
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Dec 1993

A Syntax-Directed Editor for Borland’s Turbo Pascal A Syntax-Directed Editor for Borland’s Turbo Pascal

John Gatewood Ham

Thomas J. Sager

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ham, John Gatewood and Sager, Thomas J., "A Syntax-Directed Editor for Borland’s Turbo Pascal" (1993).
Computer Science Technical Reports. 64.
https://scholarsmine.mst.edu/comsci_techreports/64

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/64?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A Syntax-Directed Editor
for Borland’s Turbo Pascal

J. Ham* and T. Sager

CSC-93-34

Department o f Computer Science
University o f Missouri-Rolla

Rolla, MO 65401

*This report is substantially the M. S. thesis o f the first author, completed December 1993

iii

ABSTRACT

This study details the design and implementation of the LSD

program, a syntax-directed editor for use in editing the source

code for Borland’s Turbo Pascal. LSD is a dual-mode editor vhich

allows both traditional text editing and also grammar-based

editing. LSD promotes better programming for novice users by

allowing the user to edit the program with a graphical

representation of a parse tree. A list of syntactically correct

choices is displayed at each point where a choice must be made in

the structure of the program. Since only these choices are

available, no syntax errors are possible. For more advanced users,

the ability to take an existing program and display the syntax tree

will help show the underlying structure of the Pascal language

grammar.

IV

ACKNOWLEDGEMENTS

I would like to express my appreciation to my committee

members, Drs. Thomas Sager, George Zobrist, and Wayne Bledsoe, for

their patience.

I would also like to thank Chuck Kincy, John Stone, Dan Miner,

Charles Hamilton, Adam Lewis, Paul Belk, Yi-Wan Wang, Hong-Him Lira,

Chun-Kee Ng, Pei-Yu Li, Mihai Sirbu, Eugene Ham, Martina

Schollmeyer, Larry Reeves, Jui-Lin Lu, Andrew Townley, and Charles

Ham for their help during this work.

The following commercial products which I had to purchase

myself allowed me to finish this thesis:

• QEDIT Advanced Editor
• ISPF/PDN Editor
• Abraxas PCYACC and PCLEX Tools
• IBM C/SET++, IBM Developer's Toolkit 2.1
• IBM OS/2 2.1 Operating System
• TLIB 5.0 by Burton Systems
• OPUS Make

Most importantly, my deepest gratitude to IBM for b u i ld in g an

operating system and compiler up to the job.

V

TABLE OF CONTENTS

Page
ABSTRACT.. iii
ACKNOWLEDGEMENTS>............ . iv
LIST OF FIGURES vii
LIST OF TABLESviii
SECTION

I. INTRODUCTION 1
A . PROGRAMMING LANGUAGES 1
B. TEXT EDITING 6
C. SCANNING AND PARSING . 8

1. Scanning 8
2. Parsing . 9
3. Reasons For Using Tools 9

D. TYPICAL PROGRAMMING ERRORS 10
E. SYNTAX-DIRECTED EDITING 12
F. TREES 13
G. LSD’S TREES 17
H. LSD’S TREE EDITING 19

II. ANATOMY OF LSD 23
A. DESIGN CONSTRAINTS AND METHODOLOGY OF LSD 23
B. SOURCE FILE M O D U L E S 30

1. The Parse Module 30
2. The nt. cpp Module . 42
3. Other Files 45

C. OS/2 INFORMATION 54
III. USER MANUAL FOR LSD 63

A. INTRODUCTION 63
B . TEXT EDITOR DETAILS 67

1. Cursor Movement 67
2. Modes 70
3. Inserting a Line 72
4. Deleting a line 72
5. Edit Window Keys 72

C. PARSE WINDOW 73
1. Parse Window Usage 73

VI

2. Parse Window Keys 74
D. GRAMMAR WINDOW 74

1. Grammar Window Usage 74
2. Grammar Window Keys 74

E. TREE EDITING 75
1. Tree Navigation 75
2. Subtree Deletion 76
3. Subtree Insertion 77
4. Subtree Moving 78
5. Tree Edit Window Keys 79

BIBLIOGRAPHY... 80
V I T A 81

LIST OF ILLUSTRATIONS

Figures Page
1. Example Graph 13
2. Graph With Cycle....... 14
3. Example Tree.................... 14
4. Equivalent Tre e s...... * .■< a 15
5. Ternary Tree and resulting Binary Tree 16
6. Ternary Tree for production: A — ► x Y z 17
7. Binary Tree for production: A — ► x Y z 17
8. Tree Showing Productions.................. 18
9. Tree before and after insertion......... 20
10. Series of trees during editing......... 21
11. Edit Code Map , . ,,. , . . 24
12. Parse Code Map 25
13. Reformat Code M a p,. 26
14. Showgrammar Code Map 27
15. Treeedit Code M a p 28
16. Shift-Reduce Example Grammar 32
17. Shif t-Reduce Example Case 1 :. , , 32
18. Shif t-Reduce Example Case 2 i 33
19. WritelnStatement Tree 37
20. Writeln Example Part 1 , . , 39
21. Writeln Example Part 2 41
22. Frame Window -. 58
23. Asynchronous Work Thread Usage ̂. ... 60

vii

LIST OF TABLES

viii

Tables Page
I. Support functions for rwindow module................ 53

II. Buffer functions for rwindow module 53
III. Functions in the lsdmt module, part 1 55
IV. Functions in the lsdmt module, part 2 56
V. Edit Window K e y s 72

VI. Parse Window Keys 74
VII. Grammar Window K e y s 75

VIII. Tree Edit Window Keys............................... 79

I. INTRODUCTION

A. PROGRAMMING LANGUAGES

A programming language is a means of recording instructions

for a computer in an abstract manner. Instructions in a computer

language are understood and manipulated by humans more easily than

the binary instructions the hardware executes. A program is a

sequence of instructions written in a computer language. Computer

languages, like human languages, can be described by grammars.

Several pieces which together form a grammar are terminals,

non-terminals, productions, and a start symbol. A terminal

corresponds to a word or punctuation in the English grammar. A

terminal is atomic and thus cannot be decomposed into any smaller

unit.. A production, or rule, corresponds to the familiar sentence

structure discussed in English grammar textbooks. A sentence can

be made up of a Subject and a Predicate followed by a period. For a

computer grammar, this would be written:

Sentence — * Subject Predicate .

To show more rules, or productions, this example must be extended.

A Subject can be a noun:

Subject — * Article Noun

An Article can be A or The. A Noun can be many things, including

Dog, Cat, and Child. A Predicate is too abstract to be just a single

word, so it is too early to tell what it might be. The potential

Noun and Article values could be written:

2

Article --V THE
Article — + A
Noun — ♦ DOG
Noun — ♦ CAT
Noun — ♦ CHILD
Noun — » HOUSE
Noun — ► YARD

A Predicate can be a Verb followed by an Adverb and an Object, or it

can be just a Verb. The associated productions would be:

Predicate — ♦ Verb Adverb Object
Predicate — ► Verb

Both Verb and Adverb are simple enough to allow enumerating.

Verb — ♦ RUNS
Verb — ♦ EATS

Verb — ♦ SLEEPS
Adverb — ♦ QUICKLY
Adverb — ♦ SLOPPILY
Adverb — ♦ SOUNDLY

An Object is not always present. There are two ways to handle this

in a grammar. One is to have a separate production for each case:

Predicate — ♦ Verb Adverb
Predicate — ► Verb Adverb Object

Another way to deal with this is to have an optional item in the

production. An example would be:

Predicate — ► Adverb Object
Object — ♦ e
Object — ♦ Preposition Article Noun
Preposition — ♦ IN
Preposition — * ON

A production with an e after the arrow is called an epsilon

production. Some references use A instead of e. There is no

semantic difference. The e means no non-terminals or terminals are

on the right-hand side of the production.

3

Some observations can be made about the structure of the

productions at this point. The arrow is a separator between two

pieces of the production, called the left-hand side and the

right-hand side. The left-hand side in the examples given has

always had only one member. A closer look at the right hand side

is now in order. Notice that the all capitalized members are words

in English that are not to be further substituted. These are

terminals. The members in mixed case which are to be further

substituted are non-terminals. The left-hand side is always a

single non-terminal. The original production had a left-hand side

of Sentence. This is the start production, since it is always used

first.

An example of a sentence produced using these productions will

make this clear.
Sentence
Subject
Article
Noun
Predicate
Verb
Adverb
Object
Preposition
Article
Noun

Subject Predicate .
Article Noun
A
DOG
Verb Adverb Object
SLEEPS
SOUNDLY
Preposition Article Noun
IN
THE
YARD

At this point no further substitutions can be made. If the

terminals from the right-hand sides are read starting at the first

production a sentence is indeed formed:

A DOG SLEEPS SOUNDLY IN THE YARD .

Thus the sentence can be produced, or derived, from the start

production. While this is interesting, it does not solve any

typical problems. What is needed is not a generator of sentences,

but instead an analyzer. For instance, is the following a valid

sentence?

4

SOUNDLY THE DOG . YARD IN A SLEEPS

It has the same words as the sentence generated earlier. Something

more than an examination of which terminals are entered is

necessary to decide if the sentence is valid according to the

grammar. Fortunately, the answer lies in using the grammar

techniques previously discussed. If the substitution method is

reversed, the sentence can be examined:

Adverb — ♦ SOUNDLY

Sentence must start with a Subject, and Subject must be a Noun.

Adverb cannot be used here. This series of terminals is not valid

because no sequence of productions beginning with the start

production Sentence leads to this series of terminals. What about

the first sentence examined?

A DOG SLEEPS SOUNDLY IN THE YARD

Article — ► A
Noun — » DOG
Subject — ♦ Article Noun
Verb — ♦ SLEEPS
Adverb — ♦ SOUNDLY
Preposition — ♦ IN
Article — ► THE
Noun — ♦ YARD
Object — ♦ Preposition Article Noun
Predicate — * Verb Adverb Object
Sentence — ♦ Subject Predicate

6

Admittedly, some yet to be disclosed method was used to pick the

correct series of productions. The example shows such an

appropriate series of productions exists. This is enough to be

certain the series of terminals is a valid sentence according to

the grammar. Finally, it should be noted that the left-hand side

of each production always has one item, and it is a non-terminal.

This is not accidental. Productions can be created which have

multiple members on the left-hand side, and these left-hand sides

may include terminals. These substitutions are much more

complicated and are not necessary for reasonable computing

languages. A grammar containing exactly one non-terminal on the

left hand side of all productions is known as context-free. Any

other grammar is context-sensitive or unrestricted. The LSD

program is based on a context-free grammar.

Suppose there is a stream of terminals which when analyzed is

determined to be valid according to the specified grammar. Is it a

valid program? This question is much harder than merely

determining if the stream of terminals is valid according to the

grammar. By determining that the stream of tokens can be generated

by the grammar one can know that the series of tokens is

syntactically correct. However, it may not be semantically

correct. For instance, with the example grammar, the following

sentence can be generated:

THE HOUSE EATS SOUNDLY IN A DOG .

The syntax is sound, but it is obvious that the sentence is

meaningless. This clearly demonstrates that while a program may be

syntactically correct it may not produce the desired results. It

6

is known that simply calculating whether an arbitrary program will

halt is impossible.1 Determining whether the program will produce

the desired result is even more complicated; therefore, there is no

way to check this automatically. The LSD editor is designed to

eliminate syntax errors, but the semantic accuracy must be

determined by the user.

