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ABSTRACT

The subject of robotics is addressed by many different fields, among them 

computer science, electrical engineering, and mechanical engineering. This work is an 

attempt to bring together all of these aspects from the perspective of a computer 

science background. Different techniques are considered and reconciled with one 

another in the analytical area, while detail and explanation are added in all areas that 

were not previously available. In addition, geometrical interpretations arc presented 

for concepts that have heretofore been presented only in the form of equations.
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I. INTRODUCTION

The subject of robotics is addressed by many different fields, among them 

computer science, electrical engineering, and mechanical engineering. In particular, the 

construction and implementation of a robotic manipulator arc dealt with in mechanical 

and electrical engineering, while the control of the manipulator falls more within the 

realm of computer science. This work examines the different aspects of robotics using 

a simple model manipulator. The emphasis here shall be from the mathematical and 

computer control perspectives.

A. OVERVIEW OF TOPICS

There are many types of robots in use today, as evidenced in the surveys of 

[Zeld84] and [CardSo]. Examples of these manipulator types include the Armstar, 

ASEA, KUKA, Mobot, Puma, Cincinnati Milacron, Prab, Devilbliss, IBM RS 1, and 

Seiko. These robots are designed for use in production environments and range in cost 

from a few thousand dollars to in excess of one hundred thousand. There are also 

smaller, less expensive arms manufactured for private use, ranging from several 

thousand dollars to just a few hundred. The robot arm utilized for this work is less 

expensive still; it is the Armatron manipulator, manufactured for Radio Shack. While 

the Armatron is not suitable for practical applications, it serves well to illustrate the 

concepts, techniques, and limitations involved in robotics.

As manufactured, the Armatron manipulator is intended for direct manual 

control only. Chapter 2 of this work details the mechanical and electronic adaptation 

of the manipulator for computer control. Sufficient work is performed to provide for 

the computer direction of individual joints one at a time. Several limitations will be 

immediately apparent with this design. For example, as no feedback is implemented
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on the arm, positioning will not be precise. Works such as [SafT79] and [RobiS4] 

consider topics such as feedback and velocity control. The implementation of aspects 

such as these is neglected in favor of more detail in the areas of mathematical analysis 

and computer control.

Manual control of the robot arm via the computer keyboard is achieved in 

Chapter 3. With the manipulator adapted for computer control, this step comes rather 

easily. The computer keyboard is used in a fashion analagous to that of the teach 

pendant in a production robot environment; various keys arc used to directly control 

the movement of the robot joints. Were this a production environment, safety aspects 

such as those discussed in [Xico85] would have to be considered. The program control 

developed implements a dead man switch feature; this is the most basic of 

precautionary measures that need to be taken when the strength of the robot arm is 

sufficient to cause injury or death.

Computer control is developed for the manipulator by first establishing the 

position and orientation of the end of the manipulator with respect to some base 

coordinate frame. Denavit and Hartenberg put forth a representation for the solution 

of this problem in 1955 that became the standard for robotics [Dcna55]. Chapter 4 

develops a control structure based on the variables associated with the manipulator 

joints, or robot articulation variables as they are referred to in [CoifS3b]. [PaulSlc] and 

[Paul87], among others, carry out the mathematical process in lesser detail for a 

number of different manipulators. A new interpretation of the position and orientation 

provided under the Denavit and Hartenberg representation is presented in the course 

of the development here.
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Once the relationship of position and orientation from joint variables is 

established, the inverse relationship may be pursued: the determination of joint 

variable values required to achieve a specific position and orientation of the gripper. 

This is the topic of Chapter 5; trigonometric equations resulting from the Denavit and 

Hartenberg representation must be solved for the angles involved. The first general 

approach to this problem was put forth by Paul [PaulSla]; it was then refined by Ho 

and Copeland [Ho82] and later Ranky and 11o [Rank85] to utilize a decomposition of 

the entire manipulator into an arm proper and a wrist to bring about simplification of 

the trigonometric equations involved. Others, including [LeeS2], [Fcat83], and [Gold85] 

have addressed this problem as well, but none puts forth a more workable solution. 

An examination of a simplified manipulator is presented in [Brad83j, which 

demonstrates the basic principles involved. The problems associated with manipulator 

wrists are presented by [HolzS6]. The wrist of the Armatron consists of only two 

degrees of freedom, where three degrees are required in order to attain any orientation. 

A new geometric interpretation of the inadequacies present in such a wrist is presented 

here.

Velocity control for the Armatron manipulator is considered in Chapter 6. 

Velocity may be discussed in terms of the rates at which the gripper moves and turns 

or in terms of the rates at which the robot joints turn. The velocity control problem 

is concerned with defining one type of rates in terms of the other; this is done in both 

directions. Paul presents an approach to the problem which results in gripper, or end 

effector, rates with respect to a coordinate frame fixed with respect to the moving end 

effector in [Paul81b] and [Paul81c]. Ho and Sriwattanathamma present a different 

technique which results in end effector rates with respect to a stationary base frame in 

[Ho86] and [Ho90j. The result of the latter approach is more naturally interpreted. 

Some effort is devoted to the reconciliation of the approaches here; the results are
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shown to be equivalent. In the determination of joint rates, Paul uses differentiation 

of trigonometric equations while IIo and Sriwattanathamma utilize a matrix algebra 

method. The determination of joint rates required to achieve some desired set of 

translational and rotational rates is the more useful of the two directions, and more 

emphasis is placed on it here. The two approaches are shown to produce equivalent 

results; the advantages of each are also pointed out. Singular conditions are identified 

for the techniques as well; Spong also addresses this problem [Spon89].

The final area to be considered in this work is trajectory control, that of guiding 

the manipulator along a desired path. Paul provided one of the first comprehensive 

solutions to this problem as well [Paul79]. Grossman had earlier pointed out that most 

of the development to date had utilized teaching methods to specify what positions the 

manipulator gripper should pass through and noted the benefits that awaited from a 

more general software control [Gros78]. Takase and Paul also developed a teaching 

approach for trajectory control [Taka81]. Others, such as [Coif83a], [Khal84], [Kirc85], 

and [Pare85], discuss trajectory control from a solely mathematical perspective; desired 

points or joint settings are specified as part of the problem definition and solutions are 

mathematically developed to satisfy the requirements. Cook and IIo [CookS2] present 

an algorithmic approach to the problem, which was later expanded on by Ranky and 

Ho [Rank85]. This same technique is developed here and further expanded upon to 

include critical position testing prior to the trajectory traversal; if the trajectory derived 

Torn the specified path nodes will lead the manipulator toward an unattainable 

position, it should not be attempted.

B- t h e  COM PUTER PROGRAM

For each of the topics to be covered, analytical derivations and numerical 

examples will be provided; in addition, a computer program is developed in parallel
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with the analysis and example usage. The programming language chosen for this task 

is Borland's Turbo C, the selection of which was motivated in part by the nature of the 

control problem at hand and C's relationship with assembler language. Advantage is 

taken of C's built-in procedures that fall under the scope o f control usage. On the 

other hand, little use is made of some of C's more exotic mathematical features, as the 

desire is to keep the program logic and structure as clear and easy to follow as possible.

The main procedure of the program begins with some initialization tasks. First,

the control lines leading to the robot are cleared. Next, a query is issued as to whether

the displays generated during the course of program execution should be saved to disk.

The query is part of the introductory screen generated under direction of the main

procedure and depicted in Figure 1.1. The arrays containing the joint variable values

and orientation and postion matrix arc also initialized here; these will be fully explained

in Chapter 4. The body of the main procedure follows: 

outportb (888, 0);
fptr = fopen ("SCREENS.OUT", "u+t"); 
dsply_main_introduction ( ); locate (23, 55);
qsave_screen = toupper (getch ( ));
lputch (23, 55, qsave_screen);
uait_then_erase (1); 
dsply_thetas_noap (&row, cols); for (i = 1 ; i <= 5; i + +) 

thetaCi] = 0;
noap_matrix (theta, noap, row, cols);
dsply_main_selection ( );
while ( (opt = get_option(5)) != 0 )

uait_then_erase (8); switch (opt)
{
case 1 : ianual_control (theta, noap, row, cols); break;case 2 : joint_variable_control (theta, noap, row, cols); break;case 3 : position_orientation_control (theta, noap, row, cols); break;case 4 : velocity_control (theta, noap, row, cols); break;case 5 : trajectory_control ( ); break;
}

fputc (eof, fptr); 
fclose (fptr);
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The available control methods are then presented in the display of Figure 1.2. The 

procedure subsequently iterates, passing control to the selected control method; 

Chapters 3, 4, 5, 6, and 7 will full)’ explain the procedures associated with the manual, 

joint variable, position and orientation, velocity, and trajectory control methods, 

respectively. The procedure concludes by closing the disk file to which the screens may 

have been saved.

A final word needs to be said here about the C programming style employed. Full 

function prototypes and parameter lists are used to provide the compiler with as much 

information as possible. The complete set of function prototypes for all of the 

procedures to be used in this work may be found in Appendix A, along with all defined 

types, declared constants, and include files for the referenced built-in C functions. Due 

to the amount of program source code involved, a single source file for the entire 

program would be of excessive size. The program was thus assembled as a Turbo C 

project, wherein the source code for each of several separate compilations resides in a 

separate file. The contents of the project file ROBOT.PRJ are as follows:

main. c 
manual.c 
jointvar.c 
posorien.c 
velocity.c 
traject.c

Each of the control methods, as well as the main procedure and its subordinate 

procedures, was maintained in a separate source code file as part of the project. Each 

of these files begins with the ^include directive to include the file HEADER.C as part 

of each separate compilation. In this way function prototyping was supported while 

simultaneously allowing procedures of one source file and compilation to reference 

those of another. The documented listing for the procedures associated with the main 

procedure may be found in Appendix B; subsequent chapters will reference the 

appendices containing the relevant source code.



Armatron Manipulator Control 
Version 1.1

Edward Hammerand March 1990
This program provides for the control of the 

Armatron manipulator in one of three manners:
1) The manipulator may be controlled directly 

using keyboard input
2) The settings of the joint variables may be 

input directly
3) A desired position and orientation of the 

manipulator may be specified; from this, a 
solution set will be derived and a move 
attempted if possible and desired

Additionally, support is given for the calcula
tion of manipulator velocities and trajectories, 
although these are not directly implemented for 
the robot arm.

If the manipulator arm is not aligned to its 
home orientation, use the manual switches to 
align it at this time.

If desired, the screens displayed during the 
course of program execution may be saved to the 
file SCREENS.OUT; save screens (y/n)?

Figure FI. Main Procedure Introduction
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o.ooo : 0.000 0.000 -1.000 -100.000
0.000 0 0 0 1

Armatron Manipulator Control Options 
1: Manual Control
2: Joint Variable Control
3: Position-Orientation Control
A: Velocity Control
5: Trajectory Control
0: Terminate Manipulator Control
Option 1 has been selected

Figure 1.2. Main Procedure Selection Display
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II. CONSTRUCTION OF THE ROBOT

As mentioned previously, the goal of this work is a tutorial examination of 

robotics by example, both in hardware and software. To this end, this chapter traces 

the hardware steps and development process in the creation of a scale-size robot arm. 

'This will be done in two phases, mechanical and electronic. The electronic portion of 

the chapter goes into some detail in an attempt to explain precisely the hows and whys 

of each step taken. Some insight is provided along the way into some fundamental 

aspects of computer electronics, such as transistors and logic gates. This chapter is 

based on the work of Banas CBana853- Several problems were determined and 

corrected in the original work, some of which called for minor modifications and others 

re-design.

A. MECHANICAL CONSIDERATIONS

To obtain a robot arm for this project, two choices presented themselves: cither 

construct a suitable arm from scratch or adapt an already existing arm to meet the 

requirements of the project. The complete construction of a robot arm from the 

ground up is a major endeavor, with many formidable problems to be overcome. The 

second alternative was realized in the form of an Armatron robot arm, distributed by 

Radio Shack.

1. The Robot Arm Proper. Although not marketed as such, the Armatron is a 

five-degrees-of-freedom robot arm, with additional control over its gripper. The 

Armatron provides a realistic scale-model version of industrial robots of similar design. 

At the time this project began, the Armatron arm had the additional advantages of 

being relatively inexpensive and readily available. Unfortunately, Radio Shack has 

discontinued this version of the arm, replacing it with a newer model containing fewer
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degrees of freedom. The robot arm, along with the completed electronic interface, is 

depicted in Figure 2.1.

Figure 2.1. The Completed Robot Arm

One of the unusual features of the Armatron is the manner in which it drives its 

joints. As manufactured, a single 6-volt DC motor turns a shaft containing six gears. 

The Armatron has a pair of joystick-like levers which may each be pushed forward and 

back, moved left and right, and twisted clockwise or counterclockwise. Each of these 

motions engages a different gear arrangement connecting a specific joint with the 

rotating set of gears. The re-design of the Armatron arm for computer control calls for 

its lever-operated gear system to be removed and replaced. In order to obtain 

computer control over the individual joints, one motor will be used for each joint. An 

electronic interface will be constructed in the next section to direct the motors by 

computer. Each motor will deliver power to its respective gear by means of a shaft 

extending from the gear to the motor outside the Armatron housing. Finally, the gears 

and shafts will be supported at the proper mesh positions by bearing blocks, while the 

motors are held at respective positions by support blocks.
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2. Motors. Due to the relatively close spacing of the required gear positions 

inside the Armatron, the motor spindles themselves have to be correspondingly close; 

this in turn calls for small motors. After checking with many sources, Radio Shack 

was found to have motors with two flattened sides, thus providing a sufficiently short 

height. The flattened sides also served to make the motors easy to block. The only 

drawback to the motors is that they were rated for only 1.5 to 3 volts, but the motors 

and voltage limitation were determined adequate. The shaft of a motor extends 

approximately one-fourth of an inch and is about one-sixteenth inch in diameter.

It is worth noting here that while the original design of the Armatron required 

that the new motors be placed outside the housing of the arm as no room was provided 

on or in the arm itself, this can actually work to an advantage for robot control. Any 

amount of weight, or more properly mass, that the arm must support increases the 

required strength and rigidity of the arm. If this model were to be scaled up, the 

placement of the motors off of the arm itself would simplify the engineering task with 

regard to these criteria. Further, the complicated problem of dynamic control is 

lessened somewhat as the inertia of the arm becomes less of a concern due to the 

decrease in mass.

3. Shafts. To deliver power from the motor spindle to the gear requires a gear 

shaft. The spindles of the motors used have the one-sixteenth inch diameter dimension 

to contend with as well as being grooved. (As purchased the motors had small gears, 

also grooved, press-fit onto their spindles.) Various hobby and model railroading 

shops were found to carry a type of plastic tubing for use in model construction. The 

tubing is manufactured in various diameters and has a hollow center. While not being 

completely rigid, the tubing does not give very' much and was judged to be at least as 

strong as required. The one-eighth inch diameter tubing's center was just large enough
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to force over the motor spindles; in fact, the grooves on the spindle notched the inside 

of the tubing as it was forced on. This created a tight fit between the spindle and the 

tubing; the motors were found to stall before they would slip inside the tubing.

4. Gears. With the motors and shafts ready, the gears were needed next. Six 

gears were removed from the original lever-operated system. Each had to have a hole 

drilled in it so that the shaft could be force fit inside it. Three drill bits of increasing 

size up to one-eighth inch were used, taking care to keep the center of the gear at the 

center of the widening hole. Test fits of the shafts to gears found some pieces of tubing 

to be slightly narrower than others; some fits allowed the gear to spin without much 

force while others fit so tightly once on that they could not be moved on the shaft 

without great difficulty. Test fits were made until six sufficiently tight grips were 

obtained. Simple friction was all that appeared necessary for the fit to hold, so no 

adhesive was used. Had it been needed, adhesive would have been difficult to apply 

inside the bearing blocks that will be used to support the gear-shaft combinations. An 

assembled combination of motor, shaft and gear may be seen in Figure 2.2.

Figure 2.2. Motor, Shaft, and Gear Assembly
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5. Bearing Blocks. The most difficult step in the physical alterations made to the 

Armatron arm was the manufacture of the bearing blocks for the gears and shafts, 

With the original gearing system removed, there was room in the housing for two 

approximately 1" x x 2" blocks, each of which would support three gear-shaft 

combinations. The difficulty lies in the fact that the three points of gcar-to-gcar 

meshing required of a block have to all be met within a narrow tolerance. The blocks 

obtained were manufactured from transparent plastic in a machine shop. Numerous 

test fits and adjustments were required before all six gears meshed properly. The blocks 

as cut fit so tightly in the housing that no restraints were deemed necessary.

6. Motor Support Blocks. With the bearing blocks holding each gear and shaft 

pair in its proper position, the motors could be located outside the housing. First, the 

gear shafts were cut off long enough to allow some slight deviations in motor 

alignment. As the shafts were not completely rigid, a slight rise or drop from the 

bearing block across the shaft to the motor would not cause it to bind and prevent it 

from operating properly. Support blocks were cut to hold the motors as close as was 

possible to determine, and then paper shims were used to raise and lower the motors 

until a smoothly rotating shaft could be observed when power was supplied. One 

bearing block, the three corresponding motors, shafts, gears, and motor support blocks 

may be seen in Figure 2.3. At this point, the mechanical alterations were complete and 

the arm was ready to have the electronic interface set up.

B. THE ELECTRONIC INTERFACE

As described in the mechanical phase of the construction, six motors are required 

for the five joints and the gripper of the robot arm. An electronic interface between
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Figure 2.3. Bearing Block to Motor Assembly 

the motors and a set of computer output lines will provide the desired computer 

control.

1. Power Supplies. First consider the motor side of the interface. Each motor 

is connected by a shaft to one gear arrangement which in turn drives a single joint. 

The motors are, as mentioned previously, reversible so that the joint can be driven in 

either direction. For one direction of turn, a motor must have a voltage on one of its 

lines approximately 3 volts higher than that of the other line. In order to utilize the 

reversibility of the motor, the line that was 3 volts higher than the other line before 

must now be approximately 3 volts lower. An arrangement allowing this selection of 

voltages requires first two independent 4.5 volt power supplies. (The discrepancy in 

voltage will be explained later.) The power supplies are linked serially, providing a 

relative ground, a point at 4.5 volts, and a third point at 9 volts. One line from the 

motor is connected directly to the 4.5 volt location. When the other line is connected 

to the ground, the motor turns in one direction; when the line is connected to the 9 volt 

point, the 4.5 volt difference is again in effect but now reversed, causing the motor to 

turn in the opposite direction. The actual circuitry for the power supplies will be given
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here with only an introductory' explanation so that the fundamentals behind the circuit 

elements may be explained in the context of the computer control circuit.

Figure 2.4 shows the circuit which will provide power for the motors actuating the 

joints. Note that switch SI is a double-pole, single-throw (DPST) switch, meaning that 

the circuit is opened and closed at the two places indicated simultaneously by the 

switch. When the switch is closed, the point labeled as + 9  volts is seen to be separated 

from the point labeled as +4.5 volts by the three 1.5 volt batteries B 1, B2, and B3. 

Similarly, the +4.5 volt point is separated from the point labeled ground by another 

set of three 1.5 volt batteries, B4, B5, and B6. The light-emitting diode LED1 and 

resistor R1 complete a circuit with Bl, B2, and B3, which is useful in that LED1 glows 

indicating that switch Sla is closed and Bl, B2, and B3 arc not dead. LED2 and R2 

provide a similar function for B4, B5, and B6. The action of the LED and the resistor 

will be explained in more detail later in the chapter.

Figure 2.4. Circuit for Motor Power Supplies
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One other power supply is needed to power the integrated circuits which will be 

used in the electronic interface. As will be seen, all of the circuits to be used will 

require a + 5 volt supply. As it turns out, + 4.5 volts is sufficient, so the circuit to be 

built is essentially one-half of the motor power supply; see Figure 2.5. The switch used 

is of the single-pole, single-throw (SPST) variety as only one point is to be closed. The 

batteries, LED, and resistor are identical to those used in the previous circuit.

Figure 2.5. Circuit for Integrated Circuit Power Supplies

2. Transistors. In order to allow current to flow through the motor to ground 

or from the 9 volt source, a switching mechanism is required. The transistor is made 

for this purpose. To understand how the transistor functions, one must begin with 

some basic concepts in the chemistry and physics of the atom.

a. Intrinsic Semiconductors. Recall that the elements may be classified as one 

of three general types according to their electrical conductivity. First are the 

conductors, such as iron, nickel, and copper; electric current flows easily through these 

elements. At the other end of the spectrum are the insulators, including carbon, 

nitrogen, and phosphorous; very little electric current can be made to flow through 

these elements. Between these two extremes is the third group, semiconductors, 

encompassing such elements as boron, silicon, and germanium; semiconductors will
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conduct electric current, but they do so only poorly. In order for electric current to 

be able to flow in any material, there must be electrons present which are capable of 

moving through the material. For any given element, electrons may be found orbiting 

each atom present; further, the number of electrons per atom is equal to the atom's 

number of protons, which are oppositely (positively) charged and found in the atom's 

nucleus. The remaining atomic particle is the neutron, which bears no charge and 

consequently has no direct influence over the flow of electric current through the 

element.

For an electron to be capable of leaving the atom with which it is associated and 

moving away the forces which hold it in place must be surmountable. The only 

electrons that are generally capable of leaving at all are those in the outermost orbit 

around the atom; these are the atom's valence electrons. In the case of conductors, the 

amount of energy required to remove an electron from its orbit is very small. For 

example, the heat present at room temperature is sufficient to detach an average of one 

electron per atom of copper; the detached electrons are then free to move under the 

presence of an electric field. On the other hand, the atoms of an insulator must see a 

great deal of energy before they will give up electrons. Their valence orbitals are nearly 

or completely full and very' stable; those of the conductors are conversely nearly empty, 

and hence the electrons present are relatively loosely attached. Semiconductors are at 

the midway point; their valence electrons occupy half of the available positions. The 

two most common examples are silicon and germanium; each has four valence 

electrons with room for eight. The desire to fill the valence orbit is so strong that 

atoms of silicon or germanium will actually share electrons as shown in Figure 2.6. 

The bond between two such atoms is called a covalent bond. An atom of silicon shares 

each of its four valence electrons with four other atoms, all of which are 

three-dimensionally equidistant from one another. (Figure 2.6 and those that follow
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are two-dimensional for the sake of clarity.) In this fashion, each atom sees eight 

valence electrons and is satisfied; atoms arranged in such a regular format form a 

crystal. At a temperature of absolute zero, all of the valence electrons are fixed in place 

and no current can flow as there are no free electrons.

covalent
bond

Figure 2.6. Covalent Bonding of Semiconductor Atoms

When the ambient temperature of a semiconductor crystal rises, the heat energy 

applied to the electrons will lead to an occasional breaking of a covalent bond. When 

this happens, the electron that has left its valence position is free to move and carry 

current; the position vacated by it is termed a hole. Other electrons in the crystal will 

be attracted to take the position of the hole. When this occurs, the hole itself is said 

to move from its current position to that of the attracted electron. In any pure amount 

of a semiconductor, there will be an equal number of holes and free electrons, as one 

hole is created for each electron that leaves its bond; such a pure semiconductor is said 

to be intrinsic. The holes and electrons are in a constant state of generation and 

recombination. The generation and recombination rates of electrons and holes are 

equal and constant at a given temperature, as dictated by the equilibrium of the 

material.
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b. Extrinsic Semiconductors. As described previously, intrinsic semiconductors 

conduct current only poorly as the valence electrons present form exactly the number 

of covalent bonds necessary to satisfy each atom's desire for a full outermost orbital. 

This situation may be disrupted by adding atoms of another clement with a different 

valence configuration to the original pure semiconductor. This process is known as 

doping; the resulting semiconductor is said to be extrinsic, or no longer pure. Consider 

as an example the clement phosphorous. It has five valence electrons, one more than 

the four of silicon. Figure 2.7 shows the resulting crystalline structure when a 

phosphorous atom is present amidst silicon atoms. Four of the five phosphorous 

valence electrons form covalent bonds with the adjacent electrons. The remaining 

phosphorous electron will require very little energy to be freed from its orbit; the heat 

of room temperature is sufficient for this purpose. This electron is thus readily 

available for carrying current. The original phosphorous atom is referred to as a donor 

atom as it donates one electron for carrying current through the semiconductor. The 

phosphorous atom becomes a positive ion when it gives up the extra electron, as there 

is now a proton present which is not negated by the absent electron. A ratio of one 

such electron to every one hundred million atoms of the semiconductor germanium 

results in an increase in conductivity by a factor of sixteen; germanium doped in such 

a fashion is useful for transistor applications.

Semiconductors doped by the addition of extra electrons are categorized as n-type 

semiconductors. The n refers to the negative charge of the extra electrons present. In 

the presence of a voltage difference, these electrons will be drawn toward the positive 

voltage contact, at which point they will leave the semiconductor; they are 

simultaneously replaced by new electrons entering the semiconductor at the negative 

battery contact. Note that at no time does the semiconductor itself actually maintain 

any charge, positive or negative; all electron charges are offset by those of
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free
electron

Figure 2.7. n-type Semiconductor Crystal Structure

corresponding protons present in the phosphorous ions, and a constant number of 

electrons is present in the semiconductor at all times. It should also be observed that 

the charges associated with the positive ions are fixed in the geometric structure; the 

negative charges of the donated electrons are capable of movement through the 

semiconductor.

Doping may also be performed to shift the number of electrons present for 

covalent bonding in the reverse direction. Consider the element aluminum with its 

three valence electrons. When added to a semiconductor such as germanium, the 

configuration shown in Figure 2.8 results. Observe that the three aluminum valence 

electrons form covalent bonds with three of the four neighboring germanium atoms. 

The fourth germanium atom cannot form a covalent bond, although it would strongly 

like to. The unoccupied position of this desired electron is a hole, as described for 

intrinsic semiconductors. The difference is that this hole and others like it do not have 

corresponding electrons present in the extrinsic semiconductor. In order to fill the hole 

and complete the election pair and hence the orbital, an electron from a nearby 

germanium atom will be attracted to this position. Correspondingly, the hole itself
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moves to the now unoccupied position. The original aluminum atom is said to be an 

acceptor atom as its deficiency in valence electrons allows for the acceptance of an 

extra electron. When this occurs, the accepting atom becomes a negative ion, as the 

charge on the added electron is not countered by a proton. An effective positive charge 

is present at the position the hole occupies as there is one proton which is no longer 

balanced by the now-missing electron.

hole

Figure 2.8. p-type Semiconductor Crystal Structure

When acceptor atoms are added to a semiconductor, the doped result is referred 

to as a p-type semiconductor. The p here refers to the positive charge of the holes 

resulting from the mixture. When a voltage is applied across a p-type semiconductor, 

the positive holes will be drawn toward the negative terminal. As a hole reaches this 

position, an electron leaves the terminal and enters the semiconductor, occupying the 

empty hole. Simultaneously, an electron leaves the semiconductor and enters the 

positive terminal, creating a new hole. This hole then begins to move along with all 

of the other holes present in the semiconductor toward the negative terminal to 

continue the process. As with the n-type semiconductor, the p-type semiconductor as 

a whole does not ever become charged; the positive charges of the holes are balanced
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by the negative acceptor ions, and the number of holes present in the semiconductor 

remains constant. It is also important to note that in contrast to the n-type 

semiconductor, it is the negative charges located at the acceptor atoms which remain 

in a fixed position while the positive charges associated with the holes move 

throughout the semiconductor material.

Within an extrinsic semiconductor, there is an excess of one type of current carrier 

present; it is called the majority carrier. For n-type semiconductors, it is the electron 

and for the p-type it is the hole. The energy due to the temperature to which the 

semiconductor is exposed will lead to the introduction of current carriers besides the 

majority carriers due to doping. Thus holes will be present in an n-type semiconductor, 

although they will be far fewer in number than the free electrons. Likewise, some 

electrons will be present for the conduction of current in p-type semiconductors. I Iolcs 

in n-type semiconductors and electrons in the p-type are referred to as minority 

carriers; they flow in opposition to the majority carrier present. It is important to note 

here that if a number of minority carriers are introduced in a semiconductor, they will 

quickly disappear upon combination with majority type carriers; electrons disappear 

into holes, and holes are filled by electrons.

c. The p-n Junction. Consider what happens when a p-type semiconductor is 

joined with an n-type semiconductor as in Figure 2.9. From the n-type semiconductor, 

free electrons near the junction will begin to move across it and occupy the nearby 

holes in the p-type semiconductor. As they do so, the positive ions with which they 

were associated are left without balancing negative charges, and a positive charge is 

built up in the n-type semiconductor. Correspondingly, as the electrons take up 

positions in the p-type semiconductor, they build up a negative charge there for which 

there is no balancing positive charge. From the p-type semiconductor, holes near the
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junction will move into the n-type semiconductor by attracting nearby electrons across 

the junction to take their positions. As they do so, they leave behind their charge 

counterparts, negative ions. This also increments the negative charge in the p-type 

semiconductor. As the holes move across the junction, the positive charges associated 

with them, without any balancing negative charges, increment the positive charge of 

the n-type semiconductor. A point is rapidly reached at which the negative charge 

built up in the p-type semiconductor near the junction is sufficient to prevent any more 

electrons from crossing the junction. Likewise, holes will be unable to cross as they 

will be repelled by the positive charge in the n-type side near the junction. The regions 

of the two sides which have given up their current carriers is termed the depletion layer. 

The junction between the two types of semiconductor is now referred to as the junction 

barrier, as it opposes the movement of further majority current carriers by repelling 

them.

holes free electrons

p-type
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Figure 2.9. p-n Junction of Semiconductors

When a voltage difference was placed across a pure semiconductor of either type, 

current was seen to flow without regard to direction. This is not the case for the p-n 

junction of semiconductors. Consider first what occurs when a positive contact is
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placed at the p-type end of the junction and the negative contact at the n-type, as in 

Figure 2.10. When the voltage difference is increased from zero, the holes in the p-type 

end are repelled from the positive contact toward the also-positive end of the junction 

barrier; the free electrons in the n-type end are likewise repelled from the negative 

contact toward the negative end of the junction barrier. As holes are pushed toward 

and then into the depletion layer, the negative charge present is somewhat diminished. 

Likewise, electrons repelled by the negative contact lessen the positive charge of the 

n-type end of the depletion layer. As holes and electrons are again capable of being 

near the semiconductor junction as described for the initial merge, some of each will 

have sufficient energy again to cross the junction to the other side. When this happens 

to an electron, it will shortly recombine with one of the many holes present in the 

p-type side. Similarly, when a hole crosses the junction it quickly recombines with one 

of the many free electrons present in the n-type side. When a hole disappears, it is 

replaced by the break up of a covalent bond near the positive contact. The new hole 

is repelled by the positive voltage toward the junction; the electron is drawn to the 

positive terminal and enters it, while another electron simultaneously exits the negative 

terminal to enter the n-type semiconductor. It is also repelled toward the junction.

At the same time, a small number of minority carriers continue to form as energy 

is applied to the semiconductor by way of ambient temperature. When a free electron 

and hole appear in the p-type end, the electron is immediately attracted toward the 

connecting positive terminal. Likewise, when a free electron and hole appear in the 

n-type end, the hole is drawn to the nearby negative terminal. An electron will leave 

this terminal to occupy the hole while some free electron drawn to the positive terminal 

simultaneously leaves the p-type end of the semiconductor to enter the adjacent 

terminal. Thus a small current will flow through the junction of semiconductors by 

minority carriers.
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Figure 2.10. Forward Voltage Applied to a p-n Junction

As the voltage across the p-n junction of semiconductors continues to be 

increased, a level is reached at which the charges present in the depletion layer are 

overcome and current flows freely. For example, this level is around 0.6 volts for 

silicon. Further increase in voltage rapidly increases the current flow. When a p-n 

junction has a positive voltage applied to the p-type end and a negative to the n-type 

end as described here, the voltage is said to be a forward voltage, or bias. The current 

due to the minority carriers is not influenced by changes in voltage; it forms only a 

negligible portion of current under a forward bias.

A reverse voltage, or reverse bias, is applied to a p-n junction of semiconductors 

when the positive terminal is attached to the n-type end and the negative to the p-type 

end, as in Figure 2.11. Under these circumstances, the free electrons of the n-type 

semiconductor will be drawn away from the junction toward the positive contact. 

Likewise, the holes of the p-type end will be drawn away from their end of the junction 

and toward the negative contact. The positive and negative ions resulting from the 

electrons and holes, respectively, that are attracted away combine their charges with
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those of the ions already alone around the p-n junction. The result is a widening of the 

depletion layer, and the flow of current by majority carriers is further resisted.

Minority carriers, on the other hand, will continue to form as energy is applied in 

the form of heat. When an electron is freed in the p-type semiconductor, it is attracted 

across the junction toward the positive terminal. Similarly, holes appearing in the 

n-type semiconductor are pulled across the junction toward the negative terminal. 

Electrons will leave the negative terminal to fill the holes while electrons drawn to the 

positive terminal simultaneously exit the junction of semiconductors. Thus a small 

current flows by way of minority carriers. The creation of holes and free electrons 

occurs as energy is applied to the semiconductor in the form of ambient heat, as 

described- before; at any fixed temperature, the rate of generations for holes and 

electrons is also fixed. Increasing the voltage present at the terminals then has no 

immediate effect on the amount of current flowing as all minority carriers move upon 

creation. It is important to note however that as the voltage increases, the pull on the 

minority carriers also increases, causing them to move faster and faster through the 

semiconductors. There is a voltage at which the minority carriers will be moving so
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quickly that they will cause some covalent bonds to break, producing more carriers 

and, consequently, an increase in current. These new carriers will add to this 

breakdown and increase in current. The voltage around which this phenomenon begins 

to occur is referred to as the reverse breakdown region.

d. The Diode. The p-n junction, unlike its single component semiconductors, has 

been seen to behave differently under different conditions: a sizable current can flow 

through the p-n junction when a forward bias is applied (positive contact to the p-type 

semiconductor, negative contact to the n-type), but no appreciable current will flow 

under a reverse bias. These characteristics arc extremely useful in a wide range of 

applications in electronics; the junction of a p-type and an n-type semiconductor is 

commonly referred to as a diode. The circuit symbol for the diode is given in Figure

2.12 (a). Note that the arrow head indicates the direction current may flow; this is 

opposite to the direction of electron movement because of the original conception that 

current flowed from the positive to the negative. The light-emitting diode, or LED, 

included in the power supply circuits earlier, functions just as described here. The 

particular semiconductors it is formed from produce photons in the visible spectrum 

when electrons and holes recombine; the LED is consequently illuminated only when 

a forward bias causes current to flow and many recombinations are occurring. Other 

diodes also give off light energy, but it is not visible to the eye. The circuit symbol for 

the LED is given in Figure 2.12 (b). The arrows are used to indicate the light-emitting 

property.

e. The pnp Transistor. The transistor, the device to be used here for switching, 

utilizes the properties described for the diode; however, in addition to the two 

semiconductor layers of the diode, the transistor has a third. The layers of a transistor 

may be either p-type, n-type, and p-type again (pnp) or n, p, and n (npn). For this
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Figure 2.12. Diode Circuit Symbols

project the pnp transistor has been selected and will be discussed here; the 

characteristics of the pnp and npn transistors are different but the concepts are the 

same. In particular, the transistor to be discussed is of the grown junction variety; the 

point-contact transistor, another type, is mechanically different.

The pnp transistor is depicted in Figure 2.13 (a), along with the designations of 

the three layers; the first p-type region is the emitter, the second p-type region is the 

collector, and the intervening region, or base, consists of n-type semiconductor. It is 

worth mentioning here that while the construction appears to be symmetric, the p-type 

regions are not interchangeable and the transistor must only be used in the specified 

orientation for reasons which will be made clear later. The transistor has two states; 

in the first, current flows through the transistor from emitter to collector and in the 

second no current flows through the transistor at all. The arrows in Figure 2.13 (a) 

indicate the direction of current flow through the semiconductor regions. The voltage 

condition present at the base controls the presence or absence of current through the 

transistor. Figure 2.13 (b) shows the circuit symbol for the pnp transistor. The arrow 

here indicates the emission of holes into the base.
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Emitter Base Collector

Figure 2.13. The pnp Transistor

Consider first the conditions that are necessary to permit the flow of current. To 

begin with, the p-n junction between the emitter and base must be under a forward 

voltage bias. As described for the diode earlier, this will lead the holes in the emitter 

region to cross the junction barrier into the base, while free electrons in the base will 

cross the barrier into the emitter; as with the diode, the forward voltage must be above 

a certain level to bring about the current flow. The first p-type region is designated the 

emitter as it emits holes into the base. Also as in a diode, the holes coming into the 

n-type region would quickly recombine with the free electrons found there. The second 

junction, an n-p transition between the base and the collector, must have a reverse bias 

applied to it, making the collector more negative than the base. Thus when holes enter 

the base, and become minority carriers in the n-type region, they are immediately 

affected by the pull of the more negative terminal at the end of the collector p-type 

region and do not all recombine with free electrons. Holes do not enter the base from 

the collector due to the reverse bias. The second p-type region is designated the 

collector as it collects holes from the base. Note that the holes appear to have been 

thermally generated to the base-collector junction of semiconductors. Some of the 

holes will recombine in the base, but many of them will cross the second junction 

barrier as minority carriers and then move through the collector to the connecting 

negative terminal due to the construction of the transistor layers. Upon the hole's
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arrival at the negative terminal, an electron leaves the terminal and occupies the hole. 

Simultaneously, a covalent bond in the emitter near the positive terminal breaks down, 

and the electron freed exits the emitter for the positive terminal. The hole just created 

then begins moving toward the emitter-base junction to continue the process. When 

a hole does recombine with a free electron in the base, another electron enters the base 

from the adjoining terminal to take its place. This small base terminal input of 

electrons combines with the much larger input from the collector's terminal to form a 

flow equal in magnitude to the flow of holes into the base from the emitter. The two 

conditions required for current flow may be met simultaneously be placing a voltage 

at the emitter p-type semiconductor which is greater than that at the n-type base, 

which must in turn be greater than the voltage present at the p-type collector.

The object in the construction of a transistor is to make the conditions present in 

the base as favorable as possible for permitting holes injected from the emitter to travel 

on through the base into the collector region; if the holes simply exit through the base 

nothing is achieved. This enhancing of conditions is accomplished in different ways. 

One aspect of transistor construction calls for the width of the base to be very' narrow, 

typically a few ten-thousandths of an inch or less. With a relatively small distance to 

travel in the base's n-type region, few holes have a chance to recombine with the free 

electrons present there. The density of electrons present in the base is also reduced in 

comparison to the hole density of the emitter to further lessen the chance of encounters 

between injected holes and free electrons. The hole densities in the two p-type regions 

are also adjusted differently in each to achieve optimum results. For this and other 

reasons a transistor cannot have its emitter and collector interchanged, even though 

the simple depiction in Figure 2.13 makes the transistor look symmetric. The efficiency 

of the transistor is based on the percentage of holes that continue into the collector
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without recombining in the base. Percentages ranging from 95% to 99% are readily 

achievable.

In order to prevent current from flowing through the transistor, the emitter-base 

junction's forward bias must be eliminated. This can be accomplished by raising the 

voltage at the base to the point where electrons and holes can no longer easily cross 

the emitter-base junction barrier. Thus the flow of current through the transistor from 

emitter to base is controlled by the voltage at the base: when high, no current flows 

and when low, a forward bias is in effect allowing the junction barrier to be crossed and 

current to flow.

The transistor has been around since the late 1940's, and much more remains to 

be said about precise operating characteristics, different versions of the transistor, and 

so on. The material included here is for the purpose of acquainting the reader with 

transistor technology; further detail may be found in a number of works, including 

[H ibb65], [Casa733, [Krug54], [W alk66], [Bedf64], and [M alm 69].

For this particular problem, the 2N2907A pnp transistor is employed. Two of 

these transistors are used for the circuit of the motor being discussed. Recall that the 

motor had one lead connected to the +4.5 volt source; the other unused end could be 

connected to either ground or the +9 volt source to achieve bi-directional rotation. 

The first transistor is positioned with its emitter at the unused motor lead and with its 

collector going to ground; see transistor Q1 in Figure 2.14. The second transistor is 

placed with its emitter at the + 9 volt source and with its collector going to the same 

motor line; this is transistor Q2. Consider now transistor Ql. The +4.5 volt source 

on the other side of the motor provides one end of the potential needed for the forward 

biasing of the emitter-base junction; bringing the base low puts the forward bias in 

effect and current flows from emitter to collector, or from the motor line to ground.
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The circuit is completed and the motor begins to turn as expected. Note there is 

actually somewhat less than +4.5 volts across the motor as a small voltage drop exists 

across the transistor.

-M.5Y

Figure 2.14. The Motor Sub-Circuit

The second transistor, Q2, is in a different situation, however. Its emitter is at the 

+ 9 volt potential and the other side of the motor is at the +4.5 volt level, not the 

ground. When the base is brought low directly, a forward bias is in effect across the 

emitter-base junction as desired, but there is also a forward bias across the 

base-collector junction, as the base is at ground while the collector sees +4.5 volts on 

the other side of the motor. Thus current will flow from the emitter and out the base 

and also from the collector and out the base. Under these circumstances the motor 

turns in the same direction as it did when the base of transistor Q1 was made low. This 

situation will be remedied by the introduction of another circuit element, the resistor.

3. Resistors. To prevent the reverse current flow described above, a resistor will 

be placed before the base of the second transistor. The resistor is a passive device, as 

is its function. Conductors such as copper allow the flow of current, or movement of 

electrons, to take place freely. Resistors hinder the movement of electrons by 

employing materials other than conductors for bearing current. One technique for the 

construction of resistors is to combine carbon with an electrically-inert filler. As the
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amount of carbon is increased with respect to the filler, it becomes easier for current 

to flow through the combination. As current is not allowed to flow freely from one 

end of the resistor to the other, a voltage drop will occur across the resistor.

The resistor voltage drop noted above can be used to achieve the proper biasing 

of the second transistor in the motor control circuit. In fact, resistors are placed before 

both of the circuits' transistors as seen in Figure 2.15. (Recall that resistors R l, R2, 

and R3 were used in the power supply circuits.) The resistor R5 at the base of 

transistor Q2 is of primary concern. The voltage at the transistor base must be 

between that at the emitter and collector for the emitter-base forward bias and 

base-collector reverse bias to be in effect. The voltage drop across a resistor is given 

by Ohm's Law, which states that the voltage drop is equal to the product of the current 

passing through the resistor and the amount of resistance (V = IR).

+ 4 .5 V

+9V

Figure 2.15. The Modified Motor Sub-Circuit

Experimentation was carried out for each of the six motor control circuits as 

different joints were found to operate better with varying amounts of current exiting 

through the transistor base. Table 2.1 states the resistances used for the various motor 

control circuits. Note that the values vary across a relatively small range, 100 to 470 

ohms. The resistances placed at the bases of the transistors whose emitter and 

collector lie at +4.5 volts and the ground, respectively, were not absolutely necessary.
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However, including a small resistance guarantees that the holes entering the base from 

the emitter will see a more negative pull from the collector than from the base terminal. 

Resistances of 10 ohms were used here.

Table 2.1. RESISTANCES USED AT BASE OF SECOND TRANSISTOR

Transistor Joint Resistance (ohms)
Q2 Wrist Up 470
Q4 Gripper Open 100
Q6 Elbow Left 220
Q8 Arm Up 470
Q10 Wrist-Rotate Right 470
Q12 Arm Right 150

4. The Computer. To this point, the electronic interface consists of twelve 

transistors and twelve corresponding resistors. As described, these elements are on the 

layout's motors-and-robot side. Consider now the computer side of the arrangement. 

For the twelve transistors and their corresponding lines that are to be raised and 

lowered, the computer used for control must provide the outputs for these twelve lines. 

If a computer possessing twelve output lines were used, connections could possibly be 

made directly to the computer's output port; fewer lines will require additional 

hardware. For this project, the IBM Personal Computer was selected. The data lines 

of a printer port are suitable for the required robot control. The IBM PC has the 

advantage of being in widespread use and is thus generally accessible. The drawback 

for this project is that the printer port has only eight data lines; this problem is easily 

surmountable, though. In addition, by working with just the eight data lines the 

project is also transferable among a wide number of computers.

5. The Decoder. In order to achieve the transformation from the eight available 

output lines to the twelve required, a decoder will be used. A decoder is a device which
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accepts as its input a number of lines whose voltages are effectively interpreted as bit 

positions in a binary number; for the device to be used, high voltages (+  5 volts) will 

be regarded as ones and low voltages (0 volts, or ground) as zeroes. Thus if a decoder 

having three inputs sees, in order, high, low, and again high voltages, it will interpret 

this as a binary 101, or decimal 5. The decoder then takes action by raising or lowering 

the voltage on the one of its output lines designated by the binary number on the 

inputs; for the device to be used, the selected output is made low (again, 0 volts) while 

all others remain high (again, + 5  volts). Of course, the number of output lines the 

decoder has is dependent upon the number of inputs. For example, for two inputs 

there are 22 or four possible interpretations, 0, 1,2,  and 3; three inputs can generate 

any of 23 or eight possible interpretations, 0, 1,2, 3, 4, 5, 6, and 7; four inputs require 

2A or sixteen output lines, and so on.

a. The l-to-2 Decoder. To see how the decoder works, consider as an example 

a I-to-2 decoder using the same voltage representations as those of the decoder to be 

used; this discussion is based on that of Lcwin [LcwiS3]. This device would see as its 

input a single line which would be at either a high or low voltage. Two output lines 

would be required. The first of these would be the zero output; it would be low when 

the input is zero, or low, and high when the input is one, or high. The second output 

line would be the one output; it would be high when the input is zero, or low, and low 

when the input is one, or high. Table 2.11 organizes these requirements.

Table 2.II. OUTPUTS FOR l-TO-2 DECODER

Input Line Output 0 Output 1
L L H
H H L



36

It is clear from the table that the states of the zero output line are identically 

those of the input line while the one output states are the opposite of the input line 

states. The one output line is said to be inverted from the original; to obtain the states 

required for the one output, a device called an inverter is employed. The inverter secs 

a single input line, at cither a low or high voltage, and produces a single output, whose 

state is opposite that of the input, high or low, respectively. Thus before the decoder 

can be fully explained, the inverter itself must first be examined.

b. The Inverter. The transistor was introduced in a preceding section as its 

capability to act as a switch was of use for controlling the motors of the robot. The 

transistor is useful again here in that it provides the basis for the inverter. Consider 

Figure 2.16 (a). The pnp transistor Q is situated so that its base is connected to the 

voltage to be inverted; resistor R1 is selected so as to place the base current at an 

appropriate level. The emitter is tied directly to a line supplying a high voltage. The 

collector provides the output of the inverter, but it is also connected through resistor 

R2 to a line supplying a low voltage, or ground. When the input line is high, the base 

of the pnp transistor is not provided with the low voltage necessary for the forward 

biasing of the emitter-base junction and the reverse biasing of the base-collector 

junction; consequently, no current flows and the output line is at the low voltage level 

through resistor R2. When the input line is brought low, the proper biases are in effect 

and current flows from emitter to collector. Current leaving the collector follows the 

output path, as resistor R2 deters electron movement along the other path, and the 

output line is at a high voltage through the transistor. In this fashion an inverted 

output is obtained from a given input. It should be noted that this is but one way to 

accomplish the desired effect; one alternative employs the npn transistor, mentioned 

earlier, and a corresponding reversal of voltages. The circuit diagram for the inverter
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is shown in Figure 2.16 (b). It is worth noting here that the inverter performs the 

unary logic operation NOT on its input.

tY

Input

Output

Figure 2.16. The Inverter

With the inverter in hand, the l-to-2 decoder follows quickly. Figure 2.17 shows 

the decoder consists of nothing more than splitting the input line and running one of 

the two resultants through a single inverter. The unaltered line is the zero output, and 

the inverted line is the one output. Note that one of the two lines will always be high 

and the other always low; if this decoder were to be used with two of the 

motor-controlling transistors, the motor would always be turning in one direction or 

the other.

Input
Output 0 

Output 1

Figure 2.17. The l-to-2 Decoder

c. The 2-to-4 Decoder. A more practical and consequently more complicated 

example can be found in the 2-to-4 decoder. There are now two input lines to contend 

with, each of which may be at either a high or low voltage. There are then four
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possible combinations of inputs and thus four output lines. Table 2.111 states the 

desired outputs for the possible input combinations.

Table 2.1 II. OUTPUTS FOR 2-TO-4 DECODER

Input Lines 
1 0 3

Output Lines 
2 1 0

L L II 11 11 L
L 11 II II L II
11 L II L II H
U II L II II II

From the table, it is clear that the zero output line is low only when both of the 

inputs arc low; similarly, the one output is low when the zero input is high and the one 

input is low, and so on. Recalling the use of the inverter in the l-to-2 decoder, the 

requirements for low voltages on the output lines may alternatively be stated in terms 

of the presence of high voltages on the input lines. For example, the zero output line 

is low if and only if input line 0 is not high and input line 1 is not high; the one output 

line is low if and only if input line 0 is high and input line 1 is not high, and so on. 

The inverter can be used to raise low inputs so that an output line is to be lowered only 

in the presence of two high voltages. Another electronic device, the AND gate, will 

make this detection possible.

d. The AND Gate. The AND gate has a single output which is high if and only 

if its two inputs are both high as well. Like the inverter, the AND gate is a 

semiconductor product. The desired function may be obtained in a number of different 

ways. Figure 2.18 (a) shows one of the simplest configurations, requiring only two 

diodes and a resistor. When the voltage of input 0 is low, diode D1 is forward biased 

by way of resistor R to a positive voltage; thus current flows through the diode, leaving 

the output at the same level as input 0, or low. Similarly, when the voltage of input 1
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is low, diode D2 is forward biased, and the output is at the voltage level of input 1, or 

low. Certainly when inputs 0 and 1 arc both low the output is also low as current is 

capable of flowing through both diodes. In the single case where inputs 0 and 1 are 

both high, diodes D1 and D2 are both reverse biased; no current flows through either 

diode, so the output is at the high voltage level by way of resistor R. In this manner 

the requirements for the logical AND operation are met. Figure 2.18 (b) shows the 

circuit symbol for the AND gate.

IV

Input 0

l

l a )  (b )

Figure 2.18. Diode-based AND Gate

Output

Input 0 
Input 1

Output

Another alternative for the AND operation involves the use of transistors. Figure 

2.19 demonstrates an example of how the desired pairings of inputs and outputs may 

be achieved. Input 0 is fed to the base of pnp transistor Q1 through resistor R l, whose 

resistance determines the base current for Ql. Likewise, input 1 is fed to the base of 

pnp transistor Q2 through resistor R2. When input 0 is low, transistor Ql conducts 

current from emitter to collector, putting the output at the same voltage level as the 

collector, which goes to ground. A low input 1 causes transistor Q2 to conduct, 

putting the output at its collector voltage level, or zero. Certainly when both of the 

inputs are low, the output will again be at the common collector level, zero. When 

both inputs are high, however, neither transistor conducts current, and the output is 

at the high voltage level through resistor R3. There are, of course, many other 

implementations that achieve the same result.
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With both the inverter and the AND gate available, the 2-to-4 decoder may be 

constructed as shown in Figure 2.20. The connections made can be reconciled with 

Table 2.Ill, stated earlier. Output 0 is low when both of the inputs are low, so the 

AND gate associated with it receives inputs from the inverters of each of the two 

decoder inputs. Thus when both inputs are low, the inverted lines are high, and the 

AND gate produces a high voltage. This is in turn inverted to produce the desired low 

voltage for Output 0. Output 1 is low when input 1 is low and input 0 is high, so its 

AND gate receives as input the inverted voltage from input 1 and the original voltage 

of input 0. When input 0 is high and the inverted voltage of input 1 is high as well 

(meaning input 1 is itself low), the AND gate yields a corresponding high voltage, 

which is also inverted to obtain output 1. Outputs 2 and 3 are generated in similar 

fashion. (The AND gate and inverter are commonly combined as a single circuit 

element, the NAND gate, whose output is low only when both of its inputs are high.)

e. The 4-to-16 Decoder. Returning now to the original problem, it was required 

to take the eight available control lines originating from the computer and lower one 

of the twelve control lines leading to the transistors. As has been demonstrated, the 

decoder effectively functions by interpreting its input as a binary number and placing
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Output

Output

Output

Output

0

2

3

only the correspondingly-numbered output line at a low voltage. One input may select 

either of 21 or 2 outputs; two inputs may select from among V or 4 outputs; three 

inputs produce 23 or 8 possible outputs, and so on. The particular problem requires 

12 lines for controlling the motor transistors; since 12 is larger than 8 but less than 24 

or 16, a 4-to-16 decoder will be adequate for the task. Note also that while twelve of 

the lines will be directly used, a thirteenth will be made high when all of the twelve lines 

are to be low simultaneously; this corresponds to the intervals during which no motor 

is running in either direction.

Consider how such a device might be constructed. Extrapolating from the 2-to-4 

decoder, it is clear that each of the sixteen decoder outputs is determined by a unique 

combination of the voltages on the four input lines. Table 2.IV shows the specific 

pairings.

As was done for the 2-to-4 decoder, each of the 4-to-l6 decoder's output lines is 

the inverted output of an AND gate. The difference here is that while the 2-to-4 

decoder AND gates accepted two inputs, each of the AND gates in the 4-to-16 decoder 

must be able to accept four inputs. The two example constructions for the AND gate
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Tabic 2.IV. OUTPUTS FOR 4-TO-16 DECODER

Input Lines 
3 2 1 0 15 14 13 12 11

Output Lines 
10 9 8 7 6 5 4 3 2 1 0

L L L L II 11 H II II II 11 II II II II H u M II L
L L L II II II II H I-I II II II H II II II ii II L II
L L II L II H II H II H II II 11 11 11 II H L 11 II
L L II M II H II H H II II II H II II II L H H II
L II L L II II II II II II II H II II II L II 11 II II
L II L H 11 II II II H II II II 11 II L II 11 11 II II
L II II L 11 H H II I-I II II II II L 11 11 11 II II II
L H II H II H H H H M H H L II II H H H I-I I-I
II L L L 11 II H II H II II L II II II II II M H II
II L L H II H H II II II L II II II II H II I-I II II
II L II L 11 II II II II L 11 II II II II II II II 11 II
11 L H H H H H H L II II II II II H II H H H II
II II L L II II H L I-I II II II II II II II II II II 11
H H L H II II L II I-I II II II II II II II 11 II II II
II 11 H L 11 L II II II H II II II II II II II II II II
H H H H L H H H H H H H H H H II H H H H

given in Figures 2.18 and 2.19 may be easily modified to accept four inputs; the design 

of Figure 2.21 shows how this is readily accomplished by expanding the arrangements 

in the simpler versions.

(3)

+Y

Output

Figure 2.21. 4-Input AND Gates
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As with the 2-to-4 decoder, each input will be split, and one of the two resulting 

lines will be fed to an inverter so that the AND gates can produce a high output for a 

mixture of originally high and low inputs. Figure 2.22 shows the complete 

construction. Note that there arc twenty-four inverters and sixteen 4-input AND gates 

employed. As seen in Figure 2.21, each of the AND gates will require cither four 

diodes or four transistors, as opposed to the two used in the two-input AND gates. 

Consequently, the cost of the 4-input AND gates will be higher while the reliability is 

reduced by the increase in the number of parts.

Inputs

Outputs

Figure 2.22. The 4-to-16 Decoder

An alternative to the decoder requiring 4-input AND gates can be realized by 

employing as an element within the 4-to-16 decoder the 2-to-4 decoder developed 

previously. The four control lines of a 2-to-4 decoder may be used to select from 

among four alternatives. If the sixteen required output lines of the 4-to-16 decoder are 

divided into four groups of four, the different groups may be thought of as being 

selected one at a time by the output lines of the 2-to-4 decoder. This is accomplished 

by having each of the sixteen 4-to-16 decoder outputs be the inverted output of an 

AND gate, the input for which in each case will include the aforementioned selection
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line after inversion; see Figure 2.23. Thus any one of the sixteen decoder outputs can 

only be low when its AND gate input from the 2-to-4 decoder and inverter is high; 

conversely, as a single 2-to-4 decoder output will be low at any one time, there are only 

four possible outputs of the 4-to-l6 decoder which can possibly be high due to the 

function of the AND gate.

Inputs
3 2 1 0

Outputs

Figure 2.23. Partial 4-to-16 Decoder Using a 2-to-4 Decoder

Once one subset of four decoder output lines has been selected from the original 

sixteen, it remains to choose one from among the four. This will require four selection 

lines which will act as inputs to the AND gates of the output lines. Two of the original 

inputs have been used to this point, leaving two others; four selection lines arc 

required. Thus a second 2-to-4 decoder may be used. Its inverted outputs will run in 

parallel to each of the subsets of four decoder outputs; see Figure 2.24. In this fashion 

a subset is chosen by the first 2-to-4 decoder, and a line from among the subset is 

selected by the second 2-to-4 decoder.
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Inputs
3 2 1 0

The second version of the 4-to-16 decoder can provide a reduction in the number 

of parts required by the first version. Assume that only transistor-based gates are used. 

In the first version of the decoder, twenty inverters were used along with sixteen 

4-input AND gates, which were seen in Figure 2.21 to incorporate four transistors 

each. Thus a total of twenty inverters and sixty-four gate transistors were required. 

At one transistor per inverter, as seen in Figure 2.16, the transistor total becomes 

eighty-four. In the second version, there arc two 2-to-4 decoders, twenty-four 

inverters, and sixteen 2-input AND gates. Figure 2.19 shows that each of these AND 

gates requires only two transistors, for a total of thirty-two. The 2-to-4 decoders, 

depicted in Figure 2.20, are each comprised of six inverters and four 2-input AND 

gates. Two such decoders will call for twelve inverters and eight 2-input AND gates, 

which also require two transistors each for a total of sixteen. Thus this version of the 

decoder requires thirty-six inverters and forty-eight gate transistors. Again at one 

transistor per inverter, the transistor total for the complete decoder is eighty-four, the
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same as before. However, this number is unncccessarily large. Inspection of Figure 

2.24 shows that the 2-to-4 decoder outputs are immediately inverted, while Figure 2.20 

shows that the 2-to-4 decoder outputs are inverted immediately prior to being output. 

Thus the inverters on both sides of the two 2-to-4 decoders may be removed, as their 

actions nullify one another. There arc four inverters on cither side of both 2-to-4 

decoders, for a total of sixteen. Consequently, sixteen transistors may be eliminated 

from the count for the second 4-to-16 decoder, bringing its total to sixty-eight. This 

is close to a 20% reduction from the first version. By reducing the number of 

components required the cost of the device is lessened, while its dependability is 

increased as there are fewer components to break down.

There are drawbacks to this second method, however. One trade olTthat is made 

here is with regard to the time it takes for the device to act. In Figure 2.22 the input 

lines of the first version of the decoder can be seen to pass through inverters and then 

proceed immediately to the 4-input AND gates. The second decoder construction has 

the inputs pass through the 2-to-4 decoders, the output of which continues on to the 

2-input AND gates. Within the 2-to-4 decoders, the inputs pass through inverters and 

then another set of 2-input AND gates. Thus the second version is slower than the 

first version by the amount of time it takes a second AND gate to act. Regardless of 

whether the AND gate is diode-based or transistor-based, a finite amount of time is 

required to raise or lower the AND gate from the instant the inputs dictate a change. 

At computer speeds, this is an important aspect which cannot be ignored. On the other 

hand, with the project under development this amount of time is inconsequential; 

whether a robot joint begins moving a few thousandths of a second later or not will 

have no impact on the final outcome in this situation.
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The actual device used for the transformation from the eight available output 

lines to the twelve required is the 74154 4-to-16 decoder. The 74154 decoder is a 24-pin 

integrated circuit which incorporates in a single package all of the necessary inverters 

and AND gates specified; see Figure 2.25 for the layout of the pins, or circuit 

connections. Pins 20, 21, 22, and 23 are the inputs described earlier as inputs 3, 2, I, 

and 0; pin 20 is effectively the 23 = 8's place in the binary number being input, pin 21 

is the 4's place, pin 22 is the 2's place, and pin 23 is the l's place. With four binary 

positions, a value from 0 to 15 may be represented. High voltages ( + 5 volts) arc 

interpreted as ones, while low voltages (0 volts) act as zeroes. Thus the decimal input 

S would appear as a high voltage at pin 20 and low voltages at pins 21, 22, and 23. 

Pins 18 and 19 act as enabling pins for the integrated circuit. In order for it to function 

as described, the voltages at both of these pins must be low. For this project, these two 

pins will be connected directly to ground.

Output 0 
Output 1 
Output 2 
Output 3 
Output 4 
Output 5 
Output 6 
Output 7 
Output 8 
Output 9 
Output 10

-+ 5V  
Input 0

-  Input 1 
-In p u t 2

Input 3
-  Enable 0
-  Enable 1 

Output 15 
Output 14

-  Output 13 
Dutput 12

-O utput 11

Figure 2.25. The 74154 4-to-16 Decoder

The 74154 1C maintains sixteen output lines, fifteen of which are at any one time 

at a high voltage level due to the grounding of pins IS and 19; the permanent low 

voltages at pins 18 and 19 lead to the decoder being enabled at all times, with a
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sixteenth output, determined by the input value, low at all times. Pins 1 through 11 

and 13 through 17 correspond to the outputs 0 through 15 in the development of the 

4-to-16 decoder. It is arbitrarily decided here that the twelve transistor control lines 

will be obtained from the decoder's outputs of 1 through 12; the corresponding IC pins 

arc 2 through 11, 13, and 14. When a joint is to be moving, the decoder inputs will 

indicate the output control line to the appropriate motor. At times when no joint is 

to be moving, some output must be selected besides those associated with transistor 

control. As only twelve of the sixteen outputs are needed for motor control, any of the 

remaining four may be set aside to be low when no motor is to be in use; let this be 

decoder output 0, corresponding to IC pin 1. If the situation called for the use of all 

sixteen decoder outputs for control lines, the enable lines could be employed to place 

high voltages on all sixteen lines simultaneously. As this is not the case, the approach 

taken is satisfactory. The remaining decoder output pins, 15, 16, and 17, are left 

unused. Note also that four of the eight available computer output lines arc left 

unused. The remaining pins of the 74154 IC are pin 24, which receives a + 5  volt 

power source and pin 12, which goes to ground. The 4.5 volt power supply of the 

circuit in Figure 2.5 is sufficient for operation of the IC; it will be supplied to pin 12.

There is an additional point that should be made about this arrangement. If the 

computer used had the necessary' twelve control lines and they were tied directly to the 

resistors at the base of each transistor, then each of the transistors could be controlled 

independently of the others. This is an advantage in that it allows for the programmed 

control of coordinated motion, wherein more than one joint is moving at a time. This 

would make possible smoother motions by the robot arm. It is also a disadvantage in 

that if the control lines leading to two transistors connected to the same motor were 

made low simultaneously, then they would both allow current to flow; this current 

would proceed directly from the 9 volt source through both transistors to ground, as
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the emitter of the first transistor is tied to the collector of the second. This would very 

quickly ruin both transistors. One of two courses of action would need to be taken. 

First, this situation could be programmed against, a costly step that would have to be 

present in every' application. The alternative would be to add additional circuitry' which 

would preclude the two lines in question from going low during the same period. This 

has the disadvantage of adding some cost and complexity to the design. With the use 

of four control lines from the computer and the 74154 decoder's twelve subsequent 

outputs, it is impossible for more than one of the twelve lines to be low at a time. 

While coordinated motion is prevented with this design, the safety of the transistors is 

never an issue.

6. Inverters. While there are now twelve control lines for the twelve transistor 

bases, one final problem remains: the current provided by an output of the 74154 

decoder is not sufficient to enable a 2N2907A pnp transistor to conduct current from 

emitter to conductor. Recall that when the base voltage is made low, the emitter-base 

junction becomes forward-biased, and current begins to flow. Holes leave the emitter, 

enter the base, and are then immediately attracted toward the collector's negative 

terminal. However, some of the holes entering the base from the emitter will 

recombine with the free electrons present m the n-type material. These electrons must 

be replaced by the base current. In the given situation the base current cannot be 

provided by the decoder as that source by itself is insufficient.

One method of handling this problem involves the use of the inverter described 

in the development of the decoder. The inverter depicted in Figure 2.16 was seen to 

incorporate a transistor and two resistors. The inverter circuit may be found separately 

on integrated circuits as the inverter is a common circuit element. In fact, six such 

inverters may be found on the 7404 IC, aptly referred to as a hex (six) inverter; see
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Figure 2.26 for the layout of the integrated circuit. The first inverter can be seen to 

receive its input at pin 1 and produce its output at pin 2; subsequent inverter input and 

output pairs are pins 3 and 4, 5 and 6, 9 and 8, 11 and 10, and 13 and 12. Upon the 

presence of a high voltage at an input, the voltage at the corresponding output pin 

becomes low, and vice versa. The remaining pins of the 7404 1C arc pin 14, which 

receives a + 5 volt power source (detailed in Figure 2.5) and pin 7, which goes to 

ground. As was the case for the 74154 1C, the 4.5 volt power source of Figure 2.5 is 

sufficient for proper operation of the 7404 IC.

I n p u t  1 
O u tp u t 1 
I n p u t  2 
O u tp u t 2 
I n p u t  3 
O u t p u t  3

Figure 2.26. The 7404 Hex Inverter

+5V
-  Input 6 

Output 6 
Input 5

-  Output 5
-  Input 4 
-O utput 4

Inverting the decoder output once certainly does not solve the problem as the 

voltage level produced is made opposite of that desired. Inverting the output of the 

first inverter removes this aspect of the problem by returning the voltage to its original 

level. However, the output of this second inverter still does not provide the required 

current. To obtain the amount needed, the output of the first inverter is passed 

through not one but three parallel inverters. The output currents of three 7404 

inverters combined is adequate for the operation of the 2N2907A transistor. Each 

decoder will pass through one inverter followed by three inverters in parallel. With 

four inverters required for each of the twelve decoder outputs, a total of forty-eight 

inverters will be necessary. As a 7404 integrated circuit contains six inverters, a total 

of eight 7404 I C's will be used. Of course, the order of the connections among the 

inverter I C's is completely arbitrary. The design used in Figure 2.27 calls for the twelve
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decoder outputs to be connected to the inverters of a pair of 7404 IC's; the twelve 

subsequent inverter outputs are then passed two at a time to the remaining six IC's, 

each line going to three more inverters on a single 1C. The three resultant parallel 

outputs may then be connected to the resistors at the base of each transistor.

Figure 2.27. Decoder and Inverter IC Connections

At this point, the electronic interface of computer and robot motors is complete. 

The combined circuit can be seen in Figure 2.28. The subcircuits for the motor and 

integrated circuit power supplies were given earlier in Figure 2.4 and 2.5, respectively.
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The actual construction was carried out on a 2200-hole 4.5" by 6.625" grid board. 

Sockets were used for all of the transistors and resistors, as well as the IC's, in order 

to facilitate replacement.

7. Manual Switches. One final segment was added to the electronic interface and 

remains to be described. The circuit given thus far provides for computer control only. 

