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ABSTRACT

Subsumption has long been known as a technique to detect redundant clauses in the search 

space of automated deduction systems for classical first order logic. In recent years several 

automated deduction methods for non-classical modal logics have been developed. This thesis 

explores, how subsumption can be made to work in the context of these modal logic deduction 

methods.

Many modern modal logic deduction methods follow an indirect approach. They translate 

the modal sentences into some other target language, and then determine whether there exists a 

proof in that language, rather than doing deduction in the modal language itself. Consequently, 

subsumption then needs to focus on the target language, in which the actual proof is done.

World Path Logic (WPL) is introduced as a possible target language. Deduction in WPL 

works very much like in ordinary logic, the only significant difference is the need for a special 

purpose unification, which unifies world paths under an equational theory (E-unification). 

Relating WPL to a well understood first order logic of restricted quantification, the properties of 

WPL, that make deduction work, are examined. The obtained theoretical results are the basis for 

the following treatment of subsumption in WPL.

Subsumption is analyzed treating a clause as a scheme standing for the set of its ground 

instances. Although the notion of ground instances in WPL is different from ordinary logic, it 

turns out that - just like in ordinary logic - a clause Cl subsumes another clause C2, if there 

exists a substitution 6 such that C10 £  C2. Once the special purpose unification has been 

implemented into a theorem prover to allow for deduction in WPL, existing subsumption tests 

then work without any further changes.
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I. INTRODUCTION

"If you can prove that it’s better, it’s not worth implementing; 

and if you can’t prove that it’s better, it's not worth 

implementing"

-- Lincoln A. 1

Even though Leibniz’ seventeenth century vision of a symbolic language for the 

representation and mechanical solution of all scientific and mathematical problems2 has suffered 

at the hands of the undecidability and incompleteness3 results of modern logic, the spirit of his 

dream lives on within Computer Science. While the decision problem may be theoretically 

intractable, it has shown practical to prove theorems of symbolic logic mechanically using 

computers.

Efficiency, however, tends to be a major problem of such automated theorem provers or 

automated deduction systems. Their performance depends not only on the fundamental deduction 

method employed, but can also be improved by various optimization techniques. One of them is 

called subsumption, and is motivated as follows: During the course of a deduction, a large 

number of sentences is deduced from the given set of premises, until a deduction of the 

hypothesis is found. At any deduction step, the system has to choose a small subset (usually two) 

of the available sentences, to perform the next deduction on. Unfortunately, the search space of 

generated sentences tends to grow rapidly, causing both space and time efficiency problems. The 

technique of subsumption helps reducing the growth of the search space by detecting redundancies 

within the set of sentences. The idea is the following: If C can be derived from B and A ’, where 

sentence A ’ is just a variant of a more general or simpler sentence A, then C can also be derived 

from B and A directly. Thus, A’ is not needed and can be discarded. A is said to subsume A’ .

1) Wallen, personal communication with lan Gent. 1989, as reported in [Gent 92|

2) for an overview of Leibnizian logic see [Styazhkin 69]

3) [Godel 31 ]
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Early work in automated deduction focused almost exclusively on classical propositional 

and first-order logics, and subsumption was treated in this context. In recent years, however, 

several automated deduction methods for non-classical modal logics have been proposed. The 

relative semantic richness of modal logics makes them suitable for the formalization of a broad 

variety of human discourses and reasoning, and consequently, modal logics have gained 

increasing popularity in many areas of computer science and artificial intelligence.

The notion of modal logic can be illustrated very quickly. Basically, modal logic can be 

viewed as a means to merge language and metalanguage. The concept of modal operators 

facilitates reasoning about theories, for instance a theory at a certain point of time (in a temporal 

interpretation), or a theory of an agent’s knowledge (in an epistemic interpretation). Conceptually, 

there are different worlds, each of which has its own truth interpretation, and the modal operators 

represent an implicit discourse about the accessibility of these worlds.

The goal of this thesis is to explore how the ideas of classical subsumption can be applied 

to modal logics. Since subsumption as a technique does not make sense per se, but only in the 

context of a proof system, it cannot be treated independently from the framework of the 

automated deduction method it is supposed to work in. This is especially important, since the 

most promising modal logic deduction methods do not perform deduction directly in the modal 

logic. Instead, they translate the modal language into a special easy to reason about target 

language and then determine, whether there is a proof in that language. Following this route, the 

question of subsumption in modal logic deduction reduces to subsumption in the target language.

Our approach is as follows: We present such a target language, called World Path Logic, 

and demonstrate how modal deduction works in this language. Drawing upon previous results by 

[Scherl 92], we then show how this World Path Logic can be represented in a first order 

predicate logic (FOPL) with restricted quantification. FOPL with restricted quantification is 

relatively well understood, and using the similarity between this language and World Path Logic, 

we can prove several important properties of World Path Logic.

Building on these results, we finally define subsumption for World Path Logic, show how 

subsumption can be detected, give an algorithm, and prove the correctness of the method.

It was shown in earlier works that deduction in a language like World Path Logic can be 

performed very similarly to ordinary first order logic. The only main difference is the need for
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a special purpose unification routine [Auffray, Enjalbert 89]. It is our contribution to prove that 

similar results hold for subsumption: As it turns out, Robinson’s classical subsumption detection 

algorithm [Robinson 65] also works for World Path Logic, once the changes to the unification 

method have been made.

The remaining part of this introduction is devoted to a chapter by chapter outline of the 

thesis. Chapter II surveys relevant works in the fields of modal logic deduction and of 

subsumption. While considerable research has been done pertaining to the former, the latter has 

apparently not received a great deal of attention in the automated deduction community. To our 

knowledge, this thesis is the first work dealing explicitly with the problem of subsumption in 

modal logic deduction.

After the general background of modal logics has been presented in Chapter III, modal 

logic deduction via translation into World Path Logic (WPL) is the subject of Chapter IV. The 

language of WPL is defined and a translation function from modal logic to WPL is given. The 

centerpiece of WPL deduction is a special purpose unification method, which unifies terms under 

an equational theory (E-unification). This method has been adopted from [Auffray, Enjalbert 89], 

Chapter IV concludes with a detailed example of a deduction in WPL.

Chapter V presents yet another language, Scherl’s RML Constraint Logic (RML/CL) 

[Scherl 92], as a means for modal logic deduction. RML/CL is less a language for practical 

applications, but through its well understood theory and closeness to ordinary first order logic 

it provides valuable insights into how deduction works in languages like WPL. Chapter VI 

discusses the relationship between WPL and RML/CL further. Drawing on the similarity between 

WPL and RML/CL, several important properties of WPL deductions are established and proven.

Chapter VII applies the usual definition of subsumption to WPL and establishes a 

criterion for subsumption detection. Using the theoretical results from Chapter VI, we prove that 

subsumption in WPL works just like in ordinary first order logic.

Chapter VIII discusses several possible extensions of the method, before finally Chapter 

IX concludes this thesis with a short summary of the results and some closing remarks.
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II. LITERATURE OVERVIEW

This chapter presents a brief overview on relevant works in the areas of (a) automated 

deduction in modal logics and (b) subsumption. Automated deduction in FOPL has been a well 

researched field for almost 30 years, since Robinson’s landmark paper on resolution [Robinson 

65]. Modal logic deduction, however, is a relatively young discipline, with the first considerable 

work done in 1982 [Farinas 82], Since then, a variety of modal deductive methods have been 

proposed.

These methods can be roughly classified into two groups, the direct and indirect methods 

[Pelletier 90], Direct methods establish a proof theory for modal logics, whereas indirect methods 

translate the modal logic under consideration into some other language - usually a form of FOPL 

- and then determine whether there is a proof in that target language.

Probably one of the most prominent representative of the direct approach is [Abadi, 

Manna 86, 90], The method extends Robinson’s resolution method with special inference rules 

for modal operators. Although Robinson’s resolution principle was originally based on formulas 

in normal form, it can also be stated in terms of non-clausal resolution. Because there is no 

straight-forward clausal normal form of modal logic, Abadi and Manna’s method is based on this 

non-clausal resolution. An example for one of their modal inference rules is: ( ° a ) A ( 0 /8 )  h- 

O ( a A ^ ) .  The intuitive interpretation of this rule is: if a  holds in all accessible worlds and /?

holds in some accessible world, then there must be a reachable world in which both a  and /3

hold. The restrictions on the accessibility relation are represented by the corresponding Hilbert 

style axioms, for instance h- <pin a reflexive system. As [Scherl 92] points out, a major 

problem of Abadi and Manna’s method is the ’cut’ rule l-  <p v ~><p , that is required to make 

the method complete for first order modal logic. Since the cut rule holds for arbitrary formulas 

<p. the branching is infinitely large at any point in the search space. Heuristics have to be

employed to decide, when and where to apply the cut rule.

Geissler and Konolige [Geissler. Konolige 86] propose a method, where the formula is 

converted into clausal form as usual, except that this conversion does not effect what lies inside 

the scope of modal operators. Using special inference rules, the unsatisfiability of a set of 

sentences S is reduced to unsatisfiability of another set S’ , such that at least one sentence in S’ 

has less modal operators than in S. The method - or in an implementation the automated theorem
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prover - is then applied recursively on S’ , until it has been reduced to an unsatisfiable set of 

classical logic sentences.

A special characteristic of Geissler and Konolige’s approach is the introduction of a so- 

called bullet operator • . It is attached to variables and skolem terms within the scope of a modal 

operator, if they stem from quantifiers outside of the scope of the modal operator. The bullet 

restricts the way in which unification can be done: if a variable • x is marked, it can only be 

replaced by a term that is marked itself.

The main drawback of Geissler and Konolige’s approach is its recursive nature. An 

automated theorem prover would need to call itself recursively at each particular resolution step, 

thus adding considerable complexity. Since a call to a theorem prover is not guaranteed to 

terminate, it is essential to interleave the calls from one particular step with calls from other steps 

to maintain completeness [Scherl 92],

Another approach that uses ’semantic’ attachment similar to the preceding one, is 

presented in [Cialdea 86, 91]. Building on earlier work by [Farinas 82], the method employs a 

mix of classical and special purpose modal resolution rules. Where Geissler and Konolige use the 

bullet operator, Cialdea attaches a numerical index to skolem terms and variables, indicating the 

modal level of the governing quantifier. Again, the index serves as a restriction on unification. 

A variable can only be unified with a term, if the variable’s index is the same or higher than the 

term’s index. As for Geissler and Konolige’s method, a binary attachment sufficed, because it 

would be used anew at every recursive level. Since Cialdea’s method does not rely on recursive 

calls, a numerical attachment is needed.

With respect to the classification into direct and indirect methods, the techniques of 

Geissler, Konolige, and Cialdea are considered hybrids. They do not translate the modal logic 

into some other language, but they facilitate the reasoning within the modal language with their 

special attachments.

Other than the direct and hybrid methods, truly indirect methods translate modal logic 

into some other representation and then search for a proof in that language, rather than in the 

modal logic language itself. From their semantics, the modal operators can be interpreted as a 

quantification over what is usually referred to as ’worlds’ . Translation methods make this implicit
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discourse explicit by translating modal operators into quantifiers. The result is then ordinary first 

order predicate language or a language very close to it.