B. TEXT EDITING

Since the advent of computer terminals, programs have been

entered using text editors. A text editor is a program which

allows the creation of character streams. A character stream is an

ordered collection of characters, just as the sentences discussed

in section one are collections of ordered terminals. A text file

is a stored character stream. Text editors range from primitive to

complex, but all have certain basic operations in common. A

character may be inserted or deleted at an arbitrary point in the

text stream. The resulting stream may be stored. Most editors

also allow the user to view the text stream on the screen and have

a logical position indicator within the text stream called a

cursor. The insertions and deletions mentioned take place at the

cursor.

The majority of text editors today view the text as being made

up of more complex units than merely characters although they still

allow manipulation of the individual characters. Lines axe the

most common level of abstraction supported by the text editor. A

line is defined as being a character stream terminated by some

special sequence. A text file can then be interpreted as a stream

of lines as well as a stream of characters.

Beyond these simple operations a text editor can provide

almost limitless flexibility in editing. The editing is based on

7

the fundamental atomic units in the character stream, the

characters themselves, and the abstractions such as lines which the

editor supports. No notion of a grammar is present.

Compilers are translation programs which convert programs

specified with character stream input to programs a machine can

run. All syntax checking of the information entered with a text

editor must be performed by the compiler after editing is complete.

This slows down the work of an inexperienced programmer because a

misspelled word will not be detected until the program is compiled.

Then the editor must be re-entered, the error corrected, and the

compilation re-tried. This cycle must be repeated until a

syntactically correct program is created. After a syntactically

correct program is created, the programmer may finally start

checking the program for correct semantics. The time spent

generating a syntactically correct program can be considerable, and

it postpones the time when a program may be tested for semantic

compliance to its original specifications.

Since compilers take text (character streams) as input, text

editing is the traditional way to create the compiler input. Text

editing works well for experienced programmers who no longer make

many syntax errors, but it is a poor system for beginners. A

syntax-directed editor such as LSD is an ideal editor for novice

programmers.

8

C. SCANNING AMD PARSING
1. Scanning. Once entered, several actions are required to

analyze a character stream to determine if it contains a

syntactically correct program. First, the character stream must be

converted to a stream of terminals which can be analyzed as was

discussed in section one. The process of converting a stream of

characters into a stream of terminals (often called tokens in this

context) is called lexical analysis, or scanning. Many scanning

methods exist, but the method of choice is to use regular

expressions for recognizing the terminals in the character stream.

This will be easier to explain with the help of some examples.

WORD = (LETTER)+
UNSIGNED-INTEGER = (DIGIT) +
SIGNED-INTEGER = [+|-] (UNSIGNED-INTEGER)
PERIOD = .
ELLIPSIS = ..
REAL-NUMBER = ((SIGNED-INTEGER)(PERIOD)(UNSIGNED-INTEGER)) |

([+|~](PERIOD)(UNSIGNED-INTEGER))

Again, the left-hand side, right-hand side pattern is evident, with

an equals as the divider. The items on the left-hand side

correspond to terminals, or tokens, which can be used for the

grammatical analysis. The right-hand sides are regular expressions

made up of characters (or sets of characters) and operations upon

them. A set of parentheses around an expression indicates the

enclosed regular expression is treated as a unit. The ‘|’ symbol

means ‘or’, so that ‘STUFF = A|B’ means that ‘STUFF’ can be either ‘A’

or ‘B’. Brackets around an expression mean the enclosed regular

expression is optional. A *+’ means that the preceding regular

expression is repeated one or more times. A V means that the

preceding item is repeated zero or more times. A V can be

replaced with a combination of T , ']’ , and l+\ ‘J*1 can be

written as ‘[J+]’, but the V is a more convenient notation. Using

regular expressions, every acceptable terminal can be specified.

9

Tools exist for the software developer to generate

automatically source code for translating character streams to

token streams. These tools require that the tokens be specified

with regular expressions. The most prominent tool for generating

scanners is called lex. Lex was originally written on a UNIX

system and generates the C language source for a scanner. The tool

used for generating the scanner of the LSD editor was Abraxas’

PC-lex, a more powerful descendant of lex.

2. Parsing. The next step in analyzing a program is to see if the

terminal stream is valid according to the grammar. This step is

called parsing. The function which accepts a terminal stream and

returns TRUE if the token stream is valid according to the grammar

is called a parser. Fortunately, tools exist for the developer

which accept a grammar specification as input and output source

code for a parser. The most prominent tool for generating parsers

is called yacc. Yacc was originally written, like lex, on a UNIX

system. Yacc generates the C language source for a parser. The

tool used for generating the parser of the LSD editor was Abraxas’

PC-yacc, a more powerful descendent of yacc.

3. Reasons For Using Tools. The lex and yacc tools are beneficial

to the developer for several reasons. First, they allow the

developer to concentrate on the abstract regular expressions and

grammar, which are central to the problem being solved, and leave

the generation of the scanner and parser to a program. Careless

10

mistakes are prevented because the generators have been extensively

tested. Another benefit of yacc is that changes to the grammar

productions or terminals can be made easily. If a programmer hand

codes the parser and scanner, any changes must be done carefully by

hand to insure that nothing is broken, and that no harmful

side-effects result. A whole battery of testing must be done to

insure that the scanner and parser are working correctly. With lex

and yacc, however, a change in the specifications and a

regeneration of the scanner and parser can be done simply. Since

the code is generated by the tools, no fear of incorrect function

exists, and no extensive testing is necessary to find bugs in the

code. Bugs in the logic of the grammar and the regular expressions

used to denote the acceptable terminals may still exist, but this

is true whether the tools are used or not. Lex and yacc allow

rapid updates of the grammar, either to correct it or enhance it,

without the worries associated with hand-coded scanners and

parsers. Because the output of these tools is C code, the software

must be written in the C language or a superset of it. The

language C++ is a superset of C. Since C++ is adequate for this

project, having the scanner and parser as C code is not a handicap.

D. TYPICAL PROGRAMMING ERRORS

There are three errors which plague a person typing in code as

a character stream. First, a required terminal may be omitted or

spuriously inserted. The bane of programmers in Pascal and C, and

especially of programmers who use both, is the semicolon. For

example, programs written in the C language grammar require a

semicolon in places where the Pascal language grammar forbids them.

11

With a text editor, a semicolon is treated as a character just like

any other. The user of the text editor will not discover the

incorrect or missing semicolon until editing is complete, and the

compilation has failed.

Second, a terminal may very well be misspelled. Terminals

which are words that have special meanings are called keywords. If

misspelled, these are no longer the same terminals. Suppose there

exists a production which specifies:

A — + aterm B 'cterm

Instead of aterm the character sequence taerm is entered with the

text editor in the stream:

some stuff taerm something else cterm

The parser will be unable to detect that taerm something else cterm

should be derivable from A. The compiler will catch the error only

after editing is complete. A final type of error is more subtle

but still fairly common. Often in a grammar a production of the

form:

A — ► (B)

will be present, where the parentheses are delimiters of whatever B

is. If a programmer forgets either the ‘(’ or the ‘)’ in the middle

of a complex character stream, then a mismatch of the parentheses

and a corresponding misinterpretation of the total character stream

will occur.

12

E. SYNTAX-DIRECTED EDITING

With a syntax-directed editor like LSD, all three of the

common errors mentioned in section D can be prevented. Since the

program is entered by replacing non-terminals using lists of

productions, there is no way to leave out or add an extra terminal.

It is also impossible to misspell a terminal which is a keyword.

Forgetting one of a pair of delimiters is actually a special case

of the first problem and is thus prevented. By preventing these

errors from ever entering the terminal stream, the extra

compilation attempts associated with these errors can be avoided.

In addition, the programmer will not need to memorize the exact

productions in the grammar. Whenever a choice of productions is

necessary, a list will be displayed with all valid choices.

How exactly does syntax-directed editing work? In general,

the method used is to begin with a copy of the grammar’s start

production (call it P \) , then for each right-hand side non-terminal

an appropriate production (call it is chosen which has that

non-terminal as the left-hand side. The non-terminal on the

right-hand side of p\ is replaced by the right-hand side of

This is continued recursively until no non-terminals remain on the

right-hand side of p\. All that will be left on the right-hand side

of pi will be a stream of terminals, a syntactically correct program

according to the grammar. This correct sequence of terminals is

then converted into a stream of characters acceptable to the

compiler.

LSD follows the general method, but instead of substituting in

the right-hand sides and generating a modified pi to view, a

13

structure is built documenting the sequence of substitutions used.

The structure used is a tree.

F. TREES

A little background on trees is necessary to understand the

terminology used later. A graph is a collection of nodes and

edges. An edge is a connection between two nodes. An edge in a

graph is described by a pair of nodes: the two nodes are connected

by the edge. An edge connecting nodes a and b is written either as

(a,b) or (b, a). A directed edge is described by an ordered pair

of nodes, where the first node is the start of the edge and the

second node is the end of the edge. A directed edge from a to b

would be written (a,b). A directed edge from b to a would be

written (b,a). A directed edge from a to b may also be written

a— >b. A graph composed of nodes and directed edges is a directed

graph.

An sequence of edges in a directed graph such that the ending

node of any edge in the set is the starting node of the next edge

in the set, if one exists, is called a path. This is shown in

figure 1. It can be seen that the following edges exist in the

a

b c

d e f

Figure 1. Example Graph

graph: a— »b, a— >c, c— >d, c— >e, and c— »f. By definition, any edge

by itself is a path. In this graph there are also longer paths,

14

namely (a—*c, c—*d), (a— ►<:, c-+e), and (a-+c, c— *f). If a node from

the graph is included in the path more than once, the path is said

to have a cycle. For instance, the graph in figure 2 has a cycle.

The cycle in this graph is (a—+c, c— >d, d —»b, b —>a). A directed

a
/ \
b c

d

Figure 2. Graph With Cycle

graph which contains no cycles is termed an acyclic directed graph.

A node in a directed graph may have edges which start or end upon

it. The indegree of a node is the number of edges which end on

that node. The outdegree of a node is the number of edges which

start on that node. A tree is a directed acyclic graph in which

every node has an indegree of one, except for one node called the

root. The root has an indegree of zero. A node in a tree with an

outdegree of zero is called a leaf.

Figure 3 contains a simple tree. The node a is the root.

/ N
b e d

e

Figure 3. Example Tree

The indegree of b, c, d, and e is one, while the indegree of a is

zero. The outdegree of a is 3, the outdegree of b, c and e are

15

zero, and the outdegree of d is 1. The degree of a tree is defined

as being equal to the highest outdegree of any node in the tree.

The tree in figure 3 is a ternary tree, or tree of degree 3. Unary

trees have degree 1, binary trees have degree 2, ternary trees have

degree 3, and for trees with a degree n greater than 3 the term

n-ary is used. Thus a tree with degree 5 would be a 5-ary tree.

A results of the definition of a tree is that for every node

in the tree except the root, some edge exists which ends on that

node. All nodes in a tree will be connected by directed edges.

For a pair of nodes connected by a directed edge, the node on which

the edge starts is said to be the parent of the node upon which the

edge ends, and the ending node is the child of the starting node.

A subtree is a portion of the tree which is itself a tree starting

at a particular node and containing all nodes beneath that node.

The subtree at node d includes the nodes d and e. A given tree may

be represented in a variety of semantically equivalent ways. For

instance, all of the trees in figure 4 are equivalent.

a a a—b b— a e
/ / 1 \ t
b b-c—d c c d
\ / 1 \ t
c e d-^e e~d c
\ 1

d b
/ t
e a —b— c— d— e a

Figure 4. Equivalent Trees

One practical consideration when storing trees in a computer

is the degree of the tree. A tree which has a high degree, but

16

with only a few nodes of this degree, will waste space. To store a

tree node, a list of items which represent the links to the child

nodes is necessary. The more items in this list, the more space

will be taken. If this space is usually empty, then it is being

wasted. The routines to build and to traverse the tree will be

more complex and slower in a tree of high degree than in a tree of

lower degree due to the processing of the additional links.