In order for the robot to be moved manually, a set of switches is incorporated to 

provide the motors with power directly from the power supplies; sec Figure 2.29. The 

twelve switches arc of the momentary push button variety and arc normally open. As 

can be seen in the figure, one side of each motor is fixed at the +4.5 volt level. Closing 

the corresponding top-row switch places the other side of the motor at ground, and 

current flows in one direction; closing the corresponding bottom-row switch places the 

other side of the motor at the +9 volt level, causing current to flow in the opposite 

direction. These switches are useful for alignment of the robot arm prior to 

programmed control. Care must be taken not to close both of the switches for a single 

motor simultaneously as this would put the + 9 volt source directly in contact with the 

ground.

This concludes the construction of the robot arm for this project. The completed 

robot with electronic interface in place was shown earlier in Figure 2.1. Subsequent 

chapters will deal with various types of programmed control.



Figure 2.28. The Complete Computer Control Circuit C/iu>



Figure 2.29. Switches for Manual Control
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III. MANUAL CONTROL OF THE ROBOT

With the robot constructed as described in Chapter II, computer control can now 

be achieved. This chapter will detail the use of four control lines from the output port 

of the computer and how to actuate a selected joint via keyboard input using a simple 

control program.

A. THE PARALLEL PORT

The IBM PC input/output port addressing scheme places parallel printer 2 at 

address 378H through 37B11. The eight data lines themselves are at location 37S1I, 

or 888. This is the position that will be addressed for setting the robot control lines. 

The other miscellaneous lines associated with printer control arc not needed for this 

application. The C procedure OUTPORTB places a byte at the specified output port. 

The command outportb ( 888 , 0) places all zeroes on the data lines. This

command is issue at the beginning of the highest level program procedure, prior to 

supplying power to the robot. Values of 1 through 12 may subsequently be placed in 

the second parameter position to turn on the various transistors in the robot control 

circuit.

B. KEYBOARD INPUTS

The keyboard of the IBM PC will be used in this first control program. One key 

will be associated with each of the twelve distinct members of the six joint-direction 

pairs. Two choices present themselves for control. First, the joint could begin 

movement upon the press of a key and stop at the press of another. The alternative 

is to begin movement when a key is depressed and continue movement until it is
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released. This second technique was chosen as it was deemed easier to use and more 

effective in stopping control.

The key to joint-direction assignments are made arbitrarily. It was decided that 

a joint should be controlled in its two directions by keys of the same finger on each 

hand. For example, the left forefinger's "F" will drive the arm left while the right 

forefinger's "J" will cause a movement to the right. The entire set of assignments is 

presented to the user by a constant screen indicating them. The relevant portion of the 

display may be seen in Figure 3.1.

Gripper Open ■ Gripper Closel
iii E*-Wrist Up (4) Wrist Down-*I •(li
A* S* D* F* G* —Arm(2)

1
Arm-*H *J *K *L *:

: ; up 1 1 Down ! !i it 1
! Arm Left 1 (1 ) Arm Right 1i1
Elbow Left (3)

>
Elbow Right

V̂ rist Rotate Left (5) Wrist Rotate Right

Figure 3.1. Displayed Assignments of Keys to Joints

The procedure which polls the keyboard, m o n ito r_ k e y b o a rd , iterates 

repeatedly until the space bar is struck, the arbitrarily selected indication that manual 

control is to be terminated.
init_transistor_messages (msgs); do

{locate (row, col); while ( !kbhit( ) ); key = toupper(getch( )); switch (key)
{

/* Arm Down - Up #/case ■H’ : transistor = 
joint = 2; 
break;

7;

case '6’ : transistor = 
joint = 2;

8;
break;
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case 'J' 

case 'F'

case 'D ' 

case 'K'

case 'I ' 

case 'E'

case 'S’ 

case 'L '

case 'A' 

case ';'

/X Arm Right - Left X/
transistor = 12; 
joint = 1; 
break;
transistor = 11; 
joint = 1; 
break;

/X Elbou Left - Right x/
transistor = 6;
joint = 3; 
break;
transistor = 5;
joint = 3; 
break; /X Wrist Down - Up X/
transistor = 1;
joint = A; 
break;
transistor = 2;
joint = A; 
break; /X Wrist Rotate Left - Right X/
transistor = 9;
joint = 5; 
break;
transistor = 10; 
joint = 5; 
break; /x Gripper Open - Close X/
transistor = A; 
joint = 0; 
break;
transistor = 3;
joint = 0; 
break;

if

default : transistor = 0;
joint = 0;

}( transistor != 0 )
move_manual (transistor, msgs[transistor], 

theta, joint);
key,

if ( joint > 0 )
noap_matrix (theta, noap, noap_rou, noap_cols);

}while ( key != space );

row, col,

Upon the pressing of a key associated with robot control, the procedure selects the 

appropriate joint and transistor; the procedure move_manual of the next section is 

then invoked to raise the appropriate control lines while the key is depressed. 

Procedure n o a p _ m a tr± x , which will be explained fully in the next chapter, is then 

invoked to update both the displayed joint values and the gripper position and 

orientation to reflect the completed movement. The position and orientation are 

updated for changes in joint variables but not gripper openings and closings.
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C. ACTUATION OF A ROBOTIC MOTOR

When a key on the IBM PC keyboard is pressed, the character associated with the 

key is placed in a buffer for processing. The C procedure k b h it  returns a true value 

when this buffer is not empty. There are two characteristics of the IBM PC keyboard 

which must be taken into account when implementing robotic control. First, when a 

key is pressed and held down, the keyboard microprocessor immediately responds by 

sending one instance of the associated character to the keyboard buffer; if the key 

remains depressed for longer than the period IBM refers to as the typematic delay, the 

keyboard microprocessor will begin to send additional copies of the character. The 

typematic delay for the IBM PC is 0.5 seconds; later keyboard models feature a 

programmable typematic delay, but the default remained 0.5 seconds. The second 

keyboard characteristic which must be dealt with is the repeat rate at which the 

keyboard processor sends out copies of the key character while it remains depressed. 

This is a programmable feature of later keyboard models. A rate of about 10 

characters per second was standard for early keyboards and is the default value for 

later models. Information pertaining to the behavior of IBM equipment was obtained 

from Norton and Wilton [NortSS].

The specified control method calls for the selected drive motor to have power 

applied when the corresponding key is depressed; the power is to be discontinued when 

the key is released. Taking the typematic delay into account, the keyboard buffer 

cannot be examined again until 0.5 seconds have passed. Thus, there will be a lag of 

0.5 seconds between the press of a key and the start of a motor. After that amount 

of time, the keyboard buffer may be examined about every 0.1 seconds to see if the key 

remains depressed. The loop structure of procedure m ove_manual takes these 

factors into account.

degree_scale = select_scale_manual_move (transistor);i = 0;
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lcputs (row, col, msg); 
locate (row, col); 
pause C500);
outportb (888, transistor); 
do

{
i++;pause (110);
key = null;
while (kbhit ( ))

key = toupper (getch ( ));
}while ( key == original_key ); 

outportb (888, 0);
lcputs (row, col, " ");
if ( joint > 0 )

thetaLjoint] += (float) i / degree_scale; 

nxpcrimcntation with the given loop structure found that the execution time of the 

loop itself plus an additional 0.1 seconds was slightly less than the realized repeat rate. 

An increase in the loop's pause to 0.11 seconds was found to be satisfactory. Note that 

the keyboard buffer is emptied on each pass of the loop in the event that the key is 

released and several others are struck in rapid succession.

One other point about the procedure concerns the incrementation of variable i  

on each iteration of the loop. This is done to keep track of the current setting of each 

joint variable. Experimentation with the loop was performed to determine the 

approximate number of degrees the different joints turned in each direction during each 

pass of the loop. This process will be examined more fully in the next chapter, where 

the joint and axis assignments arc discussed. The results of the experimentation are 

shown in Table 3.1. The number of iterations divided by the number of iterations per 

degree results in the number of degrees turned by the joint during the move. This value 

is then added to the previous setting of the joint to obtain its current setting.

D. THE CONTROLLING PROCEDURE

Procedure m a n u a l_ c o n tro l begins by displaying the introductory screen of 

Figure 3.2. Subsequent to that, the keyboard assignments in Figure 3.3 are displayed.
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Table 3.1. RATIOS OF ITERATION COUNTS TO DEGREES MOVED

Joint Direction Ratio

Arm Left 710 ! 360
Arm Right 650 / 360
Arm Down 290 / 35
Arm Up 270 / 35
Elbow Right 415 / ISO
Elbow Left 410 / 180
Wrist Up 365 1 200
Wrist Down 300 / 200
Wrist-Rotate Left 680 /1080
Wrist-Rotate Right 660 /1080

The keyboard monitoring procedure is then invoked and retains control until manual 

control is to be terminated.

dsplY_roanual_introduction ( );
uait_then_erase (9); 
dsply_keyboard (&row, &col);
monitor_keyboard (theta, noap, noap_rou, noap_cols, rou, col); 
erase_prompt (23); 
locate (23, 0);
meputs (28, 27, "ffanual Control Terminated"); 
wait_then_erase (8);

Note that Figure 3.3 depicts the display while the key "G" is depressed; a message is 

displayed on the select line reflecting this. The documented listing for the procedures 

associated with the manual control portion of the overall program many be found in 

Appendix C.
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Armatron Manipulator Control

0 . 0 0 0 N 0 A P
o . o o o  : 1 . 0 0 0 0 . 0 0 0 0 . 0 0 0 2 0 0 . 0 0 0
o . o o o  : 0 . 0 0 0 - 1 . 0 0 0 0 . 0 0 0 0 . 0 0 0
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o . o o o  : 0 0 0 1

M a n u a l C o n t r o l

The movement of each of the five joints, as well 
as the gripper, of the Armatron manipulator is 
controlled from the keyboard by a pair of keys.
To effect movement of a joint, press and hold 
down one of the keys controlling the joint.
Note; At times, a motor may stall; should this 

occur, immediately release the key to 
avoid ruining a transistor.

Press any key to see the key assignments to the 
joints and begin the program.

Figure 3.2. Manual Control Introduction
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Manual Control
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i
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Select: Arm Up
<Press the space bar to terminate control>

Figure 3.3. Manual Control Display
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IV. JOINT VARIABLE CONTROL

The previous chapter developed a program which would allow manual control of 

robot joints via a keyboard. While this demonstrated what is required of a computer 

to drive the robot motors, it did not result in a practical method of automated control. 

This chapter takes a step in this direction by developing a control program which 

provides for the specification of angular settings for each of the joints. The objective 

here will be to position and orient the arm prior to any actuation of the gripper, so 

control for the opening and closing of the gripper itself will be ignored. In addition to 

providing control, the position and orientation of the resulting arm configuration will 

be mathematically derived and displayed.

A. INITIAL ARM CONFIGURATION

In order to move a robot arm joint from one position to another, the control 

program will maintain a variable associated with the joint for the current setting of the 

joint angle. When a new setting is desired, comparison with the joint variable will yield 

the amount of movement required. The arm will have an initial configuration at which 

each of the joint variables will be zero. This initial position and orientation will dictate 

the maximum positive and negative movements possible for each of the joints. 

Choosing an initial configuration is done with the primary goal of simplifying 

subsequent calculations involving the arm's position and orientation.

Consider the depiction of the Armatron manipulator configuration shown in 

Figure 4.1. This is the initial configuration to be used. Note that each of the five joints 

has an axis indicated about which it can rotate. The base coordinate frame for 

specifying the position and orientation to the user by vectors is indicated by the 

vector-triple (jT0, j70, zj,). The origin of this coordinate-frame is located at the
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intersection of the axes of rotation of the first two joints, the arm-vertical and the 

arm-horizontal rotations. There arc two things to note here. First, the direction for 

the axis of rotation for each joint has two alternatives; for example, the axis about 

which the vertical arm rotation takes place could extend to the right, rather than the 

left as in Figure 4.1. Second, the configuration has the arm fully extended horizontally, 

but the wrist is pointed vertically down, 'flic reason for the axis directions used and 

the initial configuration will be made clear later in this chapter.

Each of the five joints has restraints placed on it by the physical construction of 

the robot. For example, the wrist is capable of upward and downward movement 

throughout a 200“ arc. The initial configuration divides each arc of movement into 

positive and negative portions. The wrist reaches the center of its arc of vertical 

rotation when it is extended horizontally. As the initial configuration calls for the wrist 

to be pointed straight down, only 10 more degrees remain in the downward direction
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until the bottom of the arc of movement is reached; the 190’ complement is available 

in the upward direction. One can apply the right-hand rule to the rotation axes of 

Figure 4.1 to define which movements are positive and which are negative. By placing 

one's right hand about the axis of rotation with the thumb extended along the positive 

direction of the axis, the fingers curl about the axis in the positive direction of 

movement. Thus, of the wrist's 200 degrees of movement, 190 arc in the positive 

direction and 10 in the negative. The five joints, their arcs of movement, and the 

positive and negative movements are as stated in Table 4.1.

Table 4.1. RANGE AND DIVISION OF JOINT ARC MOVEMENTS

J oint Arc Positive Negative
Arm-Horizontal continuous 360 left 360 right
Arm-Vertical 35 30 up 5 down
Elbow-FI orizontal ISO 90 left 90 right
Wrist-Vertical 200 190 up 10 down
Wrist-Rotate continuous 360 right 360 left

Note that the designations of left and right arc with respect to the base-coordinate 

frame, looking out along the x-axis. Note also that the two joints having unlimited 

movement are arbitrarily restricted to 360" in either direction, as one full rotation is 

sufficient to obtain any position.

B. PROCESSING OF MOVE REQUESTS

A movement command for the manipulator consists of two parts, the joint to be 

driven and the associated number of degrees. With these two pieces of information 

known, the move may then be carried out. Procedure processorequests carries 

out these three steps repeatedly.
joint = get_joint ( ); 
while C joint != 0 )

{angle = get_angle (theta_mintjoint], theta_max[joint]); 
erase_prompt (23); 
locate (23, 20);
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cprintf ("Moving Joint %d to angle %8.3f", joint, angle); perf orin_move (joint, theta, angle, ]v_rows t joint ], jv_col); 
lcputs (23, 20, ’’ ");
noap_matrix (theta, noap, noap_rou, noap_cols);
joint = get_joint ( );
}

After each move, the joint variable values and the position and orientation of the 

manipulator's gripper will be updated by procedure n o a p _ m a tr ix . The next 

section will develop the relationship between the joint variables and the gripper 

position and orientation. This section examines each of the three steps directly 

involved with the move: selection of a joint, specification of an angle, and performance 

of the move.

1. Selection of a Joint. The first step in the process of joint variable control is 

to provide for the selection of the joint to be moved. The Armatron robot has five 

joints for movement of the arm. The joint numbering is indicated to the user along 

with the physical range for each in a display screen; the relevant portion is given in 

Figure 4.2.

Joint
1 : Arm Right/Left

( -360 to +360)
2: Arm Down/Up

( -5 to +30)
3 : Elbow Right/Left

( -90 to +90)
4: Wrist Down/Up

( -10 to +190)
5; Wrist Rotate Left/Right

( -360 to +360)

Figure 4.2. Displayed Joint Numbering

The first program interaction is to obtain the number corresponding to the desired 

joint; procedure get_joint accomplishes this. The user is to choose a number
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between one and five. By convention, if an input of "0" is received, joint variable

control is to terminate, 

do
joint = prompt_input_digit ("Select Joint:"); 
uhile ( joint > 5 ); locate (24, 20);

cprintf ("Joint %d has been selected", joint); 
return (joint);

The only way control is returned from the procedure to the invocation point is by 

obtaining a numeric digit ofO through 5.

2. Specification of an Angle. With the joint chosen, a setting is required next.

Procedure g e t_ a n g le  prompts for an input for the selected joint, 

do
{lcputs (23, 20, "Enter angle <Snnn.nnn>: ”); 
angle = (indec (23, 45)); 
if ( angle == 1000 ) 

angle = 0;if ( (angle < minimum) 1 (angle > maximum) )
{locate (23, 10);cprintf ("Angle %8.3f out of range for the joint; ", angle);
eputs ("check ranges above");
pause (3000);
locate (23, 10);
cprintf ("%61c", ' ’);
}

}uhile ( (angle < minimum) l (angle > maximum) ); 
return (angle);

Procedure in d e c  does not allow the input of the integer portion of a value to exceed 

999; the value 1000 is returned by it to indicate the entry of a null string, to which a 

value ofO is assigned. Procedure g e t_ a n g le  then checks the input angle against the 

extreme values for the selected joint, iterating until a valid value is obtained.

3. Performance of the Move. Procedure perform _m ove carries out a move 

by determining a signed angle to move through, selecting the proper transistor, and 

then iterating an appropriate number of times. Each of these steps shall be examined 

in detail. The body of the procedure is presented here in its entirety; portions of it will
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be pulled out and inspected during the examination of the steps for performing the 

move.

move_degrees = desired_position - theta[joint ] ;
transistor = select_transistor (joint, move_degrees);
degree_scale = select_scale (transistor);
iterations = round (fabs(move_degrees ) X degree_scale ) ;
degrees_per_iteration = sign (move_degrees) / degree_scale;
lcputs (rou, col, " Moving");
i = 0;
outportb (888, transistor); 
uhile ( (!kbhit( )) S (i < iterations) ) 

i = i + 1 ; 
outportb (888, 0); 
if ( i == iterations )

thetatjoint] = desired_position; 
else 

{getch ( );
thetatjoint] += degrees_per_iteration X i;
}

leprintf (rou, col, thetatjoint]);

a. Determination of the Signed Angle. The array t h e t a  is used to maintain the 

current settings for each of the five joints. It is zeroed at the beginning of the main 

program, at which time the robot is aligned to its home positioning. The desired 

setting for the joint in question is input as d e s i r e d _ p o s i t i o n ;  the required move 

is then the signed difference between d e s ir e d  po s i t i o n  and the value stored for 

the joint in the t h e t a  array. For example, if the desired setting is 45" and the current 

setting is 30°, a move of + 15° is required; to attain 45° from a starting position of 60° 

requires a move o f —15°. In both cases, the current setting is subtracted from that 

desired.

move_degrees = desired_position - thetatjoint];

b. Selection of the Proper Transistor. Returning to the electronic interface 

configuration for a moment, it will be recalled that there are two control line-transistor 

pairs for each joint, one for each direction; thus if the specified angle of movement is 

positive, the forward control line shall be selected and the other if negative. This task
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is carried out by procedure s e l e c t _ t r a n s i s t o r ,  which returns the transistor 

number based on the joint to be moved and the sign of the angle.
move > 0 
switch 

{case

)(joint)
1 : transistor = 1 1;

case 2 break;: transistor = 8;
case 3 break;: transistor = 6;
case 4 break;: transistor = 2;
case 5 break;■■ transistor = 10;
}elseswitch (joint) 
{case 1 : transistor = break; 12;
case 2 •• transistor = break; 7;
case 3 : transistor = 

break; 5;
case : transistor = break; 1;
case 5 : transistor = 9;
}return (transistor);

In the event that a move of zero is requested, the negative transistor for the joint is 

arbitrarily selected as there will not be any activity.

c. Iteration During the Move. There are two possibilities for controlling the

movement of an arm joint through 6 degrees. First, feedback hardware can be utilized

to provide information to the computer as to the positioning of the arm; this method

was deemed inappropriately complex with respect to the goals of this project. The

other alternative is to control the joint movement by a timing scheme. The assumption

here is that movement of a joint occurs at a constant fixed rate. Inertia, acceleration,

and other complicating factors are outside the scope of this project and are thus

ignored. Given this, a simple iterative loop can be used to control movement by first

determining how many degrees of movement are obtained for each pass of the loop.

The following loop structure was set up to make these determinations: 
i = 0;
outportb (888, transistor);
uhile ( (!kbhit( )) & (i < iterations) )
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i = i + 1 ; outportb (888, 0);

The variable i t e r a t i o n s  was set to 10000, a value in excess of any iteration count 

to ever be used. The loop was then executed numerous times for each of the joints. 

The test for a joint begins by moving the joint manually to one end of its arc of 

movement. For example, the wrist is dropped to the lowest position possible. The 

variable t r a n s i s t o r  is set to the number of the transistor associated with the 

movement being tested. In the example, transistor 1 is used as it will cause upward 

movement of the wrist toward the highest position possible. The program segment is 

then run. The first statement raises the appropriate control lines, beginning movement. 

The loop itself first checks the keyboard buffer to sec if any key has been struck; if not, 

control continues through the loop to the next pass. If a key has been struck, 

indicating that the wrist has achieved the maximum upward position, the loop is exited. 

The final statement lowers all control lines, ceasing movement. The value of i  reflects 

the number of iterations required for the joint to move through its entire range in the 

given direction. In the case of the wrist, this range is 200 degrees, while the average 

iteration count was found to be 365. The inference from this is that the loop iterates 

365/200 = 1.825 times for each degree of movement. This value of 1.825 is then the 

scale factor for the upward movement of the wrist joint. This scale factor can be used 

to determine the number of iterations necessary for any desired range of movement. 

For example, a movement of 100 degrees would require 100 degrees x 1.825 

iterations/degree, or approximately 183 iterations of the given loop.

An additional point should be made about the loop structure. While the 

keyboard buffer test is obviously necessary for the scale-determination phase, it may 

seem that it should be removed from the loop before it is put into use; this would 

reduce the amount of time used on each iteration and in turn alter the count times as 

obtained. This point however is nullified as there are a pair of valid reasons for leaving



71

this test in place. First, experimentation with the arm showed that a motor would 

occasionally stall; this led to the rapid burn-out of the selected transistor as current 

was not flowing through the motor. By retaining the ability to leave the loop early, the 

user can act as quickly as such a situation is noticed to save the transistor. Another 

advantage of this set up is that the user can abort a movement which is leading the arm 

to inadvertently strike another object in its envelope.

The geometric configuration of the arm gives the ranges in degrees for the joints 

as stated in Table 4.11.

Table 4.11. RANGES OF THE ARM JOINTS

Joint M ovement Range
Arm Horizontal 360
Arm Vertical 35
Elbow Horizontal 180
Wrist Vertical 200
Wrist Rotate 360

The tests carried out for each of the joints and directions produced the average 

iteration-count to degrees-moved ratios in Table 4 .III. As wrist rotation can be 

performed continuously in the same direction, the counts were made for three complete 

rotations to improve accuracy; this was necessary due to the speed of the rotation. 

The arm movement from left to right is also continuous, but it is slow enough for one 

rotation to be sufficient for timing purposes.

The corresponding iteration-to-degree scales are returned by procedure

s e l e c t _ s c a l e  which acts on the transistor number, 
switch (transistor)

{ /* Wrist Down - Up */case 1 : scale = 3000 / 200;
break;case 2 : scale = 3650 / 200;
break;

case 3 : scale = 1;
break;

case 4 : scale = 1;

/* Gripper Close - Open #/
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Table 4.III. ITERATION COUNTS TO DEGREES MOVED FOR JOINT

CONTROL

Joint Direction Ratio
Arm Left 710 / 360
Arm Right 650 / 360
Arm Down 290 / 35
Arm Up 270 / 35
Elbow Right 415 / ISO
Elbow Left 410 / ISO
Wrist Up 365 / 200
Wrist Down 300 / 200
Wrist-Rotate Left 6S0 /1080
Wrist-Rotate Right 660 /1080

break;
case 5 :: scale = 

break;
9150 / 180;

case 6 :: scale = 
break;

9100 / 1 80;

case 7 : scale = 
break;

2900 / 35;
case 8 : scale = 

break;
2700 / 35;

case 9 : scale = 
break;

6800 / 1 080;
case 1 0 : scale = 

break;
6600 / 1 080;

case 1 1 : scale = 
break;

7100 / 360;
case 12 : scale = 6500 / 360;

return (scale);

/* Elbow Right - Left */

/ X Arm Down - Up X /

/ X  Wrist Rotate Left - Right X /

/ X  Arm Left - Right X /

Note that transistors 3 and 4, which respectively control closing and opening of the

gripper, have arbitrary' scales of 1, as they will not be used.

The number of iterations for a given transistor and move are thus found by 

multiplication of the scale (iterations per degree) and the number of degrees to turn; 

additionally, the change in the joint per iteration is the inverse of the scale, or degrees 

per iteration, in the direction of the move to be made.

degree_scale = select_scale (transistor);
iterations = round (fabs(move_degrees) X degree_scale);
degrees_per_iteration = sign (move_degrees) / degree_scale;
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After the completion of the timing loop, the number of degrees moved is then the 

delta rate multiplied by the number of iterations; if the move was completed without 

interruption, a direct assignment is made to eliminate the error introduced by the scale 

division and subsequent multiplication.

if ( i == iterations )
thetatjoint] = desired_position; else 
{getch ( );
thetatjoint] += degrees_per_iteration * i;
}

C. DETERMINATION OF POSITION AND ORIENTATION

The remainder of this chapter is dedicated to determining the position and 

orientation of the robot manipulator's gripper as the control variables change. The 

center point of the gripper closure will be derived as the components of the vector from 

the base coordinate frame to the center point. Associated with the gripper will be a 

triple of three unit vectors which will uniquely specify the orientation of the gripper; 

their vector components will also be obtained.

1. The Problem Approach. The problem of determining position and orientation 

in robotics is approached by considering the robot manipulator as a set of 

transformations. First, a base coordinate frame is established for the manipulator. 

The vector triple (T0, ĵ ,, z0) will represent this frame; see again Figure 41. World 

coordinates are specified with respect to the origin and directions of this frame. The 

manipulator will then have a series of relative coordinate frames established with 

respect to each of its joints. When a joint moves, it is transforming the next relative 

base frame and all those succeeding with respect to its own frame. The transformation 

due to a specific joint can be represented by a transformation matrix. The 

transformation matrices for all of the joints of the robot when multiplied together yield
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a combined transformation matrix for the entire robot manipulator. Base-frame 

coordinates when multiplied by this single matrix will be transformed to the base-frame 

coordinates resulting from the scries of rotations and translations. In this manner, a 

set of unit vectors in the x-, y-, and z-directions will be transformed to the x-, y-, and 

z-directions of the coordinate frame at the end of the manipulator after the movements; 

this will in turn specify how the gripper is oriented as the coordinate frame is fixed 

relative to the gripper. This transformation will also be done for the base coordinate 

frame origin to determine the center point of the gripper closure, as this is the 

coordinate frame origin at the manipulator's end.

2. Link Transformations. A link is said to connect one joint's coordinate frame 

to the next. By convention, link i covers the transformation from coordinate / — 1 to 

/. The composition transformation accomplished over a single link with respect to the 

starting joint's coordinate frame of reference is by convention a sequence of four 

individual transformations. The transformations include a rotation angle 9, about axis 

z,_i, translation of a distance d, along z,_,, translation along axis x,_, of distance a„ and 

a rotation angle of a, about x,_, from the z,_, vector direction to that of z,. These four 

transformations allow for both the movement of the robot joints and the fixed offsets 

due to the physical dimensions of the robot. The link measures, or parameters, 

6i, d„ a,, and a, are commonly presented in a link parameter table; such a table will be 

constructed for the Armatron manipulator.

Consider first the rotation 0, about axis z,_,. From Figure 4.3,

x — r cos cf) (4.1)

y = rsin4> (4.2)

x' = r cos(<£ +  6-j (4.3)
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/  = r sin ((j) + 0,-) (4.4)

Figure 4.3. Rotation of a Point about the z-axis

Equations (4.3) and (4.4) are expanded using the trigonometric identities for the cosine 

and sine of the addition of two angles, respectively.

x' = r( cos <f> cos 6i — sin <f> sin 0,) (4.5)

y' = r{ cos <j) sin + sin (f> cos 0;) (4.6)

The right hand sides of Equations (4.5) and (4.6) are then regrouped to allow 

substitutions to be made from Equations (4.1) and (4.2).

x' = (r cos efi) cos Qi — (r sin <£) sin 0(- (4.7)

y' = {r cos <t>) sin 6-t + (r sin <f>) cos 0(- (4.8)

x' = x cos 0; — y sin 0( (4.9)

/  = x sin 0; + y  cos 0f (4.10)
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Additionally, since the rotation was about a z-axis, there is no change in the 

z-coordinate.

z' = z (4.11)

Equations (4.9), (4.10), and (4.11) may be combined into a single matrix equation.

.v' cos 6,- — sin 6,- 0 0 X
Jy sin 0(- cos 6j 0 0 y
 ̂tZ 0 0 1 0 z

l 0 0 0 1 1

The translation d, along axis z,_i of a point (x,y, z) results in the new point whose 

coordinates are given by the following equations:

x' = x (4.13)

/  = y (4.14)

= z + dj (4.15)

These equations may also be combined in matrix form.

x' 1 0  0 0 X

y ' 0 1 0  0 y

z' 0 0 1 4 ) 2

l 0 0 0 1 1

Similarly, the translation a, along axis x,_, may be represented by the following

equations.
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x' = X + <3(- (4.17)

y (4. IS)

»2 = Z (4.19)

x' 1 0 0 a, X

y 0 1 0  0 y

2' 0 0 1 0 z

1 0 0 0 1 1

The final rotation a, about the x,_, axis is similar to that of the 2-rotation and may

be seen in Figure 4.4. From the figure,

y = r cos /? (4-21)

z = r sin /J (4-22)

y  = r cos(/J + at) (4-23)

z' = r sin(/? + oq) (4.24)

Equations (4.23) and (4.24) arc expanded as were (4.3) and (4.4) using the 

trigonometric identities for the cosine and sine of the addition of two angles, 

respectively, prior to regrouping and substitution from Equations (4.21) and (4.22).

v' = r( cos ft cos oq — sin /? sin oq) (4-25)

z' — /•( cos P sin a,- + sin p cos a,) (4-26)

y  =  (r cos P) cos af — (r sin /?) sin a; (4.27)
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Figure 4.4. Rotation of a Point about the x-axis

z '  =  (r cos /?) sin cq +  (/' sin /?) cos a t- (4.2S)

/ = j/ cos a; - 2  sin a, (4-29)

z' =  j '  sin af + z cos al (4.30)

Since the rotation was about an x-axis, there is no change in the x-coordinate.

x '= x  (4.31)

Equations (4.31), (4.29), and (4.30) may also be combined into a single matrix 

equation.

x ' 1 0 0 0 X

y 0 c o s  a,- — s in  a ;- 0 V

z' 0 sin  a,- c o s  a ,• 0 2

1 0 0 0 1 1

(4.32)
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The effects of the four transformations in Equations (4.12), (4.16), (4.20), and 

(4.32) are then combined in a single equation.

x ' c d j 0 0 ] 0 0 0 1 0 0 a i 1 0 0 0 X

/ s 6 j c01 0 0 0 1 0 0 0 1 0 0 0 CCq — setj 0 y

z ' 0 0 1 0 0 0 1 d l 0 0 1 0 0 sa i ca.j 0 z

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 l

The sequence of transformations performed on the point (x, y , z) by the matrix 

product of Equation (4.33) can be thought of in two ways. One can start with the 

original point and perform the x-rotation with respect to the base coordinate frame. 

This would be followed by an A--translation, again with respect to the base coordinate 

frame. The z-translation and z-rotation would successively follow, each still with 

respect to the base coordinate frame. One can visualize this using Equation (4.33) by 

successively multiplying the last two matrices, a transform and a point vector, 

step-by-step creating intermediate point vectors.

Consider a numeric example. Let the sequence of transformations be a rotation 

about the z-axis of 25', a translation along the z-axis of 7 units, a translation along the 

x-axis of 16 units, and a rotation about the x-axis of 96°. Let the point to be 

transformed be £22, 10, 13, l3 T- The process is performed in the reverse of this 

order, one transformation at a time. Figures 4.5 through 4.8 detail each of the steps 

graphically.

X 1 0 0 o" 22

y 0
6

cos 96 — sin 96 0 10

z 0 sin 96 cos 96 0 13

1 0 0 0 1 1

(4.34)
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x 22.000

y -13.974

z S.586

1 1

(435)

Figure 4.5. x-Rotation with Respect to the Base Coordinate Frame

X 1 0 0 16 22.000

y 0 1 0  0 -13.974

z 0 0 1 0 8.586

1 0 0 0 1 1

X 38.000

y -13.974

z 8.586

1 1

(4.36)

(4.37)
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Figure 4.6. x-Translation with Respect to the Base Coordinate Frame

X 1 0  0 0 38.000

y 0  1 0  0 -13.974

2 0  0 1 7 8.586

1 0  0 0 1 1

X 38.000

-13.974

z 15.586

I 1

X cos 25 — sin 25 0 0 38.000

y sin 25 cos 25 0 0 -13.974

2 0 0 1 0 15.586

1 0 0 0 1 1

(4.38)

(4.39)

(4 .40)
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Figure 4.7. z-Translation with Respect to the Base Coordinate Frame

X 40.345

y 3.395

2 15.586

1 1

(4.41)

Figure 4.8. z-Rotation with Respect to the Base Coordinate Frame
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The other method for consideration of the transformed point begins by 

performing the first transform on the point vector, generating an intermediate vector. 

The next transformation is then applied to this new point but now with respect to the 

coordinate frame resulting from the first transform. The third transformation is 

applied with respect to the resultant frame of the first two transforms, and the final 

transformation is applied in turn with respect to the result of the first three transforms. 

This successive relative coordinate frame transformation scheme is extended from 

within one link to going from one link to the next to accommodate the motion of the 

entire manipulator.

The numerical example for this alternate reasoning is more complicated. The 

sequence begins by rotating the original point about the z-axis. The _v- andy-axes are 

also rotated as can be seen in Figure 4.9.

X cos 25 — sin 25 0 0 " 2 2 ’

y sin 25 cos 25 0 0 10

z 0 0 1 0 13

1 0 0 0 1 1

j: ’ l5.713'

y 18.361

z 13.000

1 1

(4.42)

(4.43)

Next, the z-translation is carried out. Note that as the z-axis was not altered by the 

previous transformation, this translation may be performed immediately. Figure 4.10 

shows the changes made to the point and the current coordinate frame.
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fy Z.Z'

Figure 4.9. z-Rotation with Respect to the Current Coordinate Frame

X 1 0  0 0 15.713

y 0 1 0  0 18.361

z 0 0 1 7 13.000

1 0 0 0 1 1

X 15.713

3; IS.361

7 2 0 .0 0 0

1 1

(4.44)

(4.45)

As can be seen in Figure 4.10, the current x-direction is the intersection of the 

horizontal plane parallel to the original x-y plane 7 units up the original z-axis and the 

original x-z plane rotated 25" about the original z-axis. A translation of 16 units in 

this direction is thus the combination of a translation of 16 cos 25" in the original 

x-direction and a translation of 16 sin 25" in the original ^-direction. The translation 

is depicted in Figure 4.11.
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Figure 4.10. z-Translation with Respect to the Current Coordinate Frame

X 15.713 + 16 cos 25

y 18.361 + 16 sin 25*

z 20 .0 0 0

1 1

X
/w

30.214

y 25.123

z 2 0 .0 0 0

1 1

(4.46)

(4.47)

The final transformation, the x-rotation of p"' about x " ', is depicted in Figure 4.12. 

The numerical determination of the coordinates of p"" requires several steps. This is 

because the rotation equations derived earlier only apply to rotations about the origin. 

Thus the current x-axis (as well as its coordinate frame and p"') must be transformed 

back to its original direction and position prior to performing the rotation about it.
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Figure 4.11. x-Translation with Respect to the Current Coordinate Frame 

The back-transforms are then undone on the axis, coordinate frame, and p'", resulting 

in the fourth coordinate frame and p"".

Figure 4.12. x-Rotation with Respect to the Current Coordinate Frame

First, rotate the point (and consequently the current coordinate frame) —25' about the 

a-axis so that the axis of rotation, ar, lies in the base coordinate x-z plane parallel to

the base frame a:-axis.
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X
temp\ C4lGOoCJ

I____ -  sin( -25)" 0 0 30.214

y sin( —25) cos( -25) 0 0 25.123

z 0 0 1 0 20 .00 0

1 0 0 0 1 1

X
icmp\

3S.001

y 10.000

z 20 .0 0 0

1 1

Relative to the current coordinate frame, the point is still [22, 10, 13]T. 

of the z- and x-translations of 7 and 16 units, respectively, arc still apparent, 

is then rotated about the x-axis by the required 96".

r “item p i
0 0

-i r -i
X 1 0 38.001 - 16

y 0 cos 96 — sin 96 0 10.000

z 0 sin 96 cos 96 0 2 0 .0 0 0  - 7

1 0 0 0 1 1

X
tem p i

22.001

y -13.974

z 8.586

l I

The effects of the z- and x-translations are reinstated and the previous z 

—25* is reversed to obtain the final position.

(4.48)

(4.49)

The effects 

This point

(4.50)

(4.51) 

rotation of
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X
////

cos 25 -  sin 25 0 0 22.0 01 + 16

y sin 25 cos 25 0 0 -13.974

•7 0 0 1 0 8.586 + 7

1 0 0 0 1 1

X 40.346

y 3.395

2 15.586

l 1

(4.52)

(4.53)

The results arc virtually identical with those obtained in the previous example's 

Equation (4.41).

The four transformation matrices of Equation (4.33) may be multiplied together 

to form what is termed the A matrix for link i.

c8j ~s6j 0 0 1 0 0 0 1 0 0 ai 1 0 0 o '

sQ[ c8 i 0 0 0 1 0 0 0 1 0 0 0 cai —SUj 0

0 0 1 0 0 0 1 4 0 0 1 0 0 SO.j ca-i 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

(4.54)

COS 0; — sin 0(- cos a; sin 0; sin a. at cos 8 t

sin 0(- cos cos a, — cos 0;- sin o . j sin d j

0 sin o .t cos cq J;

0 0 0 1

(4.55)

3. Assignment of Coordinate Frames. The initial configuration of a joint and the 

assignment of a coordinate frame to it should be done so that a rotating joint spins
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about its z-axis and a sliding joint moves along its z-axis, if at all possible; this will 

simplify later calculations. The remaining assignment convention requires that all of 

the coordinate frames' x-axes be aligned in the same direction; this is necessary if the 

z-rotation is to be the result of a joint movement as the three other transformations 

above do not provide for any change in x-direction from one coordinate frame to the 

next. It is also worth noting here that no reference has been made to the.y-axis. No 

provisions have been made for rotation about or translation along a y-axis. The 

reason here is again that of simplicity; by prohibiting the use of subsequent 

calculations arc reduced. Further, since an x-axis and z-axis uniquely determine a 

y-axis (z x x = y), no y-axis will be pictured as it would only serve to add needless 

complexity to a figure.

Consider the arm as it rotates in the horizontal plane first. The base coordinate 

frame was assigned with the z-axis, z0, in the upward direction with this first rotation 

in mind so that the first control variable, 0 J? the horizontal rotation of the arm, will 

be about this axis; see Figure 4.13 for this and the subsequent rotations. The next 

rotation will be that which moves the arm in the vertical direction, d7. The axis of 

rotation for the angle is z, and is assigned with the same base as axis z0. Further, from 

the point of view of the base coordinate origin looking along the length of the extended 

arm, the zr axis extends in the right direction. Thus there is no d) translation along z0 

to the new base, nor is there any ax translation along x0. The angle a, is the movement 

about x0 from the z0 direction to that of zu or 90". Thus the first row of the link 

parameter table is complete; see Table 4.IV for this and the subsequent rows.

There is no choice for the next rotation of the arm: it is that of the elbow. The 

arm's elbow can be seen to rotate in the horizontal plane about a vertical axis. The 

upward direction was selected for this next z-axis, z2. A translation along x,, namely 

a2 = 10 0  mm, is sufficient to move from the base of the second frame to that of the
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third; as no z-translation is necessary, d2 is zero. The rotation about x, which brings 

Z\ in line with z2 can be seen to be —90". Thus the assignments for the second row of 

the link parameter table are made.

The fourth rotation of the arm could be either that causing raising and lowering 

of the wrist or the rotation of the gripper about its own center line in a drill-type 

fashion. Since the final offset to the gripper center is in the same direction as the axis 

of gripper rotation, the former is chosen here so that the offset will take place along 

z4 rather than z5. The base coordinate frame again has the same x-direction but the 

z-direction now extends horizontally to the right of the joint. A translation along x2, 

specifically a3 = 100 mm, suffices for the move from the previous base to the new one; 

no z-translation is needed so d2 is zero. The rotation from axis z2 to z3 about x2 can be 

seen to be 90". This completes the third row of the link parameter table.
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The final rotation is that of the wrist about its own center-line yielding the direct 

rotation of the gripper. It can now be seen why the initial configuration calls for the 

gripper to be pointed down. One might be inclined to fully extend the arm with the 

gripper pointing outward. The rotation of the gripper would then be about the 

common jr-direction. This would in turn complicate subsequent calculations as an a., 

rather than a 0, rotation would be required. By initially pointing the gripper down and 

assigning the z-axis z4 in this direction, the control variable is another 0 , 05, and effort 

will be saved later. The transformation from the base used by 04 to that of 05 requires 

no translation in either the a-- or z-dircction as the two frames share the same origin; 

thus cu and cU are both zero. The rotation about from z3 to z4 is 90". This completes 

the fourth row of the link parameter table.

The final coordinate frame will be dependent on the action of the final control 

variable, d5, and is based at the center point of the gripper closure. There is a 

z-translation, ds -  100 mm, along axis z4 to the center point of the gripper; no 

x-translation is required so a< is zero. The direction for the final coordinate frame's 

z-axis, z5, is arbitrary as no further translations or rotations remain; aligning it with z4 

requires no rotation about x4, so a5 is zero. This finishes the link parameter table.

Table 4.IV. THE ARMATRON LINK PARAMETER TABLE

Link Variable <3, d, O-i
1 0 , 0 0 +90"
2 0 2 <22 0 -90"
3 e> 0 +90"
4 04 0 0 +90"
5 05 0 ds 0 "

4. Generation of Equations. Using the link parameter table, A matrices are

created for each link. From Equation (4.55),
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cos 0 , -  sin 0 , cos a, sin 0 , sin a, a, cos 0

sin 6 , cos 0 , cos a, — cos 0 , sin a. a] sin 0 ,

0 sin a, cos a, d\

0 0 0 \

(4.56)

Substitutions into liquation (4.56) from the first row of the link parameter table arc 

then made.

cos 6 , — sin 0, cos 90 sin 0, sin 90 (0) cos 0

sin 0 , cos 0, cos 90 — cos 0, sin 90 (0) sin 0 ,

0 sin 90 cos 90 (0 )

0 0 0 1

(4.57)

COS 0! — sin 0 i(O) sin 0 ,( 1)

sin 0 j cos 0 ,(0 ) — cos 0,(1)

0 (I) (0 )

0 0 0

(4.58)

cos 0 , 0 sin 0 , 0

sin 0 , 0 — cos 0 , 0

0 1 0 0

0 0 0 1

(4.59)

The A matrix for link 2 is obtained from Equation (4.55) and the second row of

the link parameter table.
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A2 —

cos 0 2 -  sin 6 2 cos( -9 0 ) sin 0 2 sin( —90 ) a2 cos d2

sin 0 2 cos d2 cos( -

oON1 — cos d2 sin( —90 ) a2 sin 0 2
(4.60)

0 sin( —90 ) cos( —90 ) (0 )

0 0 0 1

cos 0 2 0  -- sin 8 2 a2 cos 6 2

sin d2 0 cos 8 2 a2 sin 0 2
a 2 =

0 - 1 0 0
(4.61)

0 0 0 1

The third row of the link parameter table and Equation (4.55) yield the A matrix 

for link 3.

cos d3 — sin d3 cos(90 ) sin 6 3 sin(90 ) a3 cos 6 3

sin 0 3 cos 03 cos(90) — cos d3 sin(90 ) a3 sin d3
(4.62)

0 sin(90 ) cos(90 ) (0 )

0 0 0 1

cos 8 3 0 sin d3 a3 cos $ 3

sin Q3 0 — cos d3 a3 sin 6 3

0 1 0 0

0 0 0 1

(4.63)

The A matrix for link 4 is obtained using Equation (4.55) and the fourth row of

the link parameter table.
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COS -  sin 04 cos(90 ) sin 04 sin(90 ) (0 ) cos 6 ,

sin 0 4 cos C4 cos(90 ) — cos 94 sin(90 ) (0 ) sin 6 1

0 sin(90 ) cos(90 ) (0 )

0 0 0 1

cos 04 0 sin 04 0

sin 0 — cos 64 0

0 1 0 0

0 0 0 1

(4.65)

The fifth and final row of the link parameter table together with Equation (4.55) 

yields the last A matrix of the Armatron manipulator.

cos 0 5 — sin 0 5 cos(0 ) sin 0 5 sin(0 ) (0) cos 6

sin 0 5 cos 0 5 cos(0 ) — cos 0 S sin(0  ) (0 ) sin 6 ,

0 sin(0 ) cos(0 ) d,

0 0 0 1

(4.66)

cos 0 5 — sin 0 5 0 0

sin 0 5 cos 0 5 0 0

0 0 1 d5

0 0 0 1

(4.67)

These five matrices may now be used to transform a point in base coordinates to 

the position resulting from the five robotic joint settings.
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— Â AjA^A^Â (4.68)

As described before, one can think of performing the A\ transformation on the point 

with respect to the base coordinate frame, then performing the A2 transformation on 

the new point with respect to the /^-transformed coordinate frame, and so on through 

As. This equation will be used to transform the origin to the center point of the 

gripper closure and it will be used to determine the three vector directions specifying 

the orientation of the gripper. It is clear from Equation (4.68) that the matrix product 

A\A2AsAiAs must be obtained. The following equations obtain this product by 

post-multiplying one additional matrix at a time.

Cl 0 *i 0 C2 0 “ *2 °2C2

*i 0 “ Cl 0 *2 0 C2 a2s2

0 1 0 0 0 - 1 0 0

0 0 0 1 0 0 0 1

C]C2 5] -Cl *2 a2c \c 2

5, C2 C, “ *1*2 fl2 ]̂C2

s2 0 C2 a2s2

(4.69)

(4.70)

0 0 0 1
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ClC2 ~ 5 i - C]52 a 2c ] c 2 c 3 0 *3 a 3^3

*\ c 2 c i ~ s \s 2 a 2s \c 2 s 3 0 ~  c 3 «3^3

■h 0 c 2 a 2s 2 0 1 0 0

0 0 0 1 0 0 0 1

C\C2C3 5,.v3 - c , . v 2 C]C2S3 +  .v,c3 a 3 c l c 2c 3 ~  a 3 'V ?3 a 2c l c 2

5jC 2C3 +  C ,5 j S \ 52 ■V1C2'V3 — c l c 3 3̂*̂ 1 ^2^3 2̂* 1̂ ^2

•*2C3 c2 *2*3 a3S2c3 +  a2s2

0 0 0 1

A j A2A3Aa

c4 0  s4 0

54

<31o

0

0 1 0 0

0 0 0 1

A\A^A3Aa —

( C1C2 C3 — ■x] ,s3 ) c 4 — C\S2SA 

( 5 1c2 C3 +  c 153 ) C4 —

52C3C4 4~ C2S4

C1C2S3 4~ 5 1C3 

•S] C2‘S3 — CI C3 

V3

0 0

(c,c2c3 -  5 ,53) s4 +  C,52C4 a 3 ( c xc 2 c 3 -  s , s 3) +  a2c,c2 

(s,c2c3 +  c , 53)54 +  i , 5 2c4 a30 ,c 2c3 +  C ,J3) 4- a 2 S j C 2 

s 2 c 3s A -  c 2 ca ( a 3c 3 +  a 2)<>2

(4.71)

(4.72)

(4.73)

(4.74)

0
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A]A2A3AaA3 — A^A2A3Aa

c5 — *5 0 0

*5 c5 0 0

0 0 1 d5

0 0 0 1

(4.75)

A 1 A2A3A4Aj

((c,c2c3 -  .V 3)c4 -  +  (<W 3 + 51C3)55

((hC2C3 + C,S3)C4 - 5^2.94)c5 + (5,C2.93 - C,C3).S5

(-W 4 + c2sA)c5 + s2s3s5 

0

-  ((c,C2C3 -  5,.S3) c4 -  C,S254)55 +  ( c ,c 253 +  i',C3) c 5

-  (-( Ĵ c2c3 +  c ,5 3)c4 -  ^,5254)55 +  (5 ,c 253 -  C,C3)c 5

-  (s2c3cA + c2.i4 ).v5 + s2s3c5 

0

(C]C2C3 5j53)^4 + Cj.V2C4

(S]C2C3 + C,J3)i4 + 5,52C4 

2̂ ̂ 3̂ 4 2̂̂ 4

o
i/5( ( c ,c 2c3 - .V3K  + c,52c4) + a 3 ( c ] c 2 c 3 ~  s,.s3) + a 2c ,c 2 

d 5{{s\C2c 3 +  c ,5 3) i 4 +  -s,.s2c4) +  o3(5,c2c3 +  C,53) +  a 25 ,c 2 

d s { s 2c 3sA -  c2c4) +  (a 3c 3 + a 2) s 2 

1

(4.76)

With the combined transformation matrix in hand, all that remains is the selection of 

points to be transformed.

As described earlier, the center point of the gripper closure (referred to as point 

p) is the base point of the last coordinate frame of reference. The transformation 

AiA^AiAtAs, or 0AS, translates the base coordinate frame origin to p. Thus
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[ 0  0 0 l ] r shall have the transform applied to it to obtain the current gripper 

postion, which is referred to as [/?, py pt l ] r. See Figure 4. 14.

P x 0

P y

II
o

0

P z 0

1 1

(4.77)

Figure 4.14. Position Point and Orientation Vectors

The vector p is that extending from the base coordinate frame origin to point p. The 

components of p are then found by subtraction of the components of the end point 

from the start point.
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Px 0

Py 0

Pz 0

1 1

(4.78)

Px

p =
Py

Pz

0

(4.79)

Three vectors with which the orientation of the gripper may be described will now 

be obtained under the transformation; see vectors n, o, and a in Figure 4.14. First 

consider a unit vector in the direction of the base frame's 2-axis. When the transform 

is applied to a point along this vector, a point along the final z-axis, z5, is obtained. 

This axis has its origin at the gripper center and lies along the gripper center line; the 

oAs transformation of a point along the base z-axis thus yields a point along the gripper 

center line. The unit vector in this direction is termed the approach vector, a. 

Transformation of the base coordinate point [0  0 1 \~\T would yield the desired

point on the zj-axis, but the vector itself (i.c., a direction) would be of more use. The 

approach vector is obtained by subtracting the gripper center from the transformed 

[ 0  0 1 i ] r.

0 Px

0 Py

1 Pz

1 1

(4.80)
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Substituting from Equation (4.77) into Equation (4.80) yields a simplified result for the 

approach vector.

0 0

0 /f5 0
-  O''1

1 0

1 1

0 0

0 0

1 0

1 1

(4.81)

(4.82)

a = nA (4.83)

Next consider a unit vector in the direction of the base frame's x-axis. A point 

along the final x-axis x5 is obtained when the 0A5 transform is applied. The unit vector 

in this direction is designated the normal vector n. Transformation of the point 

[ 1  0  0  l ] r would yield the desired endpoint, but transformation of Cl 0 0 0 ] r 

yields the vector components of the n vector as was demonstrated for the approach

vector.
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n = nA' (4.8-1)

Lastly, a unit vector in the direction of the base frame's y-axis is transformed. 

The unit vector in the direction of the final j ’-axis, ys, is called the orientation vector, 

o. In the same manner as that used for the vectors a and n, transformation of 

[ 0  1 0 0 ] r yields the vector components of o.

o = 0/L (4.S5)

Equations (4.77), (4.S3), (4.84), and (4.S5) may now be combined into a single 

matrix equation.

0 0 1 0

0 0 0 1 

0 1 0  1

1 0  0 0

(4.S6)

Observing that the four columns of the rightmost matrix are also columns of the 

identity matrix, the equation may be rearranged to take advantage of this.
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1 0  0 0

0 1 0  0 

0 0 1 0

0 0 0 1

[ n  o a /?] =  0A 5

Expanding the vectors and point into their components,

" jc ax Px

ny ay Py

n2 o2 P2

0 0 0 1

(4.S7)

(4.88)

(4.89)

Thus, the elements of the matrix product 0AS are themselves components of the desired 

position and orientation vectors.

Procedure n o a p _ m a tr ix , mentioned in Chapters 1 and 3, calculates and 

displays the components of the vectors of the vectors n, o, a , and p, respectively, as 

well as the joint variables. The equations for n arc obtained from Equation (4.76).

nx = ((c,C2C3 -  5,53)c4 -  c,5254)c5 + (C,C253 + 5,C3)55 (4.90)

ny = ((5,C2C3 + c,s3)c4 -  5,5254)c5 + (s,c2s3 -  C,C3)5S (4.91)

>h = (^C3C4 + c2%)c5 + 52s 355 (4.92)

The component equations for o are:

®x ((C]C2C3 5,53)c4 C,5254)53 + (c,C253 + 5,C3)c3 (4.93)
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Oy = -  ((-V,C2C3 + c,.v3)c4 -  5|5254)x5 + (s,c2s3 -  c,c3)c5 (4.94)

o2 = -  (s2c3c4 + c2s4)s5 + s2s3c5 (4-95)

Vector a components are defined by the following equations:

ax = (r,c2c3 -  i , j 3)ji4 + c,52c4 (4.96)

ay = (.v, c2c3 + c, s3)s4 + s, s2c4 (4.97)

a2 = -52c3‘V _  C2C4 (4.9S)

Lastly, the component equations for point p arc:

Px = ^s((clc2c3 “  V3)*4 + C,52C4) + ^ (clc2c3 ~ S1S3) + «2clC2 (4-99)

Py = ds{{sxc2c3 + c,.s3)j4 + .s, s2c4) + a3(s,c2c3 + c,s3) + a25,c2 (4.100)

Pz = ds(s2c3^ -  c2c4) + (a3c3 + a2)s2 (4.101)

5. Numerical Example. As an example, consider the set of control variable values

(0i, 02, 6 3, 04, 05) = ( — 1 15', 25', 50\ 65', —35°). After these five values have been input 

as settings for the respective joints, the display in Figure 4.15 is produced.



Theta
A r m a t r o n  M a n i p u l a t o r  C o n t r o l

-115.000 N 0 A P
25.000 I 0.790 -0.516 0.331 39.566
50.000 ! 0.195 -0.300 -0.934 260.692
65.000 : 0.581 0.802 -0.137 55.745

-35.000 : o  o 0 1
Joint-Variable Control

Joint Angle
1 : Arm Right/Left 

(-360 to +360)
-115.000

2: Arm Down/Up 
( -5 to +30)

25.000
3 : Elbow Right/Left 

( -90 to +90)
50.000

4 : Wrist Down/Up 
( -10 to +190)

65.000
5: Wrist Rotate Left/Right 

(-360 to +360)
-35.000

0: End Joint-Variable Control
Select Joint:

Figure 4.1.5. Joint Variable Control Display
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D. THE CONTROLLING PROCEDURE

Procedure ] o i n t _ v a r i a b l e _ c o n t r o l  begins by displaying the introductory 

screen of Figure 4.16. The option is given at that point of using the actual joint 

limitations for the manipulator joints or bypassing these so that this portion of the 

program may be used for computation purposes only. Orientation and position 

matrices may be generated for any values of joint variables if the constraints arc 

bypassed. The next chapter develops a program which takes as input a 

position-orientation matrix and determines possible solution sets. With the joint 

constraints of this chapter's procedures ignored, they may be used to verify those joint 

solutions, whether they are attainable or not. The position-orientation matrix 

determined for the numerical example in the preceding section will be used as the input

for the numerical example of the next chapter.

dsply_joint_variable_introduction ( );
locate (23, 42);
ignore = toupper(getcht )>;
lputch (23, 42, ignore);
constraints (ignore, theta_min, theta_max); 
uait_then_erase (9);
dsply_joint_variables (jv_rows, &jv_col); 
for (i = 1; i <= 5; i++)

leprintf (jv_rows[i], jv_col, thetati]); 
process_requests (theta, noap, theta_min, theta_max,

jv_rous, jv_col, noap_rou, noap_cols);
erase_prompt (23); 
locate (23, 0);
meputs (24, 23, "Joint-Variable Control Terminated"); 
uait_then_erase (8);

Subsequently, the working display of the procedure is generated and control passes to 

the request processing procedure, where it remains until joint variable control is to be 

terminated. The documented listing for the procedures associated with the joint 

variable control portion of the overall program may be found in Appendix D.



Theta
A r m a t r o n  M a n i p u l a t o r  C o n t r o l

0 . 0 0 0 N 0 A p
o . o o o  : 1 . 0 0 0 0 . 0 0 0 0 . 0 0 0 2 0 0 . 0 0 0
o . o o o  : 0 . 0 0 0 - 1 . 0 0 0 0 . 0 0 0 0 . 0 0 0
o . o o o  : 0 . 0 0 0 0 . 0 0 0 - 1 . 0 0 0 - 1 0 0 . 0 0 0
o . o o o  : 0 0 0 1

Joint-Variable Control
The movement of each of the five joints of the 

Armatron manipulator is controlled by specifying 
a joint and angle via the keyboard.

Use the manual switches to align the robot arm 
now, if necessary.
Note: At times a motor may stall; should this

occur, immediately press the space bar to 
avoid ruining a transistor.

The constraints placed on the joint variables 
may be ignored for computation purposes. Ignore 
joint constraints? (y/n)

I’iuurc 4,16. Joint Variable Control Introduction
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V. POSITION AND ORIENTATION CONTROL

The previous chapter derived the center position of the gripper closure as the 

components of point p and the triple of unit orientation vectors n, o, and a which 

describe the orientation of the gripper. The topic of this chapter is the programmed 

solution of the inverse of this problem. The vector components of n, o, and a will be 

given as those of the desired orientation of the gripper, while the point p will specify 

the desired position. The program will be developed in a step-by-step manner as the 

problem is solved.

A. SPECIFICATION OF POSITION AND ORIENTATION VECTORS

The first step toward the solution of the stated problem is to provide for the 

specification of the components of vectors n, o, and a and the coordinates of point 

p. The following section details the derivation of equations concerning the orientation 

vectors and position. Next, a numerical example is employed to demonstrate use of 

the equations. This is followed by an explanation of the structure of the program code 

to be used. Finally, the program is demonstrated by example using the same inputs 

as the numerical example.

1. Derivation of Equations. There exist several conditions concerning the 

orientation and position of the coordinate frame at the end of the Armatron 

manipulator which must be met; this section shall develop corresponding equations 

which must be satisfied by any desired position and orientation before a solution can 

be attempted. To begin with, each of the orientation vectors n, o, and a must have a 

magnitude of one. The magnitude of the normal vector, for example, is found as

follows:
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~ \ (5.1)

The condition may be stated in different ways, two of which follow for the normal 

vector:

In the second expression, £ is some small tolerance which the imprecision resulting 

from the use of a finite number of decimal positions in the calculations should not 

exceed; this condition is suitable for use by a computer.

Another condition that must be satisfied by the orientation vectors is that they 

form a right hand triple, as do the base coordinate frame „v-, y~, and z-axes. This 

condition may be expressed in terms of the cross product. The base frame x-axis when 

crossed with the y-axis results in the z-axis. Correspondingly, vector n crossed with 

vector o should result in vector a.

I n I = 1 (5.2)

I I n | -  1 | <  c (5.3)

n>o2 -  oyn2

n X o =  n.ox — nxo2 (5.4)

n x  o  =  a (5.5)

c

(n X o) — a <  £ (5.6)

£
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When the magnitude and cross product conditions are met by a set of orientation 

vectors, a solution may be attempted for achieving them; they may yet be unattainable, 

however.

Different facts are known about the position p. (Recall from Chapter 4 that as 

the position vector p was seen to extend from the base coordinate frame origin to point 

p, the components of p arc identically the coordinates of p, namely p„ py, and pz. 

These entities will be referred to as either point coordinates or vector components 

depending upon the current context throughout this chapter.) What can be stated 

concerns the magnitude of vector p.

\p I - J p l + P y + P i  (5-7)

The magnitude changes over a wide range of values; the space reachable by the arm is 

termed its envelope. Desa and Roth [DesaSS] and Duffy [DufTSO] discuss the envelope 

or workspace of manipulators. Desa and Roth note that not neccessarily all of the 

positions within an envelope can be approached from an arbitrary' direction; they 

differentiate between primary and secondary workspaces based on this criterion. 

Inspection of Figure 5.1 shows that the magnitude actually depends on only control 

variables and 6 ». Of the remaining variables, 6 \ and d2 affect the vector direction 

only, while variable 6 S has no effect on magnitude or direction. It is clear to see that 

the magnitude of the position vector takes on its maximum value when the arm is fully 

extended.

l^lmax = G2 + °3 + 4 (5.8)

The arm offsets fl2 =100mm, a3 =100mm, and 5̂ = 100 mm yield a maximum 

obtainable magnitude of 300 mm.
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Figure 5.1. Maximum Magnitude Attainable by the Position Vector

Taking into account the physical limitations of the relevant joints, the magnitude 

of the position vector would take on a minimum value when the conditions in Figure

5.2 are in effect. Joints 3 and 4 can be seen to be at the limits of their arcs of 

movement, bringing the gripper center as close as possible to the origin. As the wrist 

is capable of 10 0 ' of vertical movement from the horizontal, the wrist will form an 80" 

angle with the arm. The minimum magnitude for vector p is then obtained by a series 

of geometric calculations. From the figure,

/j = d5 cos 80 (5.9)

l2 — d5 sin 80 (5.10)

h = a3 — A (5.11)

U — \/ a7 + h 2 (5.12)

I min ~ J l22 +  k 2 (5.13)



Ill

The calculations with the arm offsets yield a minimum magnitude of 162.871 mm.

The solution process of this chapter shall not be solely concerned with the 

restraints placed on the robot joints, however. The primary purpose here is to 

determine solutions for position-orientation specifications. To this end, the joint 

constraints will be ignored upon entry of the position-orientation matrix; in fact, they 

shall be ignored until actual solutions are determined. At that point, no move will be 

attempted if the constraints are violated. Approaching the situation in this fashion 

will allow for the solution of a much wider range of inputs. A second examination of 

Figure 5.2 will show that if joint 4 is allowed to fold the wrist back upon the arm, the 

gripper center would still be a distance of a2 from the origin. Alternatively, if joint 3 

is allowed to fold the arm back on itself at the elbow, the gripper center would be a 

distance of ds from the origin. As a2, o3, and d$ are all equal at 100 mm, there is no way 

that the joints can be positioned to reduce the position vector magnitude any further. 

Thus, either a2 or ds may be used as the vector magnitude minimum.

Figure 5.2. Minimum Magnitude Attainable by the Position Vector

(5.14)
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2. Numerical Example. Consider the position-orientation matrix given by the 

following equation.

nx ax Px 0.790 -0.516 0.331 39.566

ny ay Py 0.195 -0.300 -0.934 -260.692

n2 a2 Pz 0.581 0.802 -0.137 55.745

0 0 0 1 0 0 0 1

Recall that this matrix was generated as an example by the program of the preceding

chapter. The magnitude of vector n is found using liquation (5.1j.

I n | = J n 2x + ny + n] (5.16)

| n | = v/(0.790)2 + (0.195)2 + (0.581)2 = 1.000 (5.17)

The magnitudes of vectors o and a arc found similarly.

\ o  | = 7 ( -0 .5 1 6 ) 2 +  (~0.300)2 + (0.802)2 =0.999 (5.18)

|a I = 7 (0 -3 3 1 )2 +  ( —0.934)2 +  (-0 .137 )r  =  1.001 (5.19)

With precision limited to three decimal places, a value for i of 0.001 would be a 

minimum; something on the order of 0.01 might be more appropriate.

The cross product of vectors n and o would then be compared to vector a using 

the expression of Equation (5.4).

nyo2 -  oyn2 ax
_*
a = n2°X ~ nx°2 ay

nxoy — nyox a2_

(5.20)
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’ (0.195)(0.802) — ( —0.300)(0.5S1) 0.331 ' 'o .o o o '

(0.581)( -0.516) -  (0.790)(0.802) - < -0.934 = 0.001

(0.790)( -0.300) -  (0.195)( -0.516) -0.137 0.001

Since a solution based on the orientation vectors is feasible, the examination continues 

with the desired position of the gripper center. The magnitude of the vector was given 

by Equation (5.7).

IP
/ 2 2 2 

=  yjPx + P y +  Pz (5.22)

|p | = x/(39.566)2 +  ( —260.692)2 + (55.745)2 = 269.506 (5.23)

This value is between the maximum of 300 established in Equation (5.8) and the 

minimum of 100 established in Equation (5.14).

3. Program Structure. The orientation and position matrix is obtained from the 

keyboard under direction of procedure get_noap. It is at this level that the cross 

product of orientation vectors is examined; the iteration of the procedure will not be

terminated until a valid cross product is obtained.

init_names (names); 
do

{
for (i = 0; i <= 2; i++)

get_orientation_vector (i, names, noap, rou, cols); 
n_cross_o[0] = noap[03[1]Xnoap[1][2] - noap[0][2]*noap[1][1 ] ; 
n_cross_o[1] = noap[0)[2]*noap[1][03 - noap[03[03*noap[1][2 ] ; 
n_cross_o[2] = noap[0][0]*noapC1][1] - noap[0][13*noap[1 ] [0 ] ; 
difference = fabsCmagnitude (n_cross_o) - magnitude Cnoap[2])); 
if ( difference > tolerance )

{
lcputs (23, 20, "N x 0 does not equal A; "); 
eputs ("Re-enter Vectors N, 0, and A"); 
uait_then_erase (23);
}

}
uhile ( difference > tolerance ); 

get_position_vector (names, noap, rou, cols);
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The individual orientation vectors are obtained by procedure 

g e t _ o r i e n t a t i o n _ v e c t o r . This procedure will not be exited until the 

magnitude of the specified vector is sufficiently close to one.

do
{for (j = 0; j <= 2; j++)

{
prompt_input_noap (names[i][j] , SnoapCi][j]) ; 
erase_prompt (23);
leprintf (rou+j, colsCi], noap[i][j]>;
}difference = fabsCI - magnitude (noapCi])); 

if ( difference > tolerance )
{lcputs (23, 20, "Vector Magnitude does not equal 1; ");
eputs ("Re-enter Vector "); putch (names[i][1 ][0 ]); 
uait_then_erase (23);
}

}uhile ( difference > tolerance );

The position vector components are input under control of procedure 

g e t _ p o s i t i o n _ v e c t o r . The magnitude of the specified vector must fall within 

the maximum and minimum values derived for the position vector before control 

returns to the invoking procedure.

do
{for (j = 0; j <= 2; j++)

{prompt_input_noap (names[3][j], SnoapC3][j]); 
erase_prompt (23);
leprintf (rou+j, cols[3], noap[3][j]);
}

ma9_P = magnitude (noap[3]);if ( (mag_p > a2 + a3+d5) (mag_p < a2) )
{
lcputs (23, 20, "Specified position is outside of the arm "); 
eputs ("envelope; re-enter vector P"); 
wait_then_erase (23);
}

}
uhile ( (mag_p > a2+a3+d5) l (mag_p < a2) );

4. Program Example. Execution of procedure g e t_ n o a p  generates the display 

of the information in Figure 5.3; this same display shall be added to by the program 

examples of the solution process in the following sections.



