
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Aug 1990

Robot Pedagogics: The Adaptation, Analysis, and Computer Robot Pedagogics: The Adaptation, Analysis, and Computer

Control of a Model Manipulator Control of a Model Manipulator

Edward T. Hammerand

Chung You Ho
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hammerand, Edward T. and Ho, Chung You, "Robot Pedagogics: The Adaptation, Analysis, and Computer
Control of a Model Manipulator" (1990). Computer Science Technical Reports. 67.
https://scholarsmine.mst.edu/comsci_techreports/67

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/67?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

ROBOT PEDAGOGICS: THE ADAPTATION,
ANALYSIS, AND COMPUTER CONTROL OF

A MODEL MANIPULATOR

E. T. Hammerand* and C. Y. Ho

CSc-90-5

Department of Computer Science
University of Missouri-Rolla

Rolla, Missouri 65401 (314)341-4491

*T h is r e p o r t i s s u b s t a n t i a l l y th e Ph.D . d i s s e r t a t i o n o f th e f i r s t
a u t h o r , co m p le te d August 1 9 9 0 .

PUBLICATION THESIS OPTION

This dissertation has been prepared in the style utilized by the Communications

o f the ACM. It has been accepted for publication as a book in the Computer Science

and Computer Engineering series published by Ablex Publishing and edited by Dr.

George W. Zobrist.

ABSTRACT

The subject of robotics is addressed by many different fields, among them

computer science, electrical engineering, and mechanical engineering. This work is an

attempt to bring together all of these aspects from the perspective of a computer

science background. Different techniques are considered and reconciled with one

another in the analytical area, while detail and explanation are added in all areas that

were not previously available. In addition, geometrical interpretations arc presented

for concepts that have heretofore been presented only in the form of equations.

VI

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION .. iii

ABSTRACT ... iv

ACKNOWLEDGEMENTS .. v

LIST OF ILLUSTRATIONS ... xiii

LIST OF TABLES .. xviii

SECTION

I. INTRODUCTION .. I

A. OVERVIEW OF TOPICS .. 1

B. THE COMPUTER PROGRAM .. 4

II. CONSTRUCTION OF THE ROBOT ... 9

A. MECHANICAL CONSIDERATIONS .. 9

1. The Robot Arm Proper .. 9

2. Motors ... 11

3. Shafts ..11

4. Gears .. 12

5. Bearing Blocks ... 13

6. Motor Support Blocks ...13

B. THE ELECTRONIC INTERFACE ..13

1. Power Supplies ... 14

2. Transistors ...16

a. Intrinsic Semiconductors .. 16

b. Extrinsic Semiconductors ..19

c. The p-n Junction .. 22

d. The Diode ...27

e. The pnp Transistor ..27

3. Resistors ...32

4. The Computer ...34

5. The Decoder ... 34

a. The I-to-2 Decoder ... 35

b. The Inverter .. 36

c. The 2-to-4 Decoder ... 37

d. The AND Gate ...3S

e. The 4-to-16 Decoder ... 40

6. Inverters .. 49

7. Manual Switches ..52

III. MANUAL CONTROL OF THE ROBOT .. 55

A. THE PARALLEL PORT ...55

B. KEYBOARD INPUTS ... 55

C. ACTUATION OF A ROBOTIC MOTOR 58

D. THE CONTROLLING PROCEDURE ..59

IV. JOINT VARIABLE CONTROL ... 63

A. INITIAL ARM CONFIGURATION ...63

B. PROCESSING OF MOVE REQUESTS ..65

1. Selection of a J o i n t ... 66

2. Specification of an Angle ... 67

3. Performance of the Move ... 67

a. Determination of the Signed Angle68

vii

Page

Page

b. Selection of the Proper Transistor68

c. Iteration During the Move ...69

C. DETERMINATION OF POSITION AND ORIENTATION . . 73

1. The Problem Approach ..73

2. Link Transformations .. 74

3. Assignment of Coordinate Frames ..88

4. Generation of Equations ... 91

5. Numerical Example ... 103

D. THE CONTROLLING PROCEDURE 105

V. POSITION AND ORIENTATION CONTROL 107

A. SPECIFICATION OF POSITION AND ORIENTATION
V E C T O R S ..107

1. Derivation of Equations ..107

2. Numerical Example ... 112

3. Program Structure ... 113

4. Program Exam ple..114

B. SOLUTION APPROACHES ..116

C. COMPONENTS OF THE ARM VECTOR117

1. Derivation of Equations ..117

2. Numerical Example ... 122

3. Program Structure ... 123

4. Program Exam ple..124

D. ARM CONTROL VARIABLES .. 126

1. Derivation of Equations ..126

2. Numerical Example ... 140

VU1

3. Program Structure ..148

4. Program Example .. 153

E. WRIST CONTROL VARIABLES .. 155

1. Derivation of Equations .. 155

2. Numerical Example ... 161

3. Program Structure ..168

4. Program Exam ple.. 171

F. VERIFICATION OF RANGES AND SELECTION OF A
SOLUTION ... 173

G. MOVEMENT TO THE SPECIFIED POSITION AND
ORIENTATION .. 176

H. THE CONTROLLING PROCEDURE .. 179

VI. VELOCITY C O N T R O L...1S1

A. TRANSLATIONAL AND ROTATIONAL RATES OF THE
END FRAME ... 1S2

1. Derivation of Equations .. 182

a. Translational Velocities ...182

b. Rotational Velocities ... 1S9

c. The Manipulator Jacobian ... 190

2. Numerical Example ... 201

3. Program Control ..207

4. Program Exam ple..208

B. JOINT RATES VIA THE INVERSE JACOBIAN 210

1. The Over-Determined Case ...211

a. Derivation of Equations ..211

b. Numerical Example ... 215

ix

Page

c. Program Control ..219

d. Program Example ..220

2. The Under-Determined C a s e ... 226

a. Derivation of Equations ..226

b. Numerical Examples ... 229

c. Program Control ..236

d. Program Examples ... 236

C. JOINT RATES BY DIFFERENTIATION 24S

1. Derivation of Equations ... 24S

a. Rates of Change of the Orientation Vectors 24S

b. Joint Variable 3 252

c. Joint Variable 1 254

d. Joint Variable 2 254

e. Joint Variable 4 256

f. Joint Variable 5 259

2. Numerical Example ...263

3. Program Control ..270

4. Program Exam ple..271

D. THE CONTROLLING PROCEDURE ... 273

VII. TRAJECTORY CONTROL .. 277

A. SPLINE POLYNOMIALS ...278

1. Derivation of Equations ...278

a. Distance-Based Time Units .. 278

b. Internal Spline Segm ents... 279

c. The First Spline Segment ... 284

X

Page

d. The Last Spline Segment .. 2S8

2. Numerical Example .. 295

3. Program Control ..303

4. Program Exam ple..305

B. EXAMINATION OF SPLINE EXTREMA 311

1. Derivation of Equations ... 311

a. Internal Spline Segments ... 312

b. The Terminal Spline Segments 312

2. Numerical Example .. 318

a. Internal Spline Segments ... 318

b. The Terminal Spline Segments 321

3. Program Control ..325

4. Program Exam ple... 327

C. SCALING FOR OPTIMUM TRAJECTORY TRAVERSAL
TIME ...329

1. Derivation of Equations ... 329

a. The Internal Segments ..329

b. The Terminal Segments ... 331

2. Numerical Example ...339

3. Program Control ..349

4. Program Exam ple..352

D. THE CONTROLLING PROCEDURE ..355

VIII. CONCLUSIONS .. 357

xi

Page

APPENDICES

A. Header Listing ... 359

B. Main Procedure Listing .. 364

C. Manual Control Procedures Listing ...374

D. Joint Variable Control Procedures Listing .. 379

E. Position and Orientation Control Procedures Listing3S4

F. Velocity Control Procedures Listing .. 396

G. Trajectory Control Procedures Listing ..411

BIBLIOGRAPHY .. 425

VITA ...431

xii

Page

LIST OF ILLUSTRATIONS

xiii

Figure

1.1 Main Procedure Introduction

1.2 Main Procedure Selection Display

2.1 The Completed Robot Arm

2.2 Motor, Shaft, and Gear Assembly

2.3 Bearing Block to Motor Assembly

2.4 Circuit for Motor Power Supplies

2.5 Circuit for Integrated Circuit Power Supplies

2.6 Covalent Bonding of Semiconductor Atoms

2.7 n-type Semiconductor Crystal Structure . . .

2.8 p-type Semiconductor Crystal Structure . . .

2.9 p-n Junction of Semiconductors

2.10 Forward Voltage Applied to a p-n Junction

2.11 Reverse Voltage Applied to a p-n Junction .

2.12 Diode Circuit Symbols

2.13 The pnp Transistor ...

2.14 The Motor Sub-Circuit

2.15 The Modified Motor Sub-Circuit

2.16 The Inverter ..

2.17 The l-to-2 Decoder ..

2.18 Diode-based AND Gate

2.19 Transistor-Based AND Gate

2.20 The 2-to-4 Decoder ..

7

8

10

12

14

15

16

18 20
21

25

26

28

29

32

33

37

37

39

40

41

o->

xiv

2.21 4-Input AND Gates ... 42

2.22 The 4-to~16 Decoder .. 43

2.23 Partial 4-to-16 Decoder Using a 2-to-4 Decoder 44

2.24 4-to-16 Decoder Incorporating Two 2-to-4 D ecoders.................................. 45

2.25 The 74154 4-to-16 Decoder .. 47

2.26 The 7404 Ilex Inverter .. 50

2.27 Decoder and Inverter IC Connections .. 51

2.28 The Complete Computer Control Circuit .. 53

2.29 Switches for Manual Control ... 54

3.1 Displayed Assignments of Keys to Joints .. 56

.2 Manual Control Introduction ... 61

3.3 Manual Control Display .. 62

4.1 Initial Configuration of the Robot Arm .. 64

4.2 Displayed Joint Numbering .. 66

4.3 Rotation of a Point about the z-axis ... 75

4.4 Rotation of a Point about the x-axis ... 78

4.5 x-Rotation with Respect to the Base Coordinate Frame 80

4.6 x-Translation with Respect to the Base Coordinate Frame 81

4.7 z-Translation with Respect to the Base Coordinate Frame 82

4.8 z-Rotation with Respect to the Base Coordinate Frame 82

4.9 z-Rotation with Respect to the Current Coordinate Frame 84

4.10 z-Translation with Respect to the Current Coordinate Frame 85

4.11 x-Translation with Respect to the Current Coordinate Frame 86

4.12 x-Rotation with Respect to the Current Coordinate Frame 86

Figure Page

XV

4.13 Coordinate Frame Assignments to the Robot Arm 90

4.14 Position Point and Orientation Vectors .. 98

4.15 Joint Variable Control Display ... 104

4.16 Joint Variable Control Introduction ... 106

5.1 Maximum Magnitude Attainable by the Position Vector 110

5.2 Minimum Magnitude Attainable by the Position Vector I l l

5.3 Display for Completed Position-Orientation Matrix 115

5.4 Decomposition of the Position Vector .. 118

5.5 Envelope of the Arm P ro p er... 120

5.6 Display for Wrist and Arm Vector Components 125

5.7 Possible Sines for a Given Cosine .. 130

5.8 Geometry of Equal Tangents ... 131

5.9 Geometric Configuration for Solution of Equation Containing Sine and
Cosine Terms .. 133

5.10 Adjusted Arc Tangent Results for a Positive Sine 136

5.11 Adjusted Arc Tangent Results for a Negative Sine 136

5.12 Arm Configuration for Solution Triples ... 148

5.13 Display for Arm Control Variable Solutions .. 154

5.14 Rotation Transformations Due to Links 4 and 5 159

5.15 Attainable Orientation from Frame of Link 3 .. 163

5.16 Unattainable Orientation from Frame of Link 3 164

5.17 Arm and Wrist Configurations for Solution Sets 169

5.18 Display for Arm and Wrist Control Variable Solutions 172

5.19 Display for Range Verification of Solutions .. 175

5.20 Display for Movement via a Solution .. 178

Figure Page

5.21 Position and Orientation Introductory Display ... 180

6.1 Single Joint Under Transformation .. 183

6.2 Forward Solutions via Jacobian Display .. 209

6.3 Inverse Jacobian, Over-Determined Example: Inputs 221

6.4 Inverse Jacobian, Over-Determined Fxamplc: Step 1 222

6.5 Inverse Jacobian, Over-Determined Fxamplc: Step 2 223

6.6 Inverse Jacobian, Over-Determined Fxamplc: Step 3 224

6.7 Inverse Jacobian, Over-Determined Fxamplc: Results 225

6.8 Inverse Jacobian, Under-Determined Example 1: Inputs 237

6.9 Inverse Jacobian, Under-Determined Fxamplc 1: Step 1 238

6.10 Inverse Jacobian, Under-Determined Example 1: Step 2 239

6.11 Inverse Jacobian, Under-Determined Example 1: Step 3 240

6.12 Inverse Jacobian, Under-Determined Example 1: Results 241

6.13 Inverse Jacobian, Under-Determined Example 2: Inputs 243

6.14 Inverse Jacobian, Under-Determined Example 2: Step 1 244

6.15 Inverse Jacobian, Under-Determined Example 2: Step 2 245

6.16 Inverse Jacobian, Under-Determined Example 2: Step 3 246

6.17 Inverse Jacobian, Under-Determined Example 2: Results 247

6.18 Reverse Solutions via Derivatives Display ... 272

6.19 Velocity Control Introductory Display .. 275

6.20 Velocity Control Menu Display ... 276

7.1 Trajectory for a Single Joint Variable ... 279

7.2 Trajectory Nodal Positions and Velocities ... 304

7.3 Input of Nodes and Scale Times ... 306

xvi

Figure Page

7.4 Node Velocity Equation CoefTicients ... 307

7.5 Node Velocity Equations After Forward Elimination 308

7.6 Node Velocity Equations After Backward Elim ination............................ 309

7.7 Spline Polynomial Function Coefficients .. 310

7.8 Trajectory Critical Positions .. 325

7.9 Determination of Critical Positions .. 328

7.10 Trajectory Critical Velocities .. 348

7.11 Trajectory Critical Accelerations ... 349

7.12 Critical Velocities and Accelerations .. 353

7.13 Scale and Real Time Intervals ... 354

7.14 Trajectory Control Introductory Display .. 356

xvii

Figure Page

LIST OF TABLES

xviii

Table Page

2.1 RESISTANCES USED AT BASE OF SECOND TRANSISTOR 34

2.11 OUTPUTS FOR l-TO-2 DECODER .. 35

2.111 OUTPUTS FOR 2-TO-4 DECODER .. 38

2.1 V OUTPUTS FOR 4-TO-16 DECODER ... 42

3.1 RATIOS OF ITERATION COUNTS TO DEGREES MOVED 60

4.1 RANGE AND DIVISION OF JOIN T ARC MOVEMENTS 65

4 .11 RANGES OF THE ARM JOINTS ... 71

4 .111 ITERATION COUNTS TO DEGREES MOVED FOR JO IN T
CONTROL ... 72

4 .IV THE ARMATRON LINK PARAMETER TABLE 91

5.1 SOLUTION TRIPLES FOR ARM CONTROL VARIABLES 147

5.11 SOLUTION SETS FOR ARM AND WRIST CONTROL
VARIABLES .. 168

I. INTRODUCTION

The subject of robotics is addressed by many different fields, among them

computer science, electrical engineering, and mechanical engineering. In particular, the

construction and implementation of a robotic manipulator arc dealt with in mechanical

and electrical engineering, while the control of the manipulator falls more within the

realm of computer science. This work examines the different aspects of robotics using

a simple model manipulator. The emphasis here shall be from the mathematical and

computer control perspectives.

A. OVERVIEW OF TOPICS

There are many types of robots in use today, as evidenced in the surveys of

[Zeld84] and [CardSo]. Examples of these manipulator types include the Armstar,

ASEA, KUKA, Mobot, Puma, Cincinnati Milacron, Prab, Devilbliss, IBM RS 1, and

Seiko. These robots are designed for use in production environments and range in cost

from a few thousand dollars to in excess of one hundred thousand. There are also

smaller, less expensive arms manufactured for private use, ranging from several

thousand dollars to just a few hundred. The robot arm utilized for this work is less

expensive still; it is the Armatron manipulator, manufactured for Radio Shack. While

the Armatron is not suitable for practical applications, it serves well to illustrate the

concepts, techniques, and limitations involved in robotics.

As manufactured, the Armatron manipulator is intended for direct manual

control only. Chapter 2 of this work details the mechanical and electronic adaptation

of the manipulator for computer control. Sufficient work is performed to provide for

the computer direction of individual joints one at a time. Several limitations will be

immediately apparent with this design. For example, as no feedback is implemented

2

on the arm, positioning will not be precise. Works such as [SafT79] and [RobiS4]

consider topics such as feedback and velocity control. The implementation of aspects

such as these is neglected in favor of more detail in the areas of mathematical analysis

and computer control.

Manual control of the robot arm via the computer keyboard is achieved in

Chapter 3. With the manipulator adapted for computer control, this step comes rather

easily. The computer keyboard is used in a fashion analagous to that of the teach

pendant in a production robot environment; various keys arc used to directly control

the movement of the robot joints. Were this a production environment, safety aspects

such as those discussed in [Xico85] would have to be considered. The program control

developed implements a dead man switch feature; this is the most basic of

precautionary measures that need to be taken when the strength of the robot arm is

sufficient to cause injury or death.

Computer control is developed for the manipulator by first establishing the

position and orientation of the end of the manipulator with respect to some base

coordinate frame. Denavit and Hartenberg put forth a representation for the solution

of this problem in 1955 that became the standard for robotics [Dcna55]. Chapter 4

develops a control structure based on the variables associated with the manipulator

joints, or robot articulation variables as they are referred to in [CoifS3b]. [PaulSlc] and

[Paul87], among others, carry out the mathematical process in lesser detail for a

number of different manipulators. A new interpretation of the position and orientation

provided under the Denavit and Hartenberg representation is presented in the course

of the development here.

3

Once the relationship of position and orientation from joint variables is

established, the inverse relationship may be pursued: the determination of joint

variable values required to achieve a specific position and orientation of the gripper.

This is the topic of Chapter 5; trigonometric equations resulting from the Denavit and

Hartenberg representation must be solved for the angles involved. The first general

approach to this problem was put forth by Paul [PaulSla]; it was then refined by Ho

and Copeland [Ho82] and later Ranky and 11o [Rank85] to utilize a decomposition of

the entire manipulator into an arm proper and a wrist to bring about simplification of

the trigonometric equations involved. Others, including [LeeS2], [Fcat83], and [Gold85]

have addressed this problem as well, but none puts forth a more workable solution.

An examination of a simplified manipulator is presented in [Brad83j, which

demonstrates the basic principles involved. The problems associated with manipulator

wrists are presented by [HolzS6]. The wrist of the Armatron consists of only two

degrees of freedom, where three degrees are required in order to attain any orientation.

A new geometric interpretation of the inadequacies present in such a wrist is presented

here.

Velocity control for the Armatron manipulator is considered in Chapter 6.

Velocity may be discussed in terms of the rates at which the gripper moves and turns

or in terms of the rates at which the robot joints turn. The velocity control problem

is concerned with defining one type of rates in terms of the other; this is done in both

directions. Paul presents an approach to the problem which results in gripper, or end

effector, rates with respect to a coordinate frame fixed with respect to the moving end

effector in [Paul81b] and [Paul81c]. Ho and Sriwattanathamma present a different

technique which results in end effector rates with respect to a stationary base frame in

[Ho86] and [Ho90j. The result of the latter approach is more naturally interpreted.

Some effort is devoted to the reconciliation of the approaches here; the results are

4

shown to be equivalent. In the determination of joint rates, Paul uses differentiation

of trigonometric equations while IIo and Sriwattanathamma utilize a matrix algebra

method. The determination of joint rates required to achieve some desired set of

translational and rotational rates is the more useful of the two directions, and more

emphasis is placed on it here. The two approaches are shown to produce equivalent

results; the advantages of each are also pointed out. Singular conditions are identified

for the techniques as well; Spong also addresses this problem [Spon89].

The final area to be considered in this work is trajectory control, that of guiding

the manipulator along a desired path. Paul provided one of the first comprehensive

solutions to this problem as well [Paul79]. Grossman had earlier pointed out that most

of the development to date had utilized teaching methods to specify what positions the

manipulator gripper should pass through and noted the benefits that awaited from a

more general software control [Gros78]. Takase and Paul also developed a teaching

approach for trajectory control [Taka81]. Others, such as [Coif83a], [Khal84], [Kirc85],

and [Pare85], discuss trajectory control from a solely mathematical perspective; desired

points or joint settings are specified as part of the problem definition and solutions are

mathematically developed to satisfy the requirements. Cook and IIo [CookS2] present

an algorithmic approach to the problem, which was later expanded on by Ranky and

Ho [Rank85]. This same technique is developed here and further expanded upon to

include critical position testing prior to the trajectory traversal; if the trajectory derived

Torn the specified path nodes will lead the manipulator toward an unattainable

position, it should not be attempted.

B- t h e COM PUTER PROGRAM

For each of the topics to be covered, analytical derivations and numerical

examples will be provided; in addition, a computer program is developed in parallel

5

with the analysis and example usage. The programming language chosen for this task

is Borland's Turbo C, the selection of which was motivated in part by the nature of the

control problem at hand and C's relationship with assembler language. Advantage is

taken of C's built-in procedures that fall under the scope o f control usage. On the

other hand, little use is made of some of C's more exotic mathematical features, as the

desire is to keep the program logic and structure as clear and easy to follow as possible.

The main procedure of the program begins with some initialization tasks. First,

the control lines leading to the robot are cleared. Next, a query is issued as to whether

the displays generated during the course of program execution should be saved to disk.

The query is part of the introductory screen generated under direction of the main

procedure and depicted in Figure 1.1. The arrays containing the joint variable values

and orientation and postion matrix arc also initialized here; these will be fully explained

in Chapter 4. The body of the main procedure follows:

outportb (888, 0);
fptr = fopen ("SCREENS.OUT", "u+t");
dsply_main_introduction (); locate (23, 55);
qsave_screen = toupper (getch ());
lputch (23, 55, qsave_screen);
uait_then_erase (1);
dsply_thetas_noap (&row, cols); for (i = 1 ; i <= 5; i + +)

thetaCi] = 0;
noap_matrix (theta, noap, row, cols);
dsply_main_selection ();
while ((opt = get_option(5)) != 0)

uait_then_erase (8); switch (opt)
{
case 1 : ianual_control (theta, noap, row, cols); break;case 2 : joint_variable_control (theta, noap, row, cols); break;case 3 : position_orientation_control (theta, noap, row, cols); break;case 4 : velocity_control (theta, noap, row, cols); break;case 5 : trajectory_control (); break;
}

fputc (eof, fptr);
fclose (fptr);

6

The available control methods are then presented in the display of Figure 1.2. The

procedure subsequently iterates, passing control to the selected control method;

Chapters 3, 4, 5, 6, and 7 will full)’ explain the procedures associated with the manual,

joint variable, position and orientation, velocity, and trajectory control methods,

respectively. The procedure concludes by closing the disk file to which the screens may

have been saved.

A final word needs to be said here about the C programming style employed. Full

function prototypes and parameter lists are used to provide the compiler with as much

information as possible. The complete set of function prototypes for all of the

procedures to be used in this work may be found in Appendix A, along with all defined

types, declared constants, and include files for the referenced built-in C functions. Due

to the amount of program source code involved, a single source file for the entire

program would be of excessive size. The program was thus assembled as a Turbo C

project, wherein the source code for each of several separate compilations resides in a

separate file. The contents of the project file ROBOT.PRJ are as follows:

main. c
manual.c
jointvar.c
posorien.c
velocity.c
traject.c

Each of the control methods, as well as the main procedure and its subordinate

procedures, was maintained in a separate source code file as part of the project. Each

of these files begins with the ^include directive to include the file HEADER.C as part

of each separate compilation. In this way function prototyping was supported while

simultaneously allowing procedures of one source file and compilation to reference

those of another. The documented listing for the procedures associated with the main

procedure may be found in Appendix B; subsequent chapters will reference the

appendices containing the relevant source code.

Armatron Manipulator Control
Version 1.1

Edward Hammerand March 1990
This program provides for the control of the

Armatron manipulator in one of three manners:
1) The manipulator may be controlled directly

using keyboard input
2) The settings of the joint variables may be

input directly
3) A desired position and orientation of the

manipulator may be specified; from this, a
solution set will be derived and a move
attempted if possible and desired

Additionally, support is given for the calcula­
tion of manipulator velocities and trajectories,
although these are not directly implemented for
the robot arm.

If the manipulator arm is not aligned to its
home orientation, use the manual switches to
align it at this time.

If desired, the screens displayed during the
course of program execution may be saved to the
file SCREENS.OUT; save screens (y/n)?

Figure FI. Main Procedure Introduction

Theta
Armatron Manipulator Control

0.000 N o A p
o.ooo : 1.000 0.000 0.000 200.000
o.ooo : 0.000 -1.000 0.000 0.000
o.ooo : 0.000 0.000 -1.000 -100.000
0.000 0 0 0 1

Armatron Manipulator Control Options
1: Manual Control
2: Joint Variable Control
3: Position-Orientation Control
A: Velocity Control
5: Trajectory Control
0: Terminate Manipulator Control
Option 1 has been selected

Figure 1.2. Main Procedure Selection Display

9

II. CONSTRUCTION OF THE ROBOT

As mentioned previously, the goal of this work is a tutorial examination of

robotics by example, both in hardware and software. To this end, this chapter traces

the hardware steps and development process in the creation of a scale-size robot arm.

'This will be done in two phases, mechanical and electronic. The electronic portion of

the chapter goes into some detail in an attempt to explain precisely the hows and whys

of each step taken. Some insight is provided along the way into some fundamental

aspects of computer electronics, such as transistors and logic gates. This chapter is

based on the work of Banas CBana853- Several problems were determined and

corrected in the original work, some of which called for minor modifications and others

re-design.

A. MECHANICAL CONSIDERATIONS

To obtain a robot arm for this project, two choices presented themselves: cither

construct a suitable arm from scratch or adapt an already existing arm to meet the

requirements of the project. The complete construction of a robot arm from the

ground up is a major endeavor, with many formidable problems to be overcome. The

second alternative was realized in the form of an Armatron robot arm, distributed by

Radio Shack.

1. The Robot Arm Proper. Although not marketed as such, the Armatron is a

five-degrees-of-freedom robot arm, with additional control over its gripper. The

Armatron provides a realistic scale-model version of industrial robots of similar design.

At the time this project began, the Armatron arm had the additional advantages of

being relatively inexpensive and readily available. Unfortunately, Radio Shack has

discontinued this version of the arm, replacing it with a newer model containing fewer

10

degrees of freedom. The robot arm, along with the completed electronic interface, is

depicted in Figure 2.1.

Figure 2.1. The Completed Robot Arm

One of the unusual features of the Armatron is the manner in which it drives its

joints. As manufactured, a single 6-volt DC motor turns a shaft containing six gears.

The Armatron has a pair of joystick-like levers which may each be pushed forward and

back, moved left and right, and twisted clockwise or counterclockwise. Each of these

motions engages a different gear arrangement connecting a specific joint with the

rotating set of gears. The re-design of the Armatron arm for computer control calls for

its lever-operated gear system to be removed and replaced. In order to obtain

computer control over the individual joints, one motor will be used for each joint. An

electronic interface will be constructed in the next section to direct the motors by

computer. Each motor will deliver power to its respective gear by means of a shaft

extending from the gear to the motor outside the Armatron housing. Finally, the gears

and shafts will be supported at the proper mesh positions by bearing blocks, while the

motors are held at respective positions by support blocks.

11

2. Motors. Due to the relatively close spacing of the required gear positions

inside the Armatron, the motor spindles themselves have to be correspondingly close;

this in turn calls for small motors. After checking with many sources, Radio Shack

was found to have motors with two flattened sides, thus providing a sufficiently short

height. The flattened sides also served to make the motors easy to block. The only

drawback to the motors is that they were rated for only 1.5 to 3 volts, but the motors

and voltage limitation were determined adequate. The shaft of a motor extends

approximately one-fourth of an inch and is about one-sixteenth inch in diameter.

It is worth noting here that while the original design of the Armatron required

that the new motors be placed outside the housing of the arm as no room was provided

on or in the arm itself, this can actually work to an advantage for robot control. Any

amount of weight, or more properly mass, that the arm must support increases the

required strength and rigidity of the arm. If this model were to be scaled up, the

placement of the motors off of the arm itself would simplify the engineering task with

regard to these criteria. Further, the complicated problem of dynamic control is

lessened somewhat as the inertia of the arm becomes less of a concern due to the

decrease in mass.

3. Shafts. To deliver power from the motor spindle to the gear requires a gear

shaft. The spindles of the motors used have the one-sixteenth inch diameter dimension

to contend with as well as being grooved. (As purchased the motors had small gears,

also grooved, press-fit onto their spindles.) Various hobby and model railroading

shops were found to carry a type of plastic tubing for use in model construction. The

tubing is manufactured in various diameters and has a hollow center. While not being

completely rigid, the tubing does not give very' much and was judged to be at least as

strong as required. The one-eighth inch diameter tubing's center was just large enough

12

to force over the motor spindles; in fact, the grooves on the spindle notched the inside

of the tubing as it was forced on. This created a tight fit between the spindle and the

tubing; the motors were found to stall before they would slip inside the tubing.

4. Gears. With the motors and shafts ready, the gears were needed next. Six

gears were removed from the original lever-operated system. Each had to have a hole

drilled in it so that the shaft could be force fit inside it. Three drill bits of increasing

size up to one-eighth inch were used, taking care to keep the center of the gear at the

center of the widening hole. Test fits of the shafts to gears found some pieces of tubing

to be slightly narrower than others; some fits allowed the gear to spin without much

force while others fit so tightly once on that they could not be moved on the shaft

without great difficulty. Test fits were made until six sufficiently tight grips were

obtained. Simple friction was all that appeared necessary for the fit to hold, so no

adhesive was used. Had it been needed, adhesive would have been difficult to apply

inside the bearing blocks that will be used to support the gear-shaft combinations. An

assembled combination of motor, shaft and gear may be seen in Figure 2.2.

Figure 2.2. Motor, Shaft, and Gear Assembly

13

5. Bearing Blocks. The most difficult step in the physical alterations made to the

Armatron arm was the manufacture of the bearing blocks for the gears and shafts,

With the original gearing system removed, there was room in the housing for two

approximately 1" x x 2" blocks, each of which would support three gear-shaft

combinations. The difficulty lies in the fact that the three points of gcar-to-gcar

meshing required of a block have to all be met within a narrow tolerance. The blocks

obtained were manufactured from transparent plastic in a machine shop. Numerous

test fits and adjustments were required before all six gears meshed properly. The blocks

as cut fit so tightly in the housing that no restraints were deemed necessary.

6. Motor Support Blocks. With the bearing blocks holding each gear and shaft

pair in its proper position, the motors could be located outside the housing. First, the

gear shafts were cut off long enough to allow some slight deviations in motor

alignment. As the shafts were not completely rigid, a slight rise or drop from the

bearing block across the shaft to the motor would not cause it to bind and prevent it

from operating properly. Support blocks were cut to hold the motors as close as was

possible to determine, and then paper shims were used to raise and lower the motors

until a smoothly rotating shaft could be observed when power was supplied. One

bearing block, the three corresponding motors, shafts, gears, and motor support blocks

may be seen in Figure 2.3. At this point, the mechanical alterations were complete and

the arm was ready to have the electronic interface set up.

B. THE ELECTRONIC INTERFACE

As described in the mechanical phase of the construction, six motors are required

for the five joints and the gripper of the robot arm. An electronic interface between

14

Figure 2.3. Bearing Block to Motor Assembly

the motors and a set of computer output lines will provide the desired computer

control.

1. Power Supplies. First consider the motor side of the interface. Each motor

is connected by a shaft to one gear arrangement which in turn drives a single joint.

The motors are, as mentioned previously, reversible so that the joint can be driven in

either direction. For one direction of turn, a motor must have a voltage on one of its

lines approximately 3 volts higher than that of the other line. In order to utilize the

reversibility of the motor, the line that was 3 volts higher than the other line before

must now be approximately 3 volts lower. An arrangement allowing this selection of

voltages requires first two independent 4.5 volt power supplies. (The discrepancy in

voltage will be explained later.) The power supplies are linked serially, providing a

relative ground, a point at 4.5 volts, and a third point at 9 volts. One line from the

motor is connected directly to the 4.5 volt location. When the other line is connected

to the ground, the motor turns in one direction; when the line is connected to the 9 volt

point, the 4.5 volt difference is again in effect but now reversed, causing the motor to

turn in the opposite direction. The actual circuitry for the power supplies will be given

15

here with only an introductory' explanation so that the fundamentals behind the circuit

elements may be explained in the context of the computer control circuit.

Figure 2.4 shows the circuit which will provide power for the motors actuating the

joints. Note that switch SI is a double-pole, single-throw (DPST) switch, meaning that

the circuit is opened and closed at the two places indicated simultaneously by the

switch. When the switch is closed, the point labeled as + 9 volts is seen to be separated

from the point labeled as +4.5 volts by the three 1.5 volt batteries B 1, B2, and B3.

Similarly, the +4.5 volt point is separated from the point labeled ground by another

set of three 1.5 volt batteries, B4, B5, and B6. The light-emitting diode LED1 and

resistor R1 complete a circuit with Bl, B2, and B3, which is useful in that LED1 glows

indicating that switch Sla is closed and Bl, B2, and B3 arc not dead. LED2 and R2

provide a similar function for B4, B5, and B6. The action of the LED and the resistor

will be explained in more detail later in the chapter.

Figure 2.4. Circuit for Motor Power Supplies

16

One other power supply is needed to power the integrated circuits which will be

used in the electronic interface. As will be seen, all of the circuits to be used will

require a + 5 volt supply. As it turns out, + 4.5 volts is sufficient, so the circuit to be

built is essentially one-half of the motor power supply; see Figure 2.5. The switch used

is of the single-pole, single-throw (SPST) variety as only one point is to be closed. The

batteries, LED, and resistor are identical to those used in the previous circuit.

Figure 2.5. Circuit for Integrated Circuit Power Supplies

2. Transistors. In order to allow current to flow through the motor to ground

or from the 9 volt source, a switching mechanism is required. The transistor is made

for this purpose. To understand how the transistor functions, one must begin with

some basic concepts in the chemistry and physics of the atom.

a. Intrinsic Semiconductors. Recall that the elements may be classified as one

of three general types according to their electrical conductivity. First are the

conductors, such as iron, nickel, and copper; electric current flows easily through these

elements. At the other end of the spectrum are the insulators, including carbon,

nitrogen, and phosphorous; very little electric current can be made to flow through

these elements. Between these two extremes is the third group, semiconductors,

encompassing such elements as boron, silicon, and germanium; semiconductors will

17

conduct electric current, but they do so only poorly. In order for electric current to

be able to flow in any material, there must be electrons present which are capable of

moving through the material. For any given element, electrons may be found orbiting

each atom present; further, the number of electrons per atom is equal to the atom's

number of protons, which are oppositely (positively) charged and found in the atom's

nucleus. The remaining atomic particle is the neutron, which bears no charge and

consequently has no direct influence over the flow of electric current through the

element.

For an electron to be capable of leaving the atom with which it is associated and

moving away the forces which hold it in place must be surmountable. The only

electrons that are generally capable of leaving at all are those in the outermost orbit

around the atom; these are the atom's valence electrons. In the case of conductors, the

amount of energy required to remove an electron from its orbit is very small. For

example, the heat present at room temperature is sufficient to detach an average of one

electron per atom of copper; the detached electrons are then free to move under the

presence of an electric field. On the other hand, the atoms of an insulator must see a

great deal of energy before they will give up electrons. Their valence orbitals are nearly

or completely full and very' stable; those of the conductors are conversely nearly empty,

and hence the electrons present are relatively loosely attached. Semiconductors are at

the midway point; their valence electrons occupy half of the available positions. The

two most common examples are silicon and germanium; each has four valence

electrons with room for eight. The desire to fill the valence orbit is so strong that

atoms of silicon or germanium will actually share electrons as shown in Figure 2.6.

The bond between two such atoms is called a covalent bond. An atom of silicon shares

each of its four valence electrons with four other atoms, all of which are

three-dimensionally equidistant from one another. (Figure 2.6 and those that follow

IS

are two-dimensional for the sake of clarity.) In this fashion, each atom sees eight

valence electrons and is satisfied; atoms arranged in such a regular format form a

crystal. At a temperature of absolute zero, all of the valence electrons are fixed in place

and no current can flow as there are no free electrons.

covalent
bond

Figure 2.6. Covalent Bonding of Semiconductor Atoms

When the ambient temperature of a semiconductor crystal rises, the heat energy

applied to the electrons will lead to an occasional breaking of a covalent bond. When

this happens, the electron that has left its valence position is free to move and carry

current; the position vacated by it is termed a hole. Other electrons in the crystal will

be attracted to take the position of the hole. When this occurs, the hole itself is said

to move from its current position to that of the attracted electron. In any pure amount

of a semiconductor, there will be an equal number of holes and free electrons, as one

hole is created for each electron that leaves its bond; such a pure semiconductor is said

to be intrinsic. The holes and electrons are in a constant state of generation and

recombination. The generation and recombination rates of electrons and holes are

equal and constant at a given temperature, as dictated by the equilibrium of the

material.

19

b. Extrinsic Semiconductors. As described previously, intrinsic semiconductors

conduct current only poorly as the valence electrons present form exactly the number

of covalent bonds necessary to satisfy each atom's desire for a full outermost orbital.

This situation may be disrupted by adding atoms of another clement with a different

valence configuration to the original pure semiconductor. This process is known as

doping; the resulting semiconductor is said to be extrinsic, or no longer pure. Consider

as an example the clement phosphorous. It has five valence electrons, one more than

the four of silicon. Figure 2.7 shows the resulting crystalline structure when a

phosphorous atom is present amidst silicon atoms. Four of the five phosphorous

valence electrons form covalent bonds with the adjacent electrons. The remaining

phosphorous electron will require very little energy to be freed from its orbit; the heat

of room temperature is sufficient for this purpose. This electron is thus readily

available for carrying current. The original phosphorous atom is referred to as a donor

atom as it donates one electron for carrying current through the semiconductor. The

phosphorous atom becomes a positive ion when it gives up the extra electron, as there

is now a proton present which is not negated by the absent electron. A ratio of one

such electron to every one hundred million atoms of the semiconductor germanium

results in an increase in conductivity by a factor of sixteen; germanium doped in such

a fashion is useful for transistor applications.

Semiconductors doped by the addition of extra electrons are categorized as n-type

semiconductors. The n refers to the negative charge of the extra electrons present. In

the presence of a voltage difference, these electrons will be drawn toward the positive

voltage contact, at which point they will leave the semiconductor; they are

simultaneously replaced by new electrons entering the semiconductor at the negative

battery contact. Note that at no time does the semiconductor itself actually maintain

any charge, positive or negative; all electron charges are offset by those of

20

free
electron

Figure 2.7. n-type Semiconductor Crystal Structure

corresponding protons present in the phosphorous ions, and a constant number of

electrons is present in the semiconductor at all times. It should also be observed that

the charges associated with the positive ions are fixed in the geometric structure; the

negative charges of the donated electrons are capable of movement through the

semiconductor.

Doping may also be performed to shift the number of electrons present for

covalent bonding in the reverse direction. Consider the element aluminum with its

three valence electrons. When added to a semiconductor such as germanium, the

configuration shown in Figure 2.8 results. Observe that the three aluminum valence

electrons form covalent bonds with three of the four neighboring germanium atoms.

The fourth germanium atom cannot form a covalent bond, although it would strongly

like to. The unoccupied position of this desired electron is a hole, as described for

intrinsic semiconductors. The difference is that this hole and others like it do not have

corresponding electrons present in the extrinsic semiconductor. In order to fill the hole

and complete the election pair and hence the orbital, an electron from a nearby

germanium atom will be attracted to this position. Correspondingly, the hole itself

21

moves to the now unoccupied position. The original aluminum atom is said to be an

acceptor atom as its deficiency in valence electrons allows for the acceptance of an

extra electron. When this occurs, the accepting atom becomes a negative ion, as the

charge on the added electron is not countered by a proton. An effective positive charge

is present at the position the hole occupies as there is one proton which is no longer

balanced by the now-missing electron.

hole

Figure 2.8. p-type Semiconductor Crystal Structure

When acceptor atoms are added to a semiconductor, the doped result is referred

to as a p-type semiconductor. The p here refers to the positive charge of the holes

resulting from the mixture. When a voltage is applied across a p-type semiconductor,

the positive holes will be drawn toward the negative terminal. As a hole reaches this

position, an electron leaves the terminal and enters the semiconductor, occupying the

empty hole. Simultaneously, an electron leaves the semiconductor and enters the

positive terminal, creating a new hole. This hole then begins to move along with all

of the other holes present in the semiconductor toward the negative terminal to

continue the process. As with the n-type semiconductor, the p-type semiconductor as

a whole does not ever become charged; the positive charges of the holes are balanced

22

by the negative acceptor ions, and the number of holes present in the semiconductor

remains constant. It is also important to note that in contrast to the n-type

semiconductor, it is the negative charges located at the acceptor atoms which remain

in a fixed position while the positive charges associated with the holes move

throughout the semiconductor material.

Within an extrinsic semiconductor, there is an excess of one type of current carrier

present; it is called the majority carrier. For n-type semiconductors, it is the electron

and for the p-type it is the hole. The energy due to the temperature to which the

semiconductor is exposed will lead to the introduction of current carriers besides the

majority carriers due to doping. Thus holes will be present in an n-type semiconductor,

although they will be far fewer in number than the free electrons. Likewise, some

electrons will be present for the conduction of current in p-type semiconductors. I Iolcs

in n-type semiconductors and electrons in the p-type are referred to as minority

carriers; they flow in opposition to the majority carrier present. It is important to note

here that if a number of minority carriers are introduced in a semiconductor, they will

quickly disappear upon combination with majority type carriers; electrons disappear

into holes, and holes are filled by electrons.

c. The p-n Junction. Consider what happens when a p-type semiconductor is

joined with an n-type semiconductor as in Figure 2.9. From the n-type semiconductor,

free electrons near the junction will begin to move across it and occupy the nearby

holes in the p-type semiconductor. As they do so, the positive ions with which they

were associated are left without balancing negative charges, and a positive charge is

built up in the n-type semiconductor. Correspondingly, as the electrons take up

positions in the p-type semiconductor, they build up a negative charge there for which

there is no balancing positive charge. From the p-type semiconductor, holes near the

23

junction will move into the n-type semiconductor by attracting nearby electrons across

the junction to take their positions. As they do so, they leave behind their charge

counterparts, negative ions. This also increments the negative charge in the p-type

semiconductor. As the holes move across the junction, the positive charges associated

with them, without any balancing negative charges, increment the positive charge of

the n-type semiconductor. A point is rapidly reached at which the negative charge

built up in the p-type semiconductor near the junction is sufficient to prevent any more

electrons from crossing the junction. Likewise, holes will be unable to cross as they

will be repelled by the positive charge in the n-type side near the junction. The regions

of the two sides which have given up their current carriers is termed the depletion layer.

The junction between the two types of semiconductor is now referred to as the junction

barrier, as it opposes the movement of further majority current carriers by repelling

them.

holes free electrons

p-type

+© +© +© +© ~ © -

+© +© +© +©
+ © +© +© +© ©

+Q +© +© +© ~ © ~

T O +0 +© +© T O

© © © © ©
+

© T O © © © ©
© T O + © ” © - © ~ © '

+ -© © © © © ^
T O © ~ © “ © ~ © ^

rrtype

fixed acceptor atoas junction b arrier fixed donor atoas

Figure 2.9. p-n Junction of Semiconductors

When a voltage difference was placed across a pure semiconductor of either type,

current was seen to flow without regard to direction. This is not the case for the p-n

junction of semiconductors. Consider first what occurs when a positive contact is

24

placed at the p-type end of the junction and the negative contact at the n-type, as in

Figure 2.10. When the voltage difference is increased from zero, the holes in the p-type

end are repelled from the positive contact toward the also-positive end of the junction

barrier; the free electrons in the n-type end are likewise repelled from the negative

contact toward the negative end of the junction barrier. As holes are pushed toward

and then into the depletion layer, the negative charge present is somewhat diminished.

Likewise, electrons repelled by the negative contact lessen the positive charge of the

n-type end of the depletion layer. As holes and electrons are again capable of being

near the semiconductor junction as described for the initial merge, some of each will

have sufficient energy again to cross the junction to the other side. When this happens

to an electron, it will shortly recombine with one of the many holes present in the

p-type side. Similarly, when a hole crosses the junction it quickly recombines with one

of the many free electrons present in the n-type side. When a hole disappears, it is

replaced by the break up of a covalent bond near the positive contact. The new hole

is repelled by the positive voltage toward the junction; the electron is drawn to the

positive terminal and enters it, while another electron simultaneously exits the negative

terminal to enter the n-type semiconductor. It is also repelled toward the junction.

At the same time, a small number of minority carriers continue to form as energy

is applied to the semiconductor by way of ambient temperature. When a free electron

and hole appear in the p-type end, the electron is immediately attracted toward the

connecting positive terminal. Likewise, when a free electron and hole appear in the

n-type end, the hole is drawn to the nearby negative terminal. An electron will leave

this terminal to occupy the hole while some free electron drawn to the positive terminal

simultaneously leaves the p-type end of the semiconductor to enter the adjacent

terminal. Thus a small current will flow through the junction of semiconductors by

minority carriers.

25

+© +© +© “ © "0 © + © + © - © © “

©
+

© © “ © " © © + © © ~ © ©

© © + © “ © _© © + © + © ^ -© ©

© +© +© “ © - © © + © + © ~ © ©

+© +© +© “ © ~ © © + © + © © ~ © ~

■p-type Ji-type

Figure 2.10. Forward Voltage Applied to a p-n Junction

As the voltage across the p-n junction of semiconductors continues to be

increased, a level is reached at which the charges present in the depletion layer are

overcome and current flows freely. For example, this level is around 0.6 volts for

silicon. Further increase in voltage rapidly increases the current flow. When a p-n

junction has a positive voltage applied to the p-type end and a negative to the n-type

end as described here, the voltage is said to be a forward voltage, or bias. The current

due to the minority carriers is not influenced by changes in voltage; it forms only a

negligible portion of current under a forward bias.

A reverse voltage, or reverse bias, is applied to a p-n junction of semiconductors

when the positive terminal is attached to the n-type end and the negative to the p-type

end, as in Figure 2.11. Under these circumstances, the free electrons of the n-type

semiconductor will be drawn away from the junction toward the positive contact.

Likewise, the holes of the p-type end will be drawn away from their end of the junction

and toward the negative contact. The positive and negative ions resulting from the

electrons and holes, respectively, that are attracted away combine their charges with

26

those of the ions already alone around the p-n junction. The result is a widening of the

depletion layer, and the flow of current by majority carriers is further resisted.

Minority carriers, on the other hand, will continue to form as energy is applied in

the form of heat. When an electron is freed in the p-type semiconductor, it is attracted

across the junction toward the positive terminal. Similarly, holes appearing in the

n-type semiconductor are pulled across the junction toward the negative terminal.

Electrons will leave the negative terminal to fill the holes while electrons drawn to the

positive terminal simultaneously exit the junction of semiconductors. Thus a small

current flows by way of minority carriers. The creation of holes and free electrons

occurs as energy is applied to the semiconductor in the form of ambient heat, as

described- before; at any fixed temperature, the rate of generations for holes and

electrons is also fixed. Increasing the voltage present at the terminals then has no

immediate effect on the amount of current flowing as all minority carriers move upon

creation. It is important to note however that as the voltage increases, the pull on the

minority carriers also increases, causing them to move faster and faster through the

semiconductors. There is a voltage at which the minority carriers will be moving so

27

quickly that they will cause some covalent bonds to break, producing more carriers

and, consequently, an increase in current. These new carriers will add to this

breakdown and increase in current. The voltage around which this phenomenon begins

to occur is referred to as the reverse breakdown region.

d. The Diode. The p-n junction, unlike its single component semiconductors, has

been seen to behave differently under different conditions: a sizable current can flow

through the p-n junction when a forward bias is applied (positive contact to the p-type

semiconductor, negative contact to the n-type), but no appreciable current will flow

under a reverse bias. These characteristics arc extremely useful in a wide range of

applications in electronics; the junction of a p-type and an n-type semiconductor is

commonly referred to as a diode. The circuit symbol for the diode is given in Figure

2.12 (a). Note that the arrow head indicates the direction current may flow; this is

opposite to the direction of electron movement because of the original conception that

current flowed from the positive to the negative. The light-emitting diode, or LED,

included in the power supply circuits earlier, functions just as described here. The

particular semiconductors it is formed from produce photons in the visible spectrum

when electrons and holes recombine; the LED is consequently illuminated only when

a forward bias causes current to flow and many recombinations are occurring. Other

diodes also give off light energy, but it is not visible to the eye. The circuit symbol for

the LED is given in Figure 2.12 (b). The arrows are used to indicate the light-emitting

property.

e. The pnp Transistor. The transistor, the device to be used here for switching,

utilizes the properties described for the diode; however, in addition to the two

semiconductor layers of the diode, the transistor has a third. The layers of a transistor

may be either p-type, n-type, and p-type again (pnp) or n, p, and n (npn). For this

28

end of p-type aorico n iictcr

end of irtype seiiccndudor

(a) (b)

Figure 2.12. Diode Circuit Symbols

project the pnp transistor has been selected and will be discussed here; the

characteristics of the pnp and npn transistors are different but the concepts are the

same. In particular, the transistor to be discussed is of the grown junction variety; the

point-contact transistor, another type, is mechanically different.

The pnp transistor is depicted in Figure 2.13 (a), along with the designations of

the three layers; the first p-type region is the emitter, the second p-type region is the

collector, and the intervening region, or base, consists of n-type semiconductor. It is

worth mentioning here that while the construction appears to be symmetric, the p-type

regions are not interchangeable and the transistor must only be used in the specified

orientation for reasons which will be made clear later. The transistor has two states;

in the first, current flows through the transistor from emitter to collector and in the

second no current flows through the transistor at all. The arrows in Figure 2.13 (a)

indicate the direction of current flow through the semiconductor regions. The voltage

condition present at the base controls the presence or absence of current through the

transistor. Figure 2.13 (b) shows the circuit symbol for the pnp transistor. The arrow

here indicates the emission of holes into the base.

29

Emitter Base Collector

Figure 2.13. The pnp Transistor

Consider first the conditions that are necessary to permit the flow of current. To

begin with, the p-n junction between the emitter and base must be under a forward

voltage bias. As described for the diode earlier, this will lead the holes in the emitter

region to cross the junction barrier into the base, while free electrons in the base will

cross the barrier into the emitter; as with the diode, the forward voltage must be above

a certain level to bring about the current flow. The first p-type region is designated the

emitter as it emits holes into the base. Also as in a diode, the holes coming into the

n-type region would quickly recombine with the free electrons found there. The second

junction, an n-p transition between the base and the collector, must have a reverse bias

applied to it, making the collector more negative than the base. Thus when holes enter

the base, and become minority carriers in the n-type region, they are immediately

affected by the pull of the more negative terminal at the end of the collector p-type

region and do not all recombine with free electrons. Holes do not enter the base from

the collector due to the reverse bias. The second p-type region is designated the

collector as it collects holes from the base. Note that the holes appear to have been

thermally generated to the base-collector junction of semiconductors. Some of the

holes will recombine in the base, but many of them will cross the second junction

barrier as minority carriers and then move through the collector to the connecting

negative terminal due to the construction of the transistor layers. Upon the hole's

30

arrival at the negative terminal, an electron leaves the terminal and occupies the hole.

Simultaneously, a covalent bond in the emitter near the positive terminal breaks down,

and the electron freed exits the emitter for the positive terminal. The hole just created

then begins moving toward the emitter-base junction to continue the process. When

a hole does recombine with a free electron in the base, another electron enters the base

from the adjoining terminal to take its place. This small base terminal input of

electrons combines with the much larger input from the collector's terminal to form a

flow equal in magnitude to the flow of holes into the base from the emitter. The two

conditions required for current flow may be met simultaneously be placing a voltage

at the emitter p-type semiconductor which is greater than that at the n-type base,

which must in turn be greater than the voltage present at the p-type collector.

The object in the construction of a transistor is to make the conditions present in

the base as favorable as possible for permitting holes injected from the emitter to travel

on through the base into the collector region; if the holes simply exit through the base

nothing is achieved. This enhancing of conditions is accomplished in different ways.

One aspect of transistor construction calls for the width of the base to be very' narrow,

typically a few ten-thousandths of an inch or less. With a relatively small distance to

travel in the base's n-type region, few holes have a chance to recombine with the free

electrons present there. The density of electrons present in the base is also reduced in

comparison to the hole density of the emitter to further lessen the chance of encounters

between injected holes and free electrons. The hole densities in the two p-type regions

are also adjusted differently in each to achieve optimum results. For this and other

reasons a transistor cannot have its emitter and collector interchanged, even though

the simple depiction in Figure 2.13 makes the transistor look symmetric. The efficiency

of the transistor is based on the percentage of holes that continue into the collector

31

without recombining in the base. Percentages ranging from 95% to 99% are readily

achievable.

In order to prevent current from flowing through the transistor, the emitter-base

junction's forward bias must be eliminated. This can be accomplished by raising the

voltage at the base to the point where electrons and holes can no longer easily cross

the emitter-base junction barrier. Thus the flow of current through the transistor from

emitter to base is controlled by the voltage at the base: when high, no current flows

and when low, a forward bias is in effect allowing the junction barrier to be crossed and

current to flow.

The transistor has been around since the late 1940's, and much more remains to

be said about precise operating characteristics, different versions of the transistor, and

so on. The material included here is for the purpose of acquainting the reader with

transistor technology; further detail may be found in a number of works, including

[H ibb65], [Casa733, [Krug54], [W alk66], [Bedf64], and [M alm 69].

For this particular problem, the 2N2907A pnp transistor is employed. Two of

these transistors are used for the circuit of the motor being discussed. Recall that the

motor had one lead connected to the +4.5 volt source; the other unused end could be

connected to either ground or the +9 volt source to achieve bi-directional rotation.

The first transistor is positioned with its emitter at the unused motor lead and with its

collector going to ground; see transistor Q1 in Figure 2.14. The second transistor is

placed with its emitter at the + 9 volt source and with its collector going to the same

motor line; this is transistor Q2. Consider now transistor Ql. The +4.5 volt source

on the other side of the motor provides one end of the potential needed for the forward

biasing of the emitter-base junction; bringing the base low puts the forward bias in

effect and current flows from emitter to collector, or from the motor line to ground.

32

The circuit is completed and the motor begins to turn as expected. Note there is

actually somewhat less than +4.5 volts across the motor as a small voltage drop exists

across the transistor.

-M.5Y

Figure 2.14. The Motor Sub-Circuit

The second transistor, Q2, is in a different situation, however. Its emitter is at the

+ 9 volt potential and the other side of the motor is at the +4.5 volt level, not the

ground. When the base is brought low directly, a forward bias is in effect across the

emitter-base junction as desired, but there is also a forward bias across the

base-collector junction, as the base is at ground while the collector sees +4.5 volts on

the other side of the motor. Thus current will flow from the emitter and out the base

and also from the collector and out the base. Under these circumstances the motor

turns in the same direction as it did when the base of transistor Q1 was made low. This

situation will be remedied by the introduction of another circuit element, the resistor.

3. Resistors. To prevent the reverse current flow described above, a resistor will

be placed before the base of the second transistor. The resistor is a passive device, as

is its function. Conductors such as copper allow the flow of current, or movement of

electrons, to take place freely. Resistors hinder the movement of electrons by

employing materials other than conductors for bearing current. One technique for the

construction of resistors is to combine carbon with an electrically-inert filler. As the

33

amount of carbon is increased with respect to the filler, it becomes easier for current

to flow through the combination. As current is not allowed to flow freely from one

end of the resistor to the other, a voltage drop will occur across the resistor.

The resistor voltage drop noted above can be used to achieve the proper biasing

of the second transistor in the motor control circuit. In fact, resistors are placed before

both of the circuits' transistors as seen in Figure 2.15. (Recall that resistors R l, R2,

and R3 were used in the power supply circuits.) The resistor R5 at the base of

transistor Q2 is of primary concern. The voltage at the transistor base must be

between that at the emitter and collector for the emitter-base forward bias and

base-collector reverse bias to be in effect. The voltage drop across a resistor is given

by Ohm's Law, which states that the voltage drop is equal to the product of the current

passing through the resistor and the amount of resistance (V = IR).

+ 4 .5 V

+9V

Figure 2.15. The Modified Motor Sub-Circuit

Experimentation was carried out for each of the six motor control circuits as

different joints were found to operate better with varying amounts of current exiting

through the transistor base. Table 2.1 states the resistances used for the various motor

control circuits. Note that the values vary across a relatively small range, 100 to 470

ohms. The resistances placed at the bases of the transistors whose emitter and

collector lie at +4.5 volts and the ground, respectively, were not absolutely necessary.

34

However, including a small resistance guarantees that the holes entering the base from

the emitter will see a more negative pull from the collector than from the base terminal.

Resistances of 10 ohms were used here.

Table 2.1. RESISTANCES USED AT BASE OF SECOND TRANSISTOR

Transistor Joint Resistance (ohms)
Q2 Wrist Up 470
Q4 Gripper Open 100
Q6 Elbow Left 220
Q8 Arm Up 470
Q10 Wrist-Rotate Right 470
Q12 Arm Right 150

4. The Computer. To this point, the electronic interface consists of twelve

transistors and twelve corresponding resistors. As described, these elements are on the

layout's motors-and-robot side. Consider now the computer side of the arrangement.

For the twelve transistors and their corresponding lines that are to be raised and

lowered, the computer used for control must provide the outputs for these twelve lines.

If a computer possessing twelve output lines were used, connections could possibly be

made directly to the computer's output port; fewer lines will require additional

hardware. For this project, the IBM Personal Computer was selected. The data lines

of a printer port are suitable for the required robot control. The IBM PC has the

advantage of being in widespread use and is thus generally accessible. The drawback

for this project is that the printer port has only eight data lines; this problem is easily

surmountable, though. In addition, by working with just the eight data lines the

project is also transferable among a wide number of computers.

5. The Decoder. In order to achieve the transformation from the eight available

output lines to the twelve required, a decoder will be used. A decoder is a device which

35

accepts as its input a number of lines whose voltages are effectively interpreted as bit

positions in a binary number; for the device to be used, high voltages (+ 5 volts) will

be regarded as ones and low voltages (0 volts, or ground) as zeroes. Thus if a decoder

having three inputs sees, in order, high, low, and again high voltages, it will interpret

this as a binary 101, or decimal 5. The decoder then takes action by raising or lowering

the voltage on the one of its output lines designated by the binary number on the

inputs; for the device to be used, the selected output is made low (again, 0 volts) while

all others remain high (again, + 5 volts). Of course, the number of output lines the

decoder has is dependent upon the number of inputs. For example, for two inputs

there are 22 or four possible interpretations, 0, 1,2, and 3; three inputs can generate

any of 23 or eight possible interpretations, 0, 1,2, 3, 4, 5, 6, and 7; four inputs require

2A or sixteen output lines, and so on.

a. The l-to-2 Decoder. To see how the decoder works, consider as an example

a I-to-2 decoder using the same voltage representations as those of the decoder to be

used; this discussion is based on that of Lcwin [LcwiS3]. This device would see as its

input a single line which would be at either a high or low voltage. Two output lines

would be required. The first of these would be the zero output; it would be low when

the input is zero, or low, and high when the input is one, or high. The second output

line would be the one output; it would be high when the input is zero, or low, and low

when the input is one, or high. Table 2.11 organizes these requirements.

Table 2.II. OUTPUTS FOR l-TO-2 DECODER

Input Line Output 0 Output 1
L L H
H H L

36

It is clear from the table that the states of the zero output line are identically

those of the input line while the one output states are the opposite of the input line

states. The one output line is said to be inverted from the original; to obtain the states

required for the one output, a device called an inverter is employed. The inverter secs

a single input line, at cither a low or high voltage, and produces a single output, whose

state is opposite that of the input, high or low, respectively. Thus before the decoder

can be fully explained, the inverter itself must first be examined.

b. The Inverter. The transistor was introduced in a preceding section as its

capability to act as a switch was of use for controlling the motors of the robot. The

transistor is useful again here in that it provides the basis for the inverter. Consider

Figure 2.16 (a). The pnp transistor Q is situated so that its base is connected to the

voltage to be inverted; resistor R1 is selected so as to place the base current at an

appropriate level. The emitter is tied directly to a line supplying a high voltage. The

collector provides the output of the inverter, but it is also connected through resistor

R2 to a line supplying a low voltage, or ground. When the input line is high, the base

of the pnp transistor is not provided with the low voltage necessary for the forward

biasing of the emitter-base junction and the reverse biasing of the base-collector

junction; consequently, no current flows and the output line is at the low voltage level

through resistor R2. When the input line is brought low, the proper biases are in effect

and current flows from emitter to collector. Current leaving the collector follows the

output path, as resistor R2 deters electron movement along the other path, and the

output line is at a high voltage through the transistor. In this fashion an inverted

output is obtained from a given input. It should be noted that this is but one way to

accomplish the desired effect; one alternative employs the npn transistor, mentioned

earlier, and a corresponding reversal of voltages. The circuit diagram for the inverter

37

is shown in Figure 2.16 (b). It is worth noting here that the inverter performs the

unary logic operation NOT on its input.

tY

Input

Output

Figure 2.16. The Inverter

With the inverter in hand, the l-to-2 decoder follows quickly. Figure 2.17 shows

the decoder consists of nothing more than splitting the input line and running one of

the two resultants through a single inverter. The unaltered line is the zero output, and

the inverted line is the one output. Note that one of the two lines will always be high

and the other always low; if this decoder were to be used with two of the

motor-controlling transistors, the motor would always be turning in one direction or

the other.

Input
Output 0

Output 1

Figure 2.17. The l-to-2 Decoder

c. The 2-to-4 Decoder. A more practical and consequently more complicated

example can be found in the 2-to-4 decoder. There are now two input lines to contend

with, each of which may be at either a high or low voltage. There are then four

38

possible combinations of inputs and thus four output lines. Table 2.111 states the

desired outputs for the possible input combinations.

Table 2.1 II. OUTPUTS FOR 2-TO-4 DECODER

Input Lines
1 0 3

Output Lines
2 1 0

L L II 11 11 L
L 11 II II L II
11 L II L II H
U II L II II II

From the table, it is clear that the zero output line is low only when both of the

inputs arc low; similarly, the one output is low when the zero input is high and the one

input is low, and so on. Recalling the use of the inverter in the l-to-2 decoder, the

requirements for low voltages on the output lines may alternatively be stated in terms

of the presence of high voltages on the input lines. For example, the zero output line

is low if and only if input line 0 is not high and input line 1 is not high; the one output

line is low if and only if input line 0 is high and input line 1 is not high, and so on.

The inverter can be used to raise low inputs so that an output line is to be lowered only

in the presence of two high voltages. Another electronic device, the AND gate, will

make this detection possible.

d. The AND Gate. The AND gate has a single output which is high if and only

if its two inputs are both high as well. Like the inverter, the AND gate is a

semiconductor product. The desired function may be obtained in a number of different

ways. Figure 2.18 (a) shows one of the simplest configurations, requiring only two

diodes and a resistor. When the voltage of input 0 is low, diode D1 is forward biased

by way of resistor R to a positive voltage; thus current flows through the diode, leaving

the output at the same level as input 0, or low. Similarly, when the voltage of input 1

39

is low, diode D2 is forward biased, and the output is at the voltage level of input 1, or

low. Certainly when inputs 0 and 1 arc both low the output is also low as current is

capable of flowing through both diodes. In the single case where inputs 0 and 1 are

both high, diodes D1 and D2 are both reverse biased; no current flows through either

diode, so the output is at the high voltage level by way of resistor R. In this manner

the requirements for the logical AND operation are met. Figure 2.18 (b) shows the

circuit symbol for the AND gate.

IV

Input 0

l

l a) (b)

Figure 2.18. Diode-based AND Gate

Output

Input 0
Input 1

Output

Another alternative for the AND operation involves the use of transistors. Figure

2.19 demonstrates an example of how the desired pairings of inputs and outputs may

be achieved. Input 0 is fed to the base of pnp transistor Q1 through resistor R l, whose

resistance determines the base current for Ql. Likewise, input 1 is fed to the base of

pnp transistor Q2 through resistor R2. When input 0 is low, transistor Ql conducts

current from emitter to collector, putting the output at the same voltage level as the

collector, which goes to ground. A low input 1 causes transistor Q2 to conduct,

putting the output at its collector voltage level, or zero. Certainly when both of the

inputs are low, the output will again be at the common collector level, zero. When

both inputs are high, however, neither transistor conducts current, and the output is

at the high voltage level through resistor R3. There are, of course, many other

implementations that achieve the same result.

40

+Y

With both the inverter and the AND gate available, the 2-to-4 decoder may be

constructed as shown in Figure 2.20. The connections made can be reconciled with

Table 2.Ill, stated earlier. Output 0 is low when both of the inputs are low, so the

AND gate associated with it receives inputs from the inverters of each of the two

decoder inputs. Thus when both inputs are low, the inverted lines are high, and the

AND gate produces a high voltage. This is in turn inverted to produce the desired low

voltage for Output 0. Output 1 is low when input 1 is low and input 0 is high, so its

AND gate receives as input the inverted voltage from input 1 and the original voltage

of input 0. When input 0 is high and the inverted voltage of input 1 is high as well

(meaning input 1 is itself low), the AND gate yields a corresponding high voltage,

which is also inverted to obtain output 1. Outputs 2 and 3 are generated in similar

fashion. (The AND gate and inverter are commonly combined as a single circuit

element, the NAND gate, whose output is low only when both of its inputs are high.)

e. The 4-to-16 Decoder. Returning now to the original problem, it was required

to take the eight available control lines originating from the computer and lower one

of the twelve control lines leading to the transistors. As has been demonstrated, the

decoder effectively functions by interpreting its input as a binary number and placing

41

Output

Output

Output

Output

0

2

3

only the correspondingly-numbered output line at a low voltage. One input may select

either of 21 or 2 outputs; two inputs may select from among V or 4 outputs; three

inputs produce 23 or 8 possible outputs, and so on. The particular problem requires

12 lines for controlling the motor transistors; since 12 is larger than 8 but less than 24

or 16, a 4-to-16 decoder will be adequate for the task. Note also that while twelve of

the lines will be directly used, a thirteenth will be made high when all of the twelve lines

are to be low simultaneously; this corresponds to the intervals during which no motor

is running in either direction.

Consider how such a device might be constructed. Extrapolating from the 2-to-4

decoder, it is clear that each of the sixteen decoder outputs is determined by a unique

combination of the voltages on the four input lines. Table 2.IV shows the specific

pairings.

As was done for the 2-to-4 decoder, each of the 4-to-l6 decoder's output lines is

the inverted output of an AND gate. The difference here is that while the 2-to-4

decoder AND gates accepted two inputs, each of the AND gates in the 4-to-16 decoder

must be able to accept four inputs. The two example constructions for the AND gate

42

Tabic 2.IV. OUTPUTS FOR 4-TO-16 DECODER

Input Lines
3 2 1 0 15 14 13 12 11

Output Lines
10 9 8 7 6 5 4 3 2 1 0

L L L L II 11 H II II II 11 II II II II H u M II L
L L L II II II II H I-I II II II H II II II ii II L II
L L II L II H II H II H II II 11 11 11 II H L 11 II
L L II M II H II H H II II II H II II II L H H II
L II L L II II II II II II II H II II II L II 11 II II
L II L H 11 II II II H II II II 11 II L II 11 11 II II
L II II L 11 H H II I-I II II II II L 11 11 11 II II II
L H II H II H H H H M H H L II II H H H I-I I-I
II L L L 11 II H II H II II L II II II II II M H II
II L L H II H H II II II L II II II II H II I-I II II
II L II L 11 II II II II L 11 II II II II II II II 11 II
11 L H H H H H H L II II II II II H II H H H II
II II L L II II H L I-I II II II II II II II II II II 11
H H L H II II L II I-I II II II II II II II 11 II II II
II 11 H L 11 L II II II H II II II II II II II II II II
H H H H L H H H H H H H H H H II H H H H

given in Figures 2.18 and 2.19 may be easily modified to accept four inputs; the design

of Figure 2.21 shows how this is readily accomplished by expanding the arrangements

in the simpler versions.