The first work using explicit translation for automated theorem proving purposes was 

reported by [Morgan 76], The benefit of translation into classical logic is obvious: it makes all 

the existing deduction machinery available for modal logic. The method of ’naive’ translation into 

FOPL is appealing for its simplicity, but much of the structure and compactness of the original 

modal formula gets lost over the process of translation. The resulting FOPL expressions are 

oftentimes very large in size, and inefficient in terms of automated theorem proving.

In recent years indirect modal deduction methods, that translate modal logic into non- 

classical target logics, have received increasing attention. The target logic gives the worlds special 

syntactical and semantic consideration, yet it is close enough to FOPL to benefit from existing 

deduction machinery. Using ideas from [Fitting 83], Jackson and Reichgelt [Jackson, Reichgelt 

87, 89] translate the modal operators to indices which are attached to predicates as well as to 

other terms. Starting from an initial world 0, the respective modal context of a subformula is 

encoded into a sequence of terms. The □ operator is replaced by some world variable, say w, 

and the O operator by a skolem function of the variables governing it. As an example, □ O P is 

translated into pf(w):w:0. Predicates and terms then unify only if their world denoting indices 

unify.

Auffray and Enjalbert propose a very similar method [Auffray, Enjalbert 89]. What is 

an index in Jackson and Reichgelt’s method, is here stored as an additional argument, called 

’path’ , to predicates and functions. Except for minor syntactical differences (among other things, 

the order is reversed), this path equals Jackson and Reichgelt’s index. Auffray and Enjalbert’s 

important contribution is the concept of E-unification, which describes unifying world paths under 

an equational theory. The equational theory reflects the specific properties of the world 

accessibility relation. If this relation is known to be reflexive, for instance, then the equational 

theory states w: 1 =  w , where 1 is an artificial neutral element. Thus, the paths 0:sk:w and 0:sk 

E-unify with the substitution }l/w }. Under the concept of E-unification, each specific accessibility 

relation calls for its own special purpose unification algorithm.

Ohlbach develops a translation method [Ohlbach 88, 93], in which the accessibility 

relation is represented in deterministic access functions. Such a function is a one place function 

that maps worlds into accessible worlds. Since multiple worlds can possibly be accessible from
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each given world, multiple functions apply to each world. The modal formula □ O P is translated 

into Vf 3g P(f°g), such that fog is the composition of the two individual functions, where f 

returns a world accessible from the initial world and g is a world accessible from that world. 

Ohlbach’s chain of functions corresponds closely to Jackson and Reichgelt’s world indices and 

Auffray and Enjalbert’s paths.

A general framework for modal logic deduction has been developed by Frisch and Scherl 

[Frisch, Scherl 91; Scherl 92]. First order logic with restricted quantification is used in the 

presence of a restriction theory. Frisch and Scherl do not commit themselves to a particular proof 

system, they show how a general class of deduction methods for first order logic can be 

systematically transformed into a modal logic proof system. In particular, they show that the 

sequence oriented methods of Jackson and Reichgelt, Auffray and Enjalbert, and Ohlbach can be 

generated as particular instances of the framework. Using insights from constraint logic 

reasoning, this enables them to show, how sequence unification arises in modal logic.

The work reported in this thesis is based on the sequence oriented methods of Jackson, 

Reichgelt, and Auffray, Enjalbert. Scherl’s work [Scherl 92] provides the theoretical background 

we utilize for proving certain properties of subsumption in the context of modal logic deduction.

While most of the aforementioned methods are resolution based, Wallen [Wallen 90] 

proposes a matrix and tableau method, that does not require prenexing, skolenrization, and 

conversion to normal form. This method was later reconstructed and generalized by [Gent 92] 

based on a logic of restricted quantification similar to the one utilized in [Scherl 92],

In contrast to modal theorem proving, not very many publications deal with subsumption. 

Robinson’s famous paper on resolution [Robinson 65] defines subsumption and gives the 

subsumption algorithm used in Chapter VII of this thesis. Loveland introduces the notion of 

subsumption, which is weaker than general subsumption, but more useful for practical purposes 

[Loveland 78], He also examines, how subsumption as a deletion strategy effects the underlying 

resolution strategy within a theorem proving system.

Currently, research is underway as to how temporal subsumption can be used in the 

context of distributed algorithms verification. The goal is to detect and remove redundant 

assertions in a verification proof outline [Schollmeyer, McMillin 93]. The temporal model used 

here, however, is very much tailored to the specific purposes of program fault tolerance.
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Summarizing this survey of relevant works in the fields of modal logic deduction and of 

subsumption, considerable work has been done pertaining to the former, while the latter has 

apparently not received a great deal of attention in the automated deduction community. To our 

knowledge, this thesis is the first work dealing explicitly with the problem of subsumption in the 

context of modal logic deduction.
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III. SYNTAX AND SEMANTICS OF MODAL LOGIC

This chapter presents the basic background on modal logic, based upon [Scherl 92, 

Farinas 91, Jackson & Reichgelt 89, Wallen 90]. The notion of modal logic has been around for 

a number of decades, it can be traced back to the works of C.l.Lewis from 1912 to 1932 [Scherl 

92], A pivotal milestone was Kripke’s paper on the semantics of modal logic [Kripke 63]. His 

possible-worlds semantics form the basis for nearly all modern modal logic systems. But before 

we go into semantics, we will first have a brief look at the syntax.

A . S yn ta x

Modal logic is an extended form of ordinary propositional logic or first-order predicate 

logic. Throughout this paper, however, we usually mean its first-order version, when we speak 

of modal logic. The language of modal logic adds two new unary operators, □ and 0 ,  to its 

FOPL counterpart. These are usually referred to as the operators of and of ,

respectively. All well-formed formulas of FOPL are also well-formed formulas in the modal logic 

language. Additionally, if <pis a well-formed formula, then so are □<? and O <p. For instance, 3x 

0 (P (x ) A 0  °Vy(Q(y) v R)) is a well formed formula in modal logic.

The operators □ and 0  can be interpreted in multiple ways. If modality is understood 

to express the concept of necessity, then the operators denote two different types of truth. 

reads as V  is necessarily true’, whereas Ocp means V  is possibly true’ , This approach attempts 

to capture the distinction between things that could not be false (necessary truth), and things, that 

just happen to be true (contingent truth). In a temporal interpretation and 0<p would be read 

as V  holds always’ and V  will hold eventually'. When modal logic is used as a logic of agents 

and knowledge, then &<p means ’the agent knows <p'.

All these interpretations have in common the duality between □ and O, i.e. 0  can be 

expressed in terms of O<p =  So, in essence, the operator 0  does not really add

semantics to the language. It rather serves as a syntactical convenience.
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B. Semantics

The most widely accepted semantics concept for modal logic is Kripke’s possible worlds 

semantics [Kripke 63], Basically, a set of worlds and a binary accessibility relation between 

worlds is added to the FOPL semantics. Recall that FOPL semantics are given in terms of 

models. A model M for FOPL is a pair < D ,I > ,  such that:

• D is the domain

• I is the interpretation function. If f is an n-ary function4 in FOPL, then 1(f) 

maps Dn to D. If P is an n-ary predicate in FOPL, then 1(P) is a function 

mapping Dn to {TRUE, FALSE}.

The semantic value of a formula < punder a model M = <  D,I > ,  denoted as M, is

inductively defined as follows:

m [ Vx<pJ M = TRUE, iff5 for every d G D: H^{d/x} J M = TRUE6

= FALSE, otherwise

m [ 3 xv>]1m = TRUE, iff there exists a d G D: H ^ {d /x }IM =  TRUE

= FALSE, otherwise

m 11 - , p l M = TRUE, iff M M = FALSE

= FALSE, otherwise

m J a-*/? 1 M = FALSE, iff Eor 1 M =  TRUE and [ 0 ] M =  FALSE

= TRUE, otherwise

m m t 1, . . . , tn) ] M = I(P)(It| l M,. . . ,E tnl M), if P is an n-ary predicate

symbol

m i f ( t1, . . . , g i M = K O dtj II tnl M), if f is an n-ary function symbol

m [ t i M is undefined, if t is a variable

the modal case a model needs to carry information about the worlds and their

accessibility. Specifically, a model M for modal logic is a six-tupel <  W,w0,K,D,D*,I > .

4) We treat constants as 0-ary functions, and atomic propositions as 0-ary predicates.

5) if and only if

6) <p{d/x) means: substitute d for every x occurring in <p
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• W is the set of worlds

• w0 is the initial world, a distinguished element of W

• K QW2 is the accessibility relation. WjKw2 iff w2 is accessible from W|.

• D is the domain, such that D =  U w6 w Dw , where Dw is the domain of world 

w

• D* is the domain function, which maps each world w G W to  its domain Dw

• I is a binary interpretation function. Its two arguments are a world w and a term 

t, which is either an n-ary function or an n-ary predicate. Iw(t) maps D" to D or 

to {TRUE, FA LSE}, respectively.

In modal logic each world possesses its own domain Dw and its own interpretation Iw. 

The truth of a formula is always evaluated with respect to a current (or initial) world. Thus, to 

say a formula is true, is to say, it is true in the initial world of the model under consideration. 

The other worlds come into play, when the modal operators O and O are used. is true in the 

current world, if <pis true in ail worlds accessible from the current world. Conversely, is 

true in the current world, if there is an accessible world in which <p holds.

In order to adapt our FOPL semantics definition for the modal case, we need to replace 

I by Iw(). Furthermore, we need to add the following two lines, which define the meaning of the 

modal operators □ and O .

■ I D<plM =  TRUE, iff for every world w £  W such that w0Kw:

< W.w,K.D>D*,|> =  t r u e

=  FALSE, otherwise

• II Oip]M = II - iD_i<p 1m

An alternative and more frequently used denotation for =  TRUE is M -

(read: M satisfies <p). A formula <p is valid in a model, if it holds in every world of the model, 

i.e. Vwgw <  W ,w,K,D,D*,I > >= <p.A formula is said to be valid with respect to a class of 

models C, if it is satisfied by all models in C. A common classification of models is by the 

restrictions which are imposed on the accessibility relation. The properties of the accessibility 

relation are a key factor throughout modal logic, and reflecting this importance, we use them to 

define different systems of modal logic.
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Table I lists some of the possible restrictions along with the axioms, that characterize each 

of them. If the accessibility does not follow any particular restriction, then we speak of the modal 

logic K. There is actually one axiom, that holds in all modal logics, thus also in K: If <p valid, 

then so is &<p. This axiom merely reflects the definition of a formula being valid in a model.

Table I. Accessibility Relation Restrictions and Their Axiom Schemata

Modal

Logic Restriction Axiom

D serial V w 1 E W  3w 2 E  W  w 1l<w2 Dtp Otp

T reflexive V w -j E W  w 1K w 1 Dtp -*• tp

B sym m etric V w v w 2 E W  if w 1K w 2 then w 2K w 1 tp -*■ □ 0  tp
4 transitive V w v w 2,w 3€ W  if w 1l(w 2 and w 2K w 3 then w 1l(w 3 Dtp DDip
5 euclidian V w 1,w 2,w 3 E W  if w 1 K w 2 and w 1K w 3 then w 2K w 3 Otp DO tp

Different restrictions go along with different axioms, as indicated in the table. If we are 

guaranteed that there is always another world accessible from every world, then we have modal 

logic D, which is serial, and □<? -»> Oy? is an axiom. This is not trivial, recall that Eyj is 

vacuously true, if no other world is accessible. Conversely, if we are given the axiom 

then it follows that the accessibility relation is serial.