Armatron Manipulator Control
Theta

0.000 N 0 A P
o . o o o  : 0 . 7 9 0 - 0 . 5 1 6 0 . 3 3 1 3 9 . 5 6 6
o . o o o  : 0 . 1 9 5 - 0 . 3 0 0 - 0 . 9 3 9 - 2 6 0 . 6 9 2
0.000 1 0 . 5 8 1 0 . 8 0 2 - 0 . 1 3 7 5 5 . 7 9 5
o . o o o  : 0 0 0 1

Figure 5.3. Display for Completed Position-Orientation Matrix



116

B. SOLUTION APPROACHES

The previous chapter detailed the derivation of the following twelve equations:

n x  =  ((c,e2c3 -  . v 3)c4 -  c,*2 *4 ) 0 5  +  (ci c2 * 3  +  s \ c i ) s 5  (5-24)

ny = ((s,c2c3 + c,s3)c4 -  j ,*2 *4 ) 0 5  + (*,c2s3 -  c,c3)*5 (5.25)

n2 = (s2c3c4 + c2s4)c5 + s2s3s5 (5.26)

0 X  =  -  ((c,c2c3 -  *,s3)c4 -  C]52-s4)s5 + (c,c2.<;3 + .s,c3)c5 (5.27)

O y  =  -  ((*|C2C3 + C,v3)c4 -  S,S2.S4).S5 +  (s,c2s3 -  c,c3)c5 (5.2S)

0 2 = -  (*2C3C4 + C2*4)̂ S + *2*3C5 (5.29)

a x =  (c,c2 c3 -  5 ^3 ) 5 4  + c,5 2 c4  (5.30)

fly =  (51C2C3 +  c,j3)54 + 5,52C4 (5.31)

a 2 = 52c354 -  c2c4 (5.32)

P x  =  ^5((C1C2C3 -  *l*3)*4 + H*2C4) +  «3(C1C2C3 ~ * 1*3 ) +  «2C1C2 (5-33)

P y  =  5̂((S]C2C3 + C j^ K  + *1*2C4) +  a3(*,C2C3 +  C,S3) +  G2S,C2 (5.34)

P z  =  ^s(*2 c3 * 4  -  c2c4) +  (o3c3 +  a2)s2 (5.35)

This chapter assumes that the twelve left-hand sides of these equations are specified 

while the angles of the right-hand sides are unknown. An immediate attempt to solve 

for the five control variables would be difficult and tedious, although this approach has 

been used.
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An alternative approach greatly simplifies the trigonometry and algebra required 

for the control variable solutions. The idea is to prevent the equations necessary for 

the solutions from ever becoming as complicated as Equations (5.24) through (5.35). 

The technique first makes use of the fact that the translation of the entire robot arm, 

represented by the position vector, is the sum of two translations, the translation of the 

arm up to the wrist, links 1, 2, and 3, and the translation of the wrist proper, links 4 

and 5. Now since the translation due to the wrist has a fixed magnitude, ds, and a 

specified direction, that of the approach vector, this second translation vector may be 

determined immediately. This in turn produces the arm vector by subtraction of the 

wrist vector from the entire arm vector. Next, the product of the A matrices for links 

1, 2, and 3 will yield the position of the arm preceding the wrist as its fourth column. 

Equating these elements with those obtained from the vector subtraction above yields 

three equations for the first three control variables. Finally, with the solutions for 

these variables in hand, the matrix equation relating the product of the A matrices to 

the specified vectors n, o, a, and p is used; the matrices for links 4 and 5 are isolated 

using matrix inverses. Equations for the solutions of control variables 4 and 5 are then 

obtained by equating matrix elements. The following three sections will detail each of 

these steps for the Armatron arm in the four parts used in the previous section: 

derivation of equations, numerical example, program structure, and program example.

C. COMPONENTS OF THE ARM VECTOR

1. Derivation of Equations. The first step in the solution process is the 

determination of the components of the arm vector. Consider the robot arm as 

depicted in Figure 5.4. Note that the position vector, p, extends from the origin of the 

base coordinate frame to the gripper center. Now consider the decomposition of the
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position vector described in the figure. Clearly, the vector addition of the two 

components, pa and pw, results in the total translation of the arm.

P = P a + Pw (5-36)

The vector pc represents the translation due to the arm proper, links 1, 2, and 3, while 

the vector pw denotes the translation of the wrist, links 4 and 5. The components of the 

vector p are known. The components of the vector pw may now be determined since 

the magnitude of the vector is simply ds and the direction is that of the approach 

vector, whose components are given. At this point, vector pa may be determined from 

Equation (5.36).

P a = P  ~Pw (5 .37)



119

The translation of p„ is due to the two constant arm offsets a2 and and the action of 

the arm control variables 6 t, 6 2, and d3. The next section will then detail the derivation 

of 6 1, 0 2, and from the three arm translation components, p„, pv, and pa.

Returning to the derivation of the wrist vector components, consider Figure 5.4

again. Note first that vector pw lies in the same direction as vector a. Vector a is itself 

a unit vector with known components. The components of pw may be found by scaling 

the components of a by p js  magnitude, which is just ds.

HIIs (5.38)
> 11 (5.39)

Pw, — d$az (5.40)

With the components of pw known, the vectors of Equation (5. 

components to find the constituents of the arm vector.

.37) are broken into

Pa, = Px ~ Pw, (5.41)

Pn}. Py Pwy (5.42)

Pa2 =Pz~ Pw2 (5.43)

An examination must now be made to insure that this position will lead to a 

solution. The coordinates of the gripper center were examined upon input to insure 

that the desired position was feasible. At that time, however, no relationship had been 

established between the specified position and the orientation vectors, specifically the 

approach vector. The wrist vector pw extends from the end of the arm vector p„ to the 

specified gripper position in the direction specified by the approach vector. It is
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possible that the approach vector indicates an alignment of the wrist whose starting 

end cannot be attained by the arm vector. Tests must be derived here to address this 

concern.

The magnitude of the arm in Figure 5.5 can be seen to be a function of only the 

arm offsets a2 and c?3 and control variable 03. Note that while control variables 0, and 

02 influence the direction of the arm vector p„, they do not affect its magnitude. Since 

a2 and u3 are constants, the magnitude of p* changes when and only when 03 changes. 

The magnitude of vector p„ is of course

It is clear from the figure that pc will take on its greatest magnitude when 03 is zero and 

the arm is fully extended.

(5.44)

Z,

Figure 5.5. Envelope of the Arm Proper

I Pa I max ~  °2  +  a3 (5.45)
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As 6 3 is capable of 180° of movement, from —90" to +90", the magnitude of p„ will be 

smallest when takes on either —90" or +90' as its value; vector p, will form the 

hypotenuse of a right triangle for which a2 and o5 arc the lengths of the sides.

\pa \mm = \ f ^ W  (5-46)

The calculation for the arm offsets of 100 mm each yield a minimum magnitude of 

141.421 mm.

As with the position vector components, the constraints upon the joint will be 

ignored here to allow for the solution of a wider range of position and orientation 

combinations; violations of joint constraints will be detected later. If joint 3 is allowed 

full freedom of movement, the magnitude of pc can be seen to become zero when the 

arm folds back upon itself. Unfortunately, as will be seen later, if the magnitude of p, 

is allowed to take on the value zero itself, the solution process will break down; this 

particular circumstance must then be avoided. Another breakdown occurs if only the 

x and y  components of pe become zero. Due to the configuration of the arm, this 

would only occur in the previous case or when pc is directed vertically up or down; 

component p2 would become ±  (a2 + az + ds). This second situation must also be 

avoided. The two situations share the condition of both p, and py being zero and thus 

may both be detected with a single comparison. As neither of these peculiar arm 

orientations is achievable anyway, they may both be detected here, along with the 

exceedance of the vector magnitude discussed previously.

If  any of these conditions is not met, no further work should be done towards a 

solution as none can exist. If on the other hand the desired magnitude of/it. docs meet 

these specifications, there will be solution sets for 6 U d2, and 03 which would position 

the arm vector p, as desired; again, however, they may not be within the ranges
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imposed by the physical parameters of the Armatron manipulator discussed in the 

previous chapter.

2. Numerical Example. Continuing the numerical example given by liquation

(5.15), the components of the wrist vector arc found using Equations (5.38), (5.39), and

(5.40), and the components of vector a. It should be noted that here and in the 

subsequent sections of this chapter the arithmetic will be carried out to three decimal 

places; this will lead to slight deviations with the results obtained by computer.

Pwt = d5ax (5.47)

pw =  100(0.331) = 33.100 (5.48)

Pwy = d5ay (5-49)

Pw = 100( -0.934) = -93.400 (5.50)

Pw2 = d5az (5-51)

pWt = 100( -0.137) = -13.700 (5.52)

The arm vector components are then found using Equations (5.41), (5.42), and 

(5.43), along with the components of the vector p from Equation (5.15) and those just 

derived for vector pw.

Pa2 Px Pwx (5.53)

p„x = 39.566 -  33.100 = 6.466 (5.54)

Pay Py Pw} (5.55)
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p = -260.692 -  ( -93.400) = -167.292 (5.56)

P a ,  =  P z ~  P w , (5.57)

Pttt = 55.745 -  ( -13.700) = 69.445 (5.5S)

The maximum obtainable magnitude of pc was given by liquation (5.45).

max (5.59)

l £ l max= 100 + 100 = 2°0a 1 max (5.60)

The magnitude of the desired position vector is given by liquation (5.44) and the 

components of Equations (5.54), (5.56), and (5.5S).

This value is indeed less than the maximum possible for the arm. Further, the 

components pox and pv are not both simultaneously zero, so numerical solutions will 

exist for the arm control variables.

3. Program Structure. Procedure c a lc_ a rm _ e n d  determines the components 

of the arm vector in a straightforward fashion. The wrist vector components are 

calculated using Equations (5.38), (5.39), and (5.40) within a loop, as are Equations

(5.41), (5.42), and (5.43) for calculation of the arm vector components.
for (i = 0; i <= 2; i++)

{puti] = d5 * noapC2][i3;leprintf (ant_rou, arm_cols[i], pw[i]);
for Ci = 0; i <= 2; i++)

(5.61)

(5.62)
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{
pa[i] = noap[3][i] - pu[i];
leprintf (arm_rou+2, arm_cols[i ], pa[i]);
}

mag_pa = magnitude (pa);
if ( (mag_pa > a2+a3) 1 ( (fabsCpaCO]) < tolerance) &

(fabs(pa[1l) < tolerance) ) )
mag_ok = 0; 

else
mag_ok = 1; 

return (mag_ok);

This procedure concludes by examining the generated components for the arm vector 

to insure that they meet the specifications described in the derivation of equations. A 

value is returned to the invoking procedure indicating the status of this examination.

4. Program Example. Execution of procedure ca lc_ a rm _ e n d  leads to the 

display of the information shown in Figure 5.6.



Theta
Armatron Manipulator Control

0.000 N 0 A P
0.000 : 0.790 -0.516 0.331 39.566
0.000 : 0.195 -0.300 -0.939 260.692
0.000 : 0.581 0.802 -0.137 55.795
0.000 i 0 0 0 1

Position- Orientation Control
Determination of Pa Vector Components

Pwx Pwy Pwz
33.100 -93.900 -13.700
Pax Pay Paz
6.966 -167.292 69.995

Figure 5.6. Display for Wrist and Arm Vector Components
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D. ARM CONTROL VARIABLES

1. Derivation of Equations. Recall from the previous chapter the derivation of 

the link transformation A matrices. As explained there, link matrix / may be 

interpreted as transforming link / and those following it with respect to link /'s 

coordinate frame. The matrix product A,A2A3 results in a transformation which will 

translate and rotate the base coordinate frame to that of the end of the third link. 

Multiplication of this transform by the normal, orientation, and approach vectors as 

well as the base origin was shown to result in the transformation matrix itself, as the 

vectors and point arc represented by the identity matrix. Thus, the following 

relationship holds for the components of the orientation vectors n„, 6C, and a,, and 

translation point pB at the end of the third link, or the arm proper:

p*'

% % S p°>

aa2 I\

0 0 0 1

(5.63)

The product of the matrix multiplication A,A2A3 is obtained from Equation (4.72) 

in the previous chapter and substituted into Equation (5.63).
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S p*,

"a, aam2

0 0 0 1
1 (5.64)

C1C2C3 — -V1 s 3 ~ C1S2 C1C2S3 + rt3 ( c l C2 C3 ~  s \ ^ )  +  a 2c i c :

i , c 2C3 +  c,.v3 - s t s 2 s , c 2s 3 - c , c 3 a 3 ( s l c 2 c 3 +  c,.s3) +  fi2.v,c;

S2C3 c 2 S2 S3 ( a 3 c 3 +  a 2 ) s 2

0  0  0 1

At this point, nothing is known about the components of vectors n„ oa, or a„ or 

an)' of the three control variables; however, the previous section established values for 

p„x, p0y, and poy Thus three equations may be obtained from Equation (5.64) by 

equating elements (1,4), (2,4), and (3,4).

P a t  =  a 3 ( c iC2c3 ~  V 3) + a 2 c : c 2  ( 5 . 6 5 )

Pay =  «3(51c2c3 +  ci-b) + a2s,c2 (5.66)

Pa2 =  («3C3 +  a2)s2 (5.67)

The task is now one of solving three equations of three unknowns; the complicating 

factor is of course that the three unknowns are present as arguments of the sine and 

cosine functions. One technique to begin the solution process is to square both sides 

of equations, as there are numerous sines and cosines involved and some will inevitably 

combine when squared and added to form one by trigonometric substitution. 

Equations (5.65) and (5.66) are squared first; the resulting equations are observed to 

have complementary' terms and are thus added.
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2 2 2 2 2 2 2 Pa ~ c\ c2 (a3c3 + ai) — 2a3c1s,c2.s3(a3c3 + a2) + a3 s, s3 (5.68)

P a /  =  s l c 2>(a 3c 3 +  a 2 ) 2 +  2 a 3 c >s l c 2s 3 ( a 3c 3 +  a l )  +  a 2 ^ s 3 (5.69)

P a x 2 + P a  2 = c2(n3c3 4- a 2)2 + .qc2(fl3c3 + «2)2

-  2fl3c,ijc253(a3c3 +  a2) +  2a3c,5,c253(a3c3 +  o2) +  fl3J,253 +  a^cfsj
(5.70)

A*/ + P a /  =  C?C2(«3C3 + «2)2 + ^ C2(«3C3 + ^  +  <*3^3 +  a 3 c l s 3  (5-71)

Equation (5.71) then has the common factors of the first and second pairs of right hand 

side terms factored; trigonometric substitution then reduces the equation.

P a  ^  +  P a 2 =  c l ( a 3 c 3 +  " / ( A  +  A  ) +  « 3 53 (.V? +  C?) (5.72)

A,/ + = C2^3c3 + fl2)2 + a3s3 (5.73)

The expression of Equation (5.67) when squared will combine with the first term of 

Equation (5.73)'s right hand side by trigonometric substitution upon addition.

Paj =  s2(«3c3 +  a2f  (5 .7 4 )

Pa  ̂ +  P a 2 +  Pax =  C2 ( « 3 C3 +  al ) 2 +  4 ( a3c3 +  « 2)2 +  a3 s3 ( 5 .7 5 )

P a 2 +  P a 2 +  Pax =  ( « 3 C3 +  +  * 2 ) +  a3 s3 ( 5 -7 6 )

P a 2  +  P a 2  +  P a 2  =  ( a3 c3 +  a2f  +  a3 s3 ( 5 ‘ 7 7 )

The right hand side is then fully expanded and factored again.

P a 2 +  P a 2 +  P a 2 =  a2 c3 +  2 a 2a3c3 +  a 2 +  a3 s3 (5 -7 8 )
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+  P a y 2 +  P a  ^  =  « 3 ( c3 +  * 3 ) +  2 a 2 a 3 C3 +  a 2 (5.79)

Trigonometric substitution is applied once more and the equation is solved for the 

cosine of 0 2.

2 . 2 . 2 2 , 0 , 2  
A j,  +  P a y +  P a ,  =  a3 +  2 « 2 « 3 C3 +  «2 (5.SO)

2 . 2 . 2 2 2 
/V +  /V +  Pa, -  a2 -  a2

Cl = 2 a2a3
(5.81)

The right hand side of Equation (5.81) is an expression of known quantities. The 

magnitude of the sine of the angle is then known, which leads to an expression for the 

angle itself.

sin 6 3 = ±  N/1 — cos203 (5.82)

6 3 = tan'
sin03 \ 
cos 0 3 J (5.83)

The cosine of the angle, given by Equation (5.81), will indicate by its sign whether 

the angle itself is in the first and fourth quadrants (positive) or in the second and third 

quadrants (negative). Note however that the sign of the angle's sine is not specified 

by Equation (5.82). For a given cosine, this situation yields two possible sine values, 

as depicted in Figure 5.7. The cosine of angle y is the jr-coordinate of the two points 

(xi, y}) and (x2, y2) on the unit circle about the origin; this is true because cos(y) = 

cos(-y). The ^-coordinates j;, and y2 correspond to the two results generated for the 

sine of the angle by Equation (5.82).
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Now consider the result of the arc tangent function used in Equation (5.S3) and 

throughout this chapter. The typical arc tangent function returns a first quadrant
jj-R jj* R

angle, 0 R to y  , if its argument is positive; a fourth quadrant angle,----— to 0*, is

returned for a negative argument. The cosine of an angle in the first quadrant is 

positive, as is its sine; the tangent of this angle is thus also positive so the arc tangent 

function is justified in returning a first quadrant angle for a positive argument. The 

cosine of an angle in the fourth quadrant is also positive, but its sine is negative; thus 

the tangent of the angle is negative, so the arc tangent function is also justified in 

returning a fourth quadrant angle for a negative tangent. In both of the preceding 

cases, the cosine was positive; consider now a negative cosine. A positive sine creates 

a negative tangent, for which the arc tangent returns an angle in the fourth quadrant, 

instead of the desired second quadrant angle. Likewise, a negative sine produces a 

positive tangent, and a first quadrant angle is returned by the arc tangent function 

instead of the correct third quadrant angle. Consider the cosine and sine of a first 

quadrant angle y as the coordinates (jq, jq) of a point on a unit circle centered about 

the origin; see Figure 5.8. It is clear that along the line through the first point and the
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origin there is a point in the third quadrant whose coordinates (jc2, j>2) are equal in 

magnitude but opposite in sign to those of the first point; thus there is an angle in the 

third quadrant nR away from the first angle whose tangent is equal to that of the first 

angle, This possibility must also be considered. The same argument holds true for an 

angle in the fourth quadrant; its cosine is positive, its sine is negative, and its tangent 

is thus negative. There is another angle nR away in the second quadrant whose cosine 

and sine are equal but reversed in sign. Thus, if the cosine of Equation (5.81) is 

negative, both of the results of the arc tangent must be adjusted.

The adjustment for the arc tangent result when a negative cosine is involved could 

be as simple as the addition of nR, as described above. When a fourth quadrant angle 

is returned by the arc tangent function, the addition of nR will yield a second quadrant
7T̂angle, - y  to 7rs, or 90° to 180". In the case of a first quadrant angle being returned, 

the addition of nR will yield a third quadrant angle, nR to , or 180' to 270'. 

However, since the constraints on a control variable are typically stated as a negative 

value running through to a positive value, it will facilitate comparisons with bounds 

later if the control variables are in these ranges. This point should be considered for
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any joint in any robot arm, not just the one under consideration. The corrective 

measure for a third quadrant angle whose cosine and sine are both negative will be to 

subtract nR from the first quadrant arc tangent result, rather than adding it, so that a
, _r

value in the range —nR to —-— is obtained. The adjustment for a second quadrant 

angle remains the addition of nR to the fourth quadrant arc tangent result.

nRLastly, note that if the cosine of 03 is 7.cro, then the angle is either y  or
— nR— . As the sine of the angle is not known, either of these is possible; they simply 

replace the two solutions otherwise obtained by Equation (5.83).

Consider again the expressions for p„ and pay from Equations (5.65) and (5.66), 

respectively, in the search for a solution for one of the remaining angles.

Pax ~ c!c2(a3c3 + al) ~ a3h-v3 (5.84)

Pcy = ^ c 2( a 3c3 + a 2)  + a 3C]s 3 (5.85)

The first term of the right hand side of each can be eliminated by multiplying the first 

by — Si and the second by c t and then adding.

-P a f]  = -  + 02) + «3-h53 (5.86)

Paf 1 = C15 1C2(<33C3 + al) + « 3 ci^ 3 (5.87)

- P a , s l + P a f l  = <*3S\S 3 + a3c ^ 3 (5.88)

Factoring the right hand side and again using trigonometric substitution,

- P c xs \ + P a f  1 = °3^(h2 + c?) (5.89)

~ P a xs  1 + P a f  1 = c353 (5.90)
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Since #3 has been determined previously, this equation has as its single unknown 

variable; however, the equation involves both the cosine and sine of the angle. A 

technique for solving an equation of this type is to view the coefficients of the cosine 

and sine terms as the lengths of the legs of a right triangle. Consider the relationships 

below as pictured in Figure 5.9.

+ V Pa~ + Pay (5.91)

Pax = '' COS P (5.92)

Pay = r sin P (5.93)

P — tan (5-94)

P‘,
Figure 5.9. Geometric Configuration for Solution of Equation Containing Sine and

Cosine Terms

Note that the angle /? in Figure 5.9 was deliberately chosen as that opposite the side 

representing the coefficient of the cosine in Equation (5.90).

The expressions for pCl and pCy from Equations (5.92) and (5.93), respectively, are 

substituted into Equation (5.90) to form the following:
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— (r cos p) sin 6 ] + (r sin /?) cos = n3.s3 (5.95)

This equation is then factored and a trigonometric substitution applied to obtain a 

relationship involving 0,.

r( sin p cos 0, — cos p sin 0,) = c;3.v3 (5.96)

r s'\n(p — 0,) = a3s3 (5.97)

s i n ( / l - 0 , ) - -----  =  (J.9S)
+  A C  +  A

The variable /• has been replaced by use of Equation (5.91). The cosine of the angular 

difference is of course

cos(/? -  0,) = ±  J l  -  sin2{ p - e x) (5.99)

As Equation (5.98) involves a division, the possibility of a division by zero must 

be considered. The divisor in the division is pap + p0p , which approaches zero only 

when both pD% and p„y become close to zero. This exceptional situation is one of two 

pointed out upon determination of the arm end point coordinates. As noted there, 

even ignoring joint variable restraints, the arm configuration prevents this situation 

from occurring unless the arm folds back on itself at the elbow or is fully extended 

vertically up or down. Each of these arm configurations (which are unattainable due 

to joint restrictions at any rate) are detected at that point; the solution process does 

not continue past that point. Thus no special measures need to be taken here to 

accommodate this possibility.
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Now consider the sine of the angular difference (1 — 6 , given by Equation (5.98). 

The sign of this quantity is strictly dependent upon the sine of 03 since the remainder 

of the factors, a3 and ——.= _ - , are positive. When 03 is between 0R and nR, its sine
J p i  + Pi

is positive and the sine of (i — 0, must likewise be positive. This in turn implies that 

/? — 01 is between 0s and By the same reasoning, when 03 is between —nR and 0*, 

the sine of /? — 6 , is similarly negative, forcing /? — 0, to be between — nK and 0".

The result of Equation (5.98) is divided by that of (5.99) to obtain a relationship 

for the quantity /? — 6 ,.

sin(/?-0)) 
cos(/? — 0,) = tan ( P - 0 ,) (5.100)

J] — 0, = tan'
sin(/? — 0 J  A
COs(/?-0,) J

(5.101)

Now consider the necessary adjustments to the arc tangent results. As described 

previously, if the sine of 03 is a positive quantity, then so is the sine of ft — 0)5 and the 

difference /? -  0, must lie in the first or second quadrant. The sign of the difference's 

cosine cannot be determined, so two possible values for fi — 6 \ must be considered as 

there arc two angles with the same sine and magnitude of cosine. The same argument 

holds for a negative sine of 03. The arc tangent function of Equation (5.101) will be 

employed for two arguments, returning a first quadrant angle for the positive argument 

and a fourth quadrant angle for the negative argument. Therefore, if the sine of 03 is 

positive, the addition of nR to the fourth quadrant angle will produce the desired second 

quadrant angle; see Figure 5.10.

A similar adjustment is made if the sine of 03 is negative. The addition of nR to 

the first quadrant angle will yield the desired fourth quadrant angle; see Figure 5.11.
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The control variable 6 1 itself will be adjusted to the range conventions after its

calculation from the quantities /? — 6 t and /?. Note also that if the cosine of Equation
-f-

(5.99) is zero, the angle is uniquely identified by the sine as — .
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Now consider the angle /?. Its cosine and sine are derived from Equations (5.92), 

(5.93), and (5.91). The relationship for the angle itself was given by Equation (5.94).

Pa,
cos p = ...... ...... ........... — (5.102)

. / 2 , 2+ V Pa, + Pay

Pa
sin p = ------ - =A== (5.103), /  2 2

+  \ / P a x + P a y

P — tan-1  ̂ 'j (5.104)

Since the signs of the cosine and sine are known, there is only one possible 

solution for /?. As with /? — 0h the arc tangent result is adjusted when the cosine of 

P is negative by the addition of n*. The difference here is that there is only a single 

resulting angle for /?, as one value each is given for the cosine and sine. Also, Equation

(5.102) shows that the cosine of P will only be zero if pa, is zero. In this case, the sign
• i  7r̂of the sine, or pCy, will indicate either —- — as the angle.

With the angular difference p — 0, and /? alone determined, 8 t follows.

dx= p - ( P - 6 ,) (5.105)

Each of the two 03 values results in two values for the quantity P — 6 , and consequently 

two values for 8 1 itself. As with 6 it adjustments may be necessary' for 0, to keep its 

values within the range —180' to +180°. The values of 8i resultant from Equation 

(5.105) may be adjusted by simple comparisons with the boundary limits; one full 

circle, or 360’, should be subtracted for angles larger than 180°, and 360’ is to be added 

for angles smaller than —180°.
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The expressions for p„x and pCy of Equations (5.65) and (5.66), respectively, are 

returned to a second time to derive a relationship for 6 2.

Pax = clc2(a3c3 + ai) -  a3s \s3 (5.106)

Pay = s\ci(a3c3 + ai) + a3c\h (5.107)

In deriving an equation for 0 U these equations were multiplied by —s, and ci( 

respectively, to eliminate the first term of the right hand sides. Now consider 

multiplying them by Cj and respectively. This will lead to the elimination of the 

second term of the right hand sides when the resulting equations are added.

Paxc \ ~ c\ c2(a3c3 + a2) — a'3cl-sli3 (5.10S)

2
pa/ ] = s1c2(<33C3 + a2) + c j s ] (5.109)

Paxc  1 + P a / 1 = c12c2(«3c3 + a2) + Ŝ C2{a3C3 + fl2) (5.1 10)

Factoring the right hand side and applying trigonometric substitution leads to an 

equation for the cosine of 6 2, the only remaining unknown of the original three.

Paxc\ + Pa/ \ =  C2(«3C3 +  al ) ( c \ +  s \) (5.111)

P a/1 +  P a/1 =  c 2(a 3c3 + °2) (5.112)

P a/1 +  P a/1 
C, = ------:---- (5.113)

The third original relationship, Equation (5.67), provides a solution for the sine

of the angle 8 2.
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Pa2 =  *2(fl3c3 +  <*l) (5-114)

(5.115)

The relationships for the cosine and sine of the second control variable given by

Equations (5.113) and (5.115), respectively, present again a concern that has occurred 

before, specifically division by zero. The arm offset constants a2 and a3 were observed 

earlier to each be 100 mm; consequently, the expression a3c3 + a2 can take on the value 

0 if c3 = — 1. This is physically impossible, as is the control variable for the elbow 

joint and is capable of only 90' of movement in either direction and cannot attain the 

required ISO'. Consider the circumstances under which Equation (5.81), which defines 

c3, would produce a value of -1.

(5.116)

(5.117)

(5.118)

(5.119)

(5.120)

(5.121)

Clearly, the position of the end of the third link, or the start of the wrist, must coincide 

with the origin. This is the second of the two exceptional situations singled out upon
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determination of the end point of the three arm links. The tests performed during the 

solution for the arm vector components in the preceding section handle this situation 

so no additional tests need be performed here.

The result of Equation (5.115) is divided by the result of (5.113) to obtain a 

relationship for 0 2~

sin 02 
cos 02 = tan 02 (5.122)

0, = tan-l sin 6 2 

cos 0, (5.123)

As mentioned in previous solutions, the arc tangent used in Equation (5.123) returns

an angle in the first or fourth quadrant. The results of Equations (5.113) and (5.115)

are used for the determination of the proper quadrant of the single resultant d2. If the

cosine is positive, then arc tangent returns the proper angle. If however the cosine is

negative, then nR must be added to the arc tangent result if the sine is positive or

subtracted if the sine is negative. If the cosine of d2 in Equation (5.113) is zero, the sign
i  ,rr~of the sine in Equation (5.115) determines either —-— as the angle. Note that the 

evaluation of d2 requires both of the angles 0, and 0V The former had two 

independent solutions, and the latter had two solutions for each of these; thus there 

are four separate solutions for 02.

2. Numerical Example. The numerical example continues by calculating the first 

derived arm control variable, 03. Equation (5.81) specifies the cosine of the angle, and 

Equations (5.54), (5.56), and (5.58) provide the necessary values for the calculation.

cos 03
2 2 2 2 2 

Pax +Pay +Pa2 ~ a3 ~ a2

2 «2«3
(5.124)
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(6.466)! + (-l6 7 .2 9 2 )2 + (69.‘W5)1-  100j -  1003 
cos«3 = --------------------------20 ooi(i 65)--------------------------“ ° 'M3 (5' 1251

The sine of the angle is then obtained from Equation (5.82).

= ±  v/l-^3 -  X  V  1 -  cos2°3sin 0

sin 03 = ±  +  1 — 0.643 = ±  0.766

(5.126)

(5.127)

Equation (5.S3) then yields the two possible values for

, / sin 6 -,
(5.128)

0 3 = tan '(  ) = tan '(+  1-191) (5.129)

03 = 49.989 or -49.9S9 (5.130)

Since the cosine of the angle is positive, no adjustments need be made to these values; 

solutions for 03 must lie in the first or fourth quadrants.

Moving on to 8 u the angular difference jj — 8 , is first determined. When 

03 = +49.989°, Equation (5.98) produces

sin { { $ - 6 x)
a-iS3*3 (5.131)

+ \/Pa, +Pa„

sin(/? -  0,) =
100 sin( +49.9S9 )

+ ^/(6.466)2 + ( —167.292)2
= 0.457 (5.132)

When 03 =  —49.989°, the sine becomes
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sin(/? — 0,)
100 sin( -49.989

4- ^/(G.466)2 + ( —167.292)2
= -0.457 (5.133)

For both angles, the cosine given by Equation (5.99) is the same.

:os(/? -  0,) =  ±  J T -  s\n{P -  0,)

cos(/? -  0,) = ±  >/l -  ( ±  0.457)2 = ±  0.889

(5.134)

(5.135)

For 03 = +49.989” and sin(/? — 0]) = 0.457, the possibilities for the angular difference arc 

given by Equation (5.101).

ft — 0, = tan
sin( 1 - 0 , )  \ 
cos((S -  0,) ) (5.136)

< s - , 3 7 >

/? -  0, = 27.206 or -27.206' (5.138)

Since the sine of the difference is known to be positive, 0” and 180° bound the angular 

difference; thus the second result of the arc tangent is adjusted by the addition of ISO' 

from the fourth quadrant (positive cosine, negative sine, negative tangent) to the 

second quadrant (negative cosine, positive sine, negative tangent).

/? -  0j = 27.206' or -27.206° + 1 S0° (5.139)

P -  0j = 27.206° or 152.794° (5.140)

For 03 = -49.989' and sin(/? -  0,) =  -0.457
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p — 0, =  tan' —0.457 
+ O.S89 (5.141)

P -  0, = -27.206 or 27.206 (5.142)

In this case, the sine of the difTerence is known to be negative, so the second result of 

the arc tangent is adjusted by the addition of 180° from the first quadrant (positive 

cosine, positive sine, positive tangent) to the third quadrant (negative cosine, negative 

sine, positive tangent) to create two angles on the range — ISO' to 0°.

P -  0, = -27.206 or 27.206 + 180 (5.143)

p -  0, = -27.206 or 207.206 (5.144)

Next, the p component as defined by Equation (5.94) is determined using the 

results of Equations (5.56) and (5.54).

(5.145)

p = tan-l ■167.292
6.466 = -87.787 (5.146)

Now consider the cosine and sine of P as defined by Equations (5.102) and (5.103).

cos P
Pa.

+  \/Pa, +  Pa,
(5.147)

sin P = Pa,

+ V Pa. + Pa,
(5.148)
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Clearly, the signs of p's cosine and sine are identically those of p„x and p.y, respectively. 

Consequently, the cosine of /> is positive and the sine is negative; the angle must then 

lie in the fourth quadrant. Since the cosine is positive, the value obtained above docs 

not need to be adjusted by the addition of ISO".

The angle 0, is now determined using Equation (5.105).

e} =  / ? - ( / ? - 0 ,) (5.149)

For 03 = 49.989", substitutions arc made from Equations (5.146) and (5.140).

0 ,( = —87.7S7° -  (27.206’) = -114.993° (5.150)

e h = — 87.7S7° -  (152.794°) = -240.5S1° (5.151)

Note that the second value for 0, is outside of the desired limits — ISO" and -(-ISO", so 

an adjustment needs to be made. In this case, it is the addition of one full circle.

e h =  -240.581° + 360°= 119.419° (5.152)

For 03 = —49.989°, substitutions arc made from Equations (5.146) and (5.144).

6 h = -87.787° -  ( -27.206°) = -60.581° (5.153)

6 U = —S7.787° -  (207.206°) =  -294.993° (5.154)

The second solution here is also outside the desired limits of — 180’ and +180", and since 

it is negative, it is adjusted by the addition of one full circle.

0 s  —294.993 + 360 = 65.007*4 (5.155)
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Summarizing, the two 8 , solutions for 03 = 49.989' are —1 14.993' and 119.419', and the 

two 9X solutions for (93 = —49.9 8 9’ are —60.581' and 65.007'.

Finally, 02 is evaluated using Equation (5.123).

0 2 — (5.156)

The cosine and sine of d2 are of course required prior to the use of Equation (5.123); 

they arc also used to determine the proper quadrant of 02. From Equations (5.1 13) 

and (5.115),

/Vi + Pays\
a 3c 3 +  a 2

(5.157)

*2 a2c3 + a2 (5.158)

It was pointed out during the derivation of the equations that if <93 should become 

±  180”, folding the arm back on itself at the elbow, its cosine would become -1 and the 

denominators of the formulas for 8 2 s cosine and sine would become zero; this is not 

the case for this example.

Equations (5.54), (5.56), and (5.58) provide the coefficients pCx, pay, and p0z> 

respectively. For d2 — 49.989' and = — 114.993*,

6.466 cos( -114.993°) + ( -167.292) sin( -114.993°)
c2 = -------------1-------------- -— ------ t------------ ---------------— = 0.906 (5.159)

100 cos(49.989 )+  100

h _______69.445_______
100 cos(49.989°) + 100

0 . 4 2 3 ( 5 . 1 6 0 )
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02, = tan 0.423
0.906 25.027^ (5.161)

Since the cosine is positive, the desired result is a first or fourth quadrant angle and 

no adjustment need be made to the result of the arc tangent.

The example continues with 03 = 49.989° and 9, = 119.419”. Note that since 

cosine is an even function and the two values for 6 3 differ only in sign, the value for the 

sine of 92 will not change throughout the example and need not be recalculated.

6.466 cos( 1 19.419°) + ( -167.292) sin( 119.419°)
c2 = ------------------------- ----------- 7---------------------------= —0.906 (5.162)

100 cos(49.9S9 ) + 100

( 5I 63)

Since the cosine of 6 2 is negative, the desired result is a second or third quadrant angle, 

and the result of the arc tangent function must be modified. Further, since the sine 

of the angle is positive, it is in the second quadrant, so IS0° is added to the fourth 

quadrant arc tangent result to obtain the correct angle.

6 2 = -25.027' + 180* = 154.973' (5.164)

For 63 = -49.989' and 0, = -60.581',

6.466 cos( -60.581') + ( -167.292) sin( -60.581*)
c ~ --------------------------------------- ;---------------- -------- — = 0.906 (5.165)

100 cos( -49.989 )+  100

H  ) - 2 5 . ° 2 7 ‘  ( 5 . 1 6 6 )
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Since the cosine of this 02 is positive, the result of the arc tangent does not need to be 

modified.

For 03 = -49.9S9" and 0, = 65.007",

6.466 cos(65.007°) + ( -167.292) sin(65.007°)
c2 = ----------------------- -— ------- ------ ----- ---------- -  = -0.906 (5.167)

100 cos( -49.989 ) + 100

) " ~ 25'027’ (5' |6S)

Since the cosine of 02 is negative and the sine is positive, the angle is in the second 

quadrant; thus a correction factor of 180" is added to the arc tangent result to achieve 

the correct angle.

6 2i = -25.027° + 1S0° = 154.973° (5.169)

This completes the possible solutions for 0,, 02, and 03. The solution sets arc 

summarized in Table 5.1.

Table 5.1. SOLUTION TRIPLES FOR ARM CONTROL VARIABLES

Control Variable Set 1 Set 2 Set3 Set 4
1 -114.993 119.419 -60.581 65.007
2 25.027 154.973 25.027 154.973
3 49.989 49.989 -49.989 -49.989

Each of these control variable triples will achieve the desired position for the end 

point of the arm's third link. This is demonstrated geometrically on the coordinate 

frames of Figure 5.12 (a). The set of rotations specified by the first triple is depicted 

in Figure 5.12 (b). The first rotation is —114.993" about the z0-axis, transforming links 

1, 2, and 3. The next rotation is 25.027" about the zr axis, transforming only links 2
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and 3. Finally, the z -̂axis is rotated about by 49.989’, and only link 3 moves here. In 

picturing these rotations, recall the right hand rule, which states that when the thumb 

of the right hand is laid parallel along the positive direction of the axis of rotation, the 

fingers curl about the axis in the direction of a positive rotation. The three remaining 

solutions are carried out in parts (c), (d), and (e) of Figure 5.12. Each solution can be 

seen to achieve the same position for the arm end point; however, the orientations of 

the relative coordinate frames at the end of the third link arc widely different. It should 

be noted that wrist control variable solutions may not exist for any or all of the arm 

solutions; further, no examination has been made yet as to whether the control variable 

settings arc attainable. These problems will be addressed in subsequent sections.

Figure 5.12. Arm Configuration for Solution Triples

3. Program Structure. The derivation of equations led first to a relationship for 

the third control variable, 03. This was followed by a series of equations involving 

Op ft — 0i, /?, and finally 0, itself. Joint variable 02 was then generated based upon the 

results obtained for the previous variables. The controlling procedure of this section
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follows this sequence. Procedure c a l c _ t h e t a _ 1 2 3 _ t r i p l e s  invokes a

procedure for each of the listed steps.

calc_theta_3 (pa, theta, rou+2, cols); 
calc_beta_minus_theta_1 (pa, theta, bmt1); 
beta = calc_beta (pa);
calc_theta_l (beta, bmt1, theta, rou, cols); calc_theta_2 (pa, theta, rou+1, cols);

Procedure calc_theta_3 derives values for its angle, beginning by using liquations

(5.81) and (5.S2) to determine the cosine and sine of the angle.

c3 = (square (magnitude (pa)) - square (a2) - square (a3))/ (2 X a2 x a3); 
s3 = sqrt(1 - square (c3)); 
if ( fabs(c3) > tolerance )

{theta[1][3] = atan( s3 / c3 ) ; 
theta[3][3] = atan(-s3 / c3);

/X adjust atan for cos < 0 X/
if ( c3 < 0 )

{ /* c3<0, s3>0 => 4th->2nd quad X/
theta[1][3] += pi;

/X c3<0, s3<0 => 1st->3rd quad x/
theta[3][3] -= pi;
}

}else
{thetaM ][3] = pi / 2; 
theta[3][3] = -pi / 2;
} /# 2 copies => 4 triples X/

theta[2][3] = theta[1][33; 
theta[4][3] = thetaC3][31;
for (i = 1; i <= 4; i++)leprintf (rou, colsCi], theta[il[3] x 180/pi);

As will be the case with all control variables, the situation wherein the cosine is zero

must be singled out for special treatment. Providing that division is possible, the arc 

tangent relationship is used to obtain two possible values for 03, as the sign of the 

angle's sine could not be determined. If the cosine is negative, then both of the angular 

results must be adjusted, from the fourth quadrant to the second and from the first to 

the third, where appropriate. On the other hand, if the cosine were zero, the two 

possibilities are positive and negative 90’. Lastly, one copy of each of the values is 

made to correspond to the two possibilities each for 0, and 02 which will be dependent

on 6 y
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The next step is the calculation of the possibilities for the angular difference 

[5 — 6 1. This is accomplished by procedure c a lc _ b e ta _ m in u s _ th e ta _ 1  . First 

the sine and positive cosine of the difference are obtained, as expressed by Equations 

(5.98) and (5.99), for each of the two #3 values.

/* for 2 pairs' (1,2) & (3,4) */
for (i = 1; i <= 3; i = i + 2)

{sbmtl = a3 X sin(theta[i][3])
/ sqrt(square (pa[0]) + square (pa[1]))j cbmtl = sqrt(1 - square (sbmtl)); 

if ( fabs(cbmtl) > tolerance )
{bmt1[i ] = atan(sbmt1 / cbmtl); bmt1[i+1] = atan(sbmt1 / -cbmtl);

/# adjust 1 due to sine */bmt1[i+1] = bmt1[i+1] + pi;
}else
{if ( sbmtl > 0 )

bmt1[i] = pi / 2; else
bmt1[i] = -pi / 2; 

bmt1[i+1] = bmtlLi];
}

}

The possibility of the cosine being zero is then examined; when the cosine of the 

difference is not zero, there are two possibilities for each If the sine of the

difference is positive, then the resultant values must lie in the first and second 

quadrants; a tn (sb m t1  / -cb m tl ) would yield a fourth quadrant angle and must 

be adjusted. Similarly, if the sine of the difference is negative, then the results must lie 

in the third and fourth quadrants; in this case, a tn (  sb m tl / -cb m tl ) would 

produce a first quadrant angle and must be adjusted. Thus the same correction is 

required in either case. If on the other hand the cosine were zero, then there would 

only be a single resultant angle, either a positive or negative 90°. The sign of the sine 

determines which, and the value is used twice.

With the difference [5 — 6 , known, evaluation of jS independently will subsequently 

lead to the value of 6,. The procedure of the 6300 block calculates the single possible 

value for /?, beginning with the observation made following Equations (5.102) and
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(5.103) that the signs of pax and pCy are also the signs of the cosine and sine of /?,

respectively.

sign_cos_beta = sign (paCO]); 
sign_sin_beta = sign (pa[1])j 
if ( fabs(pa[0]) > tolerance )

{beta = atan (patll / pa[0]);
if ( sign_cos_beta == -1 )

beta += pi;
}else
if ( sign_sin_beta == +1 )

beta = pi / 2;
else

beta = -pi / 2; 
return (beta);

/* adjust atan for cos < 0 */

/* cos = 0 , + sin => +90 deg */

/* cos = 0 , - sin => -90 deg */

The possibility of a cosine of zero is then examined; the cosine will be zero only when 

the numerator of the fraction denoting the cosine in Equation (5.102) is zero. When 

the cosine is not zero, the arc tangent function returns a result which is adjusted for 

negative cosines. Equation (5.104) defines the expression for /?. If the cosine is zero, 

then as before the sign of the sine determines the angle.

Now that ft — 0, and /? are known, 0, follows by subtraction of the former from

the latter. Procedure calc_theta_1 determines the possible values for 01, 

beginning with the use of Equation (5.105), paraphrased above.

for (i = 1; i <= 4; i++)
{

theta[i][1] = beta - bmt1[i]
if C thetatijM] > pi ) 

theta[i][1] -= 2 * pi;
if C thetati][1] < -pi ) 

theta[i][1] += 2 * pi; 
leprintf (rou, colsli], theta 
}

/x t1 = beta - (beta - t1) X/ 
/* adjust if > 180 degrees */

/X adjust if < -180 degrees */

i][1]  ̂ 180/pi);

If the resultant 0, is greater than 180", it is adjusted by a reduction of 360" to place it 

between —180’ and +180". This is done for compliance with the joint variable 

restrictions; similarly, 6 , is adjusted by the addition of 360" if it is less than -  ISO".
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The third and final arm control variable, d2, is determined by procedure

c a l c _ t h e t a _ 2 . The procedure begins by determining the cosines and sine of 

previously determined variables necessary for each 02. Note that the relationship for 

c3 in Equation (5.81) is dependent upon fixed values only, so c3 need be calculated only

once for all of the 6 2 values.
/X costtheta 3) is constant x/c3 = cos(theta[1][3]); for (i = 1; i <= 4; i + +)

{c2 = ( paC0]*cosCtheta[i ] [13) + pa[1]*sin(theta[i ][1 ] ) )/ (a3XC3 + a2); s2 = pa[2] / (a3*c3 + a2); if C fabs(c2) > tolerance )
{theta[i][2] = atan(s2 / c2);/x adjust atan for cos < 0 X/if C c2 < 0 )

}elseif

leprintf
}

if ( s2 >= 0 )theta[i ] [2 ]

SlStheta[i][2]

/x -c,
+= pi;/x -c,
-= pi;

+s => 2nd quad from 4th X/ 

-s => 3rd quad from 1st x/

( s2 > 0 )theta[i][2] = pi / 2; elsethetati][2] = -pi / 2;(rou, colsti], theta[i][2] x 180/pi);

The cosine and sine of 02, given by Equations (5.113) and (5.115), respectively, are 

calculated next. Note that while division by zero is possible in these equations, 

specifically when c3 = -1, it is not checked for in this procedure. Such an occurrence 

is caused by all three of the arm vector components being zero simultaneously, as 

described in the derivation of equations. This circumstance will be accommodated at 

a higher level, between calls to the arm vector component procedure and that of the 

arm control variables. No solution can exist in such a situation, and this procedure 

will not have been entered. The cosine of d2 can take on a value of zero; this situation 

is handled separately from all others. Provided the cosine is not zero, the angle is 

determined using the arc tangent relationship. The result of the arc tangent is adjusted 

in two ways, moving in the positive direction from the fourth quadrant to the second 

and the negative direction from the first to the third quadrant, so as to keep the
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resultant angle between —180' and +180'. As usual, the angle is decided by the sign 

of the sine when the cosine is zero.

4. Program Example. After procedure c a l c _ t h e t a _ 1 2 3 _ t r i p l e s  has 

executed, the display contains the information shown in Figure 5.13. Note that the 

results arc not appreciably different from those obtained in the numerical example. 

The differences may be attributed to the higher degree of precision to which a 

computer performs the involved calculations.
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1 -115.025 119.451 -60.549 64.975
2 25.011 154.989 25.011 154.989
3 50.018 50.018 -50.018 -50.018
4
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Figure 5.13. Display for Arm Control Variable Solutions
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E. WRIST CONTROL VARIABLES

1. Derivation of Equations. With four possible combinations of arm control 

variables established, solutions for the wrist control variables 0 A and 9S are investigated 

next. Recall again that link matrix / may be interpreted as transforming link / and 

those following it with respect to link /'s coordinate frame. Let R, be the upper 3-by-3 

sub-matrix of the A, matrix; R, then specifies the rotation due to A,. The matrix 

product RtRiRiRjRs achieves the orientation specified by the normal, orientation, and 

approach vectors. The sub-product R,RS results in a transformation matrix which will 

rotate the coordinate frame at the end of the third link to that of the cnd-cffcctor; the 

sub-product RtR2Ri produces the transformation matrix whose columns arc the normal, 

orientation, and approach vectors of the end of the third link. As an equation,

ny oy ay {R,R2R,){RARS) (5.170)

The work of the previous section determined possible values for 6 U 8 2, and The 

remaining variables and 0S are now solved for in Equation (5.170).

The solution process begins by isolating the matrix sub-product of the wrist link 

rotation matrices, RtRy This is done by prc-multiplying both sides of Equation

(5.170) by the inverse of R]R2Ri.

nx °x ax

ny °y ay

nz °z az

(5.171)
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nx °x ax

(*1*2*3)
-1 rty o y  a y =  R*R 5 (5.172)

The product RiR2Ri is obtained from the upper left 3-by-3 matrix of the product 

A1A2A3 in Liquation (4.72).

R,R2R3

Cj C2C3 5)^3 —CtX2 C,C2.V3 +  S , c 3

s i c 2 c 3 +  c i-b  - - V h  T R A  -  c , c 3 

•V2C3 c 2 S2 S3

(5.173)

Recall from the preceding chapter that the original orientation vectors were simply the 

unit normal vector triple coincident with the base frame coordinate axes and thus may 

be represented in matrix form by the identity matrix; consequently, the multiplication 

of their matrix and any transformation by rotation results in just the transformation 

matrix itself. Any rotation matrix may therefore be thought of as a specification of an 

orientation of this unit normal vector triple. Since the columns, or vectors, of such a 

matrix are clearly linearly independent, the inverse of such a matrix is its own 

transpose. (See a linear algebra text such as [ Stra80 ] for further explanation on this 

topic.) Thus the inverse of the product is its own transpose.

( R ]R2R3) - , =

C, C2 C3 - 5 i 5 3 S ; C 2 C3 +  C , S 3 S2 C3 

CjS2 —S ] S 2 R

C1C253 T  S j C3 S ,C 2S3 — C,C3 S2S3

(5.174)

Substituting this inverse into Equation (5.172) yields an expression for R*RS.
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C]C2C3 5 ^ 3 s,c2c3 + c,s3 52c3
r

n x ° x

1-----*

11W
O -c ,s 2 -s ,s 2 c2 ny °y av

C1 c2‘s3 T -h c3 s,c2s3 — c,c3 *2*3 _ J h °2 a2 -

(5.175)

Now consider the matrix product !uRs. The matrices themselves arc obtained from 

Equations (4.65) and (4.67), respectively, as the upper left 3-by-3 sub-matrices of the 

A, matrices specified therein; their product follows.

c4 0 •s4

0 -c,

0 1 0

C5 -̂ 5 0

SS c 5 0

0 0 1

c4

1--------

O

c 5 ~ SS 0

R ^ R  5 — s4

uIO

5 S c 5 0

0 1 0 0 0 1

c 4 c 5 Cd-v5 *4

R a R*. •S4 C5 54 % ~ C4

CO
_____1 5 0

(5.176)

(5.177)

(5.178)

(5.179)

Combining Equations (5.175) and (5.179),

C4C5 — C4 .S5 Cj C2C3 SjC2C3 4 ~ C 2 3̂ 52c3 nx ° x a x

S4C5 ~ SAS5 - c 4 = -c ,s 2 - s , s 2 c 2 ny °y ay

.  55 C5 0 c1c253 +  s l c3 s 1c253 ~  c l c 3 52S3_ _>h ° z a i .

(5.180)
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Instead of immediately performing the matrix product specified on the right in the 

equation above, note that the sines and cosines of 04 and 05 occur by themselves as 

elements of the matrix on the left. The row-column multiplications required for these 

four matrix elements are sufficient for the needed equations. Additionally, note that 

element (3,3) of the AtAs product is zero; the corresponding row-column multiplication 

must also be zero.

°x(c 1c253 +  ̂ ifii) +  S ( 51C253 -  clc3) + =  0 (5. 181)

If a #i-02-03 triple should fail to fit the above equation, then the triple is not viable. 

This may be interpreted by first considering what has been accomplished by the 

rotations of 6 U 02, and 03. The matrix product A\A2A2 results in a specific positioning 

of the end of the third link of the arm; in addition to this, it also causes a specific 

re-orientation of the vectors n, o, and a, which were originally aligned with the base 

coordinate frame. To this point, these vectors have been ignored. While joint variables 

0i, 02, and 03 have accomplished the required positioning of the arm's end, it remains 

for joint variables 04 and 05 to achieve the required orientation of vectors n, o, and

a. Further, 04 and 05 must achieve this orientation from that left by the positioning 

of the end of the third link.

Now consider what can be accomplished by the rotations of the final two links 

of the arm. From the previous chapter, link 4 performs the 04 rotation about the 

current z-axis and then a 90" rotation about the current x-axis. Link 5 performs only 

the 05 rotation about the current z-axis, as its jc-rotation is zero. Figure 5.14 describes 

these rotations graphically. Axes ;c3,_y3, and z3 are those at the end of the third link after 

the rotations of the first three links have been performed. Rotation 0„ about axis z3 can 

re-orient axis jr3 in any direction in the plane defined by x3 and j>3 to become jr3', and 

y>i is of course re-oriented accordingly to become _y3'. Figure 5.14 (1) depicts an
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example rotation of 65\ The 90' rotation about x3' then brings y j  into alignment with 

z3 and zy to become y4, and z3 re-aligns 90" away in the old x3-.y3 plane to become z4. 

Figure 5.14 (b) illustrates this turn. The final rotation 05 then turns axes x4 and y4 in 

their plane about axis z4 to any new orientation to become x5 and ys, respectively. 

Figure 5.14 (c) describes an example rotation of —35" for this third and final turn.

( a)  (b)  ( c )

Figure 5.14. Rotation Transformations Due to Links 4 and 5

The rotation can be thought of as lining up the x3-axis for the x-rotation which 

will bring z3 into the xj-y3 plane. Any direction in this plane for the resulting z4 may 

be chosen by proper selection of 04. The final rotation 05 serves only to re-orient the 

x4 and y\ axes; axis z5 remains in the x3-y3 plane. Therefore this sequence of rotations 

must result in an approach vector which is in the x-y plane of the coordinate frame at 

the end of the arm proper. This in turn means that the z-coordinate of the approach 

vector with respect to the coordinate frame of the arm's end must be zero. This is 

element (3,3) of the R,RS matrix. If the determination of R4RS results in a non-zero 

element for this position, the positioning of the arm's end by links 1, 2, and 3 resulted 

in an orientation from which the given wrist configuration's links 4 and 5 cannot 

achieve the final desired orientation. On the other hand, if the element is found to be
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zero, then the orientation is achievable, a solution does exist, and the 0i-02-03 triple's 

corresponding 04 and 05 may be calculated.

The solutions for the wrist joint variables begin with the derivation of equations 

for 04. The cosine of 04 is the negative of clement (2,3) in Equation (5.180) while the 

sine is just clement (1,3).

—c4 = —axcis2 — ays]s2 + azc2 (5.182)

c4 — axc}s2 + aySjS2 — a2c2 (5.1 S3)

s4 = ax{c\c2c2 -  v 3) + ay(S]c2c3 + c,s3) + ars2c3 (5.184)

The results for the sine and cosine from Equations (5.1 S3) and (5.184) arc then used 

to determine the angle 04 itself.

04 = tan ( i ic4 (5.185)

Three points should be made here. First, as before, if the cosine of the angle is 

negative, then the result of the arc tangent will have to be adjusted. If the sine of 04 

is positive, then 7r* is added to the above; if the sine is negative, the value is subtracted. 

Second, should the cosine of 04 be zero, one of the values ±  - y  may be selected by 

examination of the sign of the sine. Lastly, it will be recalled from the previous chapter 

that the initial positioning of the robot arm places the gripper in a vertically downward 

direction to prevent a rotation about an x-axis. This in turn leaves joint variable 04 

with the peculiar range of movement o f -1 0 ’ to +190". For this joint variable only, 

a special check must be made here to insure conversion of a solution in the range 

— 180’ to —170' to one in the range +180" to +190’ for compliance with subsequent 

boundary checks.



161

Also from Equation (5.180), for 05 the cosine is element (3,2; while the sine is 

element (3,1).

c5 = 0,(c,c2J3 + J,c3) + o^s}c2 s3  -  c,c3) +  o j ;2 s3 (5.186)

s5 — nx(c}c2s3 + 5^ 3) + /jy(5]C253 — c,c3) + n7s2s3 (5.187)

As with 04, the results for the sine and cosine from Equations (5.186) and (5.187) are 

used to determine the angle 0S.

05 = (5.1S8)

The remarks made concerning adjustments to the arc tangent result and handling of 

the zero cosine condition made for 04 apply also to 0S, but the special conversion check 

does not as 05 has a range of —360" to +360°.

2. Numerical Example. The numerical example continues by generating one 

04-05 pair for each of the 0,-02-0s triples of the previous section. The process begins by 

checking each triple against Equation (5.181) using the approach vector components 

specified in Equation (5.15).

«x(cN253 + ^ 3) + a£s}c2s3 -  c,c3) + az(s2s3) =  0 (5.1S9)

0.331(0^253 + 5,c3) + ( —0.934)(5]C253 — c,c3) + ( —0.137)(5253) = 0 (5.190)

The first triple was (0,, 02> 03) = ( - 1  14.993', 25.027', 49.989'). The left hand side of 

the above equation is evaluated as
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(0.331)( cos( -114.993’) cos(25.027’) sin(49.989’)

+ s in (-l 14.993’) cos(49.989’))

+ ( -0.934)( sin( -114.993’) cos(25.027") sin(49.989’) (5.191)

-  c o s (- l  14.993’) cos(49.989’))

+ ( —0.137)( sin(25.027’) sin(49.9S9’)) = -0.001

This result is not significantly different from zero, so this first triple forms part of a 

solution and will proceed to the next step. This may be visualized as in Figure 5.15 

as follows. First, the product R\R2Ri of Equation (5.173) is evaluated for the given 

triple.

C1C2C3 — - V 3

^2^3 — 5 1c2c3 +  c 153

52C3

Cj ^2 ^ jC 2 S3 “h  S ]C 3 

~  5 152 — C1C3

c 2 S2S3

7 ?j R2R3 —

0.448 0.179 -0.876

-0.852 0.383 -0.357

0.272 0.906 0.324

(5.192)

(5.193)

This is the orientation of the vectors n, o, and a at the end of the third link. The 

desired orientation is given by the upper left 3-by-3 matrix of Equation (5.15).

nx ax '0.790 -0.516 0.331 '

ny °y ay - 0.195 -0.300 -0.934

3 az_ 0.581 0.802 -0.137

(5.194)

The triple of vectors specified by Equation (5.193) are labeled as /73, oit and a3 in the 

figure; vector «3 is directed out of the figure and is not visible. The view in Figure 5.15 

puts the plane of vectors «3 and <?3 horizontal and perpendicular to the surface of the
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view plane. The vectors of Equation (5.194) are labeled n, o, and a. If the wrist were 

to be capable of attaining the desired orientation, vector a would have to be in the 

plane of vectors «3 and o3. As can be seen, it is.

Figure 5.15. Attainable Orientation from Frame of Link 3

The second triple was (0,, 02, 03) = (119.419°, 154.973°, 49.989°) 

side of Equation (5.190) is evaluated for these angles as

(0.331)( cos( 119.419°) cos(154.973°) sin(49.989°)

+ sin(l 19.419°) cos(49.989°))

+ ( —0.934)( sin(l 19.419°) cos(154.973°) sin(49.9S9°)

-  cos(l 19.419°) cos(49.989°))

+ ( —0.137)( sin(154.973°) sin(49.989°)) = 0.523

This result is significantly different from zero, so this triple does not form part of a 

solution and will not proceed to the next step. This situation may be seen in Figure 

5.16; the view in this figure is of the same orientation as that of Figure 5.15. The 

product RiR2R3 evaluates for the second 0i-02-03 triple as

The left hand

(5.195)
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-0.381 0.208 0.901

-0.884 -0.368 -0.289

0.272 -0.906 0.324

(5.196)

As before the triple of vectors specified in the above equation arc labeled nit o3, and cf3 

in the figure, while the final orientation vectors are labeled n, o, and a. It may be seen 

that vector a does not lie in the plane of vectors «3 and cf3, so a solution for 0 4 and 6 S 

docs not exist.

The process is repeated for the third triple, ( —60.581*, 25.027“, —49.989*), with a 

result of -0.523. Again, this value differs significantly from zero so this triple does not 

form part of a solution. The final triple, (65.007", 154.973*, —49.9S9*), produces +0.001 

as a result from evaluating the left hand side of Equation (5.190). As with the first set, 

this value does not differ significantly from zero so the triple will be part of a complete 

solution in the next step.
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With the first verified triple ( —114.993*, 25.027*, 49.989*), corresponding values 

are evaluated for first the cosines and sines of 0 A and d5 and then the angles themselves. 

Equations (5.183) and (5.184) arc employed first for 0A using the values of ax, a>, and 

a7 from Equation (5.15).

c4 = axcls2 + ciys]s2 — azc2 (5.197)

c4 = (0.331) cos( -114.993”) sin(25.027°)
(5.198)

+ ( -0.934) sin( — 114.993 ) sin(25.027 ) -  ( -0.137) cos(25.027 )

c4 = 0.423 (5.199)

sA = qx(c1c2c3 — s,53) + ay(slc2c3 + c,s3) + ar<;2c3 (5.200)

s4 = (0.331)( cos( -114.993') cos(25.027°) cos(49.989°)

-  sin( — 114.993*) sin(49.989*))

+ ( —0.934)( sin( -114.993°) cos(25.027°) cos(49.989°) (5.201)

+ cos(-114.993°) sin(49.989°))

+ ( - 0 . 137) sin(25.027°) cos(49.989°)

s4 = 0.906 (5.202)

Equation (5.185) then gives 0A as

6 a =  tan-1  ̂•—  'j (5.203)

04 = tan- ' ( -||||- )  = 64.973° (5.204)

Since the cosine of dA is positive, the result of the arc tangent docs not need to be 

adjusted.
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Turning to 8S, substitutions are made from Equation (5.15) for the components 

of the orientation and normal vectors in Equations (5.186) and (5.187) for the cosine 

and sine of the angle, respectively.

c5 =  ° x ( C \ C2S 3 +  - V 3) +  0J,(S|C2S3 -  C,C3) +  W 3

c5 = ( —0.516)( cos( -114.993*) cos(25.027’) sin(49.989*)

+ sin( —1 14.993°) cos(49.989°))

+ ( —0.300)( sin( -114.993”) cos(25.027°) sin(49.989*)

-  c o s (- l  14.993”) cos(49.989*))

+ (0.S02) sin(25.027”) sin(49.989*)

c5 = 0.S19 (5.207)

5S = nx(c,c2s3 + j ,c3) + ny(s]c2s3 -  c}c3) + tizs2s3 (5.20S)

s5 = (0.790)( cos( -114.993”) cos(25.027”) sin(49.989*)

+ s in (-1 14.993”) cos(49.989’))

+ (0.195)( sin( -114.993”) cos(25.027°) sin(49.989’) (5.209)

-  c o s (- l  14.993’) cos(49.989°))

+ (0.581) sin(25.027*) sin(49.989’)

5S = -0.573 (5.210)

(5.205)

(5.206)

Equation (5.188) then gives 6 S as

05 = tan £5
c5

(5.211)

d5 = tan' -0.573
0.819 = -34.978 (5.212)
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As was the case for 6 A, the result of the arc tangent does not need to be adjusted since 

the cosine is positive. This completes one solution for the position and orientation 

specified by Equation (5.15).

The above process for dA and 05 is now repeated for the other verified 

triple, (65.007°, 154.973’, —49.989°). Omitting the calculations for this second time 

through, the notable results begin with the cosine, sine, and subsequent value of 0 A.

cA = -0.423 (5.213)

•r4 = 0.906

64 = tan 0.906 \ 
-0.423 J -64.973’

(5.214)

(5.215)

Since the cosine of the angle is negative, the result of the arc tangent must be adjusted. 

Since the sine of the angle is positive, 180° must be added to the above result to change 

the fourth quadrant arc tangent result to the desired second quadrant angle.

&A — —64.973* T 180*= 115.027* (5.216)

The results of the calculations for the cosine, sine, and subsequent value of 6S are

next.

c5 = —0.S19 (5.217)

s5 -  0.573 (5.21S)

6 S = tan 0.573
-0.819 = -34.978 (5.219)
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Here as well, the result of the arc tangent needs to be adjusted since the cosine of the 

angle is negative. Since the sine is positive, 180” must be added to change the fourth 

quadrant arc tangent result above to the desired second quadrant angle.

0 5 = -34.978  + 1 SO” = 145.022" (5.220)

This completes the second of the two solutions for the position and orientation 

originally specified by Equation (5.15). The two complete solutions for the given 

example arc summarized in Table 5.11.

Table 5.11. SOLUTION SETS FOR ARM AND WRIST CONTROL VARIABLES

Control Variable Set 1 Set 2
1 -114.993 65.007
2 25.027 154.973
J 49.989 -49.989
4 64.973 115.027
5 -34.978 145.022

The arm configurations resulting from each of the solution sets arc depicted in 

Figure 5.17. Figure 5.17 (a) shows the result of the sequence of transformations 

dictated by the first solution set. As it turns out, the arm can achieve this solution. 

Figure 5.17 (b) then shows the result of the transformations of the second solution set. 

It should be noted that the arm will not actually be able to use this solution as the 

second variable, d2 — 154.989", is out of the range for the second joint. Note that the 

position and orientation of the gripper is the same in each.

3. Program Structure. The first item to be handled by the controlling procedure 

of this section, c a l c _ t h e t a _ i4 5_ jp a ir s  , is the determination of clement (3,3) of 

the product of the arm inverse and orientation vector matrices for each 6 ,-62-63 triple. 

This particular element must be zero or no solution can exist, as noted in the derivation
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Figure 5.17. Arm and Wrist Configurations for Solution Sets 

of equations. The iteration of the procedure begins by calculating the element's value 

for a given triple as specified by Equation (5.181).

ate = 0;
for (i = 1; i <= <+; i + +)

{for (j = 1; j <= 3; j++)
{c t j ] = cos(theta[i][j])l 
stj] = sin(thetaCi][ j3);
3el_3_3 = noap[2 ] [0] * Cc[1]*c[2]*s[3] + s[1]*c[3])+ noapC2][1] X (s[1]*c[2]*s[3] - c[1]*c[3])

+ noap[2][2] x s[23*s[33; 
leprintf (row+5, colstil, el_3_3); 
if ( fabs(el_3_3) < tolerance )

{atc++;
for (j = 1; j <= 3; j++)

accepted_theta[ate][j3 = thetaCi3Cj3; 
accepted_theta [ ate 3 3 = calc_theta_<+ (noap[23J s, c);
leprintf (rou+3, cols[i3» accepted_thetatate 3[93 X 180/pi); 
accepted_theta[ate3C53 = calc_theta_5 (noap[03, noap[13,

s, c );
leprintf (rou+4, cols[i3, accepted_theta[ate 3[53 X 180/pi)j 
3

else
{
lcputs (rou+3, cols[i3. ’’ Ho
lcputs (rou+h cols[i3, " Solution");
3

3
return (ate);

If the value is acceptably close to zero, the wrist variables are determined and the entire

set is saved for use in the next section.
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Procedure c a lc _ th e ta _ _ 4  determines a value for 6« dependent upon the 

current 6 r 6 2-6 3 triple. The process begins by determining the cosine and sine of as

given by Equations (5.183) and (5.184), respectively.

c<t = a[0]XcCl ]xs[2] + a[1 3*sm * s [ 2 ]  - a[2]xc[2];s4 = a[0] X (c[13Xc[2]Xc[3] - s[ 
+ a[1 ] * (s[1 ]XC[2]XC[3] + c£ if ( fabs(c^) > tolerance )

theta<i = atanCs1! / );
if ( c1! < 0 )

if (s'! >= 0)theta1! += pi;
elsetheta1! -= pi;

3*s[ 3J )]xs C3]) + aC2lXs[2JXc[33;

/X adjust atan for cos < 0 X/
/X -c, +s => 2nd quad from <!th x/

/X -c, -s => 3rd quad from 1st X/

if ( theta1! < -170 X pi/180 ) theta1! += 2 X pi;
)else
if ( s1! > 0 )

theta1! = pi / 2;
elsetheta1! = -pi / 2; 

return (theta1!);

/X conv for bounds compliance X/

/X cos = 0, +sin => +90 deg X/

/X cos = 0, -sin => -90 deg X/

The possibility of a zero cosine is investigated next; the angle is then determined using 

the arc tangent relationship. As with previous control variables, the adjustments made 

for a negative cosine arc designed to place the angle in the range — 1S0° to +180". The 

derivation of equations noted that the unusual boundaries for 9t, —10° and +190°, were 

due to the arm's initial alignment. A check must be made here to convert any solution 

in the range —180° to —170° to one in the range +180° to +190°. This will allow simple 

comparisons to be performed when checking solution sets against the variable ranges. 