Fortunately, any n-ary tree can be represented as a binary

tree.2 The method used is to take an n-ary tree and convert it to

a binary tree which represents the same idea logically, but not

physically. The best way to examine this is with an example. In

figure 5, the tree on the left is the original ternary tree; the

tree on the right is the resulting binary tree. The resulting

1. A
A\
B c D

/ \ I
e f g

2. A
/
B ~ c — D

/ /
e— f g

Figure 5. Ternary Tree and resulting Binary Tree

binary tree is drawn in the peculiar fashion to show the logical

meaning of the tree. Each left node is indeed a lower node on the

original tree. Each right node is a node that was a child of the

same parent node. Nodes B, c, D have the same parent A in graph 1

of figure 5, but D is the right child of C which is the right

child of B in graph 2 of figure 5. This method of interpretation

allows storing an n-ary tree as a binary tree, thus simplifying the

routines to manipulate the tree and saving space.

17

G. LSD’S TREES

Trees are used in LSD to model the sequence of productions

chosen while editing. Given a sequence of productions:

A —► x Y z
Y —► Y t
Y —► t

how can it be represented with a tree? Productions are modeled by

making the left-hand side the parent of the elements of the

right-hand side. For example, the first production A — ► x Y z

would be the subtree shown in figure 6.

A
A\

x Y z

Figure 6. Ternary Tree for production: A — ► x Y z

Without changing its meaning, this ternary tree can be re-drawn as

the binary tree shown in figure 7. This second form is much easier

A
/
x -Y -z

Figure 7. Binary Tree for production: A — ► x Y z

to store and use as discussed. When a subtree is displayed on the

screen, an n-ary tree can be used. This is accomplished by

converting a copy of the binary tree back to its n-ary original

form and using this copy. The binary form is better for the

programmer than the n-ary form, since the concept of having two

separate sides of the production is implied by this picture.

Furthermore, if an interpretation is attached to this type of

18

subtree which states that A has been replaced in the new level

(which is lower in the picture) with the right-hand side x Y z,

then it becomes clear that displaying a series of productions will

be possible using this notation. The direction of the arrows in

the subtree preserves the order of the items in the production. A

tree showing the series of productions shown earlier can now be

drawn as in figure 8. By interpreting the subtree with the method

A
/

This is

x-Y-z
/

This is

Y-t
/

This is

t This is

the original non-terminal,

the first substitution,

the second substitution,

the final substitution.

Figure 8. Tree Showing Productions

just described, the productions can be read starting at the top of

the graph. The productions read match the productions intended.

The series of substitutions in a syntax-directed editor is

designed to produce a stream of terminals which represent a valid

program. The graph can provide this function if it is interpreted

correctly. Several observations are necessary at this point.

First, all leaves are terminals, and all other nodes are

non-terminals. Second, within any right-hand side of a production,

the order of the terminals is left to right as desired. Third, any

non-terminal node is the head of a subtree. Fourth, any such

subtree can be examined recursively using these four observations

to provide the terminals which go in the subtree's place in the

terminal stream.

19

Examining the previous example tree, starting at the second

level (the first right-hand side in the tree), the first member of

the right-hand side is the terminal x. The x is the first terminal

in the terminal stream. The next member of the production is Y, a

non-terminal, so its production (the right-hand side of the

production Y — >Y t) must be examined. The first member of the

right-hand side on the second substitution level is the

non-terminal Y, so its production must be examined. The first

member of the third substitution level is the terminal t. This t is

the second terminal in the terminal stream. No more members exist

in this production, thus we return to the previous production and

examine the next member. The next member of the production now

being examined (the second substitution) is the terminal t. This t

is the third terminal in the terminal stream. No more members

exist in this production, so we return to the first substitution

level. The terminal z becomes the last member of the token stream

giving us the stream (x, t, t, z). This process of examining the

nodes is a called a preorder traversal.

A method for constructing a tree corresponding to a series of

productions has been demonstrated. Also, a method for creating an

appropriate token stream from one of these trees has been

demonstrated. These methods form the basis of the syntax-directed

editing capability of LSD.

H. LSD>S TREE EDITING

With a tree representation of the sequence of substitutions,

it is possible to review the substitutions and even alter them. A

subtree may be deleted or moved. If a subtree is deleted, the node

20

which started the subtree is left. All nodes below this remaining

node are deleted, and no edge goes out to a lower logical level any

more. If a node is a non-terminal, and it has no outgoing edge to

a lower level (which means that no right-hand side has been

chosen), an insertion may be made of an appropriate right-hand

side. Then this lower level may be added to the graph. Figure 9

is an example of an insertion.

example
tree

result
tree

A
/
B-c— D

/
e
A

/
B » c - D

/ /
x-y e

Terminals : c,e,x,y
Non-terminals: A,B>D
Production : B — ► x y

Figure 9. Tree before and after insertion

To show more editing, suppose that in addition to D — ► e, a

production D — ► B also exists in the grammar. Then a possible

series of actions would be:

1. A deletion at node D,

2. An insertion using the D — * B production.

3. A move of the right-hand side beneath the original B to the
new B. This is done by deleting the right-hand side beneath
the original B, and then inserting this deleted subtree
beneath the new B.

The trees corresponding to this sequence are shown in figure 10.

Two types of non-terminal nodes exist. The non-terminal nodes

which have a right-hand side attached below them are expanded, and

those which have no right-hand side are unexpanded. If a tree has

21

A A A
/ / /
B-i-c-^D B—c—D B~c—D

/ / /x -y e x -y x -y B

A
/
B~c-D

A
/
B - c - D

x-y

Figure 10. Series of trees during editing

no unexpanded non-terminals, then it represents a syntactically

correct program according to the grammar. With a tree containing

no unexpanded non-terminals, the traversal method described

previously may be used to generate the stream of terminals. Since

the expansions are done with appropriate productions in the

grammar, no incorrect expansion is possible. This prevents the

introduction of syntax errors. Instead of always substituting the

left-most non-terminal on the right-hand side of the current p \, the

programmer may choose to move anywhere in the tree. Work may

continue from the new location. This allows the programmer the

ability to enter a program in a more flexible order than strictly

left to right.

LSD provides the basic operations of text editors mentioned in

section 2. A non-terminal may be replaced by an appropriate

production, which corresponds to insertion. A subtree may be

removed corresponding to deletion. A tree may be traversed to

produce a stream of terminals corresponding to saving the stream of

characters in a text editor. The concept of being at some location

in the tree and editing relative to this position is analogous to

the cursor-relative insertions and deletions in a text editor. If

the characters corresponding to each token can be generated from

22

the token, a character stream can be generated which is suitable

input for a compiler. LSD also allows moving subtrees which would

correspond to moving groups of lines in a text editor. LSD

provides these features without allowing syntax errors. If a

programmer is likely to make syntax errors, LSD is a better choice

for entering programs than a text editor.

23

II. ANATOMY Of LSD
The LSD program has a complex design because of its many

functions. This section describes the structure of LSD and its

components. First, the design goals for LSD will be discussed.

Next, the constraints placed on LSD by the decisions made in the

design phase are examined. Then the various pieces of LSD which

correspond to modules of the program, their associated

responsibilities, and their function are discussed. Later, the

relationship between these modules is shown. Finally, the way

these modules together form LSD is presented.

A. DESIGN CONSTRAINTS AND METHODOLOGY DF LSD

A syntax-directed editor was desired for teaching new

programmers how to program without the burden of memorizing the

syntax of a programming language. Since this editor was to run on

IBM PC clones, and the complexity of the program and size of the

data to be manipulated were too great for MS-DOS, IBM .OS/2 2.1 was

chosen as the target operating system for LSD. To use the lex and

yacc development tools, the language in which LSD would be

implemented would have to be C or C++.

A module is a portion of a program that performs one specific

task or set of tasks. One of the most important design

considerations for LSD was to provide modularity, since a modular

design meant the program’s pieces could be built and tested

independently. Essentially, a module is a specialized service

provider for the entire program. A module often depends upon other

modules for help performing its task. For instance, a string

module will have the responsibility of providing comparison, copy,

Figure 11. Edit Code Map

Ed
it

W
in

do
w

25

Figure 12. Parse Code Map

D
A

SD

Ed
it

W
in

do
w

26

Figure 13. Reformat Code Map

Ed
it

W
in

do
w

27

Figure 14. Showgrammar Code Map

Ed
it

W
in

do
w

28

Figure 15. Treeedit Code Map

29

creation, and destruction of strings. A text editing module will

be a higher level module which uses string modules to do its string

manipulation as part of its text editing task.

The division of labor achieved through modular construction

eases the testing burden because any change in one module does not

change any other module. A module can be perfected without

damaging any other module. Once all modules are complete, they can

be integrated to form LSD. The use of modules allows the problem of

creating a large project like LSD to be addressed with a divide and

conquer scheme. Instead of making one monolithic program to do

everything, several specialized modules are created. Each module

performs a specific task. As a last step these modules are brought

together by a control program which coordinates the various

modules’ activities.

To allow development using language-supported objects, the C++

language was chosen. Objects are simply modules of the program

which have both methods (or functions) and data, and which can be

dynamically created and destroyed. Some of the data may be made

private to the module. This means that only by using the methods

of the object can the object’s data be manipulated. This is called

encapsulation and allows the programmer to separate pieces of the

program easily. This separation is accomplished by preventing any

accidental manipulation of this private data, since only through a

valid call to a method of the object can any private data of the

object be used.

Objects were used to provide modularity on a small level. On

a larger scale, individual source files were used as modules. A

30

breakdown of the LSD program’s function was done according to which

functions had to be supported. This design methodology is known as

functional decomposition of the program into source file modules.

LSD includes a text editing module, a parse tree definition module,

a parse tree editing module, and many utility modules. Functional

decomposition was followed by an object-oriented encapsulation of

the remaining information within each file module. When two or

more copies of a module were needed, an object was used since

multiple objects with the same definition can be created.

B. SOURCE FILE MODULES

The LSD editing system has two editing modes, one for text

editing and one for tree editing. Each mode has its associated

source files, and there are also files shared by the two modes.

First the text editing mode and its files are discussed. Then the

files used by both the text and the syntax-directed editing

portions are examined. Finally, the syntax-directed editing files

are explained.

1. The Parse Module. When a user wishes to check the source

program entered using the text editor, the Parse menu bar option is

selected to call the parser into action. The parser has two jobs

to perform. First, it checks the syntax of the program to make

sure the program is valid according to the grammar. Second, the

parser builds a parse tree for use by the parse tree editor. The

parser used by LSD was created using the Abraxas PC-Yacc parser

generator. The PC-Yacc parser generator generates C code for an

LALR(l) shift-reduce parser. For this thesis the primary focus is

upon editing, not parsing. The generated parser is treated as a

31

black box. The internal function is known to be correct, the input

is a stream of tokens from the lex generated scanner, and the

output is a yes or no indicating whether the input was valid

according to the grammar. If the input was valid, a parse tree is

generated as well. The Abraxas PC-lex scanner generator was used

in a similar manner to provide the translation from the character

stream to the token stream required by the yacc parser.

Understanding the function of the parser generated for LSD

requires some background information on shift-reduce parsing. A

shift-reduce parser has a parse stack on which to place tokens, a

list of grammar productions, and a routine to fetch more tokens.