It is not uncommon for a modal logic to abide by several accessibility restrictions. The 

name of the logic then consists of the individual letters characterizing the restrictions. For 

instance, the accessibility relation of the logic KTB4 is reflexive, symmetric, and transitive, thus 

an equivalence relation. The seriality of KTB4 comes basically ’for free’ , due to the reflexive 

property.

C. PrFFERENT INTERPRETATIONS

1. Temporal Interpretation. Modal logics can be used to formalize a broad variety 

of human discourses and reasoning. One application is the reasoning about time. It is possible.
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of course, to deal with time in ordinary FOPL, as in the predicate tomorrow).

The temporal (modal) logic, however, gives the temporal factor special syntactical and semantic 

consideration.

The modal worlds represent different instances of time, and they are ordered in a linear 

fashion by the accessibility relation. In this temporal interpretation means, tp will hold in all 

futures (always), whereas 0<pis interpreted as saying that will hold at some future point of

time (eventually). & 0  ir_rains(Seattle)expresses the fact, that at any given future time, it will

eventually rain in Seattle, whereas O □ it_rains(Seattle )is a pessimistic view of the big rain, that 

will come some day and will last forever. Clearly, the accessibility relation is transitive and must 

be antisymmetric, otherwise we would get caught in "time loops".

Some authors use O as a third modal operator. Quoted the 'next’ operator, indicates 

that <p holds at the very next moment, as opposed to ’eventually’ or ’ in all futures’ [Abadi, 

Manna 90].

An important application area within computer science, where temporal logics are 

employed, is the field of program verification, especially with respect to concurrent programs. 

Most properties about programs, that one would like to prove, fall into two categories [Owicki, 

Lamport 82]: liveness properties, which state that something good eventually does happen, and 

safety properties, which state that something bad never happens. Thus, liveness properties can 

be expressed in terms of the O operator, whereas safety properties lend themselves to the o 

operator. Program termination is an example for a liveness property, while mutual exclusion - 

no two processes are in their critical section at the same time - would be a typical safety property. 

The question of temporal subsumption in the context of program verification has received some 

attention lately, the goal here is to increase the efficiency of proof systems for distributed 

programming [Schollmeyer, McMillin 93],

2. Epistemic Interpretation and Multimodal Logics. Another application for 

modal logics is the reasoning about knowledge of agents. This use of modal logics is usually 

referred to as an epistemic interpretation. In this context, □ < can be read as: the agent knows <tp. 

Conversely, c -u p  means, the agent knows that tp does not hold. This is different from -!□<£, 

which states that the agent has no knowledge as to the truth of tp. The other modal operator, O , 

has no particular interpretation other than a syntactical abbreviation for - iO - i.
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While it is nice to have a means to formalize a single agent’s knowledge, it is more 

challenging to deal with multiple agents, each of whom has his own knowledge about the world 

and about the knowledge of his fellow agents. Representing multiple agents requires distinct 

modal operators for each agent, which we call o A and o R. The formula o A <p reads ’agent a 

knows tp’ , and DgOAp is read as ’agent b knows that agent a knows that holds’ .

We will illustrate this with a simple version of the famous Wise-Man Puzzle which is 

frequently used throughout the literature as a test problem for formalizations of knowledge and 

belief [Geissler, Konolige 86], [Genesereth, Nilsson 87], [Scherl 92]:

There are two wise men who are told by their king that at least one 

o f them has a white spot on his forehead. In fact, both have a white spot.

Every wise man can see the other’s forehead, but not his own. Suppose 

wise man B says he does not know whether he has a white spot. The 

problem is then to prove that A knows lie himself has a spot on his 

forehead.

The givens are: (i) A knows that if he does not have a spot, B will be aware of that (ii) 

A knows that B knows that at least one of them has a white spot and (iii) A knows (because B 

said so) that B does not know whether he has a spot.

These statements can be represented in multimodal logic as follows:

(i) □ A ('“>spot(A) -* E g -1 spot(A)) (3.1)

(ii) □ An B(spot(A) v spot(B)) (3.2)

(iii) □ Ai n Bspot(B) (3.3)

The hypothesis is:

DAspot(A) (3.4)

The treatment in the following chapters is restricted to monomodal logics for simplicity’s 

sake, but in Section VIII.B we will present an extension to multimodal logics and prove the Two 

Wise-Men Puzzle.
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IV. TRANSLATION

A . In tr o d u c t io n

The possible worlds semantics, as described in Chapter III, treats the modal operators □ 

and O much like a quantification over a set of worlds. Essentially, the operators represent a 

discourse about worlds and their reachability. The discourse is implicit though, since there are 

no syntactical entities, like constants or variables, which actually denote the worlds. And indeed, 

it is definitely not easy to cope with the modal operators in a deduction system without naming 

the worlds.

A way of making the worlds and the accessibility restrictions syntactically visible is to 

translate modal formulas into classical FOPL, where the modal operators are converted to explicit 

quantifications, and the accessibility relation is represented by a new binary predicate, say K(). 

U<P then translates to Vw (K(0,w) tp), while 0<p is written as 3w (K(0,w) A where 0 is

the current or initial world. More formally, the translation function T(^) can be recursively 

defined as shown in table II:

Table II. 'Naive' Translation from Modal Logic into First Order Predicate Logic

T =  t(0 ,tp)
t(\N,Dip) =  Vw' (K(w,w')-*t(w ' ,tp)),where w' is an all new variable

t(w, O = 3w' |K(w,w') At(w',tp)), where w' is an all new variable

t(w,Vx = Vx t(w ,tp)
t(w,3x tp) = 3x t(w ,tp)
t(w,C7 V /?) = t(w,a) v t(w,/?)
t(w,a A /?) = t(w, a)A t(w,/?)
t(w, = ->t(w, D̂)

As an example, n (a  A O -i/J) translates to Vw( (K (0,w ,) -+ (a A 3 w 2 (K .(W ],w 2 ) A m. 
In addition to translating the formula, we would also need to express the accessibility axioms of 

the modal logic system under consideration in FOPL. This is straightforward, the transitive logic 

K4, for instance, needs Vwj,w2,w3 K(W|,w2) a K(w2,w3) -* K (W j ,w 3) to be valid. Once
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everything has been transformed into FOPL, we can then use all the deduction machinery 

available for FOPL.

This method of ’naive’ translation into FOPL is clearly an indirect modal logic deduction 

method in terms of the classification used in Chapter II. Direct methods establish a proof theory 

for modal logics, whereas indirect methods translate the modal logic under consideration into 

some other language and then determine whether there is a proof in that target language.

’Naive’ translation into FOPL is appealing for its simplicity, but much of the structure 

and compactness of the original modal formula gets lost over the process of translation. The 

resulting FOPL expressions are frequently very large in size, and inefficient when it comes to 

automated theorem proving.

In recent years other indirect modal deduction methods that translate modal logic into 

non-classical target logics, have received increasing attention. The target logic gives the worlds 

special syntactical and semantic consideration, yet it is close enough to FOPL to benefit from 

existing deduction machinery. We will be looking at a target logic, in which the worlds are 

represented by special sequences. If we think of the worlds and the accessibility relation as a 

digraph, in which the nodes represent the worlds and the edges correspond to the accessibility 

relation, then a sequence represents the path through the graph from the initial world to the 

current world.

Our target logic is a slight variation of the path logic introduced in [Auffray, Enjalbert 

89] and the sequence representation used in [Scherl 92]. We will call it World Path Logic, 

abbreviated as WPL. WPL is an efficient language to do modal logic proofs in. Section IV.B 

introduces WPL and gives a translation procedure from modal logic to WPL. In order to do 

deduction in WPL, a special unification method is needed. This so-called E-unification is the 

subject of Section IV.C. Finally, Section IV.D shows by a detailed example, how deduction is 

done.

The analysis of WPL’s key properties, however, is postponed until Chapter VI. The 

reason is that the theoretical properties of WPL are best being studied by relating it to yet another 

language, which is introduced in Chapter V. It is Scherl’s RML Constraint Logic (RML/CL) 

[Scherl 92]. RML/CL is less a language for practical applications, but through its well understood
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theory and closeness to ordinary first order logic it provides valuable insights into how deduction 

works in languages like WPL.

To keep the presentation simple, we will impose some restrictions on the modal logic 

under consideration. These restrictions hold from now on until Chapter VIII, in which possible 

extensions of the method are explored:

• the domain is constant in all worlds

• the logics are monomodal, i.e. there is just one accessibility relation

• the accessibility relation is serial, i.e. from every world there is always another 

accessible world, and also, we limit the accessibility restrictions to be some 

combination of reflexivity, symmetry, transitivity. This leaves us with the modal 

systems KD, KT, KDB, KD4, KTB, KT4, and KT57

B. W orld P ath L ogic

Formally, World Path Logic is a three-typed FOPL. The first two types are D, the 

domain of discourse, and P, the world paths. P is a compound type, the paths are sequences of 

variables, constants, and functions of type W. W is the set of worlds.

The idea is to attach the access path from the initial world through the world domain to 

the current world as an additional argument to every predicate and function. As an example, the 

world path of predicate P in the formula O ° P  is denoted as: 0-»sk-»-w.

ODP (4.1)

translates to

P(0-»-sk-*w) (4.2)

0 denotes the initial world, sk is a skolem constant (due to the existential quantification 

character of the 0  operator), and w is a world variable. As a convention throughout this thesis, 

all variables of type W begin on a ’w’, all skolem constants and functions of type W begin on 

’sk', and all functions of type D begin on an T .

7) the systems KT4 and KT5 are also referred to as S4 and S5, respectively



18

Now consider the modal formula

□ OP (4.3)

Naive translation into FOPL yields:

VW| (K (0,W |) -+ Bw 2 (K (W |,w 2) A P ))  

and after conversion into Skolem8 Conjunctive Normal Form we obtain:

Vw, ((-iK (0 ,W | ) vK(w |,sk |(w j)) A ( i K (0 ,W | )  v P)) (4 .4 )

Converting (4.3) into WPL yields

P(0-^-W|^-sk,) (4.5)

which is a much shorter representation of the same semantics as (4.4). The complete translation 

procedure from modal logic to WPL is given in table III.

As shown in table III, the translation of the O operator introduces a skolem term like 

sk’ . Although this term does not explicitly show any world arguments, the world path preceding 

sk is considered an implicit argument to sk. Let us look at the expression OOP again. It 

translates into P(0-*w-*sk). Suppose we wanted to make the implicit argument visible. Then the 

WPL expression would be P(tF*-w-»-sk((H>-w)). But there is no need to write the path 0-»w twice, 

because no matter what operation is performed on a world path, the world argument to the 

skolem function will always be identical to the prefix of the world path leading to and 

immediately preceding sk. Thus, we just leave the argument out, and consider 0-K 1-*...-*tn-»,sk(X) 

an abbreviation for 0-K|-^...^tn-*sk(0-*t|-*...-H:n,X).

