Publishing, 1978.```