(3)

+Y

Output

Figure 2.21. 4-Input AND Gates

43

As with the 2-to-4 decoder, each input will be split, and one of the two resulting

lines will be fed to an inverter so that the AND gates can produce a high output for a

mixture of originally high and low inputs. Figure 2.22 shows the complete

construction. Note that there arc twenty-four inverters and sixteen 4-input AND gates

employed. As seen in Figure 2.21, each of the AND gates will require cither four

diodes or four transistors, as opposed to the two used in the two-input AND gates.

Consequently, the cost of the 4-input AND gates will be higher while the reliability is

reduced by the increase in the number of parts.

Inputs

Outputs

Figure 2.22. The 4-to-16 Decoder

An alternative to the decoder requiring 4-input AND gates can be realized by

employing as an element within the 4-to-16 decoder the 2-to-4 decoder developed

previously. The four control lines of a 2-to-4 decoder may be used to select from

among four alternatives. If the sixteen required output lines of the 4-to-16 decoder are

divided into four groups of four, the different groups may be thought of as being

selected one at a time by the output lines of the 2-to-4 decoder. This is accomplished

by having each of the sixteen 4-to-16 decoder outputs be the inverted output of an

AND gate, the input for which in each case will include the aforementioned selection

44

line after inversion; see Figure 2.23. Thus any one of the sixteen decoder outputs can

only be low when its AND gate input from the 2-to-4 decoder and inverter is high;

conversely, as a single 2-to-4 decoder output will be low at any one time, there are only

four possible outputs of the 4-to-l6 decoder which can possibly be high due to the

function of the AND gate.

Inputs
3 2 1 0

Outputs

Figure 2.23. Partial 4-to-16 Decoder Using a 2-to-4 Decoder

Once one subset of four decoder output lines has been selected from the original

sixteen, it remains to choose one from among the four. This will require four selection

lines which will act as inputs to the AND gates of the output lines. Two of the original

inputs have been used to this point, leaving two others; four selection lines arc

required. Thus a second 2-to-4 decoder may be used. Its inverted outputs will run in

parallel to each of the subsets of four decoder outputs; see Figure 2.24. In this fashion

a subset is chosen by the first 2-to-4 decoder, and a line from among the subset is

selected by the second 2-to-4 decoder.

45

Inputs
3 2 1 0

The second version of the 4-to-16 decoder can provide a reduction in the number

of parts required by the first version. Assume that only transistor-based gates are used.

In the first version of the decoder, twenty inverters were used along with sixteen

4-input AND gates, which were seen in Figure 2.21 to incorporate four transistors

each. Thus a total of twenty inverters and sixty-four gate transistors were required.

At one transistor per inverter, as seen in Figure 2.16, the transistor total becomes

eighty-four. In the second version, there arc two 2-to-4 decoders, twenty-four

inverters, and sixteen 2-input AND gates. Figure 2.19 shows that each of these AND

gates requires only two transistors, for a total of thirty-two. The 2-to-4 decoders,

depicted in Figure 2.20, are each comprised of six inverters and four 2-input AND

gates. Two such decoders will call for twelve inverters and eight 2-input AND gates,

which also require two transistors each for a total of sixteen. Thus this version of the

decoder requires thirty-six inverters and forty-eight gate transistors. Again at one

transistor per inverter, the transistor total for the complete decoder is eighty-four, the

46

same as before. However, this number is unncccessarily large. Inspection of Figure

2.24 shows that the 2-to-4 decoder outputs are immediately inverted, while Figure 2.20

shows that the 2-to-4 decoder outputs are inverted immediately prior to being output.

Thus the inverters on both sides of the two 2-to-4 decoders may be removed, as their

actions nullify one another. There arc four inverters on cither side of both 2-to-4

decoders, for a total of sixteen. Consequently, sixteen transistors may be eliminated

from the count for the second 4-to-16 decoder, bringing its total to sixty-eight. This

is close to a 20% reduction from the first version. By reducing the number of

components required the cost of the device is lessened, while its dependability is

increased as there are fewer components to break down.

There are drawbacks to this second method, however. One trade olTthat is made

here is with regard to the time it takes for the device to act. In Figure 2.22 the input

lines of the first version of the decoder can be seen to pass through inverters and then

proceed immediately to the 4-input AND gates. The second decoder construction has

the inputs pass through the 2-to-4 decoders, the output of which continues on to the

2-input AND gates. Within the 2-to-4 decoders, the inputs pass through inverters and

then another set of 2-input AND gates. Thus the second version is slower than the

first version by the amount of time it takes a second AND gate to act. Regardless of

whether the AND gate is diode-based or transistor-based, a finite amount of time is

required to raise or lower the AND gate from the instant the inputs dictate a change.

At computer speeds, this is an important aspect which cannot be ignored. On the other

hand, with the project under development this amount of time is inconsequential;

whether a robot joint begins moving a few thousandths of a second later or not will

have no impact on the final outcome in this situation.

47

The actual device used for the transformation from the eight available output

lines to the twelve required is the 74154 4-to-16 decoder. The 74154 decoder is a 24-pin

integrated circuit which incorporates in a single package all of the necessary inverters

and AND gates specified; see Figure 2.25 for the layout of the pins, or circuit

connections. Pins 20, 21, 22, and 23 are the inputs described earlier as inputs 3, 2, I,

and 0; pin 20 is effectively the 23 = 8's place in the binary number being input, pin 21

is the 4's place, pin 22 is the 2's place, and pin 23 is the l's place. With four binary

positions, a value from 0 to 15 may be represented. High voltages (+ 5 volts) arc

interpreted as ones, while low voltages (0 volts) act as zeroes. Thus the decimal input

S would appear as a high voltage at pin 20 and low voltages at pins 21, 22, and 23.

Pins 18 and 19 act as enabling pins for the integrated circuit. In order for it to function

as described, the voltages at both of these pins must be low. For this project, these two

pins will be connected directly to ground.

Output 0
Output 1
Output 2
Output 3
Output 4
Output 5
Output 6
Output 7
Output 8
Output 9
Output 10

-+ 5V
Input 0

- Input 1
-In p u t 2

Input 3
- Enable 0
- Enable 1

Output 15
Output 14

- Output 13
Dutput 12

-O utput 11

Figure 2.25. The 74154 4-to-16 Decoder

The 74154 1C maintains sixteen output lines, fifteen of which are at any one time

at a high voltage level due to the grounding of pins IS and 19; the permanent low

voltages at pins 18 and 19 lead to the decoder being enabled at all times, with a

48

sixteenth output, determined by the input value, low at all times. Pins 1 through 11

and 13 through 17 correspond to the outputs 0 through 15 in the development of the

4-to-16 decoder. It is arbitrarily decided here that the twelve transistor control lines

will be obtained from the decoder's outputs of 1 through 12; the corresponding IC pins

arc 2 through 11, 13, and 14. When a joint is to be moving, the decoder inputs will

indicate the output control line to the appropriate motor. At times when no joint is

to be moving, some output must be selected besides those associated with transistor

control. As only twelve of the sixteen outputs are needed for motor control, any of the

remaining four may be set aside to be low when no motor is to be in use; let this be

decoder output 0, corresponding to IC pin 1. If the situation called for the use of all

sixteen decoder outputs for control lines, the enable lines could be employed to place

high voltages on all sixteen lines simultaneously. As this is not the case, the approach

taken is satisfactory. The remaining decoder output pins, 15, 16, and 17, are left

unused. Note also that four of the eight available computer output lines arc left

unused. The remaining pins of the 74154 IC are pin 24, which receives a + 5 volt

power source and pin 12, which goes to ground. The 4.5 volt power supply of the

circuit in Figure 2.5 is sufficient for operation of the IC; it will be supplied to pin 12.

There is an additional point that should be made about this arrangement. If the

computer used had the necessary' twelve control lines and they were tied directly to the

resistors at the base of each transistor, then each of the transistors could be controlled

independently of the others. This is an advantage in that it allows for the programmed

control of coordinated motion, wherein more than one joint is moving at a time. This

would make possible smoother motions by the robot arm. It is also a disadvantage in

that if the control lines leading to two transistors connected to the same motor were

made low simultaneously, then they would both allow current to flow; this current

would proceed directly from the 9 volt source through both transistors to ground, as

49

the emitter of the first transistor is tied to the collector of the second. This would very

quickly ruin both transistors. One of two courses of action would need to be taken.

First, this situation could be programmed against, a costly step that would have to be

present in every' application. The alternative would be to add additional circuitry' which

would preclude the two lines in question from going low during the same period. This

has the disadvantage of adding some cost and complexity to the design. With the use

of four control lines from the computer and the 74154 decoder's twelve subsequent

outputs, it is impossible for more than one of the twelve lines to be low at a time.

While coordinated motion is prevented with this design, the safety of the transistors is

never an issue.

6. Inverters. While there are now twelve control lines for the twelve transistor

bases, one final problem remains: the current provided by an output of the 74154

decoder is not sufficient to enable a 2N2907A pnp transistor to conduct current from

emitter to conductor. Recall that when the base voltage is made low, the emitter-base

junction becomes forward-biased, and current begins to flow. Holes leave the emitter,

enter the base, and are then immediately attracted toward the collector's negative

terminal. However, some of the holes entering the base from the emitter will

recombine with the free electrons present m the n-type material. These electrons must

be replaced by the base current. In the given situation the base current cannot be

provided by the decoder as that source by itself is insufficient.

One method of handling this problem involves the use of the inverter described

in the development of the decoder. The inverter depicted in Figure 2.16 was seen to

incorporate a transistor and two resistors. The inverter circuit may be found separately

on integrated circuits as the inverter is a common circuit element. In fact, six such

inverters may be found on the 7404 IC, aptly referred to as a hex (six) inverter; see

50

Figure 2.26 for the layout of the integrated circuit. The first inverter can be seen to

receive its input at pin 1 and produce its output at pin 2; subsequent inverter input and

output pairs are pins 3 and 4, 5 and 6, 9 and 8, 11 and 10, and 13 and 12. Upon the

presence of a high voltage at an input, the voltage at the corresponding output pin

becomes low, and vice versa. The remaining pins of the 7404 1C arc pin 14, which

receives a + 5 volt power source (detailed in Figure 2.5) and pin 7, which goes to

ground. As was the case for the 74154 1C, the 4.5 volt power source of Figure 2.5 is

sufficient for proper operation of the 7404 IC.

I n p u t 1
O u tp u t 1
I n p u t 2
O u tp u t 2
I n p u t 3
O u t p u t 3

Figure 2.26. The 7404 Hex Inverter

+5V
- Input 6

Output 6
Input 5

- Output 5
- Input 4
-O utput 4

Inverting the decoder output once certainly does not solve the problem as the

voltage level produced is made opposite of that desired. Inverting the output of the

first inverter removes this aspect of the problem by returning the voltage to its original

level. However, the output of this second inverter still does not provide the required

current. To obtain the amount needed, the output of the first inverter is passed

through not one but three parallel inverters. The output currents of three 7404

inverters combined is adequate for the operation of the 2N2907A transistor. Each

decoder will pass through one inverter followed by three inverters in parallel. With

four inverters required for each of the twelve decoder outputs, a total of forty-eight

inverters will be necessary. As a 7404 integrated circuit contains six inverters, a total

of eight 7404 I C's will be used. Of course, the order of the connections among the

inverter I C's is completely arbitrary. The design used in Figure 2.27 calls for the twelve

51

decoder outputs to be connected to the inverters of a pair of 7404 IC's; the twelve

subsequent inverter outputs are then passed two at a time to the remaining six IC's,

each line going to three more inverters on a single 1C. The three resultant parallel

outputs may then be connected to the resistors at the base of each transistor.

Figure 2.27. Decoder and Inverter IC Connections

At this point, the electronic interface of computer and robot motors is complete.

The combined circuit can be seen in Figure 2.28. The subcircuits for the motor and

integrated circuit power supplies were given earlier in Figure 2.4 and 2.5, respectively.

52

The actual construction was carried out on a 2200-hole 4.5" by 6.625" grid board.

Sockets were used for all of the transistors and resistors, as well as the IC's, in order

to facilitate replacement.

7. Manual Switches. One final segment was added to the electronic interface and

remains to be described. The circuit given thus far provides for computer control only.

In order for the robot to be moved manually, a set of switches is incorporated to

provide the motors with power directly from the power supplies; sec Figure 2.29. The

twelve switches arc of the momentary push button variety and arc normally open. As

can be seen in the figure, one side of each motor is fixed at the +4.5 volt level. Closing

the corresponding top-row switch places the other side of the motor at ground, and

current flows in one direction; closing the corresponding bottom-row switch places the

other side of the motor at the +9 volt level, causing current to flow in the opposite

direction. These switches are useful for alignment of the robot arm prior to

programmed control. Care must be taken not to close both of the switches for a single

motor simultaneously as this would put the + 9 volt source directly in contact with the

ground.

This concludes the construction of the robot arm for this project. The completed

robot with electronic interface in place was shown earlier in Figure 2.1. Subsequent

chapters will deal with various types of programmed control.

Figure 2.28. The Complete Computer Control Circuit C/iu>

Figure 2.29. Switches for Manual Control

55

III. MANUAL CONTROL OF THE ROBOT

With the robot constructed as described in Chapter II, computer control can now

be achieved. This chapter will detail the use of four control lines from the output port

of the computer and how to actuate a selected joint via keyboard input using a simple

control program.

A. THE PARALLEL PORT

The IBM PC input/output port addressing scheme places parallel printer 2 at

address 378H through 37B11. The eight data lines themselves are at location 37S1I,

or 888. This is the position that will be addressed for setting the robot control lines.

The other miscellaneous lines associated with printer control arc not needed for this

application. The C procedure OUTPORTB places a byte at the specified output port.

The command outportb (888 , 0) places all zeroes on the data lines. This

command is issue at the beginning of the highest level program procedure, prior to

supplying power to the robot. Values of 1 through 12 may subsequently be placed in

the second parameter position to turn on the various transistors in the robot control

circuit.

B. KEYBOARD INPUTS

The keyboard of the IBM PC will be used in this first control program. One key

will be associated with each of the twelve distinct members of the six joint-direction

pairs. Two choices present themselves for control. First, the joint could begin

movement upon the press of a key and stop at the press of another. The alternative

is to begin movement when a key is depressed and continue movement until it is

56

released. This second technique was chosen as it was deemed easier to use and more

effective in stopping control.

The key to joint-direction assignments are made arbitrarily. It was decided that

a joint should be controlled in its two directions by keys of the same finger on each

hand. For example, the left forefinger's "F" will drive the arm left while the right

forefinger's "J" will cause a movement to the right. The entire set of assignments is

presented to the user by a constant screen indicating them. The relevant portion of the

display may be seen in Figure 3.1.

Gripper Open ■ Gripper Closel
iii E*-Wrist Up (4) Wrist Down-*I •(li
A* S* D* F* G* —Arm(2)

1
Arm-*H *J *K *L *:

: ; up 1 1 Down ! !i it 1
! Arm Left 1 (1) Arm Right 1i1
Elbow Left (3)

>
Elbow Right

V̂ rist Rotate Left (5) Wrist Rotate Right

Figure 3.1. Displayed Assignments of Keys to Joints

The procedure which polls the keyboard, m o n ito r_ k e y b o a rd , iterates

repeatedly until the space bar is struck, the arbitrarily selected indication that manual

control is to be terminated.
init_transistor_messages (msgs); do

{locate (row, col); while (!kbhit()); key = toupper(getch()); switch (key)
{

/* Arm Down - Up #/case ■H’ : transistor =
joint = 2;
break;

7;

case '6’ : transistor =
joint = 2;

8;
break;

57

case 'J'

case 'F'

case 'D '

case 'K'

case 'I '

case 'E'

case 'S’

case 'L '

case 'A'

case ';'

/X Arm Right - Left X/
transistor = 12;
joint = 1;
break;
transistor = 11;
joint = 1;
break;

/X Elbou Left - Right x/
transistor = 6;
joint = 3;
break;
transistor = 5;
joint = 3;
break; /X Wrist Down - Up X/
transistor = 1;
joint = A;
break;
transistor = 2;
joint = A;
break; /X Wrist Rotate Left - Right X/
transistor = 9;
joint = 5;
break;
transistor = 10;
joint = 5;
break; /x Gripper Open - Close X/
transistor = A;
joint = 0;
break;
transistor = 3;
joint = 0;
break;

if

default : transistor = 0;
joint = 0;

}(transistor != 0)
move_manual (transistor, msgs[transistor],

theta, joint);
key,

if (joint > 0)
noap_matrix (theta, noap, noap_rou, noap_cols);

}while (key != space);

row, col,

Upon the pressing of a key associated with robot control, the procedure selects the

appropriate joint and transistor; the procedure move_manual of the next section is

then invoked to raise the appropriate control lines while the key is depressed.

Procedure n o a p _ m a tr± x , which will be explained fully in the next chapter, is then

invoked to update both the displayed joint values and the gripper position and

orientation to reflect the completed movement. The position and orientation are

updated for changes in joint variables but not gripper openings and closings.

58

C. ACTUATION OF A ROBOTIC MOTOR

When a key on the IBM PC keyboard is pressed, the character associated with the

key is placed in a buffer for processing. The C procedure k b h it returns a true value

when this buffer is not empty. There are two characteristics of the IBM PC keyboard

which must be taken into account when implementing robotic control. First, when a

key is pressed and held down, the keyboard microprocessor immediately responds by

sending one instance of the associated character to the keyboard buffer; if the key

remains depressed for longer than the period IBM refers to as the typematic delay, the

keyboard microprocessor will begin to send additional copies of the character. The

typematic delay for the IBM PC is 0.5 seconds; later keyboard models feature a

programmable typematic delay, but the default remained 0.5 seconds. The second

keyboard characteristic which must be dealt with is the repeat rate at which the

keyboard processor sends out copies of the key character while it remains depressed.

This is a programmable feature of later keyboard models. A rate of about 10

characters per second was standard for early keyboards and is the default value for

later models. Information pertaining to the behavior of IBM equipment was obtained

from Norton and Wilton [NortSS].

The specified control method calls for the selected drive motor to have power

applied when the corresponding key is depressed; the power is to be discontinued when

the key is released. Taking the typematic delay into account, the keyboard buffer

cannot be examined again until 0.5 seconds have passed. Thus, there will be a lag of

0.5 seconds between the press of a key and the start of a motor. After that amount

of time, the keyboard buffer may be examined about every 0.1 seconds to see if the key

remains depressed. The loop structure of procedure m ove_manual takes these

factors into account.

degree_scale = select_scale_manual_move (transistor);i = 0;

59

lcputs (row, col, msg);
locate (row, col);
pause C500);
outportb (888, transistor);
do

{
i++;pause (110);
key = null;
while (kbhit ())

key = toupper (getch ());
}while (key == original_key);

outportb (888, 0);
lcputs (row, col, " ");
if (joint > 0)

thetaLjoint] += (float) i / degree_scale;

nxpcrimcntation with the given loop structure found that the execution time of the

loop itself plus an additional 0.1 seconds was slightly less than the realized repeat rate.

An increase in the loop's pause to 0.11 seconds was found to be satisfactory. Note that

the keyboard buffer is emptied on each pass of the loop in the event that the key is

released and several others are struck in rapid succession.

One other point about the procedure concerns the incrementation of variable i

on each iteration of the loop. This is done to keep track of the current setting of each

joint variable. Experimentation with the loop was performed to determine the

approximate number of degrees the different joints turned in each direction during each

pass of the loop. This process will be examined more fully in the next chapter, where

the joint and axis assignments arc discussed. The results of the experimentation are

shown in Table 3.1. The number of iterations divided by the number of iterations per

degree results in the number of degrees turned by the joint during the move. This value

is then added to the previous setting of the joint to obtain its current setting.

D. THE CONTROLLING PROCEDURE

Procedure m a n u a l_ c o n tro l begins by displaying the introductory screen of

Figure 3.2. Subsequent to that, the keyboard assignments in Figure 3.3 are displayed.

60

Table 3.1. RATIOS OF ITERATION COUNTS TO DEGREES MOVED

Joint Direction Ratio

Arm Left 710 ! 360
Arm Right 650 / 360
Arm Down 290 / 35
Arm Up 270 / 35
Elbow Right 415 / ISO
Elbow Left 410 / 180
Wrist Up 365 1 200
Wrist Down 300 / 200
Wrist-Rotate Left 680 /1080
Wrist-Rotate Right 660 /1080

The keyboard monitoring procedure is then invoked and retains control until manual

control is to be terminated.

dsplY_roanual_introduction ();
uait_then_erase (9);
dsply_keyboard (&row, &col);
monitor_keyboard (theta, noap, noap_rou, noap_cols, rou, col);
erase_prompt (23);
locate (23, 0);
meputs (28, 27, "ffanual Control Terminated");
wait_then_erase (8);

Note that Figure 3.3 depicts the display while the key "G" is depressed; a message is

displayed on the select line reflecting this. The documented listing for the procedures

associated with the manual control portion of the overall program many be found in

Appendix C.

Theta
Armatron Manipulator Control

0 . 0 0 0 N 0 A P
o . o o o : 1 . 0 0 0 0 . 0 0 0 0 . 0 0 0 2 0 0 . 0 0 0
o . o o o : 0 . 0 0 0 - 1 . 0 0 0 0 . 0 0 0 0 . 0 0 0
o . o o o : 0 . 0 0 0 0 . 0 0 0 - 1 . 0 0 0 - 1 0 0 . 0 0 0
o . o o o : 0 0 0 1

M a n u a l C o n t r o l

The movement of each of the five joints, as well
as the gripper, of the Armatron manipulator is
controlled from the keyboard by a pair of keys.
To effect movement of a joint, press and hold
down one of the keys controlling the joint.
Note; At times, a motor may stall; should this

occur, immediately release the key to
avoid ruining a transistor.

Press any key to see the key assignments to the
joints and begin the program.

Figure 3.2. Manual Control Introduction

Theta
Armatron Manipulator Control

0 . 0 0 0 N o A p
o . o o o : 1 . 0 0 0 0 . 0 0 0 0 . 0 0 0 2 0 0
o . o o o : 0 . 0 0 0 - 1 . 0 0 0 0 . 0 0 0 0
o . o o o : 0 . 0 0 0 0 . 0 0 0 - 1 . 0 0 0 - 1 0 0
o . o o o : 0 0 0 1

Manual Control
Gripper Open Gripper Close

E*-Wris t Up (4) Wrist Down-*I
D* F* G*-Arm(2) Arm-*H *J *K
: : upi i Down ! Ii it t
! Arm Lefti C 1)

i 1
Arm Right 1ii

Elbow Left (3)
i

Elbow Right
Wrist Rotate Left (5) Wrist Rotate Right

Select: Arm Up
<Press the space bar to terminate control>

Figure 3.3. Manual Control Display

0 0 0
000
000

O '

63

IV. JOINT VARIABLE CONTROL

The previous chapter developed a program which would allow manual control of

robot joints via a keyboard. While this demonstrated what is required of a computer

to drive the robot motors, it did not result in a practical method of automated control.

This chapter takes a step in this direction by developing a control program which

provides for the specification of angular settings for each of the joints. The objective

here will be to position and orient the arm prior to any actuation of the gripper, so

control for the opening and closing of the gripper itself will be ignored. In addition to

providing control, the position and orientation of the resulting arm configuration will

be mathematically derived and displayed.

A. INITIAL ARM CONFIGURATION

In order to move a robot arm joint from one position to another, the control

program will maintain a variable associated with the joint for the current setting of the

joint angle. When a new setting is desired, comparison with the joint variable will yield

the amount of movement required. The arm will have an initial configuration at which

each of the joint variables will be zero. This initial position and orientation will dictate

the maximum positive and negative movements possible for each of the joints.

Choosing an initial configuration is done with the primary goal of simplifying

subsequent calculations involving the arm's position and orientation.

Consider the depiction of the Armatron manipulator configuration shown in

Figure 4.1. This is the initial configuration to be used. Note that each of the five joints

has an axis indicated about which it can rotate. The base coordinate frame for

specifying the position and orientation to the user by vectors is indicated by the

vector-triple (jT0, j70, zj,). The origin of this coordinate-frame is located at the

64

intersection of the axes of rotation of the first two joints, the arm-vertical and the

arm-horizontal rotations. There arc two things to note here. First, the direction for

the axis of rotation for each joint has two alternatives; for example, the axis about

which the vertical arm rotation takes place could extend to the right, rather than the

left as in Figure 4.1. Second, the configuration has the arm fully extended horizontally,

but the wrist is pointed vertically down, 'flic reason for the axis directions used and

the initial configuration will be made clear later in this chapter.

Each of the five joints has restraints placed on it by the physical construction of

the robot. For example, the wrist is capable of upward and downward movement

throughout a 200“ arc. The initial configuration divides each arc of movement into

positive and negative portions. The wrist reaches the center of its arc of vertical

rotation when it is extended horizontally. As the initial configuration calls for the wrist

to be pointed straight down, only 10 more degrees remain in the downward direction

65

until the bottom of the arc of movement is reached; the 190’ complement is available

in the upward direction. One can apply the right-hand rule to the rotation axes of

Figure 4.1 to define which movements are positive and which are negative. By placing

one's right hand about the axis of rotation with the thumb extended along the positive

direction of the axis, the fingers curl about the axis in the positive direction of

movement. Thus, of the wrist's 200 degrees of movement, 190 arc in the positive

direction and 10 in the negative. The five joints, their arcs of movement, and the

positive and negative movements are as stated in Table 4.1.

Table 4.1. RANGE AND DIVISION OF JOINT ARC MOVEMENTS

J oint Arc Positive Negative
Arm-Horizontal continuous 360 left 360 right
Arm-Vertical 35 30 up 5 down
Elbow-FI orizontal ISO 90 left 90 right
Wrist-Vertical 200 190 up 10 down
Wrist-Rotate continuous 360 right 360 left

Note that the designations of left and right arc with respect to the base-coordinate

frame, looking out along the x-axis. Note also that the two joints having unlimited

movement are arbitrarily restricted to 360" in either direction, as one full rotation is

sufficient to obtain any position.

B. PROCESSING OF MOVE REQUESTS

A movement command for the manipulator consists of two parts, the joint to be

driven and the associated number of degrees. With these two pieces of information

known, the move may then be carried out. Procedure processorequests carries

out these three steps repeatedly.
joint = get_joint ();
while C joint != 0)

{angle = get_angle (theta_mintjoint], theta_max[joint]);
erase_prompt (23);
locate (23, 20);

66

cprintf ("Moving Joint %d to angle %8.3f", joint, angle); perf orin_move (joint, theta, angle,]v_rows t joint], jv_col);
lcputs (23, 20, ’’ ");
noap_matrix (theta, noap, noap_rou, noap_cols);
joint = get_joint ();
}

After each move, the joint variable values and the position and orientation of the

manipulator's gripper will be updated by procedure n o a p _ m a tr ix . The next

section will develop the relationship between the joint variables and the gripper

position and orientation. This section examines each of the three steps directly

involved with the move: selection of a joint, specification of an angle, and performance

of the move.

1. Selection of a Joint. The first step in the process of joint variable control is

to provide for the selection of the joint to be moved. The Armatron robot has five

joints for movement of the arm. The joint numbering is indicated to the user along

with the physical range for each in a display screen; the relevant portion is given in

Figure 4.2.

Joint
1 : Arm Right/Left

(-360 to +360)
2: Arm Down/Up

(-5 to +30)
3 : Elbow Right/Left

(-90 to +90)
4: Wrist Down/Up

(-10 to +190)
5; Wrist Rotate Left/Right

(-360 to +360)

Figure 4.2. Displayed Joint Numbering

The first program interaction is to obtain the number corresponding to the desired

joint; procedure get_joint accomplishes this. The user is to choose a number

67

between one and five. By convention, if an input of "0" is received, joint variable

control is to terminate,

do
joint = prompt_input_digit ("Select Joint:");
uhile (joint > 5); locate (24, 20);

cprintf ("Joint %d has been selected", joint);
return (joint);

The only way control is returned from the procedure to the invocation point is by

obtaining a numeric digit ofO through 5.

2. Specification of an Angle. With the joint chosen, a setting is required next.

Procedure g e t_ a n g le prompts for an input for the selected joint,

do
{lcputs (23, 20, "Enter angle <Snnn.nnn>: ”);
angle = (indec (23, 45));
if (angle == 1000)

angle = 0;if ((angle < minimum) 1 (angle > maximum))
{locate (23, 10);cprintf ("Angle %8.3f out of range for the joint; ", angle);
eputs ("check ranges above");
pause (3000);
locate (23, 10);
cprintf ("%61c", ' ’);
}

}uhile ((angle < minimum) l (angle > maximum));
return (angle);

Procedure in d e c does not allow the input of the integer portion of a value to exceed

999; the value 1000 is returned by it to indicate the entry of a null string, to which a

value ofO is assigned. Procedure g e t_ a n g le then checks the input angle against the

extreme values for the selected joint, iterating until a valid value is obtained.

3. Performance of the Move. Procedure perform _m ove carries out a move

by determining a signed angle to move through, selecting the proper transistor, and

then iterating an appropriate number of times. Each of these steps shall be examined

in detail. The body of the procedure is presented here in its entirety; portions of it will

68

be pulled out and inspected during the examination of the steps for performing the

move.

move_degrees = desired_position - theta[joint] ;
transistor = select_transistor (joint, move_degrees);
degree_scale = select_scale (transistor);
iterations = round (fabs(move_degrees) X degree_scale) ;
degrees_per_iteration = sign (move_degrees) / degree_scale;
lcputs (rou, col, " Moving");
i = 0;
outportb (888, transistor);
uhile ((!kbhit()) S (i < iterations))

i = i + 1 ;
outportb (888, 0);
if (i == iterations)

thetatjoint] = desired_position;
else

{getch ();
thetatjoint] += degrees_per_iteration X i;
}

leprintf (rou, col, thetatjoint]);

a. Determination of the Signed Angle. The array t h e t a is used to maintain the

current settings for each of the five joints. It is zeroed at the beginning of the main

program, at which time the robot is aligned to its home positioning. The desired

setting for the joint in question is input as d e s i r e d _ p o s i t i o n ; the required move

is then the signed difference between d e s ir e d po s i t i o n and the value stored for

the joint in the t h e t a array. For example, if the desired setting is 45" and the current

setting is 30°, a move of + 15° is required; to attain 45° from a starting position of 60°

requires a move o f —15°. In both cases, the current setting is subtracted from that

desired.

move_degrees = desired_position - thetatjoint];

b. Selection of the Proper Transistor. Returning to the electronic interface

configuration for a moment, it will be recalled that there are two control line-transistor

pairs for each joint, one for each direction; thus if the specified angle of movement is

positive, the forward control line shall be selected and the other if negative. This task

69

is carried out by procedure s e l e c t _ t r a n s i s t o r , which returns the transistor

number based on the joint to be moved and the sign of the angle.
move > 0
switch

{case

)(joint)
1 : transistor = 1 1;

case 2 break;: transistor = 8;
case 3 break;: transistor = 6;
case 4 break;: transistor = 2;
case 5 break;■■ transistor = 10;
}elseswitch (joint)
{case 1 : transistor = break; 12;
case 2 •• transistor = break; 7;
case 3 : transistor =

break; 5;
case : transistor = break; 1;
case 5 : transistor = 9;
}return (transistor);

In the event that a move of zero is requested, the negative transistor for the joint is

arbitrarily selected as there will not be any activity.

c. Iteration During the Move. There are two possibilities for controlling the

movement of an arm joint through 6 degrees. First, feedback hardware can be utilized

to provide information to the computer as to the positioning of the arm; this method

was deemed inappropriately complex with respect to the goals of this project. The

other alternative is to control the joint movement by a timing scheme. The assumption

here is that movement of a joint occurs at a constant fixed rate. Inertia, acceleration,

and other complicating factors are outside the scope of this project and are thus

ignored. Given this, a simple iterative loop can be used to control movement by first

determining how many degrees of movement are obtained for each pass of the loop.

The following loop structure was set up to make these determinations:
i = 0;
outportb (888, transistor);
uhile ((!kbhit()) & (i < iterations))

70

i = i + 1 ; outportb (888, 0);

The variable i t e r a t i o n s was set to 10000, a value in excess of any iteration count

to ever be used. The loop was then executed numerous times for each of the joints.

The test for a joint begins by moving the joint manually to one end of its arc of

movement. For example, the wrist is dropped to the lowest position possible. The

variable t r a n s i s t o r is set to the number of the transistor associated with the

movement being tested. In the example, transistor 1 is used as it will cause upward

movement of the wrist toward the highest position possible. The program segment is

then run. The first statement raises the appropriate control lines, beginning movement.

The loop itself first checks the keyboard buffer to sec if any key has been struck; if not,

control continues through the loop to the next pass. If a key has been struck,

indicating that the wrist has achieved the maximum upward position, the loop is exited.

The final statement lowers all control lines, ceasing movement. The value of i reflects

the number of iterations required for the joint to move through its entire range in the

given direction. In the case of the wrist, this range is 200 degrees, while the average

iteration count was found to be 365. The inference from this is that the loop iterates

365/200 = 1.825 times for each degree of movement. This value of 1.825 is then the

scale factor for the upward movement of the wrist joint. This scale factor can be used

to determine the number of iterations necessary for any desired range of movement.

For example, a movement of 100 degrees would require 100 degrees x 1.825

iterations/degree, or approximately 183 iterations of the given loop.

An additional point should be made about the loop structure. While the

keyboard buffer test is obviously necessary for the scale-determination phase, it may

seem that it should be removed from the loop before it is put into use; this would

reduce the amount of time used on each iteration and in turn alter the count times as

obtained. This point however is nullified as there are a pair of valid reasons for leaving

71

this test in place. First, experimentation with the arm showed that a motor would

occasionally stall; this led to the rapid burn-out of the selected transistor as current

was not flowing through the motor. By retaining the ability to leave the loop early, the

user can act as quickly as such a situation is noticed to save the transistor. Another

advantage of this set up is that the user can abort a movement which is leading the arm

to inadvertently strike another object in its envelope.

The geometric configuration of the arm gives the ranges in degrees for the joints

as stated in Table 4.11.

Table 4.11. RANGES OF THE ARM JOINTS

Joint M ovement Range
Arm Horizontal 360
Arm Vertical 35
Elbow Horizontal 180
Wrist Vertical 200
Wrist Rotate 360

The tests carried out for each of the joints and directions produced the average

iteration-count to degrees-moved ratios in Table 4 .III. As wrist rotation can be

performed continuously in the same direction, the counts were made for three complete

rotations to improve accuracy; this was necessary due to the speed of the rotation.

The arm movement from left to right is also continuous, but it is slow enough for one

rotation to be sufficient for timing purposes.

The corresponding iteration-to-degree scales are returned by procedure

s e l e c t _ s c a l e which acts on the transistor number,
switch (transistor)

{ /* Wrist Down - Up */case 1 : scale = 3000 / 200;
break;case 2 : scale = 3650 / 200;
break;

case 3 : scale = 1;
break;

case 4 : scale = 1;

/* Gripper Close - Open #/

72

Table 4.III. ITERATION COUNTS TO DEGREES MOVED FOR JOINT

CONTROL

Joint Direction Ratio
Arm Left 710 / 360
Arm Right 650 / 360
Arm Down 290 / 35
Arm Up 270 / 35
Elbow Right 415 / ISO
Elbow Left 410 / ISO
Wrist Up 365 / 200
Wrist Down 300 / 200
Wrist-Rotate Left 6S0 /1080
Wrist-Rotate Right 660 /1080

break;
case 5 :: scale =

break;
9150 / 180;

case 6 :: scale =
break;

9100 / 1 80;

case 7 : scale =
break;

2900 / 35;
case 8 : scale =

break;
2700 / 35;

case 9 : scale =
break;

6800 / 1 080;
case 1 0 : scale =

break;
6600 / 1 080;

case 1 1 : scale =
break;

7100 / 360;
case 12 : scale = 6500 / 360;

return (scale);

/* Elbow Right - Left */

/ X Arm Down - Up X /

/ X Wrist Rotate Left - Right X /

/ X Arm Left - Right X /

Note that transistors 3 and 4, which respectively control closing and opening of the

gripper, have arbitrary' scales of 1, as they will not be used.

The number of iterations for a given transistor and move are thus found by

multiplication of the scale (iterations per degree) and the number of degrees to turn;

additionally, the change in the joint per iteration is the inverse of the scale, or degrees

per iteration, in the direction of the move to be made.

degree_scale = select_scale (transistor);
iterations = round (fabs(move_degrees) X degree_scale);
degrees_per_iteration = sign (move_degrees) / degree_scale;

73

After the completion of the timing loop, the number of degrees moved is then the

delta rate multiplied by the number of iterations; if the move was completed without

interruption, a direct assignment is made to eliminate the error introduced by the scale

division and subsequent multiplication.

if (i == iterations)
thetatjoint] = desired_position; else
{getch ();
thetatjoint] += degrees_per_iteration * i;
}

C. DETERMINATION OF POSITION AND ORIENTATION

The remainder of this chapter is dedicated to determining the position and

orientation of the robot manipulator's gripper as the control variables change. The

center point of the gripper closure will be derived as the components of the vector from

the base coordinate frame to the center point. Associated with the gripper will be a

triple of three unit vectors which will uniquely specify the orientation of the gripper;

their vector components will also be obtained.

1. The Problem Approach. The problem of determining position and orientation

in robotics is approached by considering the robot manipulator as a set of

transformations. First, a base coordinate frame is established for the manipulator.

The vector triple (T0, ĵ ,, z0) will represent this frame; see again Figure 41. World

coordinates are specified with respect to the origin and directions of this frame. The

manipulator will then have a series of relative coordinate frames established with

respect to each of its joints. When a joint moves, it is transforming the next relative

base frame and all those succeeding with respect to its own frame. The transformation

due to a specific joint can be represented by a transformation matrix. The

transformation matrices for all of the joints of the robot when multiplied together yield

74

a combined transformation matrix for the entire robot manipulator. Base-frame

coordinates when multiplied by this single matrix will be transformed to the base-frame

coordinates resulting from the scries of rotations and translations. In this manner, a

set of unit vectors in the x-, y-, and z-directions will be transformed to the x-, y-, and

z-directions of the coordinate frame at the end of the manipulator after the movements;

this will in turn specify how the gripper is oriented as the coordinate frame is fixed

relative to the gripper. This transformation will also be done for the base coordinate

frame origin to determine the center point of the gripper closure, as this is the

coordinate frame origin at the manipulator's end.

2. Link Transformations. A link is said to connect one joint's coordinate frame

to the next. By convention, link i covers the transformation from coordinate / — 1 to

/. The composition transformation accomplished over a single link with respect to the

starting joint's coordinate frame of reference is by convention a sequence of four

individual transformations. The transformations include a rotation angle 9, about axis

z,_i, translation of a distance d, along z,_,, translation along axis x,_, of distance a„ and

a rotation angle of a, about x,_, from the z,_, vector direction to that of z,. These four

transformations allow for both the movement of the robot joints and the fixed offsets

due to the physical dimensions of the robot. The link measures, or parameters,

6i, d„ a,, and a, are commonly presented in a link parameter table; such a table will be

constructed for the Armatron manipulator.

Consider first the rotation 0, about axis z,_,. From Figure 4.3,

x — r cos cf) (4.1)

y = rsin4> (4.2)

x' = r cos(<£ + 6-j (4.3)

75

/ = r sin ((j) + 0,-) (4.4)

Figure 4.3. Rotation of a Point about the z-axis

Equations (4.3) and (4.4) are expanded using the trigonometric identities for the cosine

and sine of the addition of two angles, respectively.

x' = r(cos <f> cos 6i — sin <f> sin 0,) (4.5)

y' = r{ cos <j) sin + sin (f> cos 0;) (4.6)

The right hand sides of Equations (4.5) and (4.6) are then regrouped to allow

substitutions to be made from Equations (4.1) and (4.2).

x' = (r cos efi) cos Qi — (r sin <£) sin 0(- (4.7)

y' = {r cos <t>) sin 6-t + (r sin <f>) cos 0(- (4.8)

x' = x cos 0; — y sin 0((4.9)

/ = x sin 0; + y cos 0f (4.10)

76

Additionally, since the rotation was about a z-axis, there is no change in the

z-coordinate.

z' = z (4.11)

Equations (4.9), (4.10), and (4.11) may be combined into a single matrix equation.

.v' cos 6,- — sin 6,- 0 0 X
Jy sin 0(- cos 6j 0 0 y
 ̂tZ 0 0 1 0 z

l 0 0 0 1 1

The translation d, along axis z,_i of a point (x,y, z) results in the new point whose

coordinates are given by the following equations:

x' = x (4.13)

/ = y (4.14)

= z + dj (4.15)

These equations may also be combined in matrix form.

x' 1 0 0 0 X

y ' 0 1 0 0 y

z' 0 0 1 4) 2

l 0 0 0 1 1

Similarly, the translation a, along axis x,_, may be represented by the following

equations.

77

x' = X + <3(- (4.17)

y (4. IS)

»2 = Z (4.19)

x' 1 0 0 a, X

y 0 1 0 0 y

2' 0 0 1 0 z

1 0 0 0 1 1

The final rotation a, about the x,_, axis is similar to that of the 2-rotation and may

be seen in Figure 4.4. From the figure,

y = r cos /? (4-21)

z = r sin /J (4-22)

y = r cos(/J + at) (4-23)

z' = r sin(/? + oq) (4.24)

Equations (4.23) and (4.24) arc expanded as were (4.3) and (4.4) using the

trigonometric identities for the cosine and sine of the addition of two angles,

respectively, prior to regrouping and substitution from Equations (4.21) and (4.22).

v' = r(cos ft cos oq — sin /? sin oq) (4-25)

z' — /•(cos P sin a,- + sin p cos a,) (4-26)

y = (r cos P) cos af — (r sin /?) sin a; (4.27)

78

Figure 4.4. Rotation of a Point about the x-axis

z ' = (r cos /?) sin cq + (/' sin /?) cos a t- (4.2S)

/ = j/ cos a; - 2 sin a, (4-29)

z' = j ' sin af + z cos al (4.30)

Since the rotation was about an x-axis, there is no change in the x-coordinate.

x '= x (4.31)

Equations (4.31), (4.29), and (4.30) may also be combined into a single matrix

equation.

x ' 1 0 0 0 X

y 0 c o s a,- — s in a ;- 0 V

z' 0 sin a,- c o s a ,• 0 2

1 0 0 0 1 1

(4.32)

79

The effects of the four transformations in Equations (4.12), (4.16), (4.20), and

(4.32) are then combined in a single equation.

x ' c d j 0 0] 0 0 0 1 0 0 a i 1 0 0 0 X

/ s 6 j c01 0 0 0 1 0 0 0 1 0 0 0 CCq — setj 0 y

z ' 0 0 1 0 0 0 1 d l 0 0 1 0 0 sa i ca.j 0 z

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 l

The sequence of transformations performed on the point (x, y , z) by the matrix

product of Equation (4.33) can be thought of in two ways. One can start with the

original point and perform the x-rotation with respect to the base coordinate frame.

This would be followed by an A--translation, again with respect to the base coordinate

frame. The z-translation and z-rotation would successively follow, each still with

respect to the base coordinate frame. One can visualize this using Equation (4.33) by

successively multiplying the last two matrices, a transform and a point vector,

step-by-step creating intermediate point vectors.

Consider a numeric example. Let the sequence of transformations be a rotation

about the z-axis of 25', a translation along the z-axis of 7 units, a translation along the

x-axis of 16 units, and a rotation about the x-axis of 96°. Let the point to be

transformed be £22, 10, 13, l3 T- The process is performed in the reverse of this

order, one transformation at a time. Figures 4.5 through 4.8 detail each of the steps

graphically.

X 1 0 0 o" 22

y 0
6

cos 96 — sin 96 0 10

z 0 sin 96 cos 96 0 13

1 0 0 0 1 1

(4.34)

80

x 22.000

y -13.974

z S.586

1 1

(435)

Figure 4.5. x-Rotation with Respect to the Base Coordinate Frame

X 1 0 0 16 22.000

y 0 1 0 0 -13.974

z 0 0 1 0 8.586

1 0 0 0 1 1

X 38.000

y -13.974

z 8.586

1 1

(4.36)

(4.37)

81

Figure 4.6. x-Translation with Respect to the Base Coordinate Frame

X 1 0 0 0 38.000

y 0 1 0 0 -13.974

2 0 0 1 7 8.586

1 0 0 0 1 1

X 38.000

-13.974

z 15.586

I 1

X cos 25 — sin 25 0 0 38.000

y sin 25 cos 25 0 0 -13.974

2 0 0 1 0 15.586

1 0 0 0 1 1

(4.38)

(4.39)

(4 .40)

82

Figure 4.7. z-Translation with Respect to the Base Coordinate Frame

X 40.345

y 3.395

2 15.586

1 1

(4.41)

Figure 4.8. z-Rotation with Respect to the Base Coordinate Frame

83

The other method for consideration of the transformed point begins by

performing the first transform on the point vector, generating an intermediate vector.

The next transformation is then applied to this new point but now with respect to the

coordinate frame resulting from the first transform. The third transformation is

applied with respect to the resultant frame of the first two transforms, and the final

transformation is applied in turn with respect to the result of the first three transforms.

This successive relative coordinate frame transformation scheme is extended from

within one link to going from one link to the next to accommodate the motion of the

entire manipulator.

The numerical example for this alternate reasoning is more complicated. The

sequence begins by rotating the original point about the z-axis. The _v- andy-axes are

also rotated as can be seen in Figure 4.9.

X cos 25 — sin 25 0 0 " 2 2 ’

y sin 25 cos 25 0 0 10

z 0 0 1 0 13

1 0 0 0 1 1

j: ’ l5.713'

y 18.361

z 13.000

1 1

(4.42)

(4.43)

Next, the z-translation is carried out. Note that as the z-axis was not altered by the

previous transformation, this translation may be performed immediately. Figure 4.10

shows the changes made to the point and the current coordinate frame.

84

fy Z.Z'

Figure 4.9. z-Rotation with Respect to the Current Coordinate Frame

X 1 0 0 0 15.713

y 0 1 0 0 18.361

z 0 0 1 7 13.000

1 0 0 0 1 1

X 15.713

3; IS.361

7 2 0 .0 0 0

1 1

(4.44)

(4.45)

As can be seen in Figure 4.10, the current x-direction is the intersection of the

horizontal plane parallel to the original x-y plane 7 units up the original z-axis and the

original x-z plane rotated 25" about the original z-axis. A translation of 16 units in

this direction is thus the combination of a translation of 16 cos 25" in the original

x-direction and a translation of 16 sin 25" in the original ^-direction. The translation

is depicted in Figure 4.11.

85

Figure 4.10. z-Translation with Respect to the Current Coordinate Frame

X 15.713 + 16 cos 25

y 18.361 + 16 sin 25*

z 20 .0 0 0

1 1

X
/w

30.214

y 25.123

z 2 0 .0 0 0

1 1

(4.46)

(4.47)

The final transformation, the x-rotation of p"' about x " ', is depicted in Figure 4.12.

The numerical determination of the coordinates of p"" requires several steps. This is

because the rotation equations derived earlier only apply to rotations about the origin.

Thus the current x-axis (as well as its coordinate frame and p"') must be transformed

back to its original direction and position prior to performing the rotation about it.

86

Figure 4.11. x-Translation with Respect to the Current Coordinate Frame

The back-transforms are then undone on the axis, coordinate frame, and p'", resulting

in the fourth coordinate frame and p"".

Figure 4.12. x-Rotation with Respect to the Current Coordinate Frame

First, rotate the point (and consequently the current coordinate frame) —25' about the

a-axis so that the axis of rotation, ar, lies in the base coordinate x-z plane parallel to

the base frame a:-axis.

87

X
temp\ C4lGOoCJ

I____ - sin(-25)" 0 0 30.214

y sin(—25) cos(-25) 0 0 25.123

z 0 0 1 0 20 .00 0

1 0 0 0 1 1

X
icmp\

3S.001

y 10.000

z 20 .0 0 0

1 1

Relative to the current coordinate frame, the point is still [22, 10, 13]T.

of the z- and x-translations of 7 and 16 units, respectively, arc still apparent,

is then rotated about the x-axis by the required 96".

r “item p i
0 0

-i r -i
X 1 0 38.001 - 16

y 0 cos 96 — sin 96 0 10.000

z 0 sin 96 cos 96 0 2 0 .0 0 0 - 7

1 0 0 0 1 1

X
tem p i

22.001

y -13.974

z 8.586

l I

The effects of the z- and x-translations are reinstated and the previous z

—25* is reversed to obtain the final position.

(4.48)

(4.49)

The effects

This point

(4.50)

(4.51)

rotation of

88

X
////

cos 25 - sin 25 0 0 22.0 01 + 16

y sin 25 cos 25 0 0 -13.974

•7 0 0 1 0 8.586 + 7

1 0 0 0 1 1

X 40.346

y 3.395

2 15.586

l 1

(4.52)

(4.53)

The results arc virtually identical with those obtained in the previous example's

Equation (4.41).

The four transformation matrices of Equation (4.33) may be multiplied together

to form what is termed the A matrix for link i.

c8j ~s6j 0 0 1 0 0 0 1 0 0 ai 1 0 0 o '

sQ[c8 i 0 0 0 1 0 0 0 1 0 0 0 cai —SUj 0

0 0 1 0 0 0 1 4 0 0 1 0 0 SO.j ca-i 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

(4.54)

COS 0; — sin 0(- cos a; sin 0; sin a. at cos 8 t

sin 0(- cos cos a, — cos 0;- sin o . j sin d j

0 sin o .t cos cq J;

0 0 0 1

(4.55)

3. Assignment of Coordinate Frames. The initial configuration of a joint and the

assignment of a coordinate frame to it should be done so that a rotating joint spins

89

about its z-axis and a sliding joint moves along its z-axis, if at all possible; this will

simplify later calculations. The remaining assignment convention requires that all of

the coordinate frames' x-axes be aligned in the same direction; this is necessary if the

z-rotation is to be the result of a joint movement as the three other transformations

above do not provide for any change in x-direction from one coordinate frame to the

next. It is also worth noting here that no reference has been made to the.y-axis. No

provisions have been made for rotation about or translation along a y-axis. The

reason here is again that of simplicity; by prohibiting the use of subsequent

calculations arc reduced. Further, since an x-axis and z-axis uniquely determine a

y-axis (z x x = y), no y-axis will be pictured as it would only serve to add needless

complexity to a figure.

Consider the arm as it rotates in the horizontal plane first. The base coordinate

frame was assigned with the z-axis, z0, in the upward direction with this first rotation

in mind so that the first control variable, 0 J? the horizontal rotation of the arm, will

be about this axis; see Figure 4.13 for this and the subsequent rotations. The next

rotation will be that which moves the arm in the vertical direction, d7. The axis of

rotation for the angle is z, and is assigned with the same base as axis z0. Further, from

the point of view of the base coordinate origin looking along the length of the extended

arm, the zr axis extends in the right direction. Thus there is no d) translation along z0

to the new base, nor is there any ax translation along x0. The angle a, is the movement

about x0 from the z0 direction to that of zu or 90". Thus the first row of the link

parameter table is complete; see Table 4.IV for this and the subsequent rows.

There is no choice for the next rotation of the arm: it is that of the elbow. The

arm's elbow can be seen to rotate in the horizontal plane about a vertical axis. The

upward direction was selected for this next z-axis, z2. A translation along x,, namely

a2 = 10 0 mm, is sufficient to move from the base of the second frame to that of the

90

third; as no z-translation is necessary, d2 is zero. The rotation about x, which brings

Z\ in line with z2 can be seen to be —90". Thus the assignments for the second row of

the link parameter table are made.

The fourth rotation of the arm could be either that causing raising and lowering

of the wrist or the rotation of the gripper about its own center line in a drill-type

fashion. Since the final offset to the gripper center is in the same direction as the axis

of gripper rotation, the former is chosen here so that the offset will take place along

z4 rather than z5. The base coordinate frame again has the same x-direction but the

z-direction now extends horizontally to the right of the joint. A translation along x2,

specifically a3 = 100 mm, suffices for the move from the previous base to the new one;

no z-translation is needed so d2 is zero. The rotation from axis z2 to z3 about x2 can be

seen to be 90". This completes the third row of the link parameter table.

91

The final rotation is that of the wrist about its own center-line yielding the direct

rotation of the gripper. It can now be seen why the initial configuration calls for the

gripper to be pointed down. One might be inclined to fully extend the arm with the

gripper pointing outward. The rotation of the gripper would then be about the

common jr-direction. This would in turn complicate subsequent calculations as an a.,

rather than a 0, rotation would be required. By initially pointing the gripper down and

assigning the z-axis z4 in this direction, the control variable is another 0 , 05, and effort

will be saved later. The transformation from the base used by 04 to that of 05 requires

no translation in either the a-- or z-dircction as the two frames share the same origin;

thus cu and cU are both zero. The rotation about from z3 to z4 is 90". This completes

the fourth row of the link parameter table.

The final coordinate frame will be dependent on the action of the final control

variable, d5, and is based at the center point of the gripper closure. There is a

z-translation, ds - 100 mm, along axis z4 to the center point of the gripper; no

x-translation is required so a< is zero. The direction for the final coordinate frame's

z-axis, z5, is arbitrary as no further translations or rotations remain; aligning it with z4

requires no rotation about x4, so a5 is zero. This finishes the link parameter table.

Table 4.IV. THE ARMATRON LINK PARAMETER TABLE

Link Variable <3, d, O-i
1 0 , 0 0 +90"
2 0 2 <22 0 -90"
3 e> 0 +90"
4 04 0 0 +90"
5 05 0 ds 0 "

4. Generation of Equations. Using the link parameter table, A matrices are

created for each link. From Equation (4.55),

92

cos 0 , - sin 0 , cos a, sin 0 , sin a, a, cos 0

sin 6 , cos 0 , cos a, — cos 0 , sin a. a] sin 0 ,

0 sin a, cos a, d\

0 0 0 \

(4.56)

Substitutions into liquation (4.56) from the first row of the link parameter table arc

then made.

cos 6 , — sin 0, cos 90 sin 0, sin 90 (0) cos 0

sin 0 , cos 0, cos 90 — cos 0, sin 90 (0) sin 0 ,

0 sin 90 cos 90 (0)

0 0 0 1

(4.57)

COS 0! — sin 0 i(O) sin 0 ,(1)

sin 0 j cos 0 ,(0) — cos 0,(1)

0 (I) (0)

0 0 0

(4.58)

cos 0 , 0 sin 0 , 0

sin 0 , 0 — cos 0 , 0

0 1 0 0

0 0 0 1

(4.59)

The A matrix for link 2 is obtained from Equation (4.55) and the second row of

the link parameter table.

93

A2 —

cos 0 2 - sin 6 2 cos(-9 0) sin 0 2 sin(—90) a2 cos d2

sin 0 2 cos d2 cos(-

oON1 — cos d2 sin(—90) a2 sin 0 2
(4.60)

0 sin(—90) cos(—90) (0)

0 0 0 1

cos 0 2 0 -- sin 8 2 a2 cos 6 2

sin d2 0 cos 8 2 a2 sin 0 2
a 2 =

0 - 1 0 0
(4.61)

0 0 0 1

The third row of the link parameter table and Equation (4.55) yield the A matrix

for link 3.

cos d3 — sin d3 cos(90) sin 6 3 sin(90) a3 cos 6 3

sin 0 3 cos 03 cos(90) — cos d3 sin(90) a3 sin d3
(4.62)

0 sin(90) cos(90) (0)

0 0 0 1

cos 8 3 0 sin d3 a3 cos $ 3

sin Q3 0 — cos d3 a3 sin 6 3

0 1 0 0

0 0 0 1

(4.63)

The A matrix for link 4 is obtained using Equation (4.55) and the fourth row of

the link parameter table.

94

COS - sin 04 cos(90) sin 04 sin(90) (0) cos 6 ,

sin 0 4 cos C4 cos(90) — cos 94 sin(90) (0) sin 6 1

0 sin(90) cos(90) (0)

0 0 0 1

cos 04 0 sin 04 0

sin 0 — cos 64 0

0 1 0 0

0 0 0 1

(4.65)

The fifth and final row of the link parameter table together with Equation (4.55)

yields the last A matrix of the Armatron manipulator.

cos 0 5 — sin 0 5 cos(0) sin 0 5 sin(0) (0) cos 6

sin 0 5 cos 0 5 cos(0) — cos 0 S sin(0) (0) sin 6 ,

0 sin(0) cos(0) d,

0 0 0 1

(4.66)

cos 0 5 — sin 0 5 0 0

sin 0 5 cos 0 5 0 0

0 0 1 d5

0 0 0 1

(4.67)

These five matrices may now be used to transform a point in base coordinates to

the position resulting from the five robotic joint settings.

95

— Â AjA^A^Â (4.68)

As described before, one can think of performing the A\ transformation on the point

with respect to the base coordinate frame, then performing the A2 transformation on

the new point with respect to the /^-transformed coordinate frame, and so on through

As. This equation will be used to transform the origin to the center point of the

gripper closure and it will be used to determine the three vector directions specifying

the orientation of the gripper. It is clear from Equation (4.68) that the matrix product

A\A2AsAiAs must be obtained. The following equations obtain this product by

post-multiplying one additional matrix at a time.

Cl 0 *i 0 C2 0 “ *2 °2C2

*i 0 “ Cl 0 *2 0 C2 a2s2

0 1 0 0 0 - 1 0 0

0 0 0 1 0 0 0 1

C]C2 5] -Cl *2 a2c \c 2

5, C2 C, “ *1*2 fl2]̂C2

s2 0 C2 a2s2

(4.69)

(4.70)

0 0 0 1

96

ClC2 ~ 5 i - C]52 a 2c] c 2 c 3 0 *3 a 3^3

*\ c 2 c i ~ s \s 2 a 2s \c 2 s 3 0 ~ c 3 «3^3

■h 0 c 2 a 2s 2 0 1 0 0

0 0 0 1 0 0 0 1

C\C2C3 5,.v3 - c , . v 2 C]C2S3 + .v,c3 a 3 c l c 2c 3 ~ a 3 'V ?3 a 2c l c 2

5jC 2C3 + C ,5 j S \ 52 ■V1C2'V3 — c l c 3 3̂*̂ 1 ^2^3 2̂* 1̂ ^2

•*2C3 c2 *2*3 a3S2c3 + a2s2

0 0 0 1

A j A2A3Aa

c4 0 s4 0

54

<31o

0

0 1 0 0

0 0 0 1

A\A^A3Aa —

(C1C2 C3 — ■x] ,s3) c 4 — C\S2SA

(5 1c2 C3 + c 153) C4 —

52C3C4 4~ C2S4

C1C2S3 4~ 5 1C3

•S] C2‘S3 — CI C3

V3

0 0

(c,c2c3 - 5 ,53) s4 + C,52C4 a 3 (c xc 2 c 3 - s , s 3) + a2c,c2

(s,c2c3 + c , 53)54 + i , 5 2c4 a30 ,c 2c3 + C ,J3) 4- a 2 S j C 2

s 2 c 3s A - c 2 ca (a 3c 3 + a 2)<>2

(4.71)

(4.72)

(4.73)

(4.74)

0

9”

A]A2A3AaA3 — A^A2A3Aa

c5 — *5 0 0

*5 c5 0 0

0 0 1 d5

0 0 0 1

(4.75)

A 1 A2A3A4Aj

((c,c2c3 - .V 3)c4 - + (<W 3 + 51C3)55

((hC2C3 + C,S3)C4 - 5^2.94)c5 + (5,C2.93 - C,C3).S5

(-W 4 + c2sA)c5 + s2s3s5

0

- ((c,C2C3 - 5,.S3) c4 - C,S254)55 + (c ,c 253 + i',C3) c 5

- (-(Ĵ c2c3 + c ,5 3)c4 - ^,5254)55 + (5 ,c 253 - C,C3)c 5

- (s2c3cA + c2.i4).v5 + s2s3c5

0

(C]C2C3 5j53)^4 + Cj.V2C4

(S]C2C3 + C,J3)i4 + 5,52C4

2̂ ̂ 3̂ 4 2̂̂ 4

o
i/5((c ,c 2c3 - .V3K + c,52c4) + a 3 (c] c 2 c 3 ~ s,.s3) + a 2c ,c 2

d 5{{s\C2c 3 + c ,5 3) i 4 + -s,.s2c4) + o3(5,c2c3 + C,53) + a 25 ,c 2

d s { s 2c 3sA - c2c4) + (a 3c 3 + a 2) s 2

1

(4.76)

With the combined transformation matrix in hand, all that remains is the selection of

points to be transformed.

As described earlier, the center point of the gripper closure (referred to as point

p) is the base point of the last coordinate frame of reference. The transformation

AiA^AiAtAs, or 0AS, translates the base coordinate frame origin to p. Thus

98

[0 0 0 l] r shall have the transform applied to it to obtain the current gripper

postion, which is referred to as [/?, py pt l] r. See Figure 4. 14.

P x 0

P y

II
o

0

P z 0

1 1

(4.77)

Figure 4.14. Position Point and Orientation Vectors

The vector p is that extending from the base coordinate frame origin to point p. The

components of p are then found by subtraction of the components of the end point

from the start point.

99

Px 0

Py 0

Pz 0

1 1

(4.78)

Px

p =
Py

Pz

0

(4.79)

Three vectors with which the orientation of the gripper may be described will now

be obtained under the transformation; see vectors n, o, and a in Figure 4.14. First

consider a unit vector in the direction of the base frame's 2-axis. When the transform

is applied to a point along this vector, a point along the final z-axis, z5, is obtained.

This axis has its origin at the gripper center and lies along the gripper center line; the

oAs transformation of a point along the base z-axis thus yields a point along the gripper

center line. The unit vector in this direction is termed the approach vector, a.

Transformation of the base coordinate point [0 0 1 \~\T would yield the desired

point on the zj-axis, but the vector itself (i.c., a direction) would be of more use. The

approach vector is obtained by subtracting the gripper center from the transformed

[0 0 1 i] r.

0 Px

0 Py

1 Pz

1 1

(4.80)

100

Substituting from Equation (4.77) into Equation (4.80) yields a simplified result for the

approach vector.

0 0

0 /f5 0
- O''1

1 0

1 1

0 0

0 0

1 0

1 1

(4.81)

(4.82)

a = nA (4.83)

Next consider a unit vector in the direction of the base frame's x-axis. A point

along the final x-axis x5 is obtained when the 0A5 transform is applied. The unit vector

in this direction is designated the normal vector n. Transformation of the point

[1 0 0 l] r would yield the desired endpoint, but transformation of Cl 0 0 0] r

yields the vector components of the n vector as was demonstrated for the approach

vector.

101

n = nA' (4.8-1)

Lastly, a unit vector in the direction of the base frame's y-axis is transformed.

The unit vector in the direction of the final j ’-axis, ys, is called the orientation vector,

o. In the same manner as that used for the vectors a and n, transformation of

[0 1 0 0] r yields the vector components of o.

o = 0/L (4.S5)

Equations (4.77), (4.S3), (4.84), and (4.S5) may now be combined into a single

matrix equation.

0 0 1 0

0 0 0 1

0 1 0 1

1 0 0 0

(4.S6)

Observing that the four columns of the rightmost matrix are also columns of the

identity matrix, the equation may be rearranged to take advantage of this.

102

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

[n o a /?] = 0A 5

Expanding the vectors and point into their components,

" jc ax Px

ny ay Py

n2 o2 P2

0 0 0 1

(4.S7)

(4.88)

(4.89)

Thus, the elements of the matrix product 0AS are themselves components of the desired

position and orientation vectors.

Procedure n o a p _ m a tr ix , mentioned in Chapters 1 and 3, calculates and

displays the components of the vectors of the vectors n, o, a , and p, respectively, as

well as the joint variables. The equations for n arc obtained from Equation (4.76).

nx = ((c,C2C3 - 5,53)c4 - c,5254)c5 + (C,C253 + 5,C3)55 (4.90)

ny = ((5,C2C3 + c,s3)c4 - 5,5254)c5 + (s,c2s3 - C,C3)5S (4.91)

>h = (^C3C4 + c2%)c5 + 52s 355 (4.92)

The component equations for o are:

®x ((C]C2C3 5,53)c4 C,5254)53 + (c,C253 + 5,C3)c3 (4.93)

103

Oy = - ((-V,C2C3 + c,.v3)c4 - 5|5254)x5 + (s,c2s3 - c,c3)c5 (4.94)

o2 = - (s2c3c4 + c2s4)s5 + s2s3c5 (4-95)

Vector a components are defined by the following equations:

ax = (r,c2c3 - i , j 3)ji4 + c,52c4 (4.96)

ay = (.v, c2c3 + c, s3)s4 + s, s2c4 (4.97)

a2 = -52c3‘V _ C2C4 (4.9S)

Lastly, the component equations for point p arc:

Px = ^s((clc2c3 “ V3)*4 + C,52C4) + ^ (clc2c3 ~ S1S3) + «2clC2 (4-99)

Py = ds{{sxc2c3 + c,.s3)j4 + .s, s2c4) + a3(s,c2c3 + c,s3) + a25,c2 (4.100)

Pz = ds(s2c3^ - c2c4) + (a3c3 + a2)s2 (4.101)

5. Numerical Example. As an example, consider the set of control variable values

(0i, 02, 6 3, 04, 05) = (— 1 15', 25', 50\ 65', —35°). After these five values have been input

as settings for the respective joints, the display in Figure 4.15 is produced.

Theta
A r m a t r o n M a n i p u l a t o r C o n t r o l

-115.000 N 0 A P
25.000 I 0.790 -0.516 0.331 39.566
50.000 ! 0.195 -0.300 -0.934 260.692
65.000 : 0.581 0.802 -0.137 55.745

-35.000 : o o 0 1
Joint-Variable Control

Joint Angle
1 : Arm Right/Left

(-360 to +360)
-115.000

2: Arm Down/Up
(-5 to +30)

25.000
3 : Elbow Right/Left

(-90 to +90)
50.000

4 : Wrist Down/Up
(-10 to +190)

65.000
5: Wrist Rotate Left/Right

(-360 to +360)
-35.000

0: End Joint-Variable Control
Select Joint:

Figure 4.1.5. Joint Variable Control Display

105

D. THE CONTROLLING PROCEDURE

Procedure] o i n t _ v a r i a b l e _ c o n t r o l begins by displaying the introductory

screen of Figure 4.16. The option is given at that point of using the actual joint

limitations for the manipulator joints or bypassing these so that this portion of the

program may be used for computation purposes only. Orientation and position

matrices may be generated for any values of joint variables if the constraints arc

bypassed. The next chapter develops a program which takes as input a

position-orientation matrix and determines possible solution sets. With the joint

constraints of this chapter's procedures ignored, they may be used to verify those joint

solutions, whether they are attainable or not. The position-orientation matrix

determined for the numerical example in the preceding section will be used as the input

for the numerical example of the next chapter.

dsply_joint_variable_introduction ();
locate (23, 42);
ignore = toupper(getcht)>;
lputch (23, 42, ignore);
constraints (ignore, theta_min, theta_max);
uait_then_erase (9);
dsply_joint_variables (jv_rows, &jv_col);
for (i = 1; i <= 5; i++)

leprintf (jv_rows[i], jv_col, thetati]);
process_requests (theta, noap, theta_min, theta_max,

jv_rous, jv_col, noap_rou, noap_cols);
erase_prompt (23);
locate (23, 0);
meputs (24, 23, "Joint-Variable Control Terminated");
uait_then_erase (8);

Subsequently, the working display of the procedure is generated and control passes to

the request processing procedure, where it remains until joint variable control is to be

terminated. The documented listing for the procedures associated with the joint

variable control portion of the overall program may be found in Appendix D.

Theta
A r m a t r o n M a n i p u l a t o r C o n t r o l

0 . 0 0 0 N 0 A p
o . o o o : 1 . 0 0 0 0 . 0 0 0 0 . 0 0 0 2 0 0 . 0 0 0
o . o o o : 0 . 0 0 0 - 1 . 0 0 0 0 . 0 0 0 0 . 0 0 0
o . o o o : 0 . 0 0 0 0 . 0 0 0 - 1 . 0 0 0 - 1 0 0 . 0 0 0
o . o o o : 0 0 0 1

Joint-Variable Control
The movement of each of the five joints of the

Armatron manipulator is controlled by specifying
a joint and angle via the keyboard.

Use the manual switches to align the robot arm
now, if necessary.
Note: At times a motor may stall; should this

occur, immediately press the space bar to
avoid ruining a transistor.