Note also, that the procedure distinguishes between rigid and non-rigid predicates and 

functions. A rigid predicate or function has the same interpretation in all worlds. It does not 

depend on the current world, and thus, it is not necessary to have the world path as an argument. 

In all examples given in this thesis, however, we will assume all predicates and functions to be 

non-rigid, i.e. world dependent.

As an example of the translation procedure, consider the modal expression

□ Op(x) A O 0(p(g(y))-»-q(y)) »- O V xO O q (x) (4.6)

Eventually we want to show, that (4.6) is a theorem in the modal logic KT4. The i= operator is 

read as ’entails’ or ’ implies’ . The left-hand side of »= is referred to as the set of premises, the 

right-hand side is the consequent. More precisely, holds, iff all models, that satisfy ce, also

8) Skolemization, the technique of eliminiating existential quantifiers, is based on and named after [Skolem 20]
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Table III. Conversion Procedure from Modal Logic to World Path Logic

Input: Modal Logic formula 
Output; World Path Logic formula tp'

1) Close formula, i.e. universally quantify all free variables.
2) convert to Negation Normal Form (move all negation operators inward to the

literals)
3) apply translation function T( )̂ as follows:

• T (tp) =  t ( O ,0 , tp )
• t(s,X,o<p) =  t(s-^w ,x,tp) introduce new variable of type W
• t(s,X, Otp) =  t(s-*sk(X),X,#>> Skolemization, sk is an all new 

function of type W
• t(s,X,Vx tp) = t(s,Xu{x},v>) add x to the set of universally 

quantified variables
• t(s,X,3x tp) = t(s,X,{f(s,X)/x} Skolemization, f( ) is an all new 

function of type D

• t(s ,X,av p) =  t(s,X,o) v  t(s,X,/?)
• tls.X.o A /?) =  t(s,X,o) A t(s,X,/?)
• t(s,X, -tip) =  —> t(s ,X ,tp)

• t(s,X,p(tv ...,tn)) =  p(s,t(s,X,t1),...,t(s,X,tn)) if p is a non-rigid predicate
• t(s,X,p(t.,.... tn)) = p(t(s,X,t1).... t(s,X,tn)) if p is a rigid predicate i
• t(s,X,f(ti.... tn)) =  f(s,t(s,X,t1),...,t(s,X(tn)) if f is a non-rigid function / 

constant
m t(s, X, f (t i .... tn)) =  f(t(s,X,t1),...,t(s,X,tn» if f is a rigid function / constant

4) convert formula to clausal form

satisfy /?. In order to prepare (4.6) for a later refutation proof, we need to negate the consequent 

and add it as a conjunct to the premises. This step yields the modal formula:

□ Op(x) A 0  □(p(g(y))-»q(y)) A -i O V xD O q(x) (4.7)

As for now, however, we are just concerned about the translation of (4.7) into WPL. Step 

1 and 2 convert it into negation normal form. The result is:

□ 0  p(x)

a 0 □ (p(g(y))-*-q(y))

A 0 3x On ~>q(x) (4.8)

Application of the translation function T () in step 3 of table III yields three clauses:

p(0->w1-»sk,,x) (4.9)
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- ip((H-sk2-*w2,g(0-*sk2-*'W2,y)) v q(0-̂ -sk2-*’W2,y) 

“i q (0-*w 3-»sk3-*w4, f(0-*-w 3))

(4.10)

(4.11)

This completes the translation into WPL. Next, we will look at unification in WPL.

C . T h e  C o n c e p t  o f  E -un ipication

Resolution in WPL amounts to classical resolution with a special purpose unification 

technique for world paths. Two WPL predicates unify only if they are possibly in the same 

world, i.e. if their world paths unify. Consider (4.2) and (4.5). They unify with the most general 

unifier (MGU) cr =  {sk/W|;sk|/w}. Thus, the common world is skj, which is reachable from the 

initial world 0 through the world sk.

As a specialty of the world path unification method, the elements of two world paths are 

not always pair-wise unified. The idea is to let the unification method reflect the accessibility 

axioms.

1. Reflevivitv. Consider the two sequences 0-*-sk and 0-*-w-»sk. They do not unify, 

unless the accessibility relation is guaranteed to be reflexive. In that case, we can safely 

instantiate w with 0. The resulting path 0-*0-*sk is basically equal to 0-^sk, because both paths 

lead to the same world.

More formally, two paths E-unify,if they are equal with respect to a certain equational 

theory.9 For the case of reflexivity (modal logic KT), a neutral element M’ is introduced, and 

the axiom

Vw w-»l =  w

makes up the equational theory. As for our example, we would instantiate w to the neutral 

element 1, and obtain the path 0-H-»-sk. This path is then equal to 0-*-sk, since we can replace 

every occurrence of the subsequence 0-»l by 0 according to the equational theory.

9) The following presentation of E-unification is due to [Auffray, Enjalbert 891. [Ohlbach 88] deserves credit for 
the implementational aspects.
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An actual implementation of this unification method for reflexivity would have to check 

for every variable in the path, if deletion of the variable from the path leads to a one-to-one 

unification, i.e. a pair-wise syntactical identity of the paths under consideration.

It is easy to show that a unique MGU does not always exist. Just consider die paths 

0-»sk)-*sk2 and 0-»W|-»w2-*sk2. Possible MGUs in this case are {l/w )( sk2/w2} and {sk2/W|, 

l/w2}.

2 . S ym m etry. Now let us examine the symmetric logic KB. Consider the modal 

formulas OOOQ(a) and iO Q (x ) . Their WPL counterparts are Q(0-*-sk,-*w |-»sk2, 

a(0-*sk|-*Wj-*sk2)) and ~iQ(0-»-w2,x). Symmetry tells us that there is a connection from sk( back 

to 0. An instantiation of w, to 0 gives us the path O^skj —»0—»sk2 which is equivalent to 0-»sk2 and 

thus unifiable with the second path (H-w2, provided sk2 is substituted for w2.

Formally, inverse elements ( ) ” 1 are introduced, and

Vw,w’ w-^w’-^w’ -1 =  w

is the equality theory for logic KB. Replacing skj— 1 for W| in our example yields the predicate 

O(0-*-skj—»ski— ŝk2,a(0—̂skj-^-skj— 1̂ -sk2)), which can be reduced to Q(0^»sk2,a(0-*sk2)) using 

the equality theory.

Implementationwise, the unification algorithm for symmetric logics has to consider for 

each variable, if the removal of that variable along with its immediate predecessor leads to a 

unification.

As with reflexivity, symmetry can lead to multiple MGUs. Consider the paths 0-*sk|^sk2 

and (H-wj-^w^Wj-^sk2. Possible MGUs are { W]- l /w2, sk,/w3 } and { w2- l /w3, sk]/wj }. 3

3 . Path  P rop erties. At this points it becomes clear, why the translation function uses 

the full path in arguments to (non-world) skolem functions as opposed to just the last world term. 

Having full paths in arguments to skolem function is what [Auffray, Enjalbert 89] call strong 

skolemization. Consider the predicate Q(0-»skl—W|,f(0-»skl-*W|)) and the substitution o =  

{sk ,_ l /w2}. The result is 0 (0 ,f(0)). Now apply a to the same predicate Q without a full path in 

f(), i.e. Q(0-*skl-*W],f(wi)). This time the result is Q(0,f(sk j_1). The second occurrence of the 

inverse element could not be resolved with its predecessor, because there was no predecessor 

present. Therefore, it is important to have the unique prefix property.
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Theorem 4.1 (Unique Prefix Property) Multiple occurrences o f the same world term always 

have, the same predecessor, and consequently, the same prefix. Also, a variable cannot occur as 

parr o f its own prefix. Terms like Q ( 0 - + w t ~ * ' w2’ f(Ch*w2-*-wor like cannot occur.

The unique prefix property [Auffray, Enjalbert 89], called prefix stability in [Ohlbach 88] 

follows directly from the translation function. Thus, whenever we substitute an inverse element 

for a variable, it will resolve with its predecessor at any occurrence of the variable. There will 

never remain any inverse elements in the path.

Moreover, paths in WPL are inherently linear. They do not branch off as in

Q(0-»-a-»-w, f(0-*h-»w ’)) (4.12)

where multiple occurrences of 0 have different successors. Note that (4.12) does not violate the 

unique prefix property. It cannot occur in WPL though:

Theorem 4 .2  (Unique Successor Property) Within same WPL literal, occurrences o f  

a world term t, that have a successor, have the same successor.

As with the unique prefix property, the unique successor property follows immediately 

from the translation function. Unification has to preserve both properties. 4

4. Transitivity. Finally, we consider unification under transitivity (logic K4). It is 

somewhat more complex than for the cases of reflexivity and symmetry. At first sight, it would 

appear that this equality axiom will do the job:

Vw,w’ ,w” w-*w’-*w” =  w-»w” (4.13)

Now let us apply this axiom to unify the paths

0-»a-»sk-*b (4.14)

and 0-*w-»b. (4.15)

Substituting sk for w yields the path 0-*sk-*-b, which is equal to the first path under the 

axiom (4.13). We need to keep in mind, however, that (4.14) is just a short form for

0->-a^sk((H>-a)-*b (4.16)

Thus, when sk is substituted for w, it really is sk(O-^a), which is inserted into the second path, 

yielding 0-»sk(0-»a)-*b. But this path violates the unique successor property, because 0 is once 

succeeded by sk(), and another time by ’a’ .
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What needs to be done in order to cope with the transitivity in the previous example, is 

the substitution of a subsequence of (4.16), a->sk(0-*a), for w, yielding the unique successor 

property preserving path

0-^(a-*sk(0-»a))-*b (4.17)

(4.17) is equivalent to (4.16), if we make associativity of the binary operator an

axiom:

Vw,w\w” w-^w’-nv” =  w-*(w’-*w” ) (4.18)

Note that the binary infix sequence construct operator is left-associative. Hence, there 

are no parentheses needed on the left-hand side of (4.18). An implementation of the unification 

algorithm for transitivity will mutually try to match up variables of one path to non-empty 

subsequences of the respective other one. Again, multiple MGUs are possible, but only in a finite 

number.

5 . Combinations of Accessibility Restrictions. As to the combination of any two

out of the three properties transitivity, reflexivity, and symmetry, their basic ideas can simply be 

combined. The equational theory is comprised of the two individual axioms, and the strategies 

of the implementations are used concurrently.

A special case is the logic KTB410, where the accessibility relation has all three 

properties, i.e. is an equivalence relation. The relation partitions the set of worlds into 

equivalence classes, out of which we only need to consider the class that contains the initial world 

0. The elements in all other classes are unreachable. Within the class that contains 0, the worlds 

are totally connected. Thus, we can reduce any world path to an equivalent one of length one (0) 

or two (0-*t, where t is some world denoting term). The paths 0-*w and 0 unify with {1/w},  

while the paths 0-Hj and O-K2 unify only if the terms t{ and ^  unify. Therefore, we have at most 

one MGU.