An angle in the range —180° to —170° will have a negative cosine, so the check may be 

performed following the previous arc tangent adjustments. Further, since the arc 

tangent adjustments above will result in a solution between —180° and +1S0°, the 

condition in question can be detected by a single comparison with —170°. In the event 

of a cosine of zero, as with previous control variables the sign of the sine determines 

the angle when the cosine is zero.
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The procedure for determining 6 S, c a l c _ t h e t a _ 5 , parallels that of the 

previous control variable, 9t, for the most part. The distinguishable differences are the 

use of Equations (5.186) and (5.187) for the calculation of the cosine and sine, 

respectively, of 6 < in place of those for 04, and the deletion of tiie special test for a 04 

solution in the range — ISO" to —170°, as 6 S has balanced boundaries.

4. Program Example. Execution of procedure c a l c  t h e t a  45 p a i r s  

generates the information displayed in Figure 5.18. As with the arm control variables, 

the solutions shown here for the wrist control variables are not appreciably different 

from those obtained in the numerical example.



Armatron Manipulator Control
Theta

0.000 N 0 A P
0.000 : 0. 790 -0.516 0.331 39 .566
0.000 : o. 195 -0.300 -0.934 -260. 692
0.000 : o .581 0.802 -0.137 55. 745
0.000 : o 0 0 1

Position- Orientation Control
Determination of Pa Vector Components

Pwx Pwy Pwz
33.100 -93.400 -13. 700
Pax Pay Paz
6.466 -167.292 69 .445

Control Variabl e Solutions
Theta Set 1 Set 2 Set 3 Set 4

1 -115.025 1 19.451 -60.549 64.975
2 25.011 154.989 25.011 154.989
3 50.018 50.018 -50.018 -50.018
4 65.000 Mo No 115.001
5 -35.000 Solution Solution 145.000

e!3,3 -5.100E-04 0.523 -0.523 5. 134E-04

Figure 5.18. Display for Ann and Wrist Control Variable Solutions
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F. VERIFICATION OF RANGES AND SELECTION OF A SOLUTION

The next phase of the problem is to take the solutions obtained by the work of 

the previous sections and provide one set, if one exists, whose angles are all within the 

stated ranges for the control variables to the robot movement routines of the next 

section. The user is allowed to choose from among multiple solutions or to prevent 

any movement at all. This procedure, p rom p t_for_m ov e, is invoked by an upper 

level procedure which will examine the flag move for a 'Y' value before a move will 

be attempted. The procedure begins by displaying the accepted manipulator solutions 

and comparing them against their bounds, maintaining a count of how many and an 

index array of which solution sets arc attainable.
dsply_prompt_f or__move (Srou, cols); inbounds = 0;
for (i = 1; i <= accepted; i++)

CoutCi] = 0;
for (j = 1; j <= 5; j++)

{accepted_theta[i3[j3 #= (180 / pi);leprintf (rou+j-1, colsti], accepted_theta[i]Cj]); 
if ( (accepted_theta[i3[j3 >= mm_constraint (j))

& (accepted_theta[i][j3 <= max_constraint (j)) )lcputs (rou+j-1, cols[i+43+2, "In"); 
else 

{lcputs (rou+j-1, cols[i+43+1, "Out"); 
out[i 3++;
}

}if ( out[i3 == 0 )
{inbounds++;inbounds_index[inbounds 3 = i;
3

}switch (inbounds)
{case 0 : lcputs (20, 20, "No Solution is Obtainable"); move = ’ N' ; 

break;
case 1 : move = one__solution (inbounds_index[13, accepted_theta,

move_theta);break;
default: move = multiple_solutions (accepted, accepted_theta,

inbounds, inbounds_index, 
out, move_theta);

}erase_prompt (22); 
return (move);

The procedure concludes by acting on the number of solutions available.



174

Procedure o n e _ s o lu t io n  begins by querying about an attempt to achieve the

single obtained solution,
locate (23, 20);cprintf ("Solution %d is obtainable", index);lcputs (24, 20, "Perform move? (y/n)");locate (24, 42);move = toupper(getch( ));if (move == 'Y')for (j = 1; j <= 5; j + + )move_theta[j ] = accepted_theta[index][j ] ; return (move);

The procedure concludes by setting up the array m o v e_th eta  for use by the next 

section if a move is desired.

When more than one solution is detected, procedure m u l t lp le _ s o lu t io n s

is invoked; it begins by listing the achievable solution subscripts and querying as to

which to use.
locate (22, 20);cprintf ("Solutions %d", inbounds_index[1]); for (i = 2; i <= inbounds-1; i++)cprintf (", %d", inbounds_index[i)); 
cprintf (" and %d are obtainable.", inbounds_index[inbounds]); prompt = "Select set for a move or 0 to abort:”; do

{set = prompt_input_digit (prompt); if ( set == 0 ) 
cont = 0; elseif ( (set <= accepted) & (outtset] == 0) )cont = 0; 

elsecont = 1;
}uhile ( cont ); locate (24, 20 ) ;

cprintf ("Solution %d has been selected", set); if ( set == 0 )move = 'N '; 
else 

{move = 'Y*;
for (j = 1; j <= 5; j++)

move_theta[j] = accepted_theta[set ] [j];
}return (move);

The procedure concludes by initializing the array m o v e_th eta  with the selected 

solution set for use by the next section if a move is desired. For the continuing 

example, execution of procedure p ro m p t_f or_m ove displays the information of 

Figure 5.19.



Armatron Manipulator Control
Theta

0.000 N 0 A P
0.000 : 0.790 -0.516 0.331 39.566 !
o . o o o  : 0.195 -0.300 -0.939 260.692 !
0.000 0.581 0.802 -0.137 55.795 I
o . o o o  : 0 0 0 1 :

Position-Orientation Control
Solutions

Theta Bounds Bounds Bounds Bounds
1 -115.025 In 69.975 In
2 25.011 In 159.989 Out
3 50.018 In -50.018 In
9 65.000 In 115.001 In
5 -35.000 In 195.000 In

Moving
Theta Current Desired Completed

1 -115.000 -115.025
2 25.000 25.011
3 50.000 50.018
9 65.000 65.000
5 -35.000 -35.000

Figure 5.19. Display for Range Verification of Solutions
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G. MOVEMENT TO THE SPECIFIED POSITION AND ORIENTATION

If a single solution were found and selected and the decision made to move the 

robot arm, then the procedure of this section will be invoked. Procedure 

p o s ± t io n _ o r ie n ta t io n _ m o v e  directs control for the arm movement; it begins 

by displaying the current settings and those desired for the manipulator's joint 

variables.
dsply_pos_orient_move (&rou, cols);
for Ci = 1; i <= 5; i + +)

{leprintf (rou+i-1, colsCO], thetaCi]); 
leprintf (rou+i-1, colstl], move_theta [i ] );
}uait_then_erase (24);

interrupt_count = 0;for (i = 1; i <= 5; i++)
{perform_move (i, theta, move_thetaCi], rou+i-1, colsCO]); if ( fabs(theta[i] - move_thetaCi]) < tolerance ) 

lcputs (rou+i-1, cols[2], "Yes"); 
else 

{lcputs (rou+i-1, cols[23, " No"); 
interrupt_count++;
}

}if ( interrupt_count == 0 )
{lcputs (23, 15, "Motion completed; "); 
eputs ("Position-Orientation achieved”);
}else
{lcputs (23, 15, "Some motion interrupted; ");
eputs ("Position-Orientation not achieved");
}uait_then_erase (9);

As each movement is performed, the user will have the ability to stop the motion in the 

event that an object in the arm's envelope is interfering with the motion or a motor 

stalls. An interrupt count will be maintained to indicate how many of the arm's five 

motions were interrupted by the user. This count will indicate that the desired position 

and orientation were achieved if it remains zero after initialization. The procedure 

iterates for each of the five joint variables, invoking procedure p e r f  orm_move of the 

previous chapter to perform the actual movement. Lastly, the procedure displays a 

completion status based upon the interruption count.
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Execution of procedure position_orientation_move displays the 

information of Figure 5.20. Note the acknowledgement for position achieval for each 

individual joint in the figure.



Theta
Armatron Manipulator Control

-115.000 N O A P
25.000 : 0.790 -0.516 0.331 39.566
5 0 . 0 0 0  : 0.195 -0.300 -0.934 260.692
55.000 0.581 0.802 -0.137 55.745

-35.000 : 0 0 0 1
Position-Orientation Control

Solutions
ta Bounds Bounds Bounds
1 -115.025 In 64.975 In
2 25.011 In 154.989 Out
3 50.018 In -50.018 In
0 65.000 In 115.001 In
5 -35.000 In 145.000 In

Moving
Theta Current Desired Completed

1 -115.025 -115.025 Yes
2 25.011 25.011 Yes
3 50.018 50.018 Yes
4 65.000 65.000 Yes
5 -35.000 -35.000 Yes

Motion completed; Position-Orientation achieved

Bounds

Figure 5.20. Display for Movement via a Solution
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II. THE CONTROLLING PROCEDURE

Procedure p o s i t i o n _ o r i e n t a t i o n _ c o n t r o l  begins by generating the 

introductory' display of Eigure 5.21. It subsequently directs the execution of the 

procedural steps outlined in this chapter. The procedure repeats the position and

orientation solution process for lifTcrcnt matrix inputs until instructed to stop.

dsply_position_orientation_introduction ( );
uait_then_erase (9); 
do

{dsply_pos_orient_solution (&arm_rou, arn_cols,
&theta_row, theta_cols); 

get_noap (noap, noap_rou, noap_cols);
magnitude_ok = calc_arm_end (noap, pa, arm_rou, aru_cols); 
if ( magnitude_ok )

{calc_theta_123_triples (pa, theta123,
theta_rou, theta_cols); 

accepted = calc_theta_95_pairs (noap, theta123,
accepted_theta, 
theta_rou, theta_cols);

uait_then_erase (9);
move = prompt_for_move (accepted, accepted_theta,

move_theta ) ;
if ( move == 'Y' )

position_orientation_move (theta, move_theta); 
noap_matrix (theta, noap, noap_rou, noap_cols);
}else
lcputs (28, 19, "Arm end position not attainable");

prompt_msg1 = "Continue with another N-O-A-P matrix (y/n)?"; 
prompt_msg2 =
qc = prompt_input_char (prompt_msg1, prompt_msg2);
}uhile ( qc == 'Y' );

uait_then_erase (8);

Note that the examination is made of the end of the arm proper resulting from the 

specified manipulator end frame position and orientation at this level to prevent 

solution attempts for unattainable arm end positions. The documented listing for the 

procedures associated with the position and orientation control portion of the overall 

program may be found in Appendix E.



Armatron Manipulator Control
Theta

0.000 N o A p
o.ooo : 1.000 0.000 0 .0 0 0 200.000
o.ooo : 0 .0 0 0 -1.000 0.000 0.000
o.ooo : 0 .0 0 0 0 .0 0 0 -1.000 -100.000o.ooo : 0 0 0 1

Position-Orientation Control
The movement of each of the five joints of the 

Armatron is controlled by specifying a desired 
position-orientation matrix consisting of 
vectors n, o, a, and p.

The steps in the solution process are as 
follows:

1) determine the end of the arm proper from 
the desired gripper center and approach of 
the wrist

2) four possible triples are then evaluated 
to bring the arm proper to this postion

3) solutions are then obtained for the wrist 
variables, if any exist

Figure 5.21. Position and Orientation Introductory Display
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VI. VELOCITY CONTROL

The relationship between the joint control variables and the orientation and 

position of the coordinate frame of the arm end has been examined extensively in the 

two previous chapters. Specifically, Chapter 4 obtained the orientation and position 

of the end coordinate frame given the joint control variables, while Chapter 5 derived 

the more difficult reverse relationships of joint variables from a desired orientation and 

position of the manipulator end frame. This chapter builds upon these relationships 

by deriving the correspondences between the rates of change in the joint variables and 

the end coordinate frame. This will be done in both directions: the rate of change in 

the manipulator end coordinate frame's position and orientation will be developed 

from the rates of change in the arm control variables, and the control variable rates 

will likewise be derived from the rates of change in arm end orientation. In particular, 

the latter will allow for the determination of control variable speeds to achieve desired 

rates in the arm end coordinate frame.

It should be noted here that with the existing arm construction (in particular, the 

motors used), it will not be possible to implement directly the results obtained in this 

chapter. Changes in the arm design which would make this possible will be proposed 

in Chapter S. It is also worth noting that the computations involved are of sufficient 

complexity to preclude real-time generation at any rate; thus the work done in this 

chapter would be accomplished off-line, independent of and prior to actual robot 

control. As was done for the previous chapters, the program will be developed in 

stages following the derivation of equations and numerical example of each section.
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A. TRANSLATIONAL AND ROTATIONAL RATES OF THE END FRAME

This section provides a derivation for the rates of the manipulator end coordinate 

frame in terms of the joint rates. This method shall result in rates which are with 

respect to the base coordinate directions. It is important to distinguish here between 

base coordinate directions and the base coordinate frame itself. As will be seen later, 

a rotational rate around a base coordinate frame axis has both rotational and 

translational effects with respect to the manipulator end. The derivation of this section 

will yield the rates of the manipulator end with respect to a coordinate system centered 

at the manipulator end but identical in orientation to the base frame.

1. Derivation of Equations. Consider the effect the rate at which one joint 

transforms has on the coordinate frame at the end of the manipulator. In Chapter 4, 

a link was defined for the physical transformations from each joint coordinate frame 

to the next. When joint / rotates, link i rotates coordinate frame / about joint /'s 

coordinate frame i — I. Coordinate frames /+ 1, i + 2, ...6, are also rotated about 

frame / —l. These frames remain fixed with respect to frame i. The effect of the 

rotation of joint / may be broken down into translational and rotational components.

a. Translational Velocities. Consider Figure 6.1 and the three coordinate frames 

which are related to each other by vectors. For the equations that follow, each of the 

vectors shall be specified with respect to frame /— 1. The distance and direction of 

vector '~xdi relates frame / — 1 to frame i. The remaining distance and direction from 

frame / to frame n is represented by vector ‘~'d,. Finally, vector ‘~'d is that relating 

frame /—I to frame n directly. Note that vector ‘~'d is the vector sum of vectors /_1d , 

and !~'dr.

+ (6.1)
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Figure 6.1. Single Joint Under Transformation

The linear velocities at frame n are obtained from this equation. The process begins 

by differentiating Equation (6.1) with respect to time.

d_
di

d_
dt ( 6 .2 )

The left hand side of this equation is the desired rate of change, that of the manipulator 

end. The first term on the right hand side is obtained by recalling that the displacement 

of a given link i is specified by a rotation 0, about axis z,_,, translation of a distance d, 

along axis z,-_,, translation along axis x._, of distance ah and a rotation of a, about x,_, 

from the direction of z,_, to that of z,. The combined displacement of these 

transformations, and hence vector x„ may be obtained from the components of the 

fourth column of the A, matrix in Equation (4.55); the required derivative follows.

cos 0,- — sin 6 ; cos a,- sin 8 j sin a(- <3; cos 0,-

sin 6 j cos 0,- cos a; — cos 0,- sin a(- a,- sin 0(-

0 sin o.j cos cq 4

0 0 0 1
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«,■ cos 6

‘ ]d ,=  at sin 6 , (6.4)

(6.5)

Note that the rate of change of d, is that of the distance between coordinate frames 

i — 1 and /, while the rate of change of ‘-'di is that of the vector components with 

respect to coordinate frame / — 1. The second term on the right hand side of Equation 

(6.2) is obtained by first relating vector dr with respect to two different coordinate 

frames, / and / — l. This is done by referring again to the link transformation matrix 

in Equation (6.3) and employing here the upper left 3x3 rotational portion of the 

matrix; this is denoted R,.

cos 8 1 — sin 6 j c-os a; sin sin oq

l~]Ri=  sin cos 6 j cos a; — cos sin a,. (6.6)

0 sin a,- cos a.i

(6.7)

Differentiating the product of Equation (6.7),

(6.S)
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As all of the other manipulator joints are being held constant, the rate of change of 

‘d, is zero and the second term in Equation (6.8) becomes zero. The first term is 

expanded by differentiating matrix ]R Note that in doing so, only 0, has a rate of 

change as a, is assumed constant for the link; this is the case for each joint of the 

Armatron manipulator.

d_
dt (6.9)

d_
di

_d_
dt

cos — sin 6 1 cos a,- sin 0;- sin a,-

sin 6 j cos 6 1 cos a,- — cos 0, sin a, ‘d .

0 cos ai

( 6. 10)

d /-i
dt

- sin dj — cos dj cos cq cos 0,- sin a(- 

d r — cos 9j — sin dt cos a;- sin 0 t sin a(- 

0 0 0
dt O jd r (6 . 11)

This expression may be simplified by post-multiplying the '~'R, matrix derivative by 

/= ('■-'/?,■)"1(,'_1/?,•). The inverse of '-1/?, is simply its transpose because the columns of 

‘- lRi are independent of one another, as discussed in Chapter 4.

d_
dt (6 . 12)

Rearranging,

d_
dt

— s d i — cdjCO.1 cd jS & i c6 j s d j 0 "

cQ t — sQ jC ai sQ isa .i —sOjCcr.; cQ ic a . i sai

0_ 0 0 s9jSa.j —c9jSa.j cai_
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- s Q fiQ i +  c d j S d ^ o i j  +  c O j.s O ^ t t i  — s 20 j  — c 2 0 , c 2 a / — c 20 i s 2a i 

c20; + i 20,-c2a(- + s 20 js 2a j c d jS d j  — cQisdic1ai — cOjsd^oij 

0 0

— c 8  [C v .j S a .1  +  c Q jC O LjS O Li  

— s O j C a .j S a j +  sO jC a ^scC j 

0

(6.14)

r i d l - i o ,

d /-lT
~ r  d r di

—sOjCOji 1 — c2ctj — ■52oti-) —s1Qi — c2flf(c2a,- +  s2a(-) 0 

c 2 0 i  +  s " 0  j ( c 2a.i +  s 2 o.t)  c d j s d ^ l  — c 2 Uj — s 2a j )  0 t ' l ^ id r~ O l (6.15)

0 - 1 0
d_
di

0 0 0

The product (l_1/?,)Wr is just ‘~'d„ as stated in Equation (6.7).

0 - 1 0
d_
dt

0

0 0

0 0

d_
dt

i -  ir

--
-1 o J__ o __
_1 l— i 1---

I___

1 0 0 d ry

0 0 0

—
i

-T"
___

i

i-l r

(6.16)

(6.17)

(6.18)

(6.19)

0
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This equation and Equation (6.5) are substituted back into Equation (6.2) to obtain the 

desired rate of change.

=jL ‘-'d +A-l~'dr (6.20)
dt dt 1 dl

—a-, sin 6 :-—- 8 .- 
‘ 1 dl 1

i -1

11
1J37^|-5 ai cos e, —  8 , + dr. ~ T edt

d . 
l F d‘

0

Examination of the A, matrix in Equation (6.3) shows that the product a, cos 6 , is the 

jr-component with respect to frame /—l of the translation vector of link /, while 

a, sin 6 , is its j>-componcnt. This translation vector is labeled d, in Figure (6.1).

d_
dt

‘- ' - 4  ~  0t-y dt ‘

‘-'di ~  e,* dt ‘

i-1

+

d_
dt l~]d

-
d A 
dl d‘

0

'o '
i'-l 1-----1.V1

1___

0 1 7 di + dt + dr‘X X
1 0

d 8 
~7F9i

( 6 . 2 2 )

(6.23)

From Equation (6.1), the sum of vectors d< and dr was stated to be vector d. The 

component sums in Equation (6.23) are replaced using this relationship.

' o "
/ - i

d
dt ]d  = 0 i J ‘ + dx

1 0

d  fl
~d?e ‘

( 6 . 2 4 )
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The components of vector ‘~'d may be obtained from the fourth column of the matrix 

product A,At+\...As, as this column represents the translation due to the involved 

transformations. The product of A matrices was seen in Chapter 4 to have as its 

columns the vectors n, o, a , and p. For the product A,A^,...ASl the fourth column 

components are thus elements of vector '~'ps-

'o ' /-I
~~Py~

T II 0 ~dFdi + Px

1 0 _

(6.25)

The rate of change of d  in this equation is with respect to coordinate frame / — l. The 

equation is generalized by obtaining the rate of change with respect to the base 

coordinate frame. This is accomplished by premultiplying both sides by the matrix 

product R}R2. ..Ri-i, where each Rj again represents only the rotation due to link j. The 

columns of the R matrix product are the vectors °n,_,, 0e>,_1, and °5,_,.

"o' /-1
'~Py

0 l h d i+ Px
d n

-77 9  ‘
1 0_ 5

or
nx

dt
nz o2 a2

0

0

~Py

Px (6.27)

r n 0 0 r  ~\
nx ° x

d
~dtd‘ + - ny

+7

°y

_°2 . i- 1 _n2_ i—i _ o 2 _

( 6 . 2 8 )
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For a prismatic (sliding) joint, —  Q, is zero and the second term in the above equation
dl

drops out. For a revolute joint, "  d, is zero and the first term drops out. This second 

case applies to each of the Armatron manipulator joints as they are all revolute; the 

prismatic case thus need not be considered further. Note that in the following equation 

for the translation rate due to one manipulator joint, the rate is more properly labeled 

to reflect its dependence on joint /.

r 0r
nx °x

"y ‘~'Pys + °y

_>h_

(6.29)

b. Rotational Velocities. The rotational velocities about the x-, j ’-, and z-axes 

which lie in the directions of the base coordinate frame axes arc obtained by referring 

again to the transformations of link i. The rotations involved in link / arc the a, 

rotation about the axis and the 6 , rotation about the z,_r axis. The a rotations are 

of constant value and thus have no effect on rotational rates. The 6 rotations are those 

of the manipulator's revolute joints. In the case of a prismatic joint (again, of which 

the Armatron manipulator has none), there is not variable rotation and hence the 

rotational rate is zero. In the case of the i'h revolute joint, the variable rotation is about 

the z,-_j-axis. Let the vector <5, represent the entire rotation due to joint i. Then the 

components of <5, may be denoted with respect to coordinate frame /— l as follows 

prior to differentiation to achieve the desired rate.

0

0

e,
( 6 . 3 0 )
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0

d 1— 1 r
i t

0 (6.31)

As was done for d  in the linear velocity case, the rotational rate is obtained with 

respect to the directions of the base coordinate frame axes by prcmultiplication ofboth 

sides of the equation by RiR2...R,_i. The directions of a vector with respect to frame 

/ arc thus obtained in terms of the base frame's directions.

R^R^.Ri- 1
d i-17 
di 6 R,R2...R;_, 0

d n
77 6 ‘

(6.32)

nx Ox a x ‘ o '

ny Oy ay 0

n2 0 2 a z . i- 1
1

(6.33)

d_
dt ay 7 7  61

-Jl-1

(6.34)

c. The Manipulator Jacobian. Equations (6.29) and (6.34) are combined to form 

the relationship for the linear and rotational velocities of the manipulator end frame 

with respect to the base frame directions due to joint i.
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d
dt

r 0r n
nx

ny
i- 1 , 

Py,+ °y

*2 _ / - l

-----
1

oN 
__

1

(-1
P*

/-i

i-i

(6.35)

The components of vector °d, in Equation (6.29) arc referred to here gcncrically as 

components of displacement vector d. It should be noted at this point that the vector 

approach used here has derived the rotational velocity about the base coordinate 

frame; as such, the rotational velocity contributes to the translational velocity. This 

contribution is included in the translational velocity as the velocity was derived with 

respect to the base coordinate frame. Thus the rotational velocity may be thought of 

as reflecting the rotational rates about a coordinate frame identical in orientation to 

that of the base, but centered at the coordinate frame of the manipulator end.

The combined effects of the rate of each joint on the rates of the manipulator end 

frame are realized by summing the effects of the individual joints.

__
_1 o 1

ny
1 - 1  , 

Pys +

_«z. i - i

---------1
N

o
_____

J

;—i

Or

Ji-i

(6.35)
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If the rotational rate 0, in Equation (6.36) is taken to be 1, then the translational 

and rotational rates of the left hand side become simply the elements of the right hand 

side column vector, reflecting the rates due to a joint rate of unity. The vector elements 

of the left hand side of the following equation are labeled with the subscript 1 to 

indicate this relationship.

dy ]

d: \

*5jci

v ,
L J /

r  ~\ 0 rL

nx

ny
( - 1  , 

Py, +
1--

---
--

S; Ki 1__
__

i- 1

/-i
P*

i-1

(6 .3 7 )

Utilizing this nomenclature, Equation (6.36) may now be written in matrix form as

0 - -
dx l dx i, dx \2 dx\2 dx\t dx i,

dy\ dyh dy\2 dyh dy\* dy 15

d d2\ d2\, dz\2 dz\2 d2\t d*h
dt

0 x\ Sxx, t>x\2 «5xU

0y\ 0y\2 0y]5

* * **> 0 Z}5
_

d_
di

d 2

e3

o.

Os

(6.38)

The 6x5 matrix of Equation (6.38)'s right hand side is termed the Jacobian matrix for 

the Armatron manipulator; it should also be remembered that this particular Jacobian 

resulted from a vector approach to the translational velocity. Another approach 

[Paul81c] employing matrix manipulations results in a completely different matrix and 

corresponding interpretation.
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The Jacobian matrix is obtained one column at a time by employing Equation 

(6.37). Each element of the form °e,_, is obtained from a corresponding matrix product 

A]A2...Ai-,. Recall that all of the matrix products of this form were generated in 

Chapter 4. Each element ‘-'e5 is obtained from a matching matrix product A,A,+l...As. 

Note that the complete matrix product need not be carried out as the formula to be 

invoked here employs only elements from the product's fourth column, p, and py.

The required pt and py expressions are obtained here for subsequent substitutions 

in Equation (6.37). For ip,i and 4pys, As is used from Equation (4.67).

c 5 ~ 55 0 0

5S c 5 0 0

0 0 1 d ,

0 0 0 1

P*S = 0

(6.39)

(6.40)

(6.41)

Equation (4.65) provides Aa for multiplication with As, in turn yielding 3p,s and 3prs. 

As noted, the first three columns are not needed and thus not generated.

c4 0 s4 o~ c5 —s 5

1-----
oo

s4 0 - c 4 0 s 5 c 5 0 0

0 1 0 0 0 0 1 d .5

0 0 0 1 0 0 0 1

(6.42)
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A4A$ —

-  d5sA

— —dsc4

0

1

(6.43)

A?II
J

(6.44)

<7■xT1ll (6.45)

Matrix A3 from Equation (4.63) is used to obtain 2p.s and 1pyi.

0 s 3
"

a 3 c 3 — — —

---
---

---
1

*3 0 ~ c 3 a 3s 3 — — — - r / 5c4

0 1 0 0 -  — — 0

0 0 0 1 — — — 1

(6.46)

Aj A4A3 —

d5c3s4 4- a3c3 

d5s3sa + a3s3 

—d5c4 

1

(6.47)

2pxi = (dssA + a3)c3 (6.48)

2Pvs = (<^4 +  «3)s3 (6.49)

Next, Ai is used from Equation (4.61) in producing 'pxs and 1pyi
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C2 0 - 5 2 a2c2 -  -  -  t o  + a3)c3

s2 0 c2 a2s2 — — — (d5s4 4- a3)s3

0 - 1 0 0 -  -  -  - d 5c4

0 0 0 I -  -  -  1

(6.50)

-  -  (d5s4 + a3)c2c3 + d5s2c4 + a2c2

-  — {d5s4 + a3)s2c3 — d5c2c4 + a2s2

-  -  -  t o  +  t o

-  -  1

(6.51)

Pxs = ( ( t o  + t o  + t o  + d5s2c4 (6.52)

]Pys — ((d5s4 + a3)c3 + a2)s2 — d5c2c4 (6.53)

Finally, °psS and °pys are obtained from the use of A1 in Equation (4.59).

Cl 0 5, 0 --------- ( t o  + t o  + a2)c2 + d5s2c4

si 0 —c, 0 --------- ( t o  + < to  + a2)52 -  d5c2c4

0 1 0 0 ---------  -  (t o  + 03)53

0 0 0 1 _---------  1

(6.54)

4]A2A3A4A3 —

( ( ( to  + a3)c3 + a2)c2 + d5s2c4)c, -  {d5s4 + <33)5,53 

(((to +  <23)c3 + a2)c2 + <tf552c4 )5, + {d5s4 + <33)c,53 

( ( t o  + a3)c3 + a2)s2 -  d5c2c4
(6.55)

1

°P xs =  ( (( to  +  a i ) c 2 +  a 2)c2 +  t o t o l  ~  ( t o  +  «3>153 ( 6 . 5 6 )
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Pys =  (((^5*4 +  ai ) C3 +  a l ) c2 +  ^552C4)51 +  (d SSA +  a3)C}S3 (6.57)

Equation (6.37) is now employed along with the various matrix product results from 

Chapter 4 to obtain the columns of the Jacobian matrix. The rates for joint 1 require 

matrix product °A0, which is simply the identity matrix.

r 1
dx  l

dy\

d 2\

5y]

&2l
i

°r

r -I 0 rL
nx °x

0
ny Pys +

_nz_ _ ° 2 _0

P*

‘ J o

4ci

dy\

dz\

&x\

&y]

-M

V ' o '

0 o . 
Pys + 1

0 0

0

0

1

(6.58)

(6.59)
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Or
dx\ -  {{{{dss4 + a3)c3 + a2)c2 + d5s2c4)ŝ  + (d5s4 + a3)cts3)

dy) (((d5s4 + a3)c3 + a2)c2 + d5s2c4)c] -  {d5s4 + 03)5,53

dz i 0

0

&y\ 0

1
1

(6.60)

The rates for joint 2 utilize matrix product °Ah or just A h from Equation (4.59) and 

lp,s and 'pys from Equations (6.52) and (6.53), respectively.

Or
dxl

dy\

d z\ 

^ x\

dy]

r n 0r
nx Ox

ny
1
Pys + °y

_nz_ \

PX s

Or
(6.61)

O r i

d>ci V

1-------
O1-------

dy] — ■h
i
Py5 + 0

d2] _ 0 _ 1

^x] S\~

5y) ~ C\

_ 0  _

- 2

Pxs

( 6 . 6 2 )
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Or -i
d x\ - (((dih  + a3)c3 +  a2)s2 -  dsc2cA)c]

dA -  (((^4 +  «3)c3 +  a 2 )s 2 -  d 5C2 CA)S\

d z\ i(dss4 + a3)c3 + a2)c2 + d5s2cA

&x\ s \

~ c \

<5,. 0
- 2

Matrix product °/l2 = A,A2 from Equation (4.70) and 1p,s and 2pys from Equations (6.48) 

and (6.49), respectively, arc employed to obtain the rates for joint 3.

r  n 0 r
nx Ox

ny 2
Pys + °y

_'h_
2

_°2_

Or -i (6.64)

c \c2

h c2 (d5sA + a3)s3 +

si"

-C|

_ 52 . 0_

(d$sA + c3)c3

~ c \ s2

~ s \ h

c 2

( 6 . 6 5 )
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Or
dx i -  {d̂ s4 + a3)(c,c2.s3 + i,c3)

dy\ -  (</5j4 + a3)( ,̂c2-s3 -  ciEi)

d21 — (<̂5X4 + a3)s2s3

ĴCl ~ c \s2

~~s \s2

<5,,
3

c2

(6.66)

Next, the rates for joint 4 require matrix product °A} = A,A2A} from Equation (4.72) 

and zpxs and 3pys from Equations (6.44) and (6.45), respectively.

Jy\

J2\

0r 1 0r “i
x̂l nx °JC

dy] — ny
3
Py> +

d2] _n2_ 3 °2_

b x\ °r 1
°X

(6.67)

dx \

dy 1

4ri

x̂l

by 1

C]C2C3 — s,a3 -c ,x 2

S1C2C3 + c153 ( ~dscA) + -5,52

2̂C3 C2

c ] c 253 "6 -̂ 1 c3 

c253 ~  c l c 3 

*2*3

( 6 . 6 8 )
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d x \ d s { ( C\c 2C3 ~  s l s3,)c4 c15254)

dy l 5̂((-hc2C3 + <V?3)c4 *  W 4)

d 21 d $( s 2C3 C4 4“ C2 i4 )

C,C253 + S]C3

by] S\C2S3 ~  clc3

6 21 s 2s 3
- 4

(6.69)

Lastly, the matrix product °A4 =  A]A2AiA4 from liquation (4.74) and *p,5 and front 

Equations (6.40) and (6.41), respectively, are employed to obtain the rates for joint 5.

d x \

dy\

d*

b

b

b

xl

>1

2 \

J 5

r *1 0r “i
nx Ox

4
ny Py5 + °y

n2_ 4 _°Z_

Px,

(6.70)

—

^JCl

d 2 ]

b  x\

b y ]

b ;  ]

5

(CjC 2 C3  i , S 3 ) c 4 — C)52 54 c l c 2-s3 +  5 1c 3

( S ,C 2 C3  +  C ,S 3 )C4 -  .? ,5 2 i 4 ( 0 )  + ^2^ 3  C3

52 c3c 4 +  c 2^4 s 253

(c,c2c3 -  S,S3)s4 + c,s2c4 

0 h c2c 3 +  C,S3 )54 +  S ,S 2C4 

*̂ 2 ̂ 3*^4 ^2^4

(6.71)
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d x\ 0

dy\ 0

d 2\ 0

(C1C2C3 — ■h-s3)-s4 +  c ! 52c4

<5>-. O 1C T 3 +  c ts3 )s 4 +  S ,S 2 C4

5
S2C3 SJ  ~  C2C4

The column formulas in Equations (6.60), (6.63), (6.66), (6.69), and (6.72) are then 

combined to form the manipulator Jacobian for the vector approach.

2. Numerical Example. The joint control variable values to be used here as those 

for the examples of the preceding chapters.

"
*1 -115°

$2 25”

03 = 50*

*4 65”

e , — 35

(6.73)

Column 1 of the Jacobian is obtained from Equation (6.60).
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dx\

dy i

<5„

*y>

<5„

(— ((((100 sin 65 + 100) cos 50 + 100) cos 25 

+ 100 sin 25 cos 65 ) sin( - 1 15 )

+ (100 sin 65 + 100) cos( — 115 ) sin((((100 sin 65 + 100) cos 50 + 100) cos 25

+ 100 sin 25 cos 65 ) cos( —115)

— (100 sin 65 + 100) sin( —115) sin0

0

0

I

(6.74)

Or -i
dx\ 260.692'

dy] 39.566

d2\ 0

&x\ 0

5y] 0

<5,1
1

1

Column 2 of the Jacobian is obtained from Equation (6.60).

(6.75)
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4c,
dy\

J x l

Jyj

'z 1

— (((100 sin 65 + 100) cos 50 + 100) sin 25

-  100 cos 25 cos 65 ) cos( - 115 )

— (((100 sin 65 + 100) cos 50 + 100) sin 25

— 100 cos 25 cos 65 ) sin( — 115) 

'((100 sin 65 + 100) cos 50 + 100) cos 25

+ 100 sin 25 cos 65

sin( —115)

— cos( — 115)

0

(6.76)

Or n
4c, 23.559

dy\ 50.522

dz\ 219.546

4c, -0.906

4' 0.423

4,
2

0

(6.77)

Equation (6.66) provides the formula for column 3 of the Jacobian.
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dx\

d y\

d 2\

ĴCl

-  (100 sin 65 + 100)( cos( - 1 1 5 )  cos 25 sin 50 

+ sin( —115 ) cos 50 )

— ( 1(K) sin 65 + 100)( sin{ — 115) cos 25 sin 50 

— cos( —115) cos 50 )

— (100 sin 65 +100) sin 25 sin 50

— cos( — 115 ) sin 25

— sin( — 115 ) sin 25 

cos 25

(6.7S)

Or i
d x\ 166.9SS

dy\ 68.164

d 2\ -61.716

^X) 0.179

^ y\ 0.383

<5,,
3

0.906

(6.79)

Next, column 4 of the Jacobian is obtained from Equation (6.69).
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dx\

dy\

dzl

x̂l

100(( cos( —115) cos 25 cos 50 — sin( — 115 ) sin 50 ) cos 65 

— cos( - 1 15 )  sin 25 sin 65 )

/100(( sin( —115) cos 25 cos 50 + cos( — 115 ) sin 50 ) cos 65 

l — sin( —115) sin 25 sin 65 )

100(sin25 cos 50 cos 65 + cos 25 sin 65 ) 

cos( — 115 ) cos 25 sin 50 + sin( — 115 ) cos 50 

sin( — 115 ) cos 25 sin 50 — cos( — 115 ) cos 50 

sin 25 sin 50

or- “ r
d x) 35.123

d y\ -1.282

d« 93.620

& xl -0.876

-0.358

0.324
- 4

Lastly, Equation (6.72) provides the formula for column 5 of the Jacobian.

5x1

uy i

*z\

'xl

J y\

J z  1

0 

0 

0

( cos( —115 ) cos 25 cos 50 — sin( —115) sin 50 ) sin 65 

+ cos( — 115 ) sin 25 cos 65

( sin( —115) cos 25 cos 50 + cos( —115 ) sin 50 ) sin 65
• • •

+ sin( —115 ) sin 25 cos 65
© • o  © e

sin 25 cos 50 sin 65 — cos 25 cos 65

(6.80)

(6.S1)

(6.S2)
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Or
dx\ 0

dy\ 0

d21 0

&x\ 0.331

-0.934

-0.137
- 5

(6.83)

The Jacobian matrix using the vector approach for the manipulator at the given 

positions of the joint variables is then

Jacobian =

260.692 23.559 166.98S 35.123 0

39.566 50.522 68.164 -1.2S2 0

0 219.546 -61.716 93.620 0

0 -0.906 0.179 -0.876 0.331

0 0.423 0.383 -0.358 -0.934

1 0 0.906 0.324 -0.137

(6.S4)

The numerical example continues by employing the Jacobian as in Equation 

(6.3S) to determine the translational and rotational rates corresponding to a particular 

set of joint variable rates.
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Or 1

d_
dt

dx\ 

dy\ 

d21

0.x i 

0yi 

&z\

[Jacobian] —

0 .

0 2

04

05

(6.85)

The joint rates used here arc selected arbitrarily.

Or -i
dx\ 260.692 23.559 166.988 35.123 0 0.1

dy\ 39.566 50.522 6S. 164 -1.282 0 -0.15
d2] 0 219.546 —61.716 93.620 0 1.0

0 -0.906 0.179 -0.876 0.331 0.2

<5,. 0 0.423 0.383 -0.358 -0.934 -0.1

<5,, 1 0 0.906 0.324 -0.137

Or
dx i 196.548

dy] 64.286

d?\ -75.924

ĴCl 0.107

3y] 0.341

1.085

(6.87)

3. Program Control. The program procedure for the determination of 

translational and rotational rates begins by evaluating the sine and cosine of the
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current joint control variables; the procedures then processes sets of delta theta rates. 

The iteration sequence begins by redrawing the display and refreshing the Jacobian, 

and then continues by prompting the user for a new set of joint rates. With these in 

hand, the corresponding translational and rotational rates arc calculated and displayed. 

The iteration concludes by querying the user as to whether to continue in this mode.

The body of the loop, given in procedure f  o r _ s o l _ v i a _ j  ac , follows.

sin_cos (theta, s, c); 
do

{
dsply_jacobian (&rou, cols);
calc_jacobian (s, c, jacobian, rou, cols);
get_delta_theta (dtheta, rou, cols[6]);
calc_list_rates (drate, dtheta, jacobian, rou, cols[5]); 
query ch = cont ("new Jacobian and/or theta rates");
}uhile ( query_ch == ' Y' );

The logic of each of the procedures involved follows the derivation of equations in a 

straightforward manner and warrants no further explanation here.

4. Program Example. The program output for the set of joint values and joint 

rates specified in the numerical example of this section may be seen in Figure 6.2. The 

Jacobian will be seen to match precisely that calculated in Equation (6.86), while the 

translational and rotational rates pictured differ from those in Equation (6.87) by an 

amount small enough to attribute to precision.



Theta
Armatron Manipulator Control

-1 15.000 N 0 A P
25.000 : 0.790 -0.516 0.331 39.566!
5 o . o o o  : 0.195 -0.300 -0.934 -260.692!
65.000 : 0.581 0.802 -0.137 55.745!

-35.000 : 0 0 0 1 :
Velocity Control

Forward Solutions via the Jacobian
Delta Rates J acobian

196.548! 260.692 23.559 166.988 35.123 o.ooo: 0.1001
64.286! 39.566 50.522 68.164 -1.282 o .ooo: -o.1 5 0 :

-75.923!= 0.000 219.546 -61.716 93.620 o.ooo:x 1 .ooo:
0.1061 0.000 -0.906 0.179 -0.876 0.331 : 0 .2 0 0 :
0.341: 0.000 0.423 0.383 -0.358 -0.934: -0 .1 0 0 :
1.085: 1.000 0.000 0.906 0.324 -0.137!

Figure 6.2. Forward Solutions via Jacobian Display

K>OvC
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B. JOINT RATES VIA THE INVERSE JACOBIAN

The previous section obtained translational and rotational rates for the manipulator 

end coordinate frame in terms of the rotation rates of the Armatron joints. While this 

relationship is useful, its inverse is more so. Tor practical applications, the required 

rates of the manipulator end, particularly the translational, are generally known, and 

the joint rates must be determined. This section will derive relationships in this 

direction by inverting and solving numerically the differential equation from the first 

section of this chapter which provided end frame rates in terms of joint rates. In the 

next section, the equations derived in Chapter 5 will be differentiated to provide the 

joint rates directly.

The rate equation

- “ “

dx dx\2 d x h d x ] a dx\s

dy dyh dyh d y h dy \ dyh

d2 dz\2 d 2\t dz\s

<5, <5*1! &x\2 ^ 1, ^x]s

<5>- <5>'h 5yh ^ y \

----------1
N

______
1

<5,i 5

d_
dt

8y 

d2 

8 3  

8, 

85

( 6 . 88)

is to be solved by numerical means. Unfortunately, while there are six translational 

and rotational rates to be specified, the Armatron manipulator consists of five, not six, 

degrees of freedom. Thus the Armatron Jacobian is a 6x5 matrix and has no inverse. 

There are however techniques which can be used to obtain solutions in such cases. 

The number of the rates of the left hand side of Equation (6.SS) that need to be 

specified determines which of two methods to use. Each method determines a 

pseudo-inverse of the Jacobian matrix which allows Equation (6.88) to be solved.
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1. The Over-Determined Case. First, assume it is desired to determine the joint 

rates needed to result in all six of the translational and rotational rates; this is termed 

the over-determined case, in that there are more equations to be satisfied than there 

are unknown variables.

a. Derivation of Equations. Equation (6.8S) is restated in an abbreviated fashion 

to facilitate its manipulation.

For any set of joint rates q' chosen as a solution for this equation, the error associated 

with it is defined as

where e is a 6x1 vector; each of the components of e would be zero for a perfect 

solution. A more workable form for the error associated with a solution is obtained 

by summing the squares of each element of e. This measure of error is termed e2 and 

may be viewed as either the dot product of e with itself or e's transpose multiplied by 

e itself.

d = Jq (6.89)

e = Jq' — d (6.90)

2e = e-c (6.91)

(6.92)

Substituting from Equation (6.90)

e2 =  {Jq' - d ) T{Jq' -  d) (6.93)

e2 =  ( J q ' f i J q ' )  -  (J q ' f d  -  d TJ q ' -  d Td (6.94)
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e2 =  q ' TJ TJ q '  -  q'TJ Td ~ d TJq' -  d Td (6.95)

Since each of the matrix products in Equation (6.95) results in a lxl matrix, which is 

a simple scalar value, any term of the equation may be transposed without affecting 

the result. The third term in the right hand side is thus transposed so that terms may 

be combined.

, r , T ,  , i T , T ,  , , T ,  n T  , T ,
=  q J  Jq  — q J  d — (d Jq  ) — d d (6.96)

' =  q ,T . 1 TJ q '  -  q ' TJ Td  — q ' TJ Td  — d Td (6.97)

e2 =  q'TJ TJq' -  l q ,TJ Td - d Td (6.98)

The function defining e1 in Equation (6.98) will take on a minimum value when its 

derivative is zero. Since e2 is a function of all five of the joint rates in q', Equation 

(6.98) must be differentiated with respect to each of the variables separately. This will 

result in a set of five equations in five unknowns, which may then be solved. To see 

the form the solution for this situation takes, an example shall be demonstrated for a 

small case. Assume that J  is a 3x2 matrix, q is a 2 clement vector, and d is a 3 element 

vector. Equation (6.98) then becomes

e = C<7i ■Ai -Ai -Ai

A  2 A22 -A2

A i to

A i A2

A i A  2

<7i

L ^ J

"a ' "a "
A i A i A i

[ A  A  A ]2C<?i
A  2 A2 A 2_

d2 A

A A

(6.99)
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e = C<7i <?2^
A\ + A\ + A\

■A2A 1 T *A>9-Al T A,/
J\\J\2  T  * ^ 9 1 *^ 9 9  “I" J l \ J '2\J 22 ' 3 \ J 32

32-'31

A
/ 2 1 /2 4 . 7 2U ] 2 - r  a 22 i -  J 32 .to.

A ( 6 . 1 0 0 )

A 1 <71 +  A 2 t o ] A — A ,2 +  y 2 +  r/3 )

A

<?2 = [?, <72]
2 2 ^

(./u + J 2\ + -/Ji)?! + OA1 A 2  + h \ h i  + hxhiM i
2 2 2

+  -122-h\ +  A 2A 1 ) <7l +  (*^12 +  A 2 + (6. 101)

~ 2((-Al<7l + J\2cl2)ci\ + (Al<7l + J 22ch ) d2 + (-Al<?l + ~ (A + A + A)

A = (An + j\\ + j] ] )^  + (A2A1 + Â A] + 2̂ lh\)chc!\

+  ( A A l2 +  A lA 2 +  ^31'J,32)(?1<?2 +  A p  +  A i +  -̂32)^2) (6- 102)

— 2(J11*A<71 + dndxq2 + AlA<7] + 2̂2̂ 2̂ 2 + AlA<7l + A2A to) — (A* + 2̂ + A)

e1 =  (y,2, +  y21 +  y j,)?2 +  2(j v j ]7 +  y2]y22 +  A iA 2)?ito  +  A p  +  A22 +  A22)y2 
— 2(y,,y1 +  y2Iy2 +  y31 A A 1 — 2(y12y, +  y22A  +  y32A)to ~  A 2 +  A? +  d\)

(6.103)

The error is then difTerentiated with respect to the variables <7, and <72, and the 

derivatives are set equal to zero.

<?2 -  2(y2) +  y2I +  -̂3i)<7i +  2(yn y12 +  y21y22 +  y3]A2)to

-  2(yu y, +  y2Iy2 +  y3, A )
(6.104)

t t-g2 =  2 (y „y12 +  a a 22 +  AA32A1 +  2 a 22 +  y22 +  y32)?2ĉ 2 (6.105)
-  2(Jnd\ + J 22d2 +  A 2A)

2(y2, +  y21 +  y3,)<?i +  2(y,,y12 +  y2)y22 +  AiA2)to

-  2(a ,a  +  J2\d2 +  a ,a ) -  0
(6.106)
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2 {Ju J n  +  J 2 j J 27 +  d3]J 32)q] +  2 ( . / ? 2  +  2̂2 +  -^32)̂ 2

— 2(./12i/, + J 22d2 + 3̂2 3̂) = ^
(6.107)

Equations (6.106) and (6.107) arc then combined by factoring them in terms of the 

matrices of Equation (6.99).

o 2 *>
*̂ 11 + d21 + J 22 J\ \J\2 + d2]J 22 + 3̂1 2

J H . / l2 +  J2\-f22 + J3]J22 J 12y?9 + ./|2 + -/232

<7i

.<72.

d\ 1 'h\ d3l

d\2 J 12 ./32

</, ( 6 .1  O S )

d2 = 0

di

d\ i d \ 2
A l di] di\

“̂21 dll q' — J Td = 0 (6.109)
J n dn dii _

d21 dll

J TJq' = J Td (6.110)

q' = (.] TJ)~XJ Td ( 6. 111)

Equation (6.111) is termed the least squares solution to a system of equations of the 

form of Equation (6.89). Matrix product (J TJ)~'JT is referred to as the pseudo inverse 

Jacobian for the over-determined case. See [Stra80] for a geometric derivation of this 

same result.

Two points need to be made here concerning this solution. First, for the 

implementation of this solution, Ranky and Ho [Rank85] recommend that the inverse 

of J TJ  not be determined for use in Equation (6.111). Instead, q' is obtained by solving 

the set of equations specified by Equation (6.110). This reduces the number of
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computations required for the solution. The other point that should be made is that 

the solution developed above is only an approximate solution. In all likelihood, there 

is no perfect solution for the over-determined case. As a robot manipulator is a precise 

mechanism, the solution developed here may not be sufficient to meet the stated 

requirements. The techniques of the next section may be implemented instead.

b. Numerical Example. The inverse Jacobian method for the ovcr-dctcrmincd 

case is demonstrated by obtaining the original joint rates for the translational and 

rotational rates produced by the forward application of the Jacobian in the first section 

of this chapter and stated in Equation (6.87).

Or -i
dx 196.548

dy 64.286

d2 -75.924

Sx 0.107

0.341

<5, E085

( 6. 112)

The Jacobian for the matrix approach was stated in Equation (6.84).

260.692 23.559 166.988 35.123 0

39.566 50.522 68.164 -1.282 0

0 219.546 -61.716 93.620 0

0 -0.906 0.179 -0.876 0.331

0 0.423 0.383 -0.358 -0.934

1 0 0.906 0.324 -0.137

The first step is to obtain matrix product J TJ.
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260.692 39.566 0 0 0 I

23.559 50.522 219.546 -0.906 0.423 0

166.988 6S.164 -61.716 0.179 0.383 0.906

35.123 -1.282 93.620 —0.S76 -0.358 0.324

0 0 0 0.331 -0.934 -0.137

260.692 23.559 166.988 35.123 0

39.566 50.522 68.164 -1.282 0

0 219.546 -61.716 93.620 0

0 -0.906 0.179 -0.876 0.331

0 0.423 0.383 -0.358 -0.934

1 0 0.906 0.324 -0.137

69526.7S7 8140.596 46230.319 9105.886 -0.137

8140.596 51308.945 -6171.649 21317.232 -0.695

46230.319 -6171.649 36341.187 -0.119 -0.423

9105.886 21317.232 -0.119 10000.974 0

-0.137 -0.695 -0.423 0 1.001

The second step is to determine the matrix product J Td.

J Td —

196.548
260.692 39.566 0 0 0 1

64.286
23.559 50.522 219.546 -0.906 0.423 0

-75.924
166.9SS 68.164 -61.716 0.179 0.383 0.906

0.107
35.123 -1.282 93.620 -0.876 -0.358 0.324

0.341
0 0 0 0.331 -0.934 -0.137

1.085

(6.114)

(6.115)

(6.116)
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J Td ■

537S3.116 

-8790.432 

41890.007 

—2S6.92S 

-0.432

(6.117)

The set of equations specified by Equation (6.110) is then solved by row manipulations 

and backward substitution.

J TJq ‘ = J Td (6.1 1 8)

69526.787 8140.596 46230.319 9105.S86 -0.137 53783.116

8140.596 5130S.945 -6171.649 21317.232 -0.695 -8790.432

46230.319 -6171.649 36341.187 -0.119 -0.423 q' = 41S90.007

9105.886 21317.232 -0.119 10000.974 0 —2S6.928

-0.137 -0.695 -0.423 0 1.001 -0.432

69526.787 8140.596 46230.319 9105.886 -0.137 53783.116

0 50355.797 -11584.561 20251.063 -0.679 -15087.668

0 - 1  1584.561 5601.346 -6054.879 -0.332 q' = 6128.098

0 20251.063 -6054.879 8808.381 0.018 -7330.874

0 -0.679 -0.332 0.018 1.001 -0.326

(6.119)

(6. 120)
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69526.787 8140.596 46230.319 9105.886 -0.137 53783.116

0 50355.797 -11584.561 20251.063 -0.679 -15087.668

0 0 2936.269 -1396.038 -0.488 = 2657.117 (6.121)

0 0 -1396.038 664.223 0.291 -1263.225

0 0 -0.488 0.291 1.001 -0.529

69526.787 8140.596 46230.319 9105.886 -0.137 53783.116

0 50355.797 -11584.561 20251.063 -0.679 -150S7.668

0 0 2936.269 -1396.038 -0.488 q' = 2657.117 (6.122)

0 0 0 0.482 0.059 0.091

0 0 0 0.059 1.001 -0.0S7

69526.787 S 140.596 46230.319 9105.SS6 -0.137 53783.116

0 50355.797 -11584.561 20251.063 -0.679 -15087.668

0 0 2936.269 -1396.038 —0.4S8 <7' = 2657.117 (6.123)

0 0 0 0.4S2 0.059 0.091

0 0 0 0 0.994 -0.098

1 0  0 0 0 0.100

0 1 0  0 0 -0.150

0 0 1 0  0 <?' = 1.000

0 0 0 1 0 0.201

0 0 0 0 1 -0.099

The original set of joint rates from Equation (6.86) was
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0, 0.1

d2 -0.15

= 1.0

0.2

S5 -0.1

(6.125)

The minor differences seen here are attributable to the lack of precision in the 

calculations. Note also that since a solution for the given Jacobian equation did in fact 

exist, it was obtained by the solution process. In general, exact results cannot be 

obtained for the over-determined case.

c. Program Control. The procedure for obtaining translational and rotational 

rates by way of an inverse of the Jacobian matrix is named r e v _ s o l_ v ia _ ±  j  . The

body of the procedure follows:
sin_cos (theta, s, c); do

{dsply_rsvij_jacobian (&rou, cols);
calc_jacobian (s, c, jacobian, rou, cols);t = get_required_rates (delta_trans_rot, jacobian, used,jacobian_reduced, delta_tr_reduced, 

rou, cols);uait_then_erase (9); if C (t > 0) & (t < 6) )
{lcputs (10, 10, "Under-Determined Case”);
ic = under_determined_case (t, jacobian_reduced,delta_tr_reduced, delta theta);
}if ( t == 6 )
{lcputs (10, 10, "Over-Determined Case");
ic = over_determined_case (jacobian, delta_trans_rot,

delta_theta);
)if ( (t > 0) & (!ic) )
list_input_output (delta_trans_rot, used, delta_theta ) ; 

qc = cont ("different Jacobian and/or rates");
}uhile ( qc == ' Y* );

As shown here, the iteration begins by refreshing the display and the Jacobian and then 

proceeds to query the user for the rates to be designated as command variables.
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Procedure g e t _ r e q u i r e d _ r a t e s  returns the number of rates designated for use; 

the procedure can then infer whether the case is over- or under-determined.

For the over-determined case, the program proceeds as described in the derivation 

of equations. Procedure o v e r_ d e te rm in e d _ c a s e  receives control and executes 

the matrix operations required in the order required of the particular inverse Jacobian

involved. The body of the procedure follows,

subhead = " 1 . M = (J Transpose) *  J " ;  
matrix_by_matrix (6, jacobian, m, subhead); 
subhead = "2. V = (J Transpose) X T/R Rates"; 
matrix_by_vector (jacobian, 6, delta_trans_rot, v, subhead); 
subhead = "3. Solve tl * Theta Rates = V";
inconsistent = solve_simul_eqns_myv Cm, v, 5, delta_theta, subhead) 
return (inconsistent);

The procedure which solves a set of simultaneous equations returns a value of 0 if the 

equations specified were soluble.

d. Program Example. Figures 6.3 through 6.7 show the displays presented by the 

program for the solution of the over-determined case. The matrix multiplication 

displayed in Figure 6.4 differs only trivially from that calculated in Equation (6.115); 

the same is true of the values shown for the matrix multiplication of Figure 6.5 and the 

values in Equation (6.117). It is interesting to note that the final joint rates arrived at 

in Figure 6.6 arc slightly further off the original set given by Equation (6.86) than arc 

those calculated in Equation (6.124) in the numerical example.



Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 0.790 -0.516 0.331 39.566!
5 0 . 0 0 0  : 0.195 -0.300 -0.939 260.692!
65.000 ! 0.581 0.802 -0.137 55.795!

-35.000 : 0 0 0 1 !
Velocity Control

Reverse Solutions via Inverse Jacobian
Delta Rates Jacobian
I 196.568 260.692 23.559 166.988 35.123 0.000! : d T 1 !
! 69.286! 39.566 50.522 68.169 -1.282 0.000! ! d T 2 :
I -75.929! = 0.000 219.596 -61.716 93.620 0.000! X ! d T 3 :
! 0.107! 0.000 -0.906 0.179 -0.876 0.331 ; ! d T9 !
! 0.391! 0.000 0.923 0.383 -0.358 -0.939! : d T 5 :
! 1.085 1.000 0.000 0.906 0.329 -0.137!

Figure 6.3. Inverse Jacobian, Over-Determined Example: Inputs



Armatron Manipulator Control
Theta
-115.000 N O A P

25.000 ; 0.790 -0.516 0.33 1 39.566
5 0 . 0 0 0 ; 0.195 -0.300 -0.934 -260.692
65.000 : 0.581 0.802 -0.137 55.745

-35.000 : 0 0 0 1
Velocity Control

Reverse Solutions via Inverse Jacobian 
Over-Determined Case 

1. M = (J Transpose) * J
69526.688 8140.536 46230.230 9106.006 -0.137:
8140.536 51308.980 -6171.571 21317.234 -0.694!

46230.230 -6171.571 36341.078 7.749E-04 -0.423!
9106.006 21317.234 7.749E-04 10001.000 1.181E-08!

-0.137 -0.694 -0.423 1 . 181E-08 1 .ooo:

Figure 6.4. Inverse Jacobian, Over-Determined Fxamplc: Step l

toto
to



Armatron Manipulator Control
Theta

-115.000 N 0 A P
25.000 : 0.790 -0.516 0.331 39.566
5 0 . 0 0 0 : 0.195 -0.300 -0.939 -260.692
65.000 : 0.581 0.802 -0.137 55.795

-35.000 0 0 0 1
Velocity Control

Reverse Solutions via Inverse Jacobian 
Over-Determined Case 

2. V = CJ Transpose) * T/R Rates
53783.079! 260.692 39.566 0.000 0.000 0.000 1.000! 196.598!
-8790.962! 23.559 50.522 219.596 -0.906 0.923 0.000! 69.286!
91889.991! = 166.988 68.169 -61.716 0.179 0.383 0.906!X -75.929!
-286.831! 35.123 -1.282 93.620 -0.876 -0.358 0.329! 0.107!

-0.932! 0.000 0.000 0.000 0.331 -0.939 -0.137! 0.391! 
1.085!

Figure 6.5. Inverse Jacobian, Over-Determined Example: Step 2

totoCJ



Armatron Manipulator Control
Theta

- 1 1 5 . 0 0 0 N o A P
2 5 . 0 0 0  : 0 . 7 9 0 - 0 . 5 1 6 0 . 3 3 1 3 9 . 5 6 6
5 o . o o o  : 0 . 1 9 5 - 0 . 3 0 0 - 0 . 9 3 4 - 2 6 0 . 6 9 2
6 5 . 0 0 0  : 0 . 5 8 1 0 . 8 0 2 - 0 . 1 3 7 5 5 . 7 4 5

- 3 5 . 0 0 0  : 0 0 0 1

Velocity Control
Reverse Solutions via Inverse Jacobian 

Over-Determined Case 
3. Solve M * Theta Rates = V

1.000 0.000 0.000 0.000 o.ooo: :y (d : 0.101
1.662E-04 1.000 0.000 0.000 o.ooo: :y (2): -0.149
3.108E-04 3.166E-04 1 . 000 0.000 o.ooo: x :Y(3): = 0.999
1.980E-04 6.019E-04 -2.731E-05 1.000 o .ooo: :y (4): 0.197
4.612E-10 9.598E-09 2.289E-09 1 . 499E-09 1 .ooo: :yc 5): -0.099

Figure 6.6. Inverse Jacobian, Over-Determined Fxamplc: Step 3
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Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 0.790 -0 .516 0.331 39.566!
50.000 0.195 -0 .300 -0.93*4 -260.692!
65.000 0.581 0 .802 -0.137 55.745!

-35.000 0 0 0 1 !
Velocity Control

Reverse Solutions via Inverse Jacobi an
Over-Determined Case

Input t Delta Translational S Rotational Rates
!dtx! 196.598!
; dty; 64.286 I
! dtz : -75.924!
! drx l 0.107!
!dry : 0.341!
! dr z I 1.085!

Output: Delta Theta Rates
! dT1 I 0.101!
! dT2 I -0.149!
! dT3 I = 0.999 !
: dTh: 0.197!
: dT5: -0.099!

Figure 6.7. Inverse Jacobian, Over-Determined Fxamplc: Results

rotoLAt
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2. The Under-Determined Case. If  it is not required that all six of the 

translational and rotational rates be met by a set of joint rates, then the 

under-determined case is in effect.

a. Derivation of Equations. With respect to liquation (6.88), only the desired 

translational and rotational rates arc stated in the left hand vector, and the Jacobian 

is reduced to contain only the rows associated with them. For example,

d
di

1
>*• __
_

J i

4 i2 4  b it __
__

1

4 = 4 h 4>, 4  b 4 b dv) y *5

l--
---

i__
_

i 4 . , 4 . , 4 b

------,

_d_
dl

e,

o2

o,

o*

Os

(6.126)

d = J q (6.127)

There are now fewer equations than there are unknowns. Consequently, Equation 

(6.127) has an infinite number of solutions. However, there is one solution q '  whose 

Euclidean norm, q ' - q '  or q ' T q ' , is a minimum for the equation. This is the set of joint 

rates which are the smallest in magnitude producing the desired translational and/or 

rotational rates. This solution is found by applying the Lagrangian multiplier 

technique to Equation (6.127); sec [ Boul71] and [ Rao7I] for further detail on this 

technique. The function

\ } i { q ' )  =  q ' T q ' +  A { J q ' -  d) (6.128)

is to be minimized with

h  . . . i j (6.129)
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where n is the number of translational and rotational rates specified. The function of 

Equation (6.128) will take on a minimum value when its derivative is zero. Like c2 in 

the over-determined case, ip(q') is a function of all five of the joint rates in q‘, and 

Equation (6.128) must be differentiated with respect to each of the variables separately. 

Five equations in five unknowns result, and these equations may then be solved. As 

was noted for the over-determined case, the differentiation process need not be carried 

out explicitly. To see how the process works, a small example shall be examined as 

was done for the over-determined case. Assume that7 is a 2x3 matrix, q is a 3 clement 

vector, and d  is a 2 clement vector; X is likewise a 2 clement vector. Equation (6.128) 

then becomes

ft

(̂<7' ) = C < 7i f t  f t 3 ft +  [ 2 , 2.2D

. f t .
-

2]i ^\2 -A 3

J 2] J 22 2̂3

ft

<7:
/ f t

_ft_

'/'('?') =  ft + ft + ft + [2.,
/ lft  + ^22ft + *̂ 23ft

(6. 130)

<K<?') — ft +  f t  +  f t  +  2 ,(7 ,,ft + ^12f t +  *̂ 13ft ~  d \ )

+ 2.2(72,ft + J 22q2 + 723ft — d2)
(6.132)

Differentiation is then performed with respect to variables ft, q2, and ft.

d
dq] i'W) -  2ft + 2,7,, + 2.272, (6.133)

d
dq2 & W )  — 2ft + 2,7,2 +  ^2^22 (6.13d)

G
5ft ^W) — 2ft + 2,7]3 + X2J 22 (6.135)
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The derivatives of Equations (6.133), (6.134), and (6.135) may be combined into a 

single matrix equation upon equation with 0.

<?1 •Ai •Al ‘ o'
' V

<72 + •A 2 •A 2
_̂ 2_

0 (6.136)

.<73. •A 3 ^23 0

2g' + J TXT = 0 (6.137)

' I ,7\r
<7 = ~  — J  X (6.138)

This result for <7' is then substituted into Equation (6.127) so that 2 

in terms of J  and d.

may be solved for

d = J { - \ j T) T) (6.139)

- 2  d = J J T) T (6.140)

Xr = - 2  { J J T)~'d (6.141)

This result is then substituted back into Equation (6.138) to yield q' 

d.

in terms of J  and

q' = - \ j T{ - 2 { J J TT'd) (6.142)

q‘ = J T( J J T)~]d (6.143)

Matrix product is referred to as the pseudo-inverse of the Jacobian for the

under-determined case.
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The number of calculations for the determination of q' may be reduced by a 

scheme similar to that used in the over-determined case. First, introduce a new matrix, 

r.

r = { J J r)~]d  (6.144)

J J Tr = d  (6.145)

Matrix r is determined by solving the specified system of equations; the inverse (-A/7) -1 

need not be found. A substitution is then made into Equation (6.143).

q' = J Tr (6.146)

b. Numerical Examples. The inverse Jacobian method for the under-determined 

case is first demonstrated by obtaining the optimal set of joint rates for only 

translational rates. The rates produced by the forward application of the Jacobian in 

the first section shall be used here as they were in the example of the over-determined 

case, as stated in Equation (6.112).

O r

A “ 196.548'

= 64.286

A -75.924

(6.147)

The Jacobian determined in the first section and restated for the over-determined case 

in Equation (6.113) is reduced by eliminating the bottom three rows as they deal with 

the rotational rates.

260.692 23.559 166.988 35.123 0

39.566 50.522 68.164 -1.282 0 (6.148)

0 219.546 -61.716 93.620 0
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The first step is to obtain matrix product J J T.