The constraints placed on the joint variables
may be ignored for computation purposes. Ignore
joint constraints? (y/n)

I’iuurc 4,16. Joint Variable Control Introduction

107

V. POSITION AND ORIENTATION CONTROL

The previous chapter derived the center position of the gripper closure as the

components of point p and the triple of unit orientation vectors n, o, and a which

describe the orientation of the gripper. The topic of this chapter is the programmed

solution of the inverse of this problem. The vector components of n, o, and a will be

given as those of the desired orientation of the gripper, while the point p will specify

the desired position. The program will be developed in a step-by-step manner as the

problem is solved.

A. SPECIFICATION OF POSITION AND ORIENTATION VECTORS

The first step toward the solution of the stated problem is to provide for the

specification of the components of vectors n, o, and a and the coordinates of point

p. The following section details the derivation of equations concerning the orientation

vectors and position. Next, a numerical example is employed to demonstrate use of

the equations. This is followed by an explanation of the structure of the program code

to be used. Finally, the program is demonstrated by example using the same inputs

as the numerical example.

1. Derivation of Equations. There exist several conditions concerning the

orientation and position of the coordinate frame at the end of the Armatron

manipulator which must be met; this section shall develop corresponding equations

which must be satisfied by any desired position and orientation before a solution can

be attempted. To begin with, each of the orientation vectors n, o, and a must have a

magnitude of one. The magnitude of the normal vector, for example, is found as

follows:

108

~ \ (5.1)

The condition may be stated in different ways, two of which follow for the normal

vector:

In the second expression, £ is some small tolerance which the imprecision resulting

from the use of a finite number of decimal positions in the calculations should not

exceed; this condition is suitable for use by a computer.

Another condition that must be satisfied by the orientation vectors is that they

form a right hand triple, as do the base coordinate frame „v-, y~, and z-axes. This

condition may be expressed in terms of the cross product. The base frame x-axis when

crossed with the y-axis results in the z-axis. Correspondingly, vector n crossed with

vector o should result in vector a.

I n I = 1 (5.2)

I I n | - 1 | < c (5.3)

n>o2 - oyn2

n X o = n.ox — nxo2 (5.4)

n x o = a (5.5)

c

(n X o) — a < £ (5.6)

£

109

When the magnitude and cross product conditions are met by a set of orientation

vectors, a solution may be attempted for achieving them; they may yet be unattainable,

however.

Different facts are known about the position p. (Recall from Chapter 4 that as

the position vector p was seen to extend from the base coordinate frame origin to point

p, the components of p arc identically the coordinates of p, namely p„ py, and pz.

These entities will be referred to as either point coordinates or vector components

depending upon the current context throughout this chapter.) What can be stated

concerns the magnitude of vector p.

\p I - J p l + P y + P i (5-7)

The magnitude changes over a wide range of values; the space reachable by the arm is

termed its envelope. Desa and Roth [DesaSS] and Duffy [DufTSO] discuss the envelope

or workspace of manipulators. Desa and Roth note that not neccessarily all of the

positions within an envelope can be approached from an arbitrary' direction; they

differentiate between primary and secondary workspaces based on this criterion.

Inspection of Figure 5.1 shows that the magnitude actually depends on only control

variables and 6 ». Of the remaining variables, 6 \ and d2 affect the vector direction

only, while variable 6 S has no effect on magnitude or direction. It is clear to see that

the magnitude of the position vector takes on its maximum value when the arm is fully

extended.

l^lmax = G2 + °3 + 4 (5.8)

The arm offsets fl2 =100mm, a3 =100mm, and 5̂ = 100 mm yield a maximum

obtainable magnitude of 300 mm.

110

Figure 5.1. Maximum Magnitude Attainable by the Position Vector

Taking into account the physical limitations of the relevant joints, the magnitude

of the position vector would take on a minimum value when the conditions in Figure

5.2 are in effect. Joints 3 and 4 can be seen to be at the limits of their arcs of

movement, bringing the gripper center as close as possible to the origin. As the wrist

is capable of 10 0 ' of vertical movement from the horizontal, the wrist will form an 80"

angle with the arm. The minimum magnitude for vector p is then obtained by a series

of geometric calculations. From the figure,

/j = d5 cos 80 (5.9)

l2 — d5 sin 80 (5.10)

h = a3 — A (5.11)

U — \/ a7 + h 2 (5.12)

I min ~ J l22 + k 2 (5.13)

Ill

The calculations with the arm offsets yield a minimum magnitude of 162.871 mm.

The solution process of this chapter shall not be solely concerned with the

restraints placed on the robot joints, however. The primary purpose here is to

determine solutions for position-orientation specifications. To this end, the joint

constraints will be ignored upon entry of the position-orientation matrix; in fact, they

shall be ignored until actual solutions are determined. At that point, no move will be

attempted if the constraints are violated. Approaching the situation in this fashion

will allow for the solution of a much wider range of inputs. A second examination of

Figure 5.2 will show that if joint 4 is allowed to fold the wrist back upon the arm, the

gripper center would still be a distance of a2 from the origin. Alternatively, if joint 3

is allowed to fold the arm back on itself at the elbow, the gripper center would be a

distance of ds from the origin. As a2, o3, and d$ are all equal at 100 mm, there is no way

that the joints can be positioned to reduce the position vector magnitude any further.

Thus, either a2 or ds may be used as the vector magnitude minimum.

Figure 5.2. Minimum Magnitude Attainable by the Position Vector

(5.14)

1 1 2

2. Numerical Example. Consider the position-orientation matrix given by the

following equation.

nx ax Px 0.790 -0.516 0.331 39.566

ny ay Py 0.195 -0.300 -0.934 -260.692

n2 a2 Pz 0.581 0.802 -0.137 55.745

0 0 0 1 0 0 0 1

Recall that this matrix was generated as an example by the program of the preceding

chapter. The magnitude of vector n is found using liquation (5.1j.

I n | = J n 2x + ny + n] (5.16)

| n | = v/(0.790)2 + (0.195)2 + (0.581)2 = 1.000 (5.17)

The magnitudes of vectors o and a arc found similarly.

\ o | = 7 (-0 .5 1 6) 2 + (~0.300)2 + (0.802)2 =0.999 (5.18)

|a I = 7 (0 -3 3 1)2 + (—0.934)2 + (-0 .137)r = 1.001 (5.19)

With precision limited to three decimal places, a value for i of 0.001 would be a

minimum; something on the order of 0.01 might be more appropriate.

The cross product of vectors n and o would then be compared to vector a using

the expression of Equation (5.4).

nyo2 - oyn2 ax
_*
a = n2°X ~ nx°2 ay

nxoy — nyox a2_

(5.20)

113

’ (0.195)(0.802) — (—0.300)(0.5S1) 0.331 ' 'o .o o o '

(0.581)(-0.516) - (0.790)(0.802) - < -0.934 = 0.001

(0.790)(-0.300) - (0.195)(-0.516) -0.137 0.001

Since a solution based on the orientation vectors is feasible, the examination continues

with the desired position of the gripper center. The magnitude of the vector was given

by Equation (5.7).

IP
/ 2 2 2

= yjPx + P y + Pz (5.22)

|p | = x/(39.566)2 + (—260.692)2 + (55.745)2 = 269.506 (5.23)

This value is between the maximum of 300 established in Equation (5.8) and the

minimum of 100 established in Equation (5.14).

3. Program Structure. The orientation and position matrix is obtained from the

keyboard under direction of procedure get_noap. It is at this level that the cross

product of orientation vectors is examined; the iteration of the procedure will not be

terminated until a valid cross product is obtained.

init_names (names);
do

{
for (i = 0; i <= 2; i++)

get_orientation_vector (i, names, noap, rou, cols);
n_cross_o[0] = noap[03[1]Xnoap[1][2] - noap[0][2]*noap[1][1] ;
n_cross_o[1] = noap[0)[2]*noap[1][03 - noap[03[03*noap[1][2] ;
n_cross_o[2] = noap[0][0]*noapC1][1] - noap[0][13*noap[1] [0] ;
difference = fabsCmagnitude (n_cross_o) - magnitude Cnoap[2]));
if (difference > tolerance)

{
lcputs (23, 20, "N x 0 does not equal A; ");
eputs ("Re-enter Vectors N, 0, and A");
uait_then_erase (23);
}

}
uhile (difference > tolerance);

get_position_vector (names, noap, rou, cols);

114

The individual orientation vectors are obtained by procedure

g e t _ o r i e n t a t i o n _ v e c t o r . This procedure will not be exited until the

magnitude of the specified vector is sufficiently close to one.

do
{for (j = 0; j <= 2; j++)

{
prompt_input_noap (names[i][j] , SnoapCi][j]) ;
erase_prompt (23);
leprintf (rou+j, colsCi], noap[i][j]>;
}difference = fabsCI - magnitude (noapCi]));

if (difference > tolerance)
{lcputs (23, 20, "Vector Magnitude does not equal 1; ");
eputs ("Re-enter Vector "); putch (names[i][1][0]);
uait_then_erase (23);
}

}uhile (difference > tolerance);

The position vector components are input under control of procedure

g e t _ p o s i t i o n _ v e c t o r . The magnitude of the specified vector must fall within

the maximum and minimum values derived for the position vector before control

returns to the invoking procedure.

do
{for (j = 0; j <= 2; j++)

{prompt_input_noap (names[3][j], SnoapC3][j]);
erase_prompt (23);
leprintf (rou+j, cols[3], noap[3][j]);
}

ma9_P = magnitude (noap[3]);if ((mag_p > a2 + a3+d5) (mag_p < a2))
{
lcputs (23, 20, "Specified position is outside of the arm ");
eputs ("envelope; re-enter vector P");
wait_then_erase (23);
}

}
uhile ((mag_p > a2+a3+d5) l (mag_p < a2));

4. Program Example. Execution of procedure g e t_ n o a p generates the display

of the information in Figure 5.3; this same display shall be added to by the program

examples of the solution process in the following sections.

Armatron Manipulator Control
Theta

0.000 N 0 A P
o . o o o : 0 . 7 9 0 - 0 . 5 1 6 0 . 3 3 1 3 9 . 5 6 6
o . o o o : 0 . 1 9 5 - 0 . 3 0 0 - 0 . 9 3 9 - 2 6 0 . 6 9 2
0.000 1 0 . 5 8 1 0 . 8 0 2 - 0 . 1 3 7 5 5 . 7 9 5
o . o o o : 0 0 0 1

Figure 5.3. Display for Completed Position-Orientation Matrix

116

B. SOLUTION APPROACHES

The previous chapter detailed the derivation of the following twelve equations:

n x = ((c,e2c3 - . v 3)c4 - c,*2 *4) 0 5 + (ci c2 * 3 + s \ c i) s 5 (5-24)

ny = ((s,c2c3 + c,s3)c4 - j ,*2 *4) 0 5 + (*,c2s3 - c,c3)*5 (5.25)

n2 = (s2c3c4 + c2s4)c5 + s2s3s5 (5.26)

0 X = - ((c,c2c3 - *,s3)c4 - C]52-s4)s5 + (c,c2.<;3 + .s,c3)c5 (5.27)

O y = - ((*|C2C3 + C,v3)c4 - S,S2.S4).S5 + (s,c2s3 - c,c3)c5 (5.2S)

0 2 = - (*2C3C4 + C2*4)̂ S + *2*3C5 (5.29)

a x = (c,c2 c3 - 5 ^3) 5 4 + c,5 2 c4 (5.30)

fly = (51C2C3 + c,j3)54 + 5,52C4 (5.31)

a 2 = 52c354 - c2c4 (5.32)

P x = ^5((C1C2C3 - *l*3)*4 + H*2C4) + «3(C1C2C3 ~ * 1*3) + «2C1C2 (5-33)

P y = 5̂((S]C2C3 + C j^ K + *1*2C4) + a3(*,C2C3 + C,S3) + G2S,C2 (5.34)

P z = ^s(*2 c3 * 4 - c2c4) + (o3c3 + a2)s2 (5.35)

This chapter assumes that the twelve left-hand sides of these equations are specified

while the angles of the right-hand sides are unknown. An immediate attempt to solve

for the five control variables would be difficult and tedious, although this approach has

been used.

117

An alternative approach greatly simplifies the trigonometry and algebra required

for the control variable solutions. The idea is to prevent the equations necessary for

the solutions from ever becoming as complicated as Equations (5.24) through (5.35).

The technique first makes use of the fact that the translation of the entire robot arm,

represented by the position vector, is the sum of two translations, the translation of the

arm up to the wrist, links 1, 2, and 3, and the translation of the wrist proper, links 4

and 5. Now since the translation due to the wrist has a fixed magnitude, ds, and a

specified direction, that of the approach vector, this second translation vector may be

determined immediately. This in turn produces the arm vector by subtraction of the

wrist vector from the entire arm vector. Next, the product of the A matrices for links

1, 2, and 3 will yield the position of the arm preceding the wrist as its fourth column.

Equating these elements with those obtained from the vector subtraction above yields

three equations for the first three control variables. Finally, with the solutions for

these variables in hand, the matrix equation relating the product of the A matrices to

the specified vectors n, o, a, and p is used; the matrices for links 4 and 5 are isolated

using matrix inverses. Equations for the solutions of control variables 4 and 5 are then

obtained by equating matrix elements. The following three sections will detail each of

these steps for the Armatron arm in the four parts used in the previous section:

derivation of equations, numerical example, program structure, and program example.

C. COMPONENTS OF THE ARM VECTOR

1. Derivation of Equations. The first step in the solution process is the

determination of the components of the arm vector. Consider the robot arm as

depicted in Figure 5.4. Note that the position vector, p, extends from the origin of the

base coordinate frame to the gripper center. Now consider the decomposition of the

118

position vector described in the figure. Clearly, the vector addition of the two

components, pa and pw, results in the total translation of the arm.

P = P a + Pw (5-36)

The vector pc represents the translation due to the arm proper, links 1, 2, and 3, while

the vector pw denotes the translation of the wrist, links 4 and 5. The components of the

vector p are known. The components of the vector pw may now be determined since

the magnitude of the vector is simply ds and the direction is that of the approach

vector, whose components are given. At this point, vector pa may be determined from

Equation (5.36).

P a = P ~Pw (5 .37)

119

The translation of p„ is due to the two constant arm offsets a2 and and the action of

the arm control variables 6 t, 6 2, and d3. The next section will then detail the derivation

of 6 1, 0 2, and from the three arm translation components, p„, pv, and pa.

Returning to the derivation of the wrist vector components, consider Figure 5.4

again. Note first that vector pw lies in the same direction as vector a. Vector a is itself

a unit vector with known components. The components of pw may be found by scaling

the components of a by p js magnitude, which is just ds.

HIIs (5.38)
> 11 (5.39)

Pw, — d$az (5.40)

With the components of pw known, the vectors of Equation (5.

components to find the constituents of the arm vector.

.37) are broken into

Pa, = Px ~ Pw, (5.41)

Pn}. Py Pwy (5.42)

Pa2 =Pz~ Pw2 (5.43)

An examination must now be made to insure that this position will lead to a

solution. The coordinates of the gripper center were examined upon input to insure

that the desired position was feasible. At that time, however, no relationship had been

established between the specified position and the orientation vectors, specifically the

approach vector. The wrist vector pw extends from the end of the arm vector p„ to the

specified gripper position in the direction specified by the approach vector. It is

120

possible that the approach vector indicates an alignment of the wrist whose starting

end cannot be attained by the arm vector. Tests must be derived here to address this

concern.

The magnitude of the arm in Figure 5.5 can be seen to be a function of only the

arm offsets a2 and c?3 and control variable 03. Note that while control variables 0, and

02 influence the direction of the arm vector p„, they do not affect its magnitude. Since

a2 and u3 are constants, the magnitude of p* changes when and only when 03 changes.

The magnitude of vector p„ is of course

It is clear from the figure that pc will take on its greatest magnitude when 03 is zero and

the arm is fully extended.

(5.44)

Z,

Figure 5.5. Envelope of the Arm Proper

I Pa I max ~ °2 + a3 (5.45)

121

As 6 3 is capable of 180° of movement, from —90" to +90", the magnitude of p„ will be

smallest when takes on either —90" or +90' as its value; vector p, will form the

hypotenuse of a right triangle for which a2 and o5 arc the lengths of the sides.

\pa \mm = \ f ^ W (5-46)

The calculation for the arm offsets of 100 mm each yield a minimum magnitude of

141.421 mm.

As with the position vector components, the constraints upon the joint will be

ignored here to allow for the solution of a wider range of position and orientation

combinations; violations of joint constraints will be detected later. If joint 3 is allowed

full freedom of movement, the magnitude of pc can be seen to become zero when the

arm folds back upon itself. Unfortunately, as will be seen later, if the magnitude of p,

is allowed to take on the value zero itself, the solution process will break down; this

particular circumstance must then be avoided. Another breakdown occurs if only the

x and y components of pe become zero. Due to the configuration of the arm, this

would only occur in the previous case or when pc is directed vertically up or down;

component p2 would become ± (a2 + az + ds). This second situation must also be

avoided. The two situations share the condition of both p, and py being zero and thus

may both be detected with a single comparison. As neither of these peculiar arm

orientations is achievable anyway, they may both be detected here, along with the

exceedance of the vector magnitude discussed previously.

If any of these conditions is not met, no further work should be done towards a

solution as none can exist. If on the other hand the desired magnitude of/it. docs meet

these specifications, there will be solution sets for 6 U d2, and 03 which would position

the arm vector p, as desired; again, however, they may not be within the ranges

122

imposed by the physical parameters of the Armatron manipulator discussed in the

previous chapter.

2. Numerical Example. Continuing the numerical example given by liquation

(5.15), the components of the wrist vector arc found using Equations (5.38), (5.39), and

(5.40), and the components of vector a. It should be noted that here and in the

subsequent sections of this chapter the arithmetic will be carried out to three decimal

places; this will lead to slight deviations with the results obtained by computer.

Pwt = d5ax (5.47)

pw = 100(0.331) = 33.100 (5.48)

Pwy = d5ay (5-49)

Pw = 100(-0.934) = -93.400 (5.50)

Pw2 = d5az (5-51)

pWt = 100(-0.137) = -13.700 (5.52)

The arm vector components are then found using Equations (5.41), (5.42), and

(5.43), along with the components of the vector p from Equation (5.15) and those just

derived for vector pw.

Pa2 Px Pwx (5.53)

p„x = 39.566 - 33.100 = 6.466 (5.54)

Pay Py Pw} (5.55)

123

p = -260.692 - (-93.400) = -167.292 (5.56)

P a , = P z ~ P w , (5.57)

Pttt = 55.745 - (-13.700) = 69.445 (5.5S)

The maximum obtainable magnitude of pc was given by liquation (5.45).

max (5.59)

l £ l max= 100 + 100 = 2°0a 1 max (5.60)

The magnitude of the desired position vector is given by liquation (5.44) and the

components of Equations (5.54), (5.56), and (5.5S).

This value is indeed less than the maximum possible for the arm. Further, the

components pox and pv are not both simultaneously zero, so numerical solutions will

exist for the arm control variables.

3. Program Structure. Procedure c a lc_ a rm _ e n d determines the components

of the arm vector in a straightforward fashion. The wrist vector components are

calculated using Equations (5.38), (5.39), and (5.40) within a loop, as are Equations

(5.41), (5.42), and (5.43) for calculation of the arm vector components.
for (i = 0; i <= 2; i++)

{puti] = d5 * noapC2][i3;leprintf (ant_rou, arm_cols[i], pw[i]);
for Ci = 0; i <= 2; i++)

(5.61)

(5.62)

124

{
pa[i] = noap[3][i] - pu[i];
leprintf (arm_rou+2, arm_cols[i], pa[i]);
}

mag_pa = magnitude (pa);
if ((mag_pa > a2+a3) 1 ((fabsCpaCO]) < tolerance) &

(fabs(pa[1l) < tolerance)))
mag_ok = 0;

else
mag_ok = 1;

return (mag_ok);

This procedure concludes by examining the generated components for the arm vector

to insure that they meet the specifications described in the derivation of equations. A

value is returned to the invoking procedure indicating the status of this examination.

4. Program Example. Execution of procedure ca lc_ a rm _ e n d leads to the

display of the information shown in Figure 5.6.

Theta
Armatron Manipulator Control

0.000 N 0 A P
0.000 : 0.790 -0.516 0.331 39.566
0.000 : 0.195 -0.300 -0.939 260.692
0.000 : 0.581 0.802 -0.137 55.795
0.000 i 0 0 0 1

Position- Orientation Control
Determination of Pa Vector Components

Pwx Pwy Pwz
33.100 -93.900 -13.700
Pax Pay Paz
6.966 -167.292 69.995

Figure 5.6. Display for Wrist and Arm Vector Components

126

D. ARM CONTROL VARIABLES

1. Derivation of Equations. Recall from the previous chapter the derivation of

the link transformation A matrices. As explained there, link matrix / may be

interpreted as transforming link / and those following it with respect to link /'s

coordinate frame. The matrix product A,A2A3 results in a transformation which will

translate and rotate the base coordinate frame to that of the end of the third link.

Multiplication of this transform by the normal, orientation, and approach vectors as

well as the base origin was shown to result in the transformation matrix itself, as the

vectors and point arc represented by the identity matrix. Thus, the following

relationship holds for the components of the orientation vectors n„, 6C, and a,, and

translation point pB at the end of the third link, or the arm proper:

p*'

% % S p°>

aa2 I\

0 0 0 1

(5.63)

The product of the matrix multiplication A,A2A3 is obtained from Equation (4.72)

in the previous chapter and substituted into Equation (5.63).

127

S p*,

"a, aam2

0 0 0 1
1 (5.64)

C1C2C3 — -V1 s 3 ~ C1S2 C1C2S3 + rt3 (c l C2 C3 ~ s \ ^) + a 2c i c :

i , c 2C3 + c,.v3 - s t s 2 s , c 2s 3 - c , c 3 a 3 (s l c 2 c 3 + c,.s3) + fi2.v,c;

S2C3 c 2 S2 S3 (a 3 c 3 + a 2) s 2

0 0 0 1

At this point, nothing is known about the components of vectors n„ oa, or a„ or

an)' of the three control variables; however, the previous section established values for

p„x, p0y, and poy Thus three equations may be obtained from Equation (5.64) by

equating elements (1,4), (2,4), and (3,4).

P a t = a 3 (c iC2c3 ~ V 3) + a 2 c : c 2 (5 . 6 5)

Pay = «3(51c2c3 + ci-b) + a2s,c2 (5.66)

Pa2 = («3C3 + a2)s2 (5.67)

The task is now one of solving three equations of three unknowns; the complicating

factor is of course that the three unknowns are present as arguments of the sine and

cosine functions. One technique to begin the solution process is to square both sides

of equations, as there are numerous sines and cosines involved and some will inevitably

combine when squared and added to form one by trigonometric substitution.

Equations (5.65) and (5.66) are squared first; the resulting equations are observed to

have complementary' terms and are thus added.

128

2 2 2 2 2 2 2 Pa ~ c\ c2 (a3c3 + ai) — 2a3c1s,c2.s3(a3c3 + a2) + a3 s, s3 (5.68)

P a / = s l c 2>(a 3c 3 + a 2) 2 + 2 a 3 c >s l c 2s 3 (a 3c 3 + a l) + a 2 ^ s 3 (5.69)

P a x 2 + P a 2 = c2(n3c3 4- a 2)2 + .qc2(fl3c3 + «2)2

- 2fl3c,ijc253(a3c3 + a2) + 2a3c,5,c253(a3c3 + o2) + fl3J,253 + a^cfsj
(5.70)

A*/ + P a / = C?C2(«3C3 + «2)2 + ^ C2(«3C3 + ^ + <*3^3 + a 3 c l s 3 (5-71)

Equation (5.71) then has the common factors of the first and second pairs of right hand

side terms factored; trigonometric substitution then reduces the equation.

P a ^ + P a 2 = c l (a 3 c 3 + " / (A + A) + « 3 53 (.V? + C?) (5.72)

A,/ + = C2^3c3 + fl2)2 + a3s3 (5.73)

The expression of Equation (5.67) when squared will combine with the first term of

Equation (5.73)'s right hand side by trigonometric substitution upon addition.

Paj = s2(«3c3 + a2f (5 .7 4)

Pa ̂ + P a 2 + Pax = C2 (« 3 C3 + al) 2 + 4 (a3c3 + « 2)2 + a3 s3 (5 .7 5)

P a 2 + P a 2 + Pax = (« 3 C3 + + * 2) + a3 s3 (5 -7 6)

P a 2 + P a 2 + P a 2 = (a3 c3 + a2f + a3 s3 (5 ‘ 7 7)

The right hand side is then fully expanded and factored again.

P a 2 + P a 2 + P a 2 = a2 c3 + 2 a 2a3c3 + a 2 + a3 s3 (5 -7 8)

129

+ P a y 2 + P a ^ = « 3 (c3 + * 3) + 2 a 2 a 3 C3 + a 2 (5.79)

Trigonometric substitution is applied once more and the equation is solved for the

cosine of 0 2.

2 . 2 . 2 2 , 0 , 2
A j, + P a y + P a , = a3 + 2 « 2 « 3 C3 + «2 (5.SO)

2 . 2 . 2 2 2
/V + /V + Pa, - a2 - a2

Cl = 2 a2a3
(5.81)

The right hand side of Equation (5.81) is an expression of known quantities. The

magnitude of the sine of the angle is then known, which leads to an expression for the

angle itself.

sin 6 3 = ± N/1 — cos203 (5.82)

6 3 = tan'
sin03 \
cos 0 3 J (5.83)

The cosine of the angle, given by Equation (5.81), will indicate by its sign whether

the angle itself is in the first and fourth quadrants (positive) or in the second and third

quadrants (negative). Note however that the sign of the angle's sine is not specified

by Equation (5.82). For a given cosine, this situation yields two possible sine values,

as depicted in Figure 5.7. The cosine of angle y is the jr-coordinate of the two points

(xi, y}) and (x2, y2) on the unit circle about the origin; this is true because cos(y) =

cos(-y). The ^-coordinates j;, and y2 correspond to the two results generated for the

sine of the angle by Equation (5.82).

130

Now consider the result of the arc tangent function used in Equation (5.S3) and

throughout this chapter. The typical arc tangent function returns a first quadrant
jj-R jj* R

angle, 0 R to y , if its argument is positive; a fourth quadrant angle,----— to 0*, is

returned for a negative argument. The cosine of an angle in the first quadrant is

positive, as is its sine; the tangent of this angle is thus also positive so the arc tangent

function is justified in returning a first quadrant angle for a positive argument. The

cosine of an angle in the fourth quadrant is also positive, but its sine is negative; thus

the tangent of the angle is negative, so the arc tangent function is also justified in

returning a fourth quadrant angle for a negative tangent. In both of the preceding

cases, the cosine was positive; consider now a negative cosine. A positive sine creates

a negative tangent, for which the arc tangent returns an angle in the fourth quadrant,

instead of the desired second quadrant angle. Likewise, a negative sine produces a

positive tangent, and a first quadrant angle is returned by the arc tangent function

instead of the correct third quadrant angle. Consider the cosine and sine of a first

quadrant angle y as the coordinates (jq, jq) of a point on a unit circle centered about

the origin; see Figure 5.8. It is clear that along the line through the first point and the

131

origin there is a point in the third quadrant whose coordinates (jc2, j>2) are equal in

magnitude but opposite in sign to those of the first point; thus there is an angle in the

third quadrant nR away from the first angle whose tangent is equal to that of the first

angle, This possibility must also be considered. The same argument holds true for an

angle in the fourth quadrant; its cosine is positive, its sine is negative, and its tangent

is thus negative. There is another angle nR away in the second quadrant whose cosine

and sine are equal but reversed in sign. Thus, if the cosine of Equation (5.81) is

negative, both of the results of the arc tangent must be adjusted.

The adjustment for the arc tangent result when a negative cosine is involved could

be as simple as the addition of nR, as described above. When a fourth quadrant angle

is returned by the arc tangent function, the addition of nR will yield a second quadrant
7T̂angle, - y to 7rs, or 90° to 180". In the case of a first quadrant angle being returned,

the addition of nR will yield a third quadrant angle, nR to , or 180' to 270'.

However, since the constraints on a control variable are typically stated as a negative

value running through to a positive value, it will facilitate comparisons with bounds

later if the control variables are in these ranges. This point should be considered for

132

any joint in any robot arm, not just the one under consideration. The corrective

measure for a third quadrant angle whose cosine and sine are both negative will be to

subtract nR from the first quadrant arc tangent result, rather than adding it, so that a
, _r

value in the range —nR to —-— is obtained. The adjustment for a second quadrant

angle remains the addition of nR to the fourth quadrant arc tangent result.

nRLastly, note that if the cosine of 03 is 7.cro, then the angle is either y or
— nR— . As the sine of the angle is not known, either of these is possible; they simply

replace the two solutions otherwise obtained by Equation (5.83).

Consider again the expressions for p„ and pay from Equations (5.65) and (5.66),

respectively, in the search for a solution for one of the remaining angles.

Pax ~ c!c2(a3c3 + al) ~ a3h-v3 (5.84)

Pcy = ^ c 2(a 3c3 + a 2) + a 3C]s 3 (5.85)

The first term of the right hand side of each can be eliminated by multiplying the first

by — Si and the second by c t and then adding.

-P a f] = - + 02) + «3-h53 (5.86)

Paf 1 = C15 1C2(<33C3 + al) + « 3 ci^ 3 (5.87)

- P a , s l + P a f l = <*3S\S 3 + a3c ^ 3 (5.88)

Factoring the right hand side and again using trigonometric substitution,

- P c xs \ + P a f 1 = °3^(h2 + c?) (5.89)

~ P a xs 1 + P a f 1 = c353 (5.90)

133

Since #3 has been determined previously, this equation has as its single unknown

variable; however, the equation involves both the cosine and sine of the angle. A

technique for solving an equation of this type is to view the coefficients of the cosine

and sine terms as the lengths of the legs of a right triangle. Consider the relationships

below as pictured in Figure 5.9.

+ V Pa~ + Pay (5.91)

Pax = '' COS P (5.92)

Pay = r sin P (5.93)

P — tan (5-94)

P‘,
Figure 5.9. Geometric Configuration for Solution of Equation Containing Sine and

Cosine Terms

Note that the angle /? in Figure 5.9 was deliberately chosen as that opposite the side

representing the coefficient of the cosine in Equation (5.90).

The expressions for pCl and pCy from Equations (5.92) and (5.93), respectively, are

substituted into Equation (5.90) to form the following:

134

— (r cos p) sin 6] + (r sin /?) cos = n3.s3 (5.95)

This equation is then factored and a trigonometric substitution applied to obtain a

relationship involving 0,.

r(sin p cos 0, — cos p sin 0,) = c;3.v3 (5.96)

r s'\n(p — 0,) = a3s3 (5.97)

s i n (/ l - 0 ,) - ----- = (J.9S)
+ A C + A

The variable /• has been replaced by use of Equation (5.91). The cosine of the angular

difference is of course

cos(/? - 0,) = ± J l - sin2{ p - e x) (5.99)

As Equation (5.98) involves a division, the possibility of a division by zero must

be considered. The divisor in the division is pap + p0p , which approaches zero only

when both pD% and p„y become close to zero. This exceptional situation is one of two

pointed out upon determination of the arm end point coordinates. As noted there,

even ignoring joint variable restraints, the arm configuration prevents this situation

from occurring unless the arm folds back on itself at the elbow or is fully extended

vertically up or down. Each of these arm configurations (which are unattainable due

to joint restrictions at any rate) are detected at that point; the solution process does

not continue past that point. Thus no special measures need to be taken here to

accommodate this possibility.

135

Now consider the sine of the angular difference (1 — 6 , given by Equation (5.98).

The sign of this quantity is strictly dependent upon the sine of 03 since the remainder

of the factors, a3 and ——.= _ - , are positive. When 03 is between 0R and nR, its sine
J p i + Pi

is positive and the sine of (i — 0, must likewise be positive. This in turn implies that

/? — 01 is between 0s and By the same reasoning, when 03 is between —nR and 0*,

the sine of /? — 6 , is similarly negative, forcing /? — 0, to be between — nK and 0".

The result of Equation (5.98) is divided by that of (5.99) to obtain a relationship

for the quantity /? — 6 ,.

sin(/?-0))
cos(/? — 0,) = tan (P - 0 ,) (5.100)

J] — 0, = tan'
sin(/? — 0 J A
COs(/?-0,) J

(5.101)

Now consider the necessary adjustments to the arc tangent results. As described

previously, if the sine of 03 is a positive quantity, then so is the sine of ft — 0)5 and the

difference /? - 0, must lie in the first or second quadrant. The sign of the difference's

cosine cannot be determined, so two possible values for fi — 6 \ must be considered as

there arc two angles with the same sine and magnitude of cosine. The same argument

holds for a negative sine of 03. The arc tangent function of Equation (5.101) will be

employed for two arguments, returning a first quadrant angle for the positive argument

and a fourth quadrant angle for the negative argument. Therefore, if the sine of 03 is

positive, the addition of nR to the fourth quadrant angle will produce the desired second

quadrant angle; see Figure 5.10.

A similar adjustment is made if the sine of 03 is negative. The addition of nR to

the first quadrant angle will yield the desired fourth quadrant angle; see Figure 5.11.

136

The control variable 6 1 itself will be adjusted to the range conventions after its

calculation from the quantities /? — 6 t and /?. Note also that if the cosine of Equation
-f-

(5.99) is zero, the angle is uniquely identified by the sine as — .

137

Now consider the angle /?. Its cosine and sine are derived from Equations (5.92),

(5.93), and (5.91). The relationship for the angle itself was given by Equation (5.94).

Pa,
cos p = — (5.102)

. / 2 , 2+ V Pa, + Pay

Pa
sin p = ------ - =A== (5.103), / 2 2

+ \ / P a x + P a y

P — tan-1 ̂ 'j (5.104)

Since the signs of the cosine and sine are known, there is only one possible

solution for /?. As with /? — 0h the arc tangent result is adjusted when the cosine of

P is negative by the addition of n*. The difference here is that there is only a single

resulting angle for /?, as one value each is given for the cosine and sine. Also, Equation

(5.102) shows that the cosine of P will only be zero if pa, is zero. In this case, the sign
• i 7r̂of the sine, or pCy, will indicate either —- — as the angle.

With the angular difference p — 0, and /? alone determined, 8 t follows.

dx= p - (P - 6 ,) (5.105)

Each of the two 03 values results in two values for the quantity P — 6 , and consequently

two values for 8 1 itself. As with 6 it adjustments may be necessary' for 0, to keep its

values within the range —180' to +180°. The values of 8i resultant from Equation

(5.105) may be adjusted by simple comparisons with the boundary limits; one full

circle, or 360’, should be subtracted for angles larger than 180°, and 360’ is to be added

for angles smaller than —180°.

138

The expressions for p„x and pCy of Equations (5.65) and (5.66), respectively, are

returned to a second time to derive a relationship for 6 2.

Pax = clc2(a3c3 + ai) - a3s \s3 (5.106)

Pay = s\ci(a3c3 + ai) + a3c\h (5.107)

In deriving an equation for 0 U these equations were multiplied by —s, and ci(

respectively, to eliminate the first term of the right hand sides. Now consider

multiplying them by Cj and respectively. This will lead to the elimination of the

second term of the right hand sides when the resulting equations are added.

Paxc \ ~ c\ c2(a3c3 + a2) — a'3cl-sli3 (5.10S)

2
pa/] = s1c2(<33C3 + a2) + c j s] (5.109)

Paxc 1 + P a / 1 = c12c2(«3c3 + a2) + Ŝ C2{a3C3 + fl2) (5.1 10)

Factoring the right hand side and applying trigonometric substitution leads to an

equation for the cosine of 6 2, the only remaining unknown of the original three.

Paxc\ + Pa/ \ = C2(«3C3 + al) (c \ + s \) (5.111)

P a/1 + P a/1 = c 2(a 3c3 + °2) (5.112)

P a/1 + P a/1
C, = ------:---- (5.113)

The third original relationship, Equation (5.67), provides a solution for the sine

of the angle 8 2.

139

Pa2 = *2(fl3c3 + <*l) (5-114)

(5.115)

The relationships for the cosine and sine of the second control variable given by

Equations (5.113) and (5.115), respectively, present again a concern that has occurred

before, specifically division by zero. The arm offset constants a2 and a3 were observed

earlier to each be 100 mm; consequently, the expression a3c3 + a2 can take on the value

0 if c3 = — 1. This is physically impossible, as is the control variable for the elbow

joint and is capable of only 90' of movement in either direction and cannot attain the

required ISO'. Consider the circumstances under which Equation (5.81), which defines

c3, would produce a value of -1.

(5.116)

(5.117)

(5.118)

(5.119)

(5.120)

(5.121)

Clearly, the position of the end of the third link, or the start of the wrist, must coincide

with the origin. This is the second of the two exceptional situations singled out upon

140

determination of the end point of the three arm links. The tests performed during the

solution for the arm vector components in the preceding section handle this situation

so no additional tests need be performed here.

The result of Equation (5.115) is divided by the result of (5.113) to obtain a

relationship for 0 2~

sin 02
cos 02 = tan 02 (5.122)

0, = tan-l sin 6 2

cos 0, (5.123)

As mentioned in previous solutions, the arc tangent used in Equation (5.123) returns

an angle in the first or fourth quadrant. The results of Equations (5.113) and (5.115)

are used for the determination of the proper quadrant of the single resultant d2. If the

cosine is positive, then arc tangent returns the proper angle. If however the cosine is

negative, then nR must be added to the arc tangent result if the sine is positive or

subtracted if the sine is negative. If the cosine of d2 in Equation (5.113) is zero, the sign
i ,rr~of the sine in Equation (5.115) determines either —-— as the angle. Note that the

evaluation of d2 requires both of the angles 0, and 0V The former had two

independent solutions, and the latter had two solutions for each of these; thus there

are four separate solutions for 02.

2. Numerical Example. The numerical example continues by calculating the first

derived arm control variable, 03. Equation (5.81) specifies the cosine of the angle, and

Equations (5.54), (5.56), and (5.58) provide the necessary values for the calculation.

cos 03
2 2 2 2 2

Pax +Pay +Pa2 ~ a3 ~ a2

2 «2«3
(5.124)

141

(6.466)! + (-l6 7 .2 9 2)2 + (69.‘W5)1- 100j - 1003
cos«3 = --------------------------20 ooi(i 65)--------------------------“ ° 'M3 (5' 1251

The sine of the angle is then obtained from Equation (5.82).

= ± v/l-^3 - X V 1 - cos2°3sin 0

sin 03 = ± + 1 — 0.643 = ± 0.766

(5.126)

(5.127)

Equation (5.S3) then yields the two possible values for

, / sin 6 -,
(5.128)

0 3 = tan '() = tan '(+ 1-191) (5.129)

03 = 49.989 or -49.9S9 (5.130)

Since the cosine of the angle is positive, no adjustments need be made to these values;

solutions for 03 must lie in the first or fourth quadrants.

Moving on to 8 u the angular difference jj — 8 , is first determined. When

03 = +49.989°, Equation (5.98) produces

sin { { $ - 6 x)
a-iS3*3 (5.131)

+ \/Pa, +Pa„

sin(/? - 0,) =
100 sin(+49.9S9)

+ ^/(6.466)2 + (—167.292)2
= 0.457 (5.132)

When 03 = —49.989°, the sine becomes

142

sin(/? — 0,)
100 sin(-49.989

4- ^/(G.466)2 + (—167.292)2
= -0.457 (5.133)

For both angles, the cosine given by Equation (5.99) is the same.

:os(/? - 0,) = ± J T - s\n{P - 0,)

cos(/? - 0,) = ± >/l - (± 0.457)2 = ± 0.889

(5.134)

(5.135)

For 03 = +49.989” and sin(/? — 0]) = 0.457, the possibilities for the angular difference arc

given by Equation (5.101).

ft — 0, = tan
sin(1 - 0 ,) \
cos((S - 0,)) (5.136)

< s - , 3 7 >

/? - 0, = 27.206 or -27.206' (5.138)

Since the sine of the difference is known to be positive, 0” and 180° bound the angular

difference; thus the second result of the arc tangent is adjusted by the addition of ISO'

from the fourth quadrant (positive cosine, negative sine, negative tangent) to the

second quadrant (negative cosine, positive sine, negative tangent).

/? - 0j = 27.206' or -27.206° + 1 S0° (5.139)

P - 0j = 27.206° or 152.794° (5.140)

For 03 = -49.989' and sin(/? - 0,) = -0.457

143

p — 0, = tan' —0.457
+ O.S89 (5.141)

P - 0, = -27.206 or 27.206 (5.142)

In this case, the sine of the difTerence is known to be negative, so the second result of

the arc tangent is adjusted by the addition of 180° from the first quadrant (positive

cosine, positive sine, positive tangent) to the third quadrant (negative cosine, negative

sine, positive tangent) to create two angles on the range — ISO' to 0°.

P - 0, = -27.206 or 27.206 + 180 (5.143)

p - 0, = -27.206 or 207.206 (5.144)

Next, the p component as defined by Equation (5.94) is determined using the

results of Equations (5.56) and (5.54).

(5.145)

p = tan-l ■167.292
6.466 = -87.787 (5.146)

Now consider the cosine and sine of P as defined by Equations (5.102) and (5.103).

cos P
Pa.

+ \/Pa, + Pa,
(5.147)

sin P = Pa,

+ V Pa. + Pa,
(5.148)

144

Clearly, the signs of p's cosine and sine are identically those of p„x and p.y, respectively.

Consequently, the cosine of /> is positive and the sine is negative; the angle must then

lie in the fourth quadrant. Since the cosine is positive, the value obtained above docs

not need to be adjusted by the addition of ISO".

The angle 0, is now determined using Equation (5.105).

e} = / ? - (/ ? - 0 ,) (5.149)

For 03 = 49.989", substitutions arc made from Equations (5.146) and (5.140).

0 ,(= —87.7S7° - (27.206’) = -114.993° (5.150)

e h = — 87.7S7° - (152.794°) = -240.5S1° (5.151)

Note that the second value for 0, is outside of the desired limits — ISO" and -(-ISO", so

an adjustment needs to be made. In this case, it is the addition of one full circle.

e h = -240.581° + 360°= 119.419° (5.152)

For 03 = —49.989°, substitutions arc made from Equations (5.146) and (5.144).

6 h = -87.787° - (-27.206°) = -60.581° (5.153)

6 U = —S7.787° - (207.206°) = -294.993° (5.154)

The second solution here is also outside the desired limits of — 180’ and +180", and since

it is negative, it is adjusted by the addition of one full circle.

0 s —294.993 + 360 = 65.007*4 (5.155)

145

Summarizing, the two 8 , solutions for 03 = 49.989' are —1 14.993' and 119.419', and the

two 9X solutions for (93 = —49.9 8 9’ are —60.581' and 65.007'.

Finally, 02 is evaluated using Equation (5.123).

0 2 — (5.156)

The cosine and sine of d2 are of course required prior to the use of Equation (5.123);

they arc also used to determine the proper quadrant of 02. From Equations (5.1 13)

and (5.115),

/Vi + Pays\
a 3c 3 + a 2

(5.157)

*2 a2c3 + a2 (5.158)

It was pointed out during the derivation of the equations that if <93 should become

± 180”, folding the arm back on itself at the elbow, its cosine would become -1 and the

denominators of the formulas for 8 2 s cosine and sine would become zero; this is not

the case for this example.

Equations (5.54), (5.56), and (5.58) provide the coefficients pCx, pay, and p0z>

respectively. For d2 — 49.989' and = — 114.993*,

6.466 cos(-114.993°) + (-167.292) sin(-114.993°)
c2 = -------------1-------------- -— ------ t------------ ---------------— = 0.906 (5.159)

100 cos(49.989)+ 100

h _______69.445_______
100 cos(49.989°) + 100

0 . 4 2 3 (5 . 1 6 0)

1 4 6

02, = tan 0.423
0.906 25.027^ (5.161)

Since the cosine is positive, the desired result is a first or fourth quadrant angle and

no adjustment need be made to the result of the arc tangent.

The example continues with 03 = 49.989° and 9, = 119.419”. Note that since

cosine is an even function and the two values for 6 3 differ only in sign, the value for the

sine of 92 will not change throughout the example and need not be recalculated.

6.466 cos(1 19.419°) + (-167.292) sin(119.419°)
c2 = ------------------------- ----------- 7---------------------------= —0.906 (5.162)

100 cos(49.9S9) + 100

(5I 63)

Since the cosine of 6 2 is negative, the desired result is a second or third quadrant angle,

and the result of the arc tangent function must be modified. Further, since the sine

of the angle is positive, it is in the second quadrant, so IS0° is added to the fourth

quadrant arc tangent result to obtain the correct angle.

6 2 = -25.027' + 180* = 154.973' (5.164)

For 63 = -49.989' and 0, = -60.581',

6.466 cos(-60.581') + (-167.292) sin(-60.581*)
c ~ --------------------------------------- ;---------------- -------- — = 0.906 (5.165)

100 cos(-49.989)+ 100

H) - 2 5 . ° 2 7 ‘ (5 . 1 6 6)

147

Since the cosine of this 02 is positive, the result of the arc tangent does not need to be

modified.

For 03 = -49.9S9" and 0, = 65.007",

6.466 cos(65.007°) + (-167.292) sin(65.007°)
c2 = ----------------------- -— ------- ------ ----- ---------- - = -0.906 (5.167)

100 cos(-49.989) + 100

) " ~ 25'027’ (5' |6S)

Since the cosine of 02 is negative and the sine is positive, the angle is in the second

quadrant; thus a correction factor of 180" is added to the arc tangent result to achieve

the correct angle.

6 2i = -25.027° + 1S0° = 154.973° (5.169)

This completes the possible solutions for 0,, 02, and 03. The solution sets arc

summarized in Table 5.1.

Table 5.1. SOLUTION TRIPLES FOR ARM CONTROL VARIABLES

Control Variable Set 1 Set 2 Set3 Set 4
1 -114.993 119.419 -60.581 65.007
2 25.027 154.973 25.027 154.973
3 49.989 49.989 -49.989 -49.989

Each of these control variable triples will achieve the desired position for the end

point of the arm's third link. This is demonstrated geometrically on the coordinate

frames of Figure 5.12 (a). The set of rotations specified by the first triple is depicted

in Figure 5.12 (b). The first rotation is —114.993" about the z0-axis, transforming links

1, 2, and 3. The next rotation is 25.027" about the zr axis, transforming only links 2

148

and 3. Finally, the z -̂axis is rotated about by 49.989’, and only link 3 moves here. In

picturing these rotations, recall the right hand rule, which states that when the thumb

of the right hand is laid parallel along the positive direction of the axis of rotation, the

fingers curl about the axis in the direction of a positive rotation. The three remaining

solutions are carried out in parts (c), (d), and (e) of Figure 5.12. Each solution can be

seen to achieve the same position for the arm end point; however, the orientations of

the relative coordinate frames at the end of the third link arc widely different. It should

be noted that wrist control variable solutions may not exist for any or all of the arm

solutions; further, no examination has been made yet as to whether the control variable

settings arc attainable. These problems will be addressed in subsequent sections.

Figure 5.12. Arm Configuration for Solution Triples

3. Program Structure. The derivation of equations led first to a relationship for

the third control variable, 03. This was followed by a series of equations involving

Op ft — 0i, /?, and finally 0, itself. Joint variable 02 was then generated based upon the

results obtained for the previous variables. The controlling procedure of this section

149

follows this sequence. Procedure c a l c _ t h e t a _ 1 2 3 _ t r i p l e s invokes a

procedure for each of the listed steps.

calc_theta_3 (pa, theta, rou+2, cols);
calc_beta_minus_theta_1 (pa, theta, bmt1);
beta = calc_beta (pa);
calc_theta_l (beta, bmt1, theta, rou, cols); calc_theta_2 (pa, theta, rou+1, cols);

Procedure calc_theta_3 derives values for its angle, beginning by using liquations

(5.81) and (5.S2) to determine the cosine and sine of the angle.

c3 = (square (magnitude (pa)) - square (a2) - square (a3))/ (2 X a2 x a3);
s3 = sqrt(1 - square (c3));
if (fabs(c3) > tolerance)

{theta[1][3] = atan(s3 / c3) ;
theta[3][3] = atan(-s3 / c3);

/X adjust atan for cos < 0 X/
if (c3 < 0)

{ /* c3<0, s3>0 => 4th->2nd quad X/
theta[1][3] += pi;

/X c3<0, s3<0 => 1st->3rd quad x/
theta[3][3] -= pi;
}

}else
{thetaM][3] = pi / 2;
theta[3][3] = -pi / 2;
} /# 2 copies => 4 triples X/

theta[2][3] = theta[1][33;
theta[4][3] = thetaC3][31;
for (i = 1; i <= 4; i++)leprintf (rou, colsCi], theta[il[3] x 180/pi);

As will be the case with all control variables, the situation wherein the cosine is zero

must be singled out for special treatment. Providing that division is possible, the arc

tangent relationship is used to obtain two possible values for 03, as the sign of the

angle's sine could not be determined. If the cosine is negative, then both of the angular

results must be adjusted, from the fourth quadrant to the second and from the first to

the third, where appropriate. On the other hand, if the cosine were zero, the two

possibilities are positive and negative 90’. Lastly, one copy of each of the values is

made to correspond to the two possibilities each for 0, and 02 which will be dependent

on 6 y

150

The next step is the calculation of the possibilities for the angular difference

[5 — 6 1. This is accomplished by procedure c a lc _ b e ta _ m in u s _ th e ta _ 1 . First

the sine and positive cosine of the difference are obtained, as expressed by Equations

(5.98) and (5.99), for each of the two #3 values.

/* for 2 pairs' (1,2) & (3,4) */
for (i = 1; i <= 3; i = i + 2)

{sbmtl = a3 X sin(theta[i][3])
/ sqrt(square (pa[0]) + square (pa[1]))j cbmtl = sqrt(1 - square (sbmtl));

if (fabs(cbmtl) > tolerance)
{bmt1[i] = atan(sbmt1 / cbmtl); bmt1[i+1] = atan(sbmt1 / -cbmtl);

/# adjust 1 due to sine */bmt1[i+1] = bmt1[i+1] + pi;
}else
{if (sbmtl > 0)

bmt1[i] = pi / 2; else
bmt1[i] = -pi / 2;

bmt1[i+1] = bmtlLi];
}

}

The possibility of the cosine being zero is then examined; when the cosine of the

difference is not zero, there are two possibilities for each If the sine of the

difference is positive, then the resultant values must lie in the first and second

quadrants; a tn (sb m t1 / -cb m tl) would yield a fourth quadrant angle and must

be adjusted. Similarly, if the sine of the difference is negative, then the results must lie

in the third and fourth quadrants; in this case, a tn (sb m tl / -cb m tl) would

produce a first quadrant angle and must be adjusted. Thus the same correction is

required in either case. If on the other hand the cosine were zero, then there would

only be a single resultant angle, either a positive or negative 90°. The sign of the sine

determines which, and the value is used twice.

With the difference [5 — 6 , known, evaluation of jS independently will subsequently

lead to the value of 6,. The procedure of the 6300 block calculates the single possible

value for /?, beginning with the observation made following Equations (5.102) and

151

(5.103) that the signs of pax and pCy are also the signs of the cosine and sine of /?,

respectively.

sign_cos_beta = sign (paCO]);
sign_sin_beta = sign (pa[1])j
if (fabs(pa[0]) > tolerance)

{beta = atan (patll / pa[0]);
if (sign_cos_beta == -1)

beta += pi;
}else
if (sign_sin_beta == +1)

beta = pi / 2;
else

beta = -pi / 2;
return (beta);

/* adjust atan for cos < 0 */

/* cos = 0 , + sin => +90 deg */

/* cos = 0 , - sin => -90 deg */

The possibility of a cosine of zero is then examined; the cosine will be zero only when

the numerator of the fraction denoting the cosine in Equation (5.102) is zero. When

the cosine is not zero, the arc tangent function returns a result which is adjusted for

negative cosines. Equation (5.104) defines the expression for /?. If the cosine is zero,

then as before the sign of the sine determines the angle.

Now that ft — 0, and /? are known, 0, follows by subtraction of the former from

the latter. Procedure calc_theta_1 determines the possible values for 01,

beginning with the use of Equation (5.105), paraphrased above.

for (i = 1; i <= 4; i++)
{

theta[i][1] = beta - bmt1[i]
if C thetatijM] > pi)

theta[i][1] -= 2 * pi;
if C thetati][1] < -pi)

theta[i][1] += 2 * pi;
leprintf (rou, colsli], theta
}

/x t1 = beta - (beta - t1) X/
/* adjust if > 180 degrees */

/X adjust if < -180 degrees */

i][1] ̂ 180/pi);

If the resultant 0, is greater than 180", it is adjusted by a reduction of 360" to place it

between —180’ and +180". This is done for compliance with the joint variable

restrictions; similarly, 6 , is adjusted by the addition of 360" if it is less than - ISO".

152

The third and final arm control variable, d2, is determined by procedure

c a l c _ t h e t a _ 2 . The procedure begins by determining the cosines and sine of

previously determined variables necessary for each 02. Note that the relationship for

c3 in Equation (5.81) is dependent upon fixed values only, so c3 need be calculated only

once for all of the 6 2 values.
/X costtheta 3) is constant x/c3 = cos(theta[1][3]); for (i = 1; i <= 4; i + +)

{c2 = (paC0]*cosCtheta[i] [13) + pa[1]*sin(theta[i][1]))/ (a3XC3 + a2); s2 = pa[2] / (a3*c3 + a2); if C fabs(c2) > tolerance)
{theta[i][2] = atan(s2 / c2);/x adjust atan for cos < 0 X/if C c2 < 0)

}elseif

leprintf
}

if (s2 >= 0)theta[i] [2]

SlStheta[i][2]

/x -c,
+= pi;/x -c,
-= pi;

+s => 2nd quad from 4th X/

-s => 3rd quad from 1st x/

(s2 > 0)theta[i][2] = pi / 2; elsethetati][2] = -pi / 2;(rou, colsti], theta[i][2] x 180/pi);

The cosine and sine of 02, given by Equations (5.113) and (5.115), respectively, are

calculated next. Note that while division by zero is possible in these equations,

specifically when c3 = -1, it is not checked for in this procedure. Such an occurrence

is caused by all three of the arm vector components being zero simultaneously, as

described in the derivation of equations. This circumstance will be accommodated at

a higher level, between calls to the arm vector component procedure and that of the

arm control variables. No solution can exist in such a situation, and this procedure

will not have been entered. The cosine of d2 can take on a value of zero; this situation

is handled separately from all others. Provided the cosine is not zero, the angle is

determined using the arc tangent relationship. The result of the arc tangent is adjusted

in two ways, moving in the positive direction from the fourth quadrant to the second

and the negative direction from the first to the third quadrant, so as to keep the

1 5 3

resultant angle between —180' and +180'. As usual, the angle is decided by the sign

of the sine when the cosine is zero.

4. Program Example. After procedure c a l c _ t h e t a _ 1 2 3 _ t r i p l e s has

executed, the display contains the information shown in Figure 5.13. Note that the

results arc not appreciably different from those obtained in the numerical example.

The differences may be attributed to the higher degree of precision to which a

computer performs the involved calculations.

Armatron Manipulator Control
Theta

0.000 N 0 A P
0.000 l 0.790 -0.516 0.331 39.566!
0.000 ! 0.195 -0.300 -0.934 -260.692!
0,000 : 0.581 0.802 -0.137 55.745!
0.000 : o 0 0 1 !

Position- Orientation Control
Determination of Pa Vector Components

Pwx Pwy Pwz
33.100 -93.400 -13.700
Pax Pay Paz
6.466 -167.292 69.445

Control Variabl e Solutions
Theta Set 1 Set 2 Set 3 Set 4

1 -115.025 119.451 -60.549 64.975
2 25.011 154.989 25.011 154.989
3 50.018 50.018 -50.018 -50.018
4
5

el3,3

Figure 5.13. Display for Arm Control Variable Solutions

155

E. WRIST CONTROL VARIABLES

1. Derivation of Equations. With four possible combinations of arm control

variables established, solutions for the wrist control variables 0 A and 9S are investigated

next. Recall again that link matrix / may be interpreted as transforming link / and

those following it with respect to link /'s coordinate frame. Let R, be the upper 3-by-3

sub-matrix of the A, matrix; R, then specifies the rotation due to A,. The matrix

product RtRiRiRjRs achieves the orientation specified by the normal, orientation, and

approach vectors. The sub-product R,RS results in a transformation matrix which will

rotate the coordinate frame at the end of the third link to that of the cnd-cffcctor; the

sub-product RtR2Ri produces the transformation matrix whose columns arc the normal,

orientation, and approach vectors of the end of the third link. As an equation,

ny oy ay {R,R2R,){RARS) (5.170)

The work of the previous section determined possible values for 6 U 8 2, and The

remaining variables and 0S are now solved for in Equation (5.170).

The solution process begins by isolating the matrix sub-product of the wrist link

rotation matrices, RtRy This is done by prc-multiplying both sides of Equation

(5.170) by the inverse of R]R2Ri.

nx °x ax

ny °y ay

nz °z az

(5.171)

1 5 6

nx °x ax

(*1*2*3)
-1 rty o y a y = R*R 5 (5.172)

The product RiR2Ri is obtained from the upper left 3-by-3 matrix of the product

A1A2A3 in Liquation (4.72).

R,R2R3

Cj C2C3 5)^3 —CtX2 C,C2.V3 + S , c 3

s i c 2 c 3 + c i-b - - V h T R A - c , c 3

•V2C3 c 2 S2 S3

(5.173)

Recall from the preceding chapter that the original orientation vectors were simply the

unit normal vector triple coincident with the base frame coordinate axes and thus may

be represented in matrix form by the identity matrix; consequently, the multiplication

of their matrix and any transformation by rotation results in just the transformation

matrix itself. Any rotation matrix may therefore be thought of as a specification of an

orientation of this unit normal vector triple. Since the columns, or vectors, of such a

matrix are clearly linearly independent, the inverse of such a matrix is its own

transpose. (See a linear algebra text such as [Stra80] for further explanation on this

topic.) Thus the inverse of the product is its own transpose.

(R]R2R3) - , =

C, C2 C3 - 5 i 5 3 S ; C 2 C3 + C , S 3 S2 C3

CjS2 —S] S 2 R

C1C253 T S j C3 S ,C 2S3 — C,C3 S2S3

(5.174)

Substituting this inverse into Equation (5.172) yields an expression for R*RS.

157

C]C2C3 5 ^ 3 s,c2c3 + c,s3 52c3
r

n x ° x

1-----*

11W
O -c ,s 2 -s ,s 2 c2 ny °y av

C1 c2‘s3 T -h c3 s,c2s3 — c,c3 *2*3 _ J h °2 a2 -

(5.175)

Now consider the matrix product !uRs. The matrices themselves arc obtained from

Equations (4.65) and (4.67), respectively, as the upper left 3-by-3 sub-matrices of the

A, matrices specified therein; their product follows.

c4 0 •s4

0 -c,

0 1 0

C5 -̂ 5 0

SS c 5 0

0 0 1

c4

1--------

O

c 5 ~ SS 0

R ^ R 5 — s4

uIO

5 S c 5 0

0 1 0 0 0 1

c 4 c 5 Cd-v5 *4

R a R*. •S4 C5 54 % ~ C4

CO
_____1 5 0

(5.176)

(5.177)

(5.178)

(5.179)

Combining Equations (5.175) and (5.179),

C4C5 — C4 .S5 Cj C2C3 SjC2C3 4 ~ C 2 3̂ 52c3 nx ° x a x

S4C5 ~ SAS5 - c 4 = -c ,s 2 - s , s 2 c 2 ny °y ay

. 55 C5 0 c1c253 + s l c3 s 1c253 ~ c l c 3 52S3_ _>h ° z a i .

(5.180)

158

Instead of immediately performing the matrix product specified on the right in the

equation above, note that the sines and cosines of 04 and 05 occur by themselves as

elements of the matrix on the left. The row-column multiplications required for these

four matrix elements are sufficient for the needed equations. Additionally, note that

element (3,3) of the AtAs product is zero; the corresponding row-column multiplication

must also be zero.

°x(c 1c253 + ̂ ifii) + S (51C253 - clc3) + = 0 (5. 181)

If a #i-02-03 triple should fail to fit the above equation, then the triple is not viable.

This may be interpreted by first considering what has been accomplished by the

rotations of 6 U 02, and 03. The matrix product A\A2A2 results in a specific positioning

of the end of the third link of the arm; in addition to this, it also causes a specific

re-orientation of the vectors n, o, and a, which were originally aligned with the base

coordinate frame. To this point, these vectors have been ignored. While joint variables

0i, 02, and 03 have accomplished the required positioning of the arm's end, it remains

for joint variables 04 and 05 to achieve the required orientation of vectors n, o, and

a. Further, 04 and 05 must achieve this orientation from that left by the positioning

of the end of the third link.

Now consider what can be accomplished by the rotations of the final two links

of the arm. From the previous chapter, link 4 performs the 04 rotation about the

current z-axis and then a 90" rotation about the current x-axis. Link 5 performs only

the 05 rotation about the current z-axis, as its jc-rotation is zero. Figure 5.14 describes

these rotations graphically. Axes ;c3,_y3, and z3 are those at the end of the third link after

the rotations of the first three links have been performed. Rotation 0„ about axis z3 can

re-orient axis jr3 in any direction in the plane defined by x3 and j>3 to become jr3', and

y>i is of course re-oriented accordingly to become _y3'. Figure 5.14 (1) depicts an

159

example rotation of 65\ The 90' rotation about x3' then brings y j into alignment with

z3 and zy to become y4, and z3 re-aligns 90" away in the old x3-.y3 plane to become z4.

Figure 5.14 (b) illustrates this turn. The final rotation 05 then turns axes x4 and y4 in

their plane about axis z4 to any new orientation to become x5 and ys, respectively.

Figure 5.14 (c) describes an example rotation of —35" for this third and final turn.

(a) (b) (c)

Figure 5.14. Rotation Transformations Due to Links 4 and 5

The rotation can be thought of as lining up the x3-axis for the x-rotation which

will bring z3 into the xj-y3 plane. Any direction in this plane for the resulting z4 may

be chosen by proper selection of 04. The final rotation 05 serves only to re-orient the

x4 and y\ axes; axis z5 remains in the x3-y3 plane. Therefore this sequence of rotations

must result in an approach vector which is in the x-y plane of the coordinate frame at

the end of the arm proper. This in turn means that the z-coordinate of the approach

vector with respect to the coordinate frame of the arm's end must be zero. This is

element (3,3) of the R,RS matrix. If the determination of R4RS results in a non-zero

element for this position, the positioning of the arm's end by links 1, 2, and 3 resulted

in an orientation from which the given wrist configuration's links 4 and 5 cannot

achieve the final desired orientation. On the other hand, if the element is found to be

160

zero, then the orientation is achievable, a solution does exist, and the 0i-02-03 triple's

corresponding 04 and 05 may be calculated.

The solutions for the wrist joint variables begin with the derivation of equations

for 04. The cosine of 04 is the negative of clement (2,3) in Equation (5.180) while the

sine is just clement (1,3).

—c4 = —axcis2 — ays]s2 + azc2 (5.182)

c4 — axc}s2 + aySjS2 — a2c2 (5.1 S3)

s4 = ax{c\c2c2 - v 3) + ay(S]c2c3 + c,s3) + ars2c3 (5.184)

The results for the sine and cosine from Equations (5.1 S3) and (5.184) arc then used

to determine the angle 04 itself.

04 = tan (i ic4 (5.185)

Three points should be made here. First, as before, if the cosine of the angle is

negative, then the result of the arc tangent will have to be adjusted. If the sine of 04

is positive, then 7r* is added to the above; if the sine is negative, the value is subtracted.

Second, should the cosine of 04 be zero, one of the values ± - y may be selected by

examination of the sign of the sine. Lastly, it will be recalled from the previous chapter

that the initial positioning of the robot arm places the gripper in a vertically downward

direction to prevent a rotation about an x-axis. This in turn leaves joint variable 04

with the peculiar range of movement o f -1 0 ’ to +190". For this joint variable only,

a special check must be made here to insure conversion of a solution in the range

— 180’ to —170' to one in the range +180" to +190’ for compliance with subsequent

boundary checks.

161

Also from Equation (5.180), for 05 the cosine is element (3,2; while the sine is

element (3,1).

c5 = 0,(c,c2J3 + J,c3) + o^s}c2 s3 - c,c3) + o j ;2 s3 (5.186)

s5 — nx(c}c2s3 + 5^ 3) + /jy(5]C253 — c,c3) + n7s2s3 (5.187)

As with 04, the results for the sine and cosine from Equations (5.186) and (5.187) are

used to determine the angle 0S.

05 = (5.1S8)

The remarks made concerning adjustments to the arc tangent result and handling of

the zero cosine condition made for 04 apply also to 0S, but the special conversion check

does not as 05 has a range of —360" to +360°.

2. Numerical Example. The numerical example continues by generating one

04-05 pair for each of the 0,-02-0s triples of the previous section. The process begins by

checking each triple against Equation (5.181) using the approach vector components

specified in Equation (5.15).

«x(cN253 + ^ 3) + a£s}c2s3 - c,c3) + az(s2s3) = 0 (5.1S9)

0.331(0^253 + 5,c3) + (—0.934)(5]C253 — c,c3) + (—0.137)(5253) = 0 (5.190)

The first triple was (0,, 02> 03) = (- 1 14.993', 25.027', 49.989'). The left hand side of

the above equation is evaluated as

162

(0.331)(cos(-114.993’) cos(25.027’) sin(49.989’)

+ s in (-l 14.993’) cos(49.989’))

+ (-0.934)(sin(-114.993’) cos(25.027") sin(49.989’) (5.191)

- c o s (- l 14.993’) cos(49.989’))

+ (—0.137)(sin(25.027’) sin(49.9S9’)) = -0.001

This result is not significantly different from zero, so this first triple forms part of a

solution and will proceed to the next step. This may be visualized as in Figure 5.15

as follows. First, the product R\R2Ri of Equation (5.173) is evaluated for the given

triple.

C1C2C3 — - V 3

^2^3 — 5 1c2c3 + c 153

52C3

Cj ^2 ^ jC 2 S3 “h S]C 3

~ 5 152 — C1C3

c 2 S2S3

7 ?j R2R3 —

0.448 0.179 -0.876

-0.852 0.383 -0.357

0.272 0.906 0.324

(5.192)

(5.193)

This is the orientation of the vectors n, o, and a at the end of the third link. The

desired orientation is given by the upper left 3-by-3 matrix of Equation (5.15).

nx ax '0.790 -0.516 0.331 '

ny °y ay - 0.195 -0.300 -0.934

3 az_ 0.581 0.802 -0.137

(5.194)

The triple of vectors specified by Equation (5.193) are labeled as /73, oit and a3 in the

figure; vector «3 is directed out of the figure and is not visible. The view in Figure 5.15

puts the plane of vectors «3 and <?3 horizontal and perpendicular to the surface of the

163

view plane. The vectors of Equation (5.194) are labeled n, o, and a. If the wrist were

to be capable of attaining the desired orientation, vector a would have to be in the

plane of vectors «3 and o3. As can be seen, it is.

Figure 5.15. Attainable Orientation from Frame of Link 3

The second triple was (0,, 02, 03) = (119.419°, 154.973°, 49.989°)

side of Equation (5.190) is evaluated for these angles as

(0.331)(cos(119.419°) cos(154.973°) sin(49.989°)

+ sin(l 19.419°) cos(49.989°))

+ (—0.934)(sin(l 19.419°) cos(154.973°) sin(49.9S9°)

- cos(l 19.419°) cos(49.989°))

+ (—0.137)(sin(154.973°) sin(49.989°)) = 0.523

This result is significantly different from zero, so this triple does not form part of a

solution and will not proceed to the next step. This situation may be seen in Figure

5.16; the view in this figure is of the same orientation as that of Figure 5.15. The

product RiR2R3 evaluates for the second 0i-02-03 triple as

The left hand

(5.195)

164

-0.381 0.208 0.901

-0.884 -0.368 -0.289

0.272 -0.906 0.324

(5.196)

As before the triple of vectors specified in the above equation arc labeled nit o3, and cf3

in the figure, while the final orientation vectors are labeled n, o, and a. It may be seen

that vector a does not lie in the plane of vectors «3 and cf3, so a solution for 0 4 and 6 S

docs not exist.

The process is repeated for the third triple, (—60.581*, 25.027“, —49.989*), with a

result of -0.523. Again, this value differs significantly from zero so this triple does not

form part of a solution. The final triple, (65.007", 154.973*, —49.9S9*), produces +0.001

as a result from evaluating the left hand side of Equation (5.190). As with the first set,

this value does not differ significantly from zero so the triple will be part of a complete

solution in the next step.