10) KTB4 is equivalent to KT5, which is more commonly known as S5
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D. Deduction in W P L  - An E x a m ple

Now that the machinery of world path unification is available, let us go back to proving 

the theorem (4.6) in the modal logic KT4. Recall:

□ Op(x) A 0  D(p(g(y)) -* q(y)) *■ O Vx □ O q(x) (4.6)

We have already done the negation of the right-hand side and translation into WPL, 

yielding:

p(0-»W|^-sk|,x) (4.9)

ip(0-»sk2-»w2,g(0^sk2-^w2,y)) v q(0^sk2-»w2,y) (4.10)

_iq(0^-w3—sk3-^W4,f(0^-w3)) (4.11)

In order to prove (4.6), we can try a refutation resolution proof of the clauses (4.9) through 

(4.11).  Resolution in WPL is basically like ordinary FOPL resolution with the special purpose 

unification method for world paths. We will start out trying to resolve (4.9) and (4.10). The p()- 

predicates unify with

a =  { sk|/w2, sk2/w1; g(0-*sk2-*w2,y)/x }

Thus, the resolvent of (4.9) and (4.10) is:

q(0-*k2- s k 1>y) (4.19)

But the world paths in (4.19) and (4.11) do not unify. So we must start out by E-unifying the q()- 

predicates in (4.10) and (4.11).  Recall that the reflexive and the transitive equality theorem are 

in the KT4 equation theory. Thus, one of the E-unifiers is:

a =  { sk3-»w4/w2 , sk2/w3 , f(0-*w3)/y }

(4.10) and (4.11) then resolve to:

->p(0-^sk2-^(sk3-*w4), g(0-*sk2->w2,f(0-»w3))) (4.20)

(4.20) and (4.9) unify with

a ’ =  { sk2-»sk3/w, , sk|/w4 , g(0-*sk2->w2,f(0-*-w3))/x } 

yielding the empty clause E 11 as the resolvent. This concludes the refutation proof of (4.6).

Summing up this chapter, we introduced World Path Logic as a language to perform 

modal logic deduction in and showed how to translate modal logic formulas into WPL. We 

presented the concept of E-unification, a special kind of world path unification, which has the

11) we use H instead of □ to distinguish it clearly from the modal operator □
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restrictions on the accessibility relation built into it. Deduction then works very similar to 

deduction in ordinary FOPL.

World Path Logic as a language is quite similar to languages for modal deduction 

proposed by other authors [Auffray, Enjalbert 89 and Scherl 92], Our contributions are:

(a) we use only the last universally quantified world as an argument to skolem 

functions, not all of them. This point is further elaborated on in theorem 5.1 in Chapter V.

(b) we state the unique successor property (theorem 4.2). As a consequence of this 

property along with the unique prefix property (theorem 4.1),  world paths in world skolem 

functions equal the prefix of that skolem function in the path, as in O-*>w-*-sk(0-*w). This allows 

us to simplify the notation: The WPL translation function omits world paths from world skolem 

functions. 0^-w^sk is then understood as an abbreviation for 0-*w-*sk(0-»w).

(c) skolemization is integrated into the translation function.

The next chapter will present another language, which will help us to analyze the 

properties of WPL in Chapter VI.
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V . R M L  C O N ST R A IN T  L O G IC

The previous chapter gave an introduction to World Path Logic. We showed how to 

translate modal logic into WPL, how deduction works, and presented the special kind of world 

path unification needed for the deductive process. Doing proofs the language of WPL is one 

thing, reasoning about the language is another. To be able to prove properties of WPL, we first 

need to develop a deeper insight into its semantics.

One possible way of approaching the semantics is to relate them to modal logic according 

to the translation function given in table III, and then go from modal logic back to.FOPL. Our 

approach is different though. This chapter will introduce yet another logic, which modal logic 

can be translated to. It is called Reified Modal Logic (RML) [Frisch, Scherl 91]. Basically, it is 

a constrained form of first order predicate logic. Stressing this fact, we refer to this language as 

’RML Constraint Logic’ or, in short, RML/CL.

As it turns out, WPL is very close to RML/CL. In fact, there is a direct correspondence 

between the two languages, and WPL can be viewed as just another syntactical representation of 

RML/CL. Thus, properties of the relatively easy to reason about constraint first order logic carry 

over to WPL. This relationship between RML/CL and WPL will be the focus of Chapter VI.

This chapter’s presentation of RML/CL is based on [Frisch, Scherl 91] and [Scherl 92], 

It is divided into two parts. The first section covers the translation from modal logic into 

RM L/CL, whereas the following section presents how to do deduction in RML/CL, and justifies 

why it works.

A. Translation into RML Constraint Logic

As mentioned before, the modal operators o and O can be seen as an implicit discourse 

about worlds and their accessibility. In Section IV.A we presented a ’naive’ translation into 

regular FOPL. that made this discourse explicit using quantification over worlds and a special

binary predicate K(wl,w2), which can be read as: "world w2 is accessible from world w l". 

While this translation makes the whole FOPL proof machinery available, the drawback is
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inefficiency due to far more complex formulas. In addition, it appears that much of the syntactical 

and semantic structure of modal logic formulas gets lost in the translation.

The underlying idea of reified modal logic (RML), a non-modal language with 

constrained quantifiers, is to capture some of that modal structure by giving the predicate K () 

special syntactical and semantic consideration. There are designated constraint predicates which 

K() is one of. Actually, K () is the only one in a constant domain logic. A varying domain logic, 

in which a different domain is associated with each world, would require another constraint 

predicate, e.g. EXIST(x,w), to denote that x is an element of w’s domain. To keep things simple, 

we are only considering constant domains for the time being, thus we do not need the EXIST( 

) predicate. Conversion into RML results into a set of constrained sentences plus a constraint 

theory E. Depending on whether a predicate is a constraint predicate or a regular one, it can only 

occur in designated places. While the constraint predicates, as the name suggests, are only 

allowed (a) in the constraints and (b) in E, the regular predicates can only occur everywhere else.

For instance, nP is translated to the constrained sentence Vw.K(0 P(w), while OP 

translates to 3w.K(0 w) P(w). These sentences are semantically equivalent to Vw (K(0,w) -* P(w)) 

and 3w (K(0,w) A P(w)), respectively. In another example, □ 0  P translates to Vx.K(0 x) 3y.K(x y) 

P(y). This sentence can be read as saying for all x, such that x is a world accessible from the 

initial world 0, there exists a y, such that y is a world accessible from x, such that P is true in 

world y.

The translation function into modal logic is given in table IV. Note that every predicate 

and function has an additional parameter, the current world, to account for changing 

interpretations in different worlds.

As an example, consider the KT4 modal logic set of sentences from the previous chapter 

(4 .7), which are repeated here as (5.1-5.3).

□ O p(x)

0°(p(g(y)) q(y))

“i O Vx □ O q(x)

(5.1)

(5.2)

(5.3)

Translation into RML Constraint Logic yields the sentences:

^ Wl:K(0,wl) 3w2:K(w1,w2) P(W2’X) 

3w ’ :K(0.w3) V w <:K(w3,w4) P (w 4’g (w 4 ^ ) )  q (w 4>y)

(5.4)

(5.5)
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Table IV. Translation Function from Modal Logic to RML Constraint Logic

Input: Modal Logic formula ip
Output: RML Constraint Logic formula T((p)

• T M = t(0,<p) {0/wo} substitute 0 for w0

• t(i,ci<p) = Vwi + 1:K(wi(w i + 1) t(i + 1

• t(i, O tp) = 3wi+1:K{Wj,wi + 1) t(i + 1

• t(i,Vx = Vx t(i ,tp)

•  t(i,3x tp) = 3x t(i,v)
• t(i,oA/?) = t(i,a) A t(i,/ff)
• t(i , a  v  (1) = t(i,a) v t(i,yff)
• t(i, -'tp ) = -’ t(i,<c>)
• t ( i , p ( t - | tn)) = p (Wj, t(i ,t,).... t(i,tnl) where p is a predicate
• t(i,f(tv ...,tn)) = flWj.tli.t,).... t{i,tn)) where f is a function or 

constant

“ ■ 3ws:K(0,w5) V x  V w 6:K (w 5,w 6) 3w 7:K(w 6,w7) q (w 7-x ) (5 -6 )

The constraint theory E must reflect the restrictions on the accessibility relation for the 

modal logic system under consideration. Thus, E contains one or more of the axioms listed in 

table V.

Table V. Accessibility Relation Restrictions and Their Axioms in Clausal Form

Modal Logic Restriction Axiom

D serial Vw 1 K(w1,f(w1l|
T reflexive Vw 1 K(w1 ,w1)
B symmetric Vw 1 ,w2 K(w1,w2) K(w2,w1)
4 transitive Vw1,w2,w3 K(wv w2) A K(w2,w3) K(w1,w3)
5 euclidian Vw 1,w2,w3 K(w1,w2) a K(w1,w3) K(w2,w3)

The next step is the conversion of the sentences to prenex normal form. While the 

quantifiers are brought to the outside, the negation operators are moved towards the literals, 

turning around the quantifiers along the way. This is very much like in ordinary first order 

predicate logic, with one exception though: Consider the formula
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( 3 w :K(t,w) «  )  v &(5 -7 )

Moving the quantifier outward, i.e.

3 w :K(t,w) ( a  v P) ( 5 -8 )

requires that there is actually a world reachable from t. If not, and if 0 is also true, then the 

formula (5.7) evaluates to true, while (5.8) is false. If, on the other hand, the seriality axiom is 

part of the constraint theory E, then from every world there is always another world accessible, 

and moving the quantifiers to the front is safe. A similar argument holds for the formula

( V w :K(t,w) «  ) A 0 -

The modal logic system of our example, KT4, is not explicitly serial, nevertheless the 

reflexivity axiom guarantees that there will always be an accessible world. Seriality is entailed 

by reflexivity.

Sentences (5.4) and (5.5) are already in prenex form, and (5.7) converts to

V w 5:K(0,w 5) 3x  3w 6:K (w5,w6) V w 7:K (w 6,w7) " ’‘i K ’* )  (5-9 )

Once a formula is in prenex normal form, 12 is used to get rid of the

existential quantifiers. We will hriefly describe how to eliminate the leftmost existential 

quantifier; the method can then be used repeatedly to make all of them obsolete. Note that a 

prenex form sentence is of the form:

V x,:C , ... Vxn_ ,:C n_ , 3xn:Cn <p (5.10)

where <pis a prenex form formula, n >  0, and 3xn is the leftmost existential quantification. The 

C;s are the constraints. They are of the form K(t,Xj), if Xj is a world variable, otherwise the 

constraint is empty (ordinary quantification).

In the process of skolemization every occurrence of xn in <p is replaced by a function term

sk(x,...... x„_|). where sk is an all new function symbol, distinct from all other function symbols.