260.692 39.566 0

260.692 23.559 166.988 35.123 0" 23.559 50.522 219.546

39.566 50.522 68.164 -1.282 0 166.9S8 68.164 -61.716

0 219.546 -61.716 93.620 0 35.123 -1.2S2 93.620

0 0 0

,/./r  =

97633.963 22842.330 -1845.332 

22842.330 8765.915 6765.073

-1845.332 6765.073 60774.015

The second step is to determine matrix r. The set of equations specified by 

(6.145) is solved by row manipulations and backward substitution.

J J Tr = d

'  97633.963 22842.330 -1845.332" " 196.548'

22842.330 8765.915 6765.073 r = 64.286

— 1845.332 6765.073 60774.015 -75.924

"97633.963 22842.330 -1845.332 ' 196.54S"

0 3421.750 7196.805 r = IS.302

0 7196.805 60739.137 -72.209

'97633.963 22S42.330 -1845.332" 196.54S"

0 3421.750 7196.805 r — 18.302

0 0 45602.437 -110.703

(6.149)

(6.150)

Equation

(6.151)

(6.152)

(6.153)

(6.154)



2 3 1

"l 0 o ’ ’ —4.800E - 4 '

0 1 0 r = 1.046E - 2

0 0 1 -2.428E - 3

(6.155)

Finally, the resultant r is substituted into Equation (6.146).

q'
,r  — J r

260.692 39.566 0

23.559 50.522 219.546 ’ —4.800E - 4

166.988 68.164 -61.716 1.046E —2

35.123 -1.282 93.620 —2.428E —3

0 0 0

(6.156)

(6.157)

0.289

-0.016

<7 = 0.783

-0.258

0

(6.158)

This solution set may be verified by using the Jacobian of Equation (6.113) in the 

forward fashion as in Equation (6.127).

d  — Jq ( 6 . 1 5 9 )



2 3 2

260.692 23.559 166.988 35.123 0
0.289

39.566 50.522 68.164 -1.282 0
-0.016

0 _ 19.546 -61.716 93.620 0
0.783

0 -0.906 0.179 -0.876 0.331
-0.258

0 0.423 0.383 -0.35S -0.934
0

1 0 0.906 0.324 -0.137 L J

(6.160)

196.653

64.329

d =
-75.990

0.381

0.385

0.915

(6.161)

Comparison with the original set of translational rates in Equation (6.147) shows no 

significant differences. However, the original rotational rates, stated in Equation 

(6.112), are not matched. The Euclidean norm of the newly obtained q’ is less, 

however; it is in fact minimal.

|̂ | = < 0 .1  -0 .15  1 0.2 -0.1 > .< 0 .1  -0 .15 1 0.2 -0.1 > (6.162)

\q\ = 1.083 (6.163)

\q'\ = < 0.2S9 -0.016 0.783 -0.258 0 > 

• < 0.2S9 -0.016 0.783 -0.258 0 >
(6.164)

\q'\ =0.763 ( 6 . 1 6 5 )

Thus the desired translational rates are attained at overall slower rotational rates.
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A second numerical example serves to illustrate the possibilities of the 

under-determined case. Instead of requiring the translational rates only, the 

^-translational as well as the .v- and z-rotational rates are selected. The rates are again 

chosen from the solution obtained by forward application of the Jacobian in liquation 

(6.112).

Or -i
V ’ 64.286"

<5, = 0.107

<5, 1.0S5

(6.166)

The Jacobian matrix of Equation (6.113). is then reduced to the second, fourth, and 

sixth rows.

39.566 50.522 6S.164 -1.282 0

J  = 0 -0.906 0.179 -0.876 0.331

1 0 0.906 0.324 -0.137

(6.167)

The first step obtains matrix product J J T.

39.566 50.522 68.164 -1.282

II 0 -0.906 0.179 -0.876

1 0 0.906 0.324

39.566 0 1

0 50.522 -0.906 0

0.331 68.164 0.179 0.906

-0.137 -1.282 -0.S76 0.324

0 0.331 -0.137

(6.168)

J J T

8765.915 -32.449 100.907 

-32.449 1.730 -0.167

100.907 -0.167 1.945

(6.169)
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The second step determines matrix r by solving the set of equations 

Equation (6.145).

J J Tr = d

'8765.915 -32.449 100.907“ “64.286“

-32.449 1.730 -0.167 r — 0.107

100.907 -0.167 1.945 1.085

'8765.915 -32.449 100.907“ “64.286“

0 1.610 0.207 r = 0.345

0 0.207 0.783 0.345

'  S765.915 -32.449 100.907“ 64.2S6"

0 1.610 0.207 r = 0.345

0 0 0.756 0.301

1 0 o' 3.356E —3'

0 1 0 r — 0.163

0L 0 1 0.398

Lastly, the resultant r is substituted into Equation (6.158).

39.566 0 1

50.522 -0.906 0 3.356E —3

68.164 0.179 0.906 0.163

— 1.282 -0.876 0.324 0.39S

specified by

(6.170)

(6.171)

(6.172)

(6.173)

(6.174)

(6.175)

(6.176)

0 0.331 -0.137
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0.531

0.022

0.619

-0.018

(6.177)

-5.7301; - 4

This result is verified by substituting it and the Jacobian of Equation (6.113) into 

Equation (6.127).

d - Jq

260.692 23.559 I66.9SS 35.123 0
0.531

39.566 50.522 68.164 -1.282 0
0.022

0 219.546 -61.716 93.620 0
0.619

0 -0.906 0.179 -0.876 0.331
-0.018

0 0.423 0.383 -0.358 -0.934
— 5.730E-4

1 0 0.906 0.324 -0.137 L J

( 6 . 1 7 8 )

(6.179)

241.679

64.338

d =
-35.057

0.106

0.253

1.086

(6. ISO)

Comparison with the desired set of rates in Equation (6. 166) shows that there is no 

appreciable difference between any of the three pair. The three remaining rates, stated



2 3 6

in Equation (6.112), differ widely. The Euclidean norm of this solution is less than that 

of the original, as found in Equation (6.163) to be 1.083.

\q‘ | = < 0.531 0.022 0.619 -0.018 -  5.730E- 4  > 

.<  0,531 0.022 0.619 -0.018 -  5.730E- 4  >
(6.181)

| q' | = 0.665 (6.182)

As in the first example of the under-determined case, the desired rates arc met at 

overall lower joint rates than the original solution.

c. Program Control. The procedure under_determined_case differs from 

that of the over-determined ease only in the order of execution; the steps may be seen 

to be the same.
subhead = "1. n = J Reduced * (J Reduced Transpose)"; matrix_by_matrix (total, jacobian_reduced, m, subhead); 
for (i = 1; i <= total; i++)dtr_5[i] = delta_tr_reduced[i3; subhead = " 2 . Solve M # V = d trans/rot rates";inconsistent = solve_simul_eqns_jnyv (m, dtr_5, total, y, subhead); 
if ( inconsistent == 0 )

{subhead = "3. d Theta = (J Reduced Transpose) * Y"; 
matrix_by_vector (j acobian_reduced, total, y, delta_theta,subhead);
3return (inconsistent);

As the simultaneous equations arc solved as the second step instead of the third, the 

third step here, multiplication of the involved matrix and vector, is omitted altogether 

if the second step fails due to inconsistency in the equations.

d. Program Examples. Figures 6.8 through 6.12 detail the screens displayed 

during the solution process of the under-determined case for the selection of the 

translation rates as input. The products obtained in Figures 6.9 and 6.10 closely 

parallel the results obtained in Equations 6.150 and 6.155. The final rates obtained in 

Figure 6.11 are almost precisely those of Equation (6.158).



Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 0.790 -0.516 0.331 39.566!
50.000 : 0.195 -0.300 -0.939 260.692!
65.000 : 0.581 0.802 -0.137 55.795!

-35.000 : 0 0 0 1 !
Velocity Control

Reverse Solutions via Inverse Jacobian
Delta Rates Jacobian
I 196.598 260.692 23.559 166.988 35.123 0.000: ! d t 1 :

69.286 39.566 50.522 68.169 -1.282 o .ooo: id T 2 :
I -75.929 - 0.000 219.596 -61.716 93.620 O.OOOiX ! d T3 !
! unused 0.000 -0.906 0.179 -0.876 0.331! id T9:
I unused 0.000 0.923 0.383 -0.358 -0.939! ! d T 5 :
! unused 1 . 000 0.000 0.906 0.329 -0.137!

Figure 6.8. Inverse Jacobian, Under-Determined Example 1: Inputs



Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 i

1 0.790 -0.516 0.331 39.566
50.000 il 0.195 -0.300 -0.939 -260.692
65.000 11 0.581 0.802 -0.137 55.795

-35.000 i
i 0 0 0 1

Velocity Control
Reverse Solutions via Inverse Jacobian

Under-Determined Case
1 . M = J Reduced * (J Reduced Transpose)

97633.836 22892 .269 -1895.295
22892.269 8765 .939 6765.152
-1895.295 6765 .152 60773.977

Figure 6.9. Inverse Jacobian, Under-Determined Fxamplc 1: Step 1

to
oo



Armatron Manipulator Control
Theta
-115.000 N O A p

25.000 : 0.790 -0.516 0.331 39.566
5 0 . 0 0 0 : 0.195 -0.300 -0.939 -260.692
65.000 : 0.581 0.802 -0.137 55.795

-35.000 : 0 0 0 1
Velocity Control

Reverse Solutions via Inverse 
Under-Determined Case

Jacobian
2. Solve M * Y = d trans/rot rates

1 . ooo 0.000 0.000 il yc 1 ); -9.787E-09
-0.089E-09 1.000 0.000 il y c 2): 0.010
9.003E-05 -1 . 199E-00 1.000 : x Y(3 ) ! = - 2.928E-03

Figure 6.10. Inverse Jacobian, Under-Determined Fxamplc 1: Step 2



Armatron Manipulator Control
T h e t a

-115.000 N O A P
25.000 0.790 -0.516 0.331 39.566
5 o . o o o  : 0.195 -0.300 -0.934 -260.692
65.000 : 0.581 0.802 -0.137 55.745

-35.000 : 0 0 0 1

Velocity Control
Reverse Solutions via Inverse Jacobian 

Under-Determined Case 
3. d Theta = (J Reduced Transpose) * Y

0.289! 260.692 39.566 0.000 -5E-04!
-0.016! 23.559 50.522 219.546 0 .010!
0.783! = 166.988 68.164 -61 .716 X -2E-03!

-0.257! 35.123 -1.282 93.620 Ii
0.000! 0.000 0.000 0.000 I

•

Figure 6.11. Inverse Jacobian, Under-Determined Example 1: Step 3

O



Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 ! 0.790 -0.516 0.331 39.566:
50.000 ! 0.195 -0.300 -0.939 -260.692!
65.000 I 0.581 0.802 -0.137 55.795!

-35.000 : 0 0 0 1 :

Velocity Control
Reverse Solutions via Inverse Jacobian

Under-Determined Case
Input: Delta Translational 6 Rotational Rates

! dtx : 196.598
I dty ! 69.286
!dtz! = -75.929
I drx : unused
Idry ! unused
! dr z ! unused

Output: Delta Theta Rates
! dT1 0.289 :
: dT2 : -0.016
! dT3 ! 0.783
I dT9 ! -0.257
! dT5 ! o . o o o :

Figure 6.12. Inverse Jacobian, Under-Determined Fxamplc I: Results
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The solution of the under-determined case by the program specified in the second 

numerical example is depicted in Figures 6.13 through 6.17. The results show in 

Figures 6.14, 6.15, and 6.16 may be compared with those of Equations (6.169), (6.174), 

and (6.177), respectively, to sec that there arc no significant differences.



Armatron Manipulator Control
Theta

-115.000 N 0 A P
25.000 : 0.790 -0.516 0.331 3 9.566.'
50.000 0.195 -0.300 -0.934 260.692!
65.000 l 0.581 0.802 -0.137 55.745!

-35.000 0 0 0 1 :
Velocity Control

Reverse Solutions via Inverse Jacobian
Delta Rates Jacobian
! unused 260.692 23.559 166.988 35.123 o.ooo: : d t 1 :
! 64.286 39.566 50.522 68.164 -1.282 o.ooo: :d T 2 :
1 unused = 0.000 219.546 -61.716 93.620 o.ooo:x :d T 3 :
1 0.107 0.000 -0.906 0.179 -0.876 0.331 : : d T 4 :
! unused 0.000 0.423 0.383 -0.358 -0.934: :d T 5 :
! 1.085 1.000 0.000 0.906 0.324 -0.137!

Figure 6.13. Inverse Jacobian, Under-Determined Fxamplc 2: Inputs



Armatron Manipulator Control
Theta
-115.000 N O A P

25.000 li 0.790 -0.516 0.331 39.566
50.000 »i 0.195 -0.300 -0.934 -260.692
65.000 l» 0.581 0.802 -0.137 55.745

-35.000 1i 0 0 0 1
Velocity Control

Reverse Solutions via Inverse Jacobian
Under-Determined Case

1 . M = J Reduced * (J Reduced Transpose)
8765.934 -32 .491 100.928
-32.491 1.730 -0.167
100.928 -0 .167 1.945

Figure 6.14. Inverse Jacobian, Under-Determined Fxamplc 2: Step 1

u■U



Armatron Manipulator Control
Theta

-115.000 N 0 A P
25.000 : 0.790 -0.516 0.331 39.566
5o.ooo : 0.195 -0.300 -0.939 -260.692
65.000 : 0.581 0.802 -0.137 55.795

-35.000 : 0 0 0 1
Velocity Control

Reverse Solutions via Inverse Jacobian 
Under-Determined Case 

2. Solve M * Y = d trans/rot rates
1.000 0.000 0.000 Y ( 1 ) 3.366E-03

8.918E-07 1.000 0.000 Y( 2) 0.163
9.079E-06 7.111E-09 1.000 X Y( 3 ) 0.397

Figure 6.15. Inverse Jacobian, Under-Determined Fxamplc 2: Step 2



Armatron Manipulator Control
Theta 

- 1 1 5 .0 0 0
25.000
50.000
65.000 

-35.000

N O A P
0.790 -0.516 0.331 39.566
0.195 -0.300 -0.934 -260.692
0.581 0.802 -0.137 55.745
0 0 0 1

Velocity Control
Reverse Solutions via Inverse Jacobian 

Under-Determined Case 
3. d Theta = (J Reduced Transpose) * Y

0 . 5 3 0 ! 3 9 . 5 6 6 0 . 0 0 0 1 . 0 0 0 3 E - 0 3
0 . 0 2 2 : 5 0 . 5 2 2 - 0 . 9 0 6 0 . 0 0 0 0 . 1 6 3
0 . 6 1 9 !  = 6 8 . 1 6 4 0 . 1 7 9 0 . 9 0 6 X 0 . 3 9 7

- 0 . 0 1 9 ! - 1 . 2 8 2 - 0 . 8 7 6 0 . 3 2 4
- 3 E - 0 4 ! 0 . 0 0 0 0 . 3 3 1 - 0 . 1 3 7

Figure 6.16. Inverse Jacobian, Under-Determined Fxamplc 2: Step 3

to
O



Armatron Manipulator Control
Theta
-115.000 N O A P

25.000 : 0.790 -0.516 0.331 39.566
5 0 . 0 0 0 : 0.195 -0.300 -0.939 -260.692
65.000 : 0.581 0.802 -0.137 55.795

-35.000 : 0 0 0 1
Velocity Control

Reverse Solutions via Inverse Jacobian 
Under-Determined Case

Input: Delta Translational S Rotational Rates
: dtx i unused !
! dty I 69.286',
! dtzl = unused !
! drx! 0.1071
! dry ! unused 1
Idrzl 1.085:

Output: Delta Theta Rat
! dT 1 I 0.530:
! dT2 ! 0.022l
l dT3 ! 0.6191
! dT9 ! -0.0191
I dT5 l -3.286E-091

Figure 6.17. Inverse Jacobian, Under-Determined Fxamplc 2: Results



248

C. JOINT RATES BY DIFFERENTIATION

The previous section determined the joint variable rates necessary to obtain a 

particular set of translational and rotational rates of the manipulator end coordinate 

frame by solving the Jacobian equation for the end frame rates by numerical means. 

An alternative to this method is to differentiate the joint variable solutions obtained in 

Chapter 5; this will result in relationships expressing the joint rates directly.

1. Derivation of Equations. Recall from Chapter 5 that the joint variable values 

needed to obtain a particular orientation and position of the manipulator end 

coordinate frame were derived in terms of that orientation and position. Each of the 

specific equations found there may be differentiated to obtain a joint variable rate in 

terms of the rates of change of the orientation vectors n, o, and a and position vector 

p. The rate of change of the position vector is known as its components are given by 

the desired translational rates, °d„ 0dy, and °d2. The rates of change of the orientation 

vectors must be determined from known information, which in this case is the 

orientation vector directions for some specified set of joint variables and a set of desired 

translational and rotational rates.

a. Rates of Change of the Orientation Vectors. Recall that the orientation and 

position matrix T is the result of the sequence of A matrix transformations taking the 

triple of unit vectors at the base coordinate frame to those of the manipulator end 

frame. Each A, matrix is a transformation with respect to the i — 1 coordinate frame. 

Consider a sequence of rotations Rot(5x, S„ <5*) where each delta is a small rotation 

about its respective axis. Each successive rotation shall be made with respect to the 

coordinate frame resulting from the previous rotation. Consider first carrying out the 

rotations in x-y-z order as stated.
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Rot{bx, by, b2) = Roi{x, 6 x)Rot(j\ 6y)Rol(z, S2)

Roi(Sx, Sy, b2) =

1 0 0 0 cos Sv 0 sin by 0

0 cos <5j. — sin bx 0 0 I 0 0

0 sin bx cos (5̂ 0 — sin by 0 COS by 0

0 0 0 1 0 0 0 1

C O S  b 2 — sin S2 0

sin S2 cos S2 0

0 0  1

0 0 0

1'hc rotations <3„ <5„ and St arc very small angles. From the calculus,

limo
sin t

i = 1

lim 
?->o

1 —  C O S  1 
[

0

Approximations may then be made for the <5 angles.

sin <5 — 5

cos b — 1

These substitutions arc then made in Equation (6.184).

1 0 0 o " 1 0 <5, o ’ 1 -6. 0

0 1 - < 5 , 0 0 1 0 0 <5.d 1 0

0 6* 1 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0

(6.183)

(6.184)

(6.185)

(6.1S6)

(6.187)

(6.188)

R o i { S x, S y , S 2 )  = (6.189)
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Ro:(bx, Sy, S2) =

1 0 0 1 0 0

bxby 1 -<5* 0 <5, 1 0 0

<5, 1 0 0 0 1 0

0 0 0 1 0 0 0 1

(6.190)

Roi{bx, 5 b2) =

l — b;, by 0

bxby + S2 — 9"  ̂ —<5x 0

-Sy + bx b 2 Syb 2 + 5 x  1 0

0 0 0 1

(6.191)

Since each of the rotations is very small, the product of any two of them is small 

enough to be considered insignificant and may thus be replaced by zero.

Rot{bx, by, b2) =

1 -<5, <5, 0

<5, 1 - 8 * 0

-<5, <5x 1 0

0 0 0 1

(6.192)

Exhaustive arrangements of the matrices will show that any ordering of the three 

rotations yields the same final result.

Consider now the effect the rotations 0<5,, °(5>, and °<5Z have upon the orientation 

of the coordinate frame of the manipulator end. This change shall be defined dT. 

As matrix Roi(DS„ B6 y, °S2) is defined with respect to the base coordinate frame, it must 

be pre-multiplied by matrix T.

T -V dT  = Rot(°bx, °3y, °S2)T  (6.193)

d T =  R o t ( ° 6 x , °(5>„ ° 5 2) T  — T (6.194)
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dT  =

1 -% Oy 0 -
1 0 0 0

V 1

oI 0 0 1 0 0
0 c-  by °<5* l 0 0 0 1 0
0 0 0 1 0 0 0 1

_

T (6.195)

n x a x P x 0 °s
by

r ■.O n x °X a x  P x

"y °y ay Py 0 0 c 
v  X 0 n y Oy Oy P y

n 2 °2 a: P 2 °<5* 0 0 n 2 °2 a ,  p 2

0 0 0 0 0 0 0 0 0 0 0 1
. _

(6.196)

By reducing the amount of time over which the delta quantities in equations such as 

this are defined, instantaneous velocities and hence derivatives arc obtained. Vectors 

°<5 and °d are understood to be instantaneous velocities from this point on. Thus, 

equating elements in column 1,

- ^ n x =  - ° S zny + °6ynz (6.197)

~  ny = °S r nx  -  ° b x nz (6.198)

n2 = “  °3ynx + °6 xny (6-199)

The equations for the elements of the second and third dT  columns parallel these; for 

example,

Ci Oj  . Or
fa  °x ° 2°y T  °y° 2 (6 .200)
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The effect of rotational rates °<5X, °<5>( and ° S 7 on the position specified by the fourth 

column are ignored here as the translational rates arc explicitly given by V , ,  lldy, and 

%■

b. Joint Variable 3. The derivation of equations in Chapter 5 led first to a 

relationship for the cosine of joint 3's variable, 03, in Equation (5.81).

c3

2 , 2 , 2  2 2 
P a ,  +  P ay +  P a , ~  a 3 -  a 2

2 a2a3
(6.201)

Differentiation yields a formula for the rate of 02 in terms of the rate at which the end 

of the arm proper is moving.

2 P a ,  P a ,  +  2P a
d . - cl

1 ? P‘>+ ‘■P'-lh Pa,
2 a2a2

( 6 . 202 )

P a , 7 F p°- + F°,
d d
dl p°, + p° . ^

~ a 2a3s3
(6.203)

Equations (5.41), (5.42), and (5.43) defined the arm vector components.

P a ,  ~ P x  P w ,  (6.204)

P a y ~  P y  P w ,  (6.205)

P a , ~  P z  P w ,  (6.206)

Equations (5.38), (5.39), and (5.40) had previously defined the wrist vector 

components.

P w , ~  d 5ax (6.207)



253

Pwy = d5ay (6.208)

Pw2 = dSa2 (6.209)

These three expressions are substituted into their respective positions in Equations

(6.204), (6.205), and (6.206) prior to diTercntiation.

Pat = P x~  ds“x (6.210)

cl ci /
~diPa‘ ~ ~ d iPx~ ds~ dfax (6.211)

icII (6.212)

s-
h

V?
II

S-I
®*

.
c? 1

5-|
ŝ

sP (6.213)

Paz ~ P2 d5az (6.214)

d d  , d  
dt Pa* dt Pz dcj dt a* (6.215)

The differential relationships in Equations (6.211), (6.213)., and (6.215) will be

employed in the solutions for the rates of 6 ) and 62 also; thus, in order that they only

be calculated once, they shall not be substituted into any other equations.

Returning now to Equation (6.203), it can be seen that the rate of the joint 

variable is defined in terms of the rate of change of the orientation and position matrix 

T, except when the sine of 03 becomes zero. This situation occurs when the joint 

variable is itself zero and the elbow is fully extended; unfortunately, no other solution 

is immediately available, so this instance is treated as a singularity.
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c. Joint Variable 1. Subsequent to the derivation of an equation involving the 

following relationship was established for 0] in Equation (5.90).

-Pa Si +  Pa/\  = a3si (6.216)

Clearly, the rate at which 01 turns shall be dependent in part on that of 6 3. 

Differentiating,

~ P a/\ + c\ - ^ - pay= a2ci - ^ e i ( 6 -2 1 7 )

~ iP a /  1 + Pa S\)-J[Q \  =  a3C3 ~ J / 63 + s \~ ^ P a x~C\ ^  Pay (6-218)

d
dt Pa> Sl

d_
dt Pa, ~  a 3 c 3 dt

Pa/ 1 +  Pa/ 1
(6.219)

As uras the case for #3, only one equation was obtained during the derivation of a 

solution for 6 j. Thus, should the denominator of Equation (6.219) become zero, no 

other solution exists and the situation must thus be treated as a singularity.

d. Joint Variable 2. The remaining arm variable, 02, differs from the previous two 

in that two equations were obtained dealing with it in Chapter 5. The first was 

Equation (5.112) and has its derivative taken here to provide one formula for the joint 

rate.

P a/  i +  Pa/1  =  c2(a3c3 +  a2) ( 6.220)

(
+  Pa,

(
+ *1 +  Pa,

“ ■*2 (a3c3 +  a
( 6.221)
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- z - e
( 6 . 222 )

(6.223)

The division in this formula is undefined when either s2 or a3c3 + a2 becomes zero. As 

explained in Chapter 5, a3c3 + a2 cannot become zero as this requires 03 to take on the 

value of —180°, for which the arm folds back on itself. This situation is physically 

impossible and would be detected during examination of the joint range. Factor s2 can 

become zero and does when 8 2 is 0”, a value which yields a level arm. This situation 

need not be treated as a singularity, however, because of the existence of a second 

equation involving 8 2, Equation (5.114); it has its derivative taken here.

The division here is undefined whenever c2 or a3c3 + a2 becomes zero. As with the first 

formula, a3c3 + a2 will be prevented from becoming zero. The other factor, c2, becomes 

zero when 02 is 90', where the first formula became zero for a d2 of O'. Physically, 6 2 

is limited to a range of —5' to 30", so this second formula should be viable in all 

practical situations. Both formulas shall be utilized to allow for as many situations to 

be considered as possible without regard to the manipulator's physical limitations.

p„ = s2(a3c- + a2) (6.224)

(6.225)

(6.226)
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e. Joint Variable 4. The equations derived in Chapter 5 dealing with wrist 

variables 04 and 6 S are independent of one another and thus may be examined in either 

order. There arc two equations available for each joint, so no singularities need be 

dealt with here. Equation (5.183) was the first arrived at for 04 and is differentiated 

here.

Q — ĵcc] *̂2 G\>S\ $2 ĜC2 (6.227)

■*4 1  ° a
_d_
dt a ) )c \h  +  ax ( c , ^ )  +  ( ay

+ ^  M  -  (  - £  < -*2 ~  S;
(6.228)

di54 i r 04 = C,S2 ̂  ̂  + ^ d ' )'2 + c>̂( °2))+ -5rdi dl di

+  M Ci
d

(6.229)

#1 )s2 + W  —  02 ) J -  c2 —  a; + <V2 ~  6dl dl

dt 6 A =  C,S2 - ^ 7 ^ -  0 ^ ,5 2  - ^ 7  0J +  «xClC2 “  0 2 +  5152 ^ 7  fljdi di y
u /\ W G M Q

+  a vc i 52 - r  6 \ +  arh C2-J7®2 -  cl~77 a2 +  c ^ 2  “ 7 7  0 2

(6.230)

d 6 A = (  (V l  -  O^l)^ 6, -  ((<!*<:, + ayS])c2 + <y2) $ 2dt

d_
dlC l 5 2 j , a x  S ] S2 (j l a y + c 2 (j [  a z ) l s A

(6.231)

In the event that 04 is 0’ or 180°, causing its sine in the denominator of the formula 

above to become zero, the formula for the rate of 6h obtained from Equation (5.184) 

may be employed.

*4 =  Cx(c]c2c3 ~  V 3) +  V 51C2C3 +  CjS3) +  aM (6.232)
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d a
—  a ^ j ( c xc 7 c 2 -  s , s 3) +  a , - ^ -  (c ,c 2 c3 -  s , s 3) +  ^  - J j-  c>.^ ( 5 ,c 2c3 +  c , s 3 

+  ^  (*1 C2C3 +  cl ^ )  +  (  ~ ^ r  ^ ) ( 52<h) +  a ,  “ * ( s 2C3 )

(6.233)

To simplify the subsequent derivation, the second, fourth, and sixth terms of Equation 

(6.233) arc evaluated separately. Beginning with the second,

ax cjl (C]C2C3 5 153) ~

a x \  ^ - ( c , c 2)c3 +  c ,c 2 - ^ - c 3 C' dt 6 ' ) S1 ~ S\ C1 i

(6.234)

« a ^ - ( c i c 2c3 -  s , s 3) =  a x i ( (  ) c 2  +  C ] ( - s 2 - ^ e 2 ) )c3

-  C,C253 -^ -0 3 -  C,J3 e 3)

(6.235)

«x-^ -(clc2C3 -*| J3) =

- « a(51C2C3 + C]S3) ~ d , -  ^C,S2C3 -^ -02 -  ^(C,C2S3 + S,C3) ^  03
(6.236)

The fourth term of Equation (6.233) evaluates as follows:

< y ^ -(W 3  + <v3) =

«>( "Jj" (S1°2)C3 + 5l < h 6 \S3 + C,C3 ~  03̂
(6.237)

S' ( W 3 + Cl53) = * y ^ ( Cl -ft 0 ' ) C2 -  51 ( 52 8 7 )  ̂ 3

-  * 1 ^ 3  - J f  83 -  *1 * 3  ^  01 +  C1C3 ^  ^ 3 )

(6.238)
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>' dl (5,c2c3 + c ,j3) =

ay(c]c2c3 — i].v3) —  8 ] — ays}s2c2 0 2 -  ^ (s ^ ^  — c,c3) —7- 9dt dt “3

(6.239)

Lastly, the sixth term of Equation (6.233) is expanded.

= a/ ( c2 - j -  e i Sj c 3 + ^ (  ■L 0j

J d
az - j f  (^ C 3) =  fl/ 2 6  ~77 ° 2 -  azs2 ^  —  9dt dl

(6.240) 

(6! 241)

Equations (6.236), (6.239), and (6.241) arc then substituted into Equation (6.233), and 

the resulting equation is rearranged to reduce the number of operations required for its 

evaluation.

C*~dF0 A = (~dF ax )(C]C2C3 ~ S'Ŝ  ~  a^ C2C3 + Cl^) - j f  61 ~ axc\^2 ~̂ T e 2

-  a x ( c ]C2s 3 +  i , c 3) - J j -  e 3 +  (  ~ ~ a y ^ ( s  1 ^ 3  +  C j J 3 )

+  a y ( C ]c 2c 3 -  J,S3) 6 l -  a y S ] s 2c 3 ~ 0 2 -  a y { s^ c 2s 3 -  c,c3) — • 03dt dt

+  (  ^  G; ) ( 52 c3) +  fl7C2 c 3 -  j j "  9 2 -  a z S2S3 i ° >

(6.242)

c4 “ -  0 4  =  (c ,c 2c3 -  W  ~ ^ a x  +  ( S \ C2 C2 +  C ,53)  - j j -  <$, +  52C3 a z

+  ( ” ^ (5 1c2c3 +  c,s3) +  fl>,(c1c2C3 -  s,s3)) -  £y ,s2c3 (6.243)

+  « 7 C2 c3)  92 +  ( - ^ ( C , C 253 +  5 ,C 3) -  «y (5 ,C253 -  C,C3) -  a & s j  A 3
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d a 
I t 6* (c,c2c3 -  S,J3) ~^-ax + (-vic2c3 + c,J3) -Jj- fly + S2c3 a2

+ {{ayc , -  o^,)c2c3 -  (a ĉ, + a/,).v3) 0, + ( -  (axcl + a^,)^ (6.244)

+  a z c 2 ) c 3 - J f  6 2 +  ( -  ( ( C c c l +  V l ) f 2 +  a z s l ) s 3 +  ( a y c  1 “  V l ) ^ )  ^  0 3 ) / c 4

Consider the following substitutions for the sake of further reducing the number of 

operations.

/ t    C ly C  j G  X ^ i j (6.245)

B = axc] + aysx (6.246)

d_
dt 4̂ (CjC2C3 t dS\s3) —  ax + (^c2c3 + c,s3) dl

, c!
ay + S2C3 ^ 7  a2

+ ( A c 2 c 3  -  B s 3) 6 ] +  ( -fis2 + a zc 2) c 3 02 

+ ( -  (£c2 + a,s2)i3 + ^c3) -Jj- 03̂ /c4

(6.247)

f. Joint Variable 5. The first of the pair of equations dealing with 6 S is next 

differentiated to provide one formula for the rate of Qs. The process here parallels that 

just followed for the second 6 t equation as the original equations take the same form. 

Beginning with Equation (5.186),

c5 = o x ( c } c 2s3 + s,c3) + 0y {s^c2s3 -  c,c3) + o zs 2s 3 (6.248)

c d __ 
~ S5 ~d76 i ~ ( ~di 0jc) ^ C2*3 + S ] +  °x ~di(c’c^ 3 + + ( ~di ° y ) C253 “  c>Ci)

+  ° y ~ ^ -  { S } C 2 S 3  -  C,C3) +  ̂~  O ^ S ^ )  +  0 2 - ^  ( S 2 S 3 )

(6.249)

Expanding term 2,
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^ ^ - ( clc2̂ 3 + ^ 3) =

dt (c,c2)53 +  c,c2 —  53 +  ( c, —  e] )c3 - s l [ s 3 —  ed (6.250)
dl

d . , ,
°JC ~  ( c l c 2^3 +  s l c 3) -  ° x )c 2 + ^ {

+  C lc 2 c 3 - J j -  0 3 +  c , c 3 - j j -  0 ,  -  .v,.v3 - £ ■  6dt

(6.251)

^ ^ - ( £ 1^53 + 5^ 3) =

o A.(  -s ,c 2.v3 +  C ,C 3 )  “  0, -  0xc,.v2̂  02 + 0JC(c,c2c3 -  S] S3) ~  e 3

(6.252)

Expanding term 4,

°y  ( 5 i c253 — C1C3)

° y ( (*lc2>3 +  -S]C2 S3 + 5, e ]C3 +  C ]S3 ~ ^ r  e 3
(6.253)

° y ^ ( s\c2s2 -  C\C3) ~ Oy\ ^ ( c ^  e^ C 2 -  S^S2^  e ^ \ 3

+ *1 ^ 3  - J f  Ql + ^C3 6 ] + C,i3 - 7 7  9dt

(6.254)

°y  ~ ( 5 1c253 — c l c3)

oy{cxc2s3 + s,c3)-^ -e , -  OySxs2s3 ~ e 2 + 0y{sxc2c3 4- c]s3) - ~ e 3
(6.255)

Expanding term 6.

d2 )s3 + s,( c3 ~ j-e°z ~ r̂ (s2s3) = o21 (6.256)
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d d d
°2 ( V 3) = W 3  ~J7 e 2 + OrV2C3 —  edl di

Substituting Equations (6.252), (6.255), and (6.257) into Equation (6.249),

~ Ss~ d 7 ° 5 ~
_d_
di °x )(ci V s  + V s) + °A W s  + V s) 6dl

d d~ V i  V s ~^-d2 + V ci V s  -  s,s3) —  e 3 +  ̂—  o,. )(s]C2s3 -  c,c3) 

+ 0y(v 2 s3 + s,c3) 6, -  V i  V 3 02 + oy(s,c2c3 + c,s3) 6dl di

+  ° ; ) ( V s )  +  W s  - j -  02 + o7.s2c3 ~  e 3

"Jr  65 = (C] C2*3 + 5> ^  ^  + ta c^ 3 “  Ci ~^7°y + ^ 'd l  °:

+ (Ox( -S }C2S3 + c,c3) + Oy(c,C2S3 + 5,c3)) + ( ~ V l  V 3 -  0̂ 5,52̂ 3

+ °2cl sz) ~ ^ 6 2 + (°x(cic2c3 ~ V 3) + oy(s,c2c3 + V s) + o7s2c3) - j -  03

65 = -  (iC\C2S3 + 5|C3) Ol V s -  V s) ~^-°y + V s  °2

+ ((0 / 1  -  v i ) v s  + (v i  + v i t a )  °) + ( -  (°xc\ + V i t a

+  V 2 t a  6 2 +  ( ( ( V l  +  V l ) C2 +  V s ) c 3 +  ( V i  -  V i t a )  e 3 j l s 5

Substitutions are then made to additionally reduce the number of operations.

6    OyC 1

(6.257)

(6.25S)

(6.259)

(6.260)

(6.261)

D =  o^c, +  o ŝ, (6.262)
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d_
dt {C\C2h  + S\Cl) ~Jf°x + (SlC2Sl -  c,c3)

_d_
dt + 2̂̂ 3

_d_
dl

+ (Cc2s3 + Dc3 ) 0, + ( —I)s2 + o2 c2 )s3 02

+ {{Dc2 + ozs2)c3 + Cs3) 0 ^jjss

(6.263)

Finally, Equation (5.1S7) provides an alternate solution for the rate of 0% in the event 

that s< in the equation above approaches zero.

s5 = nx(C]c2s3 + s,c3) + ^(s,c2.v3 -  c,c3) + n.w 3 (6.264)

Comparison of this equation with Equation (6.248) will show that the factors of n„ ny, 

and n2 in Equation (6.264) arc precisely those of o„ oy, and o„ respectively, in Equation 

(6.24S). Thus the solution obtained by differentiating the cosine of 6 S, given in 

Equations (6.261) through (6.263), is used as the outline of the solution which would 

be obtained by differentiating the sine of 6 S in Equation (6.264). The components of 

vector o are replaced with those of vector n. Differentiation of the left hand side of 

Equation (6.264) results in cs ~  6 S instead of the previous —s5 0S, so the sign of

Equation (6.263)'s right hand side is reversed and the denominator becomes c5.

E - n.,c] — (6.265)

F = «/i + V ) (6.266)

ds = + s,c3) ~~ nx + (s,c2s3 -  c,c3) ~  ny + s2s3 ~  nz

+ {Ec2s3 + Fc3) 0, + ( ~Es2 + nzc2)s3 B2

+ i(Ec2 + n^2)c3 + Es3) 03 /̂c5

(6.267)
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2. Numerical Example. The derivative technique for determining joint variable 

rates shall be demonstrated by using the translational and rotational rates obtained in 

the first section as input here. The original joint variable rates used as input there 

should then result as output here.

The original joint variables were stated as follows in Equation (6.73):

1
Cb

..j

1

__
__

__
1

02 2 5 "

= 5 0 °

0 4 65

0 5 - 3 5 "

(6.268)

Recall also from Chapter 5's Equation (5.15) the corresponding position and 

orientation matrix.

nx °x ax Px 0 . 7 9 0 - 0 . 5 1 6 0 . 3 3 1 3 9 . 5 6 6

ny ay Py 0 . 1 9 5 - 0 . 3 0 0 - 0 . 9 3 4 - 2 6 0 . 6 9 2

n2 a2 P2 0 . 5 8 1 0 . 8 0 2 - 0 . 1 3 7 5 5 . 7 4 5

0 0 0 1 0 0 0 1

(6.269)

The results obtained from the forward application of the Jacobian in Equation (6.87)

were as follows:
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- 0r i
dx 196.548

dy 64.286

d2 -75.924

<5* 0.107

<5, 0.341

<5, 1.085

(6.270)

The rates of change of the components of the orientation vectors arc obtained from the 

matrix multiplication of Equation (6.196).

•■a * Ox * __
_1

1

o N

O
1

V

ny °y (Xy — % 0 H
o

1

3 °z °-2 1
i o Oo Vr % 0

"x ° X ax

ny °y ay

n2 °2 a z

(6.271)

nx ax 0 -1.085 0.34 f 0.790 -0.516 0.331_

ny ay = 1.085 0 -0.107 0.195 -0.300 —0.934

3 02 3 -0.341 0.107 0 0.581 0.802 —0.137

(6.272)

nx ^x ax —0.013 0.599 0.967’

ny Oy ay — 0.795 -0.646 0.374

*2 02 3 -0.249 0.144 -0.213

(6.273)

Next, the coordinates of the end of the arm proper, p,x, pCy, and p„2, arc determined from 

Equations (6.210), (6.212), and (6.214) for use in determining the rates of the three arm 

joint variables.

Pax ~  Px ~  d$ax (6.274)
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P a = 39.566 -  100(0.331) = 6.466 (6.275)

Pa, = Py~ ay (6.276)

pQy = -260.692 -  100( -0.934) = -167.292 (6.277)

~ Pz d$az (6.278)

Paj = 55.745 -  100( -0.137) = 69.445 (6.279)

The rates of change for the coordinates for the end of the arm proper, -Jj- p„x d
’ dl P°>'

A d

and ~dip°2' arc determined next from Equations (6.211), (6.213), and (6.215),

respectively.

d d , d 
di Pa> di Px d$ di Ux (6.280)

Psx = 196.548 -  100(0.967) = 99.848 (6.281)

1II (6.282)

—  paf = 64.287 -  100(0.374) = 26.887 (6.283)

d d . d 
di Pa> di Pz d$ dt ° 2

(6.284)

= -75.919 -  100( -0.213) = -54.619 (6.285)

The joint rates are then determined by substitution into the equations derived for each.

The rate for 6 3 was obtained first in Equation (6.203).
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Pa, dl Pa. + Pay '
d_ J -
dt Pa> Pa> di Pa*

"~a 2a 3s 2
(6.286)

d 6.466(99.848) -  167.292(26.887) + 69.445( -54.619)
4 -  63 = ------- ------------------------- --------- — --------- ------------ — = 0.998 (6.287)
dl -100(100) sin(50 )

The original rate selected in the first section for 03 and given by Equation (6.86) was

1.0.

The rate for 0, was next provided by Equation (6.219).

d
~diPa>

d d n

Pa„c\ 4" Pays \
(6.288)

d  cos( —115°)(26.S87) -  sin( —115°)(99.SIS) -  100 cos(50”)(0.99S)
----------------------------------------:---------------------------- ;;-----------------  (6.2S9)

dl 6.466 cos(-115 ) -  167.292 sm( — 115 )

-4 -0 , =0.100 di 1 (6.290)

The original rate selected for 0j was 0.1

Two expressions were obtained for the rate of 02. The first was Equation (6.223).

<>■ + <:,-3 - ? . ,  + *, dL
- s 2(a3c3 + a2)

dl (6.291)

-|r e 2 = (( cos( - 1 15°)( -167.292) -  sin( -1 1 5*)(6.466))(0.100)

+ cos( —115*)(99.81S) + sin( — 115*)(26.8S7)

+ 100 cos 25' sin 50°(0.998))/(( -  sin 25*)(100 cos 50" + 100))

( 6 . 2 9 2 )
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4 * 0 ,  = -0.150 dt 1
(6.293)

The second expression for the rate of 02 was given by Equation (6.226).

A
j L 0  -  d< ra*
dt 2 c2(<33c3 + al)

Pa, + *3*2*3 °3
(6.294)

d  -54.619 + 100 sin 25 sin 50 (0.998)
-7- 0 2 = -------------- :--------------- ;------ -------- -  = -0.150
dl cos 25 (100 cos 50 + 100)

(6.295)

As can be seen, the two results are identical; further, the original 02 rate was selected 

as -0.150.

Each of the wrist variables also has two solutions. The first for 04 was given in 

Equation (6.231).

~  04 = ( {axsj -  flyC,)  ̂4 "  6\ ~ + ¥ i)c2 + 4 “ 04 5 2dl dl
d d d \,

~  C]S2 ax~~ S\S2 ay +  c2 ~J{ a z ) l S 4

(6.296)

04 = ((0.331 sin( -115  ) -  ( -0.934) cos( -115  )) sin 25 (0.100)

-  ((0.331 cos( -115*) + ( -0.934) sin( -115*)) cos 25*

+ ( -0.137) sin 25 )( -0.150) -  cos( -115*) sin 25*(0.967)

-  sin( -1 1 5 ’) sin 25'(0.374) + cos 25*( -0.213))/ sin 65*

(6.297)

d_
di-A e A =  o .2oo (6.298)

The second solution for was given by Equations (6.245), (6.246), and (6.247).

A =  ayC] -  axs , (6.299)
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°XC\ + OyS, (6.300)

(c1C2C3 - M1J3J
_d_
di + (5ic2c3 + c ,,3) ciy + s2c3

d
~ r azdl 2

+  {Ac2c3 -  Bs3) 0, +  ( - B s2 +  a2c2)c3 - j -  62

+  ( -  {Bc2 +  ^ 2)̂ 3 +  4 c j)  - J j -  #3 J / c4

(6.301)

/l = -0.934 cos( —115*) -  0.331 sin( — 115°) = 0.695 (6.302)

B = 0.331 cos( -115*) + ( -0.934) sin( -115*) = 0.707 (6.303)

04 — (( cos( —115) cos 25 cos 50 — sin( — 115 ) sin 50 )(0.967) 
dl

+ ( sin( — 115) cos 25 cos 50 + cos( —115) sin 50 )(0.374)

+ sin 25 cos 50 ( —0.213)

+ (0.695 cos 25° cos 50° -  0.707 sin 50°)(0.100) (6.304)

+ ( —0.707 sin 25 + ( —0.137) cos 25 ) cos 50 ( —0.150)

+ ( — (0.707 cos 25 + ( —0.137) sin 25 ) sin 50 

+ 0.695 cos 50°)(0.99S))/ cos 65°

-jJ-04 = 0.199 (6.305)

The two rates for 0„, 0.200 and 0.199, arc very near one another; the original 0„ rate 

was 0.2.

Finally, two solutions exist for the rate of 05, the first of which was given by 

Equations (6.261), (6.262), and (6.263).

C   OyC J 7̂x̂ 1 (6.306)

D =  oxcx +  oys x (6.307)
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5 = -  ( ( W i  + S \Cl )  ~ j f ° x  +  ( S ) C2S3 -  C\C3) °y +  S2 SJ ° 2

+ (Cc2s3 + Dc3) e ] +  ( - D s2 +  ozc2)s3 e2 (6.308)

+ ({Dc2 + ozs2)c3 + Cs3) ~  d3̂ lss

C =  -0.300 cos( — 115°) -  ( -0.516) sin( -115*) = -0.341 (6.309)

D = -0.516 cos( -115*) + ( -0.300) sin( — 115*) = 0.490 (6.310)

-J— 0 5 = — (( cos( —115) cos 25 sin 50 + sin( — 115) cos 50 )(0.599)

+ ( sin( — 115) cos 25 sin 50 — cos( —115) cos 50 )( —0.646)

+ sin 25 sin 50 (0.144)

+ ( -0.341 cos 25“ sin 50° + 0.490 cos 50*)(0.100) (6 3 1 ! )

+ ( —0.490 sin 25 + 0.802 cos 25 ) sin 50 ( —0.150)

+ ((0.490 cos 25 + 0.802 sin 25 ) cos 50 

+ ( -0.341) sin 50*)(0.99S))/ sin( -3 5 ')

— ■ 8 S = —0.100 (6.312)

The alternate solution for the rate of 8 S was given by Equations (6.265), (6.266), and 

(6.267).

£ =  nycx -  /ijpS, (6.313)

F = nxC\ + nysx (6.314)
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dt ° S  =  [  ( C 1 C2 3 * S 2 +  -?l c3) n x  +  ( * lC 2* 3 “  C' C3) “  n y  +  S2 S -

+ ( Ec2 s3  + Fc3) —  0, + ( - F s2 + nzc2)s2

di y 
d

_d_
dl

dl e ,

d
+ ((/'C2 + <hsl )c2 + Esi) e 3 )lc5

(6.315)

£  = 0.195 cos( - 1 1 5 ) -  0.790 sin( -115*) = 0.634 (6.316)

F =  0.790 cos( - 1 1 5 ) + 0.195 sin( -115°) = -0.511 (6.317)

Q5 — (( cos( — 115) cos 25 sin 50 4- sin( — 115) cos 50 )( —0.013)

+ ( sin( —115) cos 25 sin 50 — cos( —115) cos 50 )(0.795)

+ sin 25 sin 50 ( —0.249)

+ (0.634 cos 25 sin 50 + ( — 0.511) cos 50 )(0.100) (6.3IS)

+ ( — ( —0.511) sin 25 + 0.581 cos 25 ) sin 50 ( -0.150)

+ (( —0.511 cos 25 + 0.5S1 sin 25 ) cos 50 

+ 0.634 sin 50 )(0.99S))/ cos( -3 5  )

-^ -0 S = -0.101 (6.319)

The two values for 6 S, -0.100 and -0.101, are close to one another; the original rate 

selected for 8 S was -0.1.

3. Program Control The procedure for the solution of joint rates base on the 

differentiation of control variable equations is named r e v _ s o l_ v ia _ d e r iv .  The

body of the procedure follows:
sin_cos (theta, s, c); dsply_rsvd (&mr, me, vr, vc)i do

{get_delta_trans_rot (delta_trans_rot, vrCO], vcCO]); 
calc_delta_noap (noap, delta_trans_rot, dnoap, me, mr); calc_delta_theta (s, c, dnoap, noap, dtheta, vr[1], veil]); 
query_ch = cont ("different rates");
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}uhile ( query_ch == ' Y' );

After obtaining all six translational and rotational rates, the delta T or delta n-o-a-p 

matrix is calculated. Subsequent to that, the joint rates arc obtained and the user is 

prompted as to whether to continue under this topic. As was the case for the forward 

solution of translational and rotational rates via the Jacobian, the procedures involved 

arc straightforward in design and need not be discussed further here.

4. Program Example. Figure 6.18 depicts the single display associated with this 

solution technique. The delta T matrix shown may be compared with Equation 6.273 

to sec that only minor dilTcrcnccs exist. The joint variable rates show were arrived at 

in Equations (6.2S7), (6.289), (6.293) and (6.295), (6.29S) and (6.305), and (6.312) and 

(6.319) in the order theta 3, 1, 2, 4, and 5.



Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 0.790 -0.516 0. 331 39.566:
50.000 0.195 -0.300 -0. 939 -260.692I
65.OOO 0.581 0.802 -0. 137 55.795:

-35.000 0 0 0 1 :
Velocity Control

Reverse Solutions via Derivatives
Delta Trans 6 Rots Delta Thetas
! tx I 196.598! : DT1 : 0 .100:
: ty : 69.286 I : DT2: -o.1 so:
: tz: = -75.9291 :d t 3: = 0.999:
! rx ! 0.107: :d t 9 : 0.199;
I ry : 0.391 : : d t s : - o . 1 0 :
! r z I 1.085:

dN dO dA dP
1
4 -0.013 0.599 0.967 196.598:

dT: : 0.795 -0.696 0.373 69.286!
1
1 -0.299 0.199 -0.213 -75.929 I
1
1 0 0 0 1

Figure 6.18. Reverse Solutions via Derivatives Display
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D. THE CONTROLLING PROCEDURE

Procedure v e l o c i  t y _ c o n t r o l  begins by initializing the joint variables, joint, 

translational, and rotational rates, and position and orientation matrix. The rates arc 

set to zero while the joint variables and positin and orientation matrix arc copied from 

the current values; this is done so that the originals will remain unaffected as no 

movement is performed by this chapter. The procedure continues by displaying first 

an introductory screen, depicted in Figure 6.19, and then an options screen, shown in 

Figure 6.20
for Ci = 1; i <= 5; i++)

{thetati] = original_theta[i]; 
dtheta[i] = 0;
}for (i = 1; i <= 6; i++) 
delta_trans_rot[i] = 0; 

for Ci = 0; i <= 3; i++)for (j =0; j <= 2; j + +)noap[i][j] = original_noap[i][j];
dsply_velocity_introduction ( );
uait_then_erase (9); dsply_vc_selection ( );uhile (Copt = get_option(3)) != 0)

{prompt_msg1 = "Enter New Theta Values? (Y/N)"; 
projnpt_msg2 = "(<N> = continue uith previous values)"; qc = prompt_input char (prompt_msg1, prompt_msg2); 
if Cqc == 'Y')

{get_theta (theta, rou, colsCO]); 
noap_matrix (theta, noap, rou, cols);
}uait_then_erase (9); suitch (opt)
{case 1 : for_sol_via_jac (theta, dtheta);

break 1case 2 : rev_sol_via_ij (theta, delta_trans_rot); 
break;

case 3 : rev_sol_via_deriv (theta, noap, delta_trans_rot); break;
}dsply_vc_selection ( );

}uait_then_erase (8);
noap_matrix (original_theta, original_noap, rou, cols);

The procedure then iterates while velocity control options are selected. After an option 

has been chosen, the opportunity is presented to change the settings of the joint 

variables; these values cannot be changed within an option. Velocity control is
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terminated when an option ofO is selected. The documented listing for the procedures 

associated with the velocity control portion of the overall program may be found in 

Appendix F.



Armatron Manipulator Control
Theta

- 1 1 5 . 0 0 0 N O A P
2 5 . 0 0 0  : 0 . 7 9 0 - 0 . 5 1 6 0 . 3 3 1 3 9 . 5 6 6
5 o . o o o  ; 0 . 1 9 5 - 0 . 3 0 0 - 0 . 9 3 4 - 2 6 0 . 6 9 2
6 5 . 0 0 0 0 . 5 8 1 0 . 8 0 2 - 0 . 1 3 7 5 5 . 7 4 5

- 3 5 . 0 0 0  : 0 0 0 1

Velocity Control
This section calculates the velocities of 

the end coordinate frame or the joint variables. 
Options:
1) Forward Solutions via Jacobian

-the end coordinate frame rates resulting 
from a given set of joint rates are found

2) Reverse Solutions via Inverse Jacobian 
-the joint rates resulting from a given set
of coordinate frame rates are obtained 
using matrix algebra

3) Reverse Solutions via Derivatives
-the joint rates resulting from a given set 
of coordinate frame rates are obtained from 
derivatives of the position-orientation 
equations

Figure 6.19. Velocity Control Introductory Display



Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 ; 0.790 -0.516 0.331 39.566
50.000 : 0.195 -0.300 0.939 260.692
65.000 : 0.581 0.802 0.137 55.795

-35.000 : o 0 0 1

Velocity Control
Solution Options
1 : Forward Solutions via Jacobian Matrix
2 : Reverse Solutions via Inverse Jacobian
3 J Reverse Solutions via Derivatives
0: Terminate Velocity Control

Option 1 has been selected

Figure 6.20. Velocity Control Menu Display
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VII. TRAJECTORY CONTROL

The topic of this chapter, controlling the trajectory of the manipulator end, is one 

that is not as heavily manipulator dependent as the topics of previous chapters. Thus 

the Armatron configuration will not play as significant a role as before. However, 

trajectory control is fundamental in robotics, and as such it is included here. Another 

interesting aspect of trajectory control is its strong connection to computer graphics in 

its use of spline polynomials; see [Folc83] for further comparisons.

A manipulator trajectory can be defined in cither of two ways. The first type of 

trajectory consists of the three dimensional coordinates representing points or nodes 

through which it is desired to have the manipulator end frame origin pass. Associated 

with each of these nodes will be a desired orientation of the manipulator end 

coordinate frame. The second type of trajectory is a sequence of joint variable 

combinations which the joints are to attain. This is essentially the set of solutions of 

the nodal positions and orientations of the first trajectory type. The process derived 

in this chapter shall develop this second type of trajectory; the material in Chapter 5 

would allow extension to the first type. The sets of joint variable values to be attained 

along the trajectory may be thought of as points or nodes just as the coordinates of the 

trajectory of the first type are; the joint variable sets will be referred to as points or 

nodes throughout this chapter. The derivations will develop third- and fourth-order 

polynomials which meet the necessary conditions. While the process is carried out in 

the geometric sense, it applies equally in terms of joint variables. The development of 

the program is carried out in stages, in parallel with the derivation of equations and 

numerical example.
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A. SPLINE POLYNOMIALS

Equations shall be developed in this section to define the settings of the joint control 

variables at any time throughout the traversal of the trajectory; more specifically, 

individual equations shall be generated to define the value of each joint variable 

individually with respect to a common time t. In addition to passing through each 

of the path nodes, the equations developed will also provide continuity in velocity and 

acceleration through each of the nodes.

1. Derivation of Equations. The derivation of this section shall develop 

trajectory equations for one of the manipulator's five joints. The problem then 

becomes one of fitting curves to a set of points in a plane.

a. Distance-Based Time Units. The problem to be solved has only one parameter 

as presented, and that is the nodal values which the joint variables must attain. 

Nothing is required of the manipulator as to how quickly the path is to be traversed 

along any given segment. An amount of time measured in as yet unknown units shall 

first be allocated for the traversal of the trajectory between any two path nodes. 

Consider an arbitrary pair of successive nodes along the trajectory, / and i + 1, as 

depicted in Figure 7.1. While the range different joints have to cover between nodes / 

and i + 1 may differ, the amount of time to be used by each does not. Each of the 

Armatron's five joints must move the difference between its value at node i and /+ I 

in the same amount of time. An arbitrary amount of time shall be allocated based 

upon the "distance" between successive nodes for use by each of the five joints; the time 

between nodes i and i + 1 shall be defined as t,.

(7.1)
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Figure 7.1. Trajectory for a Single Joint Variable 

The equations in the following sections shall be derived with respect to the arbitrary 

units of time defined by Equation (7.1). Subsequent to that, a scaling factor will be 

developed for traversal of the trajectory in a minimum of time.

b. Internal Spline Segments. Consider again the arbitrary internal segment along 

the path depicted in Figure 7.1 from point P, to point P,+1. The spline polynomial for 

this segment, S,, will have four boundary conditions placed on it, the first two of which 

state that the polynomial pass through the segment endpoints.

The second pair of conditions states that the velocity of the polynomial take on 

specific, but as yet undetermined, values.

5,(0) -  P, (7.2)

(7-3)

(7.4)
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S'iih) =  P 'i+] (7.5)

The vclocilies at the end and beginning of adjacent segments will eventually be made 

equal; this fact does not play a part in the development of the spline polynomial at this 

point, however.

In order to meet the four specified conditions, the spline polynomial must have 

four coefficients, or be cubic.

Sj( t) = A i + Dji + Q r  + Dji (7.6)

The coefficients of S,(i) arc found by using the boundary conditions above. The 

endpoint conditions for the segment are substituted into Equation (7.6) first.

•5,(0) = A ,  +  B j ( 0 )  +  C(-(0)2 4- £>;(0)3 (7.7)

P ) =  A j (7.8)

(7.9)

P ’/+] =  A i  + B f i  +  Qtf +  D j t ? (7.10)

The spline polynomial is then differentiated so that the velocity conditions may be 

used.

= Bi + 2Cjt + 3 Dfr (7.11)

S’HO) = Bl + 2Q(0) + 3 A(0)2 (7.12)

P'i = Bi (7.13)

S',(r;) = 5, + 2Q(6) + 3A<f)2 (7.14)
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= Bi + 2Citi +3D it? (7.15)

Coefficients A, and D, are defined explicitly by Equations (7.8) and (7.13), respectively, 

while coefficients C, and D, are determined from manipulating Equations (7.10) and

(7.15) after At and B, have been removed by substitution. First, C, is obtained by 

multiplying Equation (7.10) by 3, multiplying Equation (7.15) by — and adding the 

results.

3 Pl+i = 3 P, + 3P',tt + 3 Cjtf + ID,!?

- P ' i+lt i=  ~  P'ih ~  2Cjij — 3D't? 

2Pi+]- p ' i+]ii = y >i + 2P'ill+ c i,f

„ „ -  Pi) (P'i+1 + 2P'i)L; = J ------- -------------------- :--------

(7.16)

(7.17) 

(7. IS)

(7.19)

(7.20)

Coefficient D, is next obtained by multiplying Equation (7.10) by 2, multiplying 

Equation (7.15) by —t„ and adding the results.

2P i + ]  =  2P i  + 2 P ' j t i  + 2Q l ?  + 2 D s ? (7.21)

P ' l + P i =  ~P' i l i  — 2 C j i ?  —  3 D j t ? (7.22)

2PM - ~  2Pi + r ' / l -  D l ’ l (7.23)

„ 2 Pi . r ,  . r M
‘ 13 f.2 [} i ?

(7.24)
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(7.25)

The equations for the four coefficients apply for 2 < i < n — 2, that is, each of the spline 

segments except the first, 1, and last, n-1. Additional conditions will be seen to exist 

on these terminal segments.

The coefficient equations depend upon the length of time spent on the segment 

interval, the segment endpoints, and the velocities at the segment endpoints. These 

endpoint velocities shall now be defined so that the acceleration at the end of one 

segment is equal to the acceleration at the beginning of the next. This will guarantee 

a smooth velocity at each path node. This is accomplished by equating acceleration 

equations, as they have not been employed yet.

The first derivative, or velocity function, of the segment polynomial in Equation 

(7.11) is differentiated again to produce the segment's acceleration function.

First consider the acceleration at the end of the i'h segment; Equations (7.20) and (7.25) 

supply substitutions for C, and £>„ respectively.

S"i(t) = 2C(- +  6 Dji (7.26)

(7.27)

(7.29)
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( / W , + .) , „ (P 'i +  2 P ' i+ ])
S"iUi) = 6 ------- 5 ~   ̂ 2 (7.30)

Next, consider the acceleration at the beginning of segment /+ 1. Coefficient is 

substituted for by Equation (7.20).

S",+ I(0) = 2C,+1 + 6D/+1(0) (7.31)

S"»  i(0) =
(^+2 ~ P M ) (P'i+2 + 2P'i+\)

d l ‘ i+1
(7.32)

The segment i end accelerations in Equations (7.30) and (7.32) are then set equal.

„ (Pi-PM) , .  ( p 'i +  2 p 'i+ i) „6 ------- r-------- h 2 -------------------= 2 (/V2-^+>) (/>'/+2 + 22V l )

Cfi ‘ i+1
(7.33)

(P i ~  pi+1) (^'/ +  2P '/+i) „ ( P m  ~  pi+1) (^',+2 +  2/>'»i)+ h d i ‘i+i
(7.34)

(P',+2 + 2P'i+1) (/>',•+ 2F,.+1)  ̂ (Pf+2- P /+1)
O+i

• +
d.

- 3 (7.35)

p ' 1+2 + 2P'i+i +  (/>',- + 2 P'i+X) ~  = 3 ■■̂ +2 —  _  3(P. _  p ) (7.36)
'' h+i

zi+i

h

( P ' m  + ^'i+iK + (P ' i + 2 P ' i+ ]) i i+] = 3(Pi+2 -  P/+1) -d -----3(A -  P,+1) ^  (7.37)(+i

+  2 ; , r ,+ , + i,+, r ,  + 2,i+ , r , +1 -  3 ( P M-  -3 -  P M ) d ± i-  (7.38)
‘ i+1  ‘ i
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Note that this equation is defined for pairs of spline segments / and /+ 1. The first 

pair for which the equation holds is / = 2 and / + 1 =  3 as spline 2 is the first cubic 

polynomial. The last pair for which the equation holds is / = n — 3 and / + 1 = n — 2, 

since spline /7 — 2 is the last cubic polynomial. The index / for the equation then ranges 

from 2 to n — 3. This is a total of n — 4 equations, but there are n — 2 unknown 

velocities at the internal trajectory nodes. When the spline polynomials, and hence the 

acceleration functions, for the first and last trajectory segments arc defined, two more 

velocity equations will result and all of the internal node velocities may be determined.

c. The First Spline Segment. The first spline segment differs from the 

intermediates in that it has five, instead of four, initial conditions to satisfy. Like the 

intermediate segments, the polynomial must pass through its endpoints.

The velocity at the start of this first segment is zero as the manipulator has not begun 

to move, while the velocity at the endpoint P2 takes on an as yet undetermined value.

S,(0) =  P, (7.40)

S i(/ ,H P 2 (7.41)

S',(0) = 0 (7.42)

s\ ih) = r 2 (7.43)

In addition to these constraints, the acceleration at the start of the segment must also 

be zero, again reflecting the motionless state of the manipulator.



Five coefficients are required of a polynomial to meet these conditions, so it must be

a quartic.

S,(/) = A} + /?,/+ C,/2 + Z),/3 + E/ (7.45)

The coefficients of S^t) are obtained by substitutions from the boundary' 

beginning with the endpoint conditions.

conditions,

S,(0) = yf, + 5,(0) + C,(0)2 + Z),(0)3 + £, (0)4 (7.46)

1\ = A, (7.47)

$,(',) = 4, + 5,(/,) + C,(f,)2 + Z),(/,)3 + £,(/,)4 (7.48)

£2 = 4, "b 5,/, + C]/, + Z),/, + £,/, (7.49)

Differentiation is performed on the spline polynomial, after which the velocity 

conditions are imposed.

S' }(i) — 5] + 2C, / + + 4 ZT, r (7.50)

£',(0) = B] +  2C, (0) + 3Z>, (0)2 + 4£,(0)3 (7.51)

0 = 5, (7.52)

S '1(r1) = 5 1 +  2C,(/1)+ 3 D 1(/1)2 + 4£,(/1)3 (7.53)
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Differentiation is performed on the velocity function of Equation (7.45) so that the 

known acceleration may be used.

5”' l(0 = 2C, + 6D,/ + 12 ZTj /2 (7.55)

S'',(0) = 2C, + 5/3>,(0) + 12/T, (0)2 (7.56)

0 = 2C] (7.57)

C, = 0 (7.5S)

Equations (7.47), (7.52) and (7.58) explicitly define coefficients A,, Bu and Ch 

respectively. These values arc substituted into Equations (7.49) and (7.54) leaving two 

equations to be solved for the two remaining unknowns, coefficients and

/ W i + ( 0 ) ' ,  + (0)/?+ />,/? + £,*? (7.59)

P \  = (0) + 2(0)/, + 3 Z), r2 + 4 E xl\ (7.60)

P 2 = P } +  D ] t 3, + E / ] (7.61)

P'2 = 2D]i3 + 4E]t3 (7.62)

Coefficient Z), is obtained first by multiplying Equation (7.61) by 

Equation (7.62) by —tu and then adding the resultants.

4, multiplying

4?2 = 4P, +4Z),/f + 4£,q (7.63)

- 3  o , (7.64)

4P; -  P’2i, = 4/>, + Z)|/j3 (7.65)
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0 . = 4 ^ 2 (7.66)

Coefficient £, is then obtained by multiplying Equation (7.61) by 3 and Equation (7.62) 

by — /, and then adding the consequences.

3/>2 = 3/),+ 3Z )1/2 + 3£,/f (7.67)

P 'ih=  - 3 Z V ? - 4 £ , / f (7.68)

3£2 - P V ,  = 3 £ , - £ 1/f (7.69)

,  ,  (Pi ~ Pi) , P'i
Ei ~ J 4 + 3 (7.70)

The acceleration at the end of the first segment was not specified as an initial 

condition. It shall be set equal to the acceleration at the beginning of the second 

segment to provide another equation dealing with velocities. The coefficients in the 

formula for acceleration in Equation (7.55) are substituted for by Equations (7.58), 

(7.66), and (7.70).

S",(/,) = 2C, + 6 ZV, + 12£,/,2 (7.71)

£",(/,) = 2(0) + 6 4 (P2~P l) P' 2
/f

6 + 12 3 (Pi~ Pi) . P'+ (7.72)

$",(*,) =  24
(Pi-Pi)

- 6 -

P',
+ 36 (Pi -  Pi) + 12

P\
(7.73)

$ " ,(/ ,)-1 2
(Pi -P i) , , P'i

+  6 - (7.74)
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The acceleration at the beginning of the second segment is obtained from Equations 

(7.26) and (7.20).

S"2(t) = 2 C2 + 6 D 2 i

S " 2(0) = 2C2 + 6D2( 0)

(7.75)

(7.76)

/ (A -  P2) + -P ’2)S"2(0) = 2 3 2 -  {------— (7.77)

The ending acceleration of segment 1 and the beginning acceleration of segment 2 arc 

then set equal.