165

With the first verified triple (—114.993*, 25.027*, 49.989*), corresponding values

are evaluated for first the cosines and sines of 0 A and d5 and then the angles themselves.

Equations (5.183) and (5.184) arc employed first for 0A using the values of ax, a>, and

a7 from Equation (5.15).

c4 = axcls2 + ciys]s2 — azc2 (5.197)

c4 = (0.331) cos(-114.993”) sin(25.027°)
(5.198)

+ (-0.934) sin(— 114.993) sin(25.027) - (-0.137) cos(25.027)

c4 = 0.423 (5.199)

sA = qx(c1c2c3 — s,53) + ay(slc2c3 + c,s3) + ar<;2c3 (5.200)

s4 = (0.331)(cos(-114.993') cos(25.027°) cos(49.989°)

- sin(— 114.993*) sin(49.989*))

+ (—0.934)(sin(-114.993°) cos(25.027°) cos(49.989°) (5.201)

+ cos(-114.993°) sin(49.989°))

+ (- 0 . 137) sin(25.027°) cos(49.989°)

s4 = 0.906 (5.202)

Equation (5.185) then gives 0A as

6 a = tan-1 ̂•— 'j (5.203)

04 = tan- ' (-||||-) = 64.973° (5.204)

Since the cosine of dA is positive, the result of the arc tangent docs not need to be

adjusted.

1 6 6

Turning to 8S, substitutions are made from Equation (5.15) for the components

of the orientation and normal vectors in Equations (5.186) and (5.187) for the cosine

and sine of the angle, respectively.

c5 = ° x (C \ C2S 3 + - V 3) + 0J,(S|C2S3 - C,C3) + W 3

c5 = (—0.516)(cos(-114.993*) cos(25.027’) sin(49.989*)

+ sin(—1 14.993°) cos(49.989°))

+ (—0.300)(sin(-114.993”) cos(25.027°) sin(49.989*)

- c o s (- l 14.993”) cos(49.989*))

+ (0.S02) sin(25.027”) sin(49.989*)

c5 = 0.S19 (5.207)

5S = nx(c,c2s3 + j ,c3) + ny(s]c2s3 - c}c3) + tizs2s3 (5.20S)

s5 = (0.790)(cos(-114.993”) cos(25.027”) sin(49.989*)

+ s in (-1 14.993”) cos(49.989’))

+ (0.195)(sin(-114.993”) cos(25.027°) sin(49.989’) (5.209)

- c o s (- l 14.993’) cos(49.989°))

+ (0.581) sin(25.027*) sin(49.989’)

5S = -0.573 (5.210)

(5.205)

(5.206)

Equation (5.188) then gives 6 S as

05 = tan £5
c5

(5.211)

d5 = tan' -0.573
0.819 = -34.978 (5.212)

167

As was the case for 6 A, the result of the arc tangent does not need to be adjusted since

the cosine is positive. This completes one solution for the position and orientation

specified by Equation (5.15).

The above process for dA and 05 is now repeated for the other verified

triple, (65.007°, 154.973’, —49.989°). Omitting the calculations for this second time

through, the notable results begin with the cosine, sine, and subsequent value of 0 A.

cA = -0.423 (5.213)

•r4 = 0.906

64 = tan 0.906 \
-0.423 J -64.973’

(5.214)

(5.215)

Since the cosine of the angle is negative, the result of the arc tangent must be adjusted.

Since the sine of the angle is positive, 180° must be added to the above result to change

the fourth quadrant arc tangent result to the desired second quadrant angle.

&A — —64.973* T 180*= 115.027* (5.216)

The results of the calculations for the cosine, sine, and subsequent value of 6S are

next.

c5 = —0.S19 (5.217)

s5 - 0.573 (5.21S)

6 S = tan 0.573
-0.819 = -34.978 (5.219)

168

Here as well, the result of the arc tangent needs to be adjusted since the cosine of the

angle is negative. Since the sine is positive, 180” must be added to change the fourth

quadrant arc tangent result above to the desired second quadrant angle.

0 5 = -34.978 + 1 SO” = 145.022" (5.220)

This completes the second of the two solutions for the position and orientation

originally specified by Equation (5.15). The two complete solutions for the given

example arc summarized in Table 5.11.

Table 5.11. SOLUTION SETS FOR ARM AND WRIST CONTROL VARIABLES

Control Variable Set 1 Set 2
1 -114.993 65.007
2 25.027 154.973
J 49.989 -49.989
4 64.973 115.027
5 -34.978 145.022

The arm configurations resulting from each of the solution sets arc depicted in

Figure 5.17. Figure 5.17 (a) shows the result of the sequence of transformations

dictated by the first solution set. As it turns out, the arm can achieve this solution.

Figure 5.17 (b) then shows the result of the transformations of the second solution set.

It should be noted that the arm will not actually be able to use this solution as the

second variable, d2 — 154.989", is out of the range for the second joint. Note that the

position and orientation of the gripper is the same in each.

3. Program Structure. The first item to be handled by the controlling procedure

of this section, c a l c _ t h e t a _ i4 5_ jp a ir s , is the determination of clement (3,3) of

the product of the arm inverse and orientation vector matrices for each 6 ,-62-63 triple.

This particular element must be zero or no solution can exist, as noted in the derivation

169

Figure 5.17. Arm and Wrist Configurations for Solution Sets

of equations. The iteration of the procedure begins by calculating the element's value

for a given triple as specified by Equation (5.181).

ate = 0;
for (i = 1; i <= <+; i + +)

{for (j = 1; j <= 3; j++)
{c t j] = cos(theta[i][j])l
stj] = sin(thetaCi][j3);
3el_3_3 = noap[2] [0] * Cc[1]*c[2]*s[3] + s[1]*c[3])+ noapC2][1] X (s[1]*c[2]*s[3] - c[1]*c[3])

+ noap[2][2] x s[23*s[33;
leprintf (row+5, colstil, el_3_3);
if (fabs(el_3_3) < tolerance)

{atc++;
for (j = 1; j <= 3; j++)

accepted_theta[ate][j3 = thetaCi3Cj3;
accepted_theta [ate 3 3 = calc_theta_<+ (noap[23J s, c);
leprintf (rou+3, cols[i3» accepted_thetatate 3[93 X 180/pi);
accepted_theta[ate3C53 = calc_theta_5 (noap[03, noap[13,

s, c);
leprintf (rou+4, cols[i3, accepted_theta[ate 3[53 X 180/pi)j
3

else
{
lcputs (rou+3, cols[i3. ’’ Ho
lcputs (rou+h cols[i3, " Solution");
3

3
return (ate);

If the value is acceptably close to zero, the wrist variables are determined and the entire

set is saved for use in the next section.

170

Procedure c a lc _ th e ta _ _ 4 determines a value for 6« dependent upon the

current 6 r 6 2-6 3 triple. The process begins by determining the cosine and sine of as

given by Equations (5.183) and (5.184), respectively.

c<t = a[0]XcCl]xs[2] + a[1 3*sm * s [2] - a[2]xc[2];s4 = a[0] X (c[13Xc[2]Xc[3] - s[
+ a[1] * (s[1]XC[2]XC[3] + c£ if (fabs(c^) > tolerance)

theta<i = atanCs1! /);
if (c1! < 0)

if (s'! >= 0)theta1! += pi;
elsetheta1! -= pi;

3*s[3J)]xs C3]) + aC2lXs[2JXc[33;

/X adjust atan for cos < 0 X/
/X -c, +s => 2nd quad from <!th x/

/X -c, -s => 3rd quad from 1st X/

if (theta1! < -170 X pi/180) theta1! += 2 X pi;
)else
if (s1! > 0)

theta1! = pi / 2;
elsetheta1! = -pi / 2;

return (theta1!);

/X conv for bounds compliance X/

/X cos = 0, +sin => +90 deg X/

/X cos = 0, -sin => -90 deg X/

The possibility of a zero cosine is investigated next; the angle is then determined using

the arc tangent relationship. As with previous control variables, the adjustments made

for a negative cosine arc designed to place the angle in the range — 1S0° to +180". The

derivation of equations noted that the unusual boundaries for 9t, —10° and +190°, were

due to the arm's initial alignment. A check must be made here to convert any solution

in the range —180° to —170° to one in the range +180° to +190°. This will allow simple

comparisons to be performed when checking solution sets against the variable ranges.

An angle in the range —180° to —170° will have a negative cosine, so the check may be

performed following the previous arc tangent adjustments. Further, since the arc

tangent adjustments above will result in a solution between —180° and +1S0°, the

condition in question can be detected by a single comparison with —170°. In the event

of a cosine of zero, as with previous control variables the sign of the sine determines

the angle when the cosine is zero.

171

The procedure for determining 6 S, c a l c _ t h e t a _ 5 , parallels that of the

previous control variable, 9t, for the most part. The distinguishable differences are the

use of Equations (5.186) and (5.187) for the calculation of the cosine and sine,

respectively, of 6 < in place of those for 04, and the deletion of tiie special test for a 04

solution in the range — ISO" to —170°, as 6 S has balanced boundaries.

4. Program Example. Execution of procedure c a l c t h e t a 45 p a i r s

generates the information displayed in Figure 5.18. As with the arm control variables,

the solutions shown here for the wrist control variables are not appreciably different

from those obtained in the numerical example.

Armatron Manipulator Control
Theta

0.000 N 0 A P
0.000 : 0. 790 -0.516 0.331 39 .566
0.000 : o. 195 -0.300 -0.934 -260. 692
0.000 : o .581 0.802 -0.137 55. 745
0.000 : o 0 0 1

Position- Orientation Control
Determination of Pa Vector Components

Pwx Pwy Pwz
33.100 -93.400 -13. 700
Pax Pay Paz
6.466 -167.292 69 .445

Control Variabl e Solutions
Theta Set 1 Set 2 Set 3 Set 4

1 -115.025 1 19.451 -60.549 64.975
2 25.011 154.989 25.011 154.989
3 50.018 50.018 -50.018 -50.018
4 65.000 Mo No 115.001
5 -35.000 Solution Solution 145.000

e!3,3 -5.100E-04 0.523 -0.523 5. 134E-04

Figure 5.18. Display for Ann and Wrist Control Variable Solutions

173

F. VERIFICATION OF RANGES AND SELECTION OF A SOLUTION

The next phase of the problem is to take the solutions obtained by the work of

the previous sections and provide one set, if one exists, whose angles are all within the

stated ranges for the control variables to the robot movement routines of the next

section. The user is allowed to choose from among multiple solutions or to prevent

any movement at all. This procedure, p rom p t_for_m ov e, is invoked by an upper

level procedure which will examine the flag move for a 'Y' value before a move will

be attempted. The procedure begins by displaying the accepted manipulator solutions

and comparing them against their bounds, maintaining a count of how many and an

index array of which solution sets arc attainable.
dsply_prompt_f or__move (Srou, cols); inbounds = 0;
for (i = 1; i <= accepted; i++)

CoutCi] = 0;
for (j = 1; j <= 5; j++)

{accepted_theta[i3[j3 #= (180 / pi);leprintf (rou+j-1, colsti], accepted_theta[i]Cj]);
if ((accepted_theta[i3[j3 >= mm_constraint (j))

& (accepted_theta[i][j3 <= max_constraint (j)))lcputs (rou+j-1, cols[i+43+2, "In");
else

{lcputs (rou+j-1, cols[i+43+1, "Out");
out[i 3++;
}

}if (out[i3 == 0)
{inbounds++;inbounds_index[inbounds 3 = i;
3

}switch (inbounds)
{case 0 : lcputs (20, 20, "No Solution is Obtainable"); move = ’ N' ;

break;
case 1 : move = one__solution (inbounds_index[13, accepted_theta,

move_theta);break;
default: move = multiple_solutions (accepted, accepted_theta,

inbounds, inbounds_index,
out, move_theta);

}erase_prompt (22);
return (move);

The procedure concludes by acting on the number of solutions available.

174

Procedure o n e _ s o lu t io n begins by querying about an attempt to achieve the

single obtained solution,
locate (23, 20);cprintf ("Solution %d is obtainable", index);lcputs (24, 20, "Perform move? (y/n)");locate (24, 42);move = toupper(getch());if (move == 'Y')for (j = 1; j <= 5; j + +)move_theta[j] = accepted_theta[index][j] ; return (move);

The procedure concludes by setting up the array m o v e_th eta for use by the next

section if a move is desired.

When more than one solution is detected, procedure m u l t lp le _ s o lu t io n s

is invoked; it begins by listing the achievable solution subscripts and querying as to

which to use.
locate (22, 20);cprintf ("Solutions %d", inbounds_index[1]); for (i = 2; i <= inbounds-1; i++)cprintf (", %d", inbounds_index[i));
cprintf (" and %d are obtainable.", inbounds_index[inbounds]); prompt = "Select set for a move or 0 to abort:”; do

{set = prompt_input_digit (prompt); if (set == 0)
cont = 0; elseif ((set <= accepted) & (outtset] == 0))cont = 0;

elsecont = 1;
}uhile (cont); locate (24, 20) ;

cprintf ("Solution %d has been selected", set); if (set == 0)move = 'N ';
else

{move = 'Y*;
for (j = 1; j <= 5; j++)

move_theta[j] = accepted_theta[set] [j];
}return (move);

The procedure concludes by initializing the array m o v e_th eta with the selected

solution set for use by the next section if a move is desired. For the continuing

example, execution of procedure p ro m p t_f or_m ove displays the information of

Figure 5.19.

Armatron Manipulator Control
Theta

0.000 N 0 A P
0.000 : 0.790 -0.516 0.331 39.566 !
o . o o o : 0.195 -0.300 -0.939 260.692 !
0.000 0.581 0.802 -0.137 55.795 I
o . o o o : 0 0 0 1 :

Position-Orientation Control
Solutions

Theta Bounds Bounds Bounds Bounds
1 -115.025 In 69.975 In
2 25.011 In 159.989 Out
3 50.018 In -50.018 In
9 65.000 In 115.001 In
5 -35.000 In 195.000 In

Moving
Theta Current Desired Completed

1 -115.000 -115.025
2 25.000 25.011
3 50.000 50.018
9 65.000 65.000
5 -35.000 -35.000

Figure 5.19. Display for Range Verification of Solutions

1 7 6

G. MOVEMENT TO THE SPECIFIED POSITION AND ORIENTATION

If a single solution were found and selected and the decision made to move the

robot arm, then the procedure of this section will be invoked. Procedure

p o s ± t io n _ o r ie n ta t io n _ m o v e directs control for the arm movement; it begins

by displaying the current settings and those desired for the manipulator's joint

variables.
dsply_pos_orient_move (&rou, cols);
for Ci = 1; i <= 5; i + +)

{leprintf (rou+i-1, colsCO], thetaCi]);
leprintf (rou+i-1, colstl], move_theta [i]);
}uait_then_erase (24);

interrupt_count = 0;for (i = 1; i <= 5; i++)
{perform_move (i, theta, move_thetaCi], rou+i-1, colsCO]); if (fabs(theta[i] - move_thetaCi]) < tolerance)

lcputs (rou+i-1, cols[2], "Yes");
else

{lcputs (rou+i-1, cols[23, " No");
interrupt_count++;
}

}if (interrupt_count == 0)
{lcputs (23, 15, "Motion completed; ");
eputs ("Position-Orientation achieved”);
}else
{lcputs (23, 15, "Some motion interrupted; ");
eputs ("Position-Orientation not achieved");
}uait_then_erase (9);

As each movement is performed, the user will have the ability to stop the motion in the

event that an object in the arm's envelope is interfering with the motion or a motor

stalls. An interrupt count will be maintained to indicate how many of the arm's five

motions were interrupted by the user. This count will indicate that the desired position

and orientation were achieved if it remains zero after initialization. The procedure

iterates for each of the five joint variables, invoking procedure p e r f orm_move of the

previous chapter to perform the actual movement. Lastly, the procedure displays a

completion status based upon the interruption count.

177

Execution of procedure position_orientation_move displays the

information of Figure 5.20. Note the acknowledgement for position achieval for each

individual joint in the figure.

Theta
Armatron Manipulator Control

-115.000 N O A P
25.000 : 0.790 -0.516 0.331 39.566
5 0 . 0 0 0 : 0.195 -0.300 -0.934 260.692
55.000 0.581 0.802 -0.137 55.745

-35.000 : 0 0 0 1
Position-Orientation Control

Solutions
ta Bounds Bounds Bounds
1 -115.025 In 64.975 In
2 25.011 In 154.989 Out
3 50.018 In -50.018 In
0 65.000 In 115.001 In
5 -35.000 In 145.000 In

Moving
Theta Current Desired Completed

1 -115.025 -115.025 Yes
2 25.011 25.011 Yes
3 50.018 50.018 Yes
4 65.000 65.000 Yes
5 -35.000 -35.000 Yes

Motion completed; Position-Orientation achieved

Bounds

Figure 5.20. Display for Movement via a Solution

1 7 9

II. THE CONTROLLING PROCEDURE

Procedure p o s i t i o n _ o r i e n t a t i o n _ c o n t r o l begins by generating the

introductory' display of Eigure 5.21. It subsequently directs the execution of the

procedural steps outlined in this chapter. The procedure repeats the position and

orientation solution process for lifTcrcnt matrix inputs until instructed to stop.

dsply_position_orientation_introduction ();
uait_then_erase (9);
do

{dsply_pos_orient_solution (&arm_rou, arn_cols,
&theta_row, theta_cols);

get_noap (noap, noap_rou, noap_cols);
magnitude_ok = calc_arm_end (noap, pa, arm_rou, aru_cols);
if (magnitude_ok)

{calc_theta_123_triples (pa, theta123,
theta_rou, theta_cols);

accepted = calc_theta_95_pairs (noap, theta123,
accepted_theta,
theta_rou, theta_cols);

uait_then_erase (9);
move = prompt_for_move (accepted, accepted_theta,

move_theta) ;
if (move == 'Y')

position_orientation_move (theta, move_theta);
noap_matrix (theta, noap, noap_rou, noap_cols);
}else
lcputs (28, 19, "Arm end position not attainable");

prompt_msg1 = "Continue with another N-O-A-P matrix (y/n)?";
prompt_msg2 =
qc = prompt_input_char (prompt_msg1, prompt_msg2);
}uhile (qc == 'Y');

uait_then_erase (8);

Note that the examination is made of the end of the arm proper resulting from the

specified manipulator end frame position and orientation at this level to prevent

solution attempts for unattainable arm end positions. The documented listing for the

procedures associated with the position and orientation control portion of the overall

program may be found in Appendix E.

Armatron Manipulator Control
Theta

0.000 N o A p
o.ooo : 1.000 0.000 0 .0 0 0 200.000
o.ooo : 0 .0 0 0 -1.000 0.000 0.000
o.ooo : 0 .0 0 0 0 .0 0 0 -1.000 -100.000o.ooo : 0 0 0 1

Position-Orientation Control
The movement of each of the five joints of the

Armatron is controlled by specifying a desired
position-orientation matrix consisting of
vectors n, o, a, and p.

The steps in the solution process are as
follows:

1) determine the end of the arm proper from
the desired gripper center and approach of
the wrist

2) four possible triples are then evaluated
to bring the arm proper to this postion

3) solutions are then obtained for the wrist
variables, if any exist

Figure 5.21. Position and Orientation Introductory Display

181

VI. VELOCITY CONTROL

The relationship between the joint control variables and the orientation and

position of the coordinate frame of the arm end has been examined extensively in the

two previous chapters. Specifically, Chapter 4 obtained the orientation and position

of the end coordinate frame given the joint control variables, while Chapter 5 derived

the more difficult reverse relationships of joint variables from a desired orientation and

position of the manipulator end frame. This chapter builds upon these relationships

by deriving the correspondences between the rates of change in the joint variables and

the end coordinate frame. This will be done in both directions: the rate of change in

the manipulator end coordinate frame's position and orientation will be developed

from the rates of change in the arm control variables, and the control variable rates

will likewise be derived from the rates of change in arm end orientation. In particular,

the latter will allow for the determination of control variable speeds to achieve desired

rates in the arm end coordinate frame.

It should be noted here that with the existing arm construction (in particular, the

motors used), it will not be possible to implement directly the results obtained in this

chapter. Changes in the arm design which would make this possible will be proposed

in Chapter S. It is also worth noting that the computations involved are of sufficient

complexity to preclude real-time generation at any rate; thus the work done in this

chapter would be accomplished off-line, independent of and prior to actual robot

control. As was done for the previous chapters, the program will be developed in

stages following the derivation of equations and numerical example of each section.

182

A. TRANSLATIONAL AND ROTATIONAL RATES OF THE END FRAME

This section provides a derivation for the rates of the manipulator end coordinate

frame in terms of the joint rates. This method shall result in rates which are with

respect to the base coordinate directions. It is important to distinguish here between

base coordinate directions and the base coordinate frame itself. As will be seen later,

a rotational rate around a base coordinate frame axis has both rotational and

translational effects with respect to the manipulator end. The derivation of this section

will yield the rates of the manipulator end with respect to a coordinate system centered

at the manipulator end but identical in orientation to the base frame.

1. Derivation of Equations. Consider the effect the rate at which one joint

transforms has on the coordinate frame at the end of the manipulator. In Chapter 4,

a link was defined for the physical transformations from each joint coordinate frame

to the next. When joint / rotates, link i rotates coordinate frame / about joint /'s

coordinate frame i — I. Coordinate frames /+ 1, i + 2, ...6, are also rotated about

frame / —l. These frames remain fixed with respect to frame i. The effect of the

rotation of joint / may be broken down into translational and rotational components.

a. Translational Velocities. Consider Figure 6.1 and the three coordinate frames

which are related to each other by vectors. For the equations that follow, each of the

vectors shall be specified with respect to frame /— 1. The distance and direction of

vector '~xdi relates frame / — 1 to frame i. The remaining distance and direction from

frame / to frame n is represented by vector ‘~'d,. Finally, vector ‘~'d is that relating

frame /—I to frame n directly. Note that vector ‘~'d is the vector sum of vectors /_1d ,

and !~'dr.

+ (6.1)

183

Figure 6.1. Single Joint Under Transformation

The linear velocities at frame n are obtained from this equation. The process begins

by differentiating Equation (6.1) with respect to time.

d_
di

d_
dt (6 .2)

The left hand side of this equation is the desired rate of change, that of the manipulator

end. The first term on the right hand side is obtained by recalling that the displacement

of a given link i is specified by a rotation 0, about axis z,_,, translation of a distance d,

along axis z,-_,, translation along axis x._, of distance ah and a rotation of a, about x,_,

from the direction of z,_, to that of z,. The combined displacement of these

transformations, and hence vector x„ may be obtained from the components of the

fourth column of the A, matrix in Equation (4.55); the required derivative follows.

cos 0,- — sin 6 ; cos a,- sin 8 j sin a(- <3; cos 0,-

sin 6 j cos 0,- cos a; — cos 0,- sin a(- a,- sin 0(-

0 sin o.j cos cq 4

0 0 0 1

184

«,■ cos 6

‘]d ,= at sin 6 , (6.4)

(6.5)

Note that the rate of change of d, is that of the distance between coordinate frames

i — 1 and /, while the rate of change of ‘-'di is that of the vector components with

respect to coordinate frame / — 1. The second term on the right hand side of Equation

(6.2) is obtained by first relating vector dr with respect to two different coordinate

frames, / and / — l. This is done by referring again to the link transformation matrix

in Equation (6.3) and employing here the upper left 3x3 rotational portion of the

matrix; this is denoted R,.

cos 8 1 — sin 6 j c-os a; sin sin oq

l~]Ri= sin cos 6 j cos a; — cos sin a,. (6.6)

0 sin a,- cos a.i

(6.7)

Differentiating the product of Equation (6.7),

(6.S)

185

As all of the other manipulator joints are being held constant, the rate of change of

‘d, is zero and the second term in Equation (6.8) becomes zero. The first term is

expanded by differentiating matrix]R Note that in doing so, only 0, has a rate of

change as a, is assumed constant for the link; this is the case for each joint of the

Armatron manipulator.

d_
dt (6.9)

d_
di

d
dt

cos — sin 6 1 cos a,- sin 0;- sin a,-

sin 6 j cos 6 1 cos a,- — cos 0, sin a, ‘d .

0 cos ai

(6. 10)

d /-i
dt

- sin dj — cos dj cos cq cos 0,- sin a(-

d r — cos 9j — sin dt cos a;- sin 0 t sin a(-

0 0 0
dt O jd r (6 . 11)

This expression may be simplified by post-multiplying the '~'R, matrix derivative by

/= ('■-'/?,■)"1(,'_1/?,•). The inverse of '-1/?, is simply its transpose because the columns of

‘- lRi are independent of one another, as discussed in Chapter 4.

d_
dt (6 . 12)

Rearranging,

d_
dt

— s d i — cdjCO.1 cd jS & i c6 j s d j 0 "

cQ t — sQ jC ai sQ isa .i —sOjCcr.; cQ ic a . i sai

0_ 0 0 s9jSa.j —c9jSa.j cai_

186

- s Q fiQ i + c d j S d ^ o i j + c O j.s O ^ t t i — s 20 j — c 2 0 , c 2 a / — c 20 i s 2a i

c20; + i 20,-c2a(- + s 20 js 2a j c d jS d j — cQisdic1ai — cOjsd^oij

0 0

— c 8 [C v .j S a .1 + c Q jC O LjS O Li

— s O j C a .j S a j + sO jC a ^scC j

0

(6.14)

r i d l - i o ,

d /-lT
~ r d r di

—sOjCOji 1 — c2ctj — ■52oti-) —s1Qi — c2flf(c2a,- + s2a(-) 0

c 2 0 i + s " 0 j (c 2a.i + s 2 o.t) c d j s d ^ l — c 2 Uj — s 2a j) 0 t ' l ^ id r~ O l (6.15)

0 - 1 0
d_
di

0 0 0

The product (l_1/?,)Wr is just ‘~'d„ as stated in Equation (6.7).

0 - 1 0
d_
dt

0

0 0

0 0

d_
dt

i - ir

--
-1 o J__ o __
_1 l— i 1---

I___

1 0 0 d ry

0 0 0

—
i

-T"

i

i-l r

(6.16)

(6.17)

(6.18)

(6.19)

0

1 8 7

This equation and Equation (6.5) are substituted back into Equation (6.2) to obtain the

desired rate of change.

=jL ‘-'d +A-l~'dr (6.20)
dt dt 1 dl

—a-, sin 6 :-—- 8 .-
‘ 1 dl 1

i -1

11
1J37^|-5 ai cos e, — 8 , + dr. ~ T edt

d .
l F d‘

0

Examination of the A, matrix in Equation (6.3) shows that the product a, cos 6 , is the

jr-component with respect to frame /—l of the translation vector of link /, while

a, sin 6 , is its j>-componcnt. This translation vector is labeled d, in Figure (6.1).

d_
dt

‘- ' - 4 ~ 0t-y dt ‘

‘-'di ~ e,* dt ‘

i-1

+

d_
dt l~]d

-
d A
dl d‘

0

'o '
i'-l 1-----1.V1

1___

0 1 7 di + dt + dr‘X X
1 0

d 8
~7F9i

(6 . 2 2)

(6.23)

From Equation (6.1), the sum of vectors d< and dr was stated to be vector d. The

component sums in Equation (6.23) are replaced using this relationship.

' o "
/ - i

d
dt]d = 0 i J ‘ + dx

1 0

d fl
~d?e ‘

(6 . 2 4)

1 8 8

The components of vector ‘~'d may be obtained from the fourth column of the matrix

product A,At+\...As, as this column represents the translation due to the involved

transformations. The product of A matrices was seen in Chapter 4 to have as its

columns the vectors n, o, a , and p. For the product A,A^,...ASl the fourth column

components are thus elements of vector '~'ps-

'o ' /-I
~~Py~

T II 0 ~dFdi + Px

1 0 _

(6.25)

The rate of change of d in this equation is with respect to coordinate frame / — l. The

equation is generalized by obtaining the rate of change with respect to the base

coordinate frame. This is accomplished by premultiplying both sides by the matrix

product R}R2. ..Ri-i, where each Rj again represents only the rotation due to link j. The

columns of the R matrix product are the vectors °n,_,, 0e>,_1, and °5,_,.

"o' /-1
'~Py

0 l h d i+ Px
d n

-77 9 ‘
1 0_ 5

or
nx

dt
nz o2 a2

0

0

~Py

Px (6.27)

r n 0 0 r ~\
nx ° x

d
~dtd‘ + - ny

+7

°y

_°2 . i- 1 _n2_ i—i _ o 2 _

(6 . 2 8)

1 8 9

For a prismatic (sliding) joint, — Q, is zero and the second term in the above equation
dl

drops out. For a revolute joint, " d, is zero and the first term drops out. This second

case applies to each of the Armatron manipulator joints as they are all revolute; the

prismatic case thus need not be considered further. Note that in the following equation

for the translation rate due to one manipulator joint, the rate is more properly labeled

to reflect its dependence on joint /.

r 0r
nx °x

"y ‘~'Pys + °y

>h

(6.29)

b. Rotational Velocities. The rotational velocities about the x-, j ’-, and z-axes

which lie in the directions of the base coordinate frame axes arc obtained by referring

again to the transformations of link i. The rotations involved in link / arc the a,

rotation about the axis and the 6 , rotation about the z,_r axis. The a rotations are

of constant value and thus have no effect on rotational rates. The 6 rotations are those

of the manipulator's revolute joints. In the case of a prismatic joint (again, of which

the Armatron manipulator has none), there is not variable rotation and hence the

rotational rate is zero. In the case of the i'h revolute joint, the variable rotation is about

the z,-_j-axis. Let the vector <5, represent the entire rotation due to joint i. Then the

components of <5, may be denoted with respect to coordinate frame /— l as follows

prior to differentiation to achieve the desired rate.

0

0

e,
(6 . 3 0)

190

0

d 1— 1 r
i t

0 (6.31)

As was done for d in the linear velocity case, the rotational rate is obtained with

respect to the directions of the base coordinate frame axes by prcmultiplication ofboth

sides of the equation by RiR2...R,_i. The directions of a vector with respect to frame

/ arc thus obtained in terms of the base frame's directions.

R^R^.Ri- 1
d i-17
di 6 R,R2...R;_, 0

d n
77 6 ‘

(6.32)

nx Ox a x ‘ o '

ny Oy ay 0

n2 0 2 a z . i- 1
1

(6.33)

d_
dt ay 7 7 61

-Jl-1

(6.34)

c. The Manipulator Jacobian. Equations (6.29) and (6.34) are combined to form

the relationship for the linear and rotational velocities of the manipulator end frame

with respect to the base frame directions due to joint i.

191

d
dt

r 0r n
nx

ny
i- 1 ,

Py,+ °y

*2 _ / - l

1

oN
__

1

(-1
P*

/-i

i-i

(6.35)

The components of vector °d, in Equation (6.29) arc referred to here gcncrically as

components of displacement vector d. It should be noted at this point that the vector

approach used here has derived the rotational velocity about the base coordinate

frame; as such, the rotational velocity contributes to the translational velocity. This

contribution is included in the translational velocity as the velocity was derived with

respect to the base coordinate frame. Thus the rotational velocity may be thought of

as reflecting the rotational rates about a coordinate frame identical in orientation to

that of the base, but centered at the coordinate frame of the manipulator end.

The combined effects of the rate of each joint on the rates of the manipulator end

frame are realized by summing the effects of the individual joints.

__
_1 o 1

ny
1 - 1 ,

Pys +

_«z. i - i

---------1
N

o

J

;—i

Or

Ji-i

(6.35)

192

If the rotational rate 0, in Equation (6.36) is taken to be 1, then the translational

and rotational rates of the left hand side become simply the elements of the right hand

side column vector, reflecting the rates due to a joint rate of unity. The vector elements

of the left hand side of the following equation are labeled with the subscript 1 to

indicate this relationship.

dy]

d: \

*5jci

v ,
L J /

r ~\ 0 rL

nx

ny
(- 1 ,

Py, +
1--

--

S; Ki 1__
__

i- 1

/-i
P*

i-1

(6 .3 7)

Utilizing this nomenclature, Equation (6.36) may now be written in matrix form as

0 - -
dx l dx i, dx \2 dx\2 dx\t dx i,

dy\ dyh dy\2 dyh dy* dy 15

d d2\ d2\, dz\2 dz\2 d2\t d*h
dt

0 x\ Sxx, t>x\2 «5xU

0y\ 0y\2 0y]5

* * **> 0 Z}5
_

d_
di

d 2

e3

o.

Os

(6.38)

The 6x5 matrix of Equation (6.38)'s right hand side is termed the Jacobian matrix for

the Armatron manipulator; it should also be remembered that this particular Jacobian

resulted from a vector approach to the translational velocity. Another approach

[Paul81c] employing matrix manipulations results in a completely different matrix and

corresponding interpretation.

193

The Jacobian matrix is obtained one column at a time by employing Equation

(6.37). Each element of the form °e,_, is obtained from a corresponding matrix product

A]A2...Ai-,. Recall that all of the matrix products of this form were generated in

Chapter 4. Each element ‘-'e5 is obtained from a matching matrix product A,A,+l...As.

Note that the complete matrix product need not be carried out as the formula to be

invoked here employs only elements from the product's fourth column, p, and py.

The required pt and py expressions are obtained here for subsequent substitutions

in Equation (6.37). For ip,i and 4pys, As is used from Equation (4.67).

c 5 ~ 55 0 0

5S c 5 0 0

0 0 1 d ,

0 0 0 1

P*S = 0

(6.39)

(6.40)

(6.41)

Equation (4.65) provides Aa for multiplication with As, in turn yielding 3p,s and 3prs.

As noted, the first three columns are not needed and thus not generated.

c4 0 s4 o~ c5 —s 5

1-----
oo

s4 0 - c 4 0 s 5 c 5 0 0

0 1 0 0 0 0 1 d .5

0 0 0 1 0 0 0 1

(6.42)

194

A4A$ —

- d5sA

— —dsc4

0

1

(6.43)

A?II
J

(6.44)

<7■xT1ll (6.45)

Matrix A3 from Equation (4.63) is used to obtain 2p.s and 1pyi.

0 s 3
"

a 3 c 3 — — —

1

*3 0 ~ c 3 a 3s 3 — — — - r / 5c4

0 1 0 0 - — — 0

0 0 0 1 — — — 1

(6.46)

Aj A4A3 —

d5c3s4 4- a3c3

d5s3sa + a3s3

—d5c4

1

(6.47)

2pxi = (dssA + a3)c3 (6.48)

2Pvs = (<^4 + «3)s3 (6.49)

Next, Ai is used from Equation (4.61) in producing 'pxs and 1pyi

195

C2 0 - 5 2 a2c2 - - - t o + a3)c3

s2 0 c2 a2s2 — — — (d5s4 4- a3)s3

0 - 1 0 0 - - - - d 5c4

0 0 0 I - - - 1

(6.50)

- - (d5s4 + a3)c2c3 + d5s2c4 + a2c2

- — {d5s4 + a3)s2c3 — d5c2c4 + a2s2

- - - t o + t o

- - 1

(6.51)

Pxs = ((t o + t o + t o + d5s2c4 (6.52)

]Pys — ((d5s4 + a3)c3 + a2)s2 — d5c2c4 (6.53)

Finally, °psS and °pys are obtained from the use of A1 in Equation (4.59).

Cl 0 5, 0 --------- (t o + t o + a2)c2 + d5s2c4

si 0 —c, 0 --------- (t o + < to + a2)52 - d5c2c4

0 1 0 0 --------- - (t o + 03)53

0 0 0 1 _--------- 1

(6.54)

4]A2A3A4A3 —

(((to + a3)c3 + a2)c2 + d5s2c4)c, - {d5s4 + <33)5,53

(((to + <23)c3 + a2)c2 + <tf552c4)5, + {d5s4 + <33)c,53

((t o + a3)c3 + a2)s2 - d5c2c4
(6.55)

1

°P xs = (((to + a i) c 2 + a 2)c2 + t o t o l ~ (t o + «3>153 (6 . 5 6)

196

Pys = (((^5*4 + ai) C3 + a l) c2 + ^552C4)51 + (d SSA + a3)C}S3 (6.57)

Equation (6.37) is now employed along with the various matrix product results from

Chapter 4 to obtain the columns of the Jacobian matrix. The rates for joint 1 require

matrix product °A0, which is simply the identity matrix.

r 1
dx l

dy\

d 2\

5y]

&2l
i

°r

r -I 0 rL
nx °x

0
ny Pys +

nz _ ° 2 _0

P*

‘ J o

4ci

dy\

dz\

&x\

&y]

-M

V ' o '

0 o .
Pys + 1

0 0

0

0

1

(6.58)

(6.59)

1 9 7

Or
dx\ - {{{{dss4 + a3)c3 + a2)c2 + d5s2c4)ŝ + (d5s4 + a3)cts3)

dy) (((d5s4 + a3)c3 + a2)c2 + d5s2c4)c] - {d5s4 + 03)5,53

dz i 0

0

&y\ 0

1
1

(6.60)

The rates for joint 2 utilize matrix product °Ah or just A h from Equation (4.59) and

lp,s and 'pys from Equations (6.52) and (6.53), respectively.

Or
dxl

dy\

d z\

^ x\

dy]

r n 0r
nx Ox

ny
1
Pys + °y

nz \

PX s

Or
(6.61)

O r i

d>ci V

1-------
O1-------

dy] — ■h
i
Py5 + 0

d2] _ 0 _ 1

^x] S\~

5y) ~ C\

_ 0 _

- 2

Pxs

(6 . 6 2)

1 98

Or -i
d x\ - (((dih + a3)c3 + a2)s2 - dsc2cA)c]

dA - (((^4 + «3)c3 + a 2)s 2 - d 5C2 CA)S\

d z\ i(dss4 + a3)c3 + a2)c2 + d5s2cA

&x\ s \

~ c \

<5,. 0
- 2

Matrix product °/l2 = A,A2 from Equation (4.70) and 1p,s and 2pys from Equations (6.48)

and (6.49), respectively, arc employed to obtain the rates for joint 3.

r n 0 r
nx Ox

ny 2
Pys + °y

'h
2

°2

Or -i (6.64)

c \c2

h c2 (d5sA + a3)s3 +

si"

-C|

_ 52 . 0_

(d$sA + c3)c3

~ c \ s2

~ s \ h

c 2

(6 . 6 5)

199

Or
dx i - {d̂ s4 + a3)(c,c2.s3 + i,c3)

dy\ - (</5j4 + a3)(,̂c2-s3 - ciEi)

d21 — (<̂5X4 + a3)s2s3

ĴCl ~ c \s2

~~s \s2

<5,,
3

c2

(6.66)

Next, the rates for joint 4 require matrix product °A} = A,A2A} from Equation (4.72)

and zpxs and 3pys from Equations (6.44) and (6.45), respectively.

Jy\

J2\

0r 1 0r “i
x̂l nx °JC

dy] — ny
3
Py> +

d2] _n2_ 3 °2_

b x\ °r 1
°X

(6.67)

dx \

dy 1

4ri

x̂l

by 1

C]C2C3 — s,a3 -c ,x 2

S1C2C3 + c153 (~dscA) + -5,52

2̂C3 C2

c] c 253 "6 -̂ 1 c3

c253 ~ c l c 3

*2*3

(6 . 6 8)

200

d x \ d s { (C\c 2C3 ~ s l s3,)c4 c15254)

dy l 5̂((-hc2C3 + <V?3)c4 * W 4)

d 21 d $(s 2C3 C4 4“ C2 i4)

C,C253 + S]C3

by] S\C2S3 ~ clc3

6 21 s 2s 3
- 4

(6.69)

Lastly, the matrix product °A4 = A]A2AiA4 from liquation (4.74) and *p,5 and front

Equations (6.40) and (6.41), respectively, are employed to obtain the rates for joint 5.

d x \

dy\

d*

b

b

b

xl

>1

2 \

J 5

r *1 0r “i
nx Ox

4
ny Py5 + °y

n2_ 4 _°Z_

Px,

(6.70)

—

^JCl

d 2]

b x\

b y]

b ;]

5

(CjC 2 C3 i , S 3) c 4 — C)52 54 c l c 2-s3 + 5 1c 3

(S ,C 2 C3 + C ,S 3)C4 - .? ,5 2 i 4 (0) + ^2^ 3 C3

52 c3c 4 + c 2^4 s 253

(c,c2c3 - S,S3)s4 + c,s2c4

0 h c2c 3 + C,S3)54 + S ,S 2C4

̂ 2 ̂ 3^4 ^2^4

(6.71)

201

d x\ 0

dy\ 0

d 2\ 0

(C1C2C3 — ■h-s3)-s4 + c ! 52c4

<5>-. O 1C T 3 + c ts3)s 4 + S ,S 2 C4

5
S2C3 SJ ~ C2C4

The column formulas in Equations (6.60), (6.63), (6.66), (6.69), and (6.72) are then

combined to form the manipulator Jacobian for the vector approach.

2. Numerical Example. The joint control variable values to be used here as those

for the examples of the preceding chapters.

"
*1 -115°

$2 25”

03 = 50*

*4 65”

e , — 35

(6.73)

Column 1 of the Jacobian is obtained from Equation (6.60).

202

dx\

dy i

<5„

*y>

<5„

(— ((((100 sin 65 + 100) cos 50 + 100) cos 25

+ 100 sin 25 cos 65) sin(- 1 15)

+ (100 sin 65 + 100) cos(— 115) sin((((100 sin 65 + 100) cos 50 + 100) cos 25

+ 100 sin 25 cos 65) cos(—115)

— (100 sin 65 + 100) sin(—115) sin0

0

0

I

(6.74)

Or -i
dx\ 260.692'

dy] 39.566

d2\ 0

&x\ 0

5y] 0

<5,1
1

1

Column 2 of the Jacobian is obtained from Equation (6.60).

(6.75)

203

4c,
dy\

J x l

Jyj

'z 1

— (((100 sin 65 + 100) cos 50 + 100) sin 25

- 100 cos 25 cos 65) cos(- 115)

— (((100 sin 65 + 100) cos 50 + 100) sin 25

— 100 cos 25 cos 65) sin(— 115)

'((100 sin 65 + 100) cos 50 + 100) cos 25

+ 100 sin 25 cos 65

sin(—115)

— cos(— 115)

0

(6.76)

Or n
4c, 23.559

dy\ 50.522

dz\ 219.546

4c, -0.906

4' 0.423

4,
2

0

(6.77)

Equation (6.66) provides the formula for column 3 of the Jacobian.

204

dx\

d y\

d 2\

ĴCl

- (100 sin 65 + 100)(cos(- 1 1 5) cos 25 sin 50

+ sin(—115) cos 50)

— (1(K) sin 65 + 100)(sin{ — 115) cos 25 sin 50

— cos(—115) cos 50)

— (100 sin 65 +100) sin 25 sin 50

— cos(— 115) sin 25

— sin(— 115) sin 25

cos 25

(6.7S)

Or i
d x\ 166.9SS

dy\ 68.164

d 2\ -61.716

^X) 0.179

^ y\ 0.383

<5,,
3

0.906

(6.79)

Next, column 4 of the Jacobian is obtained from Equation (6.69).

205

dx\

dy\

dzl

x̂l

100((cos(—115) cos 25 cos 50 — sin(— 115) sin 50) cos 65

— cos(- 1 15) sin 25 sin 65)

/100((sin(—115) cos 25 cos 50 + cos(— 115) sin 50) cos 65

l — sin(—115) sin 25 sin 65)

100(sin25 cos 50 cos 65 + cos 25 sin 65)

cos(— 115) cos 25 sin 50 + sin(— 115) cos 50

sin(— 115) cos 25 sin 50 — cos(— 115) cos 50

sin 25 sin 50

or- “ r
d x) 35.123

d y\ -1.282

d« 93.620

& xl -0.876

-0.358

0.324
- 4

Lastly, Equation (6.72) provides the formula for column 5 of the Jacobian.

5x1

uy i

*z\

'xl

J y\

J z 1

0

0

0

(cos(—115) cos 25 cos 50 — sin(—115) sin 50) sin 65

+ cos(— 115) sin 25 cos 65

(sin(—115) cos 25 cos 50 + cos(—115) sin 50) sin 65
• • •

+ sin(—115) sin 25 cos 65
© • o © e

sin 25 cos 50 sin 65 — cos 25 cos 65

(6.80)

(6.S1)

(6.S2)

206

Or
dx\ 0

dy\ 0

d21 0

&x\ 0.331

-0.934

-0.137
- 5

(6.83)

The Jacobian matrix using the vector approach for the manipulator at the given

positions of the joint variables is then

Jacobian =

260.692 23.559 166.98S 35.123 0

39.566 50.522 68.164 -1.2S2 0

0 219.546 -61.716 93.620 0

0 -0.906 0.179 -0.876 0.331

0 0.423 0.383 -0.358 -0.934

1 0 0.906 0.324 -0.137

(6.S4)

The numerical example continues by employing the Jacobian as in Equation

(6.3S) to determine the translational and rotational rates corresponding to a particular

set of joint variable rates.

207

Or 1

d_
dt

dx\

dy\

d21

0.x i

0yi

&z\

[Jacobian] —

0 .

0 2

04

05

(6.85)

The joint rates used here arc selected arbitrarily.

Or -i
dx\ 260.692 23.559 166.988 35.123 0 0.1

dy\ 39.566 50.522 6S. 164 -1.282 0 -0.15
d2] 0 219.546 —61.716 93.620 0 1.0

0 -0.906 0.179 -0.876 0.331 0.2

<5,. 0 0.423 0.383 -0.358 -0.934 -0.1

<5,, 1 0 0.906 0.324 -0.137

Or
dx i 196.548

dy] 64.286

d?\ -75.924

ĴCl 0.107

3y] 0.341

1.085

(6.87)

3. Program Control. The program procedure for the determination of

translational and rotational rates begins by evaluating the sine and cosine of the

2 0 8

current joint control variables; the procedures then processes sets of delta theta rates.

The iteration sequence begins by redrawing the display and refreshing the Jacobian,

and then continues by prompting the user for a new set of joint rates. With these in

hand, the corresponding translational and rotational rates arc calculated and displayed.

The iteration concludes by querying the user as to whether to continue in this mode.

The body of the loop, given in procedure f o r _ s o l _ v i a _ j ac , follows.

sin_cos (theta, s, c);
do

{
dsply_jacobian (&rou, cols);
calc_jacobian (s, c, jacobian, rou, cols);
get_delta_theta (dtheta, rou, cols[6]);
calc_list_rates (drate, dtheta, jacobian, rou, cols[5]);
query ch = cont ("new Jacobian and/or theta rates");
}uhile (query_ch == ' Y');

The logic of each of the procedures involved follows the derivation of equations in a

straightforward manner and warrants no further explanation here.

4. Program Example. The program output for the set of joint values and joint

rates specified in the numerical example of this section may be seen in Figure 6.2. The

Jacobian will be seen to match precisely that calculated in Equation (6.86), while the

translational and rotational rates pictured differ from those in Equation (6.87) by an

amount small enough to attribute to precision.

Theta
Armatron Manipulator Control

-1 15.000 N 0 A P
25.000 : 0.790 -0.516 0.331 39.566!
5 o . o o o : 0.195 -0.300 -0.934 -260.692!
65.000 : 0.581 0.802 -0.137 55.745!

-35.000 : 0 0 0 1 :
Velocity Control

Forward Solutions via the Jacobian
Delta Rates J acobian

196.548! 260.692 23.559 166.988 35.123 o.ooo: 0.1001
64.286! 39.566 50.522 68.164 -1.282 o .ooo: -o.1 5 0 :

-75.923!= 0.000 219.546 -61.716 93.620 o.ooo:x 1 .ooo:
0.1061 0.000 -0.906 0.179 -0.876 0.331 : 0 .2 0 0 :
0.341: 0.000 0.423 0.383 -0.358 -0.934: -0 .1 0 0 :
1.085: 1.000 0.000 0.906 0.324 -0.137!

Figure 6.2. Forward Solutions via Jacobian Display

K>OvC

2 1 0

B. JOINT RATES VIA THE INVERSE JACOBIAN

The previous section obtained translational and rotational rates for the manipulator

end coordinate frame in terms of the rotation rates of the Armatron joints. While this

relationship is useful, its inverse is more so. Tor practical applications, the required

rates of the manipulator end, particularly the translational, are generally known, and

the joint rates must be determined. This section will derive relationships in this

direction by inverting and solving numerically the differential equation from the first

section of this chapter which provided end frame rates in terms of joint rates. In the

next section, the equations derived in Chapter 5 will be differentiated to provide the

joint rates directly.

The rate equation

- “ “

dx dx\2 d x h d x] a dx\s

dy dyh dyh d y h dy \ dyh

d2 dz\2 d 2\t dz\s

<5, <5*1! &x\2 ^ 1, ^x]s

<5>- <5>'h 5yh ^ y \

----------1
N

1

<5,i 5

d_
dt

8y

d2

8 3

8,

85

(6 . 88)

is to be solved by numerical means. Unfortunately, while there are six translational

and rotational rates to be specified, the Armatron manipulator consists of five, not six,

degrees of freedom. Thus the Armatron Jacobian is a 6x5 matrix and has no inverse.

There are however techniques which can be used to obtain solutions in such cases.

The number of the rates of the left hand side of Equation (6.SS) that need to be

specified determines which of two methods to use. Each method determines a

pseudo-inverse of the Jacobian matrix which allows Equation (6.88) to be solved.

211

1. The Over-Determined Case. First, assume it is desired to determine the joint

rates needed to result in all six of the translational and rotational rates; this is termed

the over-determined case, in that there are more equations to be satisfied than there

are unknown variables.

a. Derivation of Equations. Equation (6.8S) is restated in an abbreviated fashion

to facilitate its manipulation.

For any set of joint rates q' chosen as a solution for this equation, the error associated

with it is defined as

where e is a 6x1 vector; each of the components of e would be zero for a perfect

solution. A more workable form for the error associated with a solution is obtained

by summing the squares of each element of e. This measure of error is termed e2 and

may be viewed as either the dot product of e with itself or e's transpose multiplied by

e itself.

d = Jq (6.89)

e = Jq' — d (6.90)

2e = e-c (6.91)

(6.92)

Substituting from Equation (6.90)

e2 = {Jq' - d) T{Jq' - d) (6.93)

e2 = (J q ' f i J q ') - (J q ' f d - d TJ q ' - d Td (6.94)

212

e2 = q ' TJ TJ q ' - q'TJ Td ~ d TJq' - d Td (6.95)

Since each of the matrix products in Equation (6.95) results in a lxl matrix, which is

a simple scalar value, any term of the equation may be transposed without affecting

the result. The third term in the right hand side is thus transposed so that terms may

be combined.

, r , T , , i T , T , , , T , n T , T ,
= q J Jq — q J d — (d Jq) — d d (6.96)

' = q ,T . 1 TJ q ' - q ' TJ Td — q ' TJ Td — d Td (6.97)

e2 = q'TJ TJq' - l q ,TJ Td - d Td (6.98)

The function defining e1 in Equation (6.98) will take on a minimum value when its

derivative is zero. Since e2 is a function of all five of the joint rates in q', Equation

(6.98) must be differentiated with respect to each of the variables separately. This will

result in a set of five equations in five unknowns, which may then be solved. To see

the form the solution for this situation takes, an example shall be demonstrated for a

small case. Assume that J is a 3x2 matrix, q is a 2 clement vector, and d is a 3 element

vector. Equation (6.98) then becomes

e = C<7i ■Ai -Ai -Ai

A 2 A22 -A2

A i to

A i A2

A i A 2

<7i

L ^ J

"a ' "a "
A i A i A i

[A A A]2C<?i
A 2 A2 A 2_

d2 A

A A

(6.99)

213

e = C<7i <?2^
A\ + A\ + A\

■A2A 1 T *A>9-Al T A,/
J\\J\2 T * ^ 9 1 *^ 9 9 “I" J l \ J '2\J 22 ' 3 \ J 32

32-'31

A
/ 2 1 /2 4 . 7 2U] 2 - r a 22 i - J 32 .to.

A (6 . 1 0 0)

A 1 <71 + A 2 t o] A — A ,2 + y 2 + r/3)

A

<?2 = [?, <72]
2 2 ^

(./u + J 2\ + -/Ji)?! + OA1 A 2 + h \ h i + hxhiM i
2 2 2

+ -122-h\ + A 2A 1) <7l + (*^12 + A 2 + (6. 101)

~ 2((-Al<7l + J\2cl2)ci\ + (Al<7l + J 22ch) d2 + (-Al<?l + ~ (A + A + A)

A = (An + j\\ + j]])^ + (A2A1 + Â A] + 2̂ lh\)chc!\

+ (A A l2 + A lA 2 + ^31'J,32)(?1<?2 + A p + A i + -̂32)^2) (6- 102)

— 2(J11*A<71 + dndxq2 + AlA<7] + 2̂2̂ 2̂ 2 + AlA<7l + A2A to) — (A* + 2̂ + A)

e1 = (y,2, + y21 + y j,)?2 + 2(j v j]7 + y2]y22 + A iA 2)?ito + A p + A22 + A22)y2
— 2(y,,y1 + y2Iy2 + y31 A A 1 — 2(y12y, + y22A + y32A)to ~ A 2 + A? + d\)

(6.103)

The error is then difTerentiated with respect to the variables <7, and <72, and the

derivatives are set equal to zero.

<?2 - 2(y2) + y2I + -̂3i)<7i + 2(yn y12 + y21y22 + y3]A2)to

- 2(yu y, + y2Iy2 + y3, A)
(6.104)

t t-g2 = 2 (y „y12 + a a 22 + AA32A1 + 2 a 22 + y22 + y32)?2ĉ 2 (6.105)
- 2(Jnd\ + J 22d2 + A 2A)

2(y2, + y21 + y3,)<?i + 2(y,,y12 + y2)y22 + AiA2)to

- 2(a ,a + J2\d2 + a ,a) - 0
(6.106)

214

2 {Ju J n + J 2 j J 27 + d3]J 32)q] + 2 (. / ? 2 + 2̂2 + -^32)̂ 2

— 2(./12i/, + J 22d2 + 3̂2 3̂) = ^
(6.107)

Equations (6.106) and (6.107) arc then combined by factoring them in terms of the

matrices of Equation (6.99).

o 2 *>
*̂ 11 + d21 + J 22 J\ \J\2 + d2]J 22 + 3̂1 2

J H . / l2 + J2\-f22 + J3]J22 J 12y?9 + ./|2 + -/232

<7i

.<72.

d\ 1 'h\ d3l

d\2 J 12 ./32

</, (6 .1 O S)

d2 = 0

di

d\ i d \ 2
A l di] di\

“̂21 dll q' — J Td = 0 (6.109)
J n dn dii _

d21 dll

J TJq' = J Td (6.110)

q' = (.] TJ)~XJ Td (6. 111)

Equation (6.111) is termed the least squares solution to a system of equations of the

form of Equation (6.89). Matrix product (J TJ)~'JT is referred to as the pseudo inverse

Jacobian for the over-determined case. See [Stra80] for a geometric derivation of this

same result.

Two points need to be made here concerning this solution. First, for the

implementation of this solution, Ranky and Ho [Rank85] recommend that the inverse

of J TJ not be determined for use in Equation (6.111). Instead, q' is obtained by solving

the set of equations specified by Equation (6.110). This reduces the number of

215

computations required for the solution. The other point that should be made is that

the solution developed above is only an approximate solution. In all likelihood, there

is no perfect solution for the over-determined case. As a robot manipulator is a precise

mechanism, the solution developed here may not be sufficient to meet the stated

requirements. The techniques of the next section may be implemented instead.

b. Numerical Example. The inverse Jacobian method for the ovcr-dctcrmincd

case is demonstrated by obtaining the original joint rates for the translational and

rotational rates produced by the forward application of the Jacobian in the first section

of this chapter and stated in Equation (6.87).

Or -i
dx 196.548

dy 64.286

d2 -75.924

Sx 0.107

0.341

<5, E085

(6. 112)

The Jacobian for the matrix approach was stated in Equation (6.84).

260.692 23.559 166.988 35.123 0

39.566 50.522 68.164 -1.282 0

0 219.546 -61.716 93.620 0

0 -0.906 0.179 -0.876 0.331

0 0.423 0.383 -0.358 -0.934

1 0 0.906 0.324 -0.137

The first step is to obtain matrix product J TJ.

216

260.692 39.566 0 0 0 I

23.559 50.522 219.546 -0.906 0.423 0

166.988 6S.164 -61.716 0.179 0.383 0.906

35.123 -1.282 93.620 —0.S76 -0.358 0.324

0 0 0 0.331 -0.934 -0.137

260.692 23.559 166.988 35.123 0

39.566 50.522 68.164 -1.282 0

0 219.546 -61.716 93.620 0

0 -0.906 0.179 -0.876 0.331

0 0.423 0.383 -0.358 -0.934

1 0 0.906 0.324 -0.137

69526.7S7 8140.596 46230.319 9105.886 -0.137

8140.596 51308.945 -6171.649 21317.232 -0.695

46230.319 -6171.649 36341.187 -0.119 -0.423

9105.886 21317.232 -0.119 10000.974 0

-0.137 -0.695 -0.423 0 1.001

The second step is to determine the matrix product J Td.

J Td —

196.548
260.692 39.566 0 0 0 1

64.286
23.559 50.522 219.546 -0.906 0.423 0

-75.924
166.9SS 68.164 -61.716 0.179 0.383 0.906

0.107
35.123 -1.282 93.620 -0.876 -0.358 0.324

0.341
0 0 0 0.331 -0.934 -0.137

1.085

(6.114)

(6.115)

(6.116)

217

J Td ■

537S3.116

-8790.432

41890.007

—2S6.92S

-0.432

(6.117)

The set of equations specified by Equation (6.110) is then solved by row manipulations

and backward substitution.

J TJq ‘ = J Td (6.1 1 8)

69526.787 8140.596 46230.319 9105.S86 -0.137 53783.116

8140.596 5130S.945 -6171.649 21317.232 -0.695 -8790.432

46230.319 -6171.649 36341.187 -0.119 -0.423 q' = 41S90.007

9105.886 21317.232 -0.119 10000.974 0 —2S6.928

-0.137 -0.695 -0.423 0 1.001 -0.432

69526.787 8140.596 46230.319 9105.886 -0.137 53783.116

0 50355.797 -11584.561 20251.063 -0.679 -15087.668

0 - 1 1584.561 5601.346 -6054.879 -0.332 q' = 6128.098

0 20251.063 -6054.879 8808.381 0.018 -7330.874

0 -0.679 -0.332 0.018 1.001 -0.326

(6.119)

(6. 120)

218

69526.787 8140.596 46230.319 9105.886 -0.137 53783.116

0 50355.797 -11584.561 20251.063 -0.679 -15087.668

0 0 2936.269 -1396.038 -0.488 = 2657.117 (6.121)

0 0 -1396.038 664.223 0.291 -1263.225

0 0 -0.488 0.291 1.001 -0.529

69526.787 8140.596 46230.319 9105.886 -0.137 53783.116

0 50355.797 -11584.561 20251.063 -0.679 -150S7.668

0 0 2936.269 -1396.038 -0.488 q' = 2657.117 (6.122)

0 0 0 0.482 0.059 0.091

0 0 0 0.059 1.001 -0.0S7

69526.787 S 140.596 46230.319 9105.SS6 -0.137 53783.116

0 50355.797 -11584.561 20251.063 -0.679 -15087.668

0 0 2936.269 -1396.038 —0.4S8 <7' = 2657.117 (6.123)

0 0 0 0.4S2 0.059 0.091

0 0 0 0 0.994 -0.098

1 0 0 0 0 0.100

0 1 0 0 0 -0.150

0 0 1 0 0 <?' = 1.000

0 0 0 1 0 0.201

0 0 0 0 1 -0.099

The original set of joint rates from Equation (6.86) was

219

0, 0.1

d2 -0.15

= 1.0

0.2

S5 -0.1

(6.125)

The minor differences seen here are attributable to the lack of precision in the

calculations. Note also that since a solution for the given Jacobian equation did in fact

exist, it was obtained by the solution process. In general, exact results cannot be

obtained for the over-determined case.

c. Program Control. The procedure for obtaining translational and rotational

rates by way of an inverse of the Jacobian matrix is named r e v _ s o l_ v ia _ ± j . The

body of the procedure follows:
sin_cos (theta, s, c); do

{dsply_rsvij_jacobian (&rou, cols);
calc_jacobian (s, c, jacobian, rou, cols);t = get_required_rates (delta_trans_rot, jacobian, used,jacobian_reduced, delta_tr_reduced,

rou, cols);uait_then_erase (9); if C (t > 0) & (t < 6))
{lcputs (10, 10, "Under-Determined Case”);
ic = under_determined_case (t, jacobian_reduced,delta_tr_reduced, delta theta);
}if (t == 6)
{lcputs (10, 10, "Over-Determined Case");
ic = over_determined_case (jacobian, delta_trans_rot,

delta_theta);
)if ((t > 0) & (!ic))
list_input_output (delta_trans_rot, used, delta_theta) ;

qc = cont ("different Jacobian and/or rates");
}uhile (qc == ' Y*);

As shown here, the iteration begins by refreshing the display and the Jacobian and then

proceeds to query the user for the rates to be designated as command variables.

2 2 0

Procedure g e t _ r e q u i r e d _ r a t e s returns the number of rates designated for use;

the procedure can then infer whether the case is over- or under-determined.

For the over-determined case, the program proceeds as described in the derivation

of equations. Procedure o v e r_ d e te rm in e d _ c a s e receives control and executes

the matrix operations required in the order required of the particular inverse Jacobian

involved. The body of the procedure follows,

subhead = " 1 . M = (J Transpose) * J " ;
matrix_by_matrix (6, jacobian, m, subhead);
subhead = "2. V = (J Transpose) X T/R Rates";
matrix_by_vector (jacobian, 6, delta_trans_rot, v, subhead);
subhead = "3. Solve tl * Theta Rates = V";
inconsistent = solve_simul_eqns_myv Cm, v, 5, delta_theta, subhead)
return (inconsistent);

The procedure which solves a set of simultaneous equations returns a value of 0 if the

equations specified were soluble.

d. Program Example. Figures 6.3 through 6.7 show the displays presented by the

program for the solution of the over-determined case. The matrix multiplication

displayed in Figure 6.4 differs only trivially from that calculated in Equation (6.115);

the same is true of the values shown for the matrix multiplication of Figure 6.5 and the

values in Equation (6.117). It is interesting to note that the final joint rates arrived at

in Figure 6.6 arc slightly further off the original set given by Equation (6.86) than arc

those calculated in Equation (6.124) in the numerical example.

Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 0.790 -0.516 0.331 39.566!
5 0 . 0 0 0 : 0.195 -0.300 -0.939 260.692!
65.000 ! 0.581 0.802 -0.137 55.795!

-35.000 : 0 0 0 1 !
Velocity Control

Reverse Solutions via Inverse Jacobian
Delta Rates Jacobian
I 196.568 260.692 23.559 166.988 35.123 0.000! : d T 1 !
! 69.286! 39.566 50.522 68.169 -1.282 0.000! ! d T 2 :
I -75.929! = 0.000 219.596 -61.716 93.620 0.000! X ! d T 3 :
! 0.107! 0.000 -0.906 0.179 -0.876 0.331 ; ! d T9 !
! 0.391! 0.000 0.923 0.383 -0.358 -0.939! : d T 5 :
! 1.085 1.000 0.000 0.906 0.329 -0.137!

Figure 6.3. Inverse Jacobian, Over-Determined Example: Inputs

Armatron Manipulator Control
Theta
-115.000 N O A P

25.000 ; 0.790 -0.516 0.33 1 39.566
5 0 . 0 0 0 ; 0.195 -0.300 -0.934 -260.692
65.000 : 0.581 0.802 -0.137 55.745

-35.000 : 0 0 0 1
Velocity Control

Reverse Solutions via Inverse Jacobian
Over-Determined Case

1. M = (J Transpose) * J
69526.688 8140.536 46230.230 9106.006 -0.137:
8140.536 51308.980 -6171.571 21317.234 -0.694!

46230.230 -6171.571 36341.078 7.749E-04 -0.423!
9106.006 21317.234 7.749E-04 10001.000 1.181E-08!

-0.137 -0.694 -0.423 1 . 181E-08 1 .ooo:

Figure 6.4. Inverse Jacobian, Over-Determined Fxamplc: Step l

toto
to

Armatron Manipulator Control
Theta

-115.000 N 0 A P
25.000 : 0.790 -0.516 0.331 39.566
5 0 . 0 0 0 : 0.195 -0.300 -0.939 -260.692
65.000 : 0.581 0.802 -0.137 55.795

-35.000 0 0 0 1
Velocity Control

Reverse Solutions via Inverse Jacobian
Over-Determined Case

2. V = CJ Transpose) * T/R Rates
53783.079! 260.692 39.566 0.000 0.000 0.000 1.000! 196.598!
-8790.962! 23.559 50.522 219.596 -0.906 0.923 0.000! 69.286!
91889.991! = 166.988 68.169 -61.716 0.179 0.383 0.906!X -75.929!
-286.831! 35.123 -1.282 93.620 -0.876 -0.358 0.329! 0.107!

-0.932! 0.000 0.000 0.000 0.331 -0.939 -0.137! 0.391!
1.085!

Figure 6.5. Inverse Jacobian, Over-Determined Example: Step 2

totoCJ

Armatron Manipulator Control
Theta

- 1 1 5 . 0 0 0 N o A P
2 5 . 0 0 0 : 0 . 7 9 0 - 0 . 5 1 6 0 . 3 3 1 3 9 . 5 6 6
5 o . o o o : 0 . 1 9 5 - 0 . 3 0 0 - 0 . 9 3 4 - 2 6 0 . 6 9 2
6 5 . 0 0 0 : 0 . 5 8 1 0 . 8 0 2 - 0 . 1 3 7 5 5 . 7 4 5

- 3 5 . 0 0 0 : 0 0 0 1

Velocity Control
Reverse Solutions via Inverse Jacobian

Over-Determined Case
3. Solve M * Theta Rates = V

1.000 0.000 0.000 0.000 o.ooo: :y (d : 0.101
1.662E-04 1.000 0.000 0.000 o.ooo: :y (2): -0.149
3.108E-04 3.166E-04 1 . 000 0.000 o.ooo: x :Y(3): = 0.999
1.980E-04 6.019E-04 -2.731E-05 1.000 o .ooo: :y (4): 0.197
4.612E-10 9.598E-09 2.289E-09 1 . 499E-09 1 .ooo: :yc 5): -0.099

Figure 6.6. Inverse Jacobian, Over-Determined Fxamplc: Step 3

224

Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 0.790 -0 .516 0.331 39.566!
50.000 0.195 -0 .300 -0.93*4 -260.692!
65.000 0.581 0 .802 -0.137 55.745!

-35.000 0 0 0 1 !
Velocity Control

Reverse Solutions via Inverse Jacobi an
Over-Determined Case

Input t Delta Translational S Rotational Rates
!dtx! 196.598!
; dty; 64.286 I
! dtz : -75.924!
! drx l 0.107!
!dry : 0.341!
! dr z I 1.085!

Output: Delta Theta Rates
! dT1 I 0.101!
! dT2 I -0.149!
! dT3 I = 0.999 !
: dTh: 0.197!
: dT5: -0.099!

Figure 6.7. Inverse Jacobian, Over-Determined Fxamplc: Results

rotoLAt

226

2. The Under-Determined Case. If it is not required that all six of the

translational and rotational rates be met by a set of joint rates, then the

under-determined case is in effect.

a. Derivation of Equations. With respect to liquation (6.88), only the desired

translational and rotational rates arc stated in the left hand vector, and the Jacobian

is reduced to contain only the rows associated with them. For example,

d
di

1
>*• __
_

J i

4 i2 4 b it __
__

1

4 = 4 h 4>, 4 b 4 b dv) y *5

l--

i__
_

i 4 . , 4 . , 4 b

------,

d
dl

e,

o2

o,

o*

Os

(6.126)

d = J q (6.127)

There are now fewer equations than there are unknowns. Consequently, Equation

(6.127) has an infinite number of solutions. However, there is one solution q ' whose

Euclidean norm, q ' - q ' or q ' T q ' , is a minimum for the equation. This is the set of joint

rates which are the smallest in magnitude producing the desired translational and/or

rotational rates. This solution is found by applying the Lagrangian multiplier

technique to Equation (6.127); sec [Boul71] and [Rao7I] for further detail on this

technique. The function

\ } i { q ') = q ' T q ' + A { J q ' - d) (6.128)

is to be minimized with

h . . . i j (6.129)

227

where n is the number of translational and rotational rates specified. The function of

Equation (6.128) will take on a minimum value when its derivative is zero. Like c2 in

the over-determined case, ip(q') is a function of all five of the joint rates in q‘, and

Equation (6.128) must be differentiated with respect to each of the variables separately.