The universally quantified variables serve as arguments to the function. However, there is one 

special consideration that distinguishes skolemization in RML Constraint Logic from non-modal 

constraint logic: While [Frisch, Scherl 91] use all universally quantified world variables as

12) named after the Norwegian mathematician Thoralf Skolem, who proved that this technique of existential 
quantifier elimination preserves satisfiability [Skolem 20]
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arguments to skolem functions, we will only use the last one. This is justified by the following 

theorem:

Theorem 5.1 (Only One Relevant World At Each Level) <p be RML Constraint Logic 

formula, which has not been skolem ized, such that <p is o f the form

^X/tCj ... Vxlt_j:Cn_] ‘P 

Let Xj be the highest indexed world variable such xk, where are non-world

variables. Then the other world variables x-, where j < i ,  do not occur within the scope o f  3xJ(, 

i.e. neither in Cn nor in p . Furthermore, xi occurs only in the constraint Cn, not in <p’ itself

Proof: The formula <p is the translation of a modal logic formula. It follows from the 

translation function listed in table IV, that the constraint Cn consists of K(xj,xn) and nothing else. 

As far as references to worlds in the formula <p\ consider for instance the formula Q Q Oa. Then 

the interpretation of a depends on the world accessed by the modal operator immediately 

preceding cx. The formula a  cannot contain any reference to any other world. In fact, a  cannot 

contain explicit references to worlds at all, because there is no syntactical entity representing the 

worlds. ■ »

Another justification for omitting all but the last world variable in skolem functions is 

given later on by lemma 6.4. It states that given two access paths from the initial to the current 

world, where all worlds are ground terms, those paths are equal, if their last world is. In other 

words, there are no two distinct ground paths ending in the same world. Thus, the other worlds 

can be viewed as a function of the last world. This standpoint may seem counterintuitive, but 

lemma 6 .4  is restricted to models over the Herbrand Universe. This, however, is all we need to 

be able to reason about the satisfiability of formulas [Herbrand 30] which is what deduction and 

theorem proving is all about. Therefore, it suffices to use the last (or current) world in skolem 

functions. The skolemized version of (5.10) is:

V xi:C, ... Vxn_ , :C n_| { sk(X)/xn } 13) (5.11)

13) This is a substitution. A substitution is generally denoted as <p { tl/xl, . . . , tn/xn},  where all occurrences of X; 
in tp are simultaneously replaced by their respective tj counterpart
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where X =  { x, | 1 <  i <  n and if x, is a world variable, then there is no other world variable 

Xj with i <  j <  n }.

In addition, information needs to be added to the constraint theory E. Recall that 3xn:Cn 

<P is actually an abbreviation for 3xn (Cn A <p). Hence,

V x,:C , ... Vxn_ ,:C n_ , (Cn A <p) {sk (...)/xn} (5.12)

is equal to:

( V x,:C , ... Vxn_ i :C U_| <p {sk(...)/xn} ) A ( V x,:C , ... Vx11_ l:Cn_ , Cn {sk(...)/x„} )

(5.13)

The left conjunct is equivalent to (5.11), whereas the right hand conjunct of (5.13) goes 

into the constraint theory E. Since Vx^C, a  is just an abbreviation for VX| (C, -*■ a ) , the right

hand side of (5.13) can be rewritten as:

V x ,...x n_ , C, A ... A Cn_ , - ( C n }sk (...)/xn} ) (5.14)

Each Cj, if not empty, is a K predicate, with the first argument equal to the second argument of 

the preceding K literal. So the clause added to E is of the form:

V... K(0,Xj) A ... A K(xn_2,xn_|) -* K(xn_|,sk(...)) (5.15)

In our example, skolemization of the sentences (5.4), (5.5), and (5.9) yields:

Vw':K(0,wl) p(sk,(W|),x) (5.16)

Vw4:K(sk2,w4) P(w4,g(w4,y)) -* q(w4,y) (5.17)

V w s :K(0.w5) V w 7:K(sk3(w5) ,w7) “ ^ 7, ^ 5) )  (5 .1 8 )

The above skolemization requires the following sentences to be added to the constraint theory E:

Vw, K(0,w,) -* K(W|,skj(w,)) (5.19)

K(0,sk2) (5.20)

Vw5 K(0,w5) -* K(w5,sk3(w5)) (5.21)

In addition to these sentences, E contains the accessibility axioms from table V for the logic 

system KT4, i.e. reflexivity and transitivity:

Vw, K(W],w,) (5.22)

Vw,,w2,w3 K(W],w2) A K(w2,w3) -»• K(w,,w3) (5.23)

Note the following property of the RML constraint theory E:
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Theorem 5 .2  AH o f the clauses in the constraint theory E are definite clauses. [Frisch, Scherl 

91]

Proof: Clearly, all sentences added by skolemization are of the form of expression (5.15) 

which is a definite clause. The only other sentences in E are those representing the accessibility 

axioms, as shown in table V. They all are also definite clauses. ■ *

The next step after skolemization is the conversion to clausal form such that each clause 

is a disjunction of literals. As usual, we admit the implication operator within clauses, since 

<v -*■ (3 is just an abbreviation for v /3. In our actual example however, there are no changes 

necessary, since the sentences (5.16) to (5.23) are already in clausal form.

Note that a constrained clause of the form

Vw,:K(0,W|) ... Vw]1:K(w11_|,wn) (5.24)

is equivalent to

Vw, ...w„ ( K(0,w,) A... A K(wn_ | ,wn) ) -»> (5.25)

Now, since it is common to drop universal quantifiers, the above clause can be written as

tp/ K(0,w,) A ... A K(wn_ ,,w n) (5.26)

where the right hand side to the slash is the constraint. This convention allows for the elimination 

of all quantifiers and conversion of the remaining formula into conjunctive normal form. Each 

clause is associated with a constraint, which is a (possibly empty) conjunction of K predicates.

With this convention the final result of translating our modal logic example into RML 

Constraint Logic is:

a) the set of constrained clauses:

p(sk,(w ,),x) / K (0,w ,) (5.27)

P(w4,g(w4,y)) q(w4,y) / K(sk2,w4) (5.28)

“iq(w7,f(w5)) / K(0,w5) a K(sk3(w5),w7) (5.29)

b) the constraint theory E:

K(0,W)) -*• K (w ,,sk,(w ,)) (5.30)

K(0,sk2) (5.31)

K(0,w5) -» K(w5,sk3(w5)) (5.32)

K(w1,w 1) (5.33)

K(W|,w2) A K(w2,w3) -*• K(W[,w3) (5.34)
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Summarizing the procedure, the implicit discourse about worlds in a modal logic set of 

sentences is made explicit by translating the modal operators into constrained quantifications over 

worlds, with world variables as additional arguments to predicates and functions. The resulting 

set of constrained sentences is accompanied by a constraint theory E, which accommodates the 

axioms pertaining to the accessibility relation. After converting the set of constrained sentences 

to prenex form, skolemization eliminates the existential quantifiers. Skolemization of constrained 

quantified variables requires the addition of clauses to the constraint theory E. Finally, the set of 

constrained sentences is converted to clausal form, and the universal quantifiers are dropped, 

while their constraints are conjuncted and associated to each clause.

The conversion procedure outlined above preserves satisfiability, as was shown by 

[Frisch, Scherl 91], This means that a modal logic set of sentences <p is satisfiahle if and only if 

S u E is satisfiahle, where S and E are the set of constrained sentences and the constraint theory 

resulting from the conversion into RML Constrained Logic. Based on this translation, the next 

section will present how deduction works in a constraint logic.

B. Deduction in RML Constraint L ogic

This section presents a deduction system for Constraint Logic, that is based on and has 

been developed from regular FOPL deduction. A central point for the understanding of this 

section is the relationship between quantified variables and their instances. In a first order logic 

clause like P(x) Q(x) the implicitly universally quantified variables can be interpreted either 

as just certain elements in the syntactical structure of the clause, or they can be understood as 

placeholder such that the clause is viewed as a scheme standing for the set of all its ground 

instances (a ground instance A of an expression B is a substitution o into B, such that A =  Ba 

is variable-free). This notion is motivated by Herbrand's Theorem [Herbrand 30], which states 

that a set of quantified sentences is satisfiahle if and only if the finite set of its ground instances 

is. Then first order logic deduction can be performed using simple propositional deduction on the 

set of ground instances. This is rarely done, however. Unification is used instead. Ever since the 

advent of resolution in the 1960s, virtually every automated theorem proving system has used 

unification to treat universally quantified variables. Where a deduction system for ground 

instances checks for equality of terms, a corresponding system for quantified sentences tests for
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unifiability instead. The idea of unification is to instantiate a variable only as far as necessary, 

delaying the actual choice of ground instances for as long as possible. Thus, deduction on 

quantified sentences is itself schematic for deduction on ground sentences. As an example 

consider resolving P(x,y) Q(x,y) with P(a,f(z)), yielding Q(a,f(z)). Note that every ground 

instance of the resolvent can also be obtained by resolving two ground instances of the clauses. 

What is more, every resolvent on the ground level is also an instance of Q(a,f(z)).

This relationship between deduction on quantified sentences on the one hand and 

deduction on ground sentences on the other, is usually formalized in a lemma.. It states that 

if S’ is a resolvent of S j’ and S2\ and if S j’ , S2’ are instances of the quantified sentences S| and 

S2, then there is a resolvent S of S, and S2 such that S’ is an instance of S. In other words, every 

deduction on the ground instances of a set of sentences can be made schematically from the 

sentences themselves.

Deduction for Constraint Logic works in a very similar way. The important difference 

is that a Constraint Logic sentence does not stand for all of its ground instances, but only for 

those that obey the constraints attached to the variables:

Definition 5.1 (E-ground Instance) Let s/C  be. a constrained sentence, E the constraint theory, 

and a a substitution such that so is ground. Then so is 'Z-e round instance o f s/C, Co 

solvable.

Definition 5 .2  (E-solvability) Given a constraint C, C  is said to be iff there exists

a substitution p such that Cp is ground and E *= Cp.

Definition 5.3 (Set of E-ground Instances Egr’) L g r ’(s/C) is a function mapping s/C to the

set o f all its 1,-ground instances: L g r ’(s/C) =  {sj so is ground and there exists a p such that

Cop is ground and E ~ Cop}.

Notice that E is used only to determine whether the constraint is solvable. The E-ground 

instances themselves do not contain any variables nor any constraints.

As to the satisfiability of a set of Constraint Logic sentences, a variant of die Herbrand 

Theorem applies. The Constraint Herbrand Theorem [Frisch, Scherl 91] states that, given a set
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of constrained skolem normal form sentences S and a constraint theory E, S u E is satisfiahle 

if and only if the set of all E-ground instances of members of S is satisfiahle14.

Thus, deduction in Constraint Logic could be done performing ordinary propositional 

resolution on the E-ground instances of the constrained sentences. This is valid, because E 

becomes irrelevant once the set of all E-ground instances has been obtained.

But then again, we could as well do the deduction schematically on the quantified level. 

Suppose ordinary FOPL deduction derives s3a from the sentences s, and s2, where a is the 

substitution used in the particular deduction. Then in Constraint Logic, (s3 / C, A C2)a can be 

deduced from s,/C| and s2/C2, provided die joint constraint CjAC^ is E-solvable. This is 

justified by the argument that all resolvents of E-ground instances of s,/C| and s2/C2 must 

simultaneously satisfy both constraints. If, however, C, A C 2  is not E-solvable, i.e. no such 

ground resolvent exists, then (s3 / C, A C^o  is not a scheme for any derivable ground sentence, 

and the deduction would not be sound in this case.