S",(/1) = 5 ”2(0)

12 {Px = 2 (P3 ~ Pi) (P'3 + 2P'2)

(P1 ~ 2̂) . - P'7 ,  ~ 2̂) ( f j  + 2/>'2) 
h

(P'3 + 2P'2) />'
----- — + 3 — , (p3 -  /y „ (/», -  /y= J -------r-------- 6 --------------

(P’3 + 2 P'2)h + 3 P'2h = 3 (P3 - P 2) ~ - 6 {Px -  P 2) 

hP'3 + (2/, + 3/2) F 2 = 3(P3 -  F2) + 6(/>2 -  />,)

(7.7S)

(7.79)

(7.80)

(7.81)

(7.82)

(7.83)

d. The Last Spline Segment. The derivations for the last spline segment parallel 

those of the first segment. It shall likewise have five boundary conditions and thus be
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a quartic polynomial. As before, the boundary conditions state that the spline must 

pass through its endpoints.

s n_x(0) =  pn_ x (7.84)

(7.85)

The velocity at the starting endpoint of the segment, is still undetermined, while 

the velocity at the spline's end becomes zero as the manipulator must come to a stop.

£'„_,((» (7.86)

= 0 (7.87)

The fifth condition states that the acceleration at the end of the segment must become 

zero, again because the manipulator is stopped.

S V ,( '* - , )  = 0 (7.88)

Substitutions from the boundary conditions, starting with the endpoint specifications,

will obtain the coefficients of S„-,(r).

Sn-lM  = An-\ + Bn-\l + + Dn-1/3 + (7.89)

^ - ,(0 )  -  An_x + V , ( 0) + C„_,(0)2 + Dn_ x(0)3 + £„_](0)4 (7.90)

V i = ^ - 1  (7-91)

(/„_,) = A„_x + Bn_ xtn_ x + Cn_ xi2n_x + (7.92)

B n =  A „ _  i +  i +  Ai-i'n-i +  (7.93)
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The spline polynomial is differentiated prior to use of the velocity constraints.

£'„_,(/) =  V i  +  2 C„_j/ +  3 D n _ /  +  4 £ „ _ /  (7.94)

+  2C„_i(0) +  3Z9/I_1(0)2 +  4£„_,(0)3 (7.95)

= V i  (7-96)

S '- i (V - i )  = V - i  + 2 C„_ ,(/„_)) + 3/)„_,(//7_1)2 + 4£„_t(//1_1)3 (7.97)

0 =  B n _  j +  +  3Z)/l_ ,/2_ ] +  4£/?_ ,/3_ 1 (7.98)

Finally, the acceleration condition calls for the spline to be differentiated a second time.

S "„_ ,(0  =  2C„_) +  +  12£„_,/2 (7.99)

S 'V - i^ - i )  -  2C„_j +  6 D n . , ( i n _ , )  +  \ 2 E n _ x { i n _ , f  (7.100)

0 =  2 C„_j +  6Z)/I_ 1/n_, +  12£„_]/A!_ ] (7.101)

Coefficients A-i and are explicitly defined by Equations (7.91) and (7.96), 

respectively. Their values are substituted into Equations (7.93), (7.98), and (7.101) 

leaving three equations to be solved this time for the remaining unknowns, C„_,, 

and £„_i.

V  =  V l  + P'n-l'*-l +  Q - , 'L i + + V - l ' i - l  (7.102)

0 =  / V i + 2C„_,/n_, + 3Z)„_,fw2_, + 4£„_,/3_ ! (7.103)

0 « 2 C ^ 1 +  6Z V I^ 1 +  12EB_1/J_1 (7.104)
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Coefficient C„_i shall be obtained first. The process begins by eliminating from two 

pairings of the three equations. Equation (7.102) is multiplied by 4, Equation (7.103) 

is multiplied by — u and the results are added.

4Pn = 4Pn_\ + 4 / V , '* - ,  + 4C„_1/2_, + 4Z)„_1/3_ 1 + 4 £ „ _ i/„4_1 (7.105)

0 =  -2C„_,/„2_1 -3Z)„_,c3_, -4 E „ _ 1c4_ 1 (7.106)

4 ^  = + 3 Z V .'„ - , + 2Q_,/„2_, + / V ,,3. ,  (7.107)

Next, Equation (7.103) is multiplied by 3, Equation (7.104) is multiplied by and 

the results arc added.

0 = 3 + 9 Dn_ / n_, + (7.108)

0 = - 2 Cn_ xtn_, -  -  12£„_,r3_, (7.109)

0 =  3 +  4C/,_1fn_ I + 3Z)„_,r2_, (7.110)

Equations (7.107) and (7.110) are in terms of C„_, and Z)„_, only. Equation (7.107) is 

multiplied by 3, Equation (7.110) is multiplied by and the results are added to 

obtain C„_,.

12Z>„ =  12Z>n_ 1 +  9/>'n_,tn_i +  6Cn_t/n_i +  3Z)n_ l/n3_i (7.111)

0 =  — 3£ n-ffn-i “  4C„_]tn_] — 3Z)„_1/n_ ] (7.112)

12P„ =  12P„_] +  +  2C„_,/2_1 (7.113)

C n_ / n_ ^ 6 P n - 6 P n_ , - l , F n^ n_ x (7.114)
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Q _, = 6 - 3
P'n—\

ln- 1
(7.115)

Coefficient is obtained by multiplying Equation (7.107) by 2, multiplying Equation

(7.110) by and adding the results.

8 Pn = 8/V, + + 4C„_1/2_ ! + 2 Dn_ xtl_x (7.116)

0 =  -2>P'n_,tn_x- 4 C n_ / n_, -  W n_}t3„_, (7.117)

8 ^  = 8 ( 7 . 1  IS)

-S / ^  + S / V ,^ ,  (7-119)

Z?„_1 = 8 - - ^ -  + 3 (7.120)
9?-l 9?-l

Finally, coefficient is obtained by substitutions for C„_, and D„_, into Equation

(7.104).

0 = 2C„_, 4- 6Dn. , i n_, +  I2£„_,/fl2_, (7.121)

0 =  2 6 (P n -P n -0  P'- 3
‘n—1 ln-\

+ 6 8 (Pn- ! ~ Pn) . ,  ' V ,+ 3 —2----  r„_, + 12£„_,^_,
'/i-i *n-l

(7.122)

6 £ „ - ,C , = - 6 ( ^ - V , )  . ,  P'4-3
ln-1

n— 1
‘«-l

-  3 8 (Pn- 1 -  ^) . , ^ n- 1

‘fl-1
(7.123)
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2 E,„ 2 ,  (P .-P n -O  . / V , A pn ^ - ? n )  . ' V ,
: n - E n - l  -  - 2  7 r  “ 7 «  7 3 —

‘/!-l ‘ n-1 n—1 'n— 1
(7.124)

2 ^ ,- iC , = 6
{Pn-Pn-y) 2 £ jn -1

‘ n-1 ‘ n - 1
(7.125)

£ ,- i  -  3
( ^ - ^ - , )  /,v (7.126)

‘ n - i ‘ n-1

The accelerations from the left and right of node n — 1 arc equated as before to provide 

a final equation involving velocities. The acceleration at the end of the next to last 

segment is found by substituting coefficients C„.2 and Z)„_2 from Equations (7.20) and 

(7.25), respectively, into the acceleration formula of Equation (7.26).

$ V 2(') = 2C„_2 + 6 Dn_2t (7.127)

„„ , , ,L  (^1 -  Pn-2) (P'n- 1 + 2 ^ -2)
•3 n - l l 'n - 2 J  — Z \ J  2

'n - 2

+ 6 2

‘n -2

( P * - 2 -  ^ n - l )

(7.12S)

‘ n—2
n - 2 ' n - 2

,, , C (f - - U  ( / y ,  + 2 ^ 2)
O /,_ 2V‘ n -2 l  — 0 2 Z

'n —2 ' n -2

, (P n -2 -P n -l)  . ,  ( ^ - 2 + ^ - , )+ 12-------- r------------h 6 -------- -------------
(7.129)

'n -2 'n -2

S " n_2(r„_2) = 6 ( P * - 2 - P * - l )  , .  ( ^ 'n - 2  +  2 /> 'n - l )+ 2
'n -2 'n -2

(7.130)

The acceleration at the beginning of the last interval is found by substituting coefficient 

C_i of Equation (7.115) into the acceleration formula of Equation (7.99).



294

S V iW  = 2C„_, + 6D n_ ]l+  \2En_ /  (7.131)

S"„_i(0) = 2Cn_ } + 6D„_,(0) + 12£„_](0)2 (7.132)

S V ,( 0 )  = 2 U

The ending acceleration of the next to last segment and the beginning acceleration of 

the last segment are then set equal.

(P n -P n -l)  r- 3 ' n -1

‘n- 1 ‘n- 1
(7.133)

5 " n _ 2( r „ _ , )  =  5 " /!_ 1( 0 ) (7.134)

6 ( ^ J + 2  6 —  3 , (7 j 3 5 )
‘ n -2 ‘n - 2 'n -1 ‘ n-1

( P 'n- 2 + 2P'n_ 1) . „ ,  (/»„ -  v . )  ,  (^n_2 -  ^n-l) „--------- ;---------------—----------= 6 -------- ------------ e>--------- ----------- (7.136)
‘n -2 ‘ n-1 ‘ n-1 ‘ n -2

(P'n-2 + 2P'n_X-l + lP'n-̂ -2 = 6{Pn ~ P ~ 3(/>„_2 -  />„_,) ~~
‘ n - 1  ‘ n—'

‘ n-1

(2/„_, + 3v J / V ,  + ~ «(/’» -  V i )  f ^ 1  + -  />„_J 71 1 * .
‘ n-1

n-1 'n -2

(7.137)

(7.138)

The coefficients for each of the spline polynomials were seen to be dependent on the 

spline endpoints and the velocities at the endpoints; thus the velocities must be 

determined prior to evaluation of the spline coefficients. As stated previously, the two 

ends of the trajectory have velocities of zero; this leaves n — 2 unknowns. Equation 

(7.39) provided n — A equations and Equations (7.83) and (7.138) provide the additional 

two needed to result in a system of n - 2  equations in n -  2 unknowns. These 

equations may be thought of in the following matrix form.
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2/] + 3 /2 o

i-------

o

1

ro ....
.. 

1 1-------fN

1-------

h 2(̂ 2 + h) h 0 ^ 3 *3

0 /4 2 (i3 + /4) '3 ^'4 *4

^ '5
=

5̂

. /Vn-3 ^n-3

0i-2 2('n-3 + ln-2) 'n-3 ^'n-2 ^n—2

• 0 n̂—1 2t„_] + 3//)_2 '̂n-1 V ,

(7.139)

The elements of the right hand matrix in liquation (7.139) arc defined by the following 

equations.

^2 = 3-^- (P3 -  P2) + 6 (P2 -  />,) (7.140)

/̂+, =  3 (Pi+2 — Pi+\) + 3 ~y ~ (/,,+i — Pi) for 2 </</? — 3 (7.141)
‘ i+1 ‘i

*n-i = 6 ^ { P n -  />„_,) + 3 -£= r (/>„_, -  V , )  (7.142)
‘ n-1 ‘ n -2

2. Numerical Example. This section shall derive the spline polynomials which 

define an arbitrarily selected trajectory for the Armatron manipulator. Consider the 

following set of joint coordinates:

^1 =  (0*. o', 0*. 0*, 0*) (7.143)

P2 = (10*, 6*, 20*, —5*, 180*) (7.144)

P3 = (25*, 12*, 40°, —7*, 45*) (7.145)
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PA -  (0 , 0 , 7 5  , 22 , 45 ) (7.146)

P5 = (20 , —3 , 80 , 1 2 , - 9 0  ) (7.147)

P6 = ( —75 , 1 0 , 6 0 , 3 5 , 9 0  ) (7.148)

P1 -  ( - 115 , 25 , 50 , 65  , - 35  ) (7.149)

As there are seven nodes, spline polynomials will be generated for six segments. For 

each of the six segments, one polynomial will be generated for each of the five 

Armatron joints, bringing the overall number of polynomials to thirty. For the 

numerical example, only the trajectory of the first joint is considered.

The first step is the determination of arbitrary time units between nodes. 

Equation (7.1) defined the amount of this time to be the geometric distance between 

the nodes in five-dimensional space.

r, = x/(10’ -  0’)2 + (6’ -  O*)2 + (20° — O')2 + ( -5 °  -  0’)2 + (1 SO* -  0")2 (7.151)

(7.150)

/, =  181.552 (7.152)

Similarly,

t2 =  137.441 (7.153)

t3 = 53.245 (7.154)

r4 = 136.963 (7.155)
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is = 206.211 (7.156)

:6 = 135.831 (7.157)

As observed during the derivation of equations, the polynomial coefficients are 

dependent upon not only the node values and the amount of time between the nodes 

but also the velocities at the nodes. Equations (7.139) through (7.142) are employed 

here to determine these velocities.

2/, + 312 h 0 0 0 ^2 2̂

h 2(̂ 2 + ll) h 0 0 ^3 *3

0 h 2{t3 + 0j) h 0 =

0 0 5̂ 2(/4 + ;s) u R5

0 0 0 '6 2/6 + 3/5 ^6 6̂

(7.15S)

« 2 “ 3 | - ( f 3 - ^ )  +  6 y - ( P 2 - P , )
‘2 M

(7.159)

R> = 3 I37~441 (25 '  10) + 6 Ygpylj' ( 1 0 - 0 )  = 104.865 (7.160)

* - i  -  6 ,
n-2

n-1 'n -2
(7.161)

D n 206.211
'<6 b 135.831 ( - 1 1 5 - ( - 7 5 ) ) +  3 135.831

206.211 ( - 7 5  -  20) = -5 5 2 .0 8 4  (7.162)

-  3
0

O+i
O+i

(/’/ « - /Vi) +  3 for (7.163)

“  3 4 .  (/>4 -  P}) + 3 4 -  (P, -  P2) (7.164)
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*3 = 3
137.441
53.245 (0 -  25) + 3 53.245

137.441 ( 2 5 - 10) = -176.164

tf4 = 3^(/>5 - / ’4) + 3 ^ ( P 4 -/ Y )
M *3

Ra =  3 (20 -  0) + 3 (0 -  25) = -169.598ji.ZM J136.963

*5 = 3 "T” (*6 — *$) + 3 —— (Ps — PA)
* s  * A

PnJ t-n

II 136.963 
3 206.211

- ( - 7 5 - 20) + 3 -206.211 ,20 q)
136.963 L J

= -98.958

775.427 181.552 0 0 0 P’2 104.865

53.245 381.372 137.441 0 0 P'3 -176.164

0 136.963 380.416 53.245 0 P\ = -169.598

0 0 206.211 686.348 136.963 P ’s -98.958

0 0 0 135.831 890.295 P't -552.084

775.427 181.552 0 0 0

r
<N

6*
i____ 104.865

0 368.906 137.441 0 0 * ' 3 -183.365

0 0 329.389 53.245 0 p\ = -101.520

0 0 0 653.014 136.963 P's -35.402

0 0 0 0 861.806 P's -544.720

(7.165)

(7.166)

(7.167)

(7.168)

(7.169)

(7.170)

(7.171)
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1 0  0 0 0 P'2 0.224

0 1 0  0 0 P'3 -0 .377

0 0 1 0  0 P'a = -0.321

0 0 0 1 0 P's 0.078

0 0 0 0 1 P' 6 -0.632

(7.172)

With the node velocities in hand, the coefficients of the polynomials may be 

determined. Equations (7.8), (7.13), (7.20), and (7.25) state the formulas for the 

coefficients of the constant, linear, quadratic, and cubic terms, respectively, of the 

internal spline polynomials.

Ai = P i

Bi = P'i

Q —  3 P»  i

h

P'm  + 2 P'i

D, = 2
Pi~ , P'i + P’i+,

h

A2 = 10 

B2 = 0.224

r - 2 5 -1 0 -0-377 + 2(0.224)
2 (137.44I)2 137.441

1.866E-3

D _ 2 1 0 -2 5 | 0.224+ (-0.377)
2 (137.441)3 (137.441)2

— 1.965E-5

(7.173)

(7.174)

(7.175)

(7.176)

(7.177)

(7.178)

(7.179)

(7.180)
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l\{t) = 10 + (0.224)/ + (1.866E-3)/2 + ( - 1 .965E-5)/3 (7.181)

Substitution of i2 into Equation (7.181) provides a quick check to show that the 

polynomial docs indeed pass through the segment end value of 25.

/>2( 13 7.441) = 25.019 (7.1S2)

The remaining intermediate polynomials are obtained and checked in similar fashion.

A3 = 25 (7.183)

B3 = -0.377 (7.1S4)

0 -  25 -0.321 + 2( -0.377)
C3 = 3 — — ------------- r r— -------- L = -6.265E-3

(53.245)2 ^•24:>
(7.185)

25 - 0  -0.377 + ( -0.321)
D 3 = 2 — — —t- + --------------— r------- =  S.503E-5

(53.245)3 (53.245)2
(7.186)

P3(j) -  25 +  ( -0.377)/ + ( —6.265E-3)/2 + (8.503E-5)/3 (7.187)

7>3(53.245) = 0.001 (7.188)

oIIV-*
x: (7.189)

Z?4 = —0.321 (7.190)

2 0 - 0  0.078 + 2( -0.321)
^4 *“■•4 I -j/ — /. .51 oL,*o

(136.963)2 136-963
(7.191)

D _  2 0 -  20 | - 0 . 321+ 0.07S
4 (136.963)3 (136.963)2

— 2 . S 5 2 E - 5 (7.192)
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PA(t) = 0 + ( -0.321)1 + (7.316E-3)/2 + ( -2.852E-5)/3 (7.193)

PA{ 136.963)= 19.999 (7.194)

A5 = 20 (7.195)

B5 = 0.078 (7.196)

-7 5  -  20 -0.632 + 2(0.078)c  =  3 .... - u- ----------------- -----i-- - - - - - - L  =  —4.394E-3
(206.211)2 206.211

(7.197)

20 -  ( -75) 0.078 + ( -0.632)
D5 = 2 -------------- f  + ----------- ------ -— -  = 8.640E-6

(206.211)3 (206.211)2
(7.198)

P5{r) = 20 + (0.078)/ + ( -4.394E-3)/2 + (S.640E-6)/3 (7.199)

/>s(206.211) = -75.000 (7.200)

Each internal polynomial is observed to produce a value near its desired endpoint at 

the end of its time interval.

Equations (7.47), (7.52), (7.58), (7.66), and (7.70) define the coefficients of the first 

spline polynomial's constant, linear, quadratic, cubic, and quartic terms, respectively.

=  (7.201)

^i = 0 (7.202)

# i = 0  (7.203)

C ,  =  0 ( 7 . 2 0 4 )
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P2 ~ Py P\/) = 4  — ---------- !------------- —
3 2

'l

D, = 4 1 0 - 0  0.224
(181.552)3 (181.552)2

= —1.116E-7

E. = 3 4
Py ~ P2 />''

/T, = 3 —-— — ° ? 1 1  = 9.819E-9 
(1SI.552)4 (1S1.552)3

/>,(/) = 0 + (0)/ + (0)/2 + ( -1 .1 16E-7)t3 + (9.S19E-9)/4

^,(1 SI .552) = 10.000

(7.205)

(7.206)

(7.207)

(7.208)

(7.209)

(7.210)

Equations (7.91), (7.96), (7.115), (7.120), and (7.126) define the coefficients of the 

terms in increasing order of the last spline polynomial.

An-\ — ?n-1 (7.211)

A6 = -7 5 (7.212)

= P'n̂ (7.213)

B6 -  -0.632 (7.214)

(Pn~Pn- ,) „ P'n-y
tl , (7.215)

r  _ r  ( - 1 1 5  ~ (~ 7 5 )) -Q.632
6 (135.S31)2 135.831

=  9 . 5 0 4 E - 4 ( 7 . 2 1 6 )
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D n _ \  —  8
Pn—1 p „

-f- 3 ■
p\

ln-\ n— 1
(7.217)

d6 = s
-75 -115)

( 135.831)J
+ 3 -0.632 

( 135.831)2
= 2.493E-5 (7.21 S)

£*-, = 3
P -  P1 n  4 in-i F «-i

‘n-1 ‘ n -1

(7.219)

F _  - 1 1 5 - ( - 7 5 )
'6 (135.831)4

---- -1.003 E-7
(135.831)3

(7.220)

P6(t) = -7 5  + ( -0.632)/ + (9.504E-4)/2 + (2.493E-5)/3 + ( -1.003E-7)/4 (7.221)

756(135.831) = -114.976 (7.222)

The spline polynomials for joint variables d2, 6i, 6t, and 9S are obtained in a 

parallel fashion.

Figure 7.2 graphs the information obtained about the trajectory in this section. 

The nodal velocities are used to give some indication as to the slope of the spline as it 

passes through the nodes. The values used arc those obtained by the program 

example.

3. Program Control. The input of nodes along the desired trajectory' is controlled 

by procedure n o d e s _ a n d _ d is ta n c e s  . This procedure determines the distances, 

or scale times, between nodes also. The body of the procedure follows.

dsply_nodes_dists (Srou. cols);n = input_nodes (theta, row, cols); calc_distance (n, theta, t, rou, cols[6]);wait_then_erase (10); return (n);
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The determination of the spline polynomials is performed by procedure 

c a l c  po ly n o m ia ls .  This process is performed in two steps by procedures 

c a l c _ n o d e _ v e l o c i t i e s  and c a l c _ c o e f f i c i e n t s ;  these two procedures

form the entire body of c a lc _ p o ly n o m ia ls  , as follows.
calc_node_velocities (n, p, t, vel);calc_coefficients (n, p, t, vel, a, b, c, d, e);

Procedure c a l c _ n o d e _ v e l o c i t i e s  in turn invokes procedures to follow the steps 

described in the derivations and examples of this section. The procedures themselves 

are straightforward.

dsply_node_velocities (&rou, cols);
equate_quartic_cubic_accs (t, p, coeff, rhs, rou, cols); 
equate_cubic_accs (n, t, p, coeff, rhs, rou, cols); 
equate_cubic_quartic_accs Cn, t, p, coeff, rhs, rou, cols); uait_then_continue C );
foruard_eliminate_term1 (n, coeff, rhs, rou, cols); 
uait_then_continue ( );
backuard_eliminate_term3 (n, coeff, rhs, vel, rou, cols); 
uait_then_erase (10);

Procedure c a l c _ c o e f  f  i c i e n t s  determines the polynomial factors in three groups: 

starting, intermediate, and ending.

dsply_coefficients (&rou, 
calc_starting_quartic

cols) 
<P.

;
t, vel, a, b, c, d. e, rou, cols);calc_intermediate_cubics (n, p, t, vel, a, b, c, d, e, rou. cols);calc_ending_quartic (n, p, t, vel, a, b, c, d, e , rou, cols);
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wait_then_erase (10);

4. Program Example. Figure 7.4 shows the display observed during the input of 

joint variable sets. There is virtually no difference here between the distances 

calculated in Equations (7.152) through (7.157) and those shown in the figure. Figure 

7.4 gives the display reflecting the calculated matrix equation for the determination of 

the nodal velocities; comparison with Equation (7.170) shows only insignificant 

differences in values. Figures 7.5 and 7.6 reflect the status of the matrix equation after 

the forward and backward elimination steps, respectively. Comparison with Equations 

(7.171) and (7.172) again shows only insignificant differences. Finally, Figure (7.7) 

shows the display of polynomial coefficients for the spline polynomials of the first joint 

variable. Comparison with the coefficients of Equations (7.209) , (7.1 Si), (7.187), 

(7.193), (7.199), and (7.221) will show that an increasing amount of precision has been 

lost in the numerical example.



Armatron Manipulator Control
Theta

0.000 N 0 A P
0.000 : 1 . 0 0 0  o .000 0.000 200.000!
0.000 : o.ooo - 1 .000 0.000 0.000!
0.000 : o.ooo o . 000 -1.000 100.000!
0.000 : o o 0 1 !

Traj ectory Control
Input of Nodes Along Desired Trajectory

1 0.000 0.000 0.000 0.000 0.000 181.552
2 10.000 6.000 20.000 -5.000 180.000 137.441
3 25.000 12.000 40.000 -7.000 45.000 53.245
4 0.000 0.000 75.000 22.000 45.000 136.964
5 20.000 -3.000 80.000 12.000 -90.000 206.211
6 -75.000 10.000 60.000 35.000 90.000 135.831
7 -115.000 25.000 50.000 65.000 -35.000

Figure 7,3, Input of Nodes and Seale Times

oo



Armatron Manipulator Control
Theta

0.000 N 0 A P
0.000 1i 1.000 0.000 0.000 200.000
0.000 i1 0.000 -1.000 0.000 0.000
0.000 1l 0.000 0.000 -1.000 -100.000
0.000 l1 0 0 0 1

Trajectory Control
Trajectory for Joint 1

Node Velocities
i veltl-1) vel(i ) vel(i +1) rhs
2 775.426 181 . 552 104.865
3 53.245 381.371 137 .441 -176.165
4 136.964 380.416 53 . 245 -169.600
5 206.211 686.349 136 .964 -98.959
6 135.831 890.295 -552.084

Figure 7.4. Node Velocity liquation Coefficients

LO
o-J



Armatron Manipulator Control
Theta

0 . 0 0 0 N o A p
o . o o o  : 1 . o o o 0 .  o o o 0 . 0 0 0 2 0 0 . 0 0 0
o . o o o  : 0 . 0 0 0 - 1  . o o o 0 . 0 0 0 0 . o o o
o . o o o  : 0 . 0 0 0 0 . 0 0 0 - 1 . o o o - 1 0 0 . 0 0 0
o . o o o  : 0 0 0 1

Trajectory Control 
Trajectory for Joint 1 

Node Velocities
i vel(i-1 ) vel(i ) vel(i+1) rhs
2 775.426 181.552 104.865
3 368.905 137.441 -183.365
4 329.389 53.245 -101.522
5 653.016 136.964 -35.402
6 861.806 -544.720

Figure 7.5. Node Velocity liquations After Forward Elimination

cOO



Armatron Manipulator Control
Theta

0.000 N O A p
o.ooo : 1.000 0.000 0.000 200.000
o.ooo : 0.000 -1.000 0.000 0.000
o.ooo : 0.000 0.000 -1.ooo -100.000
o.ooo : 0 0 0 1

Trajectory Control
Trajectory for Joint 1

Node Velocities
i velCi- 1 ) veld) velCi + 1) rhs
2 1.000 0.22A
3 1 . ooo -0.378
4 1.000 -0.321
5 1.000 0.07 8
6 1.000 -0.632

Figure 7.6. Node Velocity Equations After Backward Elimination

O-J
o



Armatron Manipulator Control
Theta

0.000 N O A P
o.ooo ; 1 .000 0.000 0.000 200.000
o.ooo ; 0.000 -1.000 0.000 0.000
0.000 0.000 0.000 -1.000 -100.000
o.ooo : 0 0 0 1

Trajectory Control 
Trajectory for Joint 1
Polynomial Coefficients

A B C D E
1 o . ooo 0. OOO 0.000 -1.000E-07 9.7 5 6E
2 10.000 0.224 1 . 875E-03 -1 .97 0E-05
3 25.000 -0.378 -6.249E-03 8.489E-05
4 0.000 -0.321 7.312E-03 -2.850E-05
5 20.000 0.078 -4,397E-03 8.646E-06
6 -75.000 -0.632 9.519E-04 2 .491E-05 -1.003E

Figure 7.7. Spline Polynomial Function Coefficients
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B. EXAMINATION OF SPLINE EXTREMA

With the spline polynomials now determined, it must be guaranteed that the 

trajectories specified by them will not require the joint variables to attain values outside 

of their physical constraints. T his test is performed by examining the velocity functions 

of the polynomials. As long as the velocity along the trajectory is increasing or 

decreasing, the joint positioning shall continue to do likewise. When the velocity 

becomes zero, however, it is possible that the positioning has reached an extremum. 

For example, if the velocity had been increasing and eventually became zero, the 

velocity could become negative and the positioning would start to decrease; in this 

case, a maximum value was attained. On the other hand, the velocity might increase, 

become zero, and then begin to increase again; in this case, no maximum is present. 

Only the maxima and minima attained by the polynomial need be examined, and these 

occur only when the velocity function of the spline polynomial becomes zero.

1. Derivation of Equations. The velocity along a defined trajectory is obtained 

at any point by an evaluation of the first derivative of the spline polynomial. The times 

at which the velocity becomes zero are then obtained by solving the equation of the 

velocity function and zero. The obtained times must then be compared to the time for 

which the manipulator is traversing the trajectory' segment in question; if the time is 

outside of this window, no further examination need be made. As the trajectory w’as 

constructed to be continuous through the second derivative at the nodes, no 

examinations need be made at the nodes themselves either. When the critical times 

have been determined, the spline polynomials arc evaluated at them to determine if any 

out of range conditions will result from an attempt to follow the trajectory'. I f  this is 

the case, corrective measures must be taken, such as adding additional path nodes to 

prevent the exceedance.
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a. Internal Spline Segments. The velocity function for the C internal spline 

segment was given by Equation (7.11). The function is set equal to zero to obtain the 

desired times.

S 'fc) =  Bl + 2Q +  3 V (7.223)

(3 A-)'cA +  (2 Q tcpi +  (Bi) =  0 (7.224)

-  (2Ci) ±  7 ( 2 C f  -  4(3Di)(Bi)
(7.225)2(3 Di)

—2Q ± 7 ACf — 4{3B;D;) 
2(3^)

Lcp<
- Q ± J c f - Z B ^

ZD i

(7.226)

(7.227)

Let the discriminant in the formula for the critical time be represented by d,.

dt — Cf — ZBjD; (7.228)

If discriminant di is negative, there are no solutions to Equation (7.224) and 

consequently no extrema. If  the discriminant is positive, the.equation has two roots 

which must be examined. Finally, if the discriminant is zero, Equation (7.224) has a 

double root and there is only one time at which the polynomial must be investigated.

b. The Terminal Spline Segments. As the first and last spline segments are both 

fourth order, the solutions for the times of possible extrema occurrences are similar for 

both. Equation (7.11) defined the velocity function for the first spline segment. The 

solution of the equation of this function with zero is complicated by the presence of a 

cubic term. For a cubic equation of the following form
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/ + CL̂t + — 0

the solution is obtained using the following formulae:

9o1fl2- 2 7 a 3 -2 fli
54

s  =  { / r  +  J q 3 +  r 2

t - I J r - J & T i?

r, = S +  T - - ^ -j

t2 =  - j - ( S + T ) - - ^  +  ± i j T ( S - T )

3̂ = -Y(5+7)--y--y'V3_(S-n

The velocity function of Equation (7.11) is set equal to zero and adjusted to 

of Equation (7.229) so that quantities Q and R may be determined.

S ', (0  =  5, + 2 C 1f +  3D1f2 + 4 £ )r3

(4 £ ,)4 >, + (3fli I 'i, + (2C,)'c, + =  0

& + + ( ■§ ■) « + ( « r ) " 0

(7.229)

(7.230)

(7.231)

(7.232)

(7.233)

(7.234)

(7.235)

(7.236) 

the form

(7.237)

(7.238)

(7.239)
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2 ,= (7.240)

2 , _£ l
6 £,

_£L
16/;?

(7.241)

2 ,=
l

2£, 3 (7.242)

(7.243)

i _ / ' _ g !_ \  g ?
2 V 4 E I /  64£?

(7.244)

1
8£, 2£ ,

z>r

8£,
(7.245)

(7.246)

Equations (7.232) and (7.233) both require the determination of the square root 

of O3 + R2, so this expression is the discriminant for the solution of the cubic equation.

d — Q3 + R 2 (7.247)

Note that Q must be less than zero in order for d  to take on a negative value. If o' is 

positive, both S and T acquire real number values, and their use in Equation (7.234) 

produces a real number result for q. However, their use in Equations (7.235) and
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(7.236) produces two complex number solutions; thus there is only one solution to be 

investigated when d is greater than zero.

cp 1 + J d ~ Ry 4 £, (7.24S)

If the discriminant should take on the value 0, then S and T take on the same value, 

\JR . liquations (7.235) and (7.236) become the same double root; this double root 

and the root of Equation (7.234) are the two critical times for this case.

Dy
4 Ey

1CPU2 A
4 Ey

(7.249)

(7.250)

In the third case, the discriminant is less than zero, and both S and T  become complex 

numbers.

S  — \ /  R ■+" yj—d  i (7.251)

Its
[T1=< 
<’1 

s
 

IIb. (7.252)

Consider the alternative expression for the complex number a + bi.

a + bi =  r( cos 6 + i sin 9)

0 = tan - )

r = yj a2 + b2

(7.253)

(7.254)

(7.255)

Equations (7.251), (7.252), and (7.254) then become
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s  = 3J  J r 2 - d  ( cos  6 + i sin 0) (7.256)

T — \ J\ jR 2 ~ d { c o s 9  - i sin 0) (7.257)

e - tan ( ) (7.258)

An expression of the form ( cos 9 + / sin 8)n may be replaced by deMoivre's formula 

which states

( cos 9 + / sin 9)n = cos n9 + i sin n9 (7.259)

Application of deMoivre’s formula to Equation (7.256), along with a replacement for 

d from Equation (7.247), simplifies the expression for S.

S = - ^ J Q 2 ~ R2 (  c o s y + /s i n y )  (7.260)

S = c o s y + /s i n (7. 261)

Next, Equation (7.259) is adjusted for use with T.

( cos( —6) + i sin( —9))" = cos(n( -9)) + / sin(/j( —9)) (7.262)

( cos( —9) + i sin( —6))" = cos(nd) — / sin(n9) (7.263)

T = •J—Q  ̂cos —  / sin y   ̂ (7.264)

The expressions obtained here for S and T are substituted into Equations (7.234), 

(7.235), and (7.236) to simplify the relationships for the three real roots of the original 

cubic equation.
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!cp),\ Qi ( cos — + i sin —  J  j  + ( yJ-Q , ( cos — -  / sin —o . . e 3D,
3(4£>)

(7.265)

lcpu  =  2 s l - Q \  cos —
e V\
3 4£, (7.266)

‘cPu = -  y  (y -e7( cos y  +' siny  ) + V-<2  ̂ . . i?cos ——  / sin — 3 3
3D,

3(4£.)

+ y  ly/Tf yJ—Q\ (  COS y  + / sin y  ^ -  J - Q i  f  cos y  -  ‘ sin y
(7.267)

y ,  = “ ~ 2  ( cos 36 ) ^ ^ r  + T ' V3 ( 3'vc c 7 sinT ) (7.268)

0 D| j . 0
=  - y J - Q )  C O S y - ^ - - V3 V ~ 2 l  S i n  —

... 0_ 
3

(7.269)

cPu = -  V - s T  (  cos y + yy- sm y
. 0 \ £i

4£,
(7.270)

!cP\,i
0 . . 0 / sm yy  ( V - 0 i  (  cos y  + ' sin y  )  + (  cos -|

-  Y  ‘J *  (y f~ Q ~ (  cos y  +  ' sin y  -  V ~2l (  COS y  -  / sin y

3 D,
3(4 £,)

(7.271)

cPl.3

-1
2 “ <2l cos

0 \ 0
4£, - y ' ' 7 3 " ( 2 '7 z a " ^ y (7.272)

1̂,3 n/~<2i cos y  -  y r -  + 73 V -f iT  sin y (7.273)

'e, u = 7 ^ 2 7 (  -  co s|  + 73“ sin (7.274)
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The set of equations obtained for the ending polynomial segment parallels that 

generated for the first.

2. Numerical Example. The times of zero velocity for the various spline 

polynomials of joint variable 1 are determined here. Note that as the 0, rotation has 

no physical limitations, the tests arc not strictly required in this case. However, as this 

is not the case for other of the manipulator joints, the demonstration of the process 

will prove useful for them. Additionally, these tests serve to illustrate one aspect of the 

behavior of the spline polynomials.

a. Internal Spline Segments. Beginning with the spline for segment 2 in Equation 

(7.181), Equation (7.228) is first used to evaluate the discriminant for the solution set.

P2{t) = 10 + (0.224)/ + (1.866E-3)/2 + ( - 1 .965E-5)/3 (7.275)

d2 = C\ — 3B2D2 (7.276)

d2 = (1.866E-3)2 -  3(0.224)( -1.965E-5) = 1.669E-5 (7.277)

As the discriminant is positive, two real solutions, given by Equation (7.228), exist.

— C2 ±
‘Cf>2 = W 2 (7.278)

— (1.866E-3) d= V1.669E-5 
tcp> ~ 3( —1.965E-5) (7.279)

/^ = —37.648 or 100.956 (7.280)
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As the first time is negative, it is of no interest here. However, the second time is 

positive and less than the 137.441 maximum established in Equation (7.153), so the 

trajectory should be evaluated here.

/}2( 100.956) = 10 + 0.224(100.956) + (1. S66E-3)( 100.956)2

+ ( —1.965E-5)(100.956)3
(7.281)

P2{ 100.956) = 31.414' (7.282)

For spline segment three of Equation (7.187),

P3(t) =  25 + ( -0.377)/ + ( —6.265E-3)/2 + (S.503E-5)/3 

d2 = C32 -  3B3D3

d3 = ( —6.265E-3)2 -  3( -0.377)(8.503E-5) = 1.354E-4

— Cj ±  yfd^
^  “  W 3

-  ( —6.265E-3) ±  N/l.354E-4 
^ = 3(8.503E-5)

iCf>2= 70.176 or -21.056

(7.283)

(7.284)

(7.285)

(7.286)

(7.287) 

(7.2S8)

Since the first time is larger than the amount of time spent on the segment, 53.245, and 

the second time is negative, no tests need be made.

Continuing with the fourth spline segment from Equation (7.193),

PA(/) =  0 + ( -0.321)/ + (7.316E-3)/2 + ( -2.852E-5)/3 (7.289)

dA =  C 2 -  3 BaD4 ( 7 . 2 9 0 )
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d4 = (7.316E-3)2 -  3( —0.32 ])( -2.852E-5) = 2.606E-5

-Q ±
'cp* ' 3 D,

lCPt
(7.316E-3)± V2.606E-5 

3( —2.852E-5)

tCD = 25.844 or 145.171cPa,

(7.291)

(7.292)

(7.293)

(7.294)

The second time is outside of the interval spent on the segment, 136.963 as stated by 

Equation (7.155), so only the position at the first time need be tested.

7^(25.844) = ( -0.321)(25.844) + (7.316E-3)(25.S44)2

+ (-2.852E-5)(25.844)3
(7.295)

P4(25.844) = -3.902' (7.296)

The examination of the intermediate segments concludes with the test for Ps(r) of 

Equation (7.199).

P5(/) = 20 + (0.078)/ + ( —4.394E-3)/2 + (8.640E-6)/3 (7.297)

d5 = Cs -  3B5D5

ds =  ( —4.394E-3)2 -  3(0.078)(8.640E-6) =  1.729E-5

(7.298)

(7.299)

- c 5 ±  JT ,
lcp> 3D, (7.300)

lcps
-  ( —4.394E-3) ±  V1.729E-5

3(S.640E-6) (7.301)
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icPs = 329.943 or 9.100 (7.302)

The first time is outside of the amount spent on the interval, 206.211, so only the 

second is tested.

735(9.100) = 20 + (0.078)(9.100) + ( -4.394E-3)(9.100)2 + (8.640E-6)(9.100)3 (7.303)

7*5(9.100) = 20.352* (7.304)

b. The Terminal Spline Segments. The first spline polynomial was stated in 

Equation (7.209); the determination of the critical times for the exceedance of joint 

boundaries begins by application of Equations (7.241), (7.246), and (7.247).

7>,(0 = ( - 1 .1 16E-7)/3 + (9.819E-9)/4 (7.305)

2 .
1 (  C, Di

2 £, \ 3 8 £, (7.306)

< 2 i -
i

2(9.819E-9)
0 ( —1.1I6E-7j
3 8(9.819E-9)

= -8.074 (7.307)

R' 8 £, A  c  - A \ _ *2El [ C’ 4E, J (7.308)

R, =
-1  116E-7 L  ( —1.116E-7)2 \ t . j ioc / / q — J _  o J =  22.941 (7.309)

8(9.819E-9) \ 2(9.819E-9) \ 4(9.819E-9)

dx = Ql +

d x =  ( -E.074)3 +  (22.94l)2 =  -5.035E-2

(7.310)

(7.311)
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Since dx is negative, there are three times at which the velocity becomes zero along the 

polynomial defined by Px(t). They arc obtained from Equations (7.258), (7.266), 

(7.270), and (7.274)

0 = tan J  ~d\ (7.312)

8 = tan
7 ~  ( —5.035E-2) 

22.941 0.560" (7.313)

cp i,i
/ ~  8 D\~ 2 j - Q ,  cos

= 2 7 -  ( -S.074) cos 0.560 — 1.116E-7 
4(9.S19E-9) = 8.524

(7.314)

(7.315)

cp  1,2 = -  y/-Q\ (  c o s y  + J T  sin )  -
Z),

4£,

-  7 -  ( -8.074)  ̂cos + 7 T sin 0.560 — 1.116E-7 
4(9.819E-9)

/ = -0 .0 1 6
cp  1,2

£p1>3 V (2i cos 4- 73" sin _0_\ £ 1
3 j  4£,

7 "  (-8-074) f - cos 0.560 sm •0.560 \ —1.116E-7
4(9.819E-9)

iCD =0.016
cp  1,3

(7.316)

(7.317)

(7.318)

(7.319)

(7.320)

(7.321)

The trajectory position is checked at tcpxx and tcn 3, the two non-negative times, each of 

which is less than the maximum of 181.552 stated in Equation (7.152).
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T5, (S. 524) = ( —1.116E-7)(8.524)3 + (9.819E-9)(8.524)4 = -1.728E-5 (7.322)

I\(0.016) = ( -1.116E-7)(0.016)3 + (9.819E-9)(0.016)4 = -4.565E-13 (7.323)

The procedure for the ending trajectory spline, stated in Equation (7.221), follows 

that of the first spline segment. Equations analogous to (7.241), (7.246), and (7.247) 

arc employed first.

/>„(/) =  - 7 5  +  ( -0.632)/ + (9.504E-4)/2 + (2.493E-5)/3 + ( -1.003E-7)/4 (7.324)

2e =
Q  K

2 G  3 8 G (7.325)

2( —1.003E-7)
4 (2.493E-5)

9.504E- —----3 8( —1.003E-7) = —5.4402: 4- 3 (7.326)

8 G
D*

G
Di

2E, \ ~6 4 G -  G (7.327)

G  =
1 2.493E-5

8( — 1.003E-7) V 2( — 1.003E-7)
(9.504E-4

(2.493E-5)2 
4( —1.003 E-7) (-0 .632)

(7.328)

R6 = -4.005E + 5 (7.329)

G = Ql + G2 (7.330)

d 6 =  ( -5 .440E  +  3)3 +  ( -4 .005E +  5)2 =  -5 .S89E  +  8 (7.331)

Since the discriminant is negative, there are three times for zero velocity of the final 

trajectory. Equations (7.258), (7.266), (7.270), and (7.274) yield these times.
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06 - tan EL
R (7.332)

fL — tan-l J -  ( -5 .889£  + 8) 
—4.005 £  + 5 = 176.533 (7.333)

i = 2CPt. I cos 0, A,
3 4£6 (7.334)

tcPtA = 2 7 - ( - 5 .4 4 0 £ + 3 )  cos
176.533 2.493E-5

4( — 1.003E-7) -  138.456 (7.335)

‘cp62 =  -  7~<26 ( cos + VT si
0, \ Df

sin 3 / 4£6 (7.336)

6̂,2 7 -  (-5.440ZT+ 3) cos 176.533

+ V3~ sin ■176.533 2.493E-5 
4( -1.003E-7)

(7.337)

t = -85.344cP6a (7.338)

cos + 73" sin-
Of \ D*

4 E. (7.339)

= V - ( - 5 .4 4 0 £  + 3) cos 176.533

+ 7̂ "" sm •176.533 2.493E-5
(7.340)

4( —1.003E-7)

^ =  133.303 (7.341)

As iv6tl exceeds the maximum time on the interval, 135.831 as stated in Equation 

(7.157), and tcp6a is negative, only /WfJ need be checked.
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P6(l 33.303) = -7 5  + ( —0.632)(133.303) + (9.504E-4)(133.303)2
(7.342)

+ (2.493E-5)(133.303)3 + ( -1 .003E-7)( 133.303)4

P6(l 33.303) = -1  14.977 (7.343)

Figure 7.8 graphically illustrates the results of this section concerning the spline 

trajectory. The positions where the spline may lake on extreme values are added to the 

spline positions known in the previous section. As before, the values used here arc 

those obtained by computer. As will be seen, there are some significant difTcrcnccs 

between the results obtained in this section and those of the program example.

3. Program Control. Procedure c r i t i c a l _ p o s i t i o n s  determines the times 

and corresponding positions for critical position points along each trajectory in order.
dsply_crit_pos (&rou> cols);
terminal_crit_pos (1, a[1], b[1J, cC1], dC13, e[1], ±[1], lb, hb,rou, cols);
for (i = 2; i <= n-2; i++)intermediate_crit_pos (i, a[i3, bCi], c[i], d[i], t[i], lb, hb,rou+i-1, cols);
terminal_crit_pos (n-1. a[n-1], b[n-1], c[n-1], d[n-1], e[n-13,
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t[n-1], lb, hb, rou+n-2, cols); uait_then_erase (10);

Procedure t e r m i n a l _ c r i t _ p o s  determines critical times as the roots of a third

degree equation, evaluating the positions at only the real, in-bounds times.
locate (rou, colsCO]); cprintf ("%d", i);
q = (1 / (2 X e)) X ((c / 3) - square (d) / (8 X e >) ; r = (1 / (8 X e)) x ((d / (2Xe)) X (c - square (d) / (4 X e)) — b); discr = pou (q,3) + square (r);
if ( discr > small_tolerance )

Croots = 1;
tcpCO] = cube_root (r + sqrt(discr))+ cube_root (r - sqrt(discr)) - d / (<+ X e);
}else
if ( fabs(discr) < small_tolerance )

{roots = 2;tcpCO] = 2Xcube_root (r) - d / O* X e); tcpCI] = -cube_root (r) - d / (<t x e);
}else
Croots = 3;
x = atan2(sqrt(-discr), r);tcpCO] = 2 x sqrt(-q) x cos(x/3) - d/(4Xe); 
tcp[1] = -sqrt(-q) X ( cos(x/3) + sqrt(3)Xsin(x/3 ) )- d/CC*Xe);
tcp[2] = sqrt(-q) X (-cos(x/3) + sqrt(3)Xsin(x/3 ) )- d/(^xe );
}for (j =0; j <= roots-1; j++)cpC j] = eval_cp (a, b, c, d, e, tcpCj], t,rou, cols[jX2+1], cols[jX2+23); for (j = 0; j <= roots-1; j++)check_range (lb, hb, cp[j], rou, colsC7]);

Procedure in t e r m e d ia t e  c r l t  pos has the simpler task of determining critical 

times as roots of a quadratic equation.
locate (rou, colsCO]); 
cprintf ("%d", i); discr = square (c) - 3XbXd; if (discr > small_tolerance)

{roots = 2;tcpCO] = (—c + sqrt(discr)) / (3 X d); tcpC1] = (-c - sqrt(discr)) / (3 X d);
}else
if ( fabs(discr) < small_tolerance )

{roots = 1;
tcp[03 = -c / (3 X d);
}else
roots = 0;

for (j = 0; j <= roots-1; j++)
cpfj] = eval_cp (a, b, c, d, 0, tcpCj], t,

rou, colsCjX2+13, colstjX2+2]); 
for (j = 0; j <= roots-1; j++)
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check_range (lb, hb, cp[j], row, colsC7]);

4. Propram Fxample. Figure 7.9 gives the display produced by procedure 

c r i t i c a l _ p o s i t i o n s  . Comparison with the critical times of the terminal spline 

segments in particular will show that there is a significant loss of accuracy in the 

numerical example. Indeed, the discriminant for the final quartic trajectory segment 

turned out to be positive, as its components, (7,,3and R(l  while opposite in sign, were 

rather close in magnitude. The precision lost in the numerical example was sufficient 

to result in an effectively meaningless value for the discriminant.



Armatron Manipulator Control
Theta

0 . 0 0 0 N 0 A P
0 . 0 0 0  : 1 . 0 0 0 0 . 0 0 0 0 . 0 0 0 2 0 0 . 0 0 0 !
o . o o o  : 0 . 0 0 0 - 1 . 0 0 0 0 . 0 0 0 0 . 0 0 0 !
o . o o o  : 0 . 0 0 0 0 . 0 0 0 - 1 . 0 0 0 1 0 0 . 0 0 0 !
o . o o o  : 0 0 0 1 !

Trajectory Control
Trajectory for Joint 1

Critical Positions
i time position time position time position bounds
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Figure 7.9. Determination of Critical Positions
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C. SCALING FOR OPTIMUM TRAJECTORY TRAVERSAL TIM E

The extreme velocity and acceleration obtained along each spline must now be 

determined for the time units stated so that the physical limitations of the manipulator 

joints are not exceeded. Scaling factors will be obtained so that no maximum velocity 

or acceleration is exceeded. A final scaling factor will be obtained which will result in 

an optimum traversal of the trajectory.

1. Derivation of Equations. Consider the determination of the maximum velocity 

for each joint's segments. As long as the joint is accelerating or decelerating, the 

velocity is increasing or decreasing, respectively. Thus the velocity attains any 

maximum or minimum when the acceleration along the segment becomes zero. Note 

that as the spline polynomials were defined to be continuous in position, velocity, and 

acceleration, no additional examinations need be performed concerning the velocities 

at the spline nodes.

a. The Internal Segments. The maximum and minimum velocities attained along 

internal segments are considered first. The function of Equation (7.26), which defined 

the acceleration along an internal segment, is set equal to zero and solved for the 

critical time concerning the velocity, t„r

S";{r) = 2 Q + 6 Dft (7.344)

2 Cj + 6 Djtcv = 0 (7.345)

(7.346)
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The velocity of the joint as given by Equation (7.11) is then evaluated at this time as 

VCl for comparison with the maximum obtainable velocity of the joint.

S’fc) =  + 2Cji +  3 Dii7

-C l \
3Dt J  +  3A|

2Cf . CfDi
3 D, 2D7

c?

- Q  
3 Di

3 Di

(7.347)

(7.348)

(7.349)

(7.350)

Of course, if falls outside of the time during which the joint will be traversing the 

spline, no maximum will be obtained along it.

The maximum and minimum accelerations obtained along the internal spline 

segments will occur when the acceleration is itself not increasing or decreasing. This 

occurs at the point when the derivative of the acceleration is zero. The acceleration 

function of Equation (7.26) is differentiated to show that the rate of change of the 

acceleration along an internal segment is constant.

S " i ( t )  =  2 C j  +  6 D , i  (7.351)

S '" <0 = «D, (7.352)

If Di is positive, the acceleration is increasing throughout the span of the segment and 

thus the acceleration takes on a minimum at t = 0 and a maximum at r=  

Conversely, if A  is negative, the acceleration continues to decrease along the segment
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from a maximum at / = 0 to a minimum at t = /,. Thus the acceleration needs to be 

tested only at the beginning of each segment.

5",(0) = 2C, + 6D,(0) (7.353)

Ae = 2C, (7.354)

The continuity imposed upon the trajectory through velocity and acceleration will lead 

the accelerations at nodes 2 and n — 1 to be covered by the acceleration tests for the 

terminal spline segments.

b. The Terminal Segments. As was the case for the intermediate segments, the 

velocity along the first segment will take on an extreme value when the acceleration 

along the segment is zero. The difference here is that the acceleration function as 

defined by Equation (7.26) is quadratic, and thus may have two solutions; one of these 

solutions will be the unattached end of the spline for which both the velocity and 

acceleration were defined to be zero.

2 C, + 6  D]t + 12 E}!2 (7.355)

12 £ ,£ , + 6D, ?CV) + 2Cj = 0 (7.356)

6Ej&, + 3Z),/CV) + C, = 0 (7.357)

— 3 D } + -j 9 D t - 4 ( 6 E ] ) ( C })

cv 1 ~ 2(6 £,) (7.358)

i ± 7 d ,J -(8C ,£,/3)
4 E } (7.359)
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The quantity D\ — (8C,£i/3), or du may be positive, zero, or negative. Correspondingly, 

there will be either two, one, or zero times at which the velocity, as defined by Equation 

(7.50), may take on an extremum. As the terminal spline polynomials were defined 

such that the velocities at nodes 0 and n would be zero, one value for in Equation 

(7.359) must be zero. Let be the time not associated with an end of the segment. 

Due to the complexity of the formula for the velocity is most efficiently determined 

by a straightforward evaluation of the velocity polynomial.

As with the internal segments, if docs not occur during the time interval of segment 

1, then the maximum velocity at that point is not a concern.

The acceleration function of Equation (7.26) is differentiated and set equal to zero 

in order to determine the time at which the acceleration along the first segment may 

reach an extremum.

(7.360)

S " ,(0  = 2C, + 6 Dxt + 12£,/2 (7.361)

S''',(f) — 6Z), + 24£,/ (7.362)

6 Z>j +  24£,m  =  0 (7.363)

-D
t, 4£, (7.364)

The critical acceleration at this point is termed Acl.

(7.365)
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(7.366)

(7.367)

The equations for the critical velocities and acceleration along the final spline 

segment are identical in form to those along the first segment.

As with the other cases, the critical velocities and acceleration are of concern only if 

they occur during the time interval for which the manipulator joint is traversing the 

spline segment.

The extreme attained velocities of Equations (7.350), (7.360), and (7.369) and the 

extreme attained accelerations of Equations (7.354), (7.367), and (7.371) were derived 

in terms of the arbitrary time unit based upon the "distances" between the joint variable 

settings. These derived extrema must now be reconciled with the physical constraints 

under which the joints actually operate. The following rates are defined for this

(7.3-68)

(7.370)

(7.371)

purpose.
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Vm = max{ | Vc \, I < / < n -  1} (7.372)

Am = max{\Ac \, 1 < i < n — 1} (7.373)

If the maximum velocity magnitude attained on every' spline traversed by the joint in 

question is less than the maximum rate the joint is capable of, then the path is not 

being traversed as quickly as possible. Conversely, if the maximum is greater than that 

attainable by the joint, the smooth motion defined by the trajectory cannot be 

achieved. To optimize this situation, a scale factor F  is introduced to relate the 

"distancc"-bascd time units of i to actual time T.

Real time can be seen to be a fractional rate of the arbitrary' time used thus far. If the 

manipulator is moving more slowly than need be with respect to /, F  is given a value 

greater than one; the rates specified by the spline polynomials may be reduced by 

giving F  a value less than one. The position function for an internal spline segment, 

given in Equation (7.6), is modified to reflect this. Note that the derivations of this 

section arc not dependent upon the degree of the spline polynomial.

/ = FT (7.374)

(7.375)

S j {  i ) — A j  +  B j i  +  C,-/ +  D j i (7.376)

Sj(T) = Aj +  Bj(FT) + Cj(FT)2 +  Dj(FT)3 (7.377)

Sj(T) =  Aj + BjFT + CjF2T2 +  ZXf V (7.378)

The velocity function then becomes
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S'i(T) = B,F + 2QF2T +  W ^ T 1 (7.379)

Let T be replaced by Equation (7.375).

2
S'iiT) = B,F+ 2 CtF7 (7.3S0)

5 ',(7 )  =  /•'(/?, +  2 Q  +  3 D ,/2) (7.3S1)

S'iiT) = ^'/(0 (7.3S2)

If the manipulator joint rates with respect to / call for the joint to be moving more 

rapidly than the velocity constraints will allow, factor F is given a value less than one. 

On the other hand, an F  factor larger than one will increase the realized velocity. 

Under these criteria, F  should be chosen to relate the maximum obtainable velocity for 

the joint, 6mr, to the maximum rate determined for the trajectory' with respect to r, 

Vm. The factor is labeled to reflect its dependence upon velocity constraints.

This factor would be multiplied by the trajectory' parameter i of each spline segment 

to either increase or decrease the rate at which the trajectory is being traversed. The 

result of this scaling is to call upon the joint for its maximum rate of change, but no 

more, when the trajectory reaches its point of extreme velocity.

Consider now the acceleration function with respect to T as obtained from the 

differentiation of the velocity function in Equation (7.379).

(7.383)

S ",{T ) =  2 Q F 2 +  6DiF3T (7.384)
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Variable 7 'is again replaced by Equation (7.375).

S",(7) = 2C,/'2 + 6 D / ( y  ) (7.385)

S",(7) = F2(2Cj + 6D,/) (7.3S6)

(7.387)

As was described for the examination of the velocity relationship, F  should take on a 

value less than one if the joint acceleration constraint dma is exceeded or more than one 

if the acceleration required is less than what the joint is capable of. The difference here 

is that the factor when dependent upon acceleration criteria is squared. The maximum 

acceleration with respect to t specified by the trajectory was seen to be A„.

When factor Fa is multiplied by the trajectory parameter t of each spline segment, the 

rate of change of the velocity of the joint is either increased or decreased so that the 

maximum acceleration requested of the joint is precisely that which it can provide.

Factors F, and F„ must be further resolved with one another by selecting the 

smaller of the two as F, the overall trajectory factor.

.2 ® ma (7.388)

F =  min{Fa, Fv) (7.389)

Thus only the maximum velocity or the maximum acceleration will be utilized, but not 

both. This is the optimal solution for traversal of the path designated by the spline 

trajectory.
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To this point, only one joint trajectory' has been considered. In the case of the 

Armatron robot arm, a five-degrees-of-freedom manipulator, five difTerent trajectories 

will be generated around the same set of "distances" between path nodes. Each joint 

trajectory will however pass through a difTerent set of node values, consequently 

specifying different velocity and acceleration extrema for each. Equations (7.372) and 

(7.373) arc restated to take the different trajectories into account.

Terms Ve . and ACiJ are now the maximum velocity and acceleration, respectively, on 

segment / of trajectory j. Scale factors are then determined for each trajectory.

The smaller of the two factors is chosen for each joint so as not to exceed the 

maximum velocity or acceleration attainable by joint j.

Finally, the overall scaling factor F  is chosen as the minimum factor over all five joint 

trajectories so as not to exceed any joint velocity or acceleration maximum.

Vm = max{ | Vc [, 1 < / < n — 1} (7.390)

Am, — max{ | Ac |, \ < i < n — 1}
J  V

(7.391)

(7.392)

(7.393)

Fj =  min{fv  F*.} (7.394)

F = m i n { / 7 ,  1 < j  < 5 } ( 7 . 3 9 5 )
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The "distances" between trajectory nodes are now divided by the scaling factor to yield 

the actual amount of time T, involved in traversing each segment.

Tt = y  (7.396)

The total time required to traverse the trajectory is the sum of the individual segment 

times.

(7.397)

Determination of the joint positioning, velocity, and acceleration of the manipulator 

at any elapsed real time TR, 0 < TR < Tt, begins by determining the spline segment 

which is in effect at time TR. This is done by subtracting segment times from TR until 

the next subtraction would result in a negative value.

/—i i /—i

T - T r - ^ T ,  3 T* ~
k=\ k=\ k=\

Time T is then multiplied by the scale factor before substitution into the appropriate 

segment / functions.

y.TkZo* ~ ŷjk (7.398)

t=  TF (7.399)

S{t) = A, + Bit + Q 2 + D /  [  + £ / ] (7.400)

S '(<r) = Bi + 2 C j i  +  3D j i 2  [  +  4£(/3] (7.401)

S " { t )  =  2Q + 6 D (t [ +  12E / 3 (7.402)
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The last term in each equation is employed for values of / of 1 or n — 1.

2. Numerical Example. The extreme velocities obtained along the internal 

segments are obtained first using liquation (7.346) and (7.350) for the critical time and 

corresponding velocity, respectively.

S2{t) = 10 + (0.224)r + (1.866IZ-3)/2 + ( - 1 .965E-5)t3 (7.403)

!cv2 ~ (7.404)

u. = -1.866E- 3( —1.965E-5) = 31.654 (7.405)

The time spent on the second interval is 137.441 from Equation (7.153), so the velocity 

must be evaluated at

Vc =0.224
(1.866E-3)2 

3( — 1.965E-5) = 0.283

(7.406)

(7.407)

The extreme acceleration along the interval is taken to be that at the beginning of the 

interval as the acceleration's rate of change was seen to be constant in Equation 

(7.352).

Ac2 = 2C2 (7.40S)

ACi =  2( 1 .S66E —3) = 3.732E-3 (7.409)

The third segment's spline polynomial was stated in Equation (7.187).
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S3(t) = 25 + ( -0.377)/ + ( —6.265E-3)/2 + (S.503E-5)/3 (7.410)

3 Z)3 (7.411)

/cvi
( —6.265E-3) 
3(8.5030-5) = 24.560 (7.412)

From Equation (7.154), the time spent on the third interval is 53.245, so an 

examination of the velocity is required at /c„3.

(7.413)

V = -0.377 -c3
( —6.265E-3)2 
3(8.503E-5) (7.414)

The critical acceleration on the third segment is

^ 3 = 2C 3 (7.415)

AC} = 2( —6.265E -3 )  = -1.253E-2 (7.416)

Equation (7.193) gives the spline polynomial of the fourth segment.

S4(z) = 0 + ( -0.321)/ +  (7.316E-3)/2 + ( -2.852E-5)/3 (7.417)

tcv* 3 Da (7'418^

(7.316E-3)
‘cv* ~ ~  3( —2 .8 5 2 E - 5 )  ”  8 ^ 5 0 7 (7.419)
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The velocity must be evaluated at r„4 as the fourth interval is in use for 136.963 units, 

as specified by Equation (7.155).

v
 31Cq1IIv/ (7.420)

(7.316E-3)2
' ^ - - ° 321 3 ( - 2 .852E- 5 ) - 0-305 (7.421)

The fourth segment's critical acceleration is

2C4 (7.422)

ACt= 2(7.316E-3 )  = I.463E-2 (7.423)

The last internal spline polynomial, that of the fifth segment, was given in

Equation (7.199).

P5{t) = 20 + (0.078)/ + ( —4.394E-3)/2 + (S.640E-6)/3 (7.424)

, . - c > 
3 Z)s (7.425)

( —4.394E-3)
lcv*~  3(8.640E-6) ~ 169’522 (7.426)

Equation (7.156) states that the time on the fifth interval is 206.211, so the velocity

must be evaluated at /„5.

C2
v  = B- 

c* 5 3 Ds (7.427)

( —4.394E-3)2
,/«! - ° - 078-  3C8.640E-6) = - ° ' 667 (7.428)
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The critical acceleration on the fifth segment is

^  = 2C5 (7.429)

ACj = 2( -4.394E -3 )  = -8.788E-3 (7.430)

For the first spline segment, the critical times were expressed by Equation (7.359); 

the polynomial was stated in Equation (7.209).

5 ,(0  = ( - 1 .1 16E-7)/3 + (9.S19E-9)/-4 (7.431)

-D] ± y jD *  -  (8C,/T,/3) 
4£, (7.432)

£v.
- ( - 1 . 1 1 6E-7) ±  N/( -1 .116E-7)2 -  8(0)(9.819E-9)/3 

4(9.819E-9) (7.433)

tCV] = 5.683 or 0 (7.434)

The second time expressed for is associated with the zero acceleration condition of 

the beginning of the interval and is thus discarded. The velocity is determined for the 

remaining time as it is less than that spent on the first segment, 181.552 units in 

Equation (7.152); the velocity equation was given by Equation (7.360).

VCi =  5, + 2 0 cv, +  + AE/CVi (7.435)

VC} =  0 + 2(0)(5.683) + 3( - 1 .1 16E-7)(5.683)2 + 4(9.819E-9)(5.683)3 (7.436)

V. = —3.604E-6 C1 (7.437)

The time and value of the extreme acceleration is found using Equations (7.364) and 

(7.367), respectively.
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lca{
- £ 1  
4£. (7.438)

/caj
— ( —1.116E-7) 

4(9.S19E-9)
2.S41 (7.439)

Like the time of the critical velocity above, this time is also on the interval of the first 

segment.

30?
Ac = 2 C, -  - ~ -  c1 1 4 £.

2(0)- 3(-1.116E-7)
4(9.819E-9)

-9.513E-7

(7.440)

(7.441)

The polynomial of the final segment in Equation (7.221) has its times of critical 

velocity determined using Equation (7.368).

P6{t) =  - 7 5  +  ( -0 .6 3 2 ) / +  (9.504E-4);2 +  (2.493E-5)/3 4- ( - 1 .003E -7)/4 (7.442)

- D 6 ±  yjD\ — (8C6£6/3) 

4^6
(7.443)

-  (2.493E-5) ±  7(2.493E-5)2 -  (8(9.504E-4)( -1.003E-7)/3)
4( — 1.003E-7) (7.444)

tCy6 — —11.621 or 135.898 (7.445)

The first time is negative and consequently of no importance here. The second solution 

is the ending time of the interval, as a comparison with Equation (7.157) verifies; both 

the acceleration and the velocity are defined to be zero here. Thus, no critical velocities
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exist for the final segment. Equations (7.370) and (7.371) arc employed to detect time 

of occurrence and value, respectively, of the extreme acceleration on the segment.

cab (7.446)

-  (2.493E-5)
‘ca‘ = 4( — 1.003E-7) 62.139 (7.447)

This time is within the interval spent on the last segment, unlike the time of the critcal 

velocity.

/t = 2C
^ 6

(7.448)

Ac =  2(9.504E-4) -
3(2.493E-5)2 

4( — 1.003 E-7)
= 6.54SE-3 (7.449)

Equations (7.390) and (7.391) are now employed to determine the extreme 

velocity and acceleration, respectively, for the trajectory of the first joint.

= max{ | Vc, [ |, 1 < i < 6} (7.450)

Vm) =  max{| —3.604E-61, 10.283 |, j —0.531 |,

|0.305|, | -0.667|, (none)}
(7.451)

Vm =0.667

4 * ,  =  m a x d ^ . J ,  1 <  / <  6}

(7.452)

(7.453)

Am] — max{ | —9.513E-71, 13.732E-31, | —1.253E-21,

I 1.463E-21, | —S.788E-31, 1 6.548H-3 |}
(7.454)
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Am = 1.463E-2 (7.455)

The scaling factors associated with these extrema are given by Equations (7.392) and 

(7.393). The maximum joint velocity used is the constant velocity for the joint with the 

Armatron manipulator as configured; the acceleration is selected arbitrarily as the 

configuration does not provide for control of change in velocity.

6 m V ] =  60°/sec (7.456)

7v, = - ' rt
(7.457)

60 /sec
Fv = --------t~---------- = S9.955

1 0.667 /unit of t
(7.458)

= 100 /sec (7.459)

2 mat
* n.

a k
(7.460)

r„. =
100 jsccz

(1.463E-2 )/unit of t
S2.676 (7.461)

The smaller factor is chosen for the trajectory of the first joint by Equation (7.394).

F\ — m i n ( F Fa]} (7.462)

F, =  min(S9.955, 82.676} =  82.676 (7.463)
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Looking ahead to the results to be obtained by computer for the remaining factors, 

Equation (7.395) may be used to determine the scaling factor to be used on each 

segment of each of the joint trajectories.