Five equations in five unknowns result, and these equations may then be solved. As

was noted for the over-determined case, the differentiation process need not be carried

out explicitly. To see how the process works, a small example shall be examined as

was done for the over-determined case. Assume that7 is a 2x3 matrix, q is a 3 clement

vector, and d is a 2 clement vector; X is likewise a 2 clement vector. Equation (6.128)

then becomes

ft

(̂<7') = C < 7i f t f t 3 ft + [2 , 2.2D

. f t .
-

2]i ^\2 -A 3

J 2] J 22 2̂3

ft

<7:
/ f t

ft

'/'('?') = ft + ft + ft + [2.,
/ lft + ^22ft + *̂ 23ft

(6. 130)

<K<?') — ft + f t + f t + 2 ,(7 ,,ft + ^12f t + *̂ 13ft ~ d \)

+ 2.2(72,ft + J 22q2 + 723ft — d2)
(6.132)

Differentiation is then performed with respect to variables ft, q2, and ft.

d
dq] i'W) - 2ft + 2,7,, + 2.272, (6.133)

d
dq2 & W) — 2ft + 2,7,2 + ^2^22 (6.13d)

G
5ft ^W) — 2ft + 2,7]3 + X2J 22 (6.135)

228

The derivatives of Equations (6.133), (6.134), and (6.135) may be combined into a

single matrix equation upon equation with 0.

<?1 •Ai •Al ‘ o'
' V

<72 + •A 2 •A 2
̂ 2

0 (6.136)

.<73. •A 3 ^23 0

2g' + J TXT = 0 (6.137)

' I ,7\r
<7 = ~ — J X (6.138)

This result for <7' is then substituted into Equation (6.127) so that 2

in terms of J and d.

may be solved for

d = J { - \ j T) T) (6.139)

- 2 d = J J T) T (6.140)

Xr = - 2 { J J T)~'d (6.141)

This result is then substituted back into Equation (6.138) to yield q'

d.

in terms of J and

q' = - \ j T{ - 2 { J J TT'd) (6.142)

q‘ = J T(J J T)~]d (6.143)

Matrix product is referred to as the pseudo-inverse of the Jacobian for the

under-determined case.

229

The number of calculations for the determination of q' may be reduced by a

scheme similar to that used in the over-determined case. First, introduce a new matrix,

r.

r = { J J r)~]d (6.144)

J J Tr = d (6.145)

Matrix r is determined by solving the specified system of equations; the inverse (-A/7) -1

need not be found. A substitution is then made into Equation (6.143).

q' = J Tr (6.146)

b. Numerical Examples. The inverse Jacobian method for the under-determined

case is first demonstrated by obtaining the optimal set of joint rates for only

translational rates. The rates produced by the forward application of the Jacobian in

the first section shall be used here as they were in the example of the over-determined

case, as stated in Equation (6.112).

O r

A “ 196.548'

= 64.286

A -75.924

(6.147)

The Jacobian determined in the first section and restated for the over-determined case

in Equation (6.113) is reduced by eliminating the bottom three rows as they deal with

the rotational rates.

260.692 23.559 166.988 35.123 0

39.566 50.522 68.164 -1.282 0 (6.148)

0 219.546 -61.716 93.620 0

230

The first step is to obtain matrix product J J T.

260.692 39.566 0

260.692 23.559 166.988 35.123 0" 23.559 50.522 219.546

39.566 50.522 68.164 -1.282 0 166.9S8 68.164 -61.716

0 219.546 -61.716 93.620 0 35.123 -1.2S2 93.620

0 0 0

,/./r =

97633.963 22842.330 -1845.332

22842.330 8765.915 6765.073

-1845.332 6765.073 60774.015

The second step is to determine matrix r. The set of equations specified by

(6.145) is solved by row manipulations and backward substitution.

J J Tr = d

' 97633.963 22842.330 -1845.332" " 196.548'

22842.330 8765.915 6765.073 r = 64.286

— 1845.332 6765.073 60774.015 -75.924

"97633.963 22842.330 -1845.332 ' 196.54S"

0 3421.750 7196.805 r = IS.302

0 7196.805 60739.137 -72.209

'97633.963 22S42.330 -1845.332" 196.54S"

0 3421.750 7196.805 r — 18.302

0 0 45602.437 -110.703

(6.149)

(6.150)

Equation

(6.151)

(6.152)

(6.153)

(6.154)

2 3 1

"l 0 o ’ ’ —4.800E - 4 '

0 1 0 r = 1.046E - 2

0 0 1 -2.428E - 3

(6.155)

Finally, the resultant r is substituted into Equation (6.146).

q'
,r — J r

260.692 39.566 0

23.559 50.522 219.546 ’ —4.800E - 4

166.988 68.164 -61.716 1.046E —2

35.123 -1.282 93.620 —2.428E —3

0 0 0

(6.156)

(6.157)

0.289

-0.016

<7 = 0.783

-0.258

0

(6.158)

This solution set may be verified by using the Jacobian of Equation (6.113) in the

forward fashion as in Equation (6.127).

d — Jq (6 . 1 5 9)

2 3 2

260.692 23.559 166.988 35.123 0
0.289

39.566 50.522 68.164 -1.282 0
-0.016

0 _ 19.546 -61.716 93.620 0
0.783

0 -0.906 0.179 -0.876 0.331
-0.258

0 0.423 0.383 -0.35S -0.934
0

1 0 0.906 0.324 -0.137 L J

(6.160)

196.653

64.329

d =
-75.990

0.381

0.385

0.915

(6.161)

Comparison with the original set of translational rates in Equation (6.147) shows no

significant differences. However, the original rotational rates, stated in Equation

(6.112), are not matched. The Euclidean norm of the newly obtained q’ is less,

however; it is in fact minimal.

|̂ | = < 0 .1 -0 .15 1 0.2 -0.1 > .< 0 .1 -0 .15 1 0.2 -0.1 > (6.162)

\q\ = 1.083 (6.163)

\q'\ = < 0.2S9 -0.016 0.783 -0.258 0 >

• < 0.2S9 -0.016 0.783 -0.258 0 >
(6.164)

\q'\ =0.763 (6 . 1 6 5)

Thus the desired translational rates are attained at overall slower rotational rates.

233

A second numerical example serves to illustrate the possibilities of the

under-determined case. Instead of requiring the translational rates only, the

^-translational as well as the .v- and z-rotational rates are selected. The rates are again

chosen from the solution obtained by forward application of the Jacobian in liquation

(6.112).

Or -i
V ’ 64.286"

<5, = 0.107

<5, 1.0S5

(6.166)

The Jacobian matrix of Equation (6.113). is then reduced to the second, fourth, and

sixth rows.

39.566 50.522 6S.164 -1.282 0

J = 0 -0.906 0.179 -0.876 0.331

1 0 0.906 0.324 -0.137

(6.167)

The first step obtains matrix product J J T.

39.566 50.522 68.164 -1.282

II 0 -0.906 0.179 -0.876

1 0 0.906 0.324

39.566 0 1

0 50.522 -0.906 0

0.331 68.164 0.179 0.906

-0.137 -1.282 -0.S76 0.324

0 0.331 -0.137

(6.168)

J J T

8765.915 -32.449 100.907

-32.449 1.730 -0.167

100.907 -0.167 1.945

(6.169)

234

The second step determines matrix r by solving the set of equations

Equation (6.145).

J J Tr = d

'8765.915 -32.449 100.907“ “64.286“

-32.449 1.730 -0.167 r — 0.107

100.907 -0.167 1.945 1.085

'8765.915 -32.449 100.907“ “64.286“

0 1.610 0.207 r = 0.345

0 0.207 0.783 0.345

' S765.915 -32.449 100.907“ 64.2S6"

0 1.610 0.207 r = 0.345

0 0 0.756 0.301

1 0 o' 3.356E —3'

0 1 0 r — 0.163

0L 0 1 0.398

Lastly, the resultant r is substituted into Equation (6.158).

39.566 0 1

50.522 -0.906 0 3.356E —3

68.164 0.179 0.906 0.163

— 1.282 -0.876 0.324 0.39S

specified by

(6.170)

(6.171)

(6.172)

(6.173)

(6.174)

(6.175)

(6.176)

0 0.331 -0.137

235

0.531

0.022

0.619

-0.018

(6.177)

-5.7301; - 4

This result is verified by substituting it and the Jacobian of Equation (6.113) into

Equation (6.127).

d - Jq

260.692 23.559 I66.9SS 35.123 0
0.531

39.566 50.522 68.164 -1.282 0
0.022

0 219.546 -61.716 93.620 0
0.619

0 -0.906 0.179 -0.876 0.331
-0.018

0 0.423 0.383 -0.358 -0.934
— 5.730E-4

1 0 0.906 0.324 -0.137 L J

(6 . 1 7 8)

(6.179)

241.679

64.338

d =
-35.057

0.106

0.253

1.086

(6. ISO)

Comparison with the desired set of rates in Equation (6. 166) shows that there is no

appreciable difference between any of the three pair. The three remaining rates, stated

2 3 6

in Equation (6.112), differ widely. The Euclidean norm of this solution is less than that

of the original, as found in Equation (6.163) to be 1.083.

\q‘ | = < 0.531 0.022 0.619 -0.018 - 5.730E- 4 >

.< 0,531 0.022 0.619 -0.018 - 5.730E- 4 >
(6.181)

| q' | = 0.665 (6.182)

As in the first example of the under-determined case, the desired rates arc met at

overall lower joint rates than the original solution.

c. Program Control. The procedure under_determined_case differs from

that of the over-determined ease only in the order of execution; the steps may be seen

to be the same.
subhead = "1. n = J Reduced * (J Reduced Transpose)"; matrix_by_matrix (total, jacobian_reduced, m, subhead);
for (i = 1; i <= total; i++)dtr_5[i] = delta_tr_reduced[i3; subhead = " 2 . Solve M # V = d trans/rot rates";inconsistent = solve_simul_eqns_jnyv (m, dtr_5, total, y, subhead);
if (inconsistent == 0)

{subhead = "3. d Theta = (J Reduced Transpose) * Y";
matrix_by_vector (j acobian_reduced, total, y, delta_theta,subhead);
3return (inconsistent);

As the simultaneous equations arc solved as the second step instead of the third, the

third step here, multiplication of the involved matrix and vector, is omitted altogether

if the second step fails due to inconsistency in the equations.

d. Program Examples. Figures 6.8 through 6.12 detail the screens displayed

during the solution process of the under-determined case for the selection of the

translation rates as input. The products obtained in Figures 6.9 and 6.10 closely

parallel the results obtained in Equations 6.150 and 6.155. The final rates obtained in

Figure 6.11 are almost precisely those of Equation (6.158).

Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 0.790 -0.516 0.331 39.566!
50.000 : 0.195 -0.300 -0.939 260.692!
65.000 : 0.581 0.802 -0.137 55.795!

-35.000 : 0 0 0 1 !
Velocity Control

Reverse Solutions via Inverse Jacobian
Delta Rates Jacobian
I 196.598 260.692 23.559 166.988 35.123 0.000: ! d t 1 :

69.286 39.566 50.522 68.169 -1.282 o .ooo: id T 2 :
I -75.929 - 0.000 219.596 -61.716 93.620 O.OOOiX ! d T3 !
! unused 0.000 -0.906 0.179 -0.876 0.331! id T9:
I unused 0.000 0.923 0.383 -0.358 -0.939! ! d T 5 :
! unused 1 . 000 0.000 0.906 0.329 -0.137!

Figure 6.8. Inverse Jacobian, Under-Determined Example 1: Inputs

Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 i

1 0.790 -0.516 0.331 39.566
50.000 il 0.195 -0.300 -0.939 -260.692
65.000 11 0.581 0.802 -0.137 55.795

-35.000 i
i 0 0 0 1

Velocity Control
Reverse Solutions via Inverse Jacobian

Under-Determined Case
1 . M = J Reduced * (J Reduced Transpose)

97633.836 22892 .269 -1895.295
22892.269 8765 .939 6765.152
-1895.295 6765 .152 60773.977

Figure 6.9. Inverse Jacobian, Under-Determined Fxamplc 1: Step 1

to
oo

Armatron Manipulator Control
Theta
-115.000 N O A p

25.000 : 0.790 -0.516 0.331 39.566
5 0 . 0 0 0 : 0.195 -0.300 -0.939 -260.692
65.000 : 0.581 0.802 -0.137 55.795

-35.000 : 0 0 0 1
Velocity Control

Reverse Solutions via Inverse
Under-Determined Case

Jacobian
2. Solve M * Y = d trans/rot rates

1 . ooo 0.000 0.000 il yc 1); -9.787E-09
-0.089E-09 1.000 0.000 il y c 2): 0.010
9.003E-05 -1 . 199E-00 1.000 : x Y(3) ! = - 2.928E-03

Figure 6.10. Inverse Jacobian, Under-Determined Fxamplc 1: Step 2

Armatron Manipulator Control
T h e t a

-115.000 N O A P
25.000 0.790 -0.516 0.331 39.566
5 o . o o o : 0.195 -0.300 -0.934 -260.692
65.000 : 0.581 0.802 -0.137 55.745

-35.000 : 0 0 0 1

Velocity Control
Reverse Solutions via Inverse Jacobian

Under-Determined Case
3. d Theta = (J Reduced Transpose) * Y

0.289! 260.692 39.566 0.000 -5E-04!
-0.016! 23.559 50.522 219.546 0 .010!
0.783! = 166.988 68.164 -61 .716 X -2E-03!

-0.257! 35.123 -1.282 93.620 Ii
0.000! 0.000 0.000 0.000 I

•

Figure 6.11. Inverse Jacobian, Under-Determined Example 1: Step 3

O

Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 ! 0.790 -0.516 0.331 39.566:
50.000 ! 0.195 -0.300 -0.939 -260.692!
65.000 I 0.581 0.802 -0.137 55.795!

-35.000 : 0 0 0 1 :

Velocity Control
Reverse Solutions via Inverse Jacobian

Under-Determined Case
Input: Delta Translational 6 Rotational Rates

! dtx : 196.598
I dty ! 69.286
!dtz! = -75.929
I drx : unused
Idry ! unused
! dr z ! unused

Output: Delta Theta Rates
! dT1 0.289 :
: dT2 : -0.016
! dT3 ! 0.783
I dT9 ! -0.257
! dT5 ! o . o o o :

Figure 6.12. Inverse Jacobian, Under-Determined Fxamplc I: Results

242

The solution of the under-determined case by the program specified in the second

numerical example is depicted in Figures 6.13 through 6.17. The results show in

Figures 6.14, 6.15, and 6.16 may be compared with those of Equations (6.169), (6.174),

and (6.177), respectively, to sec that there arc no significant differences.

Armatron Manipulator Control
Theta

-115.000 N 0 A P
25.000 : 0.790 -0.516 0.331 3 9.566.'
50.000 0.195 -0.300 -0.934 260.692!
65.000 l 0.581 0.802 -0.137 55.745!

-35.000 0 0 0 1 :
Velocity Control

Reverse Solutions via Inverse Jacobian
Delta Rates Jacobian
! unused 260.692 23.559 166.988 35.123 o.ooo: : d t 1 :
! 64.286 39.566 50.522 68.164 -1.282 o.ooo: :d T 2 :
1 unused = 0.000 219.546 -61.716 93.620 o.ooo:x :d T 3 :
1 0.107 0.000 -0.906 0.179 -0.876 0.331 : : d T 4 :
! unused 0.000 0.423 0.383 -0.358 -0.934: :d T 5 :
! 1.085 1.000 0.000 0.906 0.324 -0.137!

Figure 6.13. Inverse Jacobian, Under-Determined Fxamplc 2: Inputs

Armatron Manipulator Control
Theta
-115.000 N O A P

25.000 li 0.790 -0.516 0.331 39.566
50.000 »i 0.195 -0.300 -0.934 -260.692
65.000 l» 0.581 0.802 -0.137 55.745

-35.000 1i 0 0 0 1
Velocity Control

Reverse Solutions via Inverse Jacobian
Under-Determined Case

1 . M = J Reduced * (J Reduced Transpose)
8765.934 -32 .491 100.928
-32.491 1.730 -0.167
100.928 -0 .167 1.945

Figure 6.14. Inverse Jacobian, Under-Determined Fxamplc 2: Step 1

u■U

Armatron Manipulator Control
Theta

-115.000 N 0 A P
25.000 : 0.790 -0.516 0.331 39.566
5o.ooo : 0.195 -0.300 -0.939 -260.692
65.000 : 0.581 0.802 -0.137 55.795

-35.000 : 0 0 0 1
Velocity Control

Reverse Solutions via Inverse Jacobian
Under-Determined Case

2. Solve M * Y = d trans/rot rates
1.000 0.000 0.000 Y (1) 3.366E-03

8.918E-07 1.000 0.000 Y(2) 0.163
9.079E-06 7.111E-09 1.000 X Y(3) 0.397

Figure 6.15. Inverse Jacobian, Under-Determined Fxamplc 2: Step 2

Armatron Manipulator Control
Theta

- 1 1 5 .0 0 0
25.000
50.000
65.000

-35.000

N O A P
0.790 -0.516 0.331 39.566
0.195 -0.300 -0.934 -260.692
0.581 0.802 -0.137 55.745
0 0 0 1

Velocity Control
Reverse Solutions via Inverse Jacobian

Under-Determined Case
3. d Theta = (J Reduced Transpose) * Y

0 . 5 3 0 ! 3 9 . 5 6 6 0 . 0 0 0 1 . 0 0 0 3 E - 0 3
0 . 0 2 2 : 5 0 . 5 2 2 - 0 . 9 0 6 0 . 0 0 0 0 . 1 6 3
0 . 6 1 9 ! = 6 8 . 1 6 4 0 . 1 7 9 0 . 9 0 6 X 0 . 3 9 7

- 0 . 0 1 9 ! - 1 . 2 8 2 - 0 . 8 7 6 0 . 3 2 4
- 3 E - 0 4 ! 0 . 0 0 0 0 . 3 3 1 - 0 . 1 3 7

Figure 6.16. Inverse Jacobian, Under-Determined Fxamplc 2: Step 3

to
O

Armatron Manipulator Control
Theta
-115.000 N O A P

25.000 : 0.790 -0.516 0.331 39.566
5 0 . 0 0 0 : 0.195 -0.300 -0.939 -260.692
65.000 : 0.581 0.802 -0.137 55.795

-35.000 : 0 0 0 1
Velocity Control

Reverse Solutions via Inverse Jacobian
Under-Determined Case

Input: Delta Translational S Rotational Rates
: dtx i unused !
! dty I 69.286',
! dtzl = unused !
! drx! 0.1071
! dry ! unused 1
Idrzl 1.085:

Output: Delta Theta Rat
! dT 1 I 0.530:
! dT2 ! 0.022l
l dT3 ! 0.6191
! dT9 ! -0.0191
I dT5 l -3.286E-091

Figure 6.17. Inverse Jacobian, Under-Determined Fxamplc 2: Results

248

C. JOINT RATES BY DIFFERENTIATION

The previous section determined the joint variable rates necessary to obtain a

particular set of translational and rotational rates of the manipulator end coordinate

frame by solving the Jacobian equation for the end frame rates by numerical means.

An alternative to this method is to differentiate the joint variable solutions obtained in

Chapter 5; this will result in relationships expressing the joint rates directly.

1. Derivation of Equations. Recall from Chapter 5 that the joint variable values

needed to obtain a particular orientation and position of the manipulator end

coordinate frame were derived in terms of that orientation and position. Each of the

specific equations found there may be differentiated to obtain a joint variable rate in

terms of the rates of change of the orientation vectors n, o, and a and position vector

p. The rate of change of the position vector is known as its components are given by

the desired translational rates, °d„ 0dy, and °d2. The rates of change of the orientation

vectors must be determined from known information, which in this case is the

orientation vector directions for some specified set of joint variables and a set of desired

translational and rotational rates.

a. Rates of Change of the Orientation Vectors. Recall that the orientation and

position matrix T is the result of the sequence of A matrix transformations taking the

triple of unit vectors at the base coordinate frame to those of the manipulator end

frame. Each A, matrix is a transformation with respect to the i — 1 coordinate frame.

Consider a sequence of rotations Rot(5x, S„ <5*) where each delta is a small rotation

about its respective axis. Each successive rotation shall be made with respect to the

coordinate frame resulting from the previous rotation. Consider first carrying out the

rotations in x-y-z order as stated.

249

Rot{bx, by, b2) = Roi{x, 6 x)Rot(j\ 6y)Rol(z, S2)

Roi(Sx, Sy, b2) =

1 0 0 0 cos Sv 0 sin by 0

0 cos <5j. — sin bx 0 0 I 0 0

0 sin bx cos (5̂ 0 — sin by 0 COS by 0

0 0 0 1 0 0 0 1

C O S b 2 — sin S2 0

sin S2 cos S2 0

0 0 1

0 0 0

1'hc rotations <3„ <5„ and St arc very small angles. From the calculus,

limo
sin t

i = 1

lim
?->o

1 — C O S 1
[

0

Approximations may then be made for the <5 angles.

sin <5 — 5

cos b — 1

These substitutions arc then made in Equation (6.184).

1 0 0 o " 1 0 <5, o ’ 1 -6. 0

0 1 - < 5 , 0 0 1 0 0 <5.d 1 0

0 6* 1 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0

(6.183)

(6.184)

(6.185)

(6.1S6)

(6.187)

(6.188)

R o i { S x, S y , S 2) = (6.189)

250

Ro:(bx, Sy, S2) =

1 0 0 1 0 0

bxby 1 -<5* 0 <5, 1 0 0

<5, 1 0 0 0 1 0

0 0 0 1 0 0 0 1

(6.190)

Roi{bx, 5 b2) =

l — b;, by 0

bxby + S2 — 9" ̂ —<5x 0

-Sy + bx b 2 Syb 2 + 5 x 1 0

0 0 0 1

(6.191)

Since each of the rotations is very small, the product of any two of them is small

enough to be considered insignificant and may thus be replaced by zero.

Rot{bx, by, b2) =

1 -<5, <5, 0

<5, 1 - 8 * 0

-<5, <5x 1 0

0 0 0 1

(6.192)

Exhaustive arrangements of the matrices will show that any ordering of the three

rotations yields the same final result.

Consider now the effect the rotations 0<5,, °(5>, and °<5Z have upon the orientation

of the coordinate frame of the manipulator end. This change shall be defined dT.

As matrix Roi(DS„ B6 y, °S2) is defined with respect to the base coordinate frame, it must

be pre-multiplied by matrix T.

T -V dT = Rot(°bx, °3y, °S2)T (6.193)

d T = R o t (° 6 x , °(5>„ ° 5 2) T — T (6.194)

251

dT =

1 -% Oy 0 -
1 0 0 0

V 1

oI 0 0 1 0 0
0 c- by °<5* l 0 0 0 1 0
0 0 0 1 0 0 0 1

_

T (6.195)

n x a x P x 0 °s
by

r ■.O n x °X a x P x

"y °y ay Py 0 0 c
v X 0 n y Oy Oy P y

n 2 °2 a: P 2 °<5* 0 0 n 2 °2 a , p 2

0 0 0 0 0 0 0 0 0 0 0 1
. _

(6.196)

By reducing the amount of time over which the delta quantities in equations such as

this are defined, instantaneous velocities and hence derivatives arc obtained. Vectors

°<5 and °d are understood to be instantaneous velocities from this point on. Thus,

equating elements in column 1,

- ^ n x = - ° S zny + °6ynz (6.197)

~ ny = °S r nx - ° b x nz (6.198)

n2 = “ °3ynx + °6 xny (6-199)

The equations for the elements of the second and third dT columns parallel these; for

example,

Ci Oj . Or
fa °x ° 2°y T °y° 2 (6 .200)

252

The effect of rotational rates °<5X, °<5>(and ° S 7 on the position specified by the fourth

column are ignored here as the translational rates arc explicitly given by V , , lldy, and

%■

b. Joint Variable 3. The derivation of equations in Chapter 5 led first to a

relationship for the cosine of joint 3's variable, 03, in Equation (5.81).

c3

2 , 2 , 2 2 2
P a , + P ay + P a , ~ a 3 - a 2

2 a2a3
(6.201)

Differentiation yields a formula for the rate of 02 in terms of the rate at which the end

of the arm proper is moving.

2 P a , P a , + 2P a
d . - cl

1 ? P‘>+ ‘■P'-lh Pa,
2 a2a2

(6 . 202)

P a , 7 F p°- + F°,
d d
dl p°, + p° . ^

~ a 2a3s3
(6.203)

Equations (5.41), (5.42), and (5.43) defined the arm vector components.

P a , ~ P x P w , (6.204)

P a y ~ P y P w , (6.205)

P a , ~ P z P w , (6.206)

Equations (5.38), (5.39), and (5.40) had previously defined the wrist vector

components.

P w , ~ d 5ax (6.207)

253

Pwy = d5ay (6.208)

Pw2 = dSa2 (6.209)

These three expressions are substituted into their respective positions in Equations

(6.204), (6.205), and (6.206) prior to diTercntiation.

Pat = P x~ ds“x (6.210)

cl ci /
~diPa‘ ~ ~ d iPx~ ds~ dfax (6.211)

icII (6.212)

s-
h

V?
II

S-I
®*

.
c? 1

5-|
ŝ

sP (6.213)

Paz ~ P2 d5az (6.214)

d d , d
dt Pa* dt Pz dcj dt a* (6.215)

The differential relationships in Equations (6.211), (6.213)., and (6.215) will be

employed in the solutions for the rates of 6) and 62 also; thus, in order that they only

be calculated once, they shall not be substituted into any other equations.

Returning now to Equation (6.203), it can be seen that the rate of the joint

variable is defined in terms of the rate of change of the orientation and position matrix

T, except when the sine of 03 becomes zero. This situation occurs when the joint

variable is itself zero and the elbow is fully extended; unfortunately, no other solution

is immediately available, so this instance is treated as a singularity.

254

c. Joint Variable 1. Subsequent to the derivation of an equation involving the

following relationship was established for 0] in Equation (5.90).

-Pa Si + Pa/\ = a3si (6.216)

Clearly, the rate at which 01 turns shall be dependent in part on that of 6 3.

Differentiating,

~ P a/\ + c\ - ^ - pay= a2ci - ^ e i (6 -2 1 7)

~ iP a / 1 + Pa S\)-J[Q \ = a3C3 ~ J / 63 + s \~ ^ P a x~C\ ^ Pay (6-218)

d
dt Pa> Sl

d_
dt Pa, ~ a 3 c 3 dt

Pa/ 1 + Pa/ 1
(6.219)

As uras the case for #3, only one equation was obtained during the derivation of a

solution for 6 j. Thus, should the denominator of Equation (6.219) become zero, no

other solution exists and the situation must thus be treated as a singularity.

d. Joint Variable 2. The remaining arm variable, 02, differs from the previous two

in that two equations were obtained dealing with it in Chapter 5. The first was

Equation (5.112) and has its derivative taken here to provide one formula for the joint

rate.

P a/ i + Pa/1 = c2(a3c3 + a2) (6.220)

(
+ Pa,

(
+ *1 + Pa,

“ ■*2 (a3c3 + a
(6.221)

255

- z - e
(6 . 222)

(6.223)

The division in this formula is undefined when either s2 or a3c3 + a2 becomes zero. As

explained in Chapter 5, a3c3 + a2 cannot become zero as this requires 03 to take on the

value of —180°, for which the arm folds back on itself. This situation is physically

impossible and would be detected during examination of the joint range. Factor s2 can

become zero and does when 8 2 is 0”, a value which yields a level arm. This situation

need not be treated as a singularity, however, because of the existence of a second

equation involving 8 2, Equation (5.114); it has its derivative taken here.

The division here is undefined whenever c2 or a3c3 + a2 becomes zero. As with the first

formula, a3c3 + a2 will be prevented from becoming zero. The other factor, c2, becomes

zero when 02 is 90', where the first formula became zero for a d2 of O'. Physically, 6 2

is limited to a range of —5' to 30", so this second formula should be viable in all

practical situations. Both formulas shall be utilized to allow for as many situations to

be considered as possible without regard to the manipulator's physical limitations.

p„ = s2(a3c- + a2) (6.224)

(6.225)

(6.226)

256

e. Joint Variable 4. The equations derived in Chapter 5 dealing with wrist

variables 04 and 6 S are independent of one another and thus may be examined in either

order. There arc two equations available for each joint, so no singularities need be

dealt with here. Equation (5.183) was the first arrived at for 04 and is differentiated

here.

Q — ĵcc] *̂2 G\>S\ $2 ĜC2 (6.227)

■*4 1 ° a
d
dt a))c \h + ax (c , ^) + (ay

+ ^ M - (- £ < -*2 ~ S;
(6.228)

di54 i r 04 = C,S2 ̂ ̂ + ^ d ')'2 + c>̂(°2))+ -5rdi dl di

+ M Ci
d

(6.229)

#1)s2 + W — 02) J - c2 — a; + <V2 ~ 6dl dl

dt 6 A = C,S2 - ^ 7 ^ - 0 ^ ,5 2 - ^ 7 0J + «xClC2 “ 0 2 + 5152 ^ 7 fljdi di y
u /\ W G M Q

+ a vc i 52 - r 6 \ + arh C2-J7®2 - cl~77 a2 + c ^ 2 “ 7 7 0 2

(6.230)

d 6 A = ((V l - O^l)^ 6, - ((<!*<:, + ayS])c2 + <y2) $ 2dt

d_
dlC l 5 2 j , a x S] S2 (j l a y + c 2 (j [a z) l s A

(6.231)

In the event that 04 is 0’ or 180°, causing its sine in the denominator of the formula

above to become zero, the formula for the rate of 6h obtained from Equation (5.184)

may be employed.

*4 = Cx(c]c2c3 ~ V 3) + V 51C2C3 + CjS3) + aM (6.232)

257

d a
— a ^ j (c xc 7 c 2 - s , s 3) + a , - ^ - (c ,c 2 c3 - s , s 3) + ^ - J j- c>.^ (5 ,c 2c3 + c , s 3

+ ^ (*1 C2C3 + cl ^) + (~ ^ r ^) (52<h) + a , “ * (s 2C3)

(6.233)

To simplify the subsequent derivation, the second, fourth, and sixth terms of Equation

(6.233) arc evaluated separately. Beginning with the second,

ax cjl (C]C2C3 5 153) ~

a x \ ^ - (c , c 2)c3 + c ,c 2 - ^ - c 3 C' dt 6 ') S1 ~ S\ C1 i

(6.234)

« a ^ - (c i c 2c3 - s , s 3) = a x i (() c 2 + C] (- s 2 - ^ e 2))c3

- C,C253 -^ -0 3 - C,J3 e 3)

(6.235)

«x-^ -(clc2C3 -*| J3) =

- « a(51C2C3 + C]S3) ~ d , - ^C,S2C3 -^ -02 - ^(C,C2S3 + S,C3) ^ 03
(6.236)

The fourth term of Equation (6.233) evaluates as follows:

< y ^ -(W 3 + <v3) =

«>("Jj" (S1°2)C3 + 5l < h 6 \S3 + C,C3 ~ 03̂
(6.237)

S' (W 3 + Cl53) = * y ^ (Cl -ft 0 ') C2 - 51 (52 8 7) ̂ 3

- * 1 ^ 3 - J f 83 - *1 * 3 ^ 01 + C1C3 ^ ^ 3)

(6.238)

258

>' dl (5,c2c3 + c ,j3) =

ay(c]c2c3 — i].v3) — 8] — ays}s2c2 0 2 - ^ (s ^ ^ — c,c3) —7- 9dt dt “3

(6.239)

Lastly, the sixth term of Equation (6.233) is expanded.

= a/ (c2 - j - e i Sj c 3 + ^ (■L 0j

J d
az - j f (^ C 3) = fl/ 2 6 ~77 ° 2 - azs2 ^ — 9dt dl

(6.240)

(6! 241)

Equations (6.236), (6.239), and (6.241) arc then substituted into Equation (6.233), and

the resulting equation is rearranged to reduce the number of operations required for its

evaluation.

C*~dF0 A = (~dF ax)(C]C2C3 ~ S'Ŝ ~ a^ C2C3 + Cl^) - j f 61 ~ axc\^2 ~̂ T e 2

- a x (c]C2s 3 + i , c 3) - J j - e 3 + (~ ~ a y ^ (s 1 ^ 3 + C j J 3)

+ a y (C]c 2c 3 - J,S3) 6 l - a y S] s 2c 3 ~ 0 2 - a y { s^ c 2s 3 - c,c3) — • 03dt dt

+ (^ G;) (52 c3) + fl7C2 c 3 - j j " 9 2 - a z S2S3 i ° >

(6.242)

c4 “ - 0 4 = (c ,c 2c3 - W ~ ^ a x + (S \ C2 C2 + C ,53) - j j - <$, + 52C3 a z

+ (” ^ (5 1c2c3 + c,s3) + fl>,(c1c2C3 - s,s3)) - £y ,s2c3 (6.243)

+ « 7 C2 c3) 92 + (- ^ (C , C 253 + 5 ,C 3) - «y (5 ,C253 - C,C3) - a & s j A 3

259

d a
I t 6* (c,c2c3 - S,J3) ~^-ax + (-vic2c3 + c,J3) -Jj- fly + S2c3 a2

+ {{ayc , - o^,)c2c3 - (a ĉ, + a/,).v3) 0, + (- (axcl + a^,)^ (6.244)

+ a z c 2) c 3 - J f 6 2 + (- ((C c c l + V l) f 2 + a z s l) s 3 + (a y c 1 “ V l) ^) ^ 0 3) / c 4

Consider the following substitutions for the sake of further reducing the number of

operations.

/ t C ly C j G X ^ i j (6.245)

B = axc] + aysx (6.246)

d_
dt 4̂ (CjC2C3 t dS\s3) — ax + (^c2c3 + c,s3) dl

, c!
ay + S2C3 ^ 7 a2

+ (A c 2 c 3 - B s 3) 6] + (-fis2 + a zc 2) c 3 02

+ (- (£c2 + a,s2)i3 + ^c3) -Jj- 03̂ /c4

(6.247)

f. Joint Variable 5. The first of the pair of equations dealing with 6 S is next

differentiated to provide one formula for the rate of Qs. The process here parallels that

just followed for the second 6 t equation as the original equations take the same form.

Beginning with Equation (5.186),

c5 = o x (c } c 2s3 + s,c3) + 0y {s^c2s3 - c,c3) + o zs 2s 3 (6.248)

c d __
~ S5 ~d76 i ~ (~di 0jc) ^ C2*3 + S] + °x ~di(c’c^ 3 + + (~di ° y) C253 “ c>Ci)

+ ° y ~ ^ - { S } C 2 S 3 - C,C3) + ̂~ O ^ S ^) + 0 2 - ^ (S 2 S 3)

(6.249)

Expanding term 2,

260

^ ^ - (clc2̂ 3 + ^ 3) =

dt (c,c2)53 + c,c2 — 53 + (c, — e])c3 - s l [s 3 — ed (6.250)
dl

d . , ,
°JC ~ (c l c 2^3 + s l c 3) - ° x)c 2 + ^ {

+ C lc 2 c 3 - J j - 0 3 + c , c 3 - j j - 0 , - .v,.v3 - £ ■ 6dt

(6.251)

^ ^ - (£ 1^53 + 5^ 3) =

o A.(-s ,c 2.v3 + C ,C 3) “ 0, - 0xc,.v2̂ 02 + 0JC(c,c2c3 - S] S3) ~ e 3

(6.252)

Expanding term 4,

°y (5 i c253 — C1C3)

° y ((*lc2>3 + -S]C2 S3 + 5, e]C3 + C]S3 ~ ^ r e 3
(6.253)

° y ^ (s\c2s2 - C\C3) ~ Oy\ ^ (c ^ e^ C 2 - S^S2^ e ^ \ 3

+ *1 ^ 3 - J f Ql + ^C3 6] + C,i3 - 7 7 9dt

(6.254)

°y ~ (5 1c253 — c l c3)

oy{cxc2s3 + s,c3)-^ -e , - OySxs2s3 ~ e 2 + 0y{sxc2c3 4- c]s3) - ~ e 3
(6.255)

Expanding term 6.

d2)s3 + s,(c3 ~ j-e°z ~ r̂ (s2s3) = o21 (6.256)

5-
K

261

d d d
°2 (V 3) = W 3 ~J7 e 2 + OrV2C3 — edl di

Substituting Equations (6.252), (6.255), and (6.257) into Equation (6.249),

~ Ss~ d 7 ° 5 ~
d
di °x)(ci V s + V s) + °A W s + V s) 6dl

d d~ V i V s ~^-d2 + V ci V s - s,s3) — e 3 + ̂— o,.)(s]C2s3 - c,c3)

+ 0y(v 2 s3 + s,c3) 6, - V i V 3 02 + oy(s,c2c3 + c,s3) 6dl di

+ ° ;) (V s) + W s - j - 02 + o7.s2c3 ~ e 3

"Jr 65 = (C] C2*3 + 5> ^ ^ + ta c^ 3 “ Ci ~^7°y + ^ 'd l °:

+ (Ox(-S }C2S3 + c,c3) + Oy(c,C2S3 + 5,c3)) + (~ V l V 3 - 0̂ 5,52̂ 3

+ °2cl sz) ~ ^ 6 2 + (°x(cic2c3 ~ V 3) + oy(s,c2c3 + V s) + o7s2c3) - j - 03

65 = - (iC\C2S3 + 5|C3) Ol V s - V s) ~^-°y + V s °2

+ ((0 / 1 - v i) v s + (v i + v i t a) °) + (- (°xc\ + V i t a

+ V 2 t a 6 2 + (((V l + V l) C2 + V s) c 3 + (V i - V i t a) e 3 j l s 5

Substitutions are then made to additionally reduce the number of operations.

6 OyC 1

(6.257)

(6.25S)

(6.259)

(6.260)

(6.261)

D = o^c, + o ŝ, (6.262)

262

d_
dt {C\C2h + S\Cl) ~Jf°x + (SlC2Sl - c,c3)

d
dt + 2̂̂ 3

d
dl

+ (Cc2s3 + Dc3) 0, + (—I)s2 + o2 c2)s3 02

+ {{Dc2 + ozs2)c3 + Cs3) 0 ^jjss

(6.263)

Finally, Equation (5.1S7) provides an alternate solution for the rate of 0% in the event

that s< in the equation above approaches zero.

s5 = nx(C]c2s3 + s,c3) + ^(s,c2.v3 - c,c3) + n.w 3 (6.264)

Comparison of this equation with Equation (6.248) will show that the factors of n„ ny,

and n2 in Equation (6.264) arc precisely those of o„ oy, and o„ respectively, in Equation

(6.24S). Thus the solution obtained by differentiating the cosine of 6 S, given in

Equations (6.261) through (6.263), is used as the outline of the solution which would

be obtained by differentiating the sine of 6 S in Equation (6.264). The components of

vector o are replaced with those of vector n. Differentiation of the left hand side of

Equation (6.264) results in cs ~ 6 S instead of the previous —s5 0S, so the sign of

Equation (6.263)'s right hand side is reversed and the denominator becomes c5.

E - n.,c] — (6.265)

F = «/i + V) (6.266)

ds = + s,c3) ~~ nx + (s,c2s3 - c,c3) ~ ny + s2s3 ~ nz

+ {Ec2s3 + Fc3) 0, + (~Es2 + nzc2)s3 B2

+ i(Ec2 + n^2)c3 + Es3) 03 /̂c5

(6.267)

263

2. Numerical Example. The derivative technique for determining joint variable

rates shall be demonstrated by using the translational and rotational rates obtained in

the first section as input here. The original joint variable rates used as input there

should then result as output here.

The original joint variables were stated as follows in Equation (6.73):

1
Cb

..j

1

__
__

__
1

02 2 5 "

= 5 0 °

0 4 65

0 5 - 3 5 "

(6.268)

Recall also from Chapter 5's Equation (5.15) the corresponding position and

orientation matrix.

nx °x ax Px 0 . 7 9 0 - 0 . 5 1 6 0 . 3 3 1 3 9 . 5 6 6

ny ay Py 0 . 1 9 5 - 0 . 3 0 0 - 0 . 9 3 4 - 2 6 0 . 6 9 2

n2 a2 P2 0 . 5 8 1 0 . 8 0 2 - 0 . 1 3 7 5 5 . 7 4 5

0 0 0 1 0 0 0 1

(6.269)

The results obtained from the forward application of the Jacobian in Equation (6.87)

were as follows:

264

- 0r i
dx 196.548

dy 64.286

d2 -75.924

<5* 0.107

<5, 0.341

<5, 1.085

(6.270)

The rates of change of the components of the orientation vectors arc obtained from the

matrix multiplication of Equation (6.196).

•■a * Ox * __
_1

1

o N

O
1

V

ny °y (Xy — % 0 H
o

1

3 °z °-2 1
i o Oo Vr % 0

"x ° X ax

ny °y ay

n2 °2 a z

(6.271)

nx ax 0 -1.085 0.34 f 0.790 -0.516 0.331_

ny ay = 1.085 0 -0.107 0.195 -0.300 —0.934

3 02 3 -0.341 0.107 0 0.581 0.802 —0.137

(6.272)

nx ^x ax —0.013 0.599 0.967’

ny Oy ay — 0.795 -0.646 0.374

*2 02 3 -0.249 0.144 -0.213

(6.273)

Next, the coordinates of the end of the arm proper, p,x, pCy, and p„2, arc determined from

Equations (6.210), (6.212), and (6.214) for use in determining the rates of the three arm

joint variables.

Pax ~ Px ~ d$ax (6.274)

265

P a = 39.566 - 100(0.331) = 6.466 (6.275)

Pa, = Py~ ay (6.276)

pQy = -260.692 - 100(-0.934) = -167.292 (6.277)

~ Pz d$az (6.278)

Paj = 55.745 - 100(-0.137) = 69.445 (6.279)

The rates of change for the coordinates for the end of the arm proper, -Jj- p„x d
’ dl P°>'

A d

and ~dip°2' arc determined next from Equations (6.211), (6.213), and (6.215),

respectively.

d d , d
di Pa> di Px d$ di Ux (6.280)

Psx = 196.548 - 100(0.967) = 99.848 (6.281)

1II (6.282)

— paf = 64.287 - 100(0.374) = 26.887 (6.283)

d d . d
di Pa> di Pz d$ dt ° 2

(6.284)

= -75.919 - 100(-0.213) = -54.619 (6.285)

The joint rates are then determined by substitution into the equations derived for each.

The rate for 6 3 was obtained first in Equation (6.203).

266

Pa, dl Pa. + Pay '
d_ J -
dt Pa> Pa> di Pa*

"~a 2a 3s 2
(6.286)

d 6.466(99.848) - 167.292(26.887) + 69.445(-54.619)
4 - 63 = ------- ------------------------- --------- — --------- ------------ — = 0.998 (6.287)
dl -100(100) sin(50)

The original rate selected in the first section for 03 and given by Equation (6.86) was

1.0.

The rate for 0, was next provided by Equation (6.219).

d
~diPa>

d d n

Pa„c\ 4" Pays \
(6.288)

d cos(—115°)(26.S87) - sin(—115°)(99.SIS) - 100 cos(50”)(0.99S)
--:---------------------------- ;;----------------- (6.2S9)

dl 6.466 cos(-115) - 167.292 sm(— 115)

-4 -0 , =0.100 di 1 (6.290)

The original rate selected for 0j was 0.1

Two expressions were obtained for the rate of 02. The first was Equation (6.223).

<>■ + <:,-3 - ? . , + *, dL
- s 2(a3c3 + a2)

dl (6.291)

-|r e 2 = ((cos(- 1 15°)(-167.292) - sin(-1 1 5*)(6.466))(0.100)

+ cos(—115*)(99.81S) + sin(— 115*)(26.8S7)

+ 100 cos 25' sin 50°(0.998))/((- sin 25*)(100 cos 50" + 100))

(6 . 2 9 2)

2 6 7

4 * 0 , = -0.150 dt 1
(6.293)

The second expression for the rate of 02 was given by Equation (6.226).

A
j L 0 - d< ra*
dt 2 c2(<33c3 + al)

Pa, + *3*2*3 °3
(6.294)

d -54.619 + 100 sin 25 sin 50 (0.998)
-7- 0 2 = -------------- :--------------- ;------ -------- - = -0.150
dl cos 25 (100 cos 50 + 100)

(6.295)

As can be seen, the two results are identical; further, the original 02 rate was selected

as -0.150.

Each of the wrist variables also has two solutions. The first for 04 was given in

Equation (6.231).

~ 04 = ({axsj - flyC,) ̂4 " 6\ ~ + ¥ i)c2 + 4 “ 04 5 2dl dl
d d d \,

~ C]S2 ax~~ S\S2 ay + c2 ~J{ a z) l S 4

(6.296)

04 = ((0.331 sin(-115) - (-0.934) cos(-115)) sin 25 (0.100)

- ((0.331 cos(-115*) + (-0.934) sin(-115*)) cos 25*

+ (-0.137) sin 25)(-0.150) - cos(-115*) sin 25*(0.967)

- sin(-1 1 5 ’) sin 25'(0.374) + cos 25*(-0.213))/ sin 65*

(6.297)

d_
di-A e A = o .2oo (6.298)

The second solution for was given by Equations (6.245), (6.246), and (6.247).

A = ayC] - axs , (6.299)

26S

°XC\ + OyS, (6.300)

(c1C2C3 - M1J3J
d
di + (5ic2c3 + c ,,3) ciy + s2c3

d
~ r azdl 2

+ {Ac2c3 - Bs3) 0, + (- B s2 + a2c2)c3 - j - 62

+ (- {Bc2 + ^ 2)̂ 3 + 4 c j) - J j - #3 J / c4

(6.301)

/l = -0.934 cos(—115*) - 0.331 sin(— 115°) = 0.695 (6.302)

B = 0.331 cos(-115*) + (-0.934) sin(-115*) = 0.707 (6.303)

04 — ((cos(—115) cos 25 cos 50 — sin(— 115) sin 50)(0.967)
dl

+ (sin(— 115) cos 25 cos 50 + cos(—115) sin 50)(0.374)

+ sin 25 cos 50 (—0.213)

+ (0.695 cos 25° cos 50° - 0.707 sin 50°)(0.100) (6.304)

+ (—0.707 sin 25 + (—0.137) cos 25) cos 50 (—0.150)

+ (— (0.707 cos 25 + (—0.137) sin 25) sin 50

+ 0.695 cos 50°)(0.99S))/ cos 65°

-jJ-04 = 0.199 (6.305)

The two rates for 0„, 0.200 and 0.199, arc very near one another; the original 0„ rate

was 0.2.

Finally, two solutions exist for the rate of 05, the first of which was given by

Equations (6.261), (6.262), and (6.263).

C OyC J 7̂x̂ 1 (6.306)

D = oxcx + oys x (6.307)

269

5 = - ((W i + S \Cl) ~ j f ° x + (S) C2S3 - C\C3) °y + S2 SJ ° 2

+ (Cc2s3 + Dc3) e] + (- D s2 + ozc2)s3 e2 (6.308)

+ ({Dc2 + ozs2)c3 + Cs3) ~ d3̂ lss

C = -0.300 cos(— 115°) - (-0.516) sin(-115*) = -0.341 (6.309)

D = -0.516 cos(-115*) + (-0.300) sin(— 115*) = 0.490 (6.310)

-J— 0 5 = — ((cos(—115) cos 25 sin 50 + sin(— 115) cos 50)(0.599)

+ (sin(— 115) cos 25 sin 50 — cos(—115) cos 50)(—0.646)

+ sin 25 sin 50 (0.144)

+ (-0.341 cos 25“ sin 50° + 0.490 cos 50*)(0.100) (6 3 1 !)

+ (—0.490 sin 25 + 0.802 cos 25) sin 50 (—0.150)

+ ((0.490 cos 25 + 0.802 sin 25) cos 50

+ (-0.341) sin 50*)(0.99S))/ sin(-3 5 ')

— ■ 8 S = —0.100 (6.312)

The alternate solution for the rate of 8 S was given by Equations (6.265), (6.266), and

(6.267).

£ = nycx - /ijpS, (6.313)

F = nxC\ + nysx (6.314)

270

dt ° S = [(C 1 C2 3 * S 2 + -?l c3) n x + (* lC 2* 3 “ C' C3) “ n y + S2 S -

+ (Ec2 s3 + Fc3) — 0, + (- F s2 + nzc2)s2

di y
d

d
dl

dl e ,

d
+ ((/'C2 + <hsl)c2 + Esi) e 3)lc5

(6.315)

£ = 0.195 cos(- 1 1 5) - 0.790 sin(-115*) = 0.634 (6.316)

F = 0.790 cos(- 1 1 5) + 0.195 sin(-115°) = -0.511 (6.317)

Q5 — ((cos(— 115) cos 25 sin 50 4- sin(— 115) cos 50)(—0.013)

+ (sin(—115) cos 25 sin 50 — cos(—115) cos 50)(0.795)

+ sin 25 sin 50 (—0.249)

+ (0.634 cos 25 sin 50 + (— 0.511) cos 50)(0.100) (6.3IS)

+ (— (—0.511) sin 25 + 0.581 cos 25) sin 50 (-0.150)

+ ((—0.511 cos 25 + 0.5S1 sin 25) cos 50

+ 0.634 sin 50)(0.99S))/ cos(-3 5)

-^ -0 S = -0.101 (6.319)

The two values for 6 S, -0.100 and -0.101, are close to one another; the original rate

selected for 8 S was -0.1.

3. Program Control The procedure for the solution of joint rates base on the

differentiation of control variable equations is named r e v _ s o l_ v ia _ d e r iv . The

body of the procedure follows:
sin_cos (theta, s, c); dsply_rsvd (&mr, me, vr, vc)i do

{get_delta_trans_rot (delta_trans_rot, vrCO], vcCO]);
calc_delta_noap (noap, delta_trans_rot, dnoap, me, mr); calc_delta_theta (s, c, dnoap, noap, dtheta, vr[1], veil]);
query_ch = cont ("different rates");

271

}uhile (query_ch == ' Y');

After obtaining all six translational and rotational rates, the delta T or delta n-o-a-p

matrix is calculated. Subsequent to that, the joint rates arc obtained and the user is

prompted as to whether to continue under this topic. As was the case for the forward

solution of translational and rotational rates via the Jacobian, the procedures involved

arc straightforward in design and need not be discussed further here.

4. Program Example. Figure 6.18 depicts the single display associated with this

solution technique. The delta T matrix shown may be compared with Equation 6.273

to sec that only minor dilTcrcnccs exist. The joint variable rates show were arrived at

in Equations (6.2S7), (6.289), (6.293) and (6.295), (6.29S) and (6.305), and (6.312) and

(6.319) in the order theta 3, 1, 2, 4, and 5.

Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 0.790 -0.516 0. 331 39.566:
50.000 0.195 -0.300 -0. 939 -260.692I
65.OOO 0.581 0.802 -0. 137 55.795:

-35.000 0 0 0 1 :
Velocity Control

Reverse Solutions via Derivatives
Delta Trans 6 Rots Delta Thetas
! tx I 196.598! : DT1 : 0 .100:
: ty : 69.286 I : DT2: -o.1 so:
: tz: = -75.9291 :d t 3: = 0.999:
! rx ! 0.107: :d t 9 : 0.199;
I ry : 0.391 : : d t s : - o . 1 0 :
! r z I 1.085:

dN dO dA dP
1
4 -0.013 0.599 0.967 196.598:

dT: : 0.795 -0.696 0.373 69.286!
1
1 -0.299 0.199 -0.213 -75.929 I
1
1 0 0 0 1

Figure 6.18. Reverse Solutions via Derivatives Display

2 7 3

D. THE CONTROLLING PROCEDURE

Procedure v e l o c i t y _ c o n t r o l begins by initializing the joint variables, joint,

translational, and rotational rates, and position and orientation matrix. The rates arc

set to zero while the joint variables and positin and orientation matrix arc copied from

the current values; this is done so that the originals will remain unaffected as no

movement is performed by this chapter. The procedure continues by displaying first

an introductory screen, depicted in Figure 6.19, and then an options screen, shown in

Figure 6.20
for Ci = 1; i <= 5; i++)

{thetati] = original_theta[i];
dtheta[i] = 0;
}for (i = 1; i <= 6; i++)
delta_trans_rot[i] = 0;

for Ci = 0; i <= 3; i++)for (j =0; j <= 2; j + +)noap[i][j] = original_noap[i][j];
dsply_velocity_introduction ();
uait_then_erase (9); dsply_vc_selection ();uhile (Copt = get_option(3)) != 0)

{prompt_msg1 = "Enter New Theta Values? (Y/N)";
projnpt_msg2 = "(<N> = continue uith previous values)"; qc = prompt_input char (prompt_msg1, prompt_msg2);
if Cqc == 'Y')

{get_theta (theta, rou, colsCO]);
noap_matrix (theta, noap, rou, cols);
}uait_then_erase (9); suitch (opt)
{case 1 : for_sol_via_jac (theta, dtheta);

break 1case 2 : rev_sol_via_ij (theta, delta_trans_rot);
break;

case 3 : rev_sol_via_deriv (theta, noap, delta_trans_rot); break;
}dsply_vc_selection ();

}uait_then_erase (8);
noap_matrix (original_theta, original_noap, rou, cols);

The procedure then iterates while velocity control options are selected. After an option

has been chosen, the opportunity is presented to change the settings of the joint

variables; these values cannot be changed within an option. Velocity control is

274

terminated when an option ofO is selected. The documented listing for the procedures

associated with the velocity control portion of the overall program may be found in

Appendix F.

Armatron Manipulator Control
Theta

- 1 1 5 . 0 0 0 N O A P
2 5 . 0 0 0 : 0 . 7 9 0 - 0 . 5 1 6 0 . 3 3 1 3 9 . 5 6 6
5 o . o o o ; 0 . 1 9 5 - 0 . 3 0 0 - 0 . 9 3 4 - 2 6 0 . 6 9 2
6 5 . 0 0 0 0 . 5 8 1 0 . 8 0 2 - 0 . 1 3 7 5 5 . 7 4 5

- 3 5 . 0 0 0 : 0 0 0 1

Velocity Control
This section calculates the velocities of

the end coordinate frame or the joint variables.
Options:
1) Forward Solutions via Jacobian

-the end coordinate frame rates resulting
from a given set of joint rates are found

2) Reverse Solutions via Inverse Jacobian
-the joint rates resulting from a given set
of coordinate frame rates are obtained
using matrix algebra

3) Reverse Solutions via Derivatives
-the joint rates resulting from a given set
of coordinate frame rates are obtained from
derivatives of the position-orientation
equations

Figure 6.19. Velocity Control Introductory Display

Armatron Manipulator Control
Theta

-115.000 N O A P
25.000 ; 0.790 -0.516 0.331 39.566
50.000 : 0.195 -0.300 0.939 260.692
65.000 : 0.581 0.802 0.137 55.795

-35.000 : o 0 0 1

Velocity Control
Solution Options
1 : Forward Solutions via Jacobian Matrix
2 : Reverse Solutions via Inverse Jacobian
3 J Reverse Solutions via Derivatives
0: Terminate Velocity Control

Option 1 has been selected

Figure 6.20. Velocity Control Menu Display

277

VII. TRAJECTORY CONTROL

The topic of this chapter, controlling the trajectory of the manipulator end, is one

that is not as heavily manipulator dependent as the topics of previous chapters. Thus

the Armatron configuration will not play as significant a role as before. However,

trajectory control is fundamental in robotics, and as such it is included here. Another

interesting aspect of trajectory control is its strong connection to computer graphics in

its use of spline polynomials; see [Folc83] for further comparisons.

A manipulator trajectory can be defined in cither of two ways. The first type of

trajectory consists of the three dimensional coordinates representing points or nodes

through which it is desired to have the manipulator end frame origin pass. Associated

with each of these nodes will be a desired orientation of the manipulator end

coordinate frame. The second type of trajectory is a sequence of joint variable

combinations which the joints are to attain. This is essentially the set of solutions of

the nodal positions and orientations of the first trajectory type. The process derived

in this chapter shall develop this second type of trajectory; the material in Chapter 5

would allow extension to the first type. The sets of joint variable values to be attained

along the trajectory may be thought of as points or nodes just as the coordinates of the

trajectory of the first type are; the joint variable sets will be referred to as points or

nodes throughout this chapter. The derivations will develop third- and fourth-order

polynomials which meet the necessary conditions. While the process is carried out in

the geometric sense, it applies equally in terms of joint variables. The development of

the program is carried out in stages, in parallel with the derivation of equations and

numerical example.

278

A. SPLINE POLYNOMIALS

Equations shall be developed in this section to define the settings of the joint control

variables at any time throughout the traversal of the trajectory; more specifically,

individual equations shall be generated to define the value of each joint variable

individually with respect to a common time t. In addition to passing through each

of the path nodes, the equations developed will also provide continuity in velocity and

acceleration through each of the nodes.

1. Derivation of Equations. The derivation of this section shall develop

trajectory equations for one of the manipulator's five joints. The problem then

becomes one of fitting curves to a set of points in a plane.

a. Distance-Based Time Units. The problem to be solved has only one parameter

as presented, and that is the nodal values which the joint variables must attain.

Nothing is required of the manipulator as to how quickly the path is to be traversed

along any given segment. An amount of time measured in as yet unknown units shall

first be allocated for the traversal of the trajectory between any two path nodes.

Consider an arbitrary pair of successive nodes along the trajectory, / and i + 1, as

depicted in Figure 7.1. While the range different joints have to cover between nodes /

and i + 1 may differ, the amount of time to be used by each does not. Each of the

Armatron's five joints must move the difference between its value at node i and /+ I

in the same amount of time. An arbitrary amount of time shall be allocated based

upon the "distance" between successive nodes for use by each of the five joints; the time

between nodes i and i + 1 shall be defined as t,.

(7.1)

279

Figure 7.1. Trajectory for a Single Joint Variable

The equations in the following sections shall be derived with respect to the arbitrary

units of time defined by Equation (7.1). Subsequent to that, a scaling factor will be

developed for traversal of the trajectory in a minimum of time.

b. Internal Spline Segments. Consider again the arbitrary internal segment along

the path depicted in Figure 7.1 from point P, to point P,+1. The spline polynomial for

this segment, S,, will have four boundary conditions placed on it, the first two of which

state that the polynomial pass through the segment endpoints.

The second pair of conditions states that the velocity of the polynomial take on

specific, but as yet undetermined, values.

5,(0) - P, (7.2)

(7-3)

(7.4)

280

S'iih) = P 'i+] (7.5)

The vclocilies at the end and beginning of adjacent segments will eventually be made

equal; this fact does not play a part in the development of the spline polynomial at this

point, however.

In order to meet the four specified conditions, the spline polynomial must have

four coefficients, or be cubic.

Sj(t) = A i + Dji + Q r + Dji (7.6)

The coefficients of S,(i) arc found by using the boundary conditions above. The

endpoint conditions for the segment are substituted into Equation (7.6) first.

•5,(0) = A , + B j (0) + C(-(0)2 4- £>;(0)3 (7.7)

P) = A j (7.8)

(7.9)

P ’/+] = A i + B f i + Qtf + D j t ? (7.10)

The spline polynomial is then differentiated so that the velocity conditions may be

used.

= Bi + 2Cjt + 3 Dfr (7.11)

S’HO) = Bl + 2Q(0) + 3 A(0)2 (7.12)

P'i = Bi (7.13)

S',(r;) = 5, + 2Q(6) + 3A<f)2 (7.14)

281

= Bi + 2Citi +3D it? (7.15)

Coefficients A, and D, are defined explicitly by Equations (7.8) and (7.13), respectively,

while coefficients C, and D, are determined from manipulating Equations (7.10) and

(7.15) after At and B, have been removed by substitution. First, C, is obtained by

multiplying Equation (7.10) by 3, multiplying Equation (7.15) by — and adding the

results.

3 Pl+i = 3 P, + 3P',tt + 3 Cjtf + ID,!?

- P ' i+lt i= ~ P'ih ~ 2Cjij — 3D't?

2Pi+]- p ' i+]ii = y >i + 2P'ill+ c i,f

„ „ - Pi) (P'i+1 + 2P'i)L; = J ------- -------------------- :--------

(7.16)

(7.17)

(7. IS)

(7.19)

(7.20)

Coefficient D, is next obtained by multiplying Equation (7.10) by 2, multiplying

Equation (7.15) by —t„ and adding the results.

2P i +] = 2P i + 2 P ' j t i + 2Q l ? + 2 D s ? (7.21)

P ' l + P i = ~P' i l i — 2 C j i ? — 3 D j t ? (7.22)

2PM - ~ 2Pi + r ' / l - D l ’ l (7.23)

„ 2 Pi . r , . r M
‘ 13 f.2 [} i ?

(7.24)

282

(7.25)

The equations for the four coefficients apply for 2 < i < n — 2, that is, each of the spline

segments except the first, 1, and last, n-1. Additional conditions will be seen to exist

on these terminal segments.

The coefficient equations depend upon the length of time spent on the segment

interval, the segment endpoints, and the velocities at the segment endpoints. These

endpoint velocities shall now be defined so that the acceleration at the end of one

segment is equal to the acceleration at the beginning of the next. This will guarantee

a smooth velocity at each path node. This is accomplished by equating acceleration

equations, as they have not been employed yet.

The first derivative, or velocity function, of the segment polynomial in Equation

(7.11) is differentiated again to produce the segment's acceleration function.

First consider the acceleration at the end of the i'h segment; Equations (7.20) and (7.25)

supply substitutions for C, and £>„ respectively.

S"i(t) = 2C(- + 6 Dji (7.26)

(7.27)

(7.29)

2 8 3

(/ W , + .) , „ (P 'i + 2 P ' i+])
S"iUi) = 6 ------- 5 ~ ̂ 2 (7.30)

Next, consider the acceleration at the beginning of segment /+ 1. Coefficient is

substituted for by Equation (7.20).

S",+ I(0) = 2C,+1 + 6D/+1(0) (7.31)

S"» i(0) =
(^+2 ~ P M) (P'i+2 + 2P'i+\)

d l ‘ i+1
(7.32)

The segment i end accelerations in Equations (7.30) and (7.32) are then set equal.

„ (Pi-PM) , . (p 'i + 2 p 'i+ i) „6 ------- r-------- h 2 -------------------= 2 (/V2-^+>) (/>'/+2 + 22V l)

Cfi ‘ i+1
(7.33)

(P i ~ pi+1) (^'/ + 2P '/+i) „ (P m ~ pi+1) (^',+2 + 2/>'»i)+ h d i ‘i+i
(7.34)

(P',+2 + 2P'i+1) (/>',•+ 2F,.+1) ̂ (Pf+2- P /+1)
O+i

• +
d.

- 3 (7.35)

p ' 1+2 + 2P'i+i + (/>',- + 2 P'i+X) ~ = 3 ■■̂ +2 — _ 3(P. _ p) (7.36)
'' h+i

zi+i

h

(P ' m + ^'i+iK + (P ' i + 2 P ' i+]) i i+] = 3(Pi+2 - P/+1) -d -----3(A - P,+1) ^ (7.37)(+i

+ 2 ; , r ,+ , + i,+, r , + 2,i+ , r , +1 - 3 (P M- -3 - P M) d ± i- (7.38)
‘ i+1 ‘ i

2 8 4

Note that this equation is defined for pairs of spline segments / and /+ 1. The first

pair for which the equation holds is / = 2 and / + 1 = 3 as spline 2 is the first cubic

polynomial. The last pair for which the equation holds is / = n — 3 and / + 1 = n — 2,

since spline /7 — 2 is the last cubic polynomial. The index / for the equation then ranges

from 2 to n — 3. This is a total of n — 4 equations, but there are n — 2 unknown

velocities at the internal trajectory nodes. When the spline polynomials, and hence the

acceleration functions, for the first and last trajectory segments arc defined, two more

velocity equations will result and all of the internal node velocities may be determined.

c. The First Spline Segment. The first spline segment differs from the

intermediates in that it has five, instead of four, initial conditions to satisfy. Like the

intermediate segments, the polynomial must pass through its endpoints.

The velocity at the start of this first segment is zero as the manipulator has not begun

to move, while the velocity at the endpoint P2 takes on an as yet undetermined value.

S,(0) = P, (7.40)

S i(/ ,H P 2 (7.41)

S',(0) = 0 (7.42)

s\ ih) = r 2 (7.43)

In addition to these constraints, the acceleration at the start of the segment must also

be zero, again reflecting the motionless state of the manipulator.

Five coefficients are required of a polynomial to meet these conditions, so it must be

a quartic.

S,(/) = A} + /?,/+ C,/2 + Z),/3 + E/ (7.45)

The coefficients of S^t) are obtained by substitutions from the boundary'

beginning with the endpoint conditions.

conditions,

S,(0) = yf, + 5,(0) + C,(0)2 + Z),(0)3 + £, (0)4 (7.46)

1\ = A, (7.47)

$,(',) = 4, + 5,(/,) + C,(f,)2 + Z),(/,)3 + £,(/,)4 (7.48)

£2 = 4, "b 5,/, + C]/, + Z),/, + £,/, (7.49)

Differentiation is performed on the spline polynomial, after which the velocity

conditions are imposed.

S' }(i) — 5] + 2C, / + + 4 ZT, r (7.50)

£',(0) = B] + 2C, (0) + 3Z>, (0)2 + 4£,(0)3 (7.51)

0 = 5, (7.52)

S '1(r1) = 5 1 + 2C,(/1)+ 3 D 1(/1)2 + 4£,(/1)3 (7.53)

286

Differentiation is performed on the velocity function of Equation (7.45) so that the

known acceleration may be used.

5”' l(0 = 2C, + 6D,/ + 12 ZTj /2 (7.55)

S'',(0) = 2C, + 5/3>,(0) + 12/T, (0)2 (7.56)

0 = 2C] (7.57)

C, = 0 (7.5S)

Equations (7.47), (7.52) and (7.58) explicitly define coefficients A,, Bu and Ch

respectively. These values arc substituted into Equations (7.49) and (7.54) leaving two

equations to be solved for the two remaining unknowns, coefficients and

/ W i + (0) ' , + (0)/?+ />,/? + £,*? (7.59)

P \ = (0) + 2(0)/, + 3 Z), r2 + 4 E xl\ (7.60)

P 2 = P } + D] t 3, + E /] (7.61)

P'2 = 2D]i3 + 4E]t3 (7.62)

Coefficient Z), is obtained first by multiplying Equation (7.61) by

Equation (7.62) by —tu and then adding the resultants.

4, multiplying

4?2 = 4P, +4Z),/f + 4£,q (7.63)

- 3 o , (7.64)

4P; - P’2i, = 4/>, + Z)|/j3 (7.65)

287

0 . = 4 ^ 2 (7.66)

Coefficient £, is then obtained by multiplying Equation (7.61) by 3 and Equation (7.62)

by — /, and then adding the consequences.

3/>2 = 3/),+ 3Z)1/2 + 3£,/f (7.67)

P 'ih= - 3 Z V ? - 4 £ , / f (7.68)

3£2 - P V , = 3 £ , - £ 1/f (7.69)

, , (Pi ~ Pi) , P'i
Ei ~ J 4 + 3 (7.70)

The acceleration at the end of the first segment was not specified as an initial

condition. It shall be set equal to the acceleration at the beginning of the second

segment to provide another equation dealing with velocities. The coefficients in the

formula for acceleration in Equation (7.55) are substituted for by Equations (7.58),

(7.66), and (7.70).

S",(/,) = 2C, + 6 ZV, + 12£,/,2 (7.71)

£",(/,) = 2(0) + 6 4 (P2~P l) P' 2
/f

6 + 12 3 (Pi~ Pi) . P'+ (7.72)

$",(*,) = 24
(Pi-Pi)

- 6 -

P',
+ 36 (Pi - Pi) + 12

P\
(7.73)

$ " ,(/ ,)-1 2
(Pi -P i) , , P'i

+ 6 - (7.74)

2 8 8

The acceleration at the beginning of the second segment is obtained from Equations

(7.26) and (7.20).

S"2(t) = 2 C2 + 6 D 2 i

S " 2(0) = 2C2 + 6D2(0)

(7.75)

(7.76)

/ (A - P2) + -P ’2)S"2(0) = 2 3 2 - {------— (7.77)

The ending acceleration of segment 1 and the beginning acceleration of segment 2 arc

then set equal.