What we have described above, is manifested in the Constraint Lifting Lemma [Frisch, 

Scherl 91]: Given a set of constrained clauses S and a constraint theory E, if s’ is derivable from 

the E-ground instances of S by constraint resolution, then there is a clause s derivable from S, 

such that s ’ is a ground instance of s.

Furthermore, constraint resolution is complete. If S u E is in fact unsatisfiable, then the 

empty clause can be derived [Frisch, Scherl 91].

Let us now go back to our example, and try a refutation proof of (4.6), which is repeated 

here as (5.35)

□ Op(x) A O Q(p(g(y))-» q(y)) i- O V xD O q(x) (5.35)

We have already negated the right hand side, added it to the other two conjuncts on the left, and 

translated the sentences into skolem normal form RM L/CL, yielding S, the set of constrained 

clauses in (5.27)-(5.29), and the constraint theory E in (5.30)-(5.34). The q() literals in (5.28) 

and (5.29) unify with a =  { w4/w7, f(w5)/y } , yielding the resolvent

- lP(w4,g(w4,f(w5))) / K(0,w5) A K(sk3(w5),w4) A K(sk2,w4) (5.36)

14) Restrictions apply: all constraints must be positive, and E must contain definite clauses only. This restriction 
is met by RML Constraint Logic in most modal systems.
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The constraint is E-solvable with p =  { sk2/w5, sk3(sk2)/w4 }, because

E ► K(0,sk2) A K(sk3(sk2),sk3(sk2)) A K(sk2,sk3(sk2))

Next, (5.36) is resolved with (5.27). The most general unifier of the p() literals is a =  { sk,(w ,) 

/ w4 , g(skj(W|),f(w5)) / x } , and the resolvent is

ia / K(0,w5) a K(sk3(w5),sk,(w ,)) A K(sk2,skj(W|)) A K(0,w,) (5.37)

Thus, we have derived the empty clause. We just need to make sure the constraint is E-solvable. 

A possible solution is p =  { sk3(sk2) / W| , sk2 / w5 }, since 

E -  K((),sk2) A K(sk3(sk2),sk,(sk3(sk2))) A K(sk2,sk,(sk3(sk2))) A K(0,sk3(sk2)). (5.38)

Let us compare this solution with the refutation proof of the same theorem in WPL. 

There the empty clause was finally derived resolving the two p() literals in (4.9) and (4.20) along 

the world path 0- -̂sk2-*sk3-»sk,. As mentioned by the WPL translation function in Chapter IV, 

the skolem functions have their path prefix as implicit world arguments. Thus, O-^sk^sk^sk , 

is just an abbreviation for 0~*sk2(0)-»'sk3(sk2(0))-*’sk1(sk3(sk2(0))). Notice the resemblance between 

this path and the terms in the constraint of (5.38). The first conjunct in (5.38) tells us that sk2 

is accessible from 0, the second conjunct suggests that sk3 is accessed from sk2, and sk, from 

sk3. The last two conjuncts follow by the transitive property of logic KT4.

Apparently, (5.38) utilizes the same world path 0-»sk2-»sk3-*sk, in some way. There 

seems to be a close relationship between deduction in WPL and deduction in RML Constraint 

Logic. This relationship will be the focus of the next chapter.
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V I. W O R L D  PA T H  L O G IC  VS. R M L  C O N ST R A IN T  L O G IC

The previous chapter presented modal logic deduction via translation into RML Constraint 

Logic. We showed how to do deduction in Constraint Logic, and justified why it works. As far 

as deduction in World Path Logic, Chapter IV covered the '-part. Explaining it works, 

is the issue of this chapter.

Our approach is to relate WPL to RML/CL, thus drawing upon the close correspondence 

between the two languages. We are going to show that a deduction in WPL can be simulated in 

RML/CL. Thus, Frisch and Scherl’s soundness and completeness results for RML/CL, as 

surveyed in Chapter V, carry over to W PL.15 The presentation is divided into 4 sections, 

covering the following topics:

• WPL terms have the same ground instances as corresponding RML/CL terms, where 

the WPL term’s path matches the RML/CL term’s constraint (Section A).

• The conjunction of constraints in RML/CL deduction corresponds to the unification 

of paths in WPL. In particular, we show that (a) a world path resulting directly from 

the translation represents the same set of worlds as its corresponding constraint in 

RML/CL, and (b) this identity is preserved over a deduction step. In other words, 

unification of paths is equivalent to the conjunction of constraints, as far as possible 

final worlds are concerned (Section B).

• The test for E-solvability in RML/CL deduction is replaced by unification in WPL. 

Two paths unify if and only if the conjunct of the corresponding RML constraints is 

E-solvable (Section C).

• Tieing together the results of the first three sections, we argue that a deduction in 

WPL can be simulated in RML/CL (Section D).

15) It should be noted that the idea of proving properties of one deduction method by relating it to deduction in 
a first order logic of restricted quantification, is not unique to us. |Gent 92| as well as (Scherl 92) pioneered this 
approach. In fact, Scherl uses it to prove properties of his world sequence representation. His theorems and proofs 
are quite different though.
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A. Ground Instances

Suppose we translate the same modal logic expressions into WPL and into RML 

Constraint Logic, using the same skolem function names in both translations. For instance, 

consider <p =  DOq. While the translation into WPL yields q(CH-w-»sk|), which is an 

abbreviation for q(0-*’W-»sk1(0-»,w)), the translation into RML Constraint Logic results in the 

sentence S = {q(sk((w)) / K(0,w) }, and in the clause K(0,w) -* K(w,skj(w)) as part of the 

constraint theory 2, Since this clause is in 2 , we can safely extend the constraint by the conjunct 

K(w,sk|(w)) without narrowing down the solution space. This gives us the equivalent sentence 

q(sk|(w)) / K(0,w) A K(w,sk|(w)), where the constraint represents the full world access path 

from the initial world 0 to the world in the q() literal, sk|(w). Note that this path is the same 

path as in the WPL translation, q(0-*w-»sk|(0-*w)). Now, while the translation into WPL does 

not explicitly set up a constraint theory 2 , we know that for every non-variable term t in the 

world path, a translation into RML/CL would put a clause with K (...,t) on the right hand side 

into 2, This is a key property of WPL, and we refer to it as T^-consistency. A more formal 

definition of 2-consistency will follow shortly.

In essence, the information of 2  is stored implicitly in the world paths that result from 

the translation into WPL. More precisely, it is the part of 2  which is created by skolemization. 

The remaining part of 2  is the one pertaining to the accessibility restrictions. This information 

is not stored in the paths, however, it is embedded into the world path unification algorithm. 

Recall from Section IV.C that the unification algorithm employs special features, depending on 

the accessibility axioms under consideration. Therefore, 2  is not really needed as an explicit 

entity in WPL.

Before we define 2-consistency, we need to go over a few notations regarding paths and 

accessibility:

Notations: Given a world path P, let P; denote the i-th term in the path such that P =  

P0-H-P|-i*...-»,Pn. Then last(P) =  Pn, and length(P) =  n. Furthermore, let K be the binary FOPL 

predicate corresponding to the accessibility relation. The accessibility of P; from P;_j in terms 

of FOPL cannot be written as K(Pi_j,Pj),because the paths would violate the FOPL syntax, but 

it can be expressed as K(P'j_j,P’j), where P’j is defined as follows:

• P’j =  Pj . if Pj is a variable
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• P’j =  skx(Var(Pj)), if Pj is of the form skx(...) , where Var(Pj) is the set of all world 

variables and non-world variables in the term Pj.

Example: Translate <p =  □ O □ 0  q into WPL. This yields q(P) with the path P =  

0 -*w1-»sk1-»-W2-»-sk2 , which is an abbreviation for:

P =  0-*w ]-»sk | ((H-w | )^-w2-^sk2(0-*w |-*sk, (0-*-w | )-*-w2) - 

Then P4 =  sk2(0-*-w1-»'Sk](0-»w])-*W2), and K(P’3,P’4) =  K(w2,sk2(W|,w2)).

For notational convenience however, we will omit the primes when the meaning is clear. 

Also, at times we will use Kj as an abbreviation for K(P’j_ (, P’ when the path is 

understood. ■■

Definition 6.1 (E-consistency) Given a WPL path R and a constraint theory E, R is said to be 

^-consistent, i f  fo r  any prefix P o f Rsuch that length(P) =  n and last(P) is a non-variable,

E -  Kj A ... A

A WPL literal is said to be E- c o n s i s t e n t ,i f  its path is.

As mentioned before, paths resulting from the translation into WPL are E-consistent. This 

is expressed in the following lemma:

Lemma 6.1 (Initial E-consistency) Let P be a prefix o f an initial world path, i.e. a world path 

resulting directly from translation of modal logic, into WPL. Then, is a non-var,

E a -  a

Proof: Let Pvl, Pv2, . .. .  Pvm be all the variables in P such that Vj is the index of the j-th 

variable in P. Then

Kvl A ... A -  Kn (6.1)

must be a clause in E. As an example, consider the path 0-*w1-»sk](0-*w1)-»W2--»,sk2(0-*-W|-»- 

sk^O-^Wj)-*^). The corresponding clauses in E are: K(0,Wj) -* K(sk,(w1),w2) and K (0,w ,) A 

K(skl(w1),w2) -*• K(w2,sk2(w ,,w2). This follows clearly from the RML skolemization procedure.

Now take any literal Kj such that Pj is a non-variable. There must be a clause in E with 

Kj on the right-hand side:

K̂ ,, A ... A Kyj -» Kj
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where Vj <  j. The left hand side of this clause consists of all the literals K ,̂ such that x < j and 

Px is a variable. Thus, the left hand side is implied by the left-hand side of (6.1), and we can add 

K( to the antecedent of (6.1):

Kj A Kyi A ... A Kvm^ K 11

After repeated application of this argument we will eventually have extended (6.1) to the clause 

K, A ... A Kn_, -»  Kn.

Up to this point, we have not yet defined the semantics of a WPL expression. For that 

purpose, we will draw upon the similarity between WPL and Constraint Logic. As previously 

mentioned, every WPL clause resulting from the translation has a corresponding clause in 

Constraint Logic. This holds for WPL formulas in general.

Given a WPL literal L (P ,...) , the corresponding Constraint Logic term is: LAST(L) / 

constraintP) , where LAST{) and constraint) are defined as follows:

Definition 6.2 (Function L A ST () ) Given a WP literal L, LAST(L) maps L t o L ’ such that L ' 

is the result o f the following operation on the syntax o fL : (a) copy L to L ’, (b) replace all world 

paths P in L ' by lasr(P).

Note that a WPL literal can contain more than one path, as in the translation of ° 3 x  0  q, 

which is q(0-*-w-*sk], f(0-*w)). The other paths are due to skolemization. All those paths, 

however, are prefixes of the first path. This is guaranteed by the unique prefix property (theorem 

4.1) and the unique successor property (theorem 4.2).

As for this example, remember that every skolem term in a path has all of its prefixes 

ending in a variable as implicit arguments. O-^w-^skj is just an abbreviation for O-^w-^sk^O-^w). 