When the parser starts, it fetches a token and places it on the

parse stack. Next, the parser will examine the production lists.

The parser compares the right hand sides of all productions having

only one item to the item on the parse stack. If any of these

right-hand sides match, the token on the stack is removed, and,

instead, the left-hand side of the production in question is placed

on the stack. This step is called a reduction because the group of

items on the stack are replaced by one. Then the parser re-checks

the grammar productions to see if the item on the stack is the

right-hand side of any production again. If there is a right-hand

side in the grammar with the same item as the item on the top of

the parse stack, then the stack item is replaced as before. This

process repeats until no matching grammar production is found.

Then the parser fetches another token and places it on the stack.

This step of fetching another token is called shifting. The shift

and reduce steps led to the name shift-reduce parser.

32

The parser then continues examining the grammar for a

right-hand side which matches what is on top of the stack. If a

match is found, a reduction occurs, and the search for matches

continues. Otherwise a shift occurs, and the search for matches

re-starts.

What happens when there is a choice of shifting or reducing?

This could happen with the example grammar and input string shown

in figure 16. Two different sequences of shifts and reductions are

S — ♦ a
S — + a A
A — ► b A
A — ♦ c

Sample Input=“abc$”

Figure 16. Shift-Reduce Example Grammar

examined to show how using one set of productions and input two

different results can be obtained. In case 1, as shown in

figure 17, a was reduced on the second step to S using the S— >a

production. This leads to an error condition. In case 2, shown in

stack input
abc$

action production

a bc$ shift
S reduce S— »a
Sb c$ shift
Sbc $ shift
Sbc$
result: Error!

shift

Figure 17. Shift-Reduce Example Case 1

33

figure 18, choosing to shift instead of reduce on the second step

the results in an accept condition.

stack input
abc$

action production

a bc$ shift
ab c$ shift
abc $ shift
abA $ reduce A— >c
aA $ reduce A— >b A
S $ reduce S— >a A
S$
result: Accept!

shift

Figure 18. Shift-Reduce Example Case 2

How can an algorithm determine whether to shift or reduce in

this situation? This is a critical question because it has been

shown that making the wrong choice can lead to an error condition

even with an input which is correct according to the grammar. One

method is to “look ahead” and see what the next token will be.

This means that after a had been shifted onto the stack, the parser

would “look ahead” in the input and see the token b. The parser

can then realize that it must choose to shift. Why? If the parser

reduces using the S— ►a production the only valid symbol which can

come next is the $ symbol.

This process continues until one of three conditions occurs:

1. A match is made with the start symbol of the grammar, and no
more terminals exist to shift except a lone $ symbol.

2. A match is made with the start symbol of the grammar, but more
unshifted terminals besides $ exist. 3

3. Input is exhausted and condition 1 is not met.

34

The first case is indicative of a program which is valid according

to the grammar, and the other two cases mean that an error has

occurred.

Different methods of examining the grammar for appropriate

right-hand sides exist. These methods distinguish the various

types of shift-reduce parsers. For efficiency reasons, LSD uses an

LALR(l) method which performs the parse in a logically equivalent

but different manner than that just discussed. The reader is

referred to chapter 4 of the “dragon book”3 for a more detailed

explanation of the exact method used by yacc generated parsers.

Shift-reduce parsing is a type of parsing known as bottom-up

parsing. The name bottom-up stems from the way the parse is done.

The first matches made are of terminals which are leaves of a parse

tree. The information left on the stack is one step closer to the

root of the parse tree. This reduction process continues until

only the root of the tree is left. The parse tree is constructed

from the leaves to the root, or bottom-up, since the leaves are

traditionally drawn below the root, contrary to the names leaf and

root.

The file paxser.y is the input to the parser generator. The

yacc parser generator input consists of a definition of the

terminals, the non-terminals, the productions of the grammar, and

semantic routines. Each item on the stack corresponds to either a

non-terminal or a terminal. The stack items may contain additional

information called attributes. Attached to each production is some

C language code, called a semantic routine. This semantic routine

is to be performed when a reduction occurs for the production.

35

Since the stack is changed after the semantic routine is executed,

the semantic routine may access the elements on the stack which

correspond to the right-hand side members of the production. This

information, along with whatever else is done in the semantic

routine, is used to create information for the new left-hand side

item placed on the stack as a result of the reduction. Building

attributes of the non-terminal being placed on the stack is called

synthesizing an attribute. Synthesized attributes allow

information to be passed from the leaves up through the parse tree

as it is constructed. With yacc parsers, no explicit tree is

automatically constructed, but the sequence of reductions is

performed, and the synthesized attributes can flow up by their

placement on the stack. Each reduction can preserve information

from items on the stack so the information can be passed up to the

next reduction.

In LSD the semantic routines attached to the productions in

the yacc input are used to create a parse tree made of objects.

The objects used are homogeneous. Fields within each object hold

whatever information is unique to that object. These objects form

the nodes of the parse tree. The section “LSD's Trees” in the

introduction explains the structure of the parse tree. The use of

a bottom-up parser in LSD means that the tree must be built from

the leaves to the root instead of from the root to the leaves. How

is this done? The nodes are constructed within the semantic

routines. One attribute in the parse stack element being created

is a pointer to a node. This attribute is updated to point to the

new tree node. Because every parse stack element may have one of

37

WritelnStatement
/

Something2

Figure 19. WritelnStatement Tree

LSD's parse trees are built from the leaves to the nodes.

This is accomplished by building the tree that represents a node

when that node is created during the reduction by the parser. The

semantic routine that accompanies the reduction is specified in the

parser.y yacc input file. This routine will first create a

TREETHING object to store the node’s information in. Then text

showing the production matched is added to the list of text to

display in the parse results window. Next any compiler directives

from the terminals in the production are added to the node’s

compiler directive list. Any information from terminals not

inferrable from the grammar is stored in the TREETHING object.

Then the trees representing the nodes from the non-terminals in the

right-hand side of the production being matched are added to the

linked list of right-hand side items in the TREETHING object. This

step effectively builds the subtree of the TREETHING object for the

production being matched.

At this point the TREETHING object holding the subtree

representing the production is complete. The YYSTYPE stack object

pushed onto the stack to represent the left-hand side of the

production which was matched and is being reduced has a pointer to

hold the address of this newly created TREETHING object. When this

non-terminal is a member of the right-hand side of some production

36

these nodes, the attributes can be passed up to the next reduction,

or level of the tree. This allows some level X to get to the nodes

created at level X+l by examining the parse stack elements'

pointers to node values. This information is used to make the

branch headed by the node X. Then the level X-l will have the

branch headed by X, and all the other branches from level X, to

build the branch at level X-l. This process continues until the

root is reached, at which point the entire tree is finished and

attached to the root.

The objects used for the parse stack are YYSTYPE objects and

are defined in the yystype.hpp file. The methods for the objects

in this file are in yystype.cpp. The parse tree node objects are

TREETHING objects and they are also defined in the yystype.hpp and

yystype.cpp f iles.

LSD’s parse trees only store information which is not

available in the grammar. For instance, given a production:

WritelnStatement — ► W R I T E L N (Something2) .

the right-hand side which is stored in the parse tree will have

only one item, namely Something2. The three terminal items,

‘W R I T E L N ’, ‘(’, and ‘)’, are inferrable from the grammar and thus

do not need to be saved. This reduces the memory requirements and

the time to traverse the tree for source regeneration. As

discussed in the introduction to this thesis, LSD’s trees are

stored using linked lists to hold pointers to the right-hand side

elements of the production. Since only the non-terminals and

non-inferrable terminals are stored, the above production would be

stored as in figure 19.

38

p, it will be used to build the subtree representing the left-hand

side non-terminal of the production p.

An example should make the bottom-up tree building process

clear. The parsing of a simple writeln statement will be used to

show the steps. In figures 20 and 21 the leftmost column has the

source line with a special caret symbol to show how much of the

input source has been processed. The next column shows the stack

contents, with the top of stack being towards the top of the page.

Trees under construction are shown to the right of the stack. An

arrow points from any stack element to its associated tree if the

stack element has one. Finally, the grammar statements used for

any reductions are shown in the rightmost column. The grammar

being used is the actual grammar for LSD which is in the appendix.

For the three non-terminals which are not really stored in the

tree, the examples show where they would go logically and enclose

them in dashed outline boxes and connect them with dotted lines

instead of solid lines. The first three items seen in the input

are placed on the stack since no reductions can be made. This

leaves the caret marker just before the closing parenthesis. This

right parenthesis is the next token to be read, and is thus the

lookahead. When the parser sees this lookahead, it is able to know

that a reduction is possible using the grammar production:

UnsignedConstant — ► Q S T R IN G

The reduction will have a tree associated with it. The tree is

shown in figure 20. The dotted line from the UnsignedConstant on

the stack shows that there is a pointer in the stack element to the

39

writelnA(‘ h i>)

writoln (A’ h r)

w rits In

(
writs In

In the Isft column ths A marks tits position in i t s scanned input. The ascond
column contains tha paras slack Ths last column Is tlia production being
matched for ths reduction In between lies ths tree which is being built
from Lhs bottom up.

w r ii* ln ('h rA) Q S T R IN O
l
writs In

w r ite ln f'h l'A) UnsignedConstant ' ^ UnsignedConstant
1

UnsignedConstant ■ Q S T R IN O

writs In
1

Q S T R IN O

w r i » ln (’ hl' Factor *'
f

* ** Factor
i

Factor UnsignedConstant

w rit* in
\

UnsignedConstant
Il

Q S T R IN O

WTiteln(*hPA) Term
/

^ Term
1

Term ^ — Factor

\
writs In

l
Factor

1
1

UnsignedConstant

Q S T R IN O

w r i i* ln ('h fA) S tm p 1* Expression Sim pie Ex press ion
1

SimplsExpression w — Term

i
writs In

1
Term

Factor

Unsigned Constant

Q S T R IN O

Figure 20. Writeln Example Part 1

tree. Every non-terminal in the stack will have an associated

tree.

In the next step, the reduction

Factor — ♦ UnsignedConstant

is used. Again, this is because with a lookahead of l)’ the parser

knows a reduction must occur. The UnsignedConstant element on the

stack is popped. The tree associated with UnsignedConstant is then

placed into the new node created for Factor. Finally the new tree

is added to the Factor stack element and the element is pushed onto

the stack.

Similar actions take place for the reductions for the

productions:

40

Term — * Factor
SimpleExpression — ♦ Term,
Expression — ► SimpleExpression

However, the action appears different for the

Moduhfires — ♦ Epsilon

production shown in figure 21. What really happens is that a

second tree is constructed to represent the new production since it

is unrelated to the first. This poses no problem since the stack

element for Moduhfires is able to point to the new tree. Since

Exjjression is not popped the tree associated with it is still

pointed to by the stack element for Expression. The next reduction

by

Something2 — * Expression Moduhfires

pops both the Expression and Moduhfires off of the parse stack (since

they are the right-hand side of the production) and it attaches the

two trees associated with them to the new node created for

Soniething2 and then pushes the Something2 stack element with its

pointer to the new tree.

Finally a reduction by the production

WritelnStatement — + W R I T E L N (Something2)

occurs. Notice the dashed boxes around ‘W R I T E L N 1, ‘(’, and ‘)\

These right-hand side items axe inferrable from the grammar and so

they do not really need to be stored in the tree. Their logical

position is shown, and when the source is regenerated grammar

stored in the mygrammar[] array. This is an array of productions

and it includes all the terminals which are not really stored in

the tree.