S",(/1) = 5 ”2(0)

12 {Px = 2 (P3 ~ Pi) (P'3 + 2P'2)

(P1 ~ 2̂) . - P'7 , ~ 2̂) (f j + 2/>'2)
h

(P'3 + 2P'2) />'
----- — + 3 — , (p3 - /y „ (/», - /y= J -------r-------- 6 --------------

(P’3 + 2 P'2)h + 3 P'2h = 3 (P3 - P 2) ~ - 6 {Px - P 2)

hP'3 + (2/, + 3/2) F 2 = 3(P3 - F2) + 6(/>2 - />,)

(7.7S)

(7.79)

(7.80)

(7.81)

(7.82)

(7.83)

d. The Last Spline Segment. The derivations for the last spline segment parallel

those of the first segment. It shall likewise have five boundary conditions and thus be

289

a quartic polynomial. As before, the boundary conditions state that the spline must

pass through its endpoints.

s n_x(0) = pn_ x (7.84)

(7.85)

The velocity at the starting endpoint of the segment, is still undetermined, while

the velocity at the spline's end becomes zero as the manipulator must come to a stop.

£'„_,((» (7.86)

= 0 (7.87)

The fifth condition states that the acceleration at the end of the segment must become

zero, again because the manipulator is stopped.

S V ,('* - ,) = 0 (7.88)

Substitutions from the boundary conditions, starting with the endpoint specifications,

will obtain the coefficients of S„-,(r).

Sn-lM = An-\ + Bn-\l + + Dn-1/3 + (7.89)

^ - ,(0) - An_x + V , (0) + C„_,(0)2 + Dn_ x(0)3 + £„_](0)4 (7.90)

V i = ^ - 1 (7-91)

(/„_,) = A„_x + Bn_ xtn_ x + Cn_ xi2n_x + (7.92)

B n = A „ _ i + i + Ai-i'n-i + (7.93)

290

The spline polynomial is differentiated prior to use of the velocity constraints.

£'„_,(/) = V i + 2 C„_j/ + 3 D n _ / + 4 £ „ _ / (7.94)

+ 2C„_i(0) + 3Z9/I_1(0)2 + 4£„_,(0)3 (7.95)

= V i (7-96)

S '- i (V - i) = V - i + 2 C„_ ,(/„_)) + 3/)„_,(//7_1)2 + 4£„_t(//1_1)3 (7.97)

0 = B n _ j + + 3Z)/l_ ,/2_] + 4£/?_ ,/3_ 1 (7.98)

Finally, the acceleration condition calls for the spline to be differentiated a second time.

S "„_ ,(0 = 2C„_) + + 12£„_,/2 (7.99)

S 'V - i^ - i) - 2C„_j + 6 D n . , (i n _ ,) + \ 2 E n _ x { i n _ , f (7.100)

0 = 2 C„_j + 6Z)/I_ 1/n_, + 12£„_]/A!_] (7.101)

Coefficients A-i and are explicitly defined by Equations (7.91) and (7.96),

respectively. Their values are substituted into Equations (7.93), (7.98), and (7.101)

leaving three equations to be solved this time for the remaining unknowns, C„_,,

and £„_i.

V = V l + P'n-l'*-l + Q - , 'L i + + V - l ' i - l (7.102)

0 = / V i + 2C„_,/n_, + 3Z)„_,fw2_, + 4£„_,/3_ ! (7.103)

0 « 2 C ^ 1 + 6Z V I^ 1 + 12EB_1/J_1 (7.104)

291

Coefficient C„_i shall be obtained first. The process begins by eliminating from two

pairings of the three equations. Equation (7.102) is multiplied by 4, Equation (7.103)

is multiplied by — u and the results are added.

4Pn = 4Pn_\ + 4 / V , '* - , + 4C„_1/2_, + 4Z)„_1/3_ 1 + 4 £ „ _ i/„4_1 (7.105)

0 = -2C„_,/„2_1 -3Z)„_,c3_, -4 E „ _ 1c4_ 1 (7.106)

4 ^ = + 3 Z V .'„ - , + 2Q_,/„2_, + / V ,,3. , (7.107)

Next, Equation (7.103) is multiplied by 3, Equation (7.104) is multiplied by and

the results arc added.

0 = 3 + 9 Dn_ / n_, + (7.108)

0 = - 2 Cn_ xtn_, - - 12£„_,r3_, (7.109)

0 = 3 + 4C/,_1fn_ I + 3Z)„_,r2_, (7.110)

Equations (7.107) and (7.110) are in terms of C„_, and Z)„_, only. Equation (7.107) is

multiplied by 3, Equation (7.110) is multiplied by and the results are added to

obtain C„_,.

12Z>„ = 12Z>n_ 1 + 9/>'n_,tn_i + 6Cn_t/n_i + 3Z)n_ l/n3_i (7.111)

0 = — 3£ n-ffn-i “ 4C„_]tn_] — 3Z)„_1/n_] (7.112)

12P„ = 12P„_] + + 2C„_,/2_1 (7.113)

C n_ / n_ ^ 6 P n - 6 P n_ , - l , F n^ n_ x (7.114)

292

Q _, = 6 - 3
P'n—\

ln- 1
(7.115)

Coefficient is obtained by multiplying Equation (7.107) by 2, multiplying Equation

(7.110) by and adding the results.

8 Pn = 8/V, + + 4C„_1/2_ ! + 2 Dn_ xtl_x (7.116)

0 = -2>P'n_,tn_x- 4 C n_ / n_, - W n_}t3„_, (7.117)

8 ^ = 8 (7 . 1 IS)

-S / ^ + S / V ,^ , (7-119)

Z?„_1 = 8 - - ^ - + 3 (7.120)
9?-l 9?-l

Finally, coefficient is obtained by substitutions for C„_, and D„_, into Equation

(7.104).

0 = 2C„_, 4- 6Dn. , i n_, + I2£„_,/fl2_, (7.121)

0 = 2 6 (P n -P n -0 P'- 3
‘n—1 ln-\

+ 6 8 (Pn- ! ~ Pn) . , ' V ,+ 3 —2---- r„_, + 12£„_,^_,
'/i-i *n-l

(7.122)

6 £ „ - ,C , = - 6 (^ - V ,) . , P'4-3
ln-1

n— 1
‘«-l

- 3 8 (Pn- 1 - ^) . , ^ n- 1

‘fl-1
(7.123)

293

2 E,„ 2 , (P .-P n -O . / V , A pn ^ - ? n) . ' V ,
: n - E n - l - - 2 7 r “ 7 « 7 3 —

‘/!-l ‘ n-1 n—1 'n— 1
(7.124)

2 ^ ,- iC , = 6
{Pn-Pn-y) 2 £ jn -1

‘ n-1 ‘ n - 1
(7.125)

£ ,- i - 3
(^ - ^ - ,) /,v (7.126)

‘ n - i ‘ n-1

The accelerations from the left and right of node n — 1 arc equated as before to provide

a final equation involving velocities. The acceleration at the end of the next to last

segment is found by substituting coefficients C„.2 and Z)„_2 from Equations (7.20) and

(7.25), respectively, into the acceleration formula of Equation (7.26).

$ V 2(') = 2C„_2 + 6 Dn_2t (7.127)

„„ , , ,L (^1 - Pn-2) (P'n- 1 + 2 ^ -2)
•3 n - l l 'n - 2 J — Z \ J 2

'n - 2

+ 6 2

‘n -2

(P * - 2 - ^ n - l)

(7.12S)

‘ n—2
n - 2 ' n - 2

,, , C (f - - U (/ y , + 2 ^ 2)
O /,_ 2V‘ n -2 l — 0 2 Z

'n —2 ' n -2

, (P n -2 -P n -l) . , (^ - 2 + ^ - ,)+ 12-------- r------------h 6 -------- -------------
(7.129)

'n -2 'n -2

S " n_2(r„_2) = 6 (P * - 2 - P * - l) , . (^ 'n - 2 + 2 /> 'n - l)+ 2
'n -2 'n -2

(7.130)

The acceleration at the beginning of the last interval is found by substituting coefficient

C_i of Equation (7.115) into the acceleration formula of Equation (7.99).

294

S V iW = 2C„_, + 6D n_]l+ \2En_ / (7.131)

S"„_i(0) = 2Cn_ } + 6D„_,(0) + 12£„_](0)2 (7.132)

S V ,(0) = 2 U

The ending acceleration of the next to last segment and the beginning acceleration of

the last segment are then set equal.

(P n -P n -l) r- 3 ' n -1

‘n- 1 ‘n- 1
(7.133)

5 " n _ 2(r „ _ ,) = 5 " /!_ 1(0) (7.134)

6 (^ J + 2 6 — 3 , (7 j 3 5)
‘ n -2 ‘n - 2 'n -1 ‘ n-1

(P 'n- 2 + 2P'n_ 1) . „ , (/»„ - v .) , (^n_2 - ^n-l) „--------- ;---------------—----------= 6 -------- ------------ e>--------- ----------- (7.136)
‘n -2 ‘ n-1 ‘ n-1 ‘ n -2

(P'n-2 + 2P'n_X-l + lP'n-̂ -2 = 6{Pn ~ P ~ 3(/>„_2 - />„_,) ~~
‘ n - 1 ‘ n—'

‘ n-1

(2/„_, + 3v J / V , + ~ «(/’» - V i) f ^ 1 + - />„_J 71 1 * .
‘ n-1

n-1 'n -2

(7.137)

(7.138)

The coefficients for each of the spline polynomials were seen to be dependent on the

spline endpoints and the velocities at the endpoints; thus the velocities must be

determined prior to evaluation of the spline coefficients. As stated previously, the two

ends of the trajectory have velocities of zero; this leaves n — 2 unknowns. Equation

(7.39) provided n — A equations and Equations (7.83) and (7.138) provide the additional

two needed to result in a system of n - 2 equations in n - 2 unknowns. These

equations may be thought of in the following matrix form.

295

2/] + 3 /2 o

i-------

o

1

ro
..

1 1-------fN

1-------

h 2(̂ 2 + h) h 0 ^ 3 *3

0 /4 2 (i3 + /4) '3 ^'4 *4

^ '5
=

5̂

. /Vn-3 ^n-3

0i-2 2('n-3 + ln-2) 'n-3 ^'n-2 ^n—2

• 0 n̂—1 2t„_] + 3//)_2 '̂n-1 V ,

(7.139)

The elements of the right hand matrix in liquation (7.139) arc defined by the following

equations.

^2 = 3-^- (P3 - P2) + 6 (P2 - />,) (7.140)

/̂+, = 3 (Pi+2 — Pi+\) + 3 ~y ~ (/,,+i — Pi) for 2 </</? — 3 (7.141)
‘ i+1 ‘i

*n-i = 6 ^ { P n - />„_,) + 3 -£= r (/>„_, - V ,) (7.142)
‘ n-1 ‘ n -2

2. Numerical Example. This section shall derive the spline polynomials which

define an arbitrarily selected trajectory for the Armatron manipulator. Consider the

following set of joint coordinates:

^1 = (0*. o', 0*. 0*, 0*) (7.143)

P2 = (10*, 6*, 20*, —5*, 180*) (7.144)

P3 = (25*, 12*, 40°, —7*, 45*) (7.145)

296

PA - (0 , 0 , 7 5 , 22 , 45) (7.146)

P5 = (20 , —3 , 80 , 1 2 , - 9 0) (7.147)

P6 = (—75 , 1 0 , 6 0 , 3 5 , 9 0) (7.148)

P1 - (- 115 , 25 , 50 , 65 , - 35) (7.149)

As there are seven nodes, spline polynomials will be generated for six segments. For

each of the six segments, one polynomial will be generated for each of the five

Armatron joints, bringing the overall number of polynomials to thirty. For the

numerical example, only the trajectory of the first joint is considered.

The first step is the determination of arbitrary time units between nodes.

Equation (7.1) defined the amount of this time to be the geometric distance between

the nodes in five-dimensional space.

r, = x/(10’ - 0’)2 + (6’ - O*)2 + (20° — O')2 + (-5 ° - 0’)2 + (1 SO* - 0")2 (7.151)

(7.150)

/, = 181.552 (7.152)

Similarly,

t2 = 137.441 (7.153)

t3 = 53.245 (7.154)

r4 = 136.963 (7.155)

297

is = 206.211 (7.156)

:6 = 135.831 (7.157)

As observed during the derivation of equations, the polynomial coefficients are

dependent upon not only the node values and the amount of time between the nodes

but also the velocities at the nodes. Equations (7.139) through (7.142) are employed

here to determine these velocities.

2/, + 312 h 0 0 0 ^2 2̂

h 2(̂ 2 + ll) h 0 0 ^3 *3

0 h 2{t3 + 0j) h 0 =

0 0 5̂ 2(/4 + ;s) u R5

0 0 0 '6 2/6 + 3/5 ^6 6̂

(7.15S)

« 2 “ 3 | - (f 3 - ^) + 6 y - (P 2 - P ,)
‘2 M

(7.159)

R> = 3 I37~441 (25 ' 10) + 6 Ygpylj' (1 0 - 0) = 104.865 (7.160)

* - i - 6 ,
n-2

n-1 'n -2
(7.161)

D n 206.211
'<6 b 135.831 (- 1 1 5 - (- 7 5)) + 3 135.831

206.211 (- 7 5 - 20) = -5 5 2 .0 8 4 (7.162)

- 3
0

O+i
O+i

(/’/ « - /Vi) + 3 for (7.163)

“ 3 4 . (/>4 - P}) + 3 4 - (P, - P2) (7.164)

298

*3 = 3
137.441
53.245 (0 - 25) + 3 53.245

137.441 (2 5 - 10) = -176.164

tf4 = 3^(/>5 - / ’4) + 3 ^ (P 4 -/ Y)
M *3

Ra = 3 (20 - 0) + 3 (0 - 25) = -169.598ji.ZM J136.963

*5 = 3 "T” (*6 — *$) + 3 —— (Ps — PA)
* s * A

PnJ t-n

II 136.963
3 206.211

- (- 7 5 - 20) + 3 -206.211 ,20 q)
136.963 L J

= -98.958

775.427 181.552 0 0 0 P’2 104.865

53.245 381.372 137.441 0 0 P'3 -176.164

0 136.963 380.416 53.245 0 P\ = -169.598

0 0 206.211 686.348 136.963 P ’s -98.958

0 0 0 135.831 890.295 P't -552.084

775.427 181.552 0 0 0

r
<N

6*
i____ 104.865

0 368.906 137.441 0 0 * ' 3 -183.365

0 0 329.389 53.245 0 p\ = -101.520

0 0 0 653.014 136.963 P's -35.402

0 0 0 0 861.806 P's -544.720

(7.165)

(7.166)

(7.167)

(7.168)

(7.169)

(7.170)

(7.171)

2 9 9

1 0 0 0 0 P'2 0.224

0 1 0 0 0 P'3 -0 .377

0 0 1 0 0 P'a = -0.321

0 0 0 1 0 P's 0.078

0 0 0 0 1 P' 6 -0.632

(7.172)

With the node velocities in hand, the coefficients of the polynomials may be

determined. Equations (7.8), (7.13), (7.20), and (7.25) state the formulas for the

coefficients of the constant, linear, quadratic, and cubic terms, respectively, of the

internal spline polynomials.

Ai = P i

Bi = P'i

Q — 3 P» i

h

P'm + 2 P'i

D, = 2
Pi~ , P'i + P’i+,

h

A2 = 10

B2 = 0.224

r - 2 5 -1 0 -0-377 + 2(0.224)
2 (137.44I)2 137.441

1.866E-3

D _ 2 1 0 -2 5 | 0.224+ (-0.377)
2 (137.441)3 (137.441)2

— 1.965E-5

(7.173)

(7.174)

(7.175)

(7.176)

(7.177)

(7.178)

(7.179)

(7.180)

3 0 0

l\{t) = 10 + (0.224)/ + (1.866E-3)/2 + (- 1 .965E-5)/3 (7.181)

Substitution of i2 into Equation (7.181) provides a quick check to show that the

polynomial docs indeed pass through the segment end value of 25.

/>2(13 7.441) = 25.019 (7.1S2)

The remaining intermediate polynomials are obtained and checked in similar fashion.

A3 = 25 (7.183)

B3 = -0.377 (7.1S4)

0 - 25 -0.321 + 2(-0.377)
C3 = 3 — — ------------- r r— -------- L = -6.265E-3

(53.245)2 ^•24:>
(7.185)

25 - 0 -0.377 + (-0.321)
D 3 = 2 — — —t- + --------------— r------- = S.503E-5

(53.245)3 (53.245)2
(7.186)

P3(j) - 25 + (-0.377)/ + (—6.265E-3)/2 + (8.503E-5)/3 (7.187)

7>3(53.245) = 0.001 (7.188)

oIIV-*
x: (7.189)

Z?4 = —0.321 (7.190)

2 0 - 0 0.078 + 2(-0.321)
^4 *“■•4 I -j/ — /. .51 oL,*o

(136.963)2 136-963
(7.191)

D _ 2 0 - 20 | - 0 . 321+ 0.07S
4 (136.963)3 (136.963)2

— 2 . S 5 2 E - 5 (7.192)

3 0 1

PA(t) = 0 + (-0.321)1 + (7.316E-3)/2 + (-2.852E-5)/3 (7.193)

PA{ 136.963)= 19.999 (7.194)

A5 = 20 (7.195)

B5 = 0.078 (7.196)

-7 5 - 20 -0.632 + 2(0.078)c = 3 - u- ----------------- -----i-- - - - - - - L = —4.394E-3
(206.211)2 206.211

(7.197)

20 - (-75) 0.078 + (-0.632)
D5 = 2 -------------- f + ----------- ------ -— - = 8.640E-6

(206.211)3 (206.211)2
(7.198)

P5{r) = 20 + (0.078)/ + (-4.394E-3)/2 + (S.640E-6)/3 (7.199)

/>s(206.211) = -75.000 (7.200)

Each internal polynomial is observed to produce a value near its desired endpoint at

the end of its time interval.

Equations (7.47), (7.52), (7.58), (7.66), and (7.70) define the coefficients of the first

spline polynomial's constant, linear, quadratic, cubic, and quartic terms, respectively.

= (7.201)

^i = 0 (7.202)

i = 0 (7.203)

C , = 0 (7 . 2 0 4)

3 0 2

P2 ~ Py P\/) = 4 — ---------- !------------- —
3 2

'l

D, = 4 1 0 - 0 0.224
(181.552)3 (181.552)2

= —1.116E-7

E. = 3 4
Py ~ P2 />''

/T, = 3 —-— — ° ? 1 1 = 9.819E-9
(1SI.552)4 (1S1.552)3

/>,(/) = 0 + (0)/ + (0)/2 + (-1 .1 16E-7)t3 + (9.S19E-9)/4

^,(1 SI .552) = 10.000

(7.205)

(7.206)

(7.207)

(7.208)

(7.209)

(7.210)

Equations (7.91), (7.96), (7.115), (7.120), and (7.126) define the coefficients of the

terms in increasing order of the last spline polynomial.

An-\ — ?n-1 (7.211)

A6 = -7 5 (7.212)

= P'n̂ (7.213)

B6 - -0.632 (7.214)

(Pn~Pn- ,) „ P'n-y
tl , (7.215)

r _ r (- 1 1 5 ~ (~ 7 5)) -Q.632
6 (135.S31)2 135.831

= 9 . 5 0 4 E - 4 (7 . 2 1 6)

303

D n _ \ — 8
Pn—1 p „

-f- 3 ■
p\

ln-\ n— 1
(7.217)

d6 = s
-75 -115)

(135.831)J
+ 3 -0.632

(135.831)2
= 2.493E-5 (7.21 S)

£*-, = 3
P - P1 n 4 in-i F «-i

‘n-1 ‘ n -1

(7.219)

F _ - 1 1 5 - (- 7 5)
'6 (135.831)4

---- -1.003 E-7
(135.831)3

(7.220)

P6(t) = -7 5 + (-0.632)/ + (9.504E-4)/2 + (2.493E-5)/3 + (-1.003E-7)/4 (7.221)

756(135.831) = -114.976 (7.222)

The spline polynomials for joint variables d2, 6i, 6t, and 9S are obtained in a

parallel fashion.

Figure 7.2 graphs the information obtained about the trajectory in this section.

The nodal velocities are used to give some indication as to the slope of the spline as it

passes through the nodes. The values used arc those obtained by the program

example.

3. Program Control. The input of nodes along the desired trajectory' is controlled

by procedure n o d e s _ a n d _ d is ta n c e s . This procedure determines the distances,

or scale times, between nodes also. The body of the procedure follows.

dsply_nodes_dists (Srou. cols);n = input_nodes (theta, row, cols); calc_distance (n, theta, t, rou, cols[6]);wait_then_erase (10); return (n);

304

The determination of the spline polynomials is performed by procedure

c a l c po ly n o m ia ls . This process is performed in two steps by procedures

c a l c _ n o d e _ v e l o c i t i e s and c a l c _ c o e f f i c i e n t s ; these two procedures

form the entire body of c a lc _ p o ly n o m ia ls , as follows.
calc_node_velocities (n, p, t, vel);calc_coefficients (n, p, t, vel, a, b, c, d, e);

Procedure c a l c _ n o d e _ v e l o c i t i e s in turn invokes procedures to follow the steps

described in the derivations and examples of this section. The procedures themselves

are straightforward.

dsply_node_velocities (&rou, cols);
equate_quartic_cubic_accs (t, p, coeff, rhs, rou, cols);
equate_cubic_accs (n, t, p, coeff, rhs, rou, cols);
equate_cubic_quartic_accs Cn, t, p, coeff, rhs, rou, cols); uait_then_continue C);
foruard_eliminate_term1 (n, coeff, rhs, rou, cols);
uait_then_continue ();
backuard_eliminate_term3 (n, coeff, rhs, vel, rou, cols);
uait_then_erase (10);

Procedure c a l c _ c o e f f i c i e n t s determines the polynomial factors in three groups:

starting, intermediate, and ending.

dsply_coefficients (&rou,
calc_starting_quartic

cols)
<P.

;
t, vel, a, b, c, d. e, rou, cols);calc_intermediate_cubics (n, p, t, vel, a, b, c, d, e, rou. cols);calc_ending_quartic (n, p, t, vel, a, b, c, d, e , rou, cols);

305

wait_then_erase (10);

4. Program Example. Figure 7.4 shows the display observed during the input of

joint variable sets. There is virtually no difference here between the distances

calculated in Equations (7.152) through (7.157) and those shown in the figure. Figure

7.4 gives the display reflecting the calculated matrix equation for the determination of

the nodal velocities; comparison with Equation (7.170) shows only insignificant

differences in values. Figures 7.5 and 7.6 reflect the status of the matrix equation after

the forward and backward elimination steps, respectively. Comparison with Equations

(7.171) and (7.172) again shows only insignificant differences. Finally, Figure (7.7)

shows the display of polynomial coefficients for the spline polynomials of the first joint

variable. Comparison with the coefficients of Equations (7.209) , (7.1 Si), (7.187),

(7.193), (7.199), and (7.221) will show that an increasing amount of precision has been

lost in the numerical example.

Armatron Manipulator Control
Theta

0.000 N 0 A P
0.000 : 1 . 0 0 0 o .000 0.000 200.000!
0.000 : o.ooo - 1 .000 0.000 0.000!
0.000 : o.ooo o . 000 -1.000 100.000!
0.000 : o o 0 1 !

Traj ectory Control
Input of Nodes Along Desired Trajectory

1 0.000 0.000 0.000 0.000 0.000 181.552
2 10.000 6.000 20.000 -5.000 180.000 137.441
3 25.000 12.000 40.000 -7.000 45.000 53.245
4 0.000 0.000 75.000 22.000 45.000 136.964
5 20.000 -3.000 80.000 12.000 -90.000 206.211
6 -75.000 10.000 60.000 35.000 90.000 135.831
7 -115.000 25.000 50.000 65.000 -35.000

Figure 7,3, Input of Nodes and Seale Times

oo

Armatron Manipulator Control
Theta

0.000 N 0 A P
0.000 1i 1.000 0.000 0.000 200.000
0.000 i1 0.000 -1.000 0.000 0.000
0.000 1l 0.000 0.000 -1.000 -100.000
0.000 l1 0 0 0 1

Trajectory Control
Trajectory for Joint 1

Node Velocities
i veltl-1) vel(i) vel(i +1) rhs
2 775.426 181 . 552 104.865
3 53.245 381.371 137 .441 -176.165
4 136.964 380.416 53 . 245 -169.600
5 206.211 686.349 136 .964 -98.959
6 135.831 890.295 -552.084

Figure 7.4. Node Velocity liquation Coefficients

LO
o-J

Armatron Manipulator Control
Theta

0 . 0 0 0 N o A p
o . o o o : 1 . o o o 0 . o o o 0 . 0 0 0 2 0 0 . 0 0 0
o . o o o : 0 . 0 0 0 - 1 . o o o 0 . 0 0 0 0 . o o o
o . o o o : 0 . 0 0 0 0 . 0 0 0 - 1 . o o o - 1 0 0 . 0 0 0
o . o o o : 0 0 0 1

Trajectory Control
Trajectory for Joint 1

Node Velocities
i vel(i-1) vel(i) vel(i+1) rhs
2 775.426 181.552 104.865
3 368.905 137.441 -183.365
4 329.389 53.245 -101.522
5 653.016 136.964 -35.402
6 861.806 -544.720

Figure 7.5. Node Velocity liquations After Forward Elimination

cOO

Armatron Manipulator Control
Theta

0.000 N O A p
o.ooo : 1.000 0.000 0.000 200.000
o.ooo : 0.000 -1.000 0.000 0.000
o.ooo : 0.000 0.000 -1.ooo -100.000
o.ooo : 0 0 0 1

Trajectory Control
Trajectory for Joint 1

Node Velocities
i velCi- 1) veld) velCi + 1) rhs
2 1.000 0.22A
3 1 . ooo -0.378
4 1.000 -0.321
5 1.000 0.07 8
6 1.000 -0.632

Figure 7.6. Node Velocity Equations After Backward Elimination

O-J
o

Armatron Manipulator Control
Theta

0.000 N O A P
o.ooo ; 1 .000 0.000 0.000 200.000
o.ooo ; 0.000 -1.000 0.000 0.000
0.000 0.000 0.000 -1.000 -100.000
o.ooo : 0 0 0 1

Trajectory Control
Trajectory for Joint 1
Polynomial Coefficients

A B C D E
1 o . ooo 0. OOO 0.000 -1.000E-07 9.7 5 6E
2 10.000 0.224 1 . 875E-03 -1 .97 0E-05
3 25.000 -0.378 -6.249E-03 8.489E-05
4 0.000 -0.321 7.312E-03 -2.850E-05
5 20.000 0.078 -4,397E-03 8.646E-06
6 -75.000 -0.632 9.519E-04 2 .491E-05 -1.003E

Figure 7.7. Spline Polynomial Function Coefficients

311

B. EXAMINATION OF SPLINE EXTREMA

With the spline polynomials now determined, it must be guaranteed that the

trajectories specified by them will not require the joint variables to attain values outside

of their physical constraints. T his test is performed by examining the velocity functions

of the polynomials. As long as the velocity along the trajectory is increasing or

decreasing, the joint positioning shall continue to do likewise. When the velocity

becomes zero, however, it is possible that the positioning has reached an extremum.

For example, if the velocity had been increasing and eventually became zero, the

velocity could become negative and the positioning would start to decrease; in this

case, a maximum value was attained. On the other hand, the velocity might increase,

become zero, and then begin to increase again; in this case, no maximum is present.

Only the maxima and minima attained by the polynomial need be examined, and these

occur only when the velocity function of the spline polynomial becomes zero.

1. Derivation of Equations. The velocity along a defined trajectory is obtained

at any point by an evaluation of the first derivative of the spline polynomial. The times

at which the velocity becomes zero are then obtained by solving the equation of the

velocity function and zero. The obtained times must then be compared to the time for

which the manipulator is traversing the trajectory' segment in question; if the time is

outside of this window, no further examination need be made. As the trajectory w’as

constructed to be continuous through the second derivative at the nodes, no

examinations need be made at the nodes themselves either. When the critical times

have been determined, the spline polynomials arc evaluated at them to determine if any

out of range conditions will result from an attempt to follow the trajectory'. I f this is

the case, corrective measures must be taken, such as adding additional path nodes to

prevent the exceedance.

312

a. Internal Spline Segments. The velocity function for the C internal spline

segment was given by Equation (7.11). The function is set equal to zero to obtain the

desired times.

S 'fc) = Bl + 2Q + 3 V (7.223)

(3 A-)'cA + (2 Q tcpi + (Bi) = 0 (7.224)

- (2Ci) ± 7 (2 C f - 4(3Di)(Bi)
(7.225)2(3 Di)

—2Q ± 7 ACf — 4{3B;D;)
2(3^)

Lcp<
- Q ± J c f - Z B ^

ZD i

(7.226)

(7.227)

Let the discriminant in the formula for the critical time be represented by d,.

dt — Cf — ZBjD; (7.228)

If discriminant di is negative, there are no solutions to Equation (7.224) and

consequently no extrema. If the discriminant is positive, the.equation has two roots

which must be examined. Finally, if the discriminant is zero, Equation (7.224) has a

double root and there is only one time at which the polynomial must be investigated.

b. The Terminal Spline Segments. As the first and last spline segments are both

fourth order, the solutions for the times of possible extrema occurrences are similar for

both. Equation (7.11) defined the velocity function for the first spline segment. The

solution of the equation of this function with zero is complicated by the presence of a

cubic term. For a cubic equation of the following form

313

/ + CL̂t + — 0

the solution is obtained using the following formulae:

9o1fl2- 2 7 a 3 -2 fli
54

s = { / r + J q 3 + r 2

t - I J r - J & T i?

r, = S + T - - ^ -j

t2 = - j - (S + T) - - ^ + ± i j T (S - T)

3̂ = -Y(5+7)--y--y'V3_(S-n

The velocity function of Equation (7.11) is set equal to zero and adjusted to

of Equation (7.229) so that quantities Q and R may be determined.

S ', (0 = 5, + 2 C 1f + 3D1f2 + 4 £)r3

(4 £ ,)4 >, + (3fli I 'i, + (2C,)'c, + = 0

& + + (■§ ■) « + (« r) " 0

(7.229)

(7.230)

(7.231)

(7.232)

(7.233)

(7.234)

(7.235)

(7.236)

the form

(7.237)

(7.238)

(7.239)

314

2 ,= (7.240)

2 , _£ l
6 £,

_£L
16/;?

(7.241)

2 ,=
l

2£, 3 (7.242)

(7.243)

i _ / ' _ g !_ \ g ?
2 V 4 E I / 64£?

(7.244)

1
8£, 2£ ,

z>r

8£,
(7.245)

(7.246)

Equations (7.232) and (7.233) both require the determination of the square root

of O3 + R2, so this expression is the discriminant for the solution of the cubic equation.

d — Q3 + R 2 (7.247)

Note that Q must be less than zero in order for d to take on a negative value. If o' is

positive, both S and T acquire real number values, and their use in Equation (7.234)

produces a real number result for q. However, their use in Equations (7.235) and

315

(7.236) produces two complex number solutions; thus there is only one solution to be

investigated when d is greater than zero.

cp 1 + J d ~ Ry 4 £, (7.24S)

If the discriminant should take on the value 0, then S and T take on the same value,

\JR . liquations (7.235) and (7.236) become the same double root; this double root

and the root of Equation (7.234) are the two critical times for this case.

Dy
4 Ey

1CPU2 A
4 Ey

(7.249)

(7.250)

In the third case, the discriminant is less than zero, and both S and T become complex

numbers.

S — \ / R ■+" yj—d i (7.251)

Its
[T1=<
<’1

s

IIb. (7.252)

Consider the alternative expression for the complex number a + bi.

a + bi = r(cos 6 + i sin 9)

0 = tan -)

r = yj a2 + b2

(7.253)

(7.254)

(7.255)

Equations (7.251), (7.252), and (7.254) then become

3 1 6

s = 3J J r 2 - d (cos 6 + i sin 0) (7.256)

T — \ J\ jR 2 ~ d { c o s 9 - i sin 0) (7.257)

e - tan () (7.258)

An expression of the form (cos 9 + / sin 8)n may be replaced by deMoivre's formula

which states

(cos 9 + / sin 9)n = cos n9 + i sin n9 (7.259)

Application of deMoivre’s formula to Equation (7.256), along with a replacement for

d from Equation (7.247), simplifies the expression for S.

S = - ^ J Q 2 ~ R2 (c o s y + /s i n y) (7.260)

S = c o s y + /s i n (7. 261)

Next, Equation (7.259) is adjusted for use with T.

(cos(—6) + i sin(—9))" = cos(n(-9)) + / sin(/j(—9)) (7.262)

(cos(—9) + i sin(—6))" = cos(nd) — / sin(n9) (7.263)

T = •J—Q ̂cos — / sin y ̂ (7.264)

The expressions obtained here for S and T are substituted into Equations (7.234),

(7.235), and (7.236) to simplify the relationships for the three real roots of the original

cubic equation.

317

!cp),\ Qi (cos — + i sin — J j + (yJ-Q , (cos — - / sin —o . . e 3D,
3(4£>)

(7.265)

lcpu = 2 s l - Q \ cos —
e V\
3 4£, (7.266)

‘cPu = - y (y -e7(cos y +' siny) + V-<2 ̂ . . i?cos —— / sin — 3 3
3D,

3(4£.)

+ y ly/Tf yJ—Q\ (COS y + / sin y ^ - J - Q i f cos y - ‘ sin y
(7.267)

y , = “ ~ 2 (cos 36) ^ ^ r + T ' V3 (3'vc c 7 sinT) (7.268)

0 D| j . 0
= - y J - Q) C O S y - ^ - - V3 V ~ 2 l S i n —

... 0_
3

(7.269)

cPu = - V - s T (cos y + yy- sm y
. 0 \ £i

4£,
(7.270)

!cP\,i
0 . . 0 / sm yy (V - 0 i (cos y + ' sin y) + (cos -|

- Y ‘J * (y f~ Q ~ (cos y + ' sin y - V ~2l (COS y - / sin y

3 D,
3(4 £,)

(7.271)

cPl.3

-1
2 “ <2l cos

0 \ 0
4£, - y ' ' 7 3 " (2 '7 z a " ^ y (7.272)

1̂,3 n/~<2i cos y - y r - + 73 V -f iT sin y (7.273)

'e, u = 7 ^ 2 7 (- co s| + 73“ sin (7.274)

3 1 8

The set of equations obtained for the ending polynomial segment parallels that

generated for the first.

2. Numerical Example. The times of zero velocity for the various spline

polynomials of joint variable 1 are determined here. Note that as the 0, rotation has

no physical limitations, the tests arc not strictly required in this case. However, as this

is not the case for other of the manipulator joints, the demonstration of the process

will prove useful for them. Additionally, these tests serve to illustrate one aspect of the

behavior of the spline polynomials.

a. Internal Spline Segments. Beginning with the spline for segment 2 in Equation

(7.181), Equation (7.228) is first used to evaluate the discriminant for the solution set.

P2{t) = 10 + (0.224)/ + (1.866E-3)/2 + (- 1 .965E-5)/3 (7.275)

d2 = C\ — 3B2D2 (7.276)

d2 = (1.866E-3)2 - 3(0.224)(-1.965E-5) = 1.669E-5 (7.277)

As the discriminant is positive, two real solutions, given by Equation (7.228), exist.

— C2 ±
‘Cf>2 = W 2 (7.278)

— (1.866E-3) d= V1.669E-5
tcp> ~ 3(—1.965E-5) (7.279)

/^ = —37.648 or 100.956 (7.280)

3 1 9

As the first time is negative, it is of no interest here. However, the second time is

positive and less than the 137.441 maximum established in Equation (7.153), so the

trajectory should be evaluated here.

/}2(100.956) = 10 + 0.224(100.956) + (1. S66E-3)(100.956)2

+ (—1.965E-5)(100.956)3
(7.281)

P2{ 100.956) = 31.414' (7.282)

For spline segment three of Equation (7.187),

P3(t) = 25 + (-0.377)/ + (—6.265E-3)/2 + (S.503E-5)/3

d2 = C32 - 3B3D3

d3 = (—6.265E-3)2 - 3(-0.377)(8.503E-5) = 1.354E-4

— Cj ± yfd^
^ “ W 3

- (—6.265E-3) ± N/l.354E-4
^ = 3(8.503E-5)

iCf>2= 70.176 or -21.056

(7.283)

(7.284)

(7.285)

(7.286)

(7.287)

(7.2S8)

Since the first time is larger than the amount of time spent on the segment, 53.245, and

the second time is negative, no tests need be made.

Continuing with the fourth spline segment from Equation (7.193),

PA(/) = 0 + (-0.321)/ + (7.316E-3)/2 + (-2.852E-5)/3 (7.289)

dA = C 2 - 3 BaD4 (7 . 2 9 0)

320

d4 = (7.316E-3)2 - 3(—0.32])(-2.852E-5) = 2.606E-5

-Q ±
'cp* ' 3 D,

lCPt
(7.316E-3)± V2.606E-5

3(—2.852E-5)

tCD = 25.844 or 145.171cPa,

(7.291)

(7.292)

(7.293)

(7.294)

The second time is outside of the interval spent on the segment, 136.963 as stated by

Equation (7.155), so only the position at the first time need be tested.

7^(25.844) = (-0.321)(25.844) + (7.316E-3)(25.S44)2

+ (-2.852E-5)(25.844)3
(7.295)

P4(25.844) = -3.902' (7.296)

The examination of the intermediate segments concludes with the test for Ps(r) of

Equation (7.199).

P5(/) = 20 + (0.078)/ + (—4.394E-3)/2 + (8.640E-6)/3 (7.297)

d5 = Cs - 3B5D5

ds = (—4.394E-3)2 - 3(0.078)(8.640E-6) = 1.729E-5

(7.298)

(7.299)

- c 5 ± JT ,
lcp> 3D, (7.300)

lcps
- (—4.394E-3) ± V1.729E-5

3(S.640E-6) (7.301)

321

icPs = 329.943 or 9.100 (7.302)

The first time is outside of the amount spent on the interval, 206.211, so only the

second is tested.

735(9.100) = 20 + (0.078)(9.100) + (-4.394E-3)(9.100)2 + (8.640E-6)(9.100)3 (7.303)

7*5(9.100) = 20.352* (7.304)

b. The Terminal Spline Segments. The first spline polynomial was stated in

Equation (7.209); the determination of the critical times for the exceedance of joint

boundaries begins by application of Equations (7.241), (7.246), and (7.247).

7>,(0 = (- 1 .1 16E-7)/3 + (9.819E-9)/4 (7.305)

2 .
1 (C, Di

2 £, \ 3 8 £, (7.306)

< 2 i -
i

2(9.819E-9)
0 (—1.1I6E-7j
3 8(9.819E-9)

= -8.074 (7.307)

R' 8 £, A c - A \ _ *2El [C’ 4E, J (7.308)

R, =
-1 116E-7 L (—1.116E-7)2 \ t . j ioc / / q — J _ o J = 22.941 (7.309)

8(9.819E-9) \ 2(9.819E-9) \ 4(9.819E-9)

dx = Ql +

d x = (-E.074)3 + (22.94l)2 = -5.035E-2

(7.310)

(7.311)

322

Since dx is negative, there are three times at which the velocity becomes zero along the

polynomial defined by Px(t). They arc obtained from Equations (7.258), (7.266),

(7.270), and (7.274)

0 = tan J ~d\ (7.312)

8 = tan
7 ~ (—5.035E-2)

22.941 0.560" (7.313)

cp i,i
/ ~ 8 D\~ 2 j - Q , cos

= 2 7 - (-S.074) cos 0.560 — 1.116E-7
4(9.S19E-9) = 8.524

(7.314)

(7.315)

cp 1,2 = - y/-Q\ (c o s y + J T sin) -
Z),

4£,

- 7 - (-8.074) ̂cos + 7 T sin 0.560 — 1.116E-7
4(9.819E-9)

/ = -0 .0 1 6
cp 1,2

£p1>3 V (2i cos 4- 73" sin _0_\ £ 1
3 j 4£,

7 " (-8-074) f - cos 0.560 sm •0.560 \ —1.116E-7
4(9.819E-9)

iCD =0.016
cp 1,3

(7.316)

(7.317)

(7.318)

(7.319)

(7.320)

(7.321)

The trajectory position is checked at tcpxx and tcn 3, the two non-negative times, each of

which is less than the maximum of 181.552 stated in Equation (7.152).

323

T5, (S. 524) = (—1.116E-7)(8.524)3 + (9.819E-9)(8.524)4 = -1.728E-5 (7.322)

I\(0.016) = (-1.116E-7)(0.016)3 + (9.819E-9)(0.016)4 = -4.565E-13 (7.323)

The procedure for the ending trajectory spline, stated in Equation (7.221), follows

that of the first spline segment. Equations analogous to (7.241), (7.246), and (7.247)

arc employed first.

/>„(/) = - 7 5 + (-0.632)/ + (9.504E-4)/2 + (2.493E-5)/3 + (-1.003E-7)/4 (7.324)

2e =
Q K

2 G 3 8 G (7.325)

2(—1.003E-7)
4 (2.493E-5)

9.504E- —----3 8(—1.003E-7) = —5.4402: 4- 3 (7.326)

8 G
D*

G
Di

2E, \ ~6 4 G - G (7.327)

G =
1 2.493E-5

8(— 1.003E-7) V 2(— 1.003E-7)
(9.504E-4

(2.493E-5)2
4(—1.003 E-7) (-0 .632)

(7.328)

R6 = -4.005E + 5 (7.329)

G = Ql + G2 (7.330)

d 6 = (-5 .440E + 3)3 + (-4 .005E + 5)2 = -5 .S89E + 8 (7.331)

Since the discriminant is negative, there are three times for zero velocity of the final

trajectory. Equations (7.258), (7.266), (7.270), and (7.274) yield these times.

324

06 - tan EL
R (7.332)

fL — tan-l J - (-5 .889£ + 8)
—4.005 £ + 5 = 176.533 (7.333)

i = 2CPt. I cos 0, A,
3 4£6 (7.334)

tcPtA = 2 7 - (- 5 .4 4 0 £ + 3) cos
176.533 2.493E-5

4(— 1.003E-7) - 138.456 (7.335)

‘cp62 = - 7~<26 (cos + VT si
0, \ Df

sin 3 / 4£6 (7.336)

6̂,2 7 - (-5.440ZT+ 3) cos 176.533

+ V3~ sin ■176.533 2.493E-5
4(-1.003E-7)

(7.337)

t = -85.344cP6a (7.338)

cos + 73" sin-
Of \ D*

4 E. (7.339)

= V - (- 5 .4 4 0 £ + 3) cos 176.533

+ 7̂ "" sm •176.533 2.493E-5
(7.340)

4(—1.003E-7)

^ = 133.303 (7.341)

As iv6tl exceeds the maximum time on the interval, 135.831 as stated in Equation

(7.157), and tcp6a is negative, only /WfJ need be checked.

325

P6(l 33.303) = -7 5 + (—0.632)(133.303) + (9.504E-4)(133.303)2
(7.342)

+ (2.493E-5)(133.303)3 + (-1 .003E-7)(133.303)4

P6(l 33.303) = -1 14.977 (7.343)

Figure 7.8 graphically illustrates the results of this section concerning the spline

trajectory. The positions where the spline may lake on extreme values are added to the

spline positions known in the previous section. As before, the values used here arc

those obtained by computer. As will be seen, there are some significant difTcrcnccs

between the results obtained in this section and those of the program example.

3. Program Control. Procedure c r i t i c a l _ p o s i t i o n s determines the times

and corresponding positions for critical position points along each trajectory in order.
dsply_crit_pos (&rou> cols);
terminal_crit_pos (1, a[1], b[1J, cC1], dC13, e[1], ±[1], lb, hb,rou, cols);
for (i = 2; i <= n-2; i++)intermediate_crit_pos (i, a[i3, bCi], c[i], d[i], t[i], lb, hb,rou+i-1, cols);
terminal_crit_pos (n-1. a[n-1], b[n-1], c[n-1], d[n-1], e[n-13,

326

t[n-1], lb, hb, rou+n-2, cols); uait_then_erase (10);

Procedure t e r m i n a l _ c r i t _ p o s determines critical times as the roots of a third

degree equation, evaluating the positions at only the real, in-bounds times.
locate (rou, colsCO]); cprintf ("%d", i);
q = (1 / (2 X e)) X ((c / 3) - square (d) / (8 X e >) ; r = (1 / (8 X e)) x ((d / (2Xe)) X (c - square (d) / (4 X e)) — b); discr = pou (q,3) + square (r);
if (discr > small_tolerance)

Croots = 1;
tcpCO] = cube_root (r + sqrt(discr))+ cube_root (r - sqrt(discr)) - d / (<+ X e);
}else
if (fabs(discr) < small_tolerance)

{roots = 2;tcpCO] = 2Xcube_root (r) - d / O* X e); tcpCI] = -cube_root (r) - d / (<t x e);
}else
Croots = 3;
x = atan2(sqrt(-discr), r);tcpCO] = 2 x sqrt(-q) x cos(x/3) - d/(4Xe);
tcp[1] = -sqrt(-q) X (cos(x/3) + sqrt(3)Xsin(x/3))- d/CC*Xe);
tcp[2] = sqrt(-q) X (-cos(x/3) + sqrt(3)Xsin(x/3))- d/(^xe);
}for (j =0; j <= roots-1; j++)cpC j] = eval_cp (a, b, c, d, e, tcpCj], t,rou, cols[jX2+1], cols[jX2+23); for (j = 0; j <= roots-1; j++)check_range (lb, hb, cp[j], rou, colsC7]);

Procedure in t e r m e d ia t e c r l t pos has the simpler task of determining critical

times as roots of a quadratic equation.
locate (rou, colsCO]);
cprintf ("%d", i); discr = square (c) - 3XbXd; if (discr > small_tolerance)

{roots = 2;tcpCO] = (—c + sqrt(discr)) / (3 X d); tcpC1] = (-c - sqrt(discr)) / (3 X d);
}else
if (fabs(discr) < small_tolerance)

{roots = 1;
tcp[03 = -c / (3 X d);
}else
roots = 0;

for (j = 0; j <= roots-1; j++)
cpfj] = eval_cp (a, b, c, d, 0, tcpCj], t,

rou, colsCjX2+13, colstjX2+2]);
for (j = 0; j <= roots-1; j++)

3 2 7

check_range (lb, hb, cp[j], row, colsC7]);

4. Propram Fxample. Figure 7.9 gives the display produced by procedure

c r i t i c a l _ p o s i t i o n s . Comparison with the critical times of the terminal spline

segments in particular will show that there is a significant loss of accuracy in the

numerical example. Indeed, the discriminant for the final quartic trajectory segment

turned out to be positive, as its components, (7,,3and R(l while opposite in sign, were

rather close in magnitude. The precision lost in the numerical example was sufficient

to result in an effectively meaningless value for the discriminant.

Armatron Manipulator Control
Theta

0 . 0 0 0 N 0 A P
0 . 0 0 0 : 1 . 0 0 0 0 . 0 0 0 0 . 0 0 0 2 0 0 . 0 0 0 !
o . o o o : 0 . 0 0 0 - 1 . 0 0 0 0 . 0 0 0 0 . 0 0 0 !
o . o o o : 0 . 0 0 0 0 . 0 0 0 - 1 . 0 0 0 1 0 0 . 0 0 0 !
o . o o o : 0 0 0 1 !

Trajectory Control
Trajectory for Joint 1

Critical Positions
i time position time position time position bounds
1 7 . 6 9 1 - 1 . 1 3 8 E - 0 5 - 4 . 0 8 8 E - 0 4 time out 4 . 0 8 8 E - 0 4 - 6 . 8 3 6 E - 1 8 In
2 - 3 7 . 4 8 7 time out 1 0 0 . 9 2 8 3 1 . 4 1 2 In
3 7 0 . 1 8 8 time out - 2 1 . 1 1 8 time out In
4 2 5 . 8 4 8 - 3 . 9 0 1 1 4 5 . 2 1 2 time out In
5 3 2 9 . 8 6 8 time out 9 . 1 5 8 2 0 . 3 5 5 In
6 6 0 . 0 9 3 - 1 0 5 . 4 4 7 In

Figure 7.9. Determination of Critical Positions

rooc

329

C. SCALING FOR OPTIMUM TRAJECTORY TRAVERSAL TIM E

The extreme velocity and acceleration obtained along each spline must now be

determined for the time units stated so that the physical limitations of the manipulator

joints are not exceeded. Scaling factors will be obtained so that no maximum velocity

or acceleration is exceeded. A final scaling factor will be obtained which will result in

an optimum traversal of the trajectory.

1. Derivation of Equations. Consider the determination of the maximum velocity

for each joint's segments. As long as the joint is accelerating or decelerating, the

velocity is increasing or decreasing, respectively. Thus the velocity attains any

maximum or minimum when the acceleration along the segment becomes zero. Note

that as the spline polynomials were defined to be continuous in position, velocity, and

acceleration, no additional examinations need be performed concerning the velocities

at the spline nodes.

a. The Internal Segments. The maximum and minimum velocities attained along

internal segments are considered first. The function of Equation (7.26), which defined

the acceleration along an internal segment, is set equal to zero and solved for the

critical time concerning the velocity, t„r

S";{r) = 2 Q + 6 Dft (7.344)

2 Cj + 6 Djtcv = 0 (7.345)

(7.346)

3 3 0

The velocity of the joint as given by Equation (7.11) is then evaluated at this time as

VCl for comparison with the maximum obtainable velocity of the joint.

S’fc) = + 2Cji + 3 Dii7

-C l \
3Dt J + 3A|

2Cf . CfDi
3 D, 2D7

c?

- Q
3 Di

3 Di

(7.347)

(7.348)

(7.349)

(7.350)

Of course, if falls outside of the time during which the joint will be traversing the

spline, no maximum will be obtained along it.

The maximum and minimum accelerations obtained along the internal spline

segments will occur when the acceleration is itself not increasing or decreasing. This

occurs at the point when the derivative of the acceleration is zero. The acceleration

function of Equation (7.26) is differentiated to show that the rate of change of the

acceleration along an internal segment is constant.

S " i (t) = 2 C j + 6 D , i (7.351)

S '" <0 = «D, (7.352)

If Di is positive, the acceleration is increasing throughout the span of the segment and

thus the acceleration takes on a minimum at t = 0 and a maximum at r=

Conversely, if A is negative, the acceleration continues to decrease along the segment

331

from a maximum at / = 0 to a minimum at t = /,. Thus the acceleration needs to be

tested only at the beginning of each segment.

5",(0) = 2C, + 6D,(0) (7.353)

Ae = 2C, (7.354)

The continuity imposed upon the trajectory through velocity and acceleration will lead

the accelerations at nodes 2 and n — 1 to be covered by the acceleration tests for the

terminal spline segments.

b. The Terminal Segments. As was the case for the intermediate segments, the

velocity along the first segment will take on an extreme value when the acceleration

along the segment is zero. The difference here is that the acceleration function as

defined by Equation (7.26) is quadratic, and thus may have two solutions; one of these

solutions will be the unattached end of the spline for which both the velocity and

acceleration were defined to be zero.

2 C, + 6 D]t + 12 E}!2 (7.355)

12 £ ,£ , + 6D, ?CV) + 2Cj = 0 (7.356)

6Ej&, + 3Z),/CV) + C, = 0 (7.357)

— 3 D } + -j 9 D t - 4 (6 E]) (C })

cv 1 ~ 2(6 £,) (7.358)

i ± 7 d ,J -(8C ,£,/3)
4 E } (7.359)

3 3 2

The quantity D\ — (8C,£i/3), or du may be positive, zero, or negative. Correspondingly,

there will be either two, one, or zero times at which the velocity, as defined by Equation

(7.50), may take on an extremum. As the terminal spline polynomials were defined

such that the velocities at nodes 0 and n would be zero, one value for in Equation

(7.359) must be zero. Let be the time not associated with an end of the segment.

Due to the complexity of the formula for the velocity is most efficiently determined

by a straightforward evaluation of the velocity polynomial.

As with the internal segments, if docs not occur during the time interval of segment

1, then the maximum velocity at that point is not a concern.

The acceleration function of Equation (7.26) is differentiated and set equal to zero

in order to determine the time at which the acceleration along the first segment may

reach an extremum.

(7.360)

S " ,(0 = 2C, + 6 Dxt + 12£,/2 (7.361)

S''',(f) — 6Z), + 24£,/ (7.362)

6 Z>j + 24£,m = 0 (7.363)

-D
t, 4£, (7.364)

The critical acceleration at this point is termed Acl.

(7.365)

333

(7.366)

(7.367)

The equations for the critical velocities and acceleration along the final spline

segment are identical in form to those along the first segment.

As with the other cases, the critical velocities and acceleration are of concern only if

they occur during the time interval for which the manipulator joint is traversing the

spline segment.

The extreme attained velocities of Equations (7.350), (7.360), and (7.369) and the

extreme attained accelerations of Equations (7.354), (7.367), and (7.371) were derived

in terms of the arbitrary time unit based upon the "distances" between the joint variable

settings. These derived extrema must now be reconciled with the physical constraints

under which the joints actually operate. The following rates are defined for this

(7.3-68)

(7.370)

(7.371)

purpose.

334

Vm = max{ | Vc \, I < / < n - 1} (7.372)

Am = max{\Ac \, 1 < i < n — 1} (7.373)

If the maximum velocity magnitude attained on every' spline traversed by the joint in

question is less than the maximum rate the joint is capable of, then the path is not

being traversed as quickly as possible. Conversely, if the maximum is greater than that

attainable by the joint, the smooth motion defined by the trajectory cannot be

achieved. To optimize this situation, a scale factor F is introduced to relate the

"distancc"-bascd time units of i to actual time T.

Real time can be seen to be a fractional rate of the arbitrary' time used thus far. If the

manipulator is moving more slowly than need be with respect to /, F is given a value

greater than one; the rates specified by the spline polynomials may be reduced by

giving F a value less than one. The position function for an internal spline segment,

given in Equation (7.6), is modified to reflect this. Note that the derivations of this

section arc not dependent upon the degree of the spline polynomial.

/ = FT (7.374)

(7.375)

S j { i) — A j + B j i + C,-/ + D j i (7.376)

Sj(T) = Aj + Bj(FT) + Cj(FT)2 + Dj(FT)3 (7.377)

Sj(T) = Aj + BjFT + CjF2T2 + ZXf V (7.378)

The velocity function then becomes

335

S'i(T) = B,F + 2QF2T + W ^ T 1 (7.379)

Let T be replaced by Equation (7.375).

2
S'iiT) = B,F+ 2 CtF7 (7.3S0)

5 ',(7) = /•'(/?, + 2 Q + 3 D ,/2) (7.3S1)

S'iiT) = ^'/(0 (7.3S2)

If the manipulator joint rates with respect to / call for the joint to be moving more

rapidly than the velocity constraints will allow, factor F is given a value less than one.

On the other hand, an F factor larger than one will increase the realized velocity.

Under these criteria, F should be chosen to relate the maximum obtainable velocity for

the joint, 6mr, to the maximum rate determined for the trajectory' with respect to r,

Vm. The factor is labeled to reflect its dependence upon velocity constraints.

This factor would be multiplied by the trajectory' parameter i of each spline segment

to either increase or decrease the rate at which the trajectory is being traversed. The

result of this scaling is to call upon the joint for its maximum rate of change, but no

more, when the trajectory reaches its point of extreme velocity.

Consider now the acceleration function with respect to T as obtained from the

differentiation of the velocity function in Equation (7.379).

(7.383)

S ",{T) = 2 Q F 2 + 6DiF3T (7.384)

336

Variable 7 'is again replaced by Equation (7.375).

S",(7) = 2C,/'2 + 6 D / (y) (7.385)

S",(7) = F2(2Cj + 6D,/) (7.3S6)

(7.387)

As was described for the examination of the velocity relationship, F should take on a

value less than one if the joint acceleration constraint dma is exceeded or more than one

if the acceleration required is less than what the joint is capable of. The difference here

is that the factor when dependent upon acceleration criteria is squared. The maximum

acceleration with respect to t specified by the trajectory was seen to be A„.

When factor Fa is multiplied by the trajectory parameter t of each spline segment, the

rate of change of the velocity of the joint is either increased or decreased so that the

maximum acceleration requested of the joint is precisely that which it can provide.

Factors F, and F„ must be further resolved with one another by selecting the

smaller of the two as F, the overall trajectory factor.

.2 ® ma (7.388)

F = min{Fa, Fv) (7.389)

Thus only the maximum velocity or the maximum acceleration will be utilized, but not

both. This is the optimal solution for traversal of the path designated by the spline

trajectory.

3 3 7

To this point, only one joint trajectory' has been considered. In the case of the

Armatron robot arm, a five-degrees-of-freedom manipulator, five difTerent trajectories

will be generated around the same set of "distances" between path nodes. Each joint

trajectory will however pass through a difTerent set of node values, consequently

specifying different velocity and acceleration extrema for each. Equations (7.372) and

(7.373) arc restated to take the different trajectories into account.

Terms Ve . and ACiJ are now the maximum velocity and acceleration, respectively, on

segment / of trajectory j. Scale factors are then determined for each trajectory.

The smaller of the two factors is chosen for each joint so as not to exceed the

maximum velocity or acceleration attainable by joint j.

Finally, the overall scaling factor F is chosen as the minimum factor over all five joint

trajectories so as not to exceed any joint velocity or acceleration maximum.

Vm = max{ | Vc [, 1 < / < n — 1} (7.390)

Am, — max{ | Ac |, \ < i < n — 1}
J V

(7.391)

(7.392)

(7.393)

Fj = min{fv F*.} (7.394)

F = m i n { / 7 , 1 < j < 5 } (7 . 3 9 5)

3 3 8

The "distances" between trajectory nodes are now divided by the scaling factor to yield

the actual amount of time T, involved in traversing each segment.

Tt = y (7.396)

The total time required to traverse the trajectory is the sum of the individual segment

times.

(7.397)

Determination of the joint positioning, velocity, and acceleration of the manipulator

at any elapsed real time TR, 0 < TR < Tt, begins by determining the spline segment

which is in effect at time TR. This is done by subtracting segment times from TR until

the next subtraction would result in a negative value.

/—i i /—i

T - T r - ^ T , 3 T* ~
k=\ k=\ k=\

Time T is then multiplied by the scale factor before substitution into the appropriate

segment / functions.

y.TkZo* ~ ŷjk (7.398)

t= TF (7.399)

S{t) = A, + Bit + Q 2 + D / [+ £ /] (7.400)

S '(<r) = Bi + 2 C j i + 3D j i 2 [+ 4£(/3] (7.401)

S " { t) = 2Q + 6 D (t [+ 12E / 3 (7.402)

339

The last term in each equation is employed for values of / of 1 or n — 1.

2. Numerical Example. The extreme velocities obtained along the internal

segments are obtained first using liquation (7.346) and (7.350) for the critical time and

corresponding velocity, respectively.

S2{t) = 10 + (0.224)r + (1.866IZ-3)/2 + (- 1 .965E-5)t3 (7.403)

!cv2 ~ (7.404)

u. = -1.866E- 3(—1.965E-5) = 31.654 (7.405)

The time spent on the second interval is 137.441 from Equation (7.153), so the velocity

must be evaluated at

Vc =0.224
(1.866E-3)2

3(— 1.965E-5) = 0.283

(7.406)

(7.407)

The extreme acceleration along the interval is taken to be that at the beginning of the

interval as the acceleration's rate of change was seen to be constant in Equation

(7.352).

Ac2 = 2C2 (7.40S)

ACi = 2(1 .S66E —3) = 3.732E-3 (7.409)

The third segment's spline polynomial was stated in Equation (7.187).

3 4 0

S3(t) = 25 + (-0.377)/ + (—6.265E-3)/2 + (S.503E-5)/3 (7.410)

3 Z)3 (7.411)

/cvi
(—6.265E-3)
3(8.5030-5) = 24.560 (7.412)

From Equation (7.154), the time spent on the third interval is 53.245, so an

examination of the velocity is required at /c„3.

(7.413)

V = -0.377 -c3
(—6.265E-3)2
3(8.503E-5) (7.414)

The critical acceleration on the third segment is

^ 3 = 2C 3 (7.415)

AC} = 2(—6.265E -3) = -1.253E-2 (7.416)

Equation (7.193) gives the spline polynomial of the fourth segment.

S4(z) = 0 + (-0.321)/ + (7.316E-3)/2 + (-2.852E-5)/3 (7.417)

tcv* 3 Da (7'418^

(7.316E-3)
‘cv* ~ ~ 3(—2 .8 5 2 E - 5) ” 8 ^ 5 0 7 (7.419)

341

The velocity must be evaluated at r„4 as the fourth interval is in use for 136.963 units,

as specified by Equation (7.155).

v
 31Cq1IIv/ (7.420)

(7.316E-3)2
' ^ - - ° 321 3 (- 2 .852E- 5) - 0-305 (7.421)

The fourth segment's critical acceleration is

2C4 (7.422)

ACt= 2(7.316E-3) = I.463E-2 (7.423)

The last internal spline polynomial, that of the fifth segment, was given in

Equation (7.199).

P5{t) = 20 + (0.078)/ + (—4.394E-3)/2 + (S.640E-6)/3 (7.424)

, . - c >
3 Z)s (7.425)

(—4.394E-3)
lcv*~ 3(8.640E-6) ~ 169’522 (7.426)

Equation (7.156) states that the time on the fifth interval is 206.211, so the velocity

must be evaluated at /„5.

C2
v = B-

c* 5 3 Ds (7.427)

(—4.394E-3)2
,/«! - ° - 078- 3C8.640E-6) = - ° ' 667 (7.428)

3 4 2

The critical acceleration on the fifth segment is

^ = 2C5 (7.429)

ACj = 2(-4.394E -3) = -8.788E-3 (7.430)

For the first spline segment, the critical times were expressed by Equation (7.359);

the polynomial was stated in Equation (7.209).

5 ,(0 = (- 1 .1 16E-7)/3 + (9.S19E-9)/-4 (7.431)

-D] ± y jD * - (8C,/T,/3)
4£, (7.432)

£v.
- (- 1 . 1 1 6E-7) ± N/(-1 .116E-7)2 - 8(0)(9.819E-9)/3

4(9.819E-9) (7.433)

tCV] = 5.683 or 0 (7.434)

The second time expressed for is associated with the zero acceleration condition of

the beginning of the interval and is thus discarded. The velocity is determined for the

remaining time as it is less than that spent on the first segment, 181.552 units in

Equation (7.152); the velocity equation was given by Equation (7.360).

VCi = 5, + 2 0 cv, + + AE/CVi (7.435)

VC} = 0 + 2(0)(5.683) + 3(- 1 .1 16E-7)(5.683)2 + 4(9.819E-9)(5.683)3 (7.436)

V. = —3.604E-6 C1 (7.437)

The time and value of the extreme acceleration is found using Equations (7.364) and

(7.367), respectively.

3 4 3

lca{
- £ 1
4£. (7.438)

/caj
— (—1.116E-7)

4(9.S19E-9)
2.S41 (7.439)

Like the time of the critical velocity above, this time is also on the interval of the first

segment.

30?
Ac = 2 C, - - ~ - c1 1 4 £.

2(0)- 3(-1.116E-7)
4(9.819E-9)

-9.513E-7

(7.440)

(7.441)

The polynomial of the final segment in Equation (7.221) has its times of critical

velocity determined using Equation (7.368).

P6{t) = - 7 5 + (-0 .6 3 2) / + (9.504E-4);2 + (2.493E-5)/3 4- (- 1 .003E -7)/4 (7.442)

- D 6 ± yjD\ — (8C6£6/3)

4^6
(7.443)

- (2.493E-5) ± 7(2.493E-5)2 - (8(9.504E-4)(-1.003E-7)/3)
4(— 1.003E-7) (7.444)

tCy6 — —11.621 or 135.898 (7.445)

The first time is negative and consequently of no importance here. The second solution

is the ending time of the interval, as a comparison with Equation (7.157) verifies; both

the acceleration and the velocity are defined to be zero here. Thus, no critical velocities

3 4 4

exist for the final segment. Equations (7.370) and (7.371) arc employed to detect time

of occurrence and value, respectively, of the extreme acceleration on the segment.

cab (7.446)

- (2.493E-5)
‘ca‘ = 4(— 1.003E-7) 62.139 (7.447)

This time is within the interval spent on the last segment, unlike the time of the critcal

velocity.

/t = 2C
^ 6

(7.448)

Ac = 2(9.504E-4) -
3(2.493E-5)2

4(— 1.003 E-7)
= 6.54SE-3 (7.449)

Equations (7.390) and (7.391) are now employed to determine the extreme

velocity and acceleration, respectively, for the trajectory of the first joint.

= max{ | Vc, [|, 1 < i < 6} (7.450)

Vm) = max{| —3.604E-61, 10.283 |, j —0.531 |,

|0.305|, | -0.667|, (none)}
(7.451)

Vm =0.667

4 * , = m a x d ^ . J , 1 < / < 6}

(7.452)

(7.453)

Am] — max{ | —9.513E-71, 13.732E-31, | —1.253E-21,

I 1.463E-21, | —S.788E-31, 1 6.548H-3 |}
(7.454)

345

Am = 1.463E-2 (7.455)

The scaling factors associated with these extrema are given by Equations (7.392) and

(7.393). The maximum joint velocity used is the constant velocity for the joint with the

Armatron manipulator as configured; the acceleration is selected arbitrarily as the

configuration does not provide for control of change in velocity.

6 m V] = 60°/sec (7.456)

7v, = - ' rt
(7.457)

60 /sec
Fv = --------t~---------- = S9.955

1 0.667 /unit of t
(7.458)

= 100 /sec (7.459)

2 mat
* n.

a k
(7.460)

r„. =
100 jsccz

(1.463E-2)/unit of t
S2.676 (7.461)

The smaller factor is chosen for the trajectory of the first joint by Equation (7.394).

F\ — m i n (F Fa]} (7.462)

F, = min(S9.955, 82.676} = 82.676 (7.463)

346

Looking ahead to the results to be obtained by computer for the remaining factors,

Equation (7.395) may be used to determine the scaling factor to be used on each

segment of each of the joint trajectories.

F=min{/}, I< y '< 5 } (7.464)

F = min{82.676, 137.542, 91.542,89.071, 44.482} = 44.4S2 (7.465)

The actual time spent on each trajectory' segment is then obtained from Equation

(7.396) and Equations (7.152) through (7.157).

T = —
' F

r , = 181.552
44.482 = 4.081

(7.466)

(7.467)

r 2 = 137.441
44.482

t3 =
53.245
44.4S2

Ta -
136.963
44.482

Ts = -
206.211
44.482

135.831
44.4S2

= 3.090

4.636

3.054

(7.468)

(7.469)

(7.470)

(7.471)

(7.472)

The individual segment times are added by Equation (7.397) to find the total

manipulator motion time.

347

n—1
? > = ! [/ ; (7.473)

i=i

7r = 4.081 + 3.090+ 1.197 + 3.079 + 4.636 + 3.054 (7.474)

Tr = 19.137 (7.475)

The position of each of the manipulator joint variables may now be determined along

the desired trajectory at any real time 7*, 0 < 7* < Tt. liquation (7.398) specified the

determination of the segment and elapsed real time on that segment.

i - i i i - i

7'= TR~ Y J Tk * Tr -
k= 1 k= 1 k= 1

For example, consider a real time of 19 seconds. Equation (7.476) would require a

value of i of 6 to be satisfied.

Y JTk < 0 < T R~ Y J Tk (7.476)

5 6 5

7 = 1 9 - J Y * a i 9 - ^ [Y * < o < i 9 - - E r * (7.477)
k=1 *=1 k= 1

7 = 19 - 16.083 3 1 9 - 19 .137< 0< 19-- 16.083 (7.478)

7= 2.917 (7.479)

The scale time for evaluation of the joint variables on segment 6 would then be found

by multiplication of the segment real time and the scale factor, as specified by Equation

(7.399).

/ = 77 (7.480)

3 4 8

/ = (2.917)(44.4S2) = 129.754 (7.481)

The setting of the first joint variable is then found by application of the spline

polynomial for segment 6 as given in Equation (7.221).

P6(/) = -7 5 + (—0.632)r + (9.504E-4)/2 + (2.493E-5)t3 + (- 1 .003E-7)/4 (7.4S2)

7>6(129.754) = — 114.973 (7.4S3)

The settings of the four remaining joint variables arc found by application of the

segment 6 spline polynomials for the respective joints.

Figure 7.10 adds the velocity data obtained in this section to that of the previous

sections. The velocity is the rate of change of the position, so the sign of the velocity

indicates whether the spline function is increasing or decreasing. The values depicted

for the critical velocities and the critical accelerations of the next figure are taken from

the upcoming program example.

Figure 7.10. Trajectory Critical Velocities

349

Figure 7.11 completes the graph by combining the acceleration information with

that of Figure 7.10. Since acceleration is the rate of change, or slope, of the velocity,

a positive acceleration indicates that the trajectory spline is concave upward, as the

slope of a line tangent to the curve must increase as time increases; conversely, a

negative acceleration indicates a concave downward segment of the spline.