F=min{/}, I< y '< 5 } (7.464)

F = min{82.676, 137.542, 91.542,89.071, 44.482} = 44.4S2 (7.465)

The actual time spent on each trajectory' segment is then obtained from Equation 

(7.396) and Equations (7.152) through (7.157).

T = — 
' F

r ,  = 181.552
44.482 = 4.081

(7.466)

(7.467)

r 2 = 137.441
44.482

t3 =
53.245
44.4S2

Ta -
136.963
44.482

Ts = -
206.211
44.482

135.831
44.4S2

= 3.090

4.636

3.054

(7.468)

(7.469)

(7.470)

(7.471)

(7.472)

The individual segment times are added by Equation (7.397) to find the total 

manipulator motion time.
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n—1
? > = ! [ / ;  (7.473)

i=i

7r = 4.081 + 3.090+ 1.197 + 3.079 + 4.636 + 3.054 (7.474)

Tr = 19.137 (7.475)

The position of each of the manipulator joint variables may now be determined along 

the desired trajectory at any real time 7*, 0 < 7* < Tt. liquation (7.398) specified the 

determination of the segment and elapsed real time on that segment.

i - i  i i - i

7'= TR~ Y J Tk * Tr -
k= 1 k= 1 k= 1

For example, consider a real time of 19 seconds. Equation (7.476) would require a 

value of i of 6 to be satisfied.

Y JTk < 0 < T R~ Y J Tk (7.476)

5 6 5

7 = 1 9  - J Y *  a i 9 - ^ [ Y * < o <  i 9 - - E r * (7.477)
k=1 *=1 k= 1

7 =  19 -  16.083 3 1 9 -  19 .137< 0<  19--  16.083 (7.478)

7= 2.917 (7.479)

The scale time for evaluation of the joint variables on segment 6 would then be found 

by multiplication of the segment real time and the scale factor, as specified by Equation 

(7.399).

/ = 77 (7.480)
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/ = (2.917)(44.4S2) = 129.754 (7.481)

The setting of the first joint variable is then found by application of the spline 

polynomial for segment 6 as given in Equation (7.221).

P6(/) = -7 5  + ( —0.632)r + (9.504E-4)/2 + (2.493E-5)t3 + ( - 1 .003E-7)/4 (7.4S2)

7>6( 129.754) = — 114.973 (7.4S3)

The settings of the four remaining joint variables arc found by application of the 

segment 6 spline polynomials for the respective joints.

Figure 7.10 adds the velocity data obtained in this section to that of the previous 

sections. The velocity is the rate of change of the position, so the sign of the velocity 

indicates whether the spline function is increasing or decreasing. The values depicted 

for the critical velocities and the critical accelerations of the next figure are taken from 

the upcoming program example.

Figure 7.10. Trajectory Critical Velocities
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Figure 7.11 completes the graph by combining the acceleration information with 

that of Figure 7.10. Since acceleration is the rate of change, or slope, of the velocity, 

a positive acceleration indicates that the trajectory spline is concave upward, as the 

slope of a line tangent to the curve must increase as time increases; conversely, a 

negative acceleration indicates a concave downward segment of the spline.

3. Program Control. Procedure t r a j_ s c a l i n g  governs the determination of

critical velocities and accelerations on a trajectory for one of the manipulator joints.
dsply_traj_scaling (Srou, cols);Jiaxv = terminal_crit_vel (1, b[13, c [13, d[13, e[13, t[13,rou, cols);maxa = terminal_crit_acc (c[13, d[1], eC1], t[1], rou, cols); for (i = 2; i <= n-2; i + +)

{cv = intermediate_crit_vel (i, b[i], cCi], dti], t[i],rou + i-1, cols);if C cv > maxv ) maxv = cv;
ca = intermediate_crit_acc (cCi], rou+i-1, cols); if ( ca > maxa ) maxa = ca;
}cv = terminal_crit_vel (n-1, btn-1], c[n-1], d[n-1], e[n-1], ttn-1],rou+n-2, cols);if ( cv > maxv ) maxv = cv;

ca = terminal_crit_acc (c[n-1], d[n-13, eCn-1], tCn-1],rou+n-2, cols);
if ( ca > maxa )
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maxa = ca;
leprintf (rou+6, cols[7], maxv); 
leprintf (rou+7, cols[7], maxa);
fv = theta_maxv / maxv; fa = sqrt(theta_maxa / maxa); if ( fv < fa ) 

f = fv; else
f = fa;leprintf (rou+8, cols[7], f); wait_then_erase (9); return Cf);

Note that the maximum scaling factor for the trajectory under scrutiny is determined 

and returned by the procedure. Procedure terminal_crit_vel evaluates times 

of critical velocity as the roots of a second degree equation.
locate (rou, colsCO]); 
cprintf ("%2d", i); discr = square (d) - 8*c*e/3; if ( discr > small_tolerance)

{roots = 2;tcv[0] = (-d + sqrt(discr)) / (4*e); tcv[1] = C-d - sqrt(discr)) / (<*Xe);
}elseif ( fabs(discr) < small_tolerance )

{roots = 1;tcvCO] = -d / O+Xe);
Jelseroots = 0;for (j = 0; j <= roots-1; j++)cv[j] = eval_cv (b, c, d, e, tcvtj], t,rou, cols[2Xj+l], colsC2Xj+2]);

maxv = 0;for (j = 0; j <= roots-1; j++)if ( (mag = fabs(cv[j])) > maxv ) maxv = mag; 
return (maxv);

Procedure i n t e r m e d i a t e _ c r i t _ v e l  determines the single time of critical velocity 

as the root of a linear equation.
locate (rou, colsCO]); 
cprintf ("%2d ", i);
tcv = -c / (3*d);cv = eval_cv (b, c, d, 0, tcv, t, rou, colsd], cols[23); return (fabs(cv));

Procedure t e r m i n a l _ c r i t _ a c c  likewise obtains a single time of critical

acceleration as the root of a linear equation.

tea = -d / (<+*e);leprintf (rou, cols[5], tea);
if ( (tea >= 0) & (tea <= t) )

{
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ca = 2#c - (3*square (d)) / (<+Xe); 
leprintf (rou, cols[6], c a ) ;
}else
{ca = 0;lcputs (rou, cols[6], " time out ");
)return (fabs(ca));

Procedure i n t e r m e d i a t e _ c r i t _ a c c  takes as critical time the starting point of

the interval as the acceleration function is constant,
ca = 2*c;leprintf (rou, cols[5], 0); leprintf (rou, cols[6], ca); return (fabs(ca));

Procedure d e te r m in e _ p o s i t io n s  is invoked from the trajectory control

procedure to allow for the evaluation of the spline polynomials at any real time. The 

cumulative time on the trajectory at each node is determined lor ease of application in 

Equation (7.39S).
dsply_det_positions (rous, time_cols, eval_cols, &scale_col); leprintf (rous[2], scale_col, f); cumulative_time[0] = 0; for (i = 1; i <= n-1; i++)

{locate (rous[0]+i-1, time_cols[0]); cprintf ("%d", i);leprintf (rousC0] + i-1, time_cols[1 ], 0); leprintf (rous[03+i-1, time_cols[2], t[i3);
cumulative_timeLi 3 = cumulative_time[i — 13 + t[i3/f; 
leprintf (rous[03+i-1, time_cols[33, cumulative_timeLi-13); leprintf (rousL03+i-1, time_colsLd3, cumulative time[i3);
3

uhile ( (real time = get_time (cumulative time, n)) != -1 )
{i = 0; do i + +;

uhile ( real_time > cumulative_time[i3 ); locate (rous[13, eval_cols[03); cprintf ("%d", i);
scale_time = (real_time - cumulative_time[i-13) * f; leprintf (rous[13, eval_cols[63, scale_time); for (j = 1; j <= 5; j++)

{
trajectory_pos = a C j 3 Ci 3 + bC j 3[i 3 * scale_time + c[j 3 Ci3 * square (scale_time)+ d[j3Ci3 * pou (scale_time, 3)+ e C j 3 Ci 3 x pou (scale_time, 4 ) ;  
leprintf (rous[13, eval_cols[j3, trajectory_pos);

3uait_then_erase (9);
}
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4. Program Example. The critical times and associated velocities and 

accelerations for the trajectory of the first manipulator joint are given by Figure 7.12. 

The values obtained show a lack of precision in the numerical example, but the results 

are essentially the same. Figure 7.13 shows the scale and real time ranges for the 

combined spline polynomials of the specified trajectory. Additionally, the results of 

an evaluation of the spline polynomials at real time = 19 seconds is given.

Comparison of the 0, position with the result obtained in Equation (7.483) shows little 

difference.



Armatron Manipulator Control
Theta

0.000 N 0 A P
0.000 ii 1.000 0. 000 0.000 200.000!
0.000 »% 0.000 -1. 000 0.000 0.ooo:
0.000 i1 0.000 0. 000 -1.000 -100.000!
0.000 ii 0 0 0 1 :

Trajectory Control
Trajectory for Joint 1

Critical Velocities Critical Acceleration
i time velocity time velocity time acceleration
1 5.127 2.630E-06 1.470E-08 time out 2.564 7.694E-07
2 31.721 0.283 0.000 3.7 50E-03
3 24.535 -0.531 0.000 -0.012
4 85.530 0.305 0.000 0.015
5 169.513 -0.667 0.000 -8.7 94E-03
6 -11.644 time out 135.831 -1,083E -09 62.093 6.545E-03

Maximum Velocity: 0.667 
Maximum Acceleration: 0.015 
Scaling Factor: 82.693

Figure 7.12. Critical Velocities and Accelerations



Armatron Manipulator Control
Theta

0.000 N 0 A P
0.000 ! 1.000 0.000 0.000 200.ooo:
0.000 : 0.000 -1.000 0.000 o.ooo:
0.000 : o.ooo 0.000 -1.000 -100.000!
0.000 : o 0 0 1 !

Trajectory Control
Determination o f  Trajectory Position at Arbitrary Times (scale = 44.482)

Segment Scale Time Range Real Time Range
1 0.000 181.552 0.000 4.081
2 0.000 137.441 4.081 7.171
3 0.000 53.245 7.171 8.368
4 0.000 136.964 8.368 11.447
5 0.000 206.211 11.447 16.083
6 0.000 135.831 16.083 19.137

Segment Scale Time Theta 1 Theta 2 Theta 3 Theta 4 Theta 5
6 129.740 -114.993 24.997 50.002 64.994 -34.967

Figure 7.13. Scale and Real lime Intervals
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D. THE CONTROLLING PROCEDURE

Procedure trajectory_control begins by displaying the introductory screen of 

Figure 7.14 The array elements allocated for nodes are then set to zero, the value to 

be used as a default. The iteration of the procedure then directs the execution of the 

trajectory determination and evaluation steps outlined in this chapter. This process is

repeated until the procedure is instructed to stop.

dsply_trajectory_i.ntroducti.on C ); 
uait_then_erase (9); 
for (i = 1; i <= 5; i++)

for (j = 1; j <= 10; j++) 
theta[i][j 3 = 0; 

do
{
n = nodes_and_distances (theta, t); 
f = 1000000;
for (i = 1; i <= 5; i++)

lcputs (9, 29, "Trajectory for Joint "); 
cprintf ("%d", i);
calc_polynomials (n, thetati], t, a[i], b[i], c[i], d[i],

e Ci 3 );
theta_lb[i3 = -360; 
theta_hb[i3 = 360;
critical_positions (n, a[i3, b[i3, c[i3, d[i3, e[i3, t,

theta_lb[i3, theta_hb[i3);
theta_vmax[i3 = 100; 
theta_amax[i3 = 100;
f_current = traj_scaling (n, b[i3, c[i3, d[i3, e[i3, t,

theta_vjnax[ i 3 , theta_amax[i 3 ) ;
if ( f_current < f ) 

f = f_current;
3determine_positions (a, b, c, d, e, n, t, f);

prompt_msg1 = "Continue uith a neu trajectory determination? (y/n)" 
prompt_msg2 = "";
qc = prompt_input_char (prompt_msg1, prompt_msg2);
3
uhile ( qc == ’Y' ); 

uait_then_erase (8);

Note that the determination of the scaling factor is performed at this level, as it is to 

be the minimum of the scaling factors for the trajectories of each joint. The 

documented listing for the procedures associated with the trajectory' control portion 

of the overall program may be found in Appendix G.



Armatron Manipulator Control
Theta

0 . 0 0 0 N 0 A p
o . o o o  ; 1 . o o o 0 . 0 0 0 0 . 0 0 0 2 0 0 . 0 0 0
0 . 0 0 0  ; 0 . 0 0 0 - 1 . o o o 0 . o o o 0 . 0 0 0
o . o o o  : 0 . 0 0 0 0 . 0 0 0 - 1 . o o o - 1 0 0 . 0 0 0
o . o o o  : 0 0 0 1

Trajectory Control
This section creates spline polynomials over a 

a set of path nodes defined by the user. The 
polynomials created will provide for continuity 
in terms of position, velocity, and accelera
tion. The process takes place in the following 
steps t

1 ) input of trajectory nodes
2 ) determination of node velocities
3) polynomial coefficient derivation
4) spline extrema tests
5) scaling with regards to extreme velocities 

and accelerations
6 ) evaluation of polynomial position at 

selected times

Figure 7.14. Trajectory Control Introductory Display
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VIII. CONCLUSIONS

Several shortcomings and areas of further endeavor have been touched on during 

the course of this work. This chapter reiterates and expands on each of them.

The electronic control circuit used leads to several deficiencies from a control 

standpoint. For example, the circuit provides a difTerent amount of current to a motor 

in each direction, as explained in Chapter 2; thus the joints move faster in one direction 

than the other. The results obtained would be more appealing if this were not the case; 

some re-design of the circuitry-' involved would be called for here. The positioning 

problem solution could be further enhanced by incorporating some sort of feedback in 

the robot arm. thus eliminating the need for timing and scaling of iterations to degrees. 

The incorporation of stepper-motors is another possibility here, as position could be 

maintained with them as well.

Coordinated motion cannot be accomplished with the given configuration, as only 

a single motor can be controlled at a time due to the use of a decoder. If sufficient lines 

were made available from the computer, coordinated motion would become possible. 

The circuit also lacks the ability to drive the motors at different speeds; this problem 

would be more difficult to overcome. The lack of both coordinated motion and 

velocity control prevents the velocity and trajectory control techniques developed in 

Chapters 6 and 7, respectively, from being implemented.

The geometric interpretation for the effect of the transformation matrices in 

Chapter 4 and for the inadequacies of the manipulator wrist in Chapter 5 could be 

enhanced by presenting the geometry graphically. Color and motion could be utilized 

to further enhance what actually transpires with respect to coordinate frames when 

robotic joints are actuated. An interactive graphics package could be extended to 

include the depiction of the manipulator as it follows prescribed velocity or trajectory
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conditions as well. This could serve to compensate in part for the inadequacies of the 

actual Armatron manipulator configuration.

There are other topics in robotics which have not been covered here. Dynamics 

is perhaps the area most commonly entered next. This area deals with the physical 

characteristics and behavior of robot manipulators, such as mass, inertia, etc.; see 

[HollSO] or [VukoS2] for typical presentations of this material. The background 

necessary for an understanding of this topic is common to disciplines such as 

mechanical engineering, but is typically lacking in a computer science background. 

There is a need here for the presentation of the dynamics aspects of robotics with 

background material sufficient for the understanding of the concepts involved.



APPENDIX A

HEADER LISTING



8def ine a2 100
#define a3 1 00
#define d5 1 00
#define conv (3.14159 / 180)
#define del 0x08ttdefine null 0x00
#defme cr OxODtdefine If OxOA8define eof 0x1 ADdefine hyphen 0x2Dtdefine space 0x20#define tolerance 0.018define small_ tolerance 1E-50ttdef ine Pi 3.14159^define short_pause 400

typedef int i 1 [ 23;typedef int r 2 [ 3  3;typedef int i_3 [ 43;typede f int i 4 [ 53;typedef int i 5 [ 63;typedef int i 6 [ 73;typedef int i 7 [ 83;typedef int i 8 [ 93;typedef float f 1 [ 2 3;typedef float f 2 [ 33;typedef float f 3 [ 43;typedef float f 4 [ 53;typedef float f 5 [ 63;typedef float f 6 [ 73;typedef float f 12 [133;typedef float f 9 [103;typedef float f 10 [113;typedef float f 3 2 [ 4 3 [ 33;typedef float f 4 3 [ 5 3 4 3;typedef float f 4 5 [ 53 C 63;typedef float f 5 5 [ 6 3 [ 63;typedef float f 6 5 [ 7 3 [ 63;typedef float f 5 9 [ 63[103;typedef float f 5 10 [ 6 3 [ 11 3;typedef float f _9_2 [ 1 03 [ 33;typedef char c_ 1 [ 23;typedef char c 6 9 [ 7 3 [1 o 3;typedef char c 12 18 C133H93;typedef char c_3_2_2 [ 43 [ 33 [

void dsply main introduction ( )void dsply_thetas_noap (int *rouvoid noap matrix (f 5 theta, f 3void dsply_main_selection ( );int get_option (int hb);

33;

i 4 cols);

float magnitude (f_2 vector); 
int round (float value); int sign (float value); float square (float value); float cube_root (float value); void uait_then_continue ( );void mcputs (int left, int right, char *line); int prompt_input_digit (char *prompt_msg);
char prompt_input_char (char *prompt_msg1, char *prompt_msg2) float prompt_input_fixed (char *prompt_msg, int i); 
float indec (int r, int c); int inint (int r, int c);
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void
voidvoidvoid
void
voidvoid
voidvoid

void
voidvoidvoid
voidvoid
float

void
voidvoidvoidvoid

intfloatvoid
intfloat

void
voidvoid
voidvoidvoidvoid
voidvoid
intvoidvoidvoidfloat
void
void
int
float
float
char

lputch (int rou, int col, char ch);leprintf (int rou, int col, float value);lcprintf8 (int rou, int col, float value);
lcputs (int rou, int col, char ^string);erase_prompt (int rou);uait_then_erase (int rou);
save_screen ( );pause (int thousandths);
locate (int rou, int col);

manual_control (f_5 theta, f_3_2 noap,int noap_rou, i_4 noap_cols); dsply_manual_introduction ( ); dsply_keyboard (int Xrou, int Xcol);
monitor_keyboard (f_5 theta, f_3_2 noap, int noap_rou,i_<* noap_cols, int rou, int col); init_transistor_messages (c_12_18 msgs);move_manual (int transistor, char Xmsg, char original_key, int rou, int col, f_5 theta, int joint); select scale manual move (int transistor);

joint_variable_control (f_5 theta, f_3_2 noap,int noap_rou, i_4 noap_cols); dsply_joint_variable_introduction ( );constraints (char ignore, f_5 theta_min, f_5 theta_max); dsply_joint_variables (i_5 jv_rous, int *jv_col); process_requests (f_5 theta, f_3_2 noap,f_5 theta_min, f_5 theta_max, i_5 jv_rous, int jv_col, int noap_rou, i_̂ + noap_cols);get_joint ( );get_angle (float minimum, float maximum);perform_move (int joint, f_5 theta, float desired_position, int rou, int col);select_transistor (int joint, float move); select scale (int transistor);

position_orientation_control (f_5 theta, f_3_2 noap,
int noap_rou, i_<+ noap_cols); dsply_position_orientation_introduction ( ); dsply_pos_orient_solution (int Xarm_rou, i_2 arm_cols,

int Xtheta_rou, i_4 theta_cols); get_noap (f_3_2 noap, int rou, i_<+ cols); sin_cos (f_5 theta, f_5 s, f_5 c); init_names (c_3_2_2 names);get_orientation_vector (int i, c_3_2_2 names, f_3_2 noap,int rou, i_g cols);
get_position_vector (c_3_2_2 names, f_3_2 noap, int rou, i_g cols); prompt_input_noap (char Xname, float lvalue);
calc_arm_end (f_3_2 noap, f_2 pa, int arm_rou, i_2 arm_cols); calc_theta_123_triples (f _2 pa, f_<+_3 theta, int rou, i_4 cols); calc_theta_3 (f_2 pa, f_<+_3 theta, int rou, i_<+ cols); calc_beta_minus_theta_1 (f_2 pa, f_<+_3 theta, f_<t bmt1); calc_beta (f_2 pa);calc_theta_1 (float beta, f_4 bmt1 , f_4_3 theta, int rou, i_  ̂ cols);
calc_theta_2 (f_2 pa, f_<+_3 theta, int rou, i_4 cols); 
calc_theta_“+5_pairs (f_3_2 noap, f_<+_3 theta, f_4_5 accepted_theta,int rou, i_4 cols); calc_theta_i+ (f_2 a, f_3 s, f_3 c); 
calc_theta_5 (f_2 n, f_2 o, f_3 s, f_3 c);
prompt_for_move (int accepted, f_4_5 accepted_theta,
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void
floatfloat
charchar

voidvoid

voidvoidvoidvoid
voidvoidvoidvoidvoid
char
void
voidint

int
int
voidvoidvoid
voidvoidvoidintvoidint
voidvoid
voidvoidvoidvoid
void
void
voidvoid

voidvoidint
voidintvoid

f_5 move_theta);dsply_prompt_for_move (int Xrou, i_8 cols); 
min_constraint (int joint);
»ax_constraint (int joint);one_solution (int index, f_<+_5 accepted_theta, f_5 move_theta ) ; multiple_solutions (int accepted, f_<t_5 accepted_theta,

int inbounds, i_<+ inbounds_index, i_i+ out, f_5 move_theta);position_orientation_move (f_5 theta, f_5 move_theta); dsply_pos_orient_move (int X i o i i ,  i_2 cols);

velocity_control (f_5 theta, f_3_2 noap, int rou, i_4 cols); dsply_velocity_introduction ( ) ;dsply_vc_selection ( );get_theta (f_5 theta, int rou, int cols);
for_sol_via_jac (f_5 theta, f_5 dtheta); dsply__jacobian (int Xrou, i_6 cols);calc_jacobian (f_5 s, f_5 c, f_6_5 jacobian, int rou, i_5 cols); get_delta_theta (f_5 dtheta, int r, int c); calc_list_rates (f_5 dtheta, f_6 drate, f_6_5 jacobian, int r, int c);cont (char Xmsg);
rev_sol_via_ij (f_5 theta, f_6 delta_trans_rot); dsply_rsvij_jacobian (int Xrou, i_5 cols);get_required_rates (f_6 delta_trans_rot, f_6_5 jacobian, i_6 used,f_6_5 jacobian_reduced, f_6 delta_tr_reduced, int rou, i_5 cols);over_determined_case (f_6_5 jacobian, f_6 delta_trans_rot,f_5 delta_theta);under_determined_case (int total, f_6_5 jacobian_reduced,f_6 delta_tr_reduced, f_5 delta_theta ); matrix_by_matrix (int total, f_6_5 mparm, f_5_5 m, char Xsubhead); dsply_m (char Xsubhead, int Xrou, i_5 cols);matrix_by_vector (f_6_5 jac_parm, int total, f_5 vec, f_5 result,char Xsubhead);dsply_m_by_v (char Xsubhead, int Xrou, i_7 cols);list_input_output (f_6 delta_tran_rot, i_6 used, f_5 delta_theta); dsply_in_out (i_) rou, int Xcol);solve_simul_eqns_myv (f_5_5 m, f_5 v, int n, f_5 y, char Xsubhead) dsply_soln_myv (char Xsubhead, int Xrou, i_7 cols); interchange_rous (f_5_5 m, f_5 v, int k, int n,int rou, i_7 cols);
zero_column_k (f_5_5 m, f_5 v, int k, int n, int rou, i_7 cols); solve_y_vector (f_5_5 m, f_5 v, int n, f_5 y, int rou, i_7 cols);
rev_sol_via_deriv (f_5 theta, f_3_2 noap, f_6 delta_trans_rot); dsply_rsvd (int Xmr, i_3 me, i_1 vr, i_1 vc); 
get_delta_trans_rot (f_6 delta_trans_rot, int vr, int vc); calc_delta_noap (f_3_2 noap, f_6 delta_trans_rot, f_3_2 dnoap, i_3 me, int mr);calc_delta_theta (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap,f_5 dtheta, int vr, int vc);
delta_theta312 (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap, f_5 dtheta, int xdiv_zero);
delta_theta<+ (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap, f_5 dtheta); delta_theta5 (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap, f_5 dtheta);

trajectory_control ( );
dsply_trajectory_introduction ( );nodes_and_distances (f_5_10 theta, f_9 t);dsply_nodes_dists (int Xrou, i_6 cols);
input_nodes (f_5_10 p, int rou, i_6 cols);
calc_distance (int n, f_5_10 p, f_9 t, int rou, int col);
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void calc_polynojnials Cint n, f_10 p, f_9 t,
f_9 a, f_9 b, f_9 c, f_9 d, f_9 e);

void calc_node_velocities (int n, f_10 p, f_9 t, f_9 vel); void dsply_node_velocities (int Krou, i_9 cols);
void equate_quartic_cubic_accs (f_9 t, f_10 p, f_9_2 coelf, f_9 rhs,int row, i_4 cols);void equate_cubic_accs (int n, f_9 t, f_10 p, f_9_2 coeff, f_9 rhs,int rou, i_4 cols);void equate_cubic_quartic_accs (int n, f_9 t, f_10 p, f_9_2 coeff,f_9 rhs, int rou, i_d cols);void foruard_eliminate_term1 (int n, f_9_2 coeff, f_9 rhs,int rou, i_4 cols);void backuard_eliminate_term3 (int n, f_9_2 coeff, f_9 rhs, f_9 vel,int rou, i_4 cols);
void calc_coefficients (int n, f_10 p, f_9 t, f_9 vel,f_9 a, f_9 b, f_9 c, f_9 d, f_9 e); void dsply_coefficients (int *row, i_5 cols); void calc_starting_quartic (f_10 p, f_9 t, f_9 vel,f_9 a, f_9 b, f_9 c, f_9 d, f_9 e, int rou, i_5 cols);void calc_intermediate_cubics (int n, f_10 p, f_9 t, f_9 vel,f_9 a, f_9 b, f_9 c, f_9 d, f_9 e, int row, i_5 cols);void calc_ending_quartic (int n, f_10 p, f_9 t, f_9 vel,

f_9 a, f_9 b, f_9 c, f_9 d, f_9 e, int rou, i_5 cols);
void critical_positions (int n, f_9 a, f_9 b, f_9 c, f_9 d, f_9 e,f_9 t, int lb, int hb); void dsply_crit_pos (int *rou, i_7 cols);void teriumal_crit_pos (int i, float a, float b, float c, float d,float e, float t, float lb, float hb, int rou, i_7 cols);void intermediate_crit_pos (int i, float a, float b, float c, float d,float t, float lb, float hb, int rou, i_7 cols);float eval_cp (float a, float b, float c, float d, float e,float tcp, float t, int rou, int tcol, int pcol); void check_range (float lb, float hb, float cp, int row, int col);
float traj_scaling (int n, f_9 b, f_9 c, f_9 d, f_9 e, f_9 t,float theta_maxv, float theta_maxa); void dsply_traj_scaling (int *rou, i_7 cols);
float terminal_crit_vel (int i, float b, float c, float d, float e,float t, int rou, i_6 cols);float intermediate_crit_vel (int i, float b, float c, float d, float t,int rou, i_6 cols);float eval_cv (float b, float c, float d, float e, float tcv, float t, int rou, int tcol, int vcol);
float terminal_crit_acc (float c, float d, float e, float t,int rou, i_6 cols);float intermediate_crit_acc (float c, int rou, i_6 cols);
void determine_positions 
void dsply_det_positions 
float get_time ( );

(f_5_9 a, f_5_9 b, f_5_9 c, f_5_9 d, f 5 9 e, int n, f_9 t, float f);
(i_2 rou, i_4 time_cols, i_6 eval_cols, int *scale_col);

♦♦include
♦♦include
#include
♦♦include
♦♦include
♦♦include

<stdio.h> 
<dos.h> 

<time.h> 
<math.h> 

<string.h> 
<ctype.h>
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^include <c •• \ed' s\header . c>
FILE Kfptr;char qsave_screen;
void main ( )

{int
i_4intf_5f_5f_5f _3_2int

rou; cols; 
i ;theta;s;
c;noap; opt;

outportb (888, 0); fptr = fopen ("SCREENS. OUT" , "u dsply_main_introduction ( );
locate (23, 55);qsave_screen = toupper (getch ( ));lputch (23, 55, qsave_screen);
uait_then_erase (1); dsply_thetas_noap (&rou, cols); 
for (i = 1; i <= 5; i++) thetati] = 0;noap_matrix (theta, noap, rou, cols);dsply_main_selection ( );uhile ( (opt = get_option(5)) != 0 )

{uait_then_erase (8); 
suitch (opt)

{case 1 : manual_control (theta, noap, rou, cols); 
break;case 2 : joint_variable_control (theta, noap, rou, cols) 
break;case 3 : position_orientation_control (theta, noap, rou, 
break;case 4 : velocity_control (theta, noap, rou, cols); 
break;case 5 : trajectory_control ( );

}
break;

dsply_main_selection ( );
}fputc (eof, fptr); fclose (fptr);

}

cols)

void dsply main introduction ( )
{int lm >int rm >

lm = 16 >rm = 1 6>locate (0, 0);
mcputs (lm, rm,
mcputs (lm, rm,
mcputs (lm, rm,
mcputs (lm, rm,
mcputs (lm, rm,
mcputs (lm. rm.
mcputs (lm, rm,
mcputs (lm. rm,
mcputs (lm, rm,
mcputs (lm, rm,
mcputs (lm, rm,

Armatron Manipulator Control Version 1.1Eduard Hammerand March 1990
This program provides for the control of the Armatron manipulator in one of three manners:
1 ) The manipulator may be controlled directly using keyboard input
2) The settings of the joint variables may be input directly
3) A desired position and orientation of the

" ) ;
" ) ;
" ) ;

" ) ;
" ) ;
" ) ;

" ) ;
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mcputs (lm, rm, " manipulator may be specified; from this, amcputs (lm, rm, " solution set will be derived and a move ");
mcputs (lm, rm, " attempted if possible and desired ");mcputs (lm, rm, "Additionally, support is given for the calcula- "); 
mcputs (lm, rm, ”tion of manipulator velocities and trajectories,"); mcputs (lm, rm, "although these are not directly implemented for "); mcputs (lm, rm, "the robot arm. ");mcputs (lm, rm, " If the manipulator arm is not aligned to its "); mcputs (lm, rm, "home orientation, use the manual switches to "); mcputs (lm, rm, "align it at this time. ");mcputs (lm, rm, " If desired, the screens displayed during the "); mcputs (lm, rm, "course of program execution may be saved to the "); mcputs (lm, rm, "file SCREENS.OUT; save screens (y/n)? ");mcputs (lm, rm, " ");
}
d dsply thetas_noap
T

(int Xrou, i_4 cols)
locate (1 , 0);eputs (" Theta ");eputs (" ");eputs (" T1 N 0 ");eputs (" A P ");eputs (" T2 i ");eputs (" 11 ");eputs (" T3 ! ");eputs (" 1t ");eputs (" TA | ");eputs (” 11 ");eputs (" T5 i 0 0 ");eputs (" 0 1 ");
cols[03 = 25;
colst13 = 36;
cols[23 = A7;
cols[33 = 58;
colsC'i^ = 11 ;Xrou = 
>

3;

d noap_matrix (f_5 theta, f_3_2 noap. int row, i_A cols )
int i; int j; f_5 s; f 5 c;
for (i = 1; i <= 5; i++)

leprintf (rou+i-2, cols[43, thetali]);
}

sin cos (theta, s, c);
noap[0 ] [0 3 = 

+
noapt 03[13 = 

+
noap[0][23 =

((c[13*c[23*c[33 “ s[13*s[33 )Xc[A3- c[13*s[23*s[43)Xc[53(c C13XC [23XS[33 + s[13XC133)*s[53;
((sC13*c[23*c[33 + <=[13xs [33)XC[A3- sC13*s[23Xs[A])Xc[5]
(sCl3XcC23XsI33 - c[13XC[33 )xs[53;
(s[23Xc[33Xc[A3 + c[23Xs[A3 ) x c [ 5 3  + st23XS [33XS [ 5 3;

noapt13103 

noapC13113 

noap[13C23

= -((c[13*c[23*c[33 “ s[13 x s [ 3 3 ) x c [A3- c[l3Xs[23xs[A3) x s [ 5 3+ (cC13Xc[23Xs[33 + s [13Xc[33 )*c[53;
= -((s[13xc[23Xc[33 + c[13 x s [ 3 3 ) x c [ A3- s[13Xs[23Xs[A3)XS[53
+ (s[13xc[23xs[33 - c[13xc[33)XcC53;
= -(s[23*c[33Xc[A3 4 c[23*s [A] )Xs[53 4 s[2]*s[33Xc[53;
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noap[2][0] noap[2][1] 
noap[2][2]

(c[1]XC [2)XC[3] 
(s[1]Xc[2]xc[3] s[2]XC[3]Xs[<;]

- s[1 ]XsC3] )xs[A ] + c[13*s[2]xc[A]; 
+ c[1)xs [3])xs [A] + s[1 ]xs [2]Xc[A];
- c[2]*c[A];

noapt3][0] 
noap[3][1] 
noap[3][2]

= d5*((c[1]Xc[2]XC[3] - s[1 ]xs[3])xs[4] + c [1]xsC2 ]*cC43 ) 
+ a3X(c[1 ]*c[2]xc[3] “ s[1]Xs[3]) + a2XC[1]Xc[2];= d5*( CsC 1 ]xc[23xc[3] + c[1 ]xs[3] )xs [4] + s [ 1 ]xs [2 ]*c[4]) + a3X(s[1 ]Xc[2]xc[33 + c[1]xs[33) + a2Xs[13Xc[23;
= d5X(s[2)Xc [3)Xs[43 - c[23Xc[43) + (a3xc[33 + a2)XS [23;

for (i = 0; i <= 3; i++)for (j = 0; j <= 2; j++)leprintf (rou+j, colsCi], noapti][j]);
}

void sin_cos (f_5 theta, f_5 s, f 5 c)
{int i;
for (i = 1; i <= 5; i + +)

{s[i3 = sin (thetaCi] X conv); cCi] = cos Cthetati] x conv); 
}

1
void dsply_main_selection ( )

{int rou; int col;
rou = 8;col = 22;lcputs (rou, col, lcputs (rout 2, col, lcputs (rout 4, col, lcputs (rout 6, col, lcputs (rou+ 8, col, lcputs (rou+10, col, 
lcputs (rou+12, col, 
}

"Armatron Manipulator Control Options"); "1: Manual Control");”2: Joint Variable Control");"3: Position-Orientation Control”);"A: Velocity Control");”5: Trajectory Control");"0: Terminate Manipulator Control");

int get_option (int hb)
{int opt;
do opt = prompt_input_digit ("Select Option:"); uhile ( opt > hb ); locate (22, 22);cprintf ("Option %d has been selected", opt); return (opt);
}

float magnitude (f_2 vector)
{int i; float sum;
sum = 0;for (i = 0; i <= 2; i++)sum += square (vectorCi]); return (sqrt(sum));
}

int round (float value)
{value = value + sign (value) x 0.5;



return C (int) value );
}

int sign (float value)
{int value_sign;
if ( value > 0 )value_sign = 1; 

elseif ( value < 0 )value_sign = -1; elsevalue_sign = 0;return (value_sign);
}

float square (float value)
{return (poutvalue, 2));
}

float cube^root (float value)
{float result;
if (value > 0)

result = pou (value, 1/3); elseif (value < 0)result = -pou (-value, 1/3); elseresult = 0; 
return (result);
}

void uait_then_continue ( )
{save_screen ( );lcputs (24, 28, "Press any key to proceed") locate (24, 54); getch ( );erase_prompt (24);
}

void mcputs (int left, int right, char *line)
{int i;
for (i = 1; i <= left; i++) eputs (" " ); eputs (line);for (i = 1; i <= right; i++) eputs (" ");
3

int prompt_input_digit (char *prompt_msg)
{char ch;c_1 ch_string;
do

{lcputs (23, 20, prompt_msg); 
locate (23, strlen(prompt_msg)+22); ch = getch( );
3uhile ( (ch < '0') J (ch > '9') ); 

erase__prompt (23); ch_string[0] = ch;
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ch_string C1 ] = ''; return (atoi(ch_string));
}

char prompt_input_char (char Xprompt_msg 1 . char *prompt_msg2 )
{int r;int c; char ch;
lcputs (23, 20, prompt_msg 1 ); lcputs (24, 2 0 , prompt_jnsg2 ); locate (23, strlen(prompt_insg1 ) + 21 ) ; ch = toupper ( getch ( ) );erase_prompt (23); return (ch);
}

float prompt_input_fixed (char #prompt_msg, int i)
{float value;
lcputs (23, 20, prompt_msg); cprintf (" V.d <Snnn.nnn>: ", i);lcputs (24, 20, "(<Return> only to leave value unchanged)"); 
value = indec (23, 25+strlen(prompt_msg)); erase_prompt (23); 
return (value);
}

float indec (int r, int c)
{char instring [83;
int len;int currcol ichar ch;int ch_ok;float value;int decpt;
int fraclen >int done;
locate (r, c);instringLO] = null;
len = 0 ;
currcol = c;decpt = 0 ;
fraclen = 0 ;done = 0 ;
uhile (!done )

{ch = getch ();ch_ok = 0 ;value = atof (instring);if (((ch >= '0') & (ch <= '9')) & ((value < 100) | (decpt == D )  &(fraclen < 3))
{if (decpt == 1 ) 

fraclen++; ch_ok = 1 J 
}elseif ((ch == '.') & (decpt == 0 ))

{decpt = 1 ; ch_ok = 1 ;
}else
if ( ((ch == '+') ! (ch == '-’)) & (len == 0 ) )
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ch_ok = 1 ;
if (ch_ok == 1 )

{instringClen] = ch; len++;instringClen] = null; lputch (r, currcol, ch); currcol++;
}©Is©if ((ch == del) & (len > 0 ))

{len—  ;if (instringClen] == '.')decpt = 0 ; if (fraclen > 0 ) fraclen— ;instringClen] = null; lputch (r, currcol, space); currcol— ;lputch (r, currcol, space); locate (r, currcol);
]elseif (ch == cr) done = 1 ;

3if (len == 0 )value = 1 0 0 0 ; elsevalue = atof (instring); return (value);
3

int inint (int row, int col)
char instring m ;
int len;int currcol;
char ch;int ch_ok;int value;
int done;
locate (row, col);instringCO] = null;len = 0 ;currcol = col;done = 0 ;
uhile (!done )

{ch = getch ();ch_ok = 0 ;value = atoi (instring); if ( (ch >= ’O') & (ch <= ’9') ) 
ch_ok = 1 ; else
if ( ((ch == '+’) i (ch == ’- ’)) & (len == 0 ) ) ch_ok = 1 ; if ( ch_ok == 1 )
{instringClen] = ch; 
len++;instringClen] = null; lputch (row, currcol, ch); currcol++;
3else
if ( (ch == del) & (len > 0 ) )
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{len— ;instringClen] = null; 
lputch (rou, currcol, space); currcol— ;
lputch (rou, currcol, space); locate (rou, currcol);
}elseif (ch == cr) done = 1 ;

}if ( len == 0 )
value = 0 ; elsevalue = atoi (instring); return (value);

}
void lputch (int rou, int col, char ch)

{locate (rou, col); putch (ch);
}

void leprintf (int rou, int col, float value)
{locate (rou, col);if ( ( fabs(value) >= 0 . 0 1  ) | ( value == 0 ) ) cprintf ("%1 0 .3f", value); elsecprintf ("%10.<+E", value);
}

void lcprintf8 (int rou, int col, float value)
{locate (rou, col);if ( ( fabs(value) >= 0 . 0 1  ) | ( value == 0 ) ) cprintf ("%8.3f", value); elsecprintf ("%8.1E", value);
}

void lcputs (int rou, int col, char ^string)
{locate (rou, col); eputs (string);
}

void erase_prompt (int rou)
{int i;
for (i = rou; i <= 23; i++)

locate (i, 0 ); cprintf ("%80c", ’ ');
}locate (2 <+, 0 ); 

cprintf ("%79c", ' ’);
}

void wait_then_erase (int rou)
{int r; int c;
save screen ( );
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lcputs (24, 28, "Press any key to proceed"); locate (24, 54); 
getch (); c = 0 ;for (r = rou; r <= 23; r++)

{locate (r, c);cprintf ( " % 8 0 c ", ' ’);
}locate (24, 0); cprintf ("%79c", ' ’);

}
void save_screen ( )

{intintunsignedchar

rou; col; offset; ch;
if ( qsave_screen == 'V )

{for (rou = 0; rou <= 24; rou++)
{for (col = 0; col <= 79; col++)

{offset = rouXl60 + col*2; 
ch = peekb(47104, offset); fputc (ch, fptr);
)fputc (If, fptr);

}for (col = 0; col <= 79; col++) fputc (hyphen, fptr); fputc (If, fptr);
}

}
void pause (int thousandths)

/X PAUSE : delay for the input X/ /X number of 1/1000's of X//x seconds X/
{unsigned long ticks; unsigned long target;
union REGS i, o;
i .h .ah = 0;int8 6 (26, &i, &o);ticks = (o .x .cx << 16) | o.x.dx;target = ticks + (thousandths / 55);
uhile (ticks < target)

{i .h.ah = 0 ; int8 6 (26, &i, &o); ticks = (o.x.cx << 16) | o.x.dx;
}

}
void locate (int rou, int col)

{union REGS i;

/X LOCATE :
/x/X

move cursor r = 0 to 24 
c = 0 to 79

to (r,c ) X/ 
X/
x/

i .h.ah = 2 ; i.h.bh = 0 ;
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i.h.dh = rou; 
i.h.dl = col; 
int8 6  (16, &i, 
}

8i );
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^include <c:\ed'sNheader.c>
void manual_control (f_5 theta, f_3_2 noap, int noap_rou, i_A noap_cols)

{int rou; 
int col;
dsply_manual_introduction ( );uait_then_eiase (9); dsply_keyboard (&rou, &col);monitor_keyboard (theta, noap, noap_rou, noap_cols, rou, col); erase^proapt (23); locate (23, 0);mcputs (28, 27, "Manual Control Terminated"); uait_then_erase (8 );
}

void dsply_manual_introduction ( )
{int lm >int rm i

locate (8 , 0 );
lm = 16 Jrm = 1 6 imcputs (lm, rm
mcputs (lm, rm
mcputs (lm, rmmcputs (lm, rm
mcputs (lm, rm
mcputs (lm, rm
mcputs (lm, rmmcputs (lm, rmmcputs (lm, rmmcputs (lm, rmmcputs (lm, rmmcputs (lm, rmmcputs (lm. rmmcputs (lm, rmmcputs (lm, rm
>

" Manual Control "); 
" ”); " The movement of each of the five joints and "); "the gripper of the Armatron manipulator is "); "controlled from the keyboard by a pair of keys. "); 
" "); " To effect movement of a joint, press and hold "); "doun one of the keys controlling the joint; the "); "release of the key terminates movement. The "); "amount of time the key is held doun is monitored"); "and used to update the joint variable involved. "); " " ); "Note: At times, a motor may stall; should this "); " occur, immediately release the key to ”); " avoid ruining a transistor. ");

void dsply_keyboard (int Xrou, int Xcol)
{int lm; int rm;
locate (9, 0); lm = 16; rm = 16;mcputs (lm, rm, tt ");mcputs (lm, rm, "Gripper Open Grippe r Closemcputs (lm, rm, tl 1 1 t1");mcputs (lm, rm, tt 1 1 EX-Wrist Up (A) Wrist Doun-XI 1I") ;mcputs (lm, rm, ft 1 1 1I");mcputs (lm, rm. "AX SX DX FX GX-Arm(2) Arm-XH XJ XX *L X; ");mcputs (lm, rm, r? 11 ! ! Up Doun l ! ii ");mcputs (lm, rm. tr \» 1 I 1 1 t t1 t ii ");mcputs (lm, rm. ft 1\ j Arm Left ( 1 ) Arm Right

11
ii ");mcputs (lm. rm, tt 1I 1t ii ");mcputs (lm, rm, tt 11 Elbou Left (3) Elbou Right ii ”);mcputs (lm. rm, »t 11 iV ");mcputs (lm, rm, tt Wrist Rotate Left (5) Wrist Rotate Riqht ");mcputs (lm, rm. ft ”);mcputs (lm, rm, "Select:

);mcputs (lm, rm, tl <Press the space bar to terminate control> '
Xrou = 23;Xcol = 25;
}
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void monitor_keyboard (f_5i A
£char c_12_18 
int int

key; msgs;transistor; joint;

theta, f_3_2 noap, int noap_rou, 
noap_cols, int rou, int col)

init_transistor_messages (msgs); 
do

{locate (row, col); while ( !kbhit( ) );key = toupper switch (key)
{
case 'H' :

case 'G ' :

case 'J' :

case 'F' :

case 'D ' :

case 'K' :

case ' I ' :

case 'E' :

case 'S' :

case 'L ’ :

case 'A' :

case ' ; ' :

getch( ));

transistor = 7;joint -  2 ; break;transistor = 8 ;joint = 2 ; 
break;
transistor = 1 2 ; joint = 1 ; break;transistor = 1 1 ; joint = 1 ; break;
transistor = 6 ;joint = 3; break;transistor = 5;joint = 3; break;
transistor = 1 ;joint = A; break;transistor = 2 ;joint = <+; break;
transistor = 9;joint = 5; break;transistor = 1 0 ; joint = 5; break;
transistor = A; joint = 0 ; break;
transistor = 3;joint = 0 ; 
break;

/* Arm Doun - Up x/

/x Arm Right - Left X/

/x Elbow Left - Right X/

/x Wrist Doun - Up X/

/X Wrist Rotate Left - Right X/

/X Gripper Open - Close X/

if

if

default : transistor = 0 ;joint = 0 ;
}( transistor != 0 )move_manual (transistor, msgsttransistor ], key, 

theta, joint);( joint > 0 )
noap_matrix (theta, noap, noap_rou, noap_cols);

}uhile ( key != space );

rou, col,
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}
void init transistor_messages (c 12_18 msgs)

{strcpy (msgs[ 1 ], "Wrist Doun ");
strcpy (msgs[ 23, "Wrxst Up ");strcpy (msgst 33, "Gripper Close ”);strcpy (msgst 43, "Gripper Open ");strcpy (msgst 53, "Elbou Right " );strcpy (msgst 63, "Elbou Left ");
strcpy (msgst 73, "Arm Doun ");strcpy (msgst 83, "Arm Up ");strcpy (msgst 93, "Wrxst Rotate Left "); strcpy (msgst103, "Wrist Rotate Right"); strcpy (msgst113, "Arm Left ");strcpy (msgs[123, "Arm Right ");
3

void move_manual (int transistor, char ^msg, char original_key,xnt rou, int col, f_5 theta, int goint)
tchar key;float degree_scale;int i;
degree_scale = select_scale_manual_move (transistor); i = 0 ;lcputs (rou, col, msg); locate (rou, col); pause (500);outportb (8 8 8 , transistor); 
do

ii++;pause (1 1 0 ); key = null; uhile (kbhit ( ))key = toupper (getch ( ));
3uhile ( key == original_key ); outportb (8 8 8 , 0 );lcputs (rou, col, " ”);if ( joint > 0 )theta[joint3 += (float) i / degree__scale;

)
float select_scale_manual move (int transistor)

{float scale;
suitch (transistor)

{case i : scale = break; -30 / 2 0 0 .0 ;
case 2 : scale = break; 36 / 2 0 0 .0 ;

case 3 : scale = break; 1 ;
case 4 : scale = break; 1 ;

case 5 : scale = 
break;

-41 / 180.0;
case 6 : scale = 

break;
41 / 180.0;

case 7 : scale = 
break;

-29 / 35.0;
case 8 : scale = 27 / 35.0;

/X Wrist Doun - Up X/

/X Gripper Close - Open x/

/X Elbou Right - Left X/

/X Arm Doun - Up X/



3 7 8

break;
case 9 : scale = 

break;
- 6 8 / 1080

case 1 0 : scale = 
break;

6 6 / 1 080

case 1 1 : scale = 
break;

71 / 360
case 1 2 :: scale = -65 / 360

break;
}

return (scale ) ;
}

/* Wrist Rotate Left - Right #/

/* Arm Left - Right X/

0

0

0

0
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^include <c:\ed's\header.c>
void j oint_vanable_control (f_5 theta, f_3_2 noap,

int noap_rou, i_4 noap_cols)
{char ignore;
f 5 theta_min;
f ~5 theta_max;
i_5 jv_rows;
int jv_col;
int i;
dsply_joint_variable_introduction C );locate (23, 42);ignore = toupper(getch( ));lputch (23, 42, ignore);constraints (ignore, theta_min, theta_max); uait_then_erase (9);dsply_joint_variables (jv_rows, &jv_col); for (i = 1; i <= 5; i++)leprintf (jv_rous[i], jv_col, thetati]); process_requests (theta, noap, theta_min, theta_max,

jv_rous, jv_col, noap_rou, noap_cols);erase_prompt (23); locate (23, 0);mcputs (24, 23, "Joint-Variable Control Terminated”); uait_then_erase (8 );
}

void dsply_joint_variable introduction ( )
{int lmJint rm)
locate (8 , o
lm = 16 >rm = 1 6 fmcputs (lm. rm, ti Joint-Variable Control ti);mcputs (lm, rm, n ti);mcputs (lm, rm, " The movement of each of the five joints of the" );mcputs (lm. rm. "Armatron manipulator is controlled by specifying" );mcputs (lm, rm, "a joint and angle via the keyboard. fl);mcputs (lm, rm. tt ft);mcputs (lm, rm, " Use the manual switches to align the robot arm”);mcputs (lm, rm, "now, if necessary. ft);mcputs (lm. rm. tl tl);mcputs (lm, rm, "Note: At times a motor may stall; should this ");mcputs (lm, r m , tt occur, immediately press the space bar to”);mcputs (lm. rm, tl avoid ruining a transistor. tt);mcputs (lm, rm, It tl);mcputs (lm, rm, ” The constraints placed on the joint variables ");mcputs (lm, rm, "may be ignored for computation purposes. Ignore" );mcputs (lm, rm, "joint constraints? (y/n) If);
}

void constraints (char ignore, f_5 theta_min, f_5 theta_max)
{int i;
if ( ignore

r
t = i y i )

itheta_.mint 1 ] = -360;theta_ maxt1 ] = 360;theta_’min[2 ] = -5;theta..max[2 ] = 30;
theta._minC3 3 = -90;theta..maxC 3] = 90;theta._min[4] = -1 0 ;theta. max[4] = 190;theta._min[5] = -360;
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theta_max[53 = 360;
>elsefor (i = 1; i <= 5; i++)

{theta_min[i ] = -360; 
theta_max[i3 = 360;
}

void dsply_joint_variables (i_5 jv_rous, int *jv_col)
{int lm; int rm;
lm = 19; r m = 19;locate (9, 0 );mcputs (lm. rm, "
mcputs (lm. rm, ” Jointmcputs (lm. rm, " 1 : Arm Right/Leftmcputs (lm, rm, " (-360 to +360)mcputs (lm, rm, ,f 2 : Arm Doun/Upmcputs (lm, rm, *’ ( -5 to +30)mcputs (lm. rm, " 3: Elbou Right/Leftmcputs (lm. rm, ” ( -90 to +90)
mcputs (lm, rm, ” A: Wrist Doun/Up
mcputs (lm, rm, ” ( -10 to +190)
mcputs (lm, rm, ” 5 : Wrist Rotate Left/Right
mcputs (lm, rm, " (-360 to +360)
mcputs (lm, rm, 0 : End Joint-Variable Control
mcputs (lm. rm, ”
jv_rous[ 1 3 = 1 1 ;jv__rows[2 3 = 13;jv_rous[33 = 15;jv_roustA 3 = 17;
jv rousC53 = 19;
*jv_col = 51;
}

” );Angle ");
" ) ;  
" ) ;  
” ); 
" ) ;
" ) ;

” ) ; 
"
" ) ;

void process^requests (f_5 theta, f_3_2 noap,f_5 theta_min, f_5 theta_max, i_5 jv_rous, int jv_col, int noap_rou, i__A noap_cols)
{int joint; float angle; float move_degrees;
joint = get_joint C ); uhile ( joint 1= 0 )

{angle = get_angle (theta_min[joint], theta_max[joint 3) erase_prompt (23); locate (23, 20);cprintf ("Moving Joint %d to angle perform_move (joint, theta, angle, lcputs (23, 20, "
%8.3f", joint, angle); jv_rousCjoint], jv_col);

" ) ;
noap_matrix (theta, noap, noap_rou, noap_cols);
joint = get_joint ( );
}

int get_joint ( )
{int joint;
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do joint = prompt_input_digit ("Select Joint:"); 
uhile ( goint > 5  ); locate (24, 20);cprintf ("Joint %d has been selected", joint); 

return (joint);
}

float get_angle (float minimum, float maximum)
{float angle; 
do

{lcputs (23, 20, "Enter angle <Snnn.nnn>: ");angle = (indec (23, 45)); if ( angle == 1 0 0 0  ) angle = 0 ;if ( (angle < minimum) ! (angle > maximum) )
{locate (23, 1 0 );
cprintf ("Angle %8.3f out of range for the joint; ", angle);eputs ("check ranges above");pause (3000 ) ;locate (23, 1 0 );cprintf ("%61c", ’ ');
}

}uhile ( (angle < minimum) | (angle > maximum) ); return (angle);
}

void perform_move (int joint, f_5 theta, float desired_position,int rou, int col)
ffloat move_degrees;int transistor;float degree_scale;int iterations;
float degrees_per_iteration;int i;
move_degrees = desired_position - thetatjoint];transistor = select_transistor (joint, move_degrees);degree_scale = select_scale (transistor);iterations = round (fabs(move_degrees) * degree_scale);degrees_per_iteration = sign (move_degrees) / degree_scale;lcputs (rou, col, " hoving");i = 0 ;outportb (8 8 8 , transistor); uhile ( (!kbhit( )) & (i < iterations) ) i = i + 1 ; outportb (8 8 8 , 0 ); if ( i == iterations )

thetatjoint] = desired_position; else
tgetch ( );
thetatjoint] += degrees_per iteration  ̂ i;
}leprintf (rou, col, thetatjoint]);

int select_transistor (int joint, float move)
{int transistor;
if ( move > 0 )

switch (joint)
{
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case 1 : transistor 
break;

case 2 :: transistor 
break;

case 3 :: transistor 
break;

case A : transistor 
break;

case
}

5 :: transistor
else

switch (joint) 
{case 1 : transistor = 

break;
case 2 : transistor = 

break;
case 3 : transistor = 

break;
case A : transistor = 

break;
case 5 : transistor =
}

return (transistor);
)

float select_scale (int transistor)
{float scale; 
switch (transistor)

{case 1 : scale = 
break;

3000 / 2 0 0

case 2 : scale = 
break;

3650 / 2 0 0

case 3 : scale = 
break; 1 ;

case A : scale = 
break;

1 ;

case 5 : scale = 
break;

A 1 50 / 180
case 6 :: scale = 

break;
A1 00 / 180

case 7 :: scale = 
break;

2900 / 35
case 8 :: scale = 

break;
2700 / 35

case 9 : scale = 
break;

6800 / 1080
case 1 0 : scale = 

break;
6600 / 1 080

case 1 1 :: scale = 
break;

7100 / 360
case 1 2 :: scale = 

break;
6500 / 360

}return (scale);

/X Wrist Doun - Up x/

/X Gripper Close - Open x/

/X Elbou Right - Left X/

/x Arm Down - Up x/

/X Wrist Rotate Left - Right X/

/X Arm Left - Right X/

1

8

6

2
0

2
7
5
1

9

>

i

>

*

*

J

i

J

y
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POSITION AND ORIENTATION CONTROL PROCEDURES LISTING
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♦♦include <c :\ed 1 s\header . c>
void position_orientation_control Cf_5 theta, f_3_2 noap,int noap_row, i_A noap_cols)

{int magnitude_ok; 
char move;int arm_rou;i_ 2  arm_cols;int theta_rou;i_4 theta_cols;
f_ 2  pa;f_A t3 ;f_4_3 theta123;int accepted;f_<+_5 accepted_theta; f_5 move_theta;char *prompt_msg1 ; char *prompt_msg2 ; char qc;f_5 s;f _5 c;int i;
dsply_position_orientation_introduction ( );uait_then_erase (9); 
do

{dsply__pos_orient_solution (&arm_rou, arm_cols,&theta_rou, theta_cols); 
get_noap (noap, noap_rou, noap_cols);magnitude_ok = calc_arm_end (noap, pa, arm_rou, arm_cols); if ( magnitude_ok )

{calc_theta_123_triples (pa, theta123,theta_rou, theta_cols); accepted = calc_theta_45_pairs (noap, theta123,accepted_theta, theta_rou, theta_cols);uait_then_erase (9);move = prompt_for_move (accepted, accepted_theta,move_theta);if ( move == ' Y' )position_orientation_move (theta, move_theta); noap matrix (theta, noap, noap_rou, noap_cols);
3elselcputs (28, 19, "Arm end position not attainable");prompt_msg1 = "Continue with another N-O-A-P matrix (y/n)?"; prompt_msg2 = "";qc = prompt_input_char (prompt_msg1 , prompt_msg2 );

}uhile ( qc == *Y’ ); wait_then_erase (8 );
}

void dsply_position_orientation_introduction ( )
{int lm; int rm;
locate (8 , 0 ); 
lm = 16; rm = 16;mcputs (lm, rm, " Position-Orientation Controlmcputs (lm, rm. " ");mcputs (lm, rm, ” The movement of each of the five joints of the");mcputs (lm, rm, "Armatron is controlled by specifying a desired ");
mcputs (lm, rm, "position-orientation matrix consisting of ");mcputs (lm, rm, "vectors n, o, a, and p, ");
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mcputs (lm. rm. fi The
mcputs (lm, rm, ftfolio
mcputs (lm. rm, it 1 )mcputs (lm, rm, tt
mcputs (lm, rm. tt
mcputs (lm, rm. tt 2 )
mcputs (lm, rm, it
mcputs (lm, rm, »t 3)
mcputs (lm, rm. »t

the desired gripper center and approach of 
the wristfour possible triples are then evaluated to bring the arm proper to this postion solutions are then obtained for the wrist variables, if any exist

" ) ;
" ) ;  
") ;
” );

void dsply__pos_orient_solution (int *arm_row, i_ 2  arm_cols,int *theta_row, i_A theta_cols)
{int lm; int rm;
lm = 16; rm = 15;locate (9, 0 );mcputs (lm. rm. tt Determination of Pa Vector Components " );mcputs (lm, rm, it Pwx Puy Pwz ");mcputs (lm, rm, ti nnnnnnnnnn nnnnnnnnnn nnnnnnnnnnmcputs (lm, rm, ti Pax Pay Paz ");mcputs (lm. rm, tt nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn ");mcputs (lm, rm. ti ");mcputs (lm. rm, ti Control Variable Solutions ");mcputs (lm. rm. "Theta Set 1 Set 2 Set 3 Set A ");mcputs dm, rm, " 1 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn ");mcputs (lm, rm, " 2 ");mcputs (lm, rm, " 3 ");mcputs (lm. rm. " A ");mcputs (lm. rm. ” 5 ”);mcputs (lm, rm, " e 13,3 ");
Xarm_row = 1 1 ; arm_cols[0 ] = 2 1 ; arm_cols[1] = 36; arm_cols[2] = 51; *theta_row = 17; theta_cols[1 ] = 2 2 ; theta_cols[2] = 33; theta_cols[33 = AA; theta_cols[A3 = 55; 
3

void get_noap (f 3 2 noap,
{c_3_2_2 names;int i ;f_ 2  n_cross_o;float difference;

int rou, i A cols)

init_names (names); do
{for (i = 0 ; i <= 2 ; i++)

get_orientation_vector (i, names, n_cross_o[03 = noap[03[13*noap[131 2 3 
n_cross_o[13 = noap[03C23*noap[13C03 n_cross_o[23 = noapC03[03*noap[13C13 difference = fabs(magnitude (n_cross_ if ( difference > tolerance )

C

noap, row, cols);
- noap[03[23*noap[13[13- noap[03[03*noap[13[23- noap[03C13*noap[13C03 
o) - magnitude (noap[23

lcputs (23, 20, "N x 0 does not equal A; "); eputs ("Re-enter Vectors N, 0, and A"); uait_then erase (23);
3

3uhile ( difference > tolerance );

) ) ;
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get_positi°n_vector (names, noap, rou, cols);
}

void init
{strcpystrcpystrcpystrcpystrcpystrcpystrcpystrcpystrcpystrcpystrcpystrcpy
}

names (c 3 2 2 names)
(names[03 (namest 03 (names[03 (names[1 ] (names C13 (names[13 (names[2 ] (names[2 ] 
(names[23 (names C3] (namest 3 3 (names[33

[03,
[ 1 3 ,[23,
[03,
[ 1 3 ,[23,[03,
[ 1 3 ,[23,[03,
[ 1 3 ,[23,

"Nx"); -Ny"); 
"Nz"); "Ox"); "Oy"); "Oz"); "Ax"); "Ay"); "Az"); "Px"); ”Py"); "Pz” );

void get_orientation_vector (int i, c_3_2_2 names, f_3_2 noap,int rou, i_A cols)
{int j;float difference;
do

{for (j = 0 ; j <= 2 ; j++)
{prompt_input_noap (names[i3[j3, Snoap[i3[j3); erase_prompt (23);leprintf (rou+j, cols[i3, noap[i3tj3);
3difference = fabs ( 1 - magnitude (noap[i3)); if ( difference > tolerance )
{lcputs (23, 20, "Vector Magnitude does not equal 1; ");
eputs ("Re-enter Vector "); putch (names[i3[13[03); uait_then_erase (23);
3

3while ( difference > tolerance );

void get_position_vector (c_3_2_2 names, f 3_2 noap, int rou, i_A
{int j ; float mag_p;
do

3

{for (j = 0 ; j <= 2 ; j++)
{prompt_input_noap (names[33[j3, Snoap[33[j3); erase_prompt (23);
leprintf (rou+j, cols[33, noap[33[j3);
3mag_p = magnitude (noap[33);if ( (mag_p > a2+a3+d5) ! (mag_p < a2) )
{lcputs (23, 20, "Specified position is outside of the arm 
eputs ("envelope; re-enter vector P"); wait_then_erase (23);
33uhile ( (mag_p > a2+a3+d5) | (mag_p < a2) );

void prompt_input_noap (char Xname, float lvalue)

cols)
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{float neu_value;
lcputs (23, 20, "Enter N-O-A-P element ");
eputs (name);eputs (" <Snnn.nnn>: ");lcputs (24, 22, "<Return> only to leave value unchanged as");leprintf (24, 64, Xvalue); neu_value = indec (23, 59); if ( neu_value != 1 0 0 0  )

Xvalue = new_value;
}

int calc_arm_end (f_3_2 noap, f_2 pa, int arm_rou, i_2 arm_cols)
{int i; f_ 2  pu;float mag_pa; int mag_ok;
for (i = 0 ; i <= 2 ; i++)

{pu[i] = d5 x noap[2 ][i];leprintf (arm_rou, arm_cols[i], pu[i]);
}for (i = 0 ; i <= 2 ; i++)
{pa[i] = noap[3][i] - puCi];leprintf (arm_row+2 , arm_cols[il, pa[i]);
}mag_pa = magnitude (pa);if ( (mag_pa > a2+a3) ! ( (fabs(pa(0]) < tolerance) &(fabs(pa[1 ]) < tolerance) ) )

mag_ok = 0 ; elsemag_ok = 1 ; return (mag_ok);
}

void calc_theta_123_triples (f_2 pa, f_4_3 theta, int rou, i_4 cols)
{float beta; f_4 bmt1;
calc_theta_3 (pa, theta, rou+2, cols); calc_beta_minus_theta_ 1 (pa, theta, bmt1 ); beta = calc_beta (pa);calc_theta_ 1 (beta, bmt1 , theta, row, cols); calc_theta_ 2  (pa, theta, row+1 , cols);
}

void calc_theta_3 (f_2 pa, f_4_3 theta, int rou, i_4 cols)
{float c3; float s3; 
int i;
c3 = (square (magnitude (pa)) - square (a2) - square (a3))/ (2 X a2 X a3); 
s3 = sqrt(1 - square (c3)); if ( fabs(c3) > tolerance )

{thetaC13[3] = atan( s3 / c3); theta[3][3] = atan(-s3 / c3); /X adjust atan for cos < 0 X/
if ( c3 < 0 )

{ /X c3<0, s3>0 => 4th->2nd quad X/thetaC1 ][3] += pi; /X c3<0, s3<0 => 1st->3rd quad X/
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theta[3][3] -= pi;
}

}else
{theta[1][3] = pi / 2; 
theta[3][33 = -pi / 2;
} /X 2 copies => 9 triples X/

theta[2][3] = theta[1J[3]; theta[<+3[33 = theta[3]C3];
for Ci = 1; i <= 9; i++)leprintf (rou, cols[i3, theta[i3[33 x 180/pi);
}

void calc_beta_minus_theta_1 (f_2 pa, f_4_3 theta, f_4 bmt1)
{int i; float sbmt1; float cbmtl; /x for 2 pairs: (1,2) & (3,*t) X/
for (i = 1; i <= 3; i = i + 2)

{sbmtl = a3 X sin(thetaCi]C3])/ sqrtCsquare (pa[03) + square (pa[1]>); cbmtl = sqrt(1 - square (sbmtl)); if ( fabs(cbmtl) > tolerance )
{bmt1[i 3 = atanCsbmt! / cbmtl); bmtlti+13 = atan(sbmt1 /  -cbmtl);/X adjust 1 due to sine X/
bmt1[i+13 = bmt1[i+l3 + pi;
3else
{if ( sbmtl > 0 )bmt1 [i 3 = pi / 2;else

bmt1[i3 = -pi / 2; bmt1[i+13 = bmt1[i3;
333

float calc_beta (f_2 pa)
{int sign_cos_beta;int sign_sin_beta;float beta;
sign_cos_beta = sign (pa[03); sign_sin_beta = sign (pa[l3); if ( fabs(pa[03) > tolerance )

{beta = atan (pa[13 / pa[03); /x adjust atan for cos < 0 X/if ( sign_cos_beta == -1 ) beta += pi;
3else /x cos = 0 , + sin => +90 deg X/

( sign_sin_beta == +1 )beta = pi / 2; /x cos = 0 , — sin = > —90 deg X/elsebeta = -pi / 2;return (beta);
3
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void calc theta_1 (float beta, f_9 bmt1, f_9_3 theta, int rou, i_9 cols)
Cint i;
for (i = 1 ; i <= 9; i++)

t /X t1 = beta - (beta - tl ) X/theta[i][1] = beta - bmt1[i]; /x adjust if > 180 degrees X/if ( thetati][1] > pi ) theta[i3C13 -= 2 X pi; /X adjust if < -180 degrees X/
if ( thetati3[13 < -pi ) theta[i][13 + = 2 X pi;
leprintf (rou, colsti], theta[i3C!3 X 180/pi);
}

void calc theta_2 (f_2 pa, 
{float c3; int i ; float c2; float s2;

f__9_3 theta, int rou, i_9 cols)