41

wriietn('M,A)

wrilelnOhi'*)

writeln('hi,A)

writelnChlT

Expression * ExproLUon
t 1
writeln SimpleEipftuMX)

Term

I
Factor
1

UniignedConstanl
1

QSTRINO

Moduhfires ̂Expression
Exipcasion 1(SirnpieExpresaton
writeln 1

Term

1
Factor

!
UruigncdConilirt

1
QSTRING

Someth in$2
t

* Something^
i
writeln

l
Expression

Sirr^ieExprcssion

1
Term

1
Factor
1

UryignedConiunti
QSTRING

WrilebiSuaetnml * WriteteSuacmenl

Expression —— SimpleFjtpreision

■ Moduhfires Moduhfuei *— Epsilon

Something2 ■"— Expression Moduhfires

Moduhfires

Epsilon

WrilelnSutemenl — writeln (Something)

QSTRINO

Figure 21. Writeln Example Part 2

42

2. The nt.cpp Module. LSD's grammar information exists in two

places in the source code. The parser.y yacc input file has a

complete copy of the grammar in terms of logical symbols listed in

the '/.token <> and '/.type <> statements. The '/.token <> symbols are

exported to yytab.hpp as part of the yacc processing. The '/.type <>

statements are for non-terminals of the grammar that is listed in

the parser.y file. This copy of the grammar is not usable by the

rest of LSD however.

The nt.cpp file has another copy of the grammar stored in the

mygrammarG array. This is an array of production objects. The

production objects are defined in the productn.cpp and productn.hpp

files. The production object has a field tag to store the unique

production tag. This tag is used to differentiate between two

productions with the same left hand side non-terminal. The

production object also contains a field lhs to store the left hand

side non-terminal number. There is also an array rhs[] to hold the

right hand side item numbers. Negative numbers are non-terminals,

positive numbers are terminals. The kount field holds the number

of right hand side elements. Two additional arrays, tabinfoG and

rhscodeG exist to hold formatting information used when source is

created from a tree.

What integers are used for the lhs field and the rhsG array?

Since the non-terminals from parser.y are not usable, a separate

array slugarrayG of character pointers is used to hold the string

names of the non-terminals. Whenever any part of LSD needs to work

with the grammar the string names of non-terminals are used instead

of integers so that the code is easier to read. Two functions

43

exist to work with slugarrayG . The ntnameO function converts an

integer (which would be stored in the mygrammarG production

objects) to a string name. The ntnumO function converts a string

name to a number.

The terminals used for the lhs field and the rhs [] array of

the production objects are the same used by the parser.y file.

However, just as the non-terminals are referred to by name for the

sake of maintainability and readability, the terminals are also

referred to by name. The keywords.instance[] array of keyword

objects is used to hold this information. The keyword objects are

described in the keyword.cpp and keyword.hpp files. They have two

fields, one for the name and one for the integer value. The

keyword.initQ function is called to allocate space for the array

and load it when LSD starts, and when LSD finishes the

keyword_done() function is called to free the memory. Two functions

are used to access this array. The keywordO function converts a

string to the integer value used by the grammar, and the

figureitoutlaterO function converts an integer value to the string

used by the rest of the LSD program.

One additional lookup array exists to mirror the slugarrayG

array. The badwordsG array holds the string names of the

terminals which are not supported by LSD but which are in the

Borland Turbo Pascal language. This array is accessed using the

isbadwordO function which returns 1 if the string passed in is in

the badwordsG array, and 0 if the string is not.

The structure used to hold the grammar, the array of

production objects called mygrammarG, has been discussed.

44

However, it remains to be seen how mygrammar[] is loaded. The

fire_it_up() function is called to load the grammar when LSD is

started. The fire_it_up() function is a series of calls to the

addprodO function. The addprod takes the tag, the left hand side

string name, an integer value for the count of right hand side

items, and a comma delimited list of the right hand side items'

string names. These names are the terminals in keywords.instanceG

and the non-terminals in slugarrayG .

The addprodO function uses the ability of C++ to have

functions with variable numbers of parameters so that one function

can be used for all productions. If the calls to addprodO are

carefully examined you will notice that some of the terminals and

non-terminals have special prefix characters. These consist of the

tabbing codes and the codes to determine when a newline should

occur when source is created from a parse tree. This information

is used in the emitO method of the TREETHING objects and is the

source of the information for the tabinfoG and rhscodeG arrays in

the production objects.

The fire_it_up() function allows the grammar to be loaded

quickly and yet it is still readable for easy maintenance. Since

everything is done with the names of the terminals and

non-terminals, a change of a name is easily accomplished. Changes

of the grammar which are necessary when parser.y is changed are

also easy to make.

The nt.cpp file contains other functions used by LSD to

interface with the grammar system. The dump_grammar2() function is

used by lsdmt.cpp to create the list of grammar productions used

45

for the grammar window. The whichprodsO function is used by

graftree.cpp to generate the pick list of productions for node

insertions of non-terminals. This function fills the gramchoice[]

array with all the productions with a given non-terminal for the

left hand side. The number of productions available is stored in

gramcount. This function is called in the pdialog_func() dialog

function in the graftree.cpp file.

3. Other Files.

a. The string Object. The string object is described in

string.hpp and string.cpp. This object is used to store the text

of the lines of text for LSD. The string object has a maximum and a

length as well as the actual text. All the data is private and

methods are used to manipulate the data.

b. The aline Object. The aline object is described in aline.hpp

and aline.cpp. This object is used to store one line of text for

LSD. The aline object has a string object, a next pointer and a

previous pointer. A linked list of aline objects is used to hold

the text buffers of LSD for the text editing, the grammar window,

and the results window. A text buffer in LSD is a linked list of

aline objects.

c. The fileio Module. The fileio module has two functions for

accessing files. The load_file() function is used to read a file on

disk into memory as a linked list of aline objects. The

unload_fileas() function is used to write a file on disk from a

linked list of aline objects as a text file.

d. The comment-item Object. The comment.item object is described

in comment.hpp and comment.cpp. This object is used to store the

46

text of the compiler directives for LSD. The comment-item object has

a character array to store the text and a next pointer. Each

TREETHING object may have a linked list of comment-item objects for

the compiler directives which occurred. The comment-item objects

are built in the parser.y yacc routine yyparseO. Each production

which has a terminal checks to see if the cd field of the YYSTYPE

object is NULL. If it is not NULL, then a comment-item object is

created to hold the information from the cd field and the newly

created comment-item object is added to the linked list of

comment-item objects headed by the compiler-directive field of the

TREETHING object which corresponds to the current production being

matched.

e. The utils Module. The utils.hpp and utils.cpp files contain

the information for the utils module of LSD. The routines are

bomb(), upshiftO, genidO, genstampO, get_default_font() and

fixcolorsQ. The bombQ function takes an error message and then

puts up a message box with that error and then halts the program.

The upshiftO function will change all the letters in a character

array to upper case. This is used before comparisons so that

case-insensitive equivalence can be done. The genidO function

will change the first letter in a character array to a uppercase

letter and all the rest of the letters will be lower case. This is

used by the emitO method of the TREETHING object during recreation

of source from a tree. The genstampO function is used by the

emit.prepO function in the yystype. cpp file to add a date and time

stamp to regenerated source files. The fixcolorsO function is

used in lsdmt.cpp and graftree.cpp to force a white background for

47

the windows. The get.default_font() function is used by lsdmt.cpp

and rwindow.cpp to query PM to find a default fixed-pitch font for

use in the windows of LSD.

f. The Treething Object. The TREETHING object is described in the

yystype.hpp and yystype.cpp files. The TREETHING object has six

pointers to other TREETHING objects. The rnext and rprev pointers

are the recovery chain pointers so that a delete of the TREETHING

objects allocated can be done even if the tree is not complete and

no common root exists for the allocated subtrees. This is used by

the yypuntQ function in the yaccpar.sk file used by yacc to create

the parser. The next and prev pointers point to the next and

previous elements in the production of which the TREETHING object

having these pointers is in the right hand side. The rhs pointer

points to the linked list of TREETHING objects representing the

right-hand side of the TREETHING object. The lhs pointer is used

to point to the left hand side TREETHING for this TREETHING object.

The idname field of the TREETHING object is used to hold the

text of a terminal which is not inferrable from the grammar, such

as an identifier. One constraint is that no production may have

two such fields, but this was not a problem for the grammar LSD

uses. The newprod field of the TREETHING object is used to store

the unique tag for the production which is used to differentiate

productions in the mygrammarG array in the nt.cpp file. The

expanded field of the TREETHING object holds TROO if the right hand

side exists, and FALLS if it does not. The TROO and FALLS

constants are defined in the constants.hpp file. The expanded

field is used by the graftree.hpp file during creation of new nodes

48

on the tree since for a new production which has non-terminals on

the right-hand side no right-hand side can exist at the time the

TREETHING node is being created, and some way to insure that no

attempt to use the rhs pointer must exist to prevent unmitigated

disaster and destruction as the program wantonly steps all over

memory in an attempt to walk a tree that is not there.

The emitO method of the TREETHING object is used to recreate

source from a tree. The whoamiO method is used by parser.y to put

the matched statements into the results window of the lsdmt.cpp

file. The fixitQ routine is used by the yypuntO function in the

yaccpar.sk file to NULL out the pointers to other tree elements

before deletion through the recover chain. This prevents the

destructor from trying to recurse through the tree (which probably

is not there since the deallocation will be in allocation order,

not tree order). The other methods of TREETHING are

self-explanatory and are used to access the fields of the TREETHING

object.

g. The YYSTYPE Object. The YYSTYPE objects are described in the

yystype.hpp and yystype.cpp files. They are used by the scanner to

transmit the information about tokens to the parser. The parse

stack used by LSD is actually a stack of YYSTYPE objects. This is

not how yacc usually works. Normally yacc uses a stack of

integers, but simply knowing which token has been seen is not

enough for the LSD program. Using the YYSTYPE objects allows

including all necessary information in a neat package.

The YYSTYPE object has lineno and colno fields to hold the

line and column numbers upon which the token starts. This

49

information is used in the errorlib.cpp file when an error occurs

to let the user know where the error is in the text buffer. The

tokenum field is used to hold the integer value of the token. It

will be one of the constants from the yytab.hpp file created by the

yacc processing of parser.y and is one of the constants described

on one of the '/.token <> lines.

The cd field was described earlier and holds the compiler

directive which immediately preceded the token if there was one.

The toketext field is used to hold the actual string which

comprises the token from the text buffer.

The anode field is used by the parser.y file to pass the

synthetic attribute of the subtree for a given non-terminal up the

tree during the parse so that the tree can be built bottom-up. See

the APPROPRIATE SECTION. The whichone field is used by the

scanner.1 file to signal whether the real, integer, cmd, or strang

field is appropriate. These fields are used to hold the values of

literals which are not inferrable from the grammar,

h. The infotable Object. The infotable object is described in the

infotabl.hpp and infotabl.cpp files. The infotable object is used

by graftree.cpp to hold the information for the currently displayed

production's subtree elements. The name field stores the terminal

or non-terminal name. The width field stores the length of the

name field. The number field holds the terminal or non-terminal

number. A negative number means this is a non-terminal number.