3. Program Control. Procedure t r a j_ s c a l i n g governs the determination of

critical velocities and accelerations on a trajectory for one of the manipulator joints.
dsply_traj_scaling (Srou, cols);Jiaxv = terminal_crit_vel (1, b[13, c [13, d[13, e[13, t[13,rou, cols);maxa = terminal_crit_acc (c[13, d[1], eC1], t[1], rou, cols); for (i = 2; i <= n-2; i + +)

{cv = intermediate_crit_vel (i, b[i], cCi], dti], t[i],rou + i-1, cols);if C cv > maxv) maxv = cv;
ca = intermediate_crit_acc (cCi], rou+i-1, cols); if (ca > maxa) maxa = ca;
}cv = terminal_crit_vel (n-1, btn-1], c[n-1], d[n-1], e[n-1], ttn-1],rou+n-2, cols);if (cv > maxv) maxv = cv;

ca = terminal_crit_acc (c[n-1], d[n-13, eCn-1], tCn-1],rou+n-2, cols);
if (ca > maxa)

350

maxa = ca;
leprintf (rou+6, cols[7], maxv);
leprintf (rou+7, cols[7], maxa);
fv = theta_maxv / maxv; fa = sqrt(theta_maxa / maxa); if (fv < fa)

f = fv; else
f = fa;leprintf (rou+8, cols[7], f); wait_then_erase (9); return Cf);

Note that the maximum scaling factor for the trajectory under scrutiny is determined

and returned by the procedure. Procedure terminal_crit_vel evaluates times

of critical velocity as the roots of a second degree equation.
locate (rou, colsCO]);
cprintf ("%2d", i); discr = square (d) - 8*c*e/3; if (discr > small_tolerance)

{roots = 2;tcv[0] = (-d + sqrt(discr)) / (4*e); tcv[1] = C-d - sqrt(discr)) / (<*Xe);
}elseif (fabs(discr) < small_tolerance)

{roots = 1;tcvCO] = -d / O+Xe);
Jelseroots = 0;for (j = 0; j <= roots-1; j++)cv[j] = eval_cv (b, c, d, e, tcvtj], t,rou, cols[2Xj+l], colsC2Xj+2]);

maxv = 0;for (j = 0; j <= roots-1; j++)if ((mag = fabs(cv[j])) > maxv) maxv = mag;
return (maxv);

Procedure i n t e r m e d i a t e _ c r i t _ v e l determines the single time of critical velocity

as the root of a linear equation.
locate (rou, colsCO]);
cprintf ("%2d ", i);
tcv = -c / (3*d);cv = eval_cv (b, c, d, 0, tcv, t, rou, colsd], cols[23); return (fabs(cv));

Procedure t e r m i n a l _ c r i t _ a c c likewise obtains a single time of critical

acceleration as the root of a linear equation.

tea = -d / (<+*e);leprintf (rou, cols[5], tea);
if ((tea >= 0) & (tea <= t))

{

351

ca = 2#c - (3*square (d)) / (<+Xe);
leprintf (rou, cols[6], c a) ;
}else
{ca = 0;lcputs (rou, cols[6], " time out ");
)return (fabs(ca));

Procedure i n t e r m e d i a t e _ c r i t _ a c c takes as critical time the starting point of

the interval as the acceleration function is constant,
ca = 2*c;leprintf (rou, cols[5], 0); leprintf (rou, cols[6], ca); return (fabs(ca));

Procedure d e te r m in e _ p o s i t io n s is invoked from the trajectory control

procedure to allow for the evaluation of the spline polynomials at any real time. The

cumulative time on the trajectory at each node is determined lor ease of application in

Equation (7.39S).
dsply_det_positions (rous, time_cols, eval_cols, &scale_col); leprintf (rous[2], scale_col, f); cumulative_time[0] = 0; for (i = 1; i <= n-1; i++)

{locate (rous[0]+i-1, time_cols[0]); cprintf ("%d", i);leprintf (rousC0] + i-1, time_cols[1], 0); leprintf (rous[03+i-1, time_cols[2], t[i3);
cumulative_timeLi 3 = cumulative_time[i — 13 + t[i3/f;
leprintf (rous[03+i-1, time_cols[33, cumulative_timeLi-13); leprintf (rousL03+i-1, time_colsLd3, cumulative time[i3);
3

uhile ((real time = get_time (cumulative time, n)) != -1)
{i = 0; do i + +;

uhile (real_time > cumulative_time[i3); locate (rous[13, eval_cols[03); cprintf ("%d", i);
scale_time = (real_time - cumulative_time[i-13) * f; leprintf (rous[13, eval_cols[63, scale_time); for (j = 1; j <= 5; j++)

{
trajectory_pos = a C j 3 Ci 3 + bC j 3[i 3 * scale_time + c[j 3 Ci3 * square (scale_time)+ d[j3Ci3 * pou (scale_time, 3)+ e C j 3 Ci 3 x pou (scale_time, 4) ;
leprintf (rous[13, eval_cols[j3, trajectory_pos);

3uait_then_erase (9);
}

352

4. Program Example. The critical times and associated velocities and

accelerations for the trajectory of the first manipulator joint are given by Figure 7.12.

The values obtained show a lack of precision in the numerical example, but the results

are essentially the same. Figure 7.13 shows the scale and real time ranges for the

combined spline polynomials of the specified trajectory. Additionally, the results of

an evaluation of the spline polynomials at real time = 19 seconds is given.

Comparison of the 0, position with the result obtained in Equation (7.483) shows little

difference.

Armatron Manipulator Control
Theta

0.000 N 0 A P
0.000 ii 1.000 0. 000 0.000 200.000!
0.000 »% 0.000 -1. 000 0.000 0.ooo:
0.000 i1 0.000 0. 000 -1.000 -100.000!
0.000 ii 0 0 0 1 :

Trajectory Control
Trajectory for Joint 1

Critical Velocities Critical Acceleration
i time velocity time velocity time acceleration
1 5.127 2.630E-06 1.470E-08 time out 2.564 7.694E-07
2 31.721 0.283 0.000 3.7 50E-03
3 24.535 -0.531 0.000 -0.012
4 85.530 0.305 0.000 0.015
5 169.513 -0.667 0.000 -8.7 94E-03
6 -11.644 time out 135.831 -1,083E -09 62.093 6.545E-03

Maximum Velocity: 0.667
Maximum Acceleration: 0.015
Scaling Factor: 82.693

Figure 7.12. Critical Velocities and Accelerations

Armatron Manipulator Control
Theta

0.000 N 0 A P
0.000 ! 1.000 0.000 0.000 200.ooo:
0.000 : 0.000 -1.000 0.000 o.ooo:
0.000 : o.ooo 0.000 -1.000 -100.000!
0.000 : o 0 0 1 !

Trajectory Control
Determination o f Trajectory Position at Arbitrary Times (scale = 44.482)

Segment Scale Time Range Real Time Range
1 0.000 181.552 0.000 4.081
2 0.000 137.441 4.081 7.171
3 0.000 53.245 7.171 8.368
4 0.000 136.964 8.368 11.447
5 0.000 206.211 11.447 16.083
6 0.000 135.831 16.083 19.137

Segment Scale Time Theta 1 Theta 2 Theta 3 Theta 4 Theta 5
6 129.740 -114.993 24.997 50.002 64.994 -34.967

Figure 7.13. Scale and Real lime Intervals

355

D. THE CONTROLLING PROCEDURE

Procedure trajectory_control begins by displaying the introductory screen of

Figure 7.14 The array elements allocated for nodes are then set to zero, the value to

be used as a default. The iteration of the procedure then directs the execution of the

trajectory determination and evaluation steps outlined in this chapter. This process is

repeated until the procedure is instructed to stop.

dsply_trajectory_i.ntroducti.on C);
uait_then_erase (9);
for (i = 1; i <= 5; i++)

for (j = 1; j <= 10; j++)
theta[i][j 3 = 0;

do
{
n = nodes_and_distances (theta, t);
f = 1000000;
for (i = 1; i <= 5; i++)

lcputs (9, 29, "Trajectory for Joint ");
cprintf ("%d", i);
calc_polynomials (n, thetati], t, a[i], b[i], c[i], d[i],

e Ci 3);
theta_lb[i3 = -360;
theta_hb[i3 = 360;
critical_positions (n, a[i3, b[i3, c[i3, d[i3, e[i3, t,

theta_lb[i3, theta_hb[i3);
theta_vmax[i3 = 100;
theta_amax[i3 = 100;
f_current = traj_scaling (n, b[i3, c[i3, d[i3, e[i3, t,

theta_vjnax[i 3 , theta_amax[i 3) ;
if (f_current < f)

f = f_current;
3determine_positions (a, b, c, d, e, n, t, f);

prompt_msg1 = "Continue uith a neu trajectory determination? (y/n)"
prompt_msg2 = "";
qc = prompt_input_char (prompt_msg1, prompt_msg2);
3
uhile (qc == ’Y');

uait_then_erase (8);

Note that the determination of the scaling factor is performed at this level, as it is to

be the minimum of the scaling factors for the trajectories of each joint. The

documented listing for the procedures associated with the trajectory' control portion

of the overall program may be found in Appendix G.

Armatron Manipulator Control
Theta

0 . 0 0 0 N 0 A p
o . o o o ; 1 . o o o 0 . 0 0 0 0 . 0 0 0 2 0 0 . 0 0 0
0 . 0 0 0 ; 0 . 0 0 0 - 1 . o o o 0 . o o o 0 . 0 0 0
o . o o o : 0 . 0 0 0 0 . 0 0 0 - 1 . o o o - 1 0 0 . 0 0 0
o . o o o : 0 0 0 1

Trajectory Control
This section creates spline polynomials over a

a set of path nodes defined by the user. The
polynomials created will provide for continuity
in terms of position, velocity, and accelera­
tion. The process takes place in the following
steps t

1) input of trajectory nodes
2) determination of node velocities
3) polynomial coefficient derivation
4) spline extrema tests
5) scaling with regards to extreme velocities

and accelerations
6) evaluation of polynomial position at

selected times

Figure 7.14. Trajectory Control Introductory Display

357

VIII. CONCLUSIONS

Several shortcomings and areas of further endeavor have been touched on during

the course of this work. This chapter reiterates and expands on each of them.

The electronic control circuit used leads to several deficiencies from a control

standpoint. For example, the circuit provides a difTerent amount of current to a motor

in each direction, as explained in Chapter 2; thus the joints move faster in one direction

than the other. The results obtained would be more appealing if this were not the case;

some re-design of the circuitry-' involved would be called for here. The positioning

problem solution could be further enhanced by incorporating some sort of feedback in

the robot arm. thus eliminating the need for timing and scaling of iterations to degrees.

The incorporation of stepper-motors is another possibility here, as position could be

maintained with them as well.

Coordinated motion cannot be accomplished with the given configuration, as only

a single motor can be controlled at a time due to the use of a decoder. If sufficient lines

were made available from the computer, coordinated motion would become possible.

The circuit also lacks the ability to drive the motors at different speeds; this problem

would be more difficult to overcome. The lack of both coordinated motion and

velocity control prevents the velocity and trajectory control techniques developed in

Chapters 6 and 7, respectively, from being implemented.

The geometric interpretation for the effect of the transformation matrices in

Chapter 4 and for the inadequacies of the manipulator wrist in Chapter 5 could be

enhanced by presenting the geometry graphically. Color and motion could be utilized

to further enhance what actually transpires with respect to coordinate frames when

robotic joints are actuated. An interactive graphics package could be extended to

include the depiction of the manipulator as it follows prescribed velocity or trajectory

358

conditions as well. This could serve to compensate in part for the inadequacies of the

actual Armatron manipulator configuration.

There are other topics in robotics which have not been covered here. Dynamics

is perhaps the area most commonly entered next. This area deals with the physical

characteristics and behavior of robot manipulators, such as mass, inertia, etc.; see

[HollSO] or [VukoS2] for typical presentations of this material. The background

necessary for an understanding of this topic is common to disciplines such as

mechanical engineering, but is typically lacking in a computer science background.

There is a need here for the presentation of the dynamics aspects of robotics with

background material sufficient for the understanding of the concepts involved.

APPENDIX A

HEADER LISTING

8def ine a2 100
#define a3 1 00
#define d5 1 00
#define conv (3.14159 / 180)
#define del 0x08ttdefine null 0x00
#defme cr OxODtdefine If OxOA8define eof 0x1 ADdefine hyphen 0x2Dtdefine space 0x20#define tolerance 0.018define small_ tolerance 1E-50ttdef ine Pi 3.14159^define short_pause 400

typedef int i 1 [23;typedef int r 2 [3 3;typedef int i_3 [43;typede f int i 4 [53;typedef int i 5 [63;typedef int i 6 [73;typedef int i 7 [83;typedef int i 8 [93;typedef float f 1 [2 3;typedef float f 2 [33;typedef float f 3 [43;typedef float f 4 [53;typedef float f 5 [63;typedef float f 6 [73;typedef float f 12 [133;typedef float f 9 [103;typedef float f 10 [113;typedef float f 3 2 [4 3 [33;typedef float f 4 3 [5 3 4 3;typedef float f 4 5 [53 C 63;typedef float f 5 5 [6 3 [63;typedef float f 6 5 [7 3 [63;typedef float f 5 9 [63[103;typedef float f 5 10 [6 3 [11 3;typedef float f _9_2 [1 03 [33;typedef char c_ 1 [23;typedef char c 6 9 [7 3 [1 o 3;typedef char c 12 18 C133H93;typedef char c_3_2_2 [43 [33 [

void dsply main introduction ()void dsply_thetas_noap (int *rouvoid noap matrix (f 5 theta, f 3void dsply_main_selection ();int get_option (int hb);

33;

i 4 cols);

float magnitude (f_2 vector);
int round (float value); int sign (float value); float square (float value); float cube_root (float value); void uait_then_continue ();void mcputs (int left, int right, char *line); int prompt_input_digit (char *prompt_msg);
char prompt_input_char (char *prompt_msg1, char *prompt_msg2) float prompt_input_fixed (char *prompt_msg, int i);
float indec (int r, int c); int inint (int r, int c);

3 6]

void
voidvoidvoid
void
voidvoid
voidvoid

void
voidvoidvoid
voidvoid
float

void
voidvoidvoidvoid

intfloatvoid
intfloat

void
voidvoid
voidvoidvoidvoid
voidvoid
intvoidvoidvoidfloat
void
void
int
float
float
char

lputch (int rou, int col, char ch);leprintf (int rou, int col, float value);lcprintf8 (int rou, int col, float value);
lcputs (int rou, int col, char ^string);erase_prompt (int rou);uait_then_erase (int rou);
save_screen ();pause (int thousandths);
locate (int rou, int col);

manual_control (f_5 theta, f_3_2 noap,int noap_rou, i_4 noap_cols); dsply_manual_introduction (); dsply_keyboard (int Xrou, int Xcol);
monitor_keyboard (f_5 theta, f_3_2 noap, int noap_rou,i_<* noap_cols, int rou, int col); init_transistor_messages (c_12_18 msgs);move_manual (int transistor, char Xmsg, char original_key, int rou, int col, f_5 theta, int joint); select scale manual move (int transistor);

joint_variable_control (f_5 theta, f_3_2 noap,int noap_rou, i_4 noap_cols); dsply_joint_variable_introduction ();constraints (char ignore, f_5 theta_min, f_5 theta_max); dsply_joint_variables (i_5 jv_rous, int *jv_col); process_requests (f_5 theta, f_3_2 noap,f_5 theta_min, f_5 theta_max, i_5 jv_rous, int jv_col, int noap_rou, i_̂ + noap_cols);get_joint ();get_angle (float minimum, float maximum);perform_move (int joint, f_5 theta, float desired_position, int rou, int col);select_transistor (int joint, float move); select scale (int transistor);

position_orientation_control (f_5 theta, f_3_2 noap,
int noap_rou, i_<+ noap_cols); dsply_position_orientation_introduction (); dsply_pos_orient_solution (int Xarm_rou, i_2 arm_cols,

int Xtheta_rou, i_4 theta_cols); get_noap (f_3_2 noap, int rou, i_<+ cols); sin_cos (f_5 theta, f_5 s, f_5 c); init_names (c_3_2_2 names);get_orientation_vector (int i, c_3_2_2 names, f_3_2 noap,int rou, i_g cols);
get_position_vector (c_3_2_2 names, f_3_2 noap, int rou, i_g cols); prompt_input_noap (char Xname, float lvalue);
calc_arm_end (f_3_2 noap, f_2 pa, int arm_rou, i_2 arm_cols); calc_theta_123_triples (f _2 pa, f_<+_3 theta, int rou, i_4 cols); calc_theta_3 (f_2 pa, f_<+_3 theta, int rou, i_<+ cols); calc_beta_minus_theta_1 (f_2 pa, f_<+_3 theta, f_<t bmt1); calc_beta (f_2 pa);calc_theta_1 (float beta, f_4 bmt1 , f_4_3 theta, int rou, i_ ̂ cols);
calc_theta_2 (f_2 pa, f_<+_3 theta, int rou, i_4 cols);
calc_theta_“+5_pairs (f_3_2 noap, f_<+_3 theta, f_4_5 accepted_theta,int rou, i_4 cols); calc_theta_i+ (f_2 a, f_3 s, f_3 c);
calc_theta_5 (f_2 n, f_2 o, f_3 s, f_3 c);
prompt_for_move (int accepted, f_4_5 accepted_theta,

362

void
floatfloat
charchar

voidvoid

voidvoidvoidvoid
voidvoidvoidvoidvoid
char
void
voidint

int
int
voidvoidvoid
voidvoidvoidintvoidint
voidvoid
voidvoidvoidvoid
void
void
voidvoid

voidvoidint
voidintvoid

f_5 move_theta);dsply_prompt_for_move (int Xrou, i_8 cols);
min_constraint (int joint);
»ax_constraint (int joint);one_solution (int index, f_<+_5 accepted_theta, f_5 move_theta) ; multiple_solutions (int accepted, f_<t_5 accepted_theta,

int inbounds, i_<+ inbounds_index, i_i+ out, f_5 move_theta);position_orientation_move (f_5 theta, f_5 move_theta); dsply_pos_orient_move (int X i o i i , i_2 cols);

velocity_control (f_5 theta, f_3_2 noap, int rou, i_4 cols); dsply_velocity_introduction () ;dsply_vc_selection ();get_theta (f_5 theta, int rou, int cols);
for_sol_via_jac (f_5 theta, f_5 dtheta); dsply__jacobian (int Xrou, i_6 cols);calc_jacobian (f_5 s, f_5 c, f_6_5 jacobian, int rou, i_5 cols); get_delta_theta (f_5 dtheta, int r, int c); calc_list_rates (f_5 dtheta, f_6 drate, f_6_5 jacobian, int r, int c);cont (char Xmsg);
rev_sol_via_ij (f_5 theta, f_6 delta_trans_rot); dsply_rsvij_jacobian (int Xrou, i_5 cols);get_required_rates (f_6 delta_trans_rot, f_6_5 jacobian, i_6 used,f_6_5 jacobian_reduced, f_6 delta_tr_reduced, int rou, i_5 cols);over_determined_case (f_6_5 jacobian, f_6 delta_trans_rot,f_5 delta_theta);under_determined_case (int total, f_6_5 jacobian_reduced,f_6 delta_tr_reduced, f_5 delta_theta); matrix_by_matrix (int total, f_6_5 mparm, f_5_5 m, char Xsubhead); dsply_m (char Xsubhead, int Xrou, i_5 cols);matrix_by_vector (f_6_5 jac_parm, int total, f_5 vec, f_5 result,char Xsubhead);dsply_m_by_v (char Xsubhead, int Xrou, i_7 cols);list_input_output (f_6 delta_tran_rot, i_6 used, f_5 delta_theta); dsply_in_out (i_) rou, int Xcol);solve_simul_eqns_myv (f_5_5 m, f_5 v, int n, f_5 y, char Xsubhead) dsply_soln_myv (char Xsubhead, int Xrou, i_7 cols); interchange_rous (f_5_5 m, f_5 v, int k, int n,int rou, i_7 cols);
zero_column_k (f_5_5 m, f_5 v, int k, int n, int rou, i_7 cols); solve_y_vector (f_5_5 m, f_5 v, int n, f_5 y, int rou, i_7 cols);
rev_sol_via_deriv (f_5 theta, f_3_2 noap, f_6 delta_trans_rot); dsply_rsvd (int Xmr, i_3 me, i_1 vr, i_1 vc);
get_delta_trans_rot (f_6 delta_trans_rot, int vr, int vc); calc_delta_noap (f_3_2 noap, f_6 delta_trans_rot, f_3_2 dnoap, i_3 me, int mr);calc_delta_theta (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap,f_5 dtheta, int vr, int vc);
delta_theta312 (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap, f_5 dtheta, int xdiv_zero);
delta_theta<+ (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap, f_5 dtheta); delta_theta5 (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap, f_5 dtheta);

trajectory_control ();
dsply_trajectory_introduction ();nodes_and_distances (f_5_10 theta, f_9 t);dsply_nodes_dists (int Xrou, i_6 cols);
input_nodes (f_5_10 p, int rou, i_6 cols);
calc_distance (int n, f_5_10 p, f_9 t, int rou, int col);

363

void calc_polynojnials Cint n, f_10 p, f_9 t,
f_9 a, f_9 b, f_9 c, f_9 d, f_9 e);

void calc_node_velocities (int n, f_10 p, f_9 t, f_9 vel); void dsply_node_velocities (int Krou, i_9 cols);
void equate_quartic_cubic_accs (f_9 t, f_10 p, f_9_2 coelf, f_9 rhs,int row, i_4 cols);void equate_cubic_accs (int n, f_9 t, f_10 p, f_9_2 coeff, f_9 rhs,int rou, i_4 cols);void equate_cubic_quartic_accs (int n, f_9 t, f_10 p, f_9_2 coeff,f_9 rhs, int rou, i_d cols);void foruard_eliminate_term1 (int n, f_9_2 coeff, f_9 rhs,int rou, i_4 cols);void backuard_eliminate_term3 (int n, f_9_2 coeff, f_9 rhs, f_9 vel,int rou, i_4 cols);
void calc_coefficients (int n, f_10 p, f_9 t, f_9 vel,f_9 a, f_9 b, f_9 c, f_9 d, f_9 e); void dsply_coefficients (int *row, i_5 cols); void calc_starting_quartic (f_10 p, f_9 t, f_9 vel,f_9 a, f_9 b, f_9 c, f_9 d, f_9 e, int rou, i_5 cols);void calc_intermediate_cubics (int n, f_10 p, f_9 t, f_9 vel,f_9 a, f_9 b, f_9 c, f_9 d, f_9 e, int row, i_5 cols);void calc_ending_quartic (int n, f_10 p, f_9 t, f_9 vel,

f_9 a, f_9 b, f_9 c, f_9 d, f_9 e, int rou, i_5 cols);
void critical_positions (int n, f_9 a, f_9 b, f_9 c, f_9 d, f_9 e,f_9 t, int lb, int hb); void dsply_crit_pos (int *rou, i_7 cols);void teriumal_crit_pos (int i, float a, float b, float c, float d,float e, float t, float lb, float hb, int rou, i_7 cols);void intermediate_crit_pos (int i, float a, float b, float c, float d,float t, float lb, float hb, int rou, i_7 cols);float eval_cp (float a, float b, float c, float d, float e,float tcp, float t, int rou, int tcol, int pcol); void check_range (float lb, float hb, float cp, int row, int col);
float traj_scaling (int n, f_9 b, f_9 c, f_9 d, f_9 e, f_9 t,float theta_maxv, float theta_maxa); void dsply_traj_scaling (int *rou, i_7 cols);
float terminal_crit_vel (int i, float b, float c, float d, float e,float t, int rou, i_6 cols);float intermediate_crit_vel (int i, float b, float c, float d, float t,int rou, i_6 cols);float eval_cv (float b, float c, float d, float e, float tcv, float t, int rou, int tcol, int vcol);
float terminal_crit_acc (float c, float d, float e, float t,int rou, i_6 cols);float intermediate_crit_acc (float c, int rou, i_6 cols);
void determine_positions
void dsply_det_positions
float get_time ();

(f_5_9 a, f_5_9 b, f_5_9 c, f_5_9 d, f 5 9 e, int n, f_9 t, float f);
(i_2 rou, i_4 time_cols, i_6 eval_cols, int *scale_col);

♦♦include
♦♦include
#include
♦♦include
♦♦include
♦♦include

<stdio.h>
<dos.h>

<time.h>
<math.h>

<string.h>
<ctype.h>

APPENDIX B

MAIN PROCEDURE LISTING

365

^include <c •• \ed' s\header . c>
FILE Kfptr;char qsave_screen;
void main ()

{int
i_4intf_5f_5f_5f _3_2int

rou; cols;
i ;theta;s;
c;noap; opt;

outportb (888, 0); fptr = fopen ("SCREENS. OUT" , "u dsply_main_introduction ();
locate (23, 55);qsave_screen = toupper (getch ());lputch (23, 55, qsave_screen);
uait_then_erase (1); dsply_thetas_noap (&rou, cols);
for (i = 1; i <= 5; i++) thetati] = 0;noap_matrix (theta, noap, rou, cols);dsply_main_selection ();uhile ((opt = get_option(5)) != 0)

{uait_then_erase (8);
suitch (opt)

{case 1 : manual_control (theta, noap, rou, cols);
break;case 2 : joint_variable_control (theta, noap, rou, cols)
break;case 3 : position_orientation_control (theta, noap, rou,
break;case 4 : velocity_control (theta, noap, rou, cols);
break;case 5 : trajectory_control ();

}
break;

dsply_main_selection ();
}fputc (eof, fptr); fclose (fptr);

}

cols)

void dsply main introduction ()
{int lm >int rm >

lm = 16 >rm = 1 6>locate (0, 0);
mcputs (lm, rm,
mcputs (lm, rm,
mcputs (lm, rm,
mcputs (lm, rm,
mcputs (lm, rm,
mcputs (lm. rm.
mcputs (lm, rm,
mcputs (lm. rm,
mcputs (lm, rm,
mcputs (lm, rm,
mcputs (lm, rm,

Armatron Manipulator Control Version 1.1Eduard Hammerand March 1990
This program provides for the control of the Armatron manipulator in one of three manners:
1) The manipulator may be controlled directly using keyboard input
2) The settings of the joint variables may be input directly
3) A desired position and orientation of the

") ;
") ;
") ;

") ;
") ;
") ;

") ;

366

mcputs (lm, rm, " manipulator may be specified; from this, amcputs (lm, rm, " solution set will be derived and a move ");
mcputs (lm, rm, " attempted if possible and desired ");mcputs (lm, rm, "Additionally, support is given for the calcula- ");
mcputs (lm, rm, ”tion of manipulator velocities and trajectories,"); mcputs (lm, rm, "although these are not directly implemented for "); mcputs (lm, rm, "the robot arm. ");mcputs (lm, rm, " If the manipulator arm is not aligned to its "); mcputs (lm, rm, "home orientation, use the manual switches to "); mcputs (lm, rm, "align it at this time. ");mcputs (lm, rm, " If desired, the screens displayed during the "); mcputs (lm, rm, "course of program execution may be saved to the "); mcputs (lm, rm, "file SCREENS.OUT; save screens (y/n)? ");mcputs (lm, rm, " ");
}
d dsply thetas_noap
T

(int Xrou, i_4 cols)
locate (1 , 0);eputs (" Theta ");eputs (" ");eputs (" T1 N 0 ");eputs (" A P ");eputs (" T2 i ");eputs (" 11 ");eputs (" T3 ! ");eputs (" 1t ");eputs (" TA | ");eputs (” 11 ");eputs (" T5 i 0 0 ");eputs (" 0 1 ");
cols[03 = 25;
colst13 = 36;
cols[23 = A7;
cols[33 = 58;
colsC'i^ = 11 ;Xrou =
>

3;

d noap_matrix (f_5 theta, f_3_2 noap. int row, i_A cols)
int i; int j; f_5 s; f 5 c;
for (i = 1; i <= 5; i++)

leprintf (rou+i-2, cols[43, thetali]);
}

sin cos (theta, s, c);
noap[0] [0 3 =

+
noapt 03[13 =

+
noap[0][23 =

((c[13*c[23*c[33 “ s[13*s[33)Xc[A3- c[13*s[23*s[43)Xc[53(c C13XC [23XS[33 + s[13XC133)*s[53;
((sC13*c[23*c[33 + <=[13xs [33)XC[A3- sC13*s[23Xs[A])Xc[5]
(sCl3XcC23XsI33 - c[13XC[33)xs[53;
(s[23Xc[33Xc[A3 + c[23Xs[A3) x c [5 3 + st23XS [33XS [5 3;

noapt13103

noapC13113

noap[13C23

= -((c[13*c[23*c[33 “ s[13 x s [3 3) x c [A3- c[l3Xs[23xs[A3) x s [5 3+ (cC13Xc[23Xs[33 + s [13Xc[33)*c[53;
= -((s[13xc[23Xc[33 + c[13 x s [3 3) x c [A3- s[13Xs[23Xs[A3)XS[53
+ (s[13xc[23xs[33 - c[13xc[33)XcC53;
= -(s[23*c[33Xc[A3 4 c[23*s [A])Xs[53 4 s[2]*s[33Xc[53;

367

noap[2][0] noap[2][1]
noap[2][2]

(c[1]XC [2)XC[3]
(s[1]Xc[2]xc[3] s[2]XC[3]Xs[<;]

- s[1]XsC3])xs[A] + c[13*s[2]xc[A];
+ c[1)xs [3])xs [A] + s[1]xs [2]Xc[A];
- c[2]*c[A];

noapt3][0]
noap[3][1]
noap[3][2]

= d5*((c[1]Xc[2]XC[3] - s[1]xs[3])xs[4] + c [1]xsC2]*cC43)
+ a3X(c[1]*c[2]xc[3] “ s[1]Xs[3]) + a2XC[1]Xc[2];= d5*(CsC 1]xc[23xc[3] + c[1]xs[3])xs [4] + s [1]xs [2]*c[4]) + a3X(s[1]Xc[2]xc[33 + c[1]xs[33) + a2Xs[13Xc[23;
= d5X(s[2)Xc [3)Xs[43 - c[23Xc[43) + (a3xc[33 + a2)XS [23;

for (i = 0; i <= 3; i++)for (j = 0; j <= 2; j++)leprintf (rou+j, colsCi], noapti][j]);
}

void sin_cos (f_5 theta, f_5 s, f 5 c)
{int i;
for (i = 1; i <= 5; i + +)

{s[i3 = sin (thetaCi] X conv); cCi] = cos Cthetati] x conv);
}

1
void dsply_main_selection ()

{int rou; int col;
rou = 8;col = 22;lcputs (rou, col, lcputs (rout 2, col, lcputs (rout 4, col, lcputs (rout 6, col, lcputs (rou+ 8, col, lcputs (rou+10, col,
lcputs (rou+12, col,
}

"Armatron Manipulator Control Options"); "1: Manual Control");”2: Joint Variable Control");"3: Position-Orientation Control”);"A: Velocity Control");”5: Trajectory Control");"0: Terminate Manipulator Control");

int get_option (int hb)
{int opt;
do opt = prompt_input_digit ("Select Option:"); uhile (opt > hb); locate (22, 22);cprintf ("Option %d has been selected", opt); return (opt);
}

float magnitude (f_2 vector)
{int i; float sum;
sum = 0;for (i = 0; i <= 2; i++)sum += square (vectorCi]); return (sqrt(sum));
}

int round (float value)
{value = value + sign (value) x 0.5;

return C (int) value);
}

int sign (float value)
{int value_sign;
if (value > 0)value_sign = 1;

elseif (value < 0)value_sign = -1; elsevalue_sign = 0;return (value_sign);
}

float square (float value)
{return (poutvalue, 2));
}

float cube^root (float value)
{float result;
if (value > 0)

result = pou (value, 1/3); elseif (value < 0)result = -pou (-value, 1/3); elseresult = 0;
return (result);
}

void uait_then_continue ()
{save_screen ();lcputs (24, 28, "Press any key to proceed") locate (24, 54); getch ();erase_prompt (24);
}

void mcputs (int left, int right, char *line)
{int i;
for (i = 1; i <= left; i++) eputs (" "); eputs (line);for (i = 1; i <= right; i++) eputs (" ");
3

int prompt_input_digit (char *prompt_msg)
{char ch;c_1 ch_string;
do

{lcputs (23, 20, prompt_msg);
locate (23, strlen(prompt_msg)+22); ch = getch();
3uhile ((ch < '0') J (ch > '9'));

erase__prompt (23); ch_string[0] = ch;

369

ch_string C1] = ''; return (atoi(ch_string));
}

char prompt_input_char (char Xprompt_msg 1 . char *prompt_msg2)
{int r;int c; char ch;
lcputs (23, 20, prompt_msg 1); lcputs (24, 2 0 , prompt_jnsg2); locate (23, strlen(prompt_insg1) + 21) ; ch = toupper (getch ());erase_prompt (23); return (ch);
}

float prompt_input_fixed (char #prompt_msg, int i)
{float value;
lcputs (23, 20, prompt_msg); cprintf (" V.d <Snnn.nnn>: ", i);lcputs (24, 20, "(<Return> only to leave value unchanged)");
value = indec (23, 25+strlen(prompt_msg)); erase_prompt (23);
return (value);
}

float indec (int r, int c)
{char instring [83;
int len;int currcol ichar ch;int ch_ok;float value;int decpt;
int fraclen >int done;
locate (r, c);instringLO] = null;
len = 0 ;
currcol = c;decpt = 0 ;
fraclen = 0 ;done = 0 ;
uhile (!done)

{ch = getch ();ch_ok = 0 ;value = atof (instring);if (((ch >= '0') & (ch <= '9')) & ((value < 100) | (decpt == D) &(fraclen < 3))
{if (decpt == 1)

fraclen++; ch_ok = 1 J
}elseif ((ch == '.') & (decpt == 0))

{decpt = 1 ; ch_ok = 1 ;
}else
if (((ch == '+') ! (ch == '-’)) & (len == 0))

370

ch_ok = 1 ;
if (ch_ok == 1)

{instringClen] = ch; len++;instringClen] = null; lputch (r, currcol, ch); currcol++;
}©Is©if ((ch == del) & (len > 0))

{len— ;if (instringClen] == '.')decpt = 0 ; if (fraclen > 0) fraclen— ;instringClen] = null; lputch (r, currcol, space); currcol— ;lputch (r, currcol, space); locate (r, currcol);
]elseif (ch == cr) done = 1 ;

3if (len == 0)value = 1 0 0 0 ; elsevalue = atof (instring); return (value);
3

int inint (int row, int col)
char instring m ;
int len;int currcol;
char ch;int ch_ok;int value;
int done;
locate (row, col);instringCO] = null;len = 0 ;currcol = col;done = 0 ;
uhile (!done)

{ch = getch ();ch_ok = 0 ;value = atoi (instring); if ((ch >= ’O') & (ch <= ’9'))
ch_ok = 1 ; else
if (((ch == '+’) i (ch == ’- ’)) & (len == 0)) ch_ok = 1 ; if (ch_ok == 1)
{instringClen] = ch;
len++;instringClen] = null; lputch (row, currcol, ch); currcol++;
3else
if ((ch == del) & (len > 0))

371

{len— ;instringClen] = null;
lputch (rou, currcol, space); currcol— ;
lputch (rou, currcol, space); locate (rou, currcol);
}elseif (ch == cr) done = 1 ;

}if (len == 0)
value = 0 ; elsevalue = atoi (instring); return (value);

}
void lputch (int rou, int col, char ch)

{locate (rou, col); putch (ch);
}

void leprintf (int rou, int col, float value)
{locate (rou, col);if ((fabs(value) >= 0 . 0 1) | (value == 0)) cprintf ("%1 0 .3f", value); elsecprintf ("%10.<+E", value);
}

void lcprintf8 (int rou, int col, float value)
{locate (rou, col);if ((fabs(value) >= 0 . 0 1) | (value == 0)) cprintf ("%8.3f", value); elsecprintf ("%8.1E", value);
}

void lcputs (int rou, int col, char ^string)
{locate (rou, col); eputs (string);
}

void erase_prompt (int rou)
{int i;
for (i = rou; i <= 23; i++)

locate (i, 0); cprintf ("%80c", ’ ');
}locate (2 <+, 0);

cprintf ("%79c", ' ’);
}

void wait_then_erase (int rou)
{int r; int c;
save screen ();

372

lcputs (24, 28, "Press any key to proceed"); locate (24, 54);
getch (); c = 0 ;for (r = rou; r <= 23; r++)

{locate (r, c);cprintf (" % 8 0 c ", ' ’);
}locate (24, 0); cprintf ("%79c", ' ’);

}
void save_screen ()

{intintunsignedchar

rou; col; offset; ch;
if (qsave_screen == 'V)

{for (rou = 0; rou <= 24; rou++)
{for (col = 0; col <= 79; col++)

{offset = rouXl60 + col*2;
ch = peekb(47104, offset); fputc (ch, fptr);
)fputc (If, fptr);

}for (col = 0; col <= 79; col++) fputc (hyphen, fptr); fputc (If, fptr);
}

}
void pause (int thousandths)

/X PAUSE : delay for the input X/ /X number of 1/1000's of X//x seconds X/
{unsigned long ticks; unsigned long target;
union REGS i, o;
i .h .ah = 0;int8 6 (26, &i, &o);ticks = (o .x .cx << 16) | o.x.dx;target = ticks + (thousandths / 55);
uhile (ticks < target)

{i .h.ah = 0 ; int8 6 (26, &i, &o); ticks = (o.x.cx << 16) | o.x.dx;
}

}
void locate (int rou, int col)

{union REGS i;

/X LOCATE :
/x/X

move cursor r = 0 to 24
c = 0 to 79

to (r,c) X/
X/
x/

i .h.ah = 2 ; i.h.bh = 0 ;

373

i.h.dh = rou;
i.h.dl = col;
int8 6 (16, &i,
}

8i);

APPENDIX C

MANUAL CONTROL PROCEDURES LISTING

375

^include <c:\ed'sNheader.c>
void manual_control (f_5 theta, f_3_2 noap, int noap_rou, i_A noap_cols)

{int rou;
int col;
dsply_manual_introduction ();uait_then_eiase (9); dsply_keyboard (&rou, &col);monitor_keyboard (theta, noap, noap_rou, noap_cols, rou, col); erase^proapt (23); locate (23, 0);mcputs (28, 27, "Manual Control Terminated"); uait_then_erase (8);
}

void dsply_manual_introduction ()
{int lm >int rm i

locate (8 , 0);
lm = 16 Jrm = 1 6 imcputs (lm, rm
mcputs (lm, rm
mcputs (lm, rmmcputs (lm, rm
mcputs (lm, rm
mcputs (lm, rm
mcputs (lm, rmmcputs (lm, rmmcputs (lm, rmmcputs (lm, rmmcputs (lm, rmmcputs (lm, rmmcputs (lm. rmmcputs (lm, rmmcputs (lm, rm
>

" Manual Control ");
" ”); " The movement of each of the five joints and "); "the gripper of the Armatron manipulator is "); "controlled from the keyboard by a pair of keys. ");
" "); " To effect movement of a joint, press and hold "); "doun one of the keys controlling the joint; the "); "release of the key terminates movement. The "); "amount of time the key is held doun is monitored"); "and used to update the joint variable involved. "); " "); "Note: At times, a motor may stall; should this "); " occur, immediately release the key to ”); " avoid ruining a transistor. ");

void dsply_keyboard (int Xrou, int Xcol)
{int lm; int rm;
locate (9, 0); lm = 16; rm = 16;mcputs (lm, rm, tt ");mcputs (lm, rm, "Gripper Open Grippe r Closemcputs (lm, rm, tl 1 1 t1");mcputs (lm, rm, tt 1 1 EX-Wrist Up (A) Wrist Doun-XI 1I") ;mcputs (lm, rm, ft 1 1 1I");mcputs (lm, rm. "AX SX DX FX GX-Arm(2) Arm-XH XJ XX *L X; ");mcputs (lm, rm, r? 11 ! ! Up Doun l ! ii ");mcputs (lm, rm. tr \» 1 I 1 1 t t1 t ii ");mcputs (lm, rm. ft 1\ j Arm Left (1) Arm Right

11
ii ");mcputs (lm. rm, tt 1I 1t ii ");mcputs (lm, rm, tt 11 Elbou Left (3) Elbou Right ii ”);mcputs (lm. rm, »t 11 iV ");mcputs (lm, rm, tt Wrist Rotate Left (5) Wrist Rotate Riqht ");mcputs (lm, rm. ft ”);mcputs (lm, rm, "Select:

);mcputs (lm, rm, tl <Press the space bar to terminate control> '
Xrou = 23;Xcol = 25;
}

376

void monitor_keyboard (f_5i A
£char c_12_18
int int

key; msgs;transistor; joint;

theta, f_3_2 noap, int noap_rou,
noap_cols, int rou, int col)

init_transistor_messages (msgs);
do

{locate (row, col); while (!kbhit());key = toupper switch (key)
{
case 'H' :

case 'G ' :

case 'J' :

case 'F' :

case 'D ' :

case 'K' :

case ' I ' :

case 'E' :

case 'S' :

case 'L ’ :

case 'A' :

case ' ; ' :

getch());

transistor = 7;joint - 2 ; break;transistor = 8 ;joint = 2 ;
break;
transistor = 1 2 ; joint = 1 ; break;transistor = 1 1 ; joint = 1 ; break;
transistor = 6 ;joint = 3; break;transistor = 5;joint = 3; break;
transistor = 1 ;joint = A; break;transistor = 2 ;joint = <+; break;
transistor = 9;joint = 5; break;transistor = 1 0 ; joint = 5; break;
transistor = A; joint = 0 ; break;
transistor = 3;joint = 0 ;
break;

/* Arm Doun - Up x/

/x Arm Right - Left X/

/x Elbow Left - Right X/

/x Wrist Doun - Up X/

/X Wrist Rotate Left - Right X/

/X Gripper Open - Close X/

if

if

default : transistor = 0 ;joint = 0 ;
}(transistor != 0)move_manual (transistor, msgsttransistor], key,

theta, joint);(joint > 0)
noap_matrix (theta, noap, noap_rou, noap_cols);

}uhile (key != space);

rou, col,

377

}
void init transistor_messages (c 12_18 msgs)

{strcpy (msgs[1], "Wrist Doun ");
strcpy (msgs[23, "Wrxst Up ");strcpy (msgst 33, "Gripper Close ”);strcpy (msgst 43, "Gripper Open ");strcpy (msgst 53, "Elbou Right ");strcpy (msgst 63, "Elbou Left ");
strcpy (msgst 73, "Arm Doun ");strcpy (msgst 83, "Arm Up ");strcpy (msgst 93, "Wrxst Rotate Left "); strcpy (msgst103, "Wrist Rotate Right"); strcpy (msgst113, "Arm Left ");strcpy (msgs[123, "Arm Right ");
3

void move_manual (int transistor, char ^msg, char original_key,xnt rou, int col, f_5 theta, int goint)
tchar key;float degree_scale;int i;
degree_scale = select_scale_manual_move (transistor); i = 0 ;lcputs (rou, col, msg); locate (rou, col); pause (500);outportb (8 8 8 , transistor);
do

ii++;pause (1 1 0); key = null; uhile (kbhit ())key = toupper (getch ());
3uhile (key == original_key); outportb (8 8 8 , 0);lcputs (rou, col, " ”);if (joint > 0)theta[joint3 += (float) i / degree__scale;

)
float select_scale_manual move (int transistor)

{float scale;
suitch (transistor)

{case i : scale = break; -30 / 2 0 0 .0 ;
case 2 : scale = break; 36 / 2 0 0 .0 ;

case 3 : scale = break; 1 ;
case 4 : scale = break; 1 ;

case 5 : scale =
break;

-41 / 180.0;
case 6 : scale =

break;
41 / 180.0;

case 7 : scale =
break;

-29 / 35.0;
case 8 : scale = 27 / 35.0;

/X Wrist Doun - Up X/

/X Gripper Close - Open x/

/X Elbou Right - Left X/

/X Arm Doun - Up X/

3 7 8

break;
case 9 : scale =

break;
- 6 8 / 1080

case 1 0 : scale =
break;

6 6 / 1 080

case 1 1 : scale =
break;

71 / 360
case 1 2 :: scale = -65 / 360

break;
}

return (scale) ;
}

/* Wrist Rotate Left - Right #/

/* Arm Left - Right X/

0

0

0

0

APPENDIX D

JOINT VARIABLE CONTROL PROCEDURES LISTING

380

^include <c:\ed's\header.c>
void j oint_vanable_control (f_5 theta, f_3_2 noap,

int noap_rou, i_4 noap_cols)
{char ignore;
f 5 theta_min;
f ~5 theta_max;
i_5 jv_rows;
int jv_col;
int i;
dsply_joint_variable_introduction C);locate (23, 42);ignore = toupper(getch());lputch (23, 42, ignore);constraints (ignore, theta_min, theta_max); uait_then_erase (9);dsply_joint_variables (jv_rows, &jv_col); for (i = 1; i <= 5; i++)leprintf (jv_rous[i], jv_col, thetati]); process_requests (theta, noap, theta_min, theta_max,

jv_rous, jv_col, noap_rou, noap_cols);erase_prompt (23); locate (23, 0);mcputs (24, 23, "Joint-Variable Control Terminated”); uait_then_erase (8);
}

void dsply_joint_variable introduction ()
{int lmJint rm)
locate (8 , o
lm = 16 >rm = 1 6 fmcputs (lm. rm, ti Joint-Variable Control ti);mcputs (lm, rm, n ti);mcputs (lm, rm, " The movement of each of the five joints of the");mcputs (lm. rm. "Armatron manipulator is controlled by specifying");mcputs (lm, rm, "a joint and angle via the keyboard. fl);mcputs (lm, rm. tt ft);mcputs (lm, rm, " Use the manual switches to align the robot arm”);mcputs (lm, rm, "now, if necessary. ft);mcputs (lm. rm. tl tl);mcputs (lm, rm, "Note: At times a motor may stall; should this ");mcputs (lm, r m , tt occur, immediately press the space bar to”);mcputs (lm. rm, tl avoid ruining a transistor. tt);mcputs (lm, rm, It tl);mcputs (lm, rm, ” The constraints placed on the joint variables ");mcputs (lm, rm, "may be ignored for computation purposes. Ignore");mcputs (lm, rm, "joint constraints? (y/n) If);
}

void constraints (char ignore, f_5 theta_min, f_5 theta_max)
{int i;
if (ignore

r
t = i y i)

itheta_.mint 1] = -360;theta_ maxt1] = 360;theta_’min[2] = -5;theta..max[2] = 30;
theta._minC3 3 = -90;theta..maxC 3] = 90;theta._min[4] = -1 0 ;theta. max[4] = 190;theta._min[5] = -360;

381

theta_max[53 = 360;
>elsefor (i = 1; i <= 5; i++)

{theta_min[i] = -360;
theta_max[i3 = 360;
}

void dsply_joint_variables (i_5 jv_rous, int *jv_col)
{int lm; int rm;
lm = 19; r m = 19;locate (9, 0);mcputs (lm. rm, "
mcputs (lm. rm, ” Jointmcputs (lm. rm, " 1 : Arm Right/Leftmcputs (lm, rm, " (-360 to +360)mcputs (lm, rm, ,f 2 : Arm Doun/Upmcputs (lm, rm, *’ (-5 to +30)mcputs (lm. rm, " 3: Elbou Right/Leftmcputs (lm. rm, ” (-90 to +90)
mcputs (lm, rm, ” A: Wrist Doun/Up
mcputs (lm, rm, ” (-10 to +190)
mcputs (lm, rm, ” 5 : Wrist Rotate Left/Right
mcputs (lm, rm, " (-360 to +360)
mcputs (lm, rm, 0 : End Joint-Variable Control
mcputs (lm. rm, ”
jv_rous[1 3 = 1 1 ;jv__rows[2 3 = 13;jv_rous[33 = 15;jv_roustA 3 = 17;
jv rousC53 = 19;
*jv_col = 51;
}

”);Angle ");
") ;
") ;
”);
") ;
") ;

”) ;
"
") ;

void process^requests (f_5 theta, f_3_2 noap,f_5 theta_min, f_5 theta_max, i_5 jv_rous, int jv_col, int noap_rou, i__A noap_cols)
{int joint; float angle; float move_degrees;
joint = get_joint C); uhile (joint 1= 0)

{angle = get_angle (theta_min[joint], theta_max[joint 3) erase_prompt (23); locate (23, 20);cprintf ("Moving Joint %d to angle perform_move (joint, theta, angle, lcputs (23, 20, "
%8.3f", joint, angle); jv_rousCjoint], jv_col);

") ;
noap_matrix (theta, noap, noap_rou, noap_cols);
joint = get_joint ();
}

int get_joint ()
{int joint;

382

do joint = prompt_input_digit ("Select Joint:");
uhile (goint > 5); locate (24, 20);cprintf ("Joint %d has been selected", joint);

return (joint);
}

float get_angle (float minimum, float maximum)
{float angle;
do

{lcputs (23, 20, "Enter angle <Snnn.nnn>: ");angle = (indec (23, 45)); if (angle == 1 0 0 0) angle = 0 ;if ((angle < minimum) ! (angle > maximum))
{locate (23, 1 0);
cprintf ("Angle %8.3f out of range for the joint; ", angle);eputs ("check ranges above");pause (3000) ;locate (23, 1 0);cprintf ("%61c", ’ ');
}

}uhile ((angle < minimum) | (angle > maximum)); return (angle);
}

void perform_move (int joint, f_5 theta, float desired_position,int rou, int col)
ffloat move_degrees;int transistor;float degree_scale;int iterations;
float degrees_per_iteration;int i;
move_degrees = desired_position - thetatjoint];transistor = select_transistor (joint, move_degrees);degree_scale = select_scale (transistor);iterations = round (fabs(move_degrees) * degree_scale);degrees_per_iteration = sign (move_degrees) / degree_scale;lcputs (rou, col, " hoving");i = 0 ;outportb (8 8 8 , transistor); uhile ((!kbhit()) & (i < iterations)) i = i + 1 ; outportb (8 8 8 , 0); if (i == iterations)

thetatjoint] = desired_position; else
tgetch ();
thetatjoint] += degrees_per iteration ̂ i;
}leprintf (rou, col, thetatjoint]);

int select_transistor (int joint, float move)
{int transistor;
if (move > 0)

switch (joint)
{

383

case 1 : transistor
break;

case 2 :: transistor
break;

case 3 :: transistor
break;

case A : transistor
break;

case
}

5 :: transistor
else

switch (joint)
{case 1 : transistor =

break;
case 2 : transistor =

break;
case 3 : transistor =

break;
case A : transistor =

break;
case 5 : transistor =
}

return (transistor);
)

float select_scale (int transistor)
{float scale;
switch (transistor)

{case 1 : scale =
break;

3000 / 2 0 0

case 2 : scale =
break;

3650 / 2 0 0

case 3 : scale =
break; 1 ;

case A : scale =
break;

1 ;

case 5 : scale =
break;

A 1 50 / 180
case 6 :: scale =

break;
A1 00 / 180

case 7 :: scale =
break;

2900 / 35
case 8 :: scale =

break;
2700 / 35

case 9 : scale =
break;

6800 / 1080
case 1 0 : scale =

break;
6600 / 1 080

case 1 1 :: scale =
break;

7100 / 360
case 1 2 :: scale =

break;
6500 / 360

}return (scale);

/X Wrist Doun - Up x/

/X Gripper Close - Open x/

/X Elbou Right - Left X/

/x Arm Down - Up x/

/X Wrist Rotate Left - Right X/

/X Arm Left - Right X/

1

8

6

2
0

2
7
5
1

9

>

i

>

*

*

J

i

J

y

APPENDIX E

POSITION AND ORIENTATION CONTROL PROCEDURES LISTING

385

♦♦include <c :\ed 1 s\header . c>
void position_orientation_control Cf_5 theta, f_3_2 noap,int noap_row, i_A noap_cols)

{int magnitude_ok;
char move;int arm_rou;i_ 2 arm_cols;int theta_rou;i_4 theta_cols;
f_ 2 pa;f_A t3 ;f_4_3 theta123;int accepted;f_<+_5 accepted_theta; f_5 move_theta;char *prompt_msg1 ; char *prompt_msg2 ; char qc;f_5 s;f _5 c;int i;
dsply_position_orientation_introduction ();uait_then_erase (9);
do

{dsply__pos_orient_solution (&arm_rou, arm_cols,&theta_rou, theta_cols);
get_noap (noap, noap_rou, noap_cols);magnitude_ok = calc_arm_end (noap, pa, arm_rou, arm_cols); if (magnitude_ok)

{calc_theta_123_triples (pa, theta123,theta_rou, theta_cols); accepted = calc_theta_45_pairs (noap, theta123,accepted_theta, theta_rou, theta_cols);uait_then_erase (9);move = prompt_for_move (accepted, accepted_theta,move_theta);if (move == ' Y')position_orientation_move (theta, move_theta); noap matrix (theta, noap, noap_rou, noap_cols);
3elselcputs (28, 19, "Arm end position not attainable");prompt_msg1 = "Continue with another N-O-A-P matrix (y/n)?"; prompt_msg2 = "";qc = prompt_input_char (prompt_msg1 , prompt_msg2);

}uhile (qc == *Y’); wait_then_erase (8);
}

void dsply_position_orientation_introduction ()
{int lm; int rm;
locate (8 , 0);
lm = 16; rm = 16;mcputs (lm, rm, " Position-Orientation Controlmcputs (lm, rm. " ");mcputs (lm, rm, ” The movement of each of the five joints of the");mcputs (lm, rm, "Armatron is controlled by specifying a desired ");
mcputs (lm, rm, "position-orientation matrix consisting of ");mcputs (lm, rm, "vectors n, o, a, and p, ");

3 8 6

mcputs (lm. rm. fi The
mcputs (lm, rm, ftfolio
mcputs (lm. rm, it 1)mcputs (lm, rm, tt
mcputs (lm, rm. tt
mcputs (lm, rm. tt 2)
mcputs (lm, rm, it
mcputs (lm, rm, »t 3)
mcputs (lm, rm. »t

the desired gripper center and approach of
the wristfour possible triples are then evaluated to bring the arm proper to this postion solutions are then obtained for the wrist variables, if any exist

") ;
") ;
") ;
”);

void dsply__pos_orient_solution (int *arm_row, i_ 2 arm_cols,int *theta_row, i_A theta_cols)
{int lm; int rm;
lm = 16; rm = 15;locate (9, 0);mcputs (lm. rm. tt Determination of Pa Vector Components ");mcputs (lm, rm, it Pwx Puy Pwz ");mcputs (lm, rm, ti nnnnnnnnnn nnnnnnnnnn nnnnnnnnnnmcputs (lm, rm, ti Pax Pay Paz ");mcputs (lm. rm, tt nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn ");mcputs (lm, rm. ti ");mcputs (lm. rm, ti Control Variable Solutions ");mcputs (lm. rm. "Theta Set 1 Set 2 Set 3 Set A ");mcputs dm, rm, " 1 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn ");mcputs (lm, rm, " 2 ");mcputs (lm, rm, " 3 ");mcputs (lm. rm. " A ");mcputs (lm. rm. ” 5 ”);mcputs (lm, rm, " e 13,3 ");
Xarm_row = 1 1 ; arm_cols[0] = 2 1 ; arm_cols[1] = 36; arm_cols[2] = 51; *theta_row = 17; theta_cols[1] = 2 2 ; theta_cols[2] = 33; theta_cols[33 = AA; theta_cols[A3 = 55;
3

void get_noap (f 3 2 noap,
{c_3_2_2 names;int i ;f_ 2 n_cross_o;float difference;

int rou, i A cols)

init_names (names); do
{for (i = 0 ; i <= 2 ; i++)

get_orientation_vector (i, names, n_cross_o[03 = noap[03[13*noap[131 2 3
n_cross_o[13 = noap[03C23*noap[13C03 n_cross_o[23 = noapC03[03*noap[13C13 difference = fabs(magnitude (n_cross_ if (difference > tolerance)

C

noap, row, cols);
- noap[03[23*noap[13[13- noap[03[03*noap[13[23- noap[03C13*noap[13C03
o) - magnitude (noap[23

lcputs (23, 20, "N x 0 does not equal A; "); eputs ("Re-enter Vectors N, 0, and A"); uait_then erase (23);
3

3uhile (difference > tolerance);

)) ;

3 8 7

get_positi°n_vector (names, noap, rou, cols);
}

void init
{strcpystrcpystrcpystrcpystrcpystrcpystrcpystrcpystrcpystrcpystrcpystrcpy
}

names (c 3 2 2 names)
(names[03 (namest 03 (names[03 (names[1] (names C13 (names[13 (names[2] (names[2]
(names[23 (names C3] (namest 3 3 (names[33

[03,
[1 3 ,[23,
[03,
[1 3 ,[23,[03,
[1 3 ,[23,[03,
[1 3 ,[23,

"Nx"); -Ny");
"Nz"); "Ox"); "Oy"); "Oz"); "Ax"); "Ay"); "Az"); "Px"); ”Py"); "Pz”);

void get_orientation_vector (int i, c_3_2_2 names, f_3_2 noap,int rou, i_A cols)
{int j;float difference;
do

{for (j = 0 ; j <= 2 ; j++)
{prompt_input_noap (names[i3[j3, Snoap[i3[j3); erase_prompt (23);leprintf (rou+j, cols[i3, noap[i3tj3);
3difference = fabs (1 - magnitude (noap[i3)); if (difference > tolerance)
{lcputs (23, 20, "Vector Magnitude does not equal 1; ");
eputs ("Re-enter Vector "); putch (names[i3[13[03); uait_then_erase (23);
3

3while (difference > tolerance);

void get_position_vector (c_3_2_2 names, f 3_2 noap, int rou, i_A
{int j ; float mag_p;
do

3

{for (j = 0 ; j <= 2 ; j++)
{prompt_input_noap (names[33[j3, Snoap[33[j3); erase_prompt (23);
leprintf (rou+j, cols[33, noap[33[j3);
3mag_p = magnitude (noap[33);if ((mag_p > a2+a3+d5) ! (mag_p < a2))
{lcputs (23, 20, "Specified position is outside of the arm
eputs ("envelope; re-enter vector P"); wait_then_erase (23);
33uhile ((mag_p > a2+a3+d5) | (mag_p < a2));

void prompt_input_noap (char Xname, float lvalue)

cols)

388

{float neu_value;
lcputs (23, 20, "Enter N-O-A-P element ");
eputs (name);eputs (" <Snnn.nnn>: ");lcputs (24, 22, "<Return> only to leave value unchanged as");leprintf (24, 64, Xvalue); neu_value = indec (23, 59); if (neu_value != 1 0 0 0)

Xvalue = new_value;
}

int calc_arm_end (f_3_2 noap, f_2 pa, int arm_rou, i_2 arm_cols)
{int i; f_ 2 pu;float mag_pa; int mag_ok;
for (i = 0 ; i <= 2 ; i++)

{pu[i] = d5 x noap[2][i];leprintf (arm_rou, arm_cols[i], pu[i]);
}for (i = 0 ; i <= 2 ; i++)
{pa[i] = noap[3][i] - puCi];leprintf (arm_row+2 , arm_cols[il, pa[i]);
}mag_pa = magnitude (pa);if ((mag_pa > a2+a3) ! ((fabs(pa(0]) < tolerance) &(fabs(pa[1]) < tolerance)))

mag_ok = 0 ; elsemag_ok = 1 ; return (mag_ok);
}

void calc_theta_123_triples (f_2 pa, f_4_3 theta, int rou, i_4 cols)
{float beta; f_4 bmt1;
calc_theta_3 (pa, theta, rou+2, cols); calc_beta_minus_theta_ 1 (pa, theta, bmt1); beta = calc_beta (pa);calc_theta_ 1 (beta, bmt1 , theta, row, cols); calc_theta_ 2 (pa, theta, row+1 , cols);
}

void calc_theta_3 (f_2 pa, f_4_3 theta, int rou, i_4 cols)
{float c3; float s3;
int i;
c3 = (square (magnitude (pa)) - square (a2) - square (a3))/ (2 X a2 X a3);
s3 = sqrt(1 - square (c3)); if (fabs(c3) > tolerance)

{thetaC13[3] = atan(s3 / c3); theta[3][3] = atan(-s3 / c3); /X adjust atan for cos < 0 X/
if (c3 < 0)

{ /X c3<0, s3>0 => 4th->2nd quad X/thetaC1][3] += pi; /X c3<0, s3<0 => 1st->3rd quad X/

389

theta[3][3] -= pi;
}

}else
{theta[1][3] = pi / 2;
theta[3][33 = -pi / 2;
} /X 2 copies => 9 triples X/

theta[2][3] = theta[1J[3]; theta[<+3[33 = theta[3]C3];
for Ci = 1; i <= 9; i++)leprintf (rou, cols[i3, theta[i3[33 x 180/pi);
}

void calc_beta_minus_theta_1 (f_2 pa, f_4_3 theta, f_4 bmt1)
{int i; float sbmt1; float cbmtl; /x for 2 pairs: (1,2) & (3,*t) X/
for (i = 1; i <= 3; i = i + 2)

{sbmtl = a3 X sin(thetaCi]C3])/ sqrtCsquare (pa[03) + square (pa[1]>); cbmtl = sqrt(1 - square (sbmtl)); if (fabs(cbmtl) > tolerance)
{bmt1[i 3 = atanCsbmt! / cbmtl); bmtlti+13 = atan(sbmt1 / -cbmtl);/X adjust 1 due to sine X/
bmt1[i+13 = bmt1[i+l3 + pi;
3else
{if (sbmtl > 0)bmt1 [i 3 = pi / 2;else

bmt1[i3 = -pi / 2; bmt1[i+13 = bmt1[i3;
333

float calc_beta (f_2 pa)
{int sign_cos_beta;int sign_sin_beta;float beta;
sign_cos_beta = sign (pa[03); sign_sin_beta = sign (pa[l3); if (fabs(pa[03) > tolerance)

{beta = atan (pa[13 / pa[03); /x adjust atan for cos < 0 X/if (sign_cos_beta == -1) beta += pi;
3else /x cos = 0 , + sin => +90 deg X/

(sign_sin_beta == +1)beta = pi / 2; /x cos = 0 , — sin = > —90 deg X/elsebeta = -pi / 2;return (beta);
3

390

void calc theta_1 (float beta, f_9 bmt1, f_9_3 theta, int rou, i_9 cols)
Cint i;
for (i = 1 ; i <= 9; i++)

t /X t1 = beta - (beta - tl) X/theta[i][1] = beta - bmt1[i]; /x adjust if > 180 degrees X/if (thetati][1] > pi) theta[i3C13 -= 2 X pi; /X adjust if < -180 degrees X/
if (thetati3[13 < -pi) theta[i][13 + = 2 X pi;
leprintf (rou, colsti], theta[i3C!3 X 180/pi);
}

void calc theta_2 (f_2 pa,
{float c3; int i ; float c2; float s2;

f__9_3 theta, int rou, i_9 cols)

/x cos(theta 3) is constant x/
c3 = cos(theta[13C33); for (i = 1; i <= 9; i++)

{c2 = (pa[03Xcos(thetati3[1 3) + pa[13Xsin(theta[i3[13))/ (a3*c3 + a2); s2 = pa[23 / (a3Xc3 + a2); if (fabs(c2) > tolerance)
Ctheta[i3E23 = atan(s2 / c2);/x adjust atan for cos < 0 x/if (c2 < 0) /X -c, +s => 2nd quad from 9th X/if (s2 >= 0)

thetati3[23 += pi; /X -c, -s => 3rd quad from 1st X/else
thetaCi3[23 -= pi;3elseif (s2 > 0)

theta[i3C23 = pi / 2; else
theta[i3[23 = -pi / 2;leprintf (rou, colsti3, theta[i3[23 x 180/pi);

int calc_theta_95_pairs (f_3_2 noap, f_9_3 theta, f_9_5 accepted_theta,int rou, i_9 cols)
£f 3 c;
O s;
int i;int 3)int ate;float el_3_3;
ate = 0 ;for (i = 1 ; i

{for (j = 1; j <= 3; j++)
{c[j3 = cos(theta[i3[j3);
s[j] = sin(theta[i3[j3);

3 9 1

}el_3_3 = noap[2 3 [0 3 X Cc[13xc[2]XsC3] + s [1]*c[3])
+ noapC23[13 X (sC1 3xcC2]*s[3] - c[1]Xc[33)+ noap[2][2] X s[2]Xs[33; leprintf (rou+5, colsti]. el_3_3); if (fabs(el_3_3) < tolerance)

{atc++;for (j = 1; j <= 3; j++)accepted_theta[ate][j] = theta[i][j];
accepted_theta[atc3[43 = calc_theta_4 (noap[2], s, c); leprintf (rou+3, cols[i3, accepted_theta[atc] [4] x 180/pi);
accepted_theta[atc][53 = calc_theta_5 (noaplO], noap[13,

s , c);leprintf (rou+4, colsCi], accepted_theta[atc3[53 X 180/pi);
else

{lcputs (rou+3, colsli], " No ");lcputs (rou+4, colsti], ” Solution");
}

}return (ate);
}

float calc_theta_4 (f_2 a, f_3 s, f 3 c)
{float c4; float s4; float theta4;
c4 = a[0]Xc[1 3Xs[2 3 + a[1]KS [1]*S[2] - a[23Xc[23; s4 = a [0] * (c[1 3Xc[23Xc[33 - s[1)xs [33)+ at 13 x (s[1]XcC2]Xc[33 + c[1)xs[33> + a[2]xs[2]*c[33; if (fabs(c4) > tolerance)

{theta4 = atan(s4 / c4); /X adjust atan for cos < 0 X/if (c4 < 0) /X -c, +s => 2nd quad from 4th X/if (s4 >= 0)theta4 += pi; /X —c, -s => 3rd quad from 1st X/elsetheta4 -= pi;
/x conv for bounds compliance x/if (theta4 < -170 X pi/180) theta4 += 2 X pi;

}else
if (s4 > 0)theta4 = pi / 2;

elsetheta4 = -pi / 2; return (theta4);
}

/X cos = 0, +sin => +90 deg X/

/X cos = 0, -sin => -90 deg X/

float calc_theta_5 (f_2 n, f 2 o, f 3 s, f_3 c)
{float c5;
float s5; float theta5;
c5 = o[0]x(c[1]xc [2DXsC33 + s [1]xc[3])+ o[1]X(S[1]Xc[2]XS[3] - c[1]xc[3]) + o[23Xs[23Xs[33; s5 = n[0]x(c[1]XcC2]XsC33 + s[13xc[33)

+ n[13X(s[13Xc[23Xs[33 - c[13xc[33) + n[23Xs[23Xs[33;

392

if (fabs(c5) > tolerance)
{theta5 = atan(s5 / c5);
if (c5 < 0)

if (s5 >= 0)theta5 + = pi;
elsetheta5 -= pi;

3else
if (s5 > 0)theta5 = pi / 2;

elsetheta5 = -pi / 2; return (theta5);
}

/x adjust atan for cos < 0 X/
/x -c, +s => 2 nd quad from 4th x/

/X -c, -s => 3rd quad from 1st X/

/x cos = 0, +sin => +90 deg X/

/X cos = 0, -sin => -90 deg X/

char prompt_for_move (int accepted, f_4_5 accepted_theta,f_5 move_theta)
{int rou; i_ 8 cols; int inbounds; int i; i_4 out;
int j;i_4 inbounds_index; char move;
dsply_prompt_for_move (&rou, cols); inbounds = 0 ;for (i = 1 ; i <= accepted; i++)

{outCi] = 0 ;for (j = 1 ; j <= 5; j++)
{accepted_theta[i] [j] X= (180 / pi);leprintf (rou+j-1 , colsti], accepted_theta[i1 [j]); if ((accepted_theta[i][j] >= min_constraint (j))& (accepted_theta[i 1 [j] <= max_constraint (j)))lcputs (rou+j-1, cols[i+4]+2, "In”); else

{lcputs (rou+j-1, cols[i+4]+1, "Out");out[i 3++;
}

}if (outti] == 0)
{inbounds++;inbounds_index[inbounds] = i;
}

}suitch (inbounds)
{case 0 :

case 1 :

default:

lcputs (20, 20, "No Solution is Obtainable");move = ’N';break;
move = one_solution (inbounds_index[1], accepted_theta,move_theta);break;
move = multiple_solutions (accepted, accepted_theta,inbounds, inbounds_index, out, move theta);

}

393

erase_prompt (2 2);
return (move);
}

void dsply prompt for move
{locate (9, 0);