/x cos(theta 3) is constant x/
c3 = cos(theta[13C33); for (i = 1; i <= 9; i++)

{c2 = ( pa[03Xcos(thetati3[ 1 3) + pa[13Xsin(theta[i3[13 ) )/ (a3*c3 + a2); s2 = pa[23 / (a3Xc3 + a2); if ( fabs(c2) > tolerance )
Ctheta[i3E23 = atan(s2 / c2);/x adjust atan for cos < 0 x/if ( c2 < 0 ) /X -c, +s => 2nd quad from 9th X/if ( s2 >= 0 )

thetati3[23 += pi; /X -c, -s => 3rd quad from 1st X/else
thetaCi3[23 -= pi;3elseif ( s2 > 0 )

theta[i3C23 = pi / 2; else
theta[i3[23 = -pi / 2;leprintf (rou, colsti3, theta[i3[23 x 180/pi);

int calc_theta_95_pairs (f_3_2 noap, f_9_3 theta, f_9_5 accepted_theta,int rou, i_9 cols)
£f 3 c;
O s;
int i;int 3)int ate;float el_3_3;
ate = 0 ;for (i = 1 ; i

{for (j = 1; j <= 3; j++)
{c[j3 = cos(theta[i3[j3); 
s[j] = sin(theta[i3[j3);
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}el_3_3 = noap[ 2 3 [ 0 3 X Cc[13xc[2]XsC3] + s [1 ]*c[3] )
+ noapC23[13 X (sC1 3xcC2]*s[3] - c[1]Xc[33)+ noap[2][2] X s[2]Xs[33; leprintf (rou+5, colsti]. el_3_3); if ( fabs(el_3_3) < tolerance )

{atc++;for (j = 1; j <= 3; j++)accepted_theta[ate][j] = theta[i][j]; 
accepted_theta[atc3[43 = calc_theta_4 (noap[2 ], s, c); leprintf (rou+3, cols[i3, accepted_theta[atc] [4 ] x 180/pi); 
accepted_theta[atc][53 = calc_theta_5 (noaplO], noap[13,

s , c );leprintf (rou+4, colsCi], accepted_theta[atc3[53 X 180/pi);
else

{lcputs (rou+3, colsli], " No ");lcputs (rou+4, colsti], ” Solution");
}

}return (ate);
}

float calc_theta_4 (f_2 a, f_3 s, f 3 c)
{float c4; float s4; float theta4;
c4 = a[0 ]Xc[1 3Xs[2 3 + a[1 ]KS [1 ]*S[2] - a[23Xc[23; s4 = a [ 0 ] * (c[ 1 3Xc[23Xc[33 - s[1)xs [33)+ at 13 x (s[1]XcC2]Xc[33 + c[1)xs[33> + a[2]xs[2]*c[33; if ( fabs(c4) > tolerance )

{theta4 = atan(s4 / c4); /X adjust atan for cos < 0 X/if ( c4 < 0 ) /X -c, +s => 2nd quad from 4th X/if (s4 >= 0)theta4 += pi; /X —c, -s => 3rd quad from 1st X/elsetheta4 -= pi;
/x conv for bounds compliance x/if ( theta4 < -170 X pi/180 ) theta4 += 2 X pi;

}else
if ( s4 > 0 )theta4 = pi / 2;

elsetheta4 = -pi / 2; return (theta4);
}

/X cos = 0, +sin => +90 deg X/ 

/X cos = 0, -sin => -90 deg X/

float calc_theta_5 (f_2 n, f 2 o, f 3 s, f_3 c)
{float c5; 
float s5; float theta5;
c5 = o[0]x(c[1]xc [2DXsC33 + s [1]xc[3])+ o[1]X(S[1]Xc[2]XS[3] - c[1 ]xc[3]) + o[23Xs[23Xs[33; s5 = n[0]x(c[1]XcC2]XsC33 + s[13xc[33)

+ n[13X(s[13Xc[23Xs[33 - c[13xc[33) + n[23Xs[23Xs[33;
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if ( fabs(c5) > tolerance )
{theta5 = atan(s5 / c5);
if ( c5 < 0 )

if (s5 >= 0)theta5 + = pi;
elsetheta5 -= pi;

3else
if ( s5 > 0 )theta5 = pi / 2;

elsetheta5 = -pi / 2; return (theta5);
}

/x adjust atan for cos < 0 X/
/x -c, +s => 2 nd quad from 4th x/

/X -c, -s => 3rd quad from 1st X/

/x cos = 0, +sin => +90 deg X/ 

/X cos = 0, -sin => -90 deg X/

char prompt_for_move (int accepted, f_4_5 accepted_theta,f_5 move_theta)
{int rou; i_ 8  cols; int inbounds; int i; i_4 out; 
int j;i_4 inbounds_index; char move;
dsply_prompt_for_move (&rou, cols); inbounds = 0 ;for (i = 1 ; i <= accepted; i++)

{outCi] = 0 ;for (j = 1 ; j <= 5; j++)
{accepted_theta[i ] [j] X= (180 / pi);leprintf (rou+j-1 , colsti], accepted_theta[i1 [j]); if ( (accepted_theta[i][j] >= min_constraint (j))& (accepted_theta[i 1 [j] <= max_constraint (j)) )lcputs (rou+j-1, cols[i+4]+2, "In”); else 

{lcputs (rou+j-1, cols[i+4]+1, "Out");out[i 3++;
}

}if ( outti] == 0 )
{inbounds++;inbounds_index[inbounds] = i;
}

}suitch (inbounds)
{case 0 : 

case 1 :

default:

lcputs (20, 20, "No Solution is Obtainable");move = ’N';break;
move = one_solution (inbounds_index[1 ], accepted_theta,move_theta);break;
move = multiple_solutions (accepted, accepted_theta,inbounds, inbounds_index, out, move theta);

}
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erase_prompt (2 2 ); 
return (move);
}

void dsply prompt for move 
{locate (9, 0);

(int Xrou, i_ 8 cols)

eputs (" Solutions");eputs (" ");eputs ("Theta Bounds Bounds ");eputs ("Bounds eputs (" 1
Bounds");

");eputs (" eputs (" 2
");

");eputs (” eputs (" 3 ");
");eputs (" eputs (" 9 ");
") ;eputs (" eputs (" 5 ”);
");eputs (" ");

Xrou = 1 1 ;colsC13 cols[23 
cols[33 
c o l s C O 3 
cols[53 cols[6 ] cols[7 3 cols[83
3

6 ;25;
W ,63;
18;37;56;
75;

float min_constraint (int joint) 
{float minimum;
switch (joint)

{case 1 : minimum = break; -360;
case 2 : minimum = break; -5;
case 3 : minimum = break; -90;
case (i ■ minimum = break; - 1 0 ;
case
}urn

5 : minimum = break; -360;

(mini mum);

float max_constraint (int joint) 
float maximum; 
switch (joint)

case 1 : maximum break; = 360;
case 2 :> maximum break; 30;
case 3 : maximum 

break; = 90;
case 9 :- maximum 

break; 1 90;
case
}

5 :: maximum break; 360;
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return (maximum);
}

char one_solution (int index, f_4_5 accepted_theta, f_5 move_theta)
{char move; int j;
locate (23, 2 0 );cprintf ("Solution %d is obtainable", index);lcputs (24, 20, "Perform move? (y/n)");
locate (24, 42 );move = toupper(getch( ));if (move == 'Y ')for (j = 1; j <= 5; j +■ +)move_theta[j ] = accepted_theta[index][j ] ; return (move );
]

char multiple_solutions (int accepted, f_4_5 accepted_theta,int inbounds, i_4 inbounds_index, i_4 out, f_5 move_theta)
{int r; 
char Xprompt; int cont; int set; char move; int 3 ;
locate (2 2 , 2 0 );cprintf ("Solutions %d", inbounds_index[ 1 ]); for (i = 2 ; i <= inbounds- 1 ; r + +)cprintf (", %d", inbounds_index[i]); cprintf (" and %d are obtainable.", inbounds_index[inbounds]); prompt = "Select set for a move or 0 to abort:"; do

{set = prompt_input_digit (prompt); if ( set == 0 ) cont = 0 ; elseif ( (set <= accepted) & (outHset] == 0 ) ) cont = 0 ; elsecont = 1 ;
3uhile ( cont ); locate (24, 20);cprintf ("Solution %d has been selected", set); if ( set == 0 )move = 'N ';else

{move = 'Y’;fox (j = 1; j <= 5; j++)
move_theta[j3 = accepted_theta[set3 [j3;

3return (move );
3

void position_orientation_move (f 5 theta, f 5 move_theta)
{int rou; i_ 2  cols; int i;int interrupt_count;
dsply_pos_orient_move (&rou, cols); 
for (i = 1; i <= 5; i++)
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leprintf (rou+i-1 , colsCO], thetaCi]); 
leprintf (rou+i-1 , cols[1 ], move_thetaCi ] );
}uait_then_erase (24); 

interrupt_count = 0 ; 
for (i = 1; i <= 5; i++)

{perform_move (i, theta, move_thetaCi], rou+i-1, colsCO]); 
if ( fabs(theta[i] - move_thetaCi]) < tolerance ) 

lcputs (rou+i-1, colsC2], "Yes"); 
else 

C
lcputs (rou+i-1, colsC2], ” No"); 
interrupt_count++;
}

]if ( interrupt_count == 0 )
C
lcputs (23, 15, "notion completed; "); 
eputs ("Position-Orientation achieved");
}

else
C
lcputs (23, 15, "Some motion interrupted; "); 
eputs ("Position-Orientation not achieved");
}uait_then_erase (9);

]

void dsply_pos_orient_move (int Xrou, i_ 2  cols)
{int lm; 
int rm;
lm = 2 0 ; 
rm = 2 0 ;
locate (16, 0 );
mcputs (lm, rm, it (loving ");mcputs (lm, rm. "Theta Current Desired Completed");
mcputs (lm, rm, " 1 ");mcputs (lm, rm, " 2 ");mcputs (lm, rm, " 3 ");mcputs (lm, rm, " 4 ");mcputs (lm, rm, " 5 ");
Xrou = 18>cols CO] = 27 >
cols C1 ] = 39
colsC2] = 54; 
]



APPENDIX F

VELOCITY CONTROL PROCEDURES LISTING
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^include <c:\ed'sNheader.c>
void velocity_control (f_5 original_theta, f_3_2 original_noap,int rou, i <+ cols)

int i;int j;f 5 theta;
f_3_2 noap;
char *prompt_msg1 ;
char *prompt_msg2 ;char qc;int opt;f 5 dtheta;delta_trans_rot;
for (i = 1 ; i <= 5; i++)

{thetaEi] = original_theta[i ]; dthetaEi] = 0 ;
3for (i - 1 ; i <= 6 ; i++)delta_trans_rot[i3 = 0 ; for (i = 0 ; i <= 3; i++) for (j = 0 ; j <= 2 ; j++)

noapCilCj] = original_noap[i3Cj3;
dsply_velocity_introduction C ); wait_then_erase (9); dsply_vc_selection ( ); while ((opt = get_option(3 ) ) != 0 )

{prompt_msg1 = "Enter New Theta Values? (Y/N)"; prompt__msg2 = "(<N> = continue with previous values)"; qc = prompt_input char Cprompt_msg1 , pronpt_msg2 ); if (qc == 'Y')
{get_theta (theta, rou, colsC93); noap_matrix (theta, noap, row, cols);
3uait_then_erase (9); switch (opt)
{case 1 : for_sol_via_jac (theta, dtheta);break;case 2 : rev_sol_via_ij (theta, delta_trans_rot); break;case 3 : rev_sol_via_deriv (theta, noap, delta_trans_rot); break;
}dsply_vc_selection ( );

}wait_then_erase (8 );
noap_*atrix (original_theta, original_noap, row, cols);

void dsply velocity introduction ( )
{int lm; 
int rm;
locate (8 , 0 ); lm = 16; rm = 16;
mcputs (lm, rm, " Velocity Control ");mcputs (lm, rm, " This section calculates the velocities of ");mcputs (lm, rm, "the end coordinate frame or the joint variables.");mcputs (lm, rm, " Options: ");
mcputs (lm, rm, " 1) Forward Solutions via Jacobian ");mcputs (lm, rm, " -the end coordinate frame rates resulting ");
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mcputs (lm, rm, tl from a given set of joint rates are found ");mcputs (lm, rm. »T 2 ) Reverse Solutions via Inverse Jacobian ");mcputs (lm, rm. t t -the joint rates resulting from a given set ") ;mcputs (lm. rm, 11 of coordinate frame rates are obtained " );mcputs (lm, rm. f t using matrix algebra ");mcputs (lm, rm, tl 3) Reverse Solutions via Derivatives ");mcputs (lm, rm, II -the joint rates resulting from a given set ");mcputs (lm. rm, ft of coordinate frame rates are obtained from”);mcputs (lm. rm, ft derivatives of the position-orientation ");mcputs (lm, rm, t l equations ” );
}

void dsply_vc_selection ()
{int r; int c;
r = 1 0 ; c = 2 0 ;locate (9, 0) Jlcputs (r, c, "Solution Options ft);lcputs (r+2 . c. " 1 : Foruard Solutions via Jacobian Matrix ");lcputs (r+<+, c, "2 : Reverse Solutions via Inverse Jacobian" ) ;lcputs (r+ 6 , c, "3: Reverse Solutions via Derivatives ");lcputs (r+ 8 , c, "0 : Terminate Velocity Control tt);
3

void get theta (f_5 theta, int rou, int col)
{int i;float value;char *prompt_msg;
for Ci = 1; i <= 5; i++)

{prompt_msg = "Enter value for Theta"; value = prompt_input_fixed (prompt_msg, i); if (value != 1 0 0 0 ) thetati] = value;leprintf (rou+i-2 , col, thetati]);
3

3
void for_sol_via_jac (f_5 theta, f_5 dtheta)

{int i;f 5 s;f_5 c;int row;i_ 6  cols;f_6_5 jacobian;f~6 ~ drate;char query_ch;
sin_cos (theta, s, c); do

{dsply_jacobian (&rou, cols);calc_jacobian (s, c, jacobian, rou, cols);get_delta_theta (dtheta, rou, cols[63);calc_list_rates (drate, dtheta, jacobian, rou, cols[53); query_ch = cont C'neu Jacobian and/or theta rates");
3uhile ( query_ch == ' Y* ) ;

void dsply_jacobian (int Xrou, i_ 6  cols) 
locate (9, 0);
mcputs (23, 23, "Foruard Solutions via the Jacobian");
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eputseputseputs
eputseputseputseputseputseputseputseputseputseputseputs

(" Delta Rates Jacobian ");
(" ");(" ! 11 11(" 1 1 1 1 !");("! 11 t1(” 1 1 » 1 !") ;("! j = 11 ");(" ! x ! 1" >;C" | 1i 1lC" > i t i !");c"; 11 11 ");c" i i i i !");
( " | 11 11 ii ");

X r o u  = 11;  cols[03 = 1 Cf; cols[1 ] = 25; cols[2J = 36; cols[3] = 47; cols[4] = 58; 
cols[5] = 1;cols[6 ] = 71;
}

void calc_jacobian (f_5 s, f_5 c, f_6_5 jacobian, int rou, i_5 cols)
{f_ 1 2 f;int i;int 3 *

/x Misc Factors, Columns 1-4 X/
f CO D = d5XsC4] + a3; f[1 ] = fC0]xc[3] + a2; f [ 2 3 = f[1]xc[2] + d5XS[2]Xc[4]; f[3] = f[0]XS [3]; /x Jacobian Column 1 x/
jacobianC1 ][1 ] = jacobian[23[ID = jacobian[3][13 = 
jacobian[43C13 = jacobian[53[13 = jacobian[63[13 =
f[43 = f[13*s[23
jacobianM 3 [23 = jacobian[23[23 = jacobian[33[23 = jacobian[43[23 = jacobian[53[23 = jacobian[ 6 3[23 =

-f[2 ]xs [ 1 3 - f[33*cC13; f[2 ]xc [ 1 3 - f[33XS[13;
0 ;
0 ;
0 ;
1 ; /X Misc Factor, Column 2 X/

- d5Xc[23Xc[43;/X Jacobian Column 2 X/-f[43*c[13;-f[43*s[13; f [23; 
s [ 1  3;

- c [ i 3; o; /X Misc Factors, Columns 3 & 4 X/
f [ 5  3 = c[2 3*s[3 3; f [ 6  3 = f[5 3Xc[13 + c[3 3Xs[ 1 3; 
f[7 3 = f[53*s[13 - c[33Xc[13; /X Jacobian Column 3 X/
jacobian[13[33 = -f[03*f[63; jacobian[2 3 C 3 3 = -f[03*f[73; jacobian[33[33 = -f[33Xs[23; jacobian[43[33 = -c [13Xs [23; jacobian[53[33 = -s [13Xs [23; 
jacobian[63[33 = c[23; /X Misc Factors, Columns 4 & 5 X/ 
f[83 = c[13XC[23Xe[33 - s[13xs[33;f[9 3 = s [ 1 3xc[23Xc[33 + c[13xs[33;f[103 = c[13XS[23; 
fC113 = s[l3xs[23; f[12 3 = s[23XC[33; /X Jacobian Column 4 X/
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jacobianCI 3[4] jacobian[23[43 j acobian[3][4] jacobian[4][4 3 j acobian[5][4] 
j acobian[6][4]
jacobianC1 3 [53 j acobian[23 C 5] jacobian[3 3[5 3 jacobian[4][5] 
j acobian[5][5 3 j acobianC 6 ][5]

d5*(f[ 8 3*c[4 3 - d5*(f[ 93*c[43 - d5*(f[123*c[43 + f [ 6 ] ; 
f [73;s[23*s[33;

/x

f[103*s[43); 
f r11 3*s[4 3); c[ 2 3*s[4 3 );

Jacobian Column
0;
0 ;
0 ;
fC 8 3*s[4 3 fC 9 3*s[4 3 f[123*s[43

+ f[10]XC[4 3 + f[113*c[43 - c[ 23*cC43

5 x/

for (j = 1 ; j <= 5; j++) for Ci = 1 ; i <= 6 ; i + +)
leprintf (rou+i-1 , cols[j-13,

3
jacobian[i 3[j 3);

void get_delta_theta (f_5 dtheta, int r, int c)
{int i;float value;char Xprompt_msg;
for (i = 1; i <= 5 ;  i++)

{locate (23, 2 0 ) ;cprintf ("Enter value for Delta Theta %d <Snnn.nnn>: ", i); lcputs (24, 22, ”<Return> only to leave unchanged as"); leprintf (24, 58, dtheta[i3); value = indec (23, 63); if (value != 1 0 0 0 )
dtheta[i3 = value; erase_prompt (23); lcprintf8 (r+i-1 , c, dtheta[i3);

3

void calc_list_rates (f_ 6  drate, f_5 dtheta, f_6_5 jacobian,int r, int c)
{int i; int j;
for (i = 1 ; i <= 6 ; i++)

{drate[i3 = 0 ;for (j = 1 ; j <= 5; j++)
drate[i3 += jacobian[i3[j3 * dtheta[j3; leprintf (r+i-1 , c, drateti3);

}

char cont (char Xmsg)
{char answer;
save_screen ( );lcputs (23, 20, "Continue with "); eputs (msg);
lcputs (24, 20, "but same Theta values? (y/n)");locate (24, 50);answer = toupper ( getch ( ) );erase_prompt (9);
return (answer);
}

void rev_sol_via_ij (f_5 theta, f_ 6  delta_trans_rot)
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int i;
f_5 s;f _5 c;int rou;
i_5 cols;f_6_5 jacobian; 
i_6 used;int t;f_6_5 jacobian_reduced; f_6 delta_tr_reduced; f_5 delta_theta;
int ic;char qc;
sin_cos (theta, s, c); do

{dsply_rsvij_jacobian (Srou, cols);calc_jacobian (s, c, jacobian, rou, cols);t = get_required_rates (delta_trans_rot, jacobian, used,j acobian_reduced, delta_tr_reduced, row, cols);uait_then_erase (TO); rf ( (t > 0) & (t < 6) )
{lcputs (10, 30, "Under-Determined Case”);ic = under_determined_case (t, jacobian_reduced,delta_tr_reduced, delta_theta );
}if ( t == 6 )
{lcputs (10, 30, "Over-Determined Case");ic = over_determined_case (jacobian, delta_trans_rot,delta_theta);
}if ( (t > 0) & ( !ic) )list_input_output (delta_trans_rot, used, delta_theta); qc = cont ("different Jacobian and/or rates");

}uhile ( qc == 'Y' );

void dsply_rsvij_jacobian (int Xrou, i_5 cols)
locate (9, 0); mcputs (21,  21 , "Reverse Solutions via Inverse Jacobian");mcputs (21,  21 , V

" ) ;eputs ( "  Delta Rates Jacobian " ) ;
eputs ( "  eputs ( "  l 1  1 

i  1
" ) ;

" ) ;eputs (" ! Id Tl | ");eputs (" l »  » 
1 1 ");eputs ( " 1 Id T2 | " ) ;eputs ( "  l " ) ;eputs ( " !  x J d T3 | " ) ;eputs ( "  l 1  l 
1 l " ) ;eputs ( " 1 Id T4 | ” ) ;eputs ( "  !
1  1 
1 1 " ) ;eputs ( " 1 Id T5 | " ) ;eputs ( "  l 1  ! 
1  1 " ) ;eputs ( "

i
1 " ) ;

Xrou =  12; colsCO] =  17; colst1]  =  28; 
cols[2] =  39; cols[3] =  50; cols[4 ]  =  61 ;  

cols[5] =  2; 
}

)
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int get_required_rates (f_6 delta_trans_rot, f_6_5 jacobiani i_6 used,
f_6_5 jacobian_reduced, f_6 delta_tr_reduced, int rou, i_5 cols)

{c_6_9 rate_lbl; 
int i;int j;char Kline 1;
char qc;float value;int total;
total = 0;strcpy(rate_lbl [ 1 3 ,strcpy(rate_lbl[ 2 ] ,strcpy(rate_lbl[3],strcpy(rate_lbl[4],st rcpy Crate_lbl[5] ,strcpy(rate_lbl[6] ,

"transl x”); "transl y"); "transl z"); "rotate x"); "rotate y"); "rotate z");
for (i = 1; i <= 6; i++)

{lcputs (23, 20, "flake d "); eputs (rate_lbl[i]);eputs (" a command variable? (y/n) ");locate (23, 63);qc = toupper(getchC ));erase_prompt (23);if ( qc != ’N ' )
{total++; used Ci ] = 1;for (j = 1; j <= 5; j++)jacobian_reduced[total ][j ] = jacobianCi][j3; lcputs (23, 20, "Enter d "); eputs (rate_lbl[i]); 
eputs (" : ");lcputs (24, 22, "<Return> only to leave value unchanged as"); leprintf (24, 64, delta_trans_rot[i]); value = indec (23, 40); if ( value != 1000 )delta_trans_rot[i] = value; erase_prompt (23);leprintf (rou+i-1, cols[5], delta_trans_rot[i }); 
delta_tr_reducedttotal] = delta_trans_rotCi];
}else
{usedti] = 0;lcputs (rou+i-1, colsC5], " unused ");
}

}return (total);
}

int over_determined_case (f_6_5 jacobian, f_6 delta_trans_rot,
f_5 delta_theta)

{f_5_5 m; f 5 v;
O  y;char Ksubhead;int inconsistent;
subhead = "1. fl = (J Transpose) x J"; 
matrix_by_matrix (6, jacobian, m, subhead); subhead = "2. V = (J Transpose) X T/R Rates"; matrix_by_vector (jacobian, 6, delta_trans_rot, v, subhead); subhead = "3. Solve M X Theta Rates-= V";-
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inconsistent = solve_simul_eqns_myv (m, v, 5, delta_theta, subhead); return (inconsistent);
}

int under_determined_case (int total, f_6_5 jacobian_reduced,f_6 delta_tr_reduced, f_5 delta_theta)
{int i;f_5_5 m;f_5 dtr_5;
f_5 y;char Xsubhead;int inconsistent;
subhead = "1. M = J Reduced X (J Reduced Transpose)"; matrix_by_matrix (total, jacobian_reduced, m, subhead); for (i = 1; i <= total; i++)dtr_5[i] = delta_tr_reduced[i]; subhead = "2. Solve D X V = d trans/rot rates";inconsistent = solve_simul_eqns_myv (m, dtr_5, total, y, subhead); if ( inconsistent = = 0 )

{subhead = "3. d Theta = (J Reduced Transpose) X Y"; matrix_by_vector (jacobian_reduced, total, y, delta_theta,subhead);
}return (inconsistent);

}
void matrix_by matrix (int total, f_6_5 mparm, f_5_5 m, char Xsubhead)

{int i; int j; int k; int size; int length; int rou; i_5 cols;
dsply_m (subhead, &rou, cols); if ( total == 6 )

{size = 5; length = 6;
}else
{size -  total; length ~ 5;
}for (i = 1; i <= size; i++)for (j = 1; j <= size; j++)
{m[i] [ j ] = 0;for (k = 1; k <= length; k++) if ( total == 6 )

mtilCj] += mparm[k][i] X mparmCkltj]; else
m[i][jl += mparm[i][k] x mparm[j][k]; leprintf (rou+i-1, cols[j], mtiKj]);

}uait_then erase (11);
}

void dsply m (char
{lcputs (11, 20, locate (13, 0); eputs (" eputs ("

Xsubhead, int Xrou, 
subhead);

i 5 cols)

" ) ;
" ) ;ii
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eputs (" 
eputs ("

t
1 11 ");eputs (" 1l ");

eputs (" eputs (" I
1

1
1 "); ");eputs (" eputs (" 1

1

1
1 ");

eputs (" xrou = 13;
t
t ");

colsC13 = 11; colsC2] = 23; colsC3] = 35; colsC4] = 47; colsC5] = 59;

void matrix_by_vector (f_6_5 jac_parm, int total, f_5 vec, f_5char Xsubhead)
{int i; int j; int rou; i_7 cols;
dsply_m_by_v (subhead, &rou, cols); 
for (i = 1; i <= total; i++) for (j = 1; j <= 5; j++)lcprintf8 (rou+j-1, colsCi], jac_parm[i]Cj]); for (i = 1; i <= total; i++)lcprintf8 (rou+i-1, colsC7], vecCi]); for (i = 1; i <= 5; i++)

{resultCi] = 0;for (j = 1; j <= total; j++)resultCi] += jac_parmCj ] Ci] X vecCj]; leprintf (rou+i-1, colsCO], resultCi]);
]uait_then_erase (11);

}
void dsply_jn_by_v (char Xsubhead, int Xrou, i_7 cols)

lcputs (11, 20, locate (13, 0);
subhead);

eputs ("| i i i i ");eputs (" ! ! ’’);eputs (’’! i i i i ");eputs (" ! ! ");eputs ("j j — J ");eputs (" X | ! ");eputs ("! i ii ieputs (" 1 ! ”);eputs (•'! i t i ieputs ("Xrou = 13; colsCO] = 1; 
colsC13 = 15; colsC2] = 24; cols C 3 ] = 33; cols C 4 ] = 42; 
cols C5 ] = 51; colsC6] = 60; cols C7] = 71;

! ! ");

void list_input output (f_6 delta_tran_rot, i_6 used, f 5 delta
Cint i; 
i_1 rou; int col;

result,

theta)
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dsply_in_out (rou, &col); 
for (i = 1; i <= 6; i++) if ( usedCi] )leprintf (rou[0]+i-1, col, delta_tran_rot[i]); 
for (i = 1; i <= 5; i++)leprintf (rou[1]+i-1, col, delta_theta[i] );
}

void dsply_in_out Ci_1 rou, int Xcol)
lint lm; int rm;
lm = 1 8 ; rm = 17;locate (11 , 0);
mcputs (lm, rm, "Input: Delta Translational & Rotational Rates" ) ;mcputs (lm, rm, 11 1 dtx | 11 unused ! ");mcputs (lm, rm, »1 jdty ! 1\ unused \ ");mcputs (lm. rm, 11 ! dtz! = | unused | ");mcputs (lm, rm, tt ! drx! ii unused ! " );mcputs (lm, rm. t t jdry j ii unused | ")';mcputs (lm. rm, (1 ! drz | ii unused ! ");mcputs (lm, rm, <1 Output: Delta Theta Rates ");mcputs (lm, rm, It ! dT1 | 1\ 11 ");mcputs (lm, rm, It I dT2 i 1l 11 ");mcputs (lm, rm, It ! dT3 ! = J 11 ");mcputs (lm. rm, tl ! dT4 ! 11 11 ”);mcputs (lm, rm, tt ! dT5 | 1t 1

1 ");
rou[0] = 12; 
rout 1] = 19;Xcol = 40;
}

int solve_simul_eqns_myv (f_5 5 m, f_5 v, int n, f_5 y, char Xsubhead)
{int i;int j;int k;int rou;i_7 cols;int inconsistent;
dsply_soln_myv (subhead, &rou, cols); for (j = 1; j  < = n; j++) for (i = 1; i <= n; i++)leprintf (rou+i-1, cols[j], mCi][j]); for (i = 1; i <= n; i++)

{locate (rou+i-1, colsE6]);cprintf ("Y(%d)", i);
leprintf (rou+i-1, cols[73, v[i]);
}

inconsistent = 0;uhile ( ( k <= n ) & ( inconsistent) )
{if ( fabs(mEk][k]) < tolerance )

inconsistent = interchange_rous (m, v, k, n, rou, cols); if ( .'inconsistent )
{zero_column_k (m, v, k, n, rou, cols); k++;
}

if ( !inconsistent )
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solve_y_vector (m, v, n, y, row, cols); 
else 

{locate (22, 20);eputs ("Equations Inconsistent; No Solution");
}uait_then_erase (11); 

return (inconsistent);
)

void dsply_soln_myv (char ^subhead, int Xrou, i_7 cols) 
{lcputs (11, 20, subhead); locate (13, 0); eputs ("!eputs (" , ' | tJ 1t :••); ");
eputs (",'eputs (" ! ! I1 11 !"); ");
eputs ("|eputs (" | X | 1 s 11 !"); " );
eputs ("| eputs (" l1 ei !"); ");
eputs ("|eputs (" ! ! 11 ii !*');

");
Xrou = 13; colsC13= 1;cols[23 = 12; cols[33 = 23; cols[43 = 34; cols[53 = 45; cols[63 = 60; cols[73 = 69;
}

int interchange_rous (f_5_5 m, f_5 v, int k, int n, int rou, i_7 cols)
{int i;int j;float temp;int inconsistent;
i = k + 1 ;uhile ( ( fabs(m[i3Ck3) < tolerance ) & ( i <= n ) )

i++;if ( i <= n)
{for (j = k; j <= n; j++)

{temp = m[k 3[j 3; mCk 3 C j 3 = mCi 3 C j 3;leprintf-(row+k-1, cols[j3, m[k3Cj3); mCi 3[j ] = temp;leprintf (rou+i-1, cols[j3, m[i3Cj3); pause (500);
3temp = v[k3; 

v[k3 = v[i3;leprintf (row+k-1, cols[63, v[k3); v[i3 = temp;leprintf (rou+i-1, colsC73, v[i3); pause (500);
inconsistent = 0;
}elseinconsistent = 1 ; 

return (inconsistent);
}

void zero_column_k (f_5_5 m, f_5 v, int k, int n, int row, i_7 cols)
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{int i ;int j;float f;
for (i = k +1; i <= n; i + + )

if = -m[i][k] / mCk][k3;for (j = k; j <= n; j + +)
{m[i][j] = mtiJCj] + f x m[k]["]; if ( j == k )leprintf (rou+i-1, colsEj], 0); elseleprintf (rou+i-1, colstj], m[i][j]); pause (500 );
}v[i] = v[i] + f * v[k];leprintf (rou+i-1, colsC7], vti]);pause (500);

}
}

void solve_y_vector (f_5_5 m, f_5 v, int n, f 5 y, int rou, i_7 cols)
{int i; int j;
for (i = n; i > = 1; i— )

Cfor (j = i+1; j <= n; j++)
{v[i] = v[i] - m[i ] [j ] * y [ j ]; leprintf (rou+i-1, colsEj], 0); leprintf (rou+i-1, cols[7], v[i]); pause (500);
}y[i] = v[i] / m[i][i]; leprintf (rou+i-1, colsLi], 1); leprintf (rou+i-1, cols[7], y[i]); pause (500 ) ;

}
}

void rev_sol_via_deriv (f_5 theta, f_3_2 noap, f_6 delta_trans_rot)
{int i ;f_5 s;f_5 c;char query_ch;f_3_2 dnoap;int mr;i_3 me;
i_1 vr;i_1 vc;f_5 dtheta;
sin_cos (theta, s, c);lcputs (1, 0, "here "); cprintf ("%8.3f", s[3]); dsply_rsvd (&mr, me, vr, vc); do

{/X get_delta_trans_rot (delta_trans_rot, vr[0], vc[03);*/delta_trans_rot[1] = 196.548;
delta_trans_rot[2] = 64.286;delta_trans_rot[3] = -75.924;delta_trans_rot[4] = 0.107;
delta_trans_rotC5] = 0.341;delta_trans_rot[6] = 1.085;calc_delta_noap (noap, delta_trans_rot, dnoap, me, mr);
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calc_delta__theta (s, c, dnoap, noap, dtheta, vr[1], vcC1])» query_ch = cont ("different rates");
}uhile ( query_ch == 'Y ’ );

}
void dsply_rsvd (int Kmr, i_3 me, i 1 vr, i_1 vc)

{int lm; int rm;
lm = 16; rm = 15;locate (9, 0);mcputs (lm, rm, ' Reverse Solutions via Derivativesmcputs (lm, rm. ' Delta Trans & Rots Delta Thetasmcputs (lm, rm, ' !tx! ! I1 !DT1! !mcputs (lm, rm. 1 :tyi 11 ! DT2! !mcputs (lm. rm. • !tz| = 1 11 : DT3! = !mcputs (lm, rm, ' |rx| j 11 ! DT4 !mcputs (lm, rm, 1 !ry! ! 11 !DT5| |mcputs (lm, rm, ’ |rz! ! 11mcputs (lm, rm.
mcputs (lm. rm, dN dO dA dPmcputs dm. rm. , r
mcputs (lm, rm, ’dT: !
mcputs (lm, rm, i i imcputs (lm, rm. T 1 1 0 0 0 1
vrCOj = 11; veto] = 25; vr[1] = 11; vc[1] = 53;*mr = 19; me[0] = 21; me[1] - 32; me[2] = 43; me[3 ] = 54;
}

void get_delta_trans_rot (f_6 delta_trans_rot, int vr, int vc)
{int i; float value; c 6 9 rate lbl;
strcpy(rate_lbl[1], strcpy(rate_lbl[2], strcpy(rate_lbl[3], strcpy(rate_lbl[4 J, strcpy(rate_lbl[5], strcpy(rate_lbl[6],

"transl X")
"transl y")"transl z")
"rotate X")"rotate y " )
"rotate z" )

t l )
t t )
t t )
t t )
t t )
t t )
t t )
f t )
t l )
t t )

1 t t )
I f t )
l t t )
1 It )

for (i = 1; i <= 6; i++)
{lcputs (23, 20, "Enter d "); eputs (rate_lbl[i]); eputs (” : ");lcputs (24, 22, "<Return> only to leave value unchanged as"); leprintf (24, 64, delta_trans_rotCi3); value = indec (23, 40); if ( value != 1000 )delta_trans_rot[il = value; 
erase_prompt (23);leprintf (vr+i-1, vc, delta_trans_rot[i]);
}

void calc_delta_noap (f_3_2 noap, f_6 dtr, f_3_2 dnoap,i_3 me, int mr)
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{int i; 
int j;
for (i = 0; i <=

{dnoapti][0] = dnoap[i 3 C 1 3 = dnoap[i][2] = 
}

2; i + +)
-noap[i][13*dtrC63 noap[i][0]Xdtr[6] 
-noap[i3C03*dtr[53

+ noapti3C2 3*dtr[53; - noapCi3[2 3*dtrC43; + noap[i3[1 3*dtr[4 ];

for (i = 0; i < = dnoap[33[i3 =
2; i + + ) dtr[i+1 ];

for (i = 0; i <= 3; i + +)for (j = 0; j <= 2 ;  j++)leprintf (mr+j, icti], dnoap[i3Cj3 );
}

void calc_delta_theta (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap,f_5 dtheta, int vr, int vc)
{int div_zero; int i;
delta_theta312 (s, c, dnoap, noap, dtheta, &div_zero); if ( !div_zero )

{delta_theta4 (s, c, dnoap, noap, dtheta); delta_theta5 Cs, c, dnoap, noap, dtheta); for Ci = 1; i <= 5; i + + )leprintf (vr+i-1, vc, dthetati]);
}else
{locate (22, 20);cprintf ("Zero Divide for Theta %d => No Solution", div_zero);
}

void delta_theta312 (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap, f_5 dtheta,int Xdiv zero)
int i;f 2 arm;f_2 darn;float denominator;float factor;
xdiv_zero = 0;
for (i = 0; i <= 2;

Carmti] = noap[3][i] - d5X noap[2][i]; darm[i] = dnoap[3][il - d5Xdnoap[21Ci ] ;
}lcputs (1, 0, "here 1");if ( fabs(s[3]) > tolerance )

dthetaC33 = -(arjn[0]*darm[03 +arm[ 1 ]Xdarm[ 1 ] +armL2]XdarmC2] )/ (a2Xa3xs[33);else
*div_zero = 3; lcputs (2, 0, "here 2");

if ( fabs(denominator = arm[0]*c[1] + arm[1]*sC1 ]) > tolerance )dtheta[1] = ( c[1]Xdarm[1] -s[1]xdarm[03 - a3*c[33XdthetaC33 ) / denominator;else
*div_zero = U  lcputs (3, 0, "here 3");

if ( fabs(factor = a3Xc[33 + a2) > tolerance )
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if ( fabs(c[2]) > tolerance )dthetaC23 = (a3*s[2]Xs[3]XdthetaC3 ] + darmC23)/ (c[2]xfactor);
elsedtheta[2] = ( ctl3XdarmC03 t s [1]Xdarm[1]+ (c[1JXarmC1] - sC13XarmC03) x dtheta[1]+ a3Xc[2]Xs[3]Xdtheta[33 )/ (-s[2]xfactor ) ;

elsexdiv_zero = 2;lcputs (4, 0, "here 4");
}

void delta_theta4 (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap, f_5 dtheta)
{float f1; float f2; float result;
f1 = noap[2][0]XsC1] - noapC2]C13Xc[1 ] ; f2 = noap[23[03XC[1 3 + noap[23[13xs[13; if C fabs Cst43) > tolerance )dtheta[43 = ( -cC13XsC23XdnoapC23t03 + -s C13xs[23xdnoap[23C1 3 + ct 23Xdnoap123123 + f1XsC23Xdtheta[13+ -(f2Xc[2 3 + dnoap[23C23XsC23 ) xdtheta[2 3 ) / s[43;elsedtheta[4 3 = C Cct13Xc[23XcC33 - s[13Xs[33 )Xdnoap[23C03 + Cst13xc[23XcC33 + ct1jxs[33)xdnoap[23[13 

+ s[23Xc[33Xdnoap[23[23 + (-f1xc[23Xc[33 - f2XS[33)xdtheta[13 + (-f2Xs[23 + noapC23[23Xc[23)Xc[33xdtheta[23 +■ (C-f2*c[23 - noap[23t23xs[23 )XS[33 - f1XC[33)Xdtheta[33 ) / c[43;
3

void delta_theta5 (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap, f_5 dtheta)
{float f1; float f2; float result;
if ( fabs (sC53) > tolerance )

{f1 = -noap[13[03Xs[ 1 3 + noap[13[13XcC13; 
f2 = noapt13 CO3Xc[1 3 + noap[13C13Xs[13; dtheta[53 = ( (c[13Xc[23XsC33 + s [13XcC33)xdnoap[13[03 + (s[13XcC23XsC33 - c[13XC[33 )xdnoap[13[13 + s[23Xs[33Xdnoap[ 1 3C23 

+ ( f1xc[23XS [33 + f2XC[33)Xdtheta[1 3 + C-f2Xs[23 + noap[13[23Xc[23)Xs[33Xdtheta[23 t ((f2XcC2 3 + noap[13C23Xs[23)Xc[33 + f1xs[33> x dtheta[33 )/ -s[53;
}else
Cf1 = -noap[03C0]XsC13 + noapt03C13xcC13; f2 = noapt03C03XcC13 + noapt03[13xst13; dthetaC5 3 = ( (ct13XcC23XsC33 + s113Xc[33)xdnoap103C03 + (st13XcC23XsC3] - ct13XcC33 )xdnoap[03C1 3 + s[23XsC33xdnoapCO3C23 + ( f1XcC23XsC33 + f2XC[33)Xdtheta[13 + C-f2Xs[2 3 + noapC03C23Xct23)Xs[3]Xdthetat2]+ ((f2xc t2 3 + noapC03C23XsC23 )XcC33 + f1xsC33) x dtheta[3 3 )/ cC53;

}
}



APPENDIX G

TRAJECTORY CONTROL PROCEDURES LISTING
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^include <c :\ed' sNheader. c>
void trajectory_control ( )

{int n ;f_5_10 theta;f_9 t;f_5_9 a; f_5_9 b; f_5_9 c; f 5 9 d; f~5~9 e; f_5 theta_lb;f_5 theta_hb;f_5 theta_viax;f_5 theta_amax;float f;float f_current;
int i;int j;char *prompt_msg1;char *prompt_msg2;
char qc;
dsply_trajectory_introduction ( );uait_then_erase (9); 
for (i = 1; i <= 5; i++)for (j = 1; j <= 10; j++)thetatiHj] = 0; do

{n = nodes_and_distances (theta, tl; f = 1000000;
for Ci = 1; i <= 5; i++)

{lcputs (9, 29, "Trajectory for Joint "); cprintf ("%d", i);calc_polynomials (n, thetaEi], t, a[i3, b[i3, c[i3, d[i], eCi]);theta_lb[i] = -360; theta„hb[i] = 360;critical_positions (n, aCi], b[i], cli], d[i], eCi], t,theta_lbti], theta_hb[i3);theta_vmax[i3 = 100; theta_amax[i3 = 100;f_current = traj_scaling (n, b[i3, c[i3, d[i3, e[i3, t,theta_vinax[i3 , theta_amax[i 3 ) ;if ( f_current < f ) f = f_current;
3determine_positions (a, b, c, d, e, n, t, f);

prompt_msg1 = "Continue with a new trajectory determination? (y/n)"; prompt_msg2 =qc = prompt_input_char (prompt_msg1, prompt_msg2);
}while ( qc == 'Y' ); uait_then erase (8);

3
void dsply_trajectory_introduction ( )

{int lm; int rm;
locate (8, 0); lm = 16; rm = 16; mcputs (lm, rm, 
mcputs (lm, rm, »» Trajectory Control
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mcputs (lm, rm,
mcputs (lm, rm,
mcputs (lm. rm,
mcputs (lm, rm,mcputs (lm, rm,mcputs (lm. rm,
mcputs (lm, rm,mcputs (lm, rm,
mcputs (lm. rm.mcputs (lm, rm,mcputs (lm, rm,
mcputs (lm, rm.mcputs (lm, rm,mcputs
3

(lm, rm,

nodes and_dist,
{

’ Thi 
' a set 
'polyn 
'in te 
' tion. 
'steps 
’ 1 )
' 2 )
'  3 )

’ 4)' 5)I
' 6 )

s section creates spline polynomials over a");of path nodes defined by the user. The 
omials created will provide for continuity rms of position, velocity, and accelera- The process takes place in the following
input of trajectory nodes 
determination of node velocities polynomial coefficient derivation spline extrema testsscaling with regards to extreme velocities and accelerationsevaluation of polynomial position at selected times

_5_10 theta, f 9 t)

" >; 
" );

" ) ;  
" ) ;

" ) ;  
" >;

int row; i_6 cols; int n;
dsply_nodes_dists (Xrou, cols); n = input_nodes (theta, rou, cols); calc_distance (n, theta, t, rou, cols[6]); wait_then_erase (10); return (n);
3

void dsply_nodes dists (int Xrou, i_6 cols)
{locate (10, 0);mcputs (21, 20, "Input of Nodes Along Desired Trajectory");
Xrou = 11; cols[03 = 5;cols[13 = 10; cols[23 = 20; cols[33 = 30; cols[4 3 = 40; cols[53 = 50; cols[6] = 60;
3

int input_nodes (f_5 10 p, int rou, i 6 cols)
{int i; int j; int n; float value;
pC 1 ][13 = 0p[2 3[13 = 0
p[33C13 = 0p [ 4 3 [ 1 3 = 0
p [5 3[13 = 0
p[13[23 = 10
p[23[23 = 6
p [ 3 3 [ 2 3 = 20
p [4 3[23 = -5p[53[23 = 180
pC 1 3 [3 3 = 25
p[23[33 = 12
p[33[33 = 40p[4 3 [3 3 = -7p[53[33 = 45
p[13[4 3 = 0p[2 3[4 3 = 0p[3 3[4 3 = 75
p[4 3[4 3 = 22



p[5 ] [4] = 45;pC1 ]C5] = 20;p [2][5 ] = -3;p[3]C5] = 80;
p[4][5] = 12;p [5]C5 ] = -90;p[1][6] = -75;p [2 ] C 6] = 10;p C 3 ] C 6 ] = 60;p [4]C 6 ] = 35;p C 5 ] [ 6 ] = 90;
p C1 ] C 7 ] = -115;p [2]C 7 ] = 25;p [ 3 ] C 7 ] = 50;p [4][7 3 = 65;p [ 5 3 [ 7 ] = -35;n = 7;
do

{lcputs (23, 20, "Number of Nodes (4 to 10):"); n = inint (23, 48); erase_prompt (23);
}uhile ( (n < 4) J (n > 10) );

for (i = 1; i <= n; i++)
{locate (rou+i-1, colsCO]);cprintf ("%2d", i);
for (j = 1; j <= 5; j++)

{locate (23, 20);cprintf ("Enter Theta for node %d, joint %d:", i, j); lcputs (24, 22, "<Return> only to leave unchanged as") leprintf (24, 58, pCj]Ci]); value = indec (23, 53); if ( value != 1000 ) p[j][i] = value;leprintf (rou+i-1, colsCj], p[j][i]); erase_prompt (23);
1

}return (n);
}

void calc_distance (int n, f 5_10 p, f 9 t, int rou, int col)
{int i; int j;
for (i = 1; i <= n-1; i++)

{tCi] = 0;for (j = 1; j < = 5; j + +)tCi] += square (pCj][i+1] - p[j][i]); tCi] = sqrt(t[i]); leprintf (rou+i-1, col, t[i]);
}

void calc_polynomials (int n, f_10 p, f_9 t,
f_9 a, f 9 b, f 9 c, f 9 d, f 9 e) { _ _ _ 

f_9 vel;
calc_node_velocities (n, p, t, vel); 
calc_coefficients (n, p, t, vel, a, b, c, d, e);
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void calc_node_velocities (int n, f_10 p, f 9 t, f_9 vel)
{int rou; 
i_4 cols; f_9_2 coeff; f_9 rhs;
dsply_node_velocities (&rou, cols);equate_quartic_cubic_accs Ct, p, coeff, rhs, rou, cols); equate_cubic_accs (n, t, p, coeff, rhs, rou, cols); equate_cubic_quartic_accs (n, t, p, coeff, rhs, rou, cols); uait_then_continue ( );foruard_eliminate_term1 (n, coeff, rhs, rou, cols); uait_then_continue ( );backuard_eliminate_term3 (n, coeff, rhs, vel, rou, cols); uait_then_erase (10);
}

void dsply_node_velocities (int Xrou, i_4 cols)
{locate (10, 0);
mcputs (33, 32, "Node Velocities");mcputs (16, 15, " i vel(i-1) vel(i) vel(i+1)
Hrou = 12; colsCO] = 17; cols[1] = 19; cols[2 ] = 31; colsC3] = 43; colsC4] = 55;
}

void equate_quartic_cubic_accs (f_9 t, f_10 p, f_9_2 coeff, f_int rou, i_4 cols)
{lcputs (rou, colsCO], "2");
coeff[2] C1 ] = 2*tC1] + 3*tC2]; leprintf (rou, colsC2], coeffC2]C1]);
coeff[2]C2] = tC1];leprintf (rou, colsC3], coeffC2]C2] );
rhs C 2 ] = (6 x tC2]/tCl]) * (pC2] - pC1]) +(3 * t C1]/tC2]) * (pC3 ] - pC2] ); leprintf (rou, colsC4], rhsC2]);
}

void equate_cubic_accs (int n, f_9 t, f_10 p, f_9_2 coeff, f_9int rou, i_4 cols)
{int i;
for (i = 3; i <= n-2; i++)

{locate (rou+i-2, colsCO]); cprintf ("5Sd", i);
coeff Ci)C 0] = tCi];
leprintf (row+i-2, colsCI], coeffCi]CO]);
coeffCi]C1] = 2 * (tCi] + tCi-1]); leprintf (rou+i-2, colsC2], coeffCi] Ct]);
coeffCi]C2] = tCi-1];leprintf (rou+i-2, colsC3], coeffCi ] C2 ]);
rhsti] = 3 x (tCi)/tCi-1]) x (pCi] - pCi-1]) +3 X (tCi-1]/t[i]) K (pCi+1] - pCi]); leprintf (xou+i-2, colsC4], rhsCi]);

rhs");

9 rhs,

rhs,
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)
}

void equate_cubic_quartic_accs (int n, f_9 t, f_10 p, f_9_2f 9 rhs, int rou, i_4 cols)
{locate (row+n-3, colsCO]); cprintf ("%d", n-1);
coeff[n-13[03 = tCn-13;leprintf (rou+n-3, cols[1], coeff[n-1][0]);
coeff[n-1][1] = 2Kt[n-13 + 3Xt[n-23; leprintf (rou+n-3, cols[2], coeff[n-1][1]);
rhs[n-13 = (3 x t[n-13 / tCn-23) x (P [n-13 - p[n-23)+ (6 x t[n-23 / t[n-13) x (p[n3 - p[n-13);leprintf (rou+n-3, cols[43, rhs[n-13);
}

void foruard_eliminate_term1 (int
int

{int i;float multiplier;
for (i = 3; i <= n-1; i++)

{multiplier = -coeff[i][03 / lcputs (rou+i-2, cols[1], " pause (short_pause);
coeff[i][13 = coef f[i 3[13 + leprintf (rou+i-2, cols[23, pause (short_pause);
rhs[i3 = rhsCi] + multiplie leprintf (rou+i-2, cols[43, pause (short_pause);

void backuard_eliminate_term3
{int i;

n, f_9_2 coeff, f_9 rhs, rou, i 9 cols)

coeff[i — 13[13;
" ) ;

multiplier X coeff[i-1][2 
coeff[i 3[13)»

x rhs[i-13; rhs[i 3 );

(int n, f_9_2 coeff, f_9 rhs, int rou, i 4 cols)

leprintf (rou+n-3, cols[23, 1);
vel[n-13 = rhs[n-13 / coeff[n-13[13; leprintf (rou+n-3, cols[4], vel[n-13);
for (i = n-2; i >= 2; i— )

{lcputs (rou+i-2, cols[33, " ");
rhs[i3 = rhs[i3 - coeff[i][2] X vel[i+l3; leprintf (rou+i-2, cols[<+3, rhs[i3); pause (short_pause);
leprintf (rou+i-2, cols[23, 1);
vel[i3 = rhs[i3 / coeff[i3[13; leprintf (rou+i-2, cols[4], vel[i3); pause (short_pause);

calc coefficients (int n, f_10 p, f_9 t, f 9 vel,f_9 a, f~9 b, f_9 c, f_9 d, f_9 e)

coef f,

f_9 vel.

void
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{int rou; 
i_5 cols;
dsply_coefficients (Srow, cols); calc_starting_quartxc (p, t, vel, a, b,calc_intermediate_cubics (n, p, t, vel, a, b,calc_ending_quartic (n, p, t, vel, a, b,uait_then_erase (10);
}

void dsply_coefficients (int Xrou, i_5 cols)
{locate (10, 0);
mcputs (29, 28, "Polynomial Coefficients"); mcputs (18, 13, "A B Cmcputs (18, 13, "Xrou = 12; colsCO] = 9;colsC1] = 13; colsC2] = 25; colsC3] = 37; colsCA] = 99; cols C5 ] = 61 ;
}

void calc_starting_quartic (f_10 p, f_9 t, f_9 vel,
f_9 a, f_9 b, f_9 c, f_9 d, f_9 e, int rou, i 5 cols)

{lcputs (rou, colsCO], " 1"); 
aC1] = pC1);leprintf (rou, colsCI], a[1]); 
bC1 ] = 0;leprintf (row, colsC2], bC1]); 
c[1 ] = 0;leprintf (rou, colsC3], cC1]);
dC1] = ( 4 / pou( t [ 1 ] , 3 ) ) X (p [2 ] - p[1])- ( 1 / square (t C13) ) * velC2];leprintf (rou, colsCA], d(1]);
e C1] = (-3 / pou(t C1 ) ,4 )) x (p[2 ] - pC1])+ ( 1 / pow(t[1 ] ,3)) X vel[2];leprintf (rou, cols[5], eCi]);
}

void calc_intermediate_cubics (int n, f 10 p, f_9 t, f_9 vel,
f_9 a, f~9 b, f_9 c, f_9 d, f_9 int row, i 5 cols)

{int i ;
for (i = 2; i <= n-2; i++)

{locate (rou+i-1, colsCO]); cprintf ("%2d", i);
aCi] = pCi 3;leprintf (rou+i-1, colsCI], aCi]); 
bCi] = velCi];leprintf (rou+i-1, colsC2], b[i]);
c[i] = (3/square (tCi3)) x (p[i+1] - pCi])- (1/t ti] ) X (velti+1] + 2Xvel[i] ); leprintf (rou+i-1, colsC3], cti]);

c, d, e, row
c, d. e, rowc, d, e , rou

cols); 
cols); 
cols);

E" ) 
" )



d[i 3 = -(2/pow(t[i3,3)) x (p[i+1] - pCi])+ (1/square (t C i 3 ) > X (vel[i+13 + velCi]); leprintf (rou+i-1, cols[9], d[i]);
eCi] = 0;
}

void calc_ending_quartic (int n, f_10 p, f_9 t, f_9 vel,f_9 a, f_9 b, f_9 c, f_9 d, f_9 e, int rou, i_5 cols)
{locate (rou+n-2, colsCO]); cprintf ("%2d", n-1);
a [ n -1 ] = p [ n -1 ] ;leprintf (row+n-2, colsCI], a[n-1]); 
b[n-1] = vel[n-1];leprintf (rou+n-2, cols[2], bCn-13);
cCn-1 ] = (6 / square (tCn—1 3)) x (pCn] - p[n-1])- (3 / t[n-1] ) x vel[n-13;
leprintf (rou+n-2, cols[3], c[n-13);
d[n-13 = -(8 / pou(t[n-13,3)) x (p[n3 - p[n-13)+ (3 / square (ttn-13)) x velCn-13;leprintf (rou+n-2, colsCI], d[n-13)j
eCn-13 = (3 / pou(t[n-13,9 ) ) x (p[n3 - p[n-13>- (1 / pou(t[n-13,3)) x vel[n-13;leprintf (rou+n-2, cols[53, eCn-13);
3

void critical_positions (int n, f_9 a, f_9 b, f_9 c, f_9 d, f_9f 9 t, int lb, int hb)
{int rou; i_7 cols; int i;
dsply_crit_pos (&rou, cols);terminal_crit_pos (1, a[13, b C1 3» c[13, d[13, e[13, t[13, lb,rou, cols);
for (i = 2; i <= n-2; i++)intermediate_crit_pos (i, a[i], b[i3, cCi], d[i), t[i3, lbrou+i-1, cols );
terminal_crit_pos (n-1, a[n-13, b[n-13, c[n-13, d[n-13, e[n-1t[n-l3, lb, hb, rou+n-2, cols); uait_then erase (10);
3

void dsply_crit_pos (int Xrou, i_7 cols)
{locate (10 , 0);mcputs (31 , 31,eputs ( eputs (" i time
Xrou = 12;cols[03 = 1 ;colsC13 = <+;cols[2 3 = 15;colsC33 = 27;
colsCI3 = 38;cols[53 = 50;colsC63 = 61;

"Critical Positions"); time positionposition bounds") time position ");
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colsC 7] = 75;
)

void terminal_crit_pos (int i, float a, float b, float c, float d,float e, float t, float lb, float hb, int rou, i_7 cols)
{float q; float r; float discr; int roots;
f_2 tcp;f_2 cp;float x; int j;
locate (rou, colsCO]); cprintf ("%d", i);q = (1 / (2 X e)) X ((c / 3) - square (d) / (8 X e));r = (1 / (8 X e)) X ((d / (2Xe)) X (c - square (d) / (4 X e)) - b);discr = pou (q,3) + square (r);
if ( discr > small_tolerance )

Croots = 1;tcpCO] = cube_root (r + sqrt(discr))+ cube_root (r - sqrt(discr)) - d / (4 X e);
}elseif ( fabs(discr) < small_tolerance )

Croots = 2;tcpCO] = 2Xcube_root (r) - d / (4 X e); tcpCl] = -cube_root (r) - d / (4 X e);
}else
{roots = 3;
x  = atan2(sqrt(-discr), r);tcpCO] = 2 X sqrt(-q) X cos(x/3) - d/(4Xe); 
tepC1] = -sqrt(-q) X ( cos(x/3) + sqrt(3)*sin(x/3))- d/(4Xe);tcp[2] = sqrt(-q) X (-cos(x/3) + sqrt(3)Xsin(x/3))- d/(4*e);
}for ( j  = 0; j  < = roots-1; j++)cpCj] = eval_cp (a, b, c, d, e, tcpCj], t,rou, colsCjX2+1], colsCjX2+2]); for (j = 0; j <= roots-1; j++)check_range (lb, hb, cpCj], rou, colsC7]);

}
void intermediate_crit_pos (int i, float a, float b, float c, float d,float t, float lb, float hb, int rou, i_7 cols)

Cint j;float discr; int roots; f_1 tcp;f_1 cp;
locate (rou, colsCO]); cprintf ("%d", i); discr = square (c) - 3XbXd; if (discr > small_tolerance)

Croots = 2;tcpCO] = (—c + sqrt(discr)) / (3 X d); 
tcpCl] = (—c - sqrt(discr)) / (3 X d);
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3elseif ( fabs(discr) < small_tolerance )
{roots = 1;tcpCO] = -c / (3 x d);
3elseroots = 0;

for

for
3

(j = 0; j <= roots-1; j++) cp[j] = eval_cp (a, b, c, d, 0, tcpCj], t,rou, cols[j*2+13, colsCj*2+2 (j = 0; j <= roots-1; j + +) check_range (lb, hb, cp[j], rou, cols[7]);

float eval_cp (float a, float b, float c, float d, float e,float tcp, float t, int rou, int tcol, int pcol)
{float cp;
leprintf (rou, tcol, tcp); if ( (tcp >= 0) & (tcp <= t) )

Ccp = a + bxtep + c*square (tcp) + d*pou(tcp,3) + e*pou(tcp,4); leprintf (rou, pcol, cp);
3else
Ccp = 0;lcputs (rou, pcol, " time out”);
3return (cp);

3
void check_range (float lb, float hb, float cp, int rou, int col)

Cif ( (cp >= lb) & (cp <= hb) ) lcputs (rou, col, " In"); 
elselcputs (rou, col, "Out");

float traj_scaling (int n, f_9 b, f_9 c, f_9 d, f_9 e, f_9 t,float theta__maxv, float theta maxa)
{int rou; i_7 cols;float maxv; float maxa; int i;float cv; float ca; float fv; float fa; float f;
dsply_traj_scaling (&rou, cols);
maxv = terminal_crit_vel (1, b[13, c[13, d[1], e[1], tC1 3,rou, cols);maxa = terminal_crit_acc (c[13, d[1], e[13, t C13, rou, cols); for (i = 2; i <= n-2; i++)

{cv = intermediate_crit_vel (i, b[i], c[i3, d[i], t[i],rou+i-1, cols);if ( cv > maxv ) maxv = cv;ca = intermediate_crit_acc (c[i], rou+i-1, cols); 
if ( ca > maxa ) maxa = ca;
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}cv = terminal_crit_vel (n-1, btn-1], cCn-1], dtn-1], eCn-1], t[n-1],row+n-2, cols);if ( cv > maxv ) maxv = cv;
ca = terminal_crit_acc (cCn-1], dCn-1], eCn-1], t[n-1],rou+n-2, cols);if ( ca > maxa ) maxa = ca;
leprintf (rou+ 9, colsC7], maxv); leprintf (rou+10, colsC7], maxa);
fv = theta_maxv / maxv; 
fa = sqrt(theta_maxa / maxa); if ( fv < fa ) f = f v ; elsef = f a ;leprintf (row+11, cols[7], f); uait_then_erase (9); return (f);
}

void dsply_traj_scaling (int ><rou, i_7 cols)
{locate ( 1 0 , 0);eputs (Tl Critical Velocities ");eputs (»» Critical Acceleration ");eputs (II i time velocity time velocity”);eputs (I I time acceleration ");locate (21 , 0);mcputs (16, 16, "Maximum Velocity: ");mcputs (16, 16, "Maximum Acceleration: ");mcputs (16, 16, "Scaling Factor: ");
Xrou = 12; colsCO] = 3; cols C1] = 8; colsC 2] = 19; colsC3] = 32; cols[4] = 43; colsC5] = 56; cols C 6 ] = 67; colsC7] = 38; 
}

float terminal_crit_vel (int i, float b, float c, float d, float e,float t, int rou, i 6 cols)
{int j; float discr; int roots; f_1 tcv; float maxv; f_1 cv; float mag;
locate (rou, colsCO]); cprintf ("%2d", i); discr = square (d) - 8XcXe/3; if ( discr > small_tolerance)

{roots = 2;tcvCO] = (-d + sqrt(discr)) / (4Xe); tcv[1] = (-d - sqrt(discr)) / (4Xe);
]else
if ( fabs(discr) < small tolerance )

{
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roots = 1 ;tcvCO] = -d / (4*e);
)elseroots = 0;for (j = 0; j <= roots-1; j++)cvCj] = eval_cv (b, c, d, e, tcvCj], t,row, colsC2*j+1], cols[2*j + 2 ] );

maxv = 0;for (j = 0; j <= roots-1; j++)if ( (mag = fabs(cvCj])) > maxv ) maxv = mag; return (maxv);
}

float intermediate_crit_vel (int i, float b, float c, float d, float t,int rou, i_6 cols)
{float tcv; float cv;
locate (rou, colsCO]); cprintf ("%2d ", i);tcv = -c / (3*d);cv = eval_cv (b, c, d, 0, tcv, t, row, colsCI], colsC2]); return (fabs(cv));
]

float eval_cv (float b, float c, float d, float e, float tcv, float t, int rou, int tcol, int vcol)
Cfloat cv;
leprintf (rou, tcol, tcv); if ( (tcv >= 0) & (tcv <= t) )

{cv = b + 2*c*tcv + 3*d*square (tcv) + 4He*pou(tcv, 3);leprintf (rou, vcol, cv);
]else
Ccv = 0;lcputs (rou, vcol, " time out");
]return (cv);

]
float terminal_crit_acc (float c, float d, float e, float t,int rou, i_6 cols)

{float tea; float ca;
tea = -d / (<+*e);leprintf (row, cols[5], tea);if ( (tea >= 0) & (tea <= t) )

{ca = 2*c - (3*square (d)) / (4*e); leprintf (rou, colsC6], ca);
}else
Cca = 0;lcputs (rou, colsC6], " time out ");
}return (fabs(ca));

}
float intermediate crit acc (float c, int rou, i 6 cols)

{
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float ca;
ca = 2*c;leprintf (row, cols[53, 0); leprintf (rou, cols[63, ca); 
return (fabs(ca));
}

void determine_positions (f_5_9 a, f_5_9 b, f_5_9 c, f_5_9 d, f_5_9 e,int n, f_9 t, float f)
{i_2 rous;i_4 time_cols;i~6 eval_cols;int scale_col;f_9 cumulative_time;float total_time;int i;float trajectory_pos; float real_time; float scale_time; int j;
dsply_det_positions (rous, time_cols, eval_cols, &scale_col); leprintf (rous[23, scale_col, f); cumulative_time[03 = 0; for (i = 1; i <= n-1; i++)

{locate (rous[03+i-1, time_cols[03); cprintf ("%d", i);leprintf ( rousCO ] + i-1 , time_cols[13, 0); leprintf (rous[03+i-1, time_cols[23, t[i3);
cumulative_time[i3 = cumulative_timeCi-1 3 + t[i3/f; leprintf (rous[03+i-1, time_cols[33 , cumulative_time[i-13); leprintf (rows[03+i-1, time_cols[43, cumulative_time[i3);
3

uhile ( (real_time = get tine (cumulative_time, n)) != -1 )
{i = 0; do i++;uhile ( real_time > cumulative_time[i3 ); locate (rous[13, eval_cols[03); cprintf ("%d", i);scale_time = (real_time - cumulative_timeCi-1 3) * f; leprintf (rous[l3, eval_cols[63, scale_time); for (j = 1; j <= 5; j++)

{trajectory_pos = a[j][i3 + b[j][i3 X scale_time + ctj3[i3 * square (scale_time)+ d[j 3 Ci1 # pou (scale_time, 3)+ e[j][i3 * pou (scale_time, 4); leprintf (rous[1], eval_cols[ j3 , trajectory_pos);
33uait_then erase (9);3

void dsply_det_positions (i_2 rous, i_4 time_cols, i_6 eval_cols,int *scale_col)
£locate (9, 0);eputs (" Determination of Trajectory Position at Arbi"); eputs ("trary Times (scale = ) ");eputs (" Segment Scale Time Range ");eputs (" Real Time Range ");eputs (" " );eputs (" );
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locate (20, 0);
eputs (’’Segment Scale Time Theta 1 Theta 2");
eputs (” Theta 3 Theta 4 Theta 5”);
eputs (” ");
eputs (" ");
roust 0] = 11; 
time_cols[0] = 14; 
time_cols[1] = 20; 
time_cols[23 = 33; 
time_cols[33 = 46; 
time_cols[43 = 59;
rous[13 = 21; 
eval_cols[03 = 3;
eval_cols[63 = 10; 
eval_cols[13 = 22; 
eval_cols[23 = 34; 
eval__cols C 3 3 = 46; 
eval_cols[43 = 58; 
eval_cols[53 = 70;
rous[23 = 9;
Xscale_col = 68;
}

float get_time (f_9 cumulative_time, int n)
(float real_time;
lcputs (23, 20, "Enter cumulative real time for evaluation: "); 
lcputs (24, 20, "<-1> to terminate"); 
do

{lcputs (23,20+44, " ");
real_time = indec (23, 20+44);
3
uhile ( ((real_time < 0) ! (real_time > cumulative_time[n-13)) 

& (real_time != -1) ); 
erase_prompt (23); 
return (real time);
3
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