The location[] array holds the four corners of the bounding box for

the text on the window in window coordinates. The line[] array

holds the (xl,yl,x2,y2) coordinates of the line from the left hand

50

side element to this element. It is not used for the left hand

side element. The zpanded field is TROO if the right hand side of

this item exists and FALLS if the right hand side of this item does

not. It is used for non-terminals and parallels the expanded field

of the TREETHING object. The node pointer is a pointer to the node

this infotable object is describing. The up pointer is a pointer

to the left hand side node. The reset() method is used to clear

out the information in an infotable object so the object can be

re-used.

i. The graftree Module. The graftree module is responsible for

the tree editing portion of LSD. The geditO function is called by

lsdmt.cpp in response to the LSD_TREE_EDIT message. The geditO

function creates a standard frame window using window_func3() as the

message handler. The window_func3() function performs the usual PM

overhead work for choosing fonts and setting colors and by calling

the PM_prep() function. Next the showitO function is called to

draw the current subtree, which will be the one off of the root.

As the last step of initializing the window messages are sent to

activate the appropriate menu choices.

The window_func3() takes care of keyboard, menu, and mouse

input as described in the user manual. The interesting parts are

the actual insertion, deletion, hook activities, and traversing of

nodes. The treedeleteO function is called to delete a subtree.

The treeinsertO function is called to insert a subtree. The

move_to_hookl() and move_from_hookl 0 functions are used for

accessing hookl. The move_to_hook2() and move_from_hook2() are used

for accessing hook2. To traverse the tree the treerightQ,

51

treeleftO, treeupO, and treedownC) functions are used. These

functions all act on the current node which is the node

corresponding to the element of the it[] array of infotable objects

at position whichhot. The current node in the tree is pointed to

by current-node.

For the traversal options that remain within a production, the

delete option, and the move to hook options, only whichhot is

changed and then showitO is called to redraw the screen. For the

other options the it [] array is recalculated and showitO is called

to draw the tree. For window_func3(), PM_prep() is called for

preparing to redraw, and one of the functions called is

showit_prep(). The showit.prepO function will recalculate the it CD

array using the node passed in as the left hand side position in

the tree. The hook, deletion, and insertion functions modify it[]

directly.

The treeinsertO function will call an application modal

dialog box which has the pdialog-funcO window procedure. The

which_prods() function from the nt.cpp file is called to fill the

gramchoice[] array and the WM-INITDLG message handling will take

this information and display the productions available in the

dialog list box. The user can either choose a production or

cancel. If cancel is chosen the treeinsertO function does nothing

more. Otherwise the insertionO function is called to perform the

actual tree modification creating a new right hand side according

to the production chosen. The current-node is set to point to the

new left hand side and the tree is redrawn.

52

The treedeleteQ function will call the deletionO function to

perform the actual tree modification deleting the appropriate right

hand side's subtree.

The push() and popO routines are used to store the right hand

side position for productions which are higher up in the tree than

the current production. This allows LSD to return the user to the

appropriate right hand side item when the treeupO function is

called to go up one level of the tree.

Several other functions exist in graftree.cpp to perform

common tasks. These include do_non_terminal() and do.terminalO

which fill the name field of the it[] array elements. The

mouse_adjust() function is used to decide whether to move the

whichhot position in response to a mouse click or not. The

movemeO function changes the whichhot and redraws only the two

items’ changed boxes. This is much faster than calling showitO to

redraw the whole production. The showanodeO function is used to

draw one element of the it[] array.

j. The rwindow Module. The rwindow.cpp and rwindow.hpp files

contain the functions used for the results window that are not

particular to either the parse results or the grammar display.

These include the window procedure window.func2(), its support

functions, and the functions for creating the buffer to be

displayed in the results window.

The support functions are local to this module and include all

functions which are used to scroll the window. These functions and

their associated tasks are shown in table I. The functions for

creating the buffer to displayed are externally visible and they

53

Table I. Support functions for rwindow module

Name Task
top2() Move to top of buffer
bottom2() Move to bottom of buffer
home2() Move to column 0 of buffer
end2() Move to column after last letter of buffer
redo_hscroll_bar2() Adjust horizontal scroll bar
redo_vscroll_bar2() Adjust vertical scroll bar
redo_screen2() Redraw window

are used by nt.cpp and parser.y files to create the grammar display

and parse results respectively. These functions and their

associated task are shown in table II. The rwindow module uses an

Table II. Buffer functions for rwindow module

Name Task
nuke_status_linesO Eliminate buffer
init.status.lines() Initialize buffer
add_status_line() Add 1 line to buffer

in first-in, first-added order
add_sorted_status_line() Add 1 line to buffer

in ascending alphabetical order

identical text buffer to the one used by the lsdmt module for

holding the pascal source. The text buffer is a linked list of

aline objects with pfirstline as the pointer to the head of the

list. The only tricky code in the window_func() window procedure is

for managing the separate thread for the case when a parse is being

done. The overall structure is described in the OS/2 Information

section.

k. The parseit Module. The paxseit.cpp and parseit.hpp files

contain the information about the parseit() function. The

54

parseitO function is called by the window.func() window procedure

in lsdmt.cpp to parse the source in the text editing buffer. The

parseitO function creates a results window after setting the

showparse flag to 1. This lets the window_func2() window procedure

in rwindow.cpp know it should be a parse results window.

l. The sgrammar Module. The sgrammar.cpp and sgrammar.hpp files

contain the information about the sgrammarO function. The

sgrammar() function is called by the window_funcO window procedure

in lsdmt.cpp to show the grammar used by LSD. The sgrammar0

function creates a results window after setting the showparse flag

to 0. This lets the window_func2() window procedure in rwindow.cpp

know it should be a grammar results window.

m. The lsdmt Module. The lsdmt.cpp and lsdmt.hpp files contain

the code for the main() function of LSD. The lsdmt module contains

the code for the text editing portion of LSD as well. The charts

in table III and table IV show the functions in the lsdmt.cpp file

and their associated tasks. The window_func() window procedure of

the hand_frame window is the main event handling routine of LSD.

This frame window is the text editing window. The parse window,

the grammar window, and the tree edit window are all invoked by

window_func() and upon completion of any of these three windows

control returns to the window_func() function.

C. OS/2 INFORMATION

IBM’s OS/2 2.1 operating system provides many of the services

needed for LSD. These include windowing routines, timer services,

thread routines, semaphores, and the message handling system.

Since these capabilities are part of the operating system, I was

55

Table III. Functions he lsdir dule, part 1

Name "T.
mainO H, ogram
start.busyjnodeO Ct icon,m: itle bar

ar e edit ow read only
end_busyjnode() Ur art-bu: ie()
recalcO Re late v. ■ limits
title_bar() Dr it vi itle bar
move_cursor() Me 'sor a:.c date title bar
redoJiscroll.barO Up iorizoiit,. scroll bar
redo_vscroll.bar() Up- erticii roll bar
redo_screen() Re dit fra.’ window
window_func() Wi. roced. r*: or edit window
jump_dialog-f unc() Di; indow nr edure for

ust ump tc 1. e dialog
about_dialog_func() Dia indow pr* edure for

use oout dial S
nuke_f ileO El it edit bu" ter
nev_file() Init e edit t ffer
bs() Proc ackspace Key
delcharO Proc elete ke
left_arrow() Proce eft arrow key
right_arrow() Proce ight arrow key
up_arrow() Proce; arrow key
down-arrow0 Proces •wn arrow key

56

Table IV. Functions in the lsdmt module, part 2

Name Task |
page.upO Process page up key
page.down() Process page down key
hscrollO Do horizontal scrolling for edit window
atextletterO Process letter key
home() Process home key
endC) Process end key
enterO Process enter key
do_the_parse() Function to do the thread for

parsing the text buffer to create
the parse tree

do_the_regen() Function do do the thread for
regenerating the text buffer from
the parse tree

add_a_line() Function to add one line of text
to the edit buffer

delete_line() Function to delete one line of text
from the edit buffer

insert_line() Function to insert one line of text
into the edit buffer

bottomO Move to bottom of buffer
top() Move to top of buffer
AddAboutToSystemMenu() Add choice to system menu for LSD

to show the about box

57

able to concentrate on the algorithms necessary to solve the

problem instead of spending a great deal of time with the

interface. With multi-threading I was able to improve LSD’s

responsiveness to the user.

OS/2 Presentation Manager (PM) is an event driven message

based system. When an event occurs, such as a key pressed on the

keyboard, or a move of the mouse, this causes PM to generate a

message and route it to whichever window is appropriate. If no

activity occurs to generate messages for a particular window, the

thread of the process which is the creator of the window will not

be sent any messages and will be idle.

Each window in PM has an associated window procedure. This

window procedure is the part of the code that receives the messages

from PM about the activities in that window. A user’s application

is built as a message handler and the operating system routes all

messages which the application should get to the window procedure.

The window procedure then does whatever is necessary to process the

messages.

LSD uses a frame window like the one shown in figure 22. In a

frame window, the client area is the responsibility of the the

window procedure. The other areas such as the scroll bars and the

title bar are handled by PM. The information which results from

events in those areas of the frame window is passed to the window

handling procedure in the form of messages. The window procedure

can also send messages to those windows. For instance, when the

user moves the tab in the scroll bar, this causes PM to send a

message to the window procedure with information about the new

58

Figure 22. Frame Window

location of the the scroll bar tab. If the application redraws the

window it can send a message to the frame window to change the

title bar or reposition the scroll bar tab.

The window procedure has roughly 0.1 seconds to process a

message and return. If the window procedure takes longer than this

then PM may decide that the application is dead (not responding to

messages) and terminate the application. This is done in order to

protect the system message queue. If an application fails to

process messages then the process message queue could fill to

capacity. This means that PM cannot put any more messages for the

application into the application message queue. This would in turn

cause the system message queue to fill to capacity and crash PM.

How can an application perform any message response that takes

59

longer than 0.1 seconds? OS/2 provides a solution to this problem

by providing support for threads.

A thread is a path of execution through an address space.

Traditional operating systems support multiple processes running,

with each process having exactly one thread. A multi-threaded

system supports more than one thread of execution running in a

process' address space. OS/2 is multi-threaded and supports the

creation of multi-threaded applications. All of the process'

global data will be visible by all the threads within the process.

This means there could be a problem if two threads are trying to

change global data simultaneously. Successful multi-threaded

programming requires the programmer to insure that resource access

is synchronized between threads as part of the program design.

If a message will take more time to handle than the 0.1

seconds, then an application should start another thread to do the

work and then the thread which handles the message can return.

This poses an interesting problem, however. What if the thread

started makes changes that requires updating the window? The

window procedure needs to know when the thread is done and then it

can do the screen update. Another solution is to have the thread

do the screen update, but then the window procedure will still need

to know this is occurring so that it does not try to update the

screen at the same time.

Semaphores can be used to synchronize the access to a shared

resource, or to signal that some event has happened or needs to

happen. OS/2 provides operating system support for semaphores.

60

M u n Thread W ork Thread

Figure 23. Asynchronous Work Thread Usage

This, combined with the timer services also provided by OS/2,

allows easy synchronization of threads.

For the LSD program, semaphores are used to signal the window

procedure that a thread has completed its processing. The general

structure of the code required to do an asynchronous work thread is

show in figure 23. The OS/2 Presentation Manager (PM) turns all

keyboard and mouse actions into messages and routes them to the

proper windows. PM will also route messages for an application.

All messages for an application go into that process's own message

queue to be handled by the associated window procedure. An

application may have more than one window procedure, each with its

own message queue, but this discussion only covers what happens

when there is a single application message queue. Messages get put

61

into the queue by PM and the priority assigned to different types

of messages will determine what the next message to be seen by the

window procedure will be. If no messages exist in the queue, the

window procedure is idle. When messages exist, the window

procedure will be given messages one at a time to process, and the

window procedure will have 0.1 seconds to finish and return control

to the message dispatcher.