(int Xrou, i_ 8 cols)

eputs (" Solutions");eputs (" ");eputs ("Theta Bounds Bounds ");eputs ("Bounds eputs (" 1
Bounds");

");eputs (" eputs (" 2
");

");eputs (” eputs (" 3 ");
");eputs (" eputs (" 9 ");
") ;eputs (" eputs (" 5 ”);
");eputs (" ");

Xrou = 1 1 ;colsC13 cols[23
cols[33
c o l s C O 3
cols[53 cols[6] cols[7 3 cols[83
3

6 ;25;
W ,63;
18;37;56;
75;

float min_constraint (int joint)
{float minimum;
switch (joint)

{case 1 : minimum = break; -360;
case 2 : minimum = break; -5;
case 3 : minimum = break; -90;
case (i ■ minimum = break; - 1 0 ;
case
}urn

5 : minimum = break; -360;

(mini mum);

float max_constraint (int joint)
float maximum;
switch (joint)

case 1 : maximum break; = 360;
case 2 :> maximum break; 30;
case 3 : maximum

break; = 90;
case 9 :- maximum

break; 1 90;
case
}

5 :: maximum break; 360;

394

return (maximum);
}

char one_solution (int index, f_4_5 accepted_theta, f_5 move_theta)
{char move; int j;
locate (23, 2 0);cprintf ("Solution %d is obtainable", index);lcputs (24, 20, "Perform move? (y/n)");
locate (24, 42);move = toupper(getch());if (move == 'Y ')for (j = 1; j <= 5; j +■ +)move_theta[j] = accepted_theta[index][j] ; return (move);
]

char multiple_solutions (int accepted, f_4_5 accepted_theta,int inbounds, i_4 inbounds_index, i_4 out, f_5 move_theta)
{int r;
char Xprompt; int cont; int set; char move; int 3 ;
locate (2 2 , 2 0);cprintf ("Solutions %d", inbounds_index[1]); for (i = 2 ; i <= inbounds- 1 ; r + +)cprintf (", %d", inbounds_index[i]); cprintf (" and %d are obtainable.", inbounds_index[inbounds]); prompt = "Select set for a move or 0 to abort:"; do

{set = prompt_input_digit (prompt); if (set == 0) cont = 0 ; elseif ((set <= accepted) & (outHset] == 0)) cont = 0 ; elsecont = 1 ;
3uhile (cont); locate (24, 20);cprintf ("Solution %d has been selected", set); if (set == 0)move = 'N ';else

{move = 'Y’;fox (j = 1; j <= 5; j++)
move_theta[j3 = accepted_theta[set3 [j3;

3return (move);
3

void position_orientation_move (f 5 theta, f 5 move_theta)
{int rou; i_ 2 cols; int i;int interrupt_count;
dsply_pos_orient_move (&rou, cols);
for (i = 1; i <= 5; i++)

395

leprintf (rou+i-1 , colsCO], thetaCi]);
leprintf (rou+i-1 , cols[1], move_thetaCi]);
}uait_then_erase (24);

interrupt_count = 0 ;
for (i = 1; i <= 5; i++)

{perform_move (i, theta, move_thetaCi], rou+i-1, colsCO]);
if (fabs(theta[i] - move_thetaCi]) < tolerance)

lcputs (rou+i-1, colsC2], "Yes");
else

C
lcputs (rou+i-1, colsC2], ” No");
interrupt_count++;
}

]if (interrupt_count == 0)
C
lcputs (23, 15, "notion completed; ");
eputs ("Position-Orientation achieved");
}

else
C
lcputs (23, 15, "Some motion interrupted; ");
eputs ("Position-Orientation not achieved");
}uait_then_erase (9);

]

void dsply_pos_orient_move (int Xrou, i_ 2 cols)
{int lm;
int rm;
lm = 2 0 ;
rm = 2 0 ;
locate (16, 0);
mcputs (lm, rm, it (loving ");mcputs (lm, rm. "Theta Current Desired Completed");
mcputs (lm, rm, " 1 ");mcputs (lm, rm, " 2 ");mcputs (lm, rm, " 3 ");mcputs (lm, rm, " 4 ");mcputs (lm, rm, " 5 ");
Xrou = 18>cols CO] = 27 >
cols C1] = 39
colsC2] = 54;
]

APPENDIX F

VELOCITY CONTROL PROCEDURES LISTING

397

^include <c:\ed'sNheader.c>
void velocity_control (f_5 original_theta, f_3_2 original_noap,int rou, i <+ cols)

int i;int j;f 5 theta;
f_3_2 noap;
char *prompt_msg1 ;
char *prompt_msg2 ;char qc;int opt;f 5 dtheta;delta_trans_rot;
for (i = 1 ; i <= 5; i++)

{thetaEi] = original_theta[i]; dthetaEi] = 0 ;
3for (i - 1 ; i <= 6 ; i++)delta_trans_rot[i3 = 0 ; for (i = 0 ; i <= 3; i++) for (j = 0 ; j <= 2 ; j++)

noapCilCj] = original_noap[i3Cj3;
dsply_velocity_introduction C); wait_then_erase (9); dsply_vc_selection (); while ((opt = get_option(3)) != 0)

{prompt_msg1 = "Enter New Theta Values? (Y/N)"; prompt__msg2 = "(<N> = continue with previous values)"; qc = prompt_input char Cprompt_msg1 , pronpt_msg2); if (qc == 'Y')
{get_theta (theta, rou, colsC93); noap_matrix (theta, noap, row, cols);
3uait_then_erase (9); switch (opt)
{case 1 : for_sol_via_jac (theta, dtheta);break;case 2 : rev_sol_via_ij (theta, delta_trans_rot); break;case 3 : rev_sol_via_deriv (theta, noap, delta_trans_rot); break;
}dsply_vc_selection ();

}wait_then_erase (8);
noap_*atrix (original_theta, original_noap, row, cols);

void dsply velocity introduction ()
{int lm;
int rm;
locate (8 , 0); lm = 16; rm = 16;
mcputs (lm, rm, " Velocity Control ");mcputs (lm, rm, " This section calculates the velocities of ");mcputs (lm, rm, "the end coordinate frame or the joint variables.");mcputs (lm, rm, " Options: ");
mcputs (lm, rm, " 1) Forward Solutions via Jacobian ");mcputs (lm, rm, " -the end coordinate frame rates resulting ");

398

mcputs (lm, rm, tl from a given set of joint rates are found ");mcputs (lm, rm. »T 2) Reverse Solutions via Inverse Jacobian ");mcputs (lm, rm. t t -the joint rates resulting from a given set ") ;mcputs (lm. rm, 11 of coordinate frame rates are obtained ");mcputs (lm, rm. f t using matrix algebra ");mcputs (lm, rm, tl 3) Reverse Solutions via Derivatives ");mcputs (lm, rm, II -the joint rates resulting from a given set ");mcputs (lm. rm, ft of coordinate frame rates are obtained from”);mcputs (lm. rm, ft derivatives of the position-orientation ");mcputs (lm, rm, t l equations ”);
}

void dsply_vc_selection ()
{int r; int c;
r = 1 0 ; c = 2 0 ;locate (9, 0) Jlcputs (r, c, "Solution Options ft);lcputs (r+2 . c. " 1 : Foruard Solutions via Jacobian Matrix ");lcputs (r+<+, c, "2 : Reverse Solutions via Inverse Jacobian") ;lcputs (r+ 6 , c, "3: Reverse Solutions via Derivatives ");lcputs (r+ 8 , c, "0 : Terminate Velocity Control tt);
3

void get theta (f_5 theta, int rou, int col)
{int i;float value;char *prompt_msg;
for Ci = 1; i <= 5; i++)

{prompt_msg = "Enter value for Theta"; value = prompt_input_fixed (prompt_msg, i); if (value != 1 0 0 0) thetati] = value;leprintf (rou+i-2 , col, thetati]);
3

3
void for_sol_via_jac (f_5 theta, f_5 dtheta)

{int i;f 5 s;f_5 c;int row;i_ 6 cols;f_6_5 jacobian;f~6 ~ drate;char query_ch;
sin_cos (theta, s, c); do

{dsply_jacobian (&rou, cols);calc_jacobian (s, c, jacobian, rou, cols);get_delta_theta (dtheta, rou, cols[63);calc_list_rates (drate, dtheta, jacobian, rou, cols[53); query_ch = cont C'neu Jacobian and/or theta rates");
3uhile (query_ch == ' Y*) ;

void dsply_jacobian (int Xrou, i_ 6 cols)
locate (9, 0);
mcputs (23, 23, "Foruard Solutions via the Jacobian");

399

eputseputseputs
eputseputseputseputseputseputseputseputseputseputseputs

(" Delta Rates Jacobian ");
(" ");(" ! 11 11(" 1 1 1 1 !");("! 11 t1(” 1 1 » 1 !") ;("! j = 11 ");(" ! x ! 1" >;C" | 1i 1lC" > i t i !");c"; 11 11 ");c" i i i i !");
(" | 11 11 ii ");

X r o u = 11; cols[03 = 1 Cf; cols[1] = 25; cols[2J = 36; cols[3] = 47; cols[4] = 58;
cols[5] = 1;cols[6] = 71;
}

void calc_jacobian (f_5 s, f_5 c, f_6_5 jacobian, int rou, i_5 cols)
{f_ 1 2 f;int i;int 3 *

/x Misc Factors, Columns 1-4 X/
f CO D = d5XsC4] + a3; f[1] = fC0]xc[3] + a2; f [2 3 = f[1]xc[2] + d5XS[2]Xc[4]; f[3] = f[0]XS [3]; /x Jacobian Column 1 x/
jacobianC1][1] = jacobian[23[ID = jacobian[3][13 =
jacobian[43C13 = jacobian[53[13 = jacobian[63[13 =
f[43 = f[13*s[23
jacobianM 3 [23 = jacobian[23[23 = jacobian[33[23 = jacobian[43[23 = jacobian[53[23 = jacobian[6 3[23 =

-f[2]xs [1 3 - f[33*cC13; f[2]xc [1 3 - f[33XS[13;
0 ;
0 ;
0 ;
1 ; /X Misc Factor, Column 2 X/

- d5Xc[23Xc[43;/X Jacobian Column 2 X/-f[43*c[13;-f[43*s[13; f [23;
s [1 3;

- c [i 3; o; /X Misc Factors, Columns 3 & 4 X/
f [5 3 = c[2 3*s[3 3; f [6 3 = f[5 3Xc[13 + c[3 3Xs[1 3;
f[7 3 = f[53*s[13 - c[33Xc[13; /X Jacobian Column 3 X/
jacobian[13[33 = -f[03*f[63; jacobian[2 3 C 3 3 = -f[03*f[73; jacobian[33[33 = -f[33Xs[23; jacobian[43[33 = -c [13Xs [23; jacobian[53[33 = -s [13Xs [23;
jacobian[63[33 = c[23; /X Misc Factors, Columns 4 & 5 X/
f[83 = c[13XC[23Xe[33 - s[13xs[33;f[9 3 = s [1 3xc[23Xc[33 + c[13xs[33;f[103 = c[13XS[23;
fC113 = s[l3xs[23; f[12 3 = s[23XC[33; /X Jacobian Column 4 X/

400

jacobianCI 3[4] jacobian[23[43 j acobian[3][4] jacobian[4][4 3 j acobian[5][4]
j acobian[6][4]
jacobianC1 3 [53 j acobian[23 C 5] jacobian[3 3[5 3 jacobian[4][5]
j acobian[5][5 3 j acobianC 6][5]

d5*(f[8 3*c[4 3 - d5*(f[93*c[43 - d5*(f[123*c[43 + f [6] ;
f [73;s[23*s[33;

/x

f[103*s[43);
f r11 3*s[4 3); c[2 3*s[4 3);

Jacobian Column
0;
0 ;
0 ;
fC 8 3*s[4 3 fC 9 3*s[4 3 f[123*s[43

+ f[10]XC[4 3 + f[113*c[43 - c[23*cC43

5 x/

for (j = 1 ; j <= 5; j++) for Ci = 1 ; i <= 6 ; i + +)
leprintf (rou+i-1 , cols[j-13,

3
jacobian[i 3[j 3);

void get_delta_theta (f_5 dtheta, int r, int c)
{int i;float value;char Xprompt_msg;
for (i = 1; i <= 5 ; i++)

{locate (23, 2 0) ;cprintf ("Enter value for Delta Theta %d <Snnn.nnn>: ", i); lcputs (24, 22, ”<Return> only to leave unchanged as"); leprintf (24, 58, dtheta[i3); value = indec (23, 63); if (value != 1 0 0 0)
dtheta[i3 = value; erase_prompt (23); lcprintf8 (r+i-1 , c, dtheta[i3);

3

void calc_list_rates (f_ 6 drate, f_5 dtheta, f_6_5 jacobian,int r, int c)
{int i; int j;
for (i = 1 ; i <= 6 ; i++)

{drate[i3 = 0 ;for (j = 1 ; j <= 5; j++)
drate[i3 += jacobian[i3[j3 * dtheta[j3; leprintf (r+i-1 , c, drateti3);

}

char cont (char Xmsg)
{char answer;
save_screen ();lcputs (23, 20, "Continue with "); eputs (msg);
lcputs (24, 20, "but same Theta values? (y/n)");locate (24, 50);answer = toupper (getch ());erase_prompt (9);
return (answer);
}

void rev_sol_via_ij (f_5 theta, f_ 6 delta_trans_rot)

401

int i;
f_5 s;f _5 c;int rou;
i_5 cols;f_6_5 jacobian;
i_6 used;int t;f_6_5 jacobian_reduced; f_6 delta_tr_reduced; f_5 delta_theta;
int ic;char qc;
sin_cos (theta, s, c); do

{dsply_rsvij_jacobian (Srou, cols);calc_jacobian (s, c, jacobian, rou, cols);t = get_required_rates (delta_trans_rot, jacobian, used,j acobian_reduced, delta_tr_reduced, row, cols);uait_then_erase (TO); rf ((t > 0) & (t < 6))
{lcputs (10, 30, "Under-Determined Case”);ic = under_determined_case (t, jacobian_reduced,delta_tr_reduced, delta_theta);
}if (t == 6)
{lcputs (10, 30, "Over-Determined Case");ic = over_determined_case (jacobian, delta_trans_rot,delta_theta);
}if ((t > 0) & (!ic))list_input_output (delta_trans_rot, used, delta_theta); qc = cont ("different Jacobian and/or rates");

}uhile (qc == 'Y');

void dsply_rsvij_jacobian (int Xrou, i_5 cols)
locate (9, 0); mcputs (21, 21 , "Reverse Solutions via Inverse Jacobian");mcputs (21, 21 , V

") ;eputs (" Delta Rates Jacobian ") ;
eputs (" eputs (" l 1 1

i 1
") ;

") ;eputs (" ! Id Tl | ");eputs (" l » »
1 1 ");eputs (" 1 Id T2 | ") ;eputs (" l ") ;eputs (" ! x J d T3 | ") ;eputs (" l 1 l
1 l ") ;eputs (" 1 Id T4 | ”) ;eputs (" !
1 1
1 1 ") ;eputs (" 1 Id T5 | ") ;eputs (" l 1 !
1 1 ") ;eputs ("

i
1 ") ;

Xrou = 12; colsCO] = 17; colst1] = 28;
cols[2] = 39; cols[3] = 50; cols[4] = 61 ;

cols[5] = 2;
}

)

402

int get_required_rates (f_6 delta_trans_rot, f_6_5 jacobiani i_6 used,
f_6_5 jacobian_reduced, f_6 delta_tr_reduced, int rou, i_5 cols)

{c_6_9 rate_lbl;
int i;int j;char Kline 1;
char qc;float value;int total;
total = 0;strcpy(rate_lbl [1 3 ,strcpy(rate_lbl[2] ,strcpy(rate_lbl[3],strcpy(rate_lbl[4],st rcpy Crate_lbl[5] ,strcpy(rate_lbl[6] ,

"transl x”); "transl y"); "transl z"); "rotate x"); "rotate y"); "rotate z");
for (i = 1; i <= 6; i++)

{lcputs (23, 20, "flake d "); eputs (rate_lbl[i]);eputs (" a command variable? (y/n) ");locate (23, 63);qc = toupper(getchC));erase_prompt (23);if (qc != ’N ')
{total++; used Ci] = 1;for (j = 1; j <= 5; j++)jacobian_reduced[total][j] = jacobianCi][j3; lcputs (23, 20, "Enter d "); eputs (rate_lbl[i]);
eputs (" : ");lcputs (24, 22, "<Return> only to leave value unchanged as"); leprintf (24, 64, delta_trans_rot[i]); value = indec (23, 40); if (value != 1000)delta_trans_rot[i] = value; erase_prompt (23);leprintf (rou+i-1, cols[5], delta_trans_rot[i });
delta_tr_reducedttotal] = delta_trans_rotCi];
}else
{usedti] = 0;lcputs (rou+i-1, colsC5], " unused ");
}

}return (total);
}

int over_determined_case (f_6_5 jacobian, f_6 delta_trans_rot,
f_5 delta_theta)

{f_5_5 m; f 5 v;
O y;char Ksubhead;int inconsistent;
subhead = "1. fl = (J Transpose) x J";
matrix_by_matrix (6, jacobian, m, subhead); subhead = "2. V = (J Transpose) X T/R Rates"; matrix_by_vector (jacobian, 6, delta_trans_rot, v, subhead); subhead = "3. Solve M X Theta Rates-= V";-

403

inconsistent = solve_simul_eqns_myv (m, v, 5, delta_theta, subhead); return (inconsistent);
}

int under_determined_case (int total, f_6_5 jacobian_reduced,f_6 delta_tr_reduced, f_5 delta_theta)
{int i;f_5_5 m;f_5 dtr_5;
f_5 y;char Xsubhead;int inconsistent;
subhead = "1. M = J Reduced X (J Reduced Transpose)"; matrix_by_matrix (total, jacobian_reduced, m, subhead); for (i = 1; i <= total; i++)dtr_5[i] = delta_tr_reduced[i]; subhead = "2. Solve D X V = d trans/rot rates";inconsistent = solve_simul_eqns_myv (m, dtr_5, total, y, subhead); if (inconsistent = = 0)

{subhead = "3. d Theta = (J Reduced Transpose) X Y"; matrix_by_vector (jacobian_reduced, total, y, delta_theta,subhead);
}return (inconsistent);

}
void matrix_by matrix (int total, f_6_5 mparm, f_5_5 m, char Xsubhead)

{int i; int j; int k; int size; int length; int rou; i_5 cols;
dsply_m (subhead, &rou, cols); if (total == 6)

{size = 5; length = 6;
}else
{size - total; length ~ 5;
}for (i = 1; i <= size; i++)for (j = 1; j <= size; j++)
{m[i] [j] = 0;for (k = 1; k <= length; k++) if (total == 6)

mtilCj] += mparm[k][i] X mparmCkltj]; else
m[i][jl += mparm[i][k] x mparm[j][k]; leprintf (rou+i-1, cols[j], mtiKj]);

}uait_then erase (11);
}

void dsply m (char
{lcputs (11, 20, locate (13, 0); eputs (" eputs ("

Xsubhead, int Xrou,
subhead);

i 5 cols)

") ;
") ;ii

404

eputs ("
eputs ("

t
1 11 ");eputs (" 1l ");

eputs (" eputs (" I
1

1
1 "); ");eputs (" eputs (" 1

1

1
1 ");

eputs (" xrou = 13;
t
t ");

colsC13 = 11; colsC2] = 23; colsC3] = 35; colsC4] = 47; colsC5] = 59;

void matrix_by_vector (f_6_5 jac_parm, int total, f_5 vec, f_5char Xsubhead)
{int i; int j; int rou; i_7 cols;
dsply_m_by_v (subhead, &rou, cols);
for (i = 1; i <= total; i++) for (j = 1; j <= 5; j++)lcprintf8 (rou+j-1, colsCi], jac_parm[i]Cj]); for (i = 1; i <= total; i++)lcprintf8 (rou+i-1, colsC7], vecCi]); for (i = 1; i <= 5; i++)

{resultCi] = 0;for (j = 1; j <= total; j++)resultCi] += jac_parmCj] Ci] X vecCj]; leprintf (rou+i-1, colsCO], resultCi]);
]uait_then_erase (11);

}
void dsply_jn_by_v (char Xsubhead, int Xrou, i_7 cols)

lcputs (11, 20, locate (13, 0);
subhead);

eputs ("| i i i i ");eputs (" ! ! ’’);eputs (’’! i i i i ");eputs (" ! ! ");eputs ("j j — J ");eputs (" X | ! ");eputs ("! i ii ieputs (" 1 ! ”);eputs (•'! i t i ieputs ("Xrou = 13; colsCO] = 1;
colsC13 = 15; colsC2] = 24; cols C 3] = 33; cols C 4] = 42;
cols C5] = 51; colsC6] = 60; cols C7] = 71;

! ! ");

void list_input output (f_6 delta_tran_rot, i_6 used, f 5 delta
Cint i;
i_1 rou; int col;

result,

theta)

405

dsply_in_out (rou, &col);
for (i = 1; i <= 6; i++) if (usedCi])leprintf (rou[0]+i-1, col, delta_tran_rot[i]);
for (i = 1; i <= 5; i++)leprintf (rou[1]+i-1, col, delta_theta[i]);
}

void dsply_in_out Ci_1 rou, int Xcol)
lint lm; int rm;
lm = 1 8 ; rm = 17;locate (11 , 0);
mcputs (lm, rm, "Input: Delta Translational & Rotational Rates") ;mcputs (lm, rm, 11 1 dtx | 11 unused ! ");mcputs (lm, rm, »1 jdty ! 1\ unused \ ");mcputs (lm. rm, 11 ! dtz! = | unused | ");mcputs (lm, rm, tt ! drx! ii unused ! ");mcputs (lm, rm. t t jdry j ii unused | ")';mcputs (lm. rm, (1 ! drz | ii unused ! ");mcputs (lm, rm, <1 Output: Delta Theta Rates ");mcputs (lm, rm, It ! dT1 | 1\ 11 ");mcputs (lm, rm, It I dT2 i 1l 11 ");mcputs (lm, rm, It ! dT3 ! = J 11 ");mcputs (lm. rm, tl ! dT4 ! 11 11 ”);mcputs (lm, rm, tt ! dT5 | 1t 1

1 ");
rou[0] = 12;
rout 1] = 19;Xcol = 40;
}

int solve_simul_eqns_myv (f_5 5 m, f_5 v, int n, f_5 y, char Xsubhead)
{int i;int j;int k;int rou;i_7 cols;int inconsistent;
dsply_soln_myv (subhead, &rou, cols); for (j = 1; j < = n; j++) for (i = 1; i <= n; i++)leprintf (rou+i-1, cols[j], mCi][j]); for (i = 1; i <= n; i++)

{locate (rou+i-1, colsE6]);cprintf ("Y(%d)", i);
leprintf (rou+i-1, cols[73, v[i]);
}

inconsistent = 0;uhile ((k <= n) & (inconsistent))
{if (fabs(mEk][k]) < tolerance)

inconsistent = interchange_rous (m, v, k, n, rou, cols); if (.'inconsistent)
{zero_column_k (m, v, k, n, rou, cols); k++;
}

if (!inconsistent)

406

solve_y_vector (m, v, n, y, row, cols);
else

{locate (22, 20);eputs ("Equations Inconsistent; No Solution");
}uait_then_erase (11);

return (inconsistent);
)

void dsply_soln_myv (char ^subhead, int Xrou, i_7 cols)
{lcputs (11, 20, subhead); locate (13, 0); eputs ("!eputs (" , ' | tJ 1t :••); ");
eputs (",'eputs (" ! ! I1 11 !"); ");
eputs ("|eputs (" | X | 1 s 11 !"); ");
eputs ("| eputs (" l1 ei !"); ");
eputs ("|eputs (" ! ! 11 ii !*');

");
Xrou = 13; colsC13= 1;cols[23 = 12; cols[33 = 23; cols[43 = 34; cols[53 = 45; cols[63 = 60; cols[73 = 69;
}

int interchange_rous (f_5_5 m, f_5 v, int k, int n, int rou, i_7 cols)
{int i;int j;float temp;int inconsistent;
i = k + 1 ;uhile ((fabs(m[i3Ck3) < tolerance) & (i <= n))

i++;if (i <= n)
{for (j = k; j <= n; j++)

{temp = m[k 3[j 3; mCk 3 C j 3 = mCi 3 C j 3;leprintf-(row+k-1, cols[j3, m[k3Cj3); mCi 3[j] = temp;leprintf (rou+i-1, cols[j3, m[i3Cj3); pause (500);
3temp = v[k3;

v[k3 = v[i3;leprintf (row+k-1, cols[63, v[k3); v[i3 = temp;leprintf (rou+i-1, colsC73, v[i3); pause (500);
inconsistent = 0;
}elseinconsistent = 1 ;

return (inconsistent);
}

void zero_column_k (f_5_5 m, f_5 v, int k, int n, int row, i_7 cols)

407

{int i ;int j;float f;
for (i = k +1; i <= n; i + +)

if = -m[i][k] / mCk][k3;for (j = k; j <= n; j + +)
{m[i][j] = mtiJCj] + f x m[k]["]; if (j == k)leprintf (rou+i-1, colsEj], 0); elseleprintf (rou+i-1, colstj], m[i][j]); pause (500);
}v[i] = v[i] + f * v[k];leprintf (rou+i-1, colsC7], vti]);pause (500);

}
}

void solve_y_vector (f_5_5 m, f_5 v, int n, f 5 y, int rou, i_7 cols)
{int i; int j;
for (i = n; i > = 1; i—)

Cfor (j = i+1; j <= n; j++)
{v[i] = v[i] - m[i] [j] * y [j]; leprintf (rou+i-1, colsEj], 0); leprintf (rou+i-1, cols[7], v[i]); pause (500);
}y[i] = v[i] / m[i][i]; leprintf (rou+i-1, colsLi], 1); leprintf (rou+i-1, cols[7], y[i]); pause (500) ;

}
}

void rev_sol_via_deriv (f_5 theta, f_3_2 noap, f_6 delta_trans_rot)
{int i ;f_5 s;f_5 c;char query_ch;f_3_2 dnoap;int mr;i_3 me;
i_1 vr;i_1 vc;f_5 dtheta;
sin_cos (theta, s, c);lcputs (1, 0, "here "); cprintf ("%8.3f", s[3]); dsply_rsvd (&mr, me, vr, vc); do

{/X get_delta_trans_rot (delta_trans_rot, vr[0], vc[03);*/delta_trans_rot[1] = 196.548;
delta_trans_rot[2] = 64.286;delta_trans_rot[3] = -75.924;delta_trans_rot[4] = 0.107;
delta_trans_rotC5] = 0.341;delta_trans_rot[6] = 1.085;calc_delta_noap (noap, delta_trans_rot, dnoap, me, mr);

408

calc_delta__theta (s, c, dnoap, noap, dtheta, vr[1], vcC1])» query_ch = cont ("different rates");
}uhile (query_ch == 'Y ’);

}
void dsply_rsvd (int Kmr, i_3 me, i 1 vr, i_1 vc)

{int lm; int rm;
lm = 16; rm = 15;locate (9, 0);mcputs (lm, rm, ' Reverse Solutions via Derivativesmcputs (lm, rm. ' Delta Trans & Rots Delta Thetasmcputs (lm, rm, ' !tx! ! I1 !DT1! !mcputs (lm, rm. 1 :tyi 11 ! DT2! !mcputs (lm. rm. • !tz| = 1 11 : DT3! = !mcputs (lm, rm, ' |rx| j 11 ! DT4 !mcputs (lm, rm, 1 !ry! ! 11 !DT5| |mcputs (lm, rm, ’ |rz! ! 11mcputs (lm, rm.
mcputs (lm. rm, dN dO dA dPmcputs dm. rm. , r
mcputs (lm, rm, ’dT: !
mcputs (lm, rm, i i imcputs (lm, rm. T 1 1 0 0 0 1
vrCOj = 11; veto] = 25; vr[1] = 11; vc[1] = 53;*mr = 19; me[0] = 21; me[1] - 32; me[2] = 43; me[3] = 54;
}

void get_delta_trans_rot (f_6 delta_trans_rot, int vr, int vc)
{int i; float value; c 6 9 rate lbl;
strcpy(rate_lbl[1], strcpy(rate_lbl[2], strcpy(rate_lbl[3], strcpy(rate_lbl[4 J, strcpy(rate_lbl[5], strcpy(rate_lbl[6],

"transl X")
"transl y")"transl z")
"rotate X")"rotate y ")
"rotate z")

t l)
t t)
t t)
t t)
t t)
t t)
t t)
f t)
t l)
t t)

1 t t)
I f t)
l t t)
1 It)

for (i = 1; i <= 6; i++)
{lcputs (23, 20, "Enter d "); eputs (rate_lbl[i]); eputs (” : ");lcputs (24, 22, "<Return> only to leave value unchanged as"); leprintf (24, 64, delta_trans_rotCi3); value = indec (23, 40); if (value != 1000)delta_trans_rot[il = value;
erase_prompt (23);leprintf (vr+i-1, vc, delta_trans_rot[i]);
}

void calc_delta_noap (f_3_2 noap, f_6 dtr, f_3_2 dnoap,i_3 me, int mr)

409

{int i;
int j;
for (i = 0; i <=

{dnoapti][0] = dnoap[i 3 C 1 3 = dnoap[i][2] =
}

2; i + +)
-noap[i][13*dtrC63 noap[i][0]Xdtr[6]
-noap[i3C03*dtr[53

+ noapti3C2 3*dtr[53; - noapCi3[2 3*dtrC43; + noap[i3[1 3*dtr[4];

for (i = 0; i < = dnoap[33[i3 =
2; i + +) dtr[i+1];

for (i = 0; i <= 3; i + +)for (j = 0; j <= 2 ; j++)leprintf (mr+j, icti], dnoap[i3Cj3);
}

void calc_delta_theta (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap,f_5 dtheta, int vr, int vc)
{int div_zero; int i;
delta_theta312 (s, c, dnoap, noap, dtheta, &div_zero); if (!div_zero)

{delta_theta4 (s, c, dnoap, noap, dtheta); delta_theta5 Cs, c, dnoap, noap, dtheta); for Ci = 1; i <= 5; i + +)leprintf (vr+i-1, vc, dthetati]);
}else
{locate (22, 20);cprintf ("Zero Divide for Theta %d => No Solution", div_zero);
}

void delta_theta312 (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap, f_5 dtheta,int Xdiv zero)
int i;f 2 arm;f_2 darn;float denominator;float factor;
xdiv_zero = 0;
for (i = 0; i <= 2;

Carmti] = noap[3][i] - d5X noap[2][i]; darm[i] = dnoap[3][il - d5Xdnoap[21Ci] ;
}lcputs (1, 0, "here 1");if (fabs(s[3]) > tolerance)

dthetaC33 = -(arjn[0]*darm[03 +arm[1]Xdarm[1] +armL2]XdarmC2])/ (a2Xa3xs[33);else
*div_zero = 3; lcputs (2, 0, "here 2");

if (fabs(denominator = arm[0]*c[1] + arm[1]*sC1]) > tolerance)dtheta[1] = (c[1]Xdarm[1] -s[1]xdarm[03 - a3*c[33XdthetaC33) / denominator;else
*div_zero = U lcputs (3, 0, "here 3");

if (fabs(factor = a3Xc[33 + a2) > tolerance)

410

if (fabs(c[2]) > tolerance)dthetaC23 = (a3*s[2]Xs[3]XdthetaC3] + darmC23)/ (c[2]xfactor);
elsedtheta[2] = (ctl3XdarmC03 t s [1]Xdarm[1]+ (c[1JXarmC1] - sC13XarmC03) x dtheta[1]+ a3Xc[2]Xs[3]Xdtheta[33)/ (-s[2]xfactor) ;

elsexdiv_zero = 2;lcputs (4, 0, "here 4");
}

void delta_theta4 (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap, f_5 dtheta)
{float f1; float f2; float result;
f1 = noap[2][0]XsC1] - noapC2]C13Xc[1] ; f2 = noap[23[03XC[1 3 + noap[23[13xs[13; if C fabs Cst43) > tolerance)dtheta[43 = (-cC13XsC23XdnoapC23t03 + -s C13xs[23xdnoap[23C1 3 + ct 23Xdnoap123123 + f1XsC23Xdtheta[13+ -(f2Xc[2 3 + dnoap[23C23XsC23) xdtheta[2 3) / s[43;elsedtheta[4 3 = C Cct13Xc[23XcC33 - s[13Xs[33)Xdnoap[23C03 + Cst13xc[23XcC33 + ct1jxs[33)xdnoap[23[13

+ s[23Xc[33Xdnoap[23[23 + (-f1xc[23Xc[33 - f2XS[33)xdtheta[13 + (-f2Xs[23 + noapC23[23Xc[23)Xc[33xdtheta[23 +■ (C-f2*c[23 - noap[23t23xs[23)XS[33 - f1XC[33)Xdtheta[33) / c[43;
3

void delta_theta5 (f_5 s, f_5 c, f_3_2 dnoap, f_3_2 noap, f_5 dtheta)
{float f1; float f2; float result;
if (fabs (sC53) > tolerance)

{f1 = -noap[13[03Xs[1 3 + noap[13[13XcC13;
f2 = noapt13 CO3Xc[1 3 + noap[13C13Xs[13; dtheta[53 = ((c[13Xc[23XsC33 + s [13XcC33)xdnoap[13[03 + (s[13XcC23XsC33 - c[13XC[33)xdnoap[13[13 + s[23Xs[33Xdnoap[1 3C23

+ (f1xc[23XS [33 + f2XC[33)Xdtheta[1 3 + C-f2Xs[23 + noap[13[23Xc[23)Xs[33Xdtheta[23 t ((f2XcC2 3 + noap[13C23Xs[23)Xc[33 + f1xs[33> x dtheta[33)/ -s[53;
}else
Cf1 = -noap[03C0]XsC13 + noapt03C13xcC13; f2 = noapt03C03XcC13 + noapt03[13xst13; dthetaC5 3 = ((ct13XcC23XsC33 + s113Xc[33)xdnoap103C03 + (st13XcC23XsC3] - ct13XcC33)xdnoap[03C1 3 + s[23XsC33xdnoapCO3C23 + (f1XcC23XsC33 + f2XC[33)Xdtheta[13 + C-f2Xs[2 3 + noapC03C23Xct23)Xs[3]Xdthetat2]+ ((f2xc t2 3 + noapC03C23XsC23)XcC33 + f1xsC33) x dtheta[3 3)/ cC53;

}
}

APPENDIX G

TRAJECTORY CONTROL PROCEDURES LISTING

412

^include <c :\ed' sNheader. c>
void trajectory_control ()

{int n ;f_5_10 theta;f_9 t;f_5_9 a; f_5_9 b; f_5_9 c; f 5 9 d; f~5~9 e; f_5 theta_lb;f_5 theta_hb;f_5 theta_viax;f_5 theta_amax;float f;float f_current;
int i;int j;char *prompt_msg1;char *prompt_msg2;
char qc;
dsply_trajectory_introduction ();uait_then_erase (9);
for (i = 1; i <= 5; i++)for (j = 1; j <= 10; j++)thetatiHj] = 0; do

{n = nodes_and_distances (theta, tl; f = 1000000;
for Ci = 1; i <= 5; i++)

{lcputs (9, 29, "Trajectory for Joint "); cprintf ("%d", i);calc_polynomials (n, thetaEi], t, a[i3, b[i3, c[i3, d[i], eCi]);theta_lb[i] = -360; theta„hb[i] = 360;critical_positions (n, aCi], b[i], cli], d[i], eCi], t,theta_lbti], theta_hb[i3);theta_vmax[i3 = 100; theta_amax[i3 = 100;f_current = traj_scaling (n, b[i3, c[i3, d[i3, e[i3, t,theta_vinax[i3 , theta_amax[i 3) ;if (f_current < f) f = f_current;
3determine_positions (a, b, c, d, e, n, t, f);

prompt_msg1 = "Continue with a new trajectory determination? (y/n)"; prompt_msg2 =qc = prompt_input_char (prompt_msg1, prompt_msg2);
}while (qc == 'Y'); uait_then erase (8);

3
void dsply_trajectory_introduction ()

{int lm; int rm;
locate (8, 0); lm = 16; rm = 16; mcputs (lm, rm,
mcputs (lm, rm, »» Trajectory Control

413

mcputs (lm, rm,
mcputs (lm, rm,
mcputs (lm. rm,
mcputs (lm, rm,mcputs (lm, rm,mcputs (lm. rm,
mcputs (lm, rm,mcputs (lm, rm,
mcputs (lm. rm.mcputs (lm, rm,mcputs (lm, rm,
mcputs (lm, rm.mcputs (lm, rm,mcputs
3

(lm, rm,

nodes and_dist,
{

’ Thi
' a set
'polyn
'in te
' tion.
'steps
’ 1)
' 2)
' 3)

’ 4)' 5)I
' 6)

s section creates spline polynomials over a");of path nodes defined by the user. The
omials created will provide for continuity rms of position, velocity, and accelera- The process takes place in the following
input of trajectory nodes
determination of node velocities polynomial coefficient derivation spline extrema testsscaling with regards to extreme velocities and accelerationsevaluation of polynomial position at selected times

_5_10 theta, f 9 t)

" >;
");

") ;
") ;

") ;
" >;

int row; i_6 cols; int n;
dsply_nodes_dists (Xrou, cols); n = input_nodes (theta, rou, cols); calc_distance (n, theta, t, rou, cols[6]); wait_then_erase (10); return (n);
3

void dsply_nodes dists (int Xrou, i_6 cols)
{locate (10, 0);mcputs (21, 20, "Input of Nodes Along Desired Trajectory");
Xrou = 11; cols[03 = 5;cols[13 = 10; cols[23 = 20; cols[33 = 30; cols[4 3 = 40; cols[53 = 50; cols[6] = 60;
3

int input_nodes (f_5 10 p, int rou, i 6 cols)
{int i; int j; int n; float value;
pC 1][13 = 0p[2 3[13 = 0
p[33C13 = 0p [4 3 [1 3 = 0
p [5 3[13 = 0
p[13[23 = 10
p[23[23 = 6
p [3 3 [2 3 = 20
p [4 3[23 = -5p[53[23 = 180
pC 1 3 [3 3 = 25
p[23[33 = 12
p[33[33 = 40p[4 3 [3 3 = -7p[53[33 = 45
p[13[4 3 = 0p[2 3[4 3 = 0p[3 3[4 3 = 75
p[4 3[4 3 = 22

p[5] [4] = 45;pC1]C5] = 20;p [2][5] = -3;p[3]C5] = 80;
p[4][5] = 12;p [5]C5] = -90;p[1][6] = -75;p [2] C 6] = 10;p C 3] C 6] = 60;p [4]C 6] = 35;p C 5] [6] = 90;
p C1] C 7] = -115;p [2]C 7] = 25;p [3] C 7] = 50;p [4][7 3 = 65;p [5 3 [7] = -35;n = 7;
do

{lcputs (23, 20, "Number of Nodes (4 to 10):"); n = inint (23, 48); erase_prompt (23);
}uhile ((n < 4) J (n > 10));

for (i = 1; i <= n; i++)
{locate (rou+i-1, colsCO]);cprintf ("%2d", i);
for (j = 1; j <= 5; j++)

{locate (23, 20);cprintf ("Enter Theta for node %d, joint %d:", i, j); lcputs (24, 22, "<Return> only to leave unchanged as") leprintf (24, 58, pCj]Ci]); value = indec (23, 53); if (value != 1000) p[j][i] = value;leprintf (rou+i-1, colsCj], p[j][i]); erase_prompt (23);
1

}return (n);
}

void calc_distance (int n, f 5_10 p, f 9 t, int rou, int col)
{int i; int j;
for (i = 1; i <= n-1; i++)

{tCi] = 0;for (j = 1; j < = 5; j + +)tCi] += square (pCj][i+1] - p[j][i]); tCi] = sqrt(t[i]); leprintf (rou+i-1, col, t[i]);
}

void calc_polynomials (int n, f_10 p, f_9 t,
f_9 a, f 9 b, f 9 c, f 9 d, f 9 e) { _ _ _

f_9 vel;
calc_node_velocities (n, p, t, vel);
calc_coefficients (n, p, t, vel, a, b, c, d, e);

415

void calc_node_velocities (int n, f_10 p, f 9 t, f_9 vel)
{int rou;
i_4 cols; f_9_2 coeff; f_9 rhs;
dsply_node_velocities (&rou, cols);equate_quartic_cubic_accs Ct, p, coeff, rhs, rou, cols); equate_cubic_accs (n, t, p, coeff, rhs, rou, cols); equate_cubic_quartic_accs (n, t, p, coeff, rhs, rou, cols); uait_then_continue ();foruard_eliminate_term1 (n, coeff, rhs, rou, cols); uait_then_continue ();backuard_eliminate_term3 (n, coeff, rhs, vel, rou, cols); uait_then_erase (10);
}

void dsply_node_velocities (int Xrou, i_4 cols)
{locate (10, 0);
mcputs (33, 32, "Node Velocities");mcputs (16, 15, " i vel(i-1) vel(i) vel(i+1)
Hrou = 12; colsCO] = 17; cols[1] = 19; cols[2] = 31; colsC3] = 43; colsC4] = 55;
}

void equate_quartic_cubic_accs (f_9 t, f_10 p, f_9_2 coeff, f_int rou, i_4 cols)
{lcputs (rou, colsCO], "2");
coeff[2] C1] = 2*tC1] + 3*tC2]; leprintf (rou, colsC2], coeffC2]C1]);
coeff[2]C2] = tC1];leprintf (rou, colsC3], coeffC2]C2]);
rhs C 2] = (6 x tC2]/tCl]) * (pC2] - pC1]) +(3 * t C1]/tC2]) * (pC3] - pC2]); leprintf (rou, colsC4], rhsC2]);
}

void equate_cubic_accs (int n, f_9 t, f_10 p, f_9_2 coeff, f_9int rou, i_4 cols)
{int i;
for (i = 3; i <= n-2; i++)

{locate (rou+i-2, colsCO]); cprintf ("5Sd", i);
coeff Ci)C 0] = tCi];
leprintf (row+i-2, colsCI], coeffCi]CO]);
coeffCi]C1] = 2 * (tCi] + tCi-1]); leprintf (rou+i-2, colsC2], coeffCi] Ct]);
coeffCi]C2] = tCi-1];leprintf (rou+i-2, colsC3], coeffCi] C2]);
rhsti] = 3 x (tCi)/tCi-1]) x (pCi] - pCi-1]) +3 X (tCi-1]/t[i]) K (pCi+1] - pCi]); leprintf (xou+i-2, colsC4], rhsCi]);

rhs");

9 rhs,

rhs,

416

)
}

void equate_cubic_quartic_accs (int n, f_9 t, f_10 p, f_9_2f 9 rhs, int rou, i_4 cols)
{locate (row+n-3, colsCO]); cprintf ("%d", n-1);
coeff[n-13[03 = tCn-13;leprintf (rou+n-3, cols[1], coeff[n-1][0]);
coeff[n-1][1] = 2Kt[n-13 + 3Xt[n-23; leprintf (rou+n-3, cols[2], coeff[n-1][1]);
rhs[n-13 = (3 x t[n-13 / tCn-23) x (P [n-13 - p[n-23)+ (6 x t[n-23 / t[n-13) x (p[n3 - p[n-13);leprintf (rou+n-3, cols[43, rhs[n-13);
}

void foruard_eliminate_term1 (int
int

{int i;float multiplier;
for (i = 3; i <= n-1; i++)

{multiplier = -coeff[i][03 / lcputs (rou+i-2, cols[1], " pause (short_pause);
coeff[i][13 = coef f[i 3[13 + leprintf (rou+i-2, cols[23, pause (short_pause);
rhs[i3 = rhsCi] + multiplie leprintf (rou+i-2, cols[43, pause (short_pause);

void backuard_eliminate_term3
{int i;

n, f_9_2 coeff, f_9 rhs, rou, i 9 cols)

coeff[i — 13[13;
") ;

multiplier X coeff[i-1][2
coeff[i 3[13)»

x rhs[i-13; rhs[i 3);

(int n, f_9_2 coeff, f_9 rhs, int rou, i 4 cols)

leprintf (rou+n-3, cols[23, 1);
vel[n-13 = rhs[n-13 / coeff[n-13[13; leprintf (rou+n-3, cols[4], vel[n-13);
for (i = n-2; i >= 2; i—)

{lcputs (rou+i-2, cols[33, " ");
rhs[i3 = rhs[i3 - coeff[i][2] X vel[i+l3; leprintf (rou+i-2, cols[<+3, rhs[i3); pause (short_pause);
leprintf (rou+i-2, cols[23, 1);
vel[i3 = rhs[i3 / coeff[i3[13; leprintf (rou+i-2, cols[4], vel[i3); pause (short_pause);

calc coefficients (int n, f_10 p, f_9 t, f 9 vel,f_9 a, f~9 b, f_9 c, f_9 d, f_9 e)

coef f,

f_9 vel.

void

417

{int rou;
i_5 cols;
dsply_coefficients (Srow, cols); calc_starting_quartxc (p, t, vel, a, b,calc_intermediate_cubics (n, p, t, vel, a, b,calc_ending_quartic (n, p, t, vel, a, b,uait_then_erase (10);
}

void dsply_coefficients (int Xrou, i_5 cols)
{locate (10, 0);
mcputs (29, 28, "Polynomial Coefficients"); mcputs (18, 13, "A B Cmcputs (18, 13, "Xrou = 12; colsCO] = 9;colsC1] = 13; colsC2] = 25; colsC3] = 37; colsCA] = 99; cols C5] = 61 ;
}

void calc_starting_quartic (f_10 p, f_9 t, f_9 vel,
f_9 a, f_9 b, f_9 c, f_9 d, f_9 e, int rou, i 5 cols)

{lcputs (rou, colsCO], " 1");
aC1] = pC1);leprintf (rou, colsCI], a[1]);
bC1] = 0;leprintf (row, colsC2], bC1]);
c[1] = 0;leprintf (rou, colsC3], cC1]);
dC1] = (4 / pou(t [1] , 3)) X (p [2] - p[1])- (1 / square (t C13)) * velC2];leprintf (rou, colsCA], d(1]);
e C1] = (-3 / pou(t C1) ,4)) x (p[2] - pC1])+ (1 / pow(t[1] ,3)) X vel[2];leprintf (rou, cols[5], eCi]);
}

void calc_intermediate_cubics (int n, f 10 p, f_9 t, f_9 vel,
f_9 a, f~9 b, f_9 c, f_9 d, f_9 int row, i 5 cols)

{int i ;
for (i = 2; i <= n-2; i++)

{locate (rou+i-1, colsCO]); cprintf ("%2d", i);
aCi] = pCi 3;leprintf (rou+i-1, colsCI], aCi]);
bCi] = velCi];leprintf (rou+i-1, colsC2], b[i]);
c[i] = (3/square (tCi3)) x (p[i+1] - pCi])- (1/t ti]) X (velti+1] + 2Xvel[i]); leprintf (rou+i-1, colsC3], cti]);

c, d, e, row
c, d. e, rowc, d, e , rou

cols);
cols);
cols);

E")
")

d[i 3 = -(2/pow(t[i3,3)) x (p[i+1] - pCi])+ (1/square (t C i 3) > X (vel[i+13 + velCi]); leprintf (rou+i-1, cols[9], d[i]);
eCi] = 0;
}

void calc_ending_quartic (int n, f_10 p, f_9 t, f_9 vel,f_9 a, f_9 b, f_9 c, f_9 d, f_9 e, int rou, i_5 cols)
{locate (rou+n-2, colsCO]); cprintf ("%2d", n-1);
a [n -1] = p [n -1] ;leprintf (row+n-2, colsCI], a[n-1]);
b[n-1] = vel[n-1];leprintf (rou+n-2, cols[2], bCn-13);
cCn-1] = (6 / square (tCn—1 3)) x (pCn] - p[n-1])- (3 / t[n-1]) x vel[n-13;
leprintf (rou+n-2, cols[3], c[n-13);
d[n-13 = -(8 / pou(t[n-13,3)) x (p[n3 - p[n-13)+ (3 / square (ttn-13)) x velCn-13;leprintf (rou+n-2, colsCI], d[n-13)j
eCn-13 = (3 / pou(t[n-13,9)) x (p[n3 - p[n-13>- (1 / pou(t[n-13,3)) x vel[n-13;leprintf (rou+n-2, cols[53, eCn-13);
3

void critical_positions (int n, f_9 a, f_9 b, f_9 c, f_9 d, f_9f 9 t, int lb, int hb)
{int rou; i_7 cols; int i;
dsply_crit_pos (&rou, cols);terminal_crit_pos (1, a[13, b C1 3» c[13, d[13, e[13, t[13, lb,rou, cols);
for (i = 2; i <= n-2; i++)intermediate_crit_pos (i, a[i], b[i3, cCi], d[i), t[i3, lbrou+i-1, cols);
terminal_crit_pos (n-1, a[n-13, b[n-13, c[n-13, d[n-13, e[n-1t[n-l3, lb, hb, rou+n-2, cols); uait_then erase (10);
3

void dsply_crit_pos (int Xrou, i_7 cols)
{locate (10 , 0);mcputs (31 , 31,eputs (eputs (" i time
Xrou = 12;cols[03 = 1 ;colsC13 = <+;cols[2 3 = 15;colsC33 = 27;
colsCI3 = 38;cols[53 = 50;colsC63 = 61;

"Critical Positions"); time positionposition bounds") time position ");

419

colsC 7] = 75;
)

void terminal_crit_pos (int i, float a, float b, float c, float d,float e, float t, float lb, float hb, int rou, i_7 cols)
{float q; float r; float discr; int roots;
f_2 tcp;f_2 cp;float x; int j;
locate (rou, colsCO]); cprintf ("%d", i);q = (1 / (2 X e)) X ((c / 3) - square (d) / (8 X e));r = (1 / (8 X e)) X ((d / (2Xe)) X (c - square (d) / (4 X e)) - b);discr = pou (q,3) + square (r);
if (discr > small_tolerance)

Croots = 1;tcpCO] = cube_root (r + sqrt(discr))+ cube_root (r - sqrt(discr)) - d / (4 X e);
}elseif (fabs(discr) < small_tolerance)

Croots = 2;tcpCO] = 2Xcube_root (r) - d / (4 X e); tcpCl] = -cube_root (r) - d / (4 X e);
}else
{roots = 3;
x = atan2(sqrt(-discr), r);tcpCO] = 2 X sqrt(-q) X cos(x/3) - d/(4Xe);
tepC1] = -sqrt(-q) X (cos(x/3) + sqrt(3)*sin(x/3))- d/(4Xe);tcp[2] = sqrt(-q) X (-cos(x/3) + sqrt(3)Xsin(x/3))- d/(4*e);
}for (j = 0; j < = roots-1; j++)cpCj] = eval_cp (a, b, c, d, e, tcpCj], t,rou, colsCjX2+1], colsCjX2+2]); for (j = 0; j <= roots-1; j++)check_range (lb, hb, cpCj], rou, colsC7]);

}
void intermediate_crit_pos (int i, float a, float b, float c, float d,float t, float lb, float hb, int rou, i_7 cols)

Cint j;float discr; int roots; f_1 tcp;f_1 cp;
locate (rou, colsCO]); cprintf ("%d", i); discr = square (c) - 3XbXd; if (discr > small_tolerance)

Croots = 2;tcpCO] = (—c + sqrt(discr)) / (3 X d);
tcpCl] = (—c - sqrt(discr)) / (3 X d);

420

3elseif (fabs(discr) < small_tolerance)
{roots = 1;tcpCO] = -c / (3 x d);
3elseroots = 0;

for

for
3

(j = 0; j <= roots-1; j++) cp[j] = eval_cp (a, b, c, d, 0, tcpCj], t,rou, cols[j*2+13, colsCj*2+2 (j = 0; j <= roots-1; j + +) check_range (lb, hb, cp[j], rou, cols[7]);

float eval_cp (float a, float b, float c, float d, float e,float tcp, float t, int rou, int tcol, int pcol)
{float cp;
leprintf (rou, tcol, tcp); if ((tcp >= 0) & (tcp <= t))

Ccp = a + bxtep + c*square (tcp) + d*pou(tcp,3) + e*pou(tcp,4); leprintf (rou, pcol, cp);
3else
Ccp = 0;lcputs (rou, pcol, " time out”);
3return (cp);

3
void check_range (float lb, float hb, float cp, int rou, int col)

Cif ((cp >= lb) & (cp <= hb)) lcputs (rou, col, " In");
elselcputs (rou, col, "Out");

float traj_scaling (int n, f_9 b, f_9 c, f_9 d, f_9 e, f_9 t,float theta__maxv, float theta maxa)
{int rou; i_7 cols;float maxv; float maxa; int i;float cv; float ca; float fv; float fa; float f;
dsply_traj_scaling (&rou, cols);
maxv = terminal_crit_vel (1, b[13, c[13, d[1], e[1], tC1 3,rou, cols);maxa = terminal_crit_acc (c[13, d[1], e[13, t C13, rou, cols); for (i = 2; i <= n-2; i++)

{cv = intermediate_crit_vel (i, b[i], c[i3, d[i], t[i],rou+i-1, cols);if (cv > maxv) maxv = cv;ca = intermediate_crit_acc (c[i], rou+i-1, cols);
if (ca > maxa) maxa = ca;

421

}cv = terminal_crit_vel (n-1, btn-1], cCn-1], dtn-1], eCn-1], t[n-1],row+n-2, cols);if (cv > maxv) maxv = cv;
ca = terminal_crit_acc (cCn-1], dCn-1], eCn-1], t[n-1],rou+n-2, cols);if (ca > maxa) maxa = ca;
leprintf (rou+ 9, colsC7], maxv); leprintf (rou+10, colsC7], maxa);
fv = theta_maxv / maxv;
fa = sqrt(theta_maxa / maxa); if (fv < fa) f = f v ; elsef = f a ;leprintf (row+11, cols[7], f); uait_then_erase (9); return (f);
}

void dsply_traj_scaling (int ><rou, i_7 cols)
{locate (1 0 , 0);eputs (Tl Critical Velocities ");eputs (»» Critical Acceleration ");eputs (II i time velocity time velocity”);eputs (I I time acceleration ");locate (21 , 0);mcputs (16, 16, "Maximum Velocity: ");mcputs (16, 16, "Maximum Acceleration: ");mcputs (16, 16, "Scaling Factor: ");
Xrou = 12; colsCO] = 3; cols C1] = 8; colsC 2] = 19; colsC3] = 32; cols[4] = 43; colsC5] = 56; cols C 6] = 67; colsC7] = 38;
}

float terminal_crit_vel (int i, float b, float c, float d, float e,float t, int rou, i 6 cols)
{int j; float discr; int roots; f_1 tcv; float maxv; f_1 cv; float mag;
locate (rou, colsCO]); cprintf ("%2d", i); discr = square (d) - 8XcXe/3; if (discr > small_tolerance)

{roots = 2;tcvCO] = (-d + sqrt(discr)) / (4Xe); tcv[1] = (-d - sqrt(discr)) / (4Xe);
]else
if (fabs(discr) < small tolerance)

{

422

roots = 1 ;tcvCO] = -d / (4*e);
)elseroots = 0;for (j = 0; j <= roots-1; j++)cvCj] = eval_cv (b, c, d, e, tcvCj], t,row, colsC2*j+1], cols[2*j + 2]);

maxv = 0;for (j = 0; j <= roots-1; j++)if ((mag = fabs(cvCj])) > maxv) maxv = mag; return (maxv);
}

float intermediate_crit_vel (int i, float b, float c, float d, float t,int rou, i_6 cols)
{float tcv; float cv;
locate (rou, colsCO]); cprintf ("%2d ", i);tcv = -c / (3*d);cv = eval_cv (b, c, d, 0, tcv, t, row, colsCI], colsC2]); return (fabs(cv));
]

float eval_cv (float b, float c, float d, float e, float tcv, float t, int rou, int tcol, int vcol)
Cfloat cv;
leprintf (rou, tcol, tcv); if ((tcv >= 0) & (tcv <= t))

{cv = b + 2*c*tcv + 3*d*square (tcv) + 4He*pou(tcv, 3);leprintf (rou, vcol, cv);
]else
Ccv = 0;lcputs (rou, vcol, " time out");
]return (cv);

]
float terminal_crit_acc (float c, float d, float e, float t,int rou, i_6 cols)

{float tea; float ca;
tea = -d / (<+*e);leprintf (row, cols[5], tea);if ((tea >= 0) & (tea <= t))

{ca = 2*c - (3*square (d)) / (4*e); leprintf (rou, colsC6], ca);
}else
Cca = 0;lcputs (rou, colsC6], " time out ");
}return (fabs(ca));

}
float intermediate crit acc (float c, int rou, i 6 cols)

{

4 2 3

float ca;
ca = 2*c;leprintf (row, cols[53, 0); leprintf (rou, cols[63, ca);
return (fabs(ca));
}

void determine_positions (f_5_9 a, f_5_9 b, f_5_9 c, f_5_9 d, f_5_9 e,int n, f_9 t, float f)
{i_2 rous;i_4 time_cols;i~6 eval_cols;int scale_col;f_9 cumulative_time;float total_time;int i;float trajectory_pos; float real_time; float scale_time; int j;
dsply_det_positions (rous, time_cols, eval_cols, &scale_col); leprintf (rous[23, scale_col, f); cumulative_time[03 = 0; for (i = 1; i <= n-1; i++)

{locate (rous[03+i-1, time_cols[03); cprintf ("%d", i);leprintf (rousCO] + i-1 , time_cols[13, 0); leprintf (rous[03+i-1, time_cols[23, t[i3);
cumulative_time[i3 = cumulative_timeCi-1 3 + t[i3/f; leprintf (rous[03+i-1, time_cols[33 , cumulative_time[i-13); leprintf (rows[03+i-1, time_cols[43, cumulative_time[i3);
3

uhile ((real_time = get tine (cumulative_time, n)) != -1)
{i = 0; do i++;uhile (real_time > cumulative_time[i3); locate (rous[13, eval_cols[03); cprintf ("%d", i);scale_time = (real_time - cumulative_timeCi-1 3) * f; leprintf (rous[l3, eval_cols[63, scale_time); for (j = 1; j <= 5; j++)

{trajectory_pos = a[j][i3 + b[j][i3 X scale_time + ctj3[i3 * square (scale_time)+ d[j 3 Ci1 # pou (scale_time, 3)+ e[j][i3 * pou (scale_time, 4); leprintf (rous[1], eval_cols[j3 , trajectory_pos);
33uait_then erase (9);3

void dsply_det_positions (i_2 rous, i_4 time_cols, i_6 eval_cols,int *scale_col)
£locate (9, 0);eputs (" Determination of Trajectory Position at Arbi"); eputs ("trary Times (scale =) ");eputs (" Segment Scale Time Range ");eputs (" Real Time Range ");eputs (" ");eputs (");

42-:

locate (20, 0);
eputs (’’Segment Scale Time Theta 1 Theta 2");
eputs (” Theta 3 Theta 4 Theta 5”);
eputs (” ");
eputs (" ");
roust 0] = 11;
time_cols[0] = 14;
time_cols[1] = 20;
time_cols[23 = 33;
time_cols[33 = 46;
time_cols[43 = 59;
rous[13 = 21;
eval_cols[03 = 3;
eval_cols[63 = 10;
eval_cols[13 = 22;
eval_cols[23 = 34;
eval__cols C 3 3 = 46;
eval_cols[43 = 58;
eval_cols[53 = 70;
rous[23 = 9;
Xscale_col = 68;
}

float get_time (f_9 cumulative_time, int n)
(float real_time;
lcputs (23, 20, "Enter cumulative real time for evaluation: ");
lcputs (24, 20, "<-1> to terminate");
do

{lcputs (23,20+44, " ");
real_time = indec (23, 20+44);
3
uhile (((real_time < 0) ! (real_time > cumulative_time[n-13))

& (real_time != -1));
erase_prompt (23);
return (real time);
3

425

[Bana85]

|Bedf64j

[Boul7I]

[Brad83]

[Card85]

[Casa73]

[CoifBSa]

[CoifS3b]

[Cook82]

BIBLIOGRAPHY

Banas, J. "Computer-Controlled Robot Arm," Radio Electronics, May 19S5,

pp. 49-53, 117.

Bedford, B. D. and Haft, R. G. Principles o f Inverter Circuits. New York:

John Wiley and Sons, Inc., 1964.

Boullion, T. L. and Odell, P. L. Generalized Inverse Matrices. New York:

Wilcy-lntcrscience, 1971.

Brady, M., ct. al., cds. Robot Motion: Planning and Control. Cambridge,

MA: The MIT Press, 19S3.

Cardoza, A. and Vlk, S. J. Robotics. Blue Ridge Summit, PA: Tab Books,

Inc., 1985.

Casasent, D. Electronic Circuits. New York: Quantum Publishers, Inc.,

1973.

CoifTet, P. Robot Technology’: Modelling and Control. Englewood Cliffs,

NJ: Prentice-Hall, Inc., 1983.

CoifTet, P. and Chirouze, M. An Introduction to Robot Technology. New

York: McGraw-Hill Book Company, 1983.

Cook, C. C. and Ho, C. Y. "The Application of Spline Functions to

Trajectory Generation for Computer-Controlled Manipulators," Digital

Systems fo r Industrial Automation, Vol. 1, No. 4, 1982, pp. 325-333.

426

fDcna55]

[Dcsa85]

[DufTSO]

[FcatS3]

[FoleS3]

[Gold85]

[Gros78]

[Hibb65]

Denavit, J. and Hartenberg, R. S. "A Kinematic Notation for Lower-Pair

Mechanisms Based on Matrices," Journal o f Applied Mechanics, June 1955,

pp. 215-221.

Desa, S. and Roth, B. "Mechanics: Kinematics and Dynamics." In Recent

Advances in Robotics. Beni, G. and Ilackwood, S., cds. New York:

Wilcy-lntcrscienccs, 1985.

Duffy, J. Analysis o f Mechanisms and Robot Manipulators. New York:

I lalstcad Press, 19S0.

Fcathcrstonc, R. "Position and Velocity Transformations Between Robot

End-Elfector Coordinates and Joint Angles," The International Journal o f

Robotics Research, Vol. 2, No. 2, Summer 1983, pp. 35-45.

Foley, J. D. and Van Dam, A. Fundamentals o f Interactive Computer

Graphics. Reading, MA: Addison-Wesley Publishing Company, 1983.

Goldenberg, A. A., Bcnhabib, B., and Fenton, R. G. "A Complete

Generalized Solution to the Inverse Kinematics of Robots," IEEE Journal

o f Robotics and Automation, Vol. RA-1, No. 1, March 1985, pp. 14-20.

Grossman, D. D. and Taylor, R. H. "Interactive Generation of Object

Models with a Manipulator," IEEE Transactions on Systems, Man, and

Cybernetics, Vol. SMC-8, No. 9, September 1978, pp. 667-679.

Hibberd, R. G. Transistors: Principles and Applications. New York: Hart

Publishing Company, Inc., 1965.

427

[Ho82]

[H0 8 6]

[IIo90]

[HollSO]

[Holz8 6]

[Khal84]

[Kirc85]

Ho, C. Y. and Copeland, K. W. "Solution of Kinematic Equations for

Robot Manipulators," Digital Systems fo r Industrial Automation, Vol. 1, No.

4, 1982, pp. 335-352.

Ho, C. Y. and Sriwattanathamma, J. "Differential Relationship of

Kinematic Model and Speed Control Strategies for a Computer-controlled

Robot Manipulator," Robitica, Vol. 4, 1986, pp. 155-161.

IIo, C. Y. and Sriwattanathamma, J. Robot Kinematics. Norwood, New

Jersey: Ablcx Publishing Corporation, 1990.

Hollerbach, J. M. "A Recursive Lagrangian Formulation of Manipulator

Dynamics and a Comparative Study of Dynamics Formulation Complexity,"

IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-10, No. 11,

November 1980, pp. 730-736.

Holzbock, W. G. Robotic Technology: Principles and Practice. New York:

Van Nostrand Reinhold Company, 1986.

Khalil, W. "Trajectories Calculations in the Joint Space of Robots." In

Advanced Software in Robotics. Danthine, A. and Geradin, M., eds. New

York: Elsevier Science Publishers B. V., 1984.

Kircanski, M. and Vukobratovic, M. "Trajectory Planning for Redundant

Manipulators in the Presence of Obstacles." In Theory and Practice o f

Robots and Manipulators - Proceedings o f RoManSy '84: The Fifth

CISM-IFToMM Symposium. Morecki, A., Bianchi, G. and Kedzior, K., eds.

Cambridge, MA: The MIT Press, 1985.

428

[Krug54] Krugman, L. M. Fundamentals o f Transistors. New York: John F. Rider

Publisher, Inc., 1954.

[LeeS2] Lee, C. S. G. "Robot Arm Kinematics, Dynamics, and Control," Computer,

December 1982, pp. 62-80.

[LewiS3] Lewin, M. II. Logic Design and Computer Organization. Reading, MA:

Addison-Wesley Publishing Company, 1983.

[Malm69] Malmstadt, H. V. and Enke, C. G. Digital Electronics fo r Scientists. Menlo

Park, CA: W. A. Benjamin, Inc., 1969.

}Nico85] Nicolaiscn, P. "Occupational Safety and Industrial Robots - Present Stage

of Discussions within the Tripartitie Group." In Robot Technology and

Applications. Rathmill, K., et. al., eds. Berlin: Springer-Verlag, 1985.

[Nort88] Norton, P. and Wilton, R. Programmer's Guide to the IBM PC & PS/2.

Redmond, WA: Microsoft Press, 1988.

[Pare85] Parent, M. and Laurgeau, C. Robot Technology: Logic and Programming.

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985.

[Paul79] Paul, R. "Manipulator Cartesian Path Control," IEEE Transactions on

Systems, Man, and Cybernetics, Vol. SMC-9, No. II, November 1979, pp.

702-711.

[Paul81a] Paul, R. P., Shimano, B., and Mayer, G. E. "Kinematic Control Equations

for Simple Manipulators," IEEE Transactions on Systems, Man, and

Cybernetics, Vol. SMC-11, No. 6, June 1981, pp. 449-455.

429

[PaulSlb] Paul, R. P., Shimano, B., and Mayer, G. E. "Differential Kinematic Control

Equations for Simple Manipulators," IEEE Transactions on Systems, Man,

and Cybernetics, Vol. SMC-11, No. 6, June 1981, pp. 456-460.

[PaulS lc] Paul, R. P. Robot Manipulators: Mathematics, Programming, and Control.

[Paul87]

Cambridge, MA: The MIT Press, 1981.

Paul, R. P. and Zhang, II. "Computationally Efficient Kinematics for

Manipulators with Spherical Wrists Based on the Homogeneous

Transformation Representation." In The Kinematics o f Robot Manipulators.

McCarthy, J. M., cd. Cambridge, MA: The MIT Press, 1987.

[Rank85] Ranky, P. G. and Ho, C. Y. Robot Modelling: Control and Applications with

Software. Bedford, England: IFS Publications Ltd., 1985.

[Rao71] Rao, C. R. Generalized Inverse o f Matrices and Its Applications. New York:

John Wiley and Sons, Inc., 1971.

[Robi84] Robillard, M. J. Advanced Robot Systems. Indianapolis, IN: Howard W.

Sams and Co., Inc., 1984.

[Saff79] Safford, E. L. The Complete Handbook o f Robotics. Blue Ridge Summit,

PA: Tab Books, 1979.

[Spon89] Spong, M. W. and Vidyasagar, M. Robot Dynamics and Control. New York:

John Wiley and Sons, Inc., 1989.

[Stra80] Strang, G. Linear Algebra and Its Applications. New York: Academic Press,

1980.

430

[TakaSl] Takase, K., Paul, R. P., and Berg, E. J. "A Structured Approach to Robot

Programming and Teaching," IEEE Transactions on Systems, Man, and

Cybernetics, Vol. SMC-11, No. 4, April 1981, pp. 274-289.

[Vuko82] Vukobratovic, M. and Potkonjak, V. Dynamics o f Manipulation Robots:

Theory and Application. Berlin: Springer-Verlag, 1982.

[Walk66] Walker, R. L. Introduction to Transistor Electronics. Belmont, CA:

Wadsworth Publishing Company, Inc., 1966.

[Zeld84] Zeldman, M. I. What Every Engineer Should Know About Robots. New

York: Marcel Dckkcr, Inc., 1984.

	Robot Pedagogics: The Adaptation, Analysis, and Computer Control of a Model Manipulator
	Recommended Citation

	tmp.1634127763.pdf.xCWym