In figure 23 three types of messages are shown: Quickly

Handled Messages, Slowly Handled Messages, and Timer Messages. For

actions which take less than 0.1 seconds, the message is a Quickly

Handled Message and this will result in a function call, which will

perform the action and return and the window procedure will return

control to the message dispatcher. For actions which may take more

than 0.1 seconds, a thread launcher function is called. The thread

launcher will start a timer and then start the work thread. The

timer function tells PM to send a special timer message to the

window procedure every so many milliseconds. When the timer

message arrives, the Timer handler code is executed. This will

check to see if the semaphore is set. If the semaphore is set,

then the work thread is done. The timer handler will then turn off

the timer and return control to PM. If the semaphore is not set,

then nothing is done and control is returned to PM. The semaphore

is used to signal the main thread’s window procedure that the work

thread is finished. When the work thread starts it resets the

semaphore and does its work and only sets the semaphore as the last

step.

62

Just as PM supports multiple message queues per process, it

also supports multiple timers and multiple distinct semaphores.

LSD uses two different semaphores and two different timers. One

semaphore/timer combination is for the parse thread, and the other

semaphore/timer combination is used for the reformat.

63

III. USER MANUAL FOR LSD

A. INTRODUCTION

To start LSD, simply type LSDMT. When the program starts an

information box will be displayed. Click on the enter or press the

enter key. Now the text editing window will appear. It will have

a title bar which says (0,0,l)"New File" Insert Mode. The numbers

are row, column, and line count for the file. The rows and columns

start on zero, not one. There will also be two scroll bars, one

for horizontal movement and another for vertical movement.

Initially the vertical movement scroll bar will not function

since all the lines of the new file will fit in the window. A menu

bar is just below the title bar. The menu bar has choices for File,

Edit Text, Tree Edit, Reformat, Parse, Grammar, Font, and Help.

Some of these items are highlighted and some are not. The

highlighted menu items are currently available, and the

non-highlighted menu items cannot be used. The appearance of the

highlighting will depend upon the desktop configuration. Only five

of the choices are initially available, File, Edit Text, Grammar,

Font, and Help.

To select a menu bar item the user may either move the mouse

pointer over the item and click the mouse's left button, or you may

depress the alt key and the underlined letter of the menu choice.

To load a file into LSD for processing, use the File menu bar

choice. This will bring down a pull down menu and the user can

again make choices either by using the mouse or the alt-key

combinations. If a menu item has one letter underlined, this is an

accelerator key. This allows the user to type in that letter while

64

depressing the alt key to select that menu choice. This is known

as an alt-key combination.

Initially there exists a choice of Open, SaveAs, or Quit.

Close and Save make no sense if no file is loaded, so they are

unavailable. Once the user chooses Open, a file dialog box

appears. The user can either type in the filename in the Open

filename area and then click on the O k (or hit return), or the user

can search around the disk using the advanced file dialog features.

The file dialog is a standard feature of OS/2 2.1 and is described

in the OS/2 manuals.

Once a file has been loaded, the Parse menu bar option

becomes available. Also, now that the file is loaded, you may edit

the text. The text editing commands will be discussed in a later

section. To process the text and generate a parse tree, choose the

Parse option. This will start the parse engine. When the source

which is in the text editing buffer has been parsed, the results

are shown in a parse window on the screen.

If an error occurs during the parse, the title bar of the

parse window will be ‘Bad Parse', otherwise the title bar will be

'Good Parse’. The scroll bars (or the arrow keys) may be used to

scroll the text in the parse window so that the entire file may be

seen. The text displayed in the parse window is a list of the

productions matched during the parse. If the parse was bad, the

error message is displayed after the last matched production.

There is a menu bar on the parse window which will be

discussed in the parse window section. The important choice now is

the Quit option, which can be selected with the mouse, the alt-Q

65

key, or the E S C key. This will close the window and return to the

text editing window. If the parse- was bad, the source needs to be

fixed using the text editing window.

Once a good parse occurs, the last two text editing window

menu bar choices become available. These are Tree Edit and

Reformat. The Reformat option will generate new source text from

the parse tree created during the parse step. This text will

replace the text in the editing window. The file is unchanged,

however. To save the text in the edit window at any time, the user

can choose the File option, then the Save option of the pull down

menu. To save it to a new file, the user can choose the SaveAs

option instead of the Save option.

The Tree Edit option is the most complicated, but also the

most powerful. It will start the tree edit window which allows

direct editing of the parse tree which was created during the parse

step. The tree editor is discussed in detail in a later section,

but some of its features will be described now.

The tree editor shows one production in the tree, with the

left-hand side at the top of the window and the right-hand side

elements across the bottom of the window. These items are either

terminals or non-terminals (the left-hand side is obviously always

a non-terminal). The current item is highlighted and has white

text on a black background. To change the current item the user

can use the mouse and position the cursor over the item to make the

current item and then click the left button once. All editing in

the tree edit window occurs on the current item.

66

If the current item is not the root of the tree, the user can

double-click on the left-hand hand side item. This will move the

current item up one level of the tree and the production which the

left-hand side is in will be shown. The current item will be the

right-hand side element which is really the left-hand side item

from the production being viewed before the double-click.

If the current item is not a terminal and is a right-hand side

item, then a double-click with the left button will go down one

level of three. The production which has that non-terminal as the

left-hand side will be shown. The current item will be the same

item, displayed as the left-hand side of the production.

Using these two techniques, the entire tree can be traversed

and the user will see how every production is connected. Editing

the tree, as opposed to browsing it, is covered in the Tree Editing

section of the paper. To exit the tree editor, choose the Quit

menu bar option or press the E S C key.

To exit LSD the user needs to insure that only the text

editing window is open. Then the File option is chosen from the

menu bar, and the Quit option from that pull down menu should be

selected.

A normal sequence of operations using LSD would be to:

1. Load in a file.
2. Parse it.
3. Use the tree editor to modify it.
4. Use the reformat option to create the new source.
5. Use the text editor to add any comments to the source.
6. Save the new source into the old file with the save option.

To make sure no syntax errors were introduced during the text edit,

a final parse may be done.

67

LSD can guarantee a syntactically correct program, but the

semantics are still entirely in the hands of the user. While LSD

can make sure every B E G I N has a corresponding E N D , and that

V A R occurs in the right place, it cannot check to make sure a

variable has been declared or the types of an expression are

correct.

B. TEXT EDITOR DETAILS

The text editor works on an edit buffer. The edit buffer is a

copy of the file opened with the Open pull down menu option of the

File option of the menu bar. Any changes made are made to this edit

buffer, not the file. In order to make the changes permanent the

edit buffer must be saved back to the file using the Save menu

option of the File option of the menu bar. The edit buffer can

potentially hold many more lines of text than can be displayed in

the text edit window. In order to allow the user to work on the

entire file, some way of changing which lines are being displayed

must be provided. In LSD the text in the window can be scrolled to

show different portions of the file by using cursor movement, which

is described next.

1. Cursor Movement. Within the edit window is a cursor. The

cursor is a black square which shows the current text entry

position. This is where any newly typed text will go. Scrolling

in the window to see different areas of the edit buffer is

accomplished by moving the cursor. The cursor is moved around in

the edit buffer and the window text is scrolled by forcing the

cursor to remain within the window. Any time a movement of the

cursor will result in a new cursor position which is within the

68

text edit buffer but outside of the window occurs, the text in the

window is scrolled to adjust the displayed text. The text shown in

the window is moved so that the current cursor position is moved in

the edit buffer but not in the window. Instead, the part of the

buffer which includes the cursor position in the edit buffer is now

within the window. This will be explained in detail next,

a. Vertical Cursor Movements. To move the cursor vertically, the

arrow keys are used. If the cursor is on the top line in the

window and you press the up arrow key with more lines existing

before the line displayed, then the text in the window will move

down, and the top line will be the line immediately before the old

top line. If the cursor is at the bottom line in the window and

the down arrow key is pressed with more lines existing after that

line in the edit buffer, then the second line from the top becomes

the top line. The text in the window is scrolled upward and the

line immediately after the old last line in the window becomes the

new last line in the window.

For faster movement, the P G U P and P G D N keys are used to

move a window-full at a time upward and downward respectively. If

a move up is attempted and the cursor is at the top of the buffer,

or a move down is attempted and the cursor is at the bottom of the

buffer, then nothing happens.

On the vertical scroll bar, there are arrows at either end.

These arrows correspond to the up and down arrows on the keyboard.

The user can click on the arrows with the mouse and get the same

results as by pressing the corresponding arrow keys. Within the

scroll bar is a “tab” , a grey rectangle which is highlighted. This

69

item can also be used to scroll the window. If the user puts the

mouse cursor over this tab, then depresses the left mouse button,

then moves the mouse forward or backward while holding down the

left button, the text is scrolled in the direction opposite the

direction the mouse is moved. If the entire file fits in the

window then the vertical scroll bar is inactive.

If the user clicks in the scroll bar below the tab, a P G D N

is simulated. If the user clicks in the scroll bar above the tab a

P G U P key is simulated. The tab size will vary with the amount of

the file displayed. The more of the file which is displayed in the

window, the larger the tab will be. A small, square tab means a

file much larger than the text editing window is in the text edit

buffer.

There are two more cursor movement key combinations.

ctl-PGUP will move the cursor to the top of the edit buffer and

cti-PGDN will move the cursor to the bottom of the edit buffer.

These cursor movements cure also available as the Top of File and

Bottom of File options on the Edit Text menu bar.

b. Horizontal Cursor Movement. To move the cursor horizontally,

the arrow keys are used. If the cursor is on the rightmost column

in the window and the right arrow key is pressed while the cursor

is not on column 127, then the text in the window will move left,

and the rightmost column will be the column immediately after the

old rightmost column. If the cursor is at the leftmost column in

the window and the left arrow key is pressed while the cursor is

not on column zero, then the text in the window will move right,

70

and the leftmost column will be the column immediately before the

old leftmost column.

For faster movement, the END and HOME keys are used to

move to the end of the line and column zero respectively. If an

attempt is made to move right and the cursor is on column 127 of

the buffer, or an attempt is made to move left and the cursor is on

column zero of the buffer, then nothing happens. On the horizontal

scroll bar, there are arrows at either end. These arrows

correspond to the left and right arrows on the keyboard. Clicking

with the mouse on these arrows produces the same results as

pressing the corresponding arrow keys.

Within the scroll bar is a “tab” , a grey rectangle which is

highlighted. This item can also be used to scroll the window. If

the mouse cursor is placed over this tab and the left mouse button

is depressed, then the mouse is moved left or right while the left

button is held down, the text is scrolled in the direction opposite

the direction the mouse is moved. If the user clicks in the scroll

bar to the left of the tab, the cursor is moved 8 columns leftward,

and if the user clicks the scroll bar to the right of the tab, the

cursor is moved 8 columns rightward. The tab size will vary with

the amount of the file displayed. The more of the file which is

displayed in the window, the larger the tab. A small, square tab

means a file much wider than the text editing window is in the text

edit buffer.

2. Modes. The text editing window is modal. The three modes are

insert, overwrite, and busy. The current mode is always displayed

71

in the title bar of the text editing window on the far right. Each

of these modes will be described in detail.

In the insert mode, if a letter is typed then the letter is

inserted at the cursor position, moving any letters that were after

the cursor’s position to the right. If a return is typed then the

line the cursor is on is split at the current cursor position. If

the cursor is past the end of the text on the line then a blank

line is inserted. Either way, the cursor is moved down to the new

line.

In overwrite mode any letter typed replaces whatever letter

was under the cursor. If the cursor is beyond the end of the text

on the line then the space between the last letter on the line and

the current cursor position is filled with spaces and the new

letter is inserted at the current cursor position.

All letters in either mode that you type are placed at the

current cursor position, and the cursor position is advanced one

column. To toggle between insert and overwrite mode, use the INS

key. The text editor is initially started in insert mode.

The third mode, busy, is a special mode which is activated

whenever the LSD program is busy doing something which will not

allow the user to edit text. During busy mode, the cursor movement

keys and the scroll bars are available, but no editing functions

are available. Busy mode is entered whenever a parse, a reformat,

a grammar viewing, or a tree edit is occurring. When one of those

activities is done, the mode will return to insert or overwrite,

whichever was active when busy mode was initiated.

72

3. Inserting a Line. 'To insert a line, use ctl-N. This will add a

blank line at the cursor position. This can also be done with the

Insert Line option on the pull down menu of the Edit Text menu bar.

This command does not work in busy mode.

4. Deleting a line. To delete a line, use ctl-Y. This will delete

the line at the current cursor position. This can also be done

with the Delete Line option on the pull down menu of the Edit Text

menu bar. This command does not work in busy mode.

5. Edit Window Keys. The edit window keys are listed in table V.

The items marked with an asterisk are unavailable in busy mode.

The Ctrl- prefix means to press the Ctrl key, so ctrl-PGDN means

to press the Ctrl key and then press the pgdn key. The alt- prefix

means to press the alt key, so alt-P means to press the alt key and

then press the P key.

Table V. Edit Window Keys

Key Action
FI Get Help
ctrl-Y Delete line *
ctrl-N Insert line *
ctrl-J Move cursor To line
ctrl-PGUP Move cursor to top of buffer
ctrl-PGDN Move cursor to bottom of buffer
PGUP Move cursor up 1 windowfull
PGDN Move cursor down 1 windowfull
T Move cursor up
1 Move cursor down
-» Move cursor right
— Move cursor left
Del Delete character *
Ins Toggle insert mode *
Home Move cursor to column 0
End Move cursor to end of line

73

C. PARSE WINDOW

The parse window appears as the result of a parse request.

The parse window will show a record of the productions matched

during the parse. If the parse has an error, then the error

message will be displayed after the last successfully matched

production.

1. Parse Window Usage. The parse window is similar to the text

editing window. The scroll bars and menu function identically, as

do the up and down arrow keys. The left and right arrow keys cause

a scroll to the right and left one column respectively. The

H O M E , E N D , P G U P , P G D N , ctl-PGUP and ctl-PGDN keys also

work in the same way as they do in the edit window. Since the

parse window does not allow editing, the INS, DEL , ctl-Y, ctl-N,

and the regular letter keys do not do anything. The return (or

enter) key will advance the cursor one line and move the cursor to

column zero.

The parse window menu has three options. Help and Quit work

the same as the corresponding text edit menu choices. The SaveAs

menu choice brings up the save file dialog and allows the user to

save the contents of the parse window into a file.

The parse window is initially displayed as if the user had

done a ctl-PGDN so that the end of the parse results axe shown.

This is so that if there is an error it is displayed immediately.

If the parse is a good parse, the title bar will say ‘Good Parse’.

If the parse is bad, the title bar will say ‘Bad Parse’. While the

parse window is open, the edit window is in busy mode.

74

Table VI. Parse Window Keys

Key Action
FI Get Help
Ctrl-J Scroll window to Line
ctrl-PGUP Scroll window to top of buffer
ctrl-PGDN Scroll window to bottom of buffer
PGUP Scroll window up 1 page
PGDN Scroll window down 1 page
T Scroll window up 1 line
I Scroll window down 1 line
-*■ Scroll window right 1 column
<- Scroll window left 1 column
Home Scroll window to column 0
End Scroll window to last

column of current line

2. Parse Window Keys. The parse window keys are listed in

table VI.

D. GRAMMAR WINDDW

The grammar window appears as a result of the grammar text

editing window menu choice. The grammar window behaves identically

to the parse window except that it starts at the beginning of the

information initially instead of at the end. The text displayed is

an alphabetical list of all the productions in the grammar.

1. Grammar Window Usage. The SaveAs option is particularly

useful to create a file containing the grammar of LSD. This file

car then be printed or saved. If there is a parse error but the

user is unsure what the grammar requires, the grammar window will

show the necessary information. The text editor is in busy mode

while the grammar window is open.

2. Grammar Window Keys. The grammar window keys are listed in

table VII.

75

Table VII. Grammar Window Keys

Key Action
FI Get Help
ctrl-J Scroll window to Line
ctrl-PGUP Scroll window to top of buffer 1
ctrl-PGDN Scroll window to bottom of buffer
PGUP Scroll window up 1 page
PGDN Scroll window down 1 page
T Scroll window up 1 line
1 Scroll window down 1 line
-► Scroll window right 1 column
«- Scroll window left 1 column
Home Scroll window to column 0
End Scroll window to last

column of current line

E. TREE EDITING

Tree editing consists of several categories of activity,

including tree navigation, subtree deletion, subtree insertion, and

subtree moving. Navigation is accomplished in one of two ways,

either using the mouse or the cursor keys. The current node is

highlighted by having white letters on a black background. The

text editor is in busy mode while the tree edit window is open.

1. Tree Navigation. The current node is changed in one of two

ways, either by using the mouse or using the arrow keys. With the

arrow keys, the user presses the key which corresponds to the

direction to move the current position in the parse tree. If a

direction does not make sense nothing happens.

For instance, if the cursor is on the left-hand side node and

the right or left arrow keys are pressed nothing happens. If the

up arrow key is pressed instead, then the right-hand side item of

the production which contains that non-terminal becomes the current

76

item. If the down arrow key is used, the left-most item on the

right-hand side of the production corresponding to the production

of which this non-terminal is the left-hand side becomes the

current item.

If the current item is on a right-hand side item of the

production (displayed at the bottom of the window) and the up arrow

key is used, the left-hand side of the production (at the top of

the window) becomes the current item. If the left arrow key is

used and an item exists before the current item in the right-hand

side of the production, then this item becomes the new current

item. If the right arrow key is used and an item exists after the

current item in the right-hand side of the production, then this

item becomes the new current item. If the down arrow key is used,

the production which has this non-terminal as a left-hand side is

displayed, and the left-hand side of that production becomes the

current item. If the current item is a terminal then nothing

happens.

If the mouse is used to traverse the tree, then the mouse

cursor is moved over the item to make current and the left mouse

button is clicked. To simulate the actions of the up arrow on the

left-hand side item, or the down-arrow on a right-hand side

non-terminal, the left mouse button is double-clicked instead of

single-clicked. If the mouse button is clicked outside of the text

of an item nothing will happen.

2. Subtree Deletion. If the current item is a non-terminal on the

right-hand side of the production (which will be at the bottom of

the window), then the subtree having the current node as the root

77

may be deleted. This can be done with the keyboard by pressing the

D E L key, or the mouse may be used. To use the mouse, the cursor

is moved over the item and the right mouse button is

double-clicked. Once a subtree is deleted, the non-terminal has a

new state known as unexpanded. An unexpanded non-terminal is

marked on the window by putting it between a and a ’> ’. An

unexpanded non-terminal joe would be represented by <joe>. Delete

does nothing on an unexpanded non-terminal or a terminal. This is

also available as the Delete menu option.

3. Subtree Insertion. If the current item is an unexpanded

non-terminal on the right-hand side of the production (which will

be at the bottom of the window and have the special ’< ’ and ’> ’

symbols bracketing it), then an insertion of a new subtree having

the non-terminal as the left-hand side may occur. This insertion

may be done with the keyboard by pressing the INS key, or the mouse

by moving the cursor over the item and double-clicking the left

button.

This will bring up a dialog box with a list of valid

productions which may be used to expand this non-terminal. If

there is only one valid production no dialog box is displayed.

Instead, the system chooses the production automatically. Once the

production has been chosen, the current node is the newly expanded

non-terminal and its subtree is shown. Any non-terminals in the

new subtree are marked as unexpanded. Note: the meaning of a

double-click of the left mouse button on a non-terminal in the

right-hand side of a production depends upon the state of the

non-terminal. Either way, the non-terminal's subtree will be

78

shown. The difference is whether this will be an existing or a new

subtree. This is also available as the Insert menu option.

4. Subtree Moving. While editing with the tree editor there will

be times when the user wants to move a subtree. The user may have

spent a long time building a FOR statement only to discover that a

WHILE statement was required. Rather than throw away the statement

executed by the FOR statement, this subtree can be saved on a hook

and then reinserted into the WHILE statement’s subtree.

The user can move the statement subtree from the FOR statement

onto one of two hooks. Hooks are places serving as temporary root

nodes for trees being moved. LSD contains two hooks in the event

two subtrees need to be exchanged. When the user needs to expand

the statement executed by the WHILE statement, the subtree on the

hook can be inserted into the parse tree to fill in the statement

node.

The roots of the subtrees on two hooks are shown in the upper

left hand corner of the tree edit window. The non-terminal of the

subtree which is on a hook is shown or the word ‘empty’ appears.

To move a subtree to a hook click on the Hook option of the

menu bar and a pull down menu will appear. There are four choices:

M o v e to hookl, M o v e from hookl, M o v e to hook2, and M o v e from

hook2. If hookl is full, then the M o v e to hookl option is

deactivated and the M o v e from hookl option is activated. If hookl

is empty, the M o v e to hookl option is activated and the M o v e from

hookl option is deactivated. The menu choices for hook2 work in

the same fashion.

79

Table VIII. Tree Edit Window Keys

Key Action
FI Get Help
F3 Move current item to hookl
F4 Move current item from hookl
F5 Move current item to hook2
F6 1Move current item from hook2
Insert Expand current item
Delete Unexpand current item
T Move current item up 1
i Move current item down
-» Move current item right

Move current item left
Escape Exit Tree Edit

When doing a move to hook, it does not matter what

non-terminal is being moved. If a move from a hook is being done,

the non-terminal acting as the root of the subtree on the hook

(displayed in the upper left-hand corner of the tree edit window)

must match the non-terminal which is the current item. Also, the

current item must be an unexpanded non-terminal.

5. Tree Edit Window Keys. The tree edit window keys are listed in

table VIII.

BIBLIOGRAPHY

*Sara Baase, Computer Algorithms: Introduction To Design
and Analysis, 2nd Edition, (New York: Addison-Wesley), 1988, p.

2Robert L. Kruse, Data Structures and Program Design,
(Englewood Cliffs, NJ: Prentice-Hall), 1984, p. 210

3Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman,
Compilers: Principles, Techniques, and Tools, (Reading,
Massachusetts: Addison-Wesley), 198&, pp. 159-266

81

VITA

John Gatewood Ham was born on June 10, 1964, in Florence,

Alabama. After receiving his primary and secondary education in

Paducah, Kentucky, public schools, he studied at the University of

the South, in Sewanee, Tennessee. He received a Bachelor of

Science degree in Mathematics from the University of the South, in

Sewanee, Tennessee, in May 1986.

Following his graduation, Mr. Ham was employed by Norpax

Security Printers as a COBOL programmer from 1987 to 1990. During

that time he rewrote the personal computer check order entry system

and the coupon payment book system.

Mr. Ham began graduate studies at the University of

Missouri-Rolla in August 1990 to earn a master’s degree in computer

science. He has been enrolled continuously from August 1990 to the

present.

	A Syntax-Directed Editor for Borland’s Turbo Pascal
	Recommended Citation

	tmp.1602603111.pdf.eURBe