Thus, L/lST^O-^w-^sk^tO-^w))) =  q(sk](w),f(w)).

Definition 6 .3 : (Function path() ) The function path() extracts the path out o f a WPL literal. 

Let L be a WPL literal o f the form q(P,...).Then path(L) =  P.

Definition 6.4: (Function constraint) ) The constraint) function converts the path P of a 

WPL literal into a corresponding conjunction of K literals. Given a path P, constraint(L) =  K,

A A K length(P)-
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As an example, let L again be q(0-*-w-*sk| ,f(0-*-w)). Then is K(0,w)

A K(w,skj(w)).

As to the semantics of a WPL literal with variables, we will treat it as a scheme standing 

for the set of its ground instances. Similar to Constraint Logic, however, we want to consider 

only instances that are justified by the constraint theory. We will refer to those instances as E- 

ground instances.

More precisely, the set of E-ground instances of a WPL literal L should be identical to 

the set of E-ground instances of its Constraint Logic counterpart LAST(L) /

This is achieved by the following definition:

Definition 6.5 (E-ground Instances of W PL, Set Egr) Given a literal L and a 

substitution o such that La is variable free , LAST(Lo) is a instance o f L if  and only

La is L-consistent.

E gr(L)is a function mapping L to the set o f all such instances

Theorem 6.1 (Ground Instance Equivalence) Given a WPL literal L, the set o f

its E-ground instances is equal to the set o f E-ground instances o f its Constraint Logic 

counterpart LAST(L) I'constraint ( P ) , i . e .

Egr(L) =  Egr Y LAST(L)/constraint(path(L))).

What this theorem says, is that it does not matter whether we go from a path to its 

ground paths and then convert it into RML Constraint Logic as in LAST(La), or if we switch to 

Constraint Logic first, and then take the E-ground instances, i.e. ’ such that there exists

a grounding substitution p such that E -  constraint (path (L))o'fi. This is not trivial: if we 

substitute on the WPL literal directly, then the length of the path can change, as the substitution 

can contain the neutral element ’ 1’ , inverse elements, or sub-paths, in the cases of reflexivity, 

symmetry, and transitivity, respectively. If, however, the substitution is done on the Constraint 

Logic equivalent, then the length of the access path is predetermined by the number of K- 

conjuncts in the constraint.
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Take any element of Egr’( LAST(L) / cons(P ) ) , where P =  L). The element 

equals LAST(L)o for some substitution o such that is ground. Also, there must exist

a p such that constraint(P)op is ground. Now perform the same substitutions directly on L, and

hence, on the world path P. The joint substitution op cannot contain any special symbols like the 

neutral element (reflexivity), inverse elements (symmetry), or world path substrings (transitiv ity), 

because they are not defined for Constraint Logic. Therefore, =  ) =

LAST(Lap), and constraint^* )op =  consrraint(Pop) =  constraint(path(Lop)). Furthermore, since 

£  >= consrraint(P)op by definition of E-ground instances in Constraint Logic, E -

constrainr(pa.rh(Lop)). Thus, path(L op)is E-consistent, and therefore, LASTXLop) =  LAST(L)o 

is a member of Egr(L).

As an example, consider QOq in modal logic KT. The WPL translation yields L =  

q(0^>w-»-sk1), the corresponding constraint theory of translation into Constraint Logic is E =  

}K(w,w); K(0,w)-»K(w,sk](w)) } . The Constraint Logic equivalent of L is LAST(L) / 

constraint(path(L)) =  q(skj(w))/K(0,w) A K(w,skj). Its only E-ground instance isq(sk|(0)), where 

o =  {0/w} and p =  { } .  This, however, is also a E-ground instance of L, because the path of 

Lff t̂, 0-4>^sk|(0), is E-consistent. ■

Part (h): Egr(L) £  Egr’( LAST(L)/constraint(patli(L) ) )

We will prove this by showing that for every grounding substitution a on a E-consistent 

path 0, where Q=path(L), we can construct a grounding substitution o' for the Constraint Logic 

counterpart LAST(L)/consrraint(Q) such that:

(a) if Qo is E-consistent then E *  constraint(Q)o'

(b) la.st(Qo) =  Qno\ where n =length(Q)

The proof is by induction on the cardinality of a. As the induction hypothesis, suppose 

the preceding statement holds for all Q, o as long as |a| =  n. That is, we can then construct a 

o' such that conditions (a) and (b) are met.

The induction hypothesis holds trivially for the base case, where 0  is already ground, o 

=  { } ,  and o' =  (} .
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Now, take another E-consistent path P and a singleton substitution /x such that P/x =  Q. 

Then we can construct a /x’ such that (a) and (b) hold for P instead of Q, (p,a) instead of a, and 

(/xV ) instead of o’ , thus extending the cardinality of the substitution under consideration to n+ I. 

We need to distinguish four cases:

(i) /x =  {1/P;} and the accessibility relation is reflexive. Then Q =  P/x =

. . .-*P;_]-*P;_|_j-*... Thus, constraint(P) =  constra/(Q) A K (Pj_,,P;). We need to show that

E •- ( constraint̂ ) A K(P;_ j,Pj) ) /xV  

for some /x’ . Let /x’ be { Pj_|/P; }. Then, since Pj does not occur in 0 ,  this is equal to

E i- c o n s t r a i n t ^ ) o’ A K(P; _ (,Pj_ j) o’ 

The left conjunct holds by the induction hypothesis, the right conjunct follows from the 

reflexivity axiom in E.

For property (b) assume the critical case i =n , i.e. /x substitutes the last term of the world 

path P. By the induction hypothesis, l a s t ( P f i o )  =  Pn_,ff\ Conveniently, Pn /x’ =  Pn_ , .  Thus, 

last(P(fxo)) =  Pn_|ff’ =  (Pn/ x > ’ =  P„ o')- ■

(ii) /x =  {P i_ 1- I /Pj} and the accessibility relation is symmetric. Then Q =  P/x =  

...^ P j_ 2^ P j+ |^... Thus, constraint )̂A K(Pi_ 2,Pi_ i)  A K(Pi_ , ,P i) A K(Pj,Pi+1) •= 

constraint^). It suffices to show that

E i- ( constraint̂)A K(Pi_ 2,Pi_ 1) A K(Pi_ , ,P i) A K(Pj,Pi+1) ) ft o' 

for some /x’ . Let /x’ be { Pi_ 2/f>i }, if Pj_| is a non-variable. Otherwise let /x’ be {Pj_2^Pi> 

f(Pj_2)/P j_ i}, where f( )  is the function used in the seriality axiom K(w,f(w)) in E. Then, since 

P; does not occur in Q, and K(Pj,Pi+ |)/x’ =  K(Pj_2,Pi + 1) is part of ), this is equal

to

E constrai.nt(Q) o' A K(Pj_2,P j_j) A K (P j_,,P j_2) /xV  

The leftmost conjunct holds by the induction hypothesis, the rightmost literal follows from 

K(P1_ 2,Pi_|)/x'a’ by the symmetry axiom in E. Now consider the remaining literal 

K(Pj_2,Pj_|)/xV . If Pj_ , is a variable, then f(Pj_2 ) is substituted for P j_ (, and the literal is 

entailed by the seriality axiom. Otherwise, if P;_ j is not a variable, then K(Pj_2,Pj_|) follows 

from the E-consistency of P.

For property (b) assume the critical case i= n , i.e. /x substitutes the last term of the world 

path P. By the induction hypothesis, last(P^o) =  Pn_ 2ff\ Conveniently, Pn /x’ =  Pn_ 2. Thus, 

Iast(P(no)) =  P„_2 ( P y ) o ’ =  Pn (ji’o’). m
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(iii) fi =  {(R 1-*...-»Rk)/Pi} and the accessibility relation is transitive. Then Q = P/* =  

...-*P i_»|-*R|-*...-*,Rk-*Pj+ i-*... Thus, constrai) A K(Pi—, ,Pj) A K(Pj,P;+ ,) >- 

constraintiP). It suffices to show that

E ►- {constraintiQ) A K(Pt_ , ,P ;) A K(Pi,Pi + 1) ) 

for some /i\ Let be { Rk/Pj }. Then, since P; does not occur in Q, this is equal to 

E »- constraint{Q) o' A K(Pj_|,Rk)cr’ A K(Rk,P i + |)a’

The leftmost conjunct holds by the induction hypothesis, the rightmost literal is already part of 

constraintiQ). K(P;_|,Rk) follows from constraint^) by the transitivity axiom in E, since 

K(Pj_ j, R|) A ... A K(Rk_|,Rk) is part of constraint(Q).

For property (b) assume the critical case i =  n, i.e. /i substitutes the last term of the world 

path P. By the induction hypothesis, l a s t ( P fio) = Rku’ . Conveniently, Pn =  Rk. Thus, 

lastU'ino)) =  Rka ’ =  (P llM> ’ =  Pn (/*V ). ■

(iv) fi =  {t/Pj}, such that non of the cases (i) - (iii) applies. In other words, t is an

ordinary world term. In that case let fi = f i ,  and the properties (a) and (b) follow trivially. This 

completes the proof of theorem 6.1. ■■

B. Path Unification vs, Conjunction of Constraints

Both WPL and RML/CL use world terms to make modal logic’s implicit discourse about 

possible worlds visible. While RML/CL restricts world terms by explicit constraints and a 

separate constraint theory E, the world paths serve a similar purpose in WPL. When it comes to 

deduction, WPL uses the unification of world paths, whereas a resolution step in RML/CL 

requires the conjunction of two constraints, plus the unification of their last world term. In effect, 

both methods have a deduction step narrow down the set of possible worlds.

This section’s goal is to show two things: (a) a world path resulting directly from the 

translation represents the same set of worlds as its corresponding constraint in RML/CL, and (b) 

this identity is preserved over a deduction step. In other words, unification of paths is equivalent 

to the conjunction of constraints as far as possible final worlds are concerned.

As an example, consider the translation o fO D q  A Q O -iq  which results in the set of

RML/CL sentences S =
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q(w,) / K(sk,,w1) (6.2)

-iq(sk2(w2)) / K(0,w2) (6.3)

and the constraint theory E =

K(w,f(w)) (6.4)

K(0,sk,) (6.5)

K(0,w) -*• K(w,sk2(w)) (6.6)

Given this E, S can be rewritten in this equivalent extended form:

q(wj) / K (0,sk,)A K (sk1,w 1) (6.7)

-iq(sk2(w2)) / K(0,w2) A K(w2,sk2(w2)) (6.8)

where each constraint corresponds to the full access path from the initial world 0 to the respective 

current world. Resolution of (6.7) and (6.8) with the unifier a — { sk2(w2)/W| } yields:

H / K(0,sk,) A K(sk|,sk2(w2)) A K(0,w2) A K(w2,sk2(w2)) (6.9)

The next thing to do is to check E-solvability of the constraint in (6.9). This means 

finding a grounding substitution for the constraint such that the constraint is entailed by E. Note 

that the first literal, K(0,sk,), is an instance of the third, K(0,w2). If the first literal is true, then 

we do not need to worry about the third. We just make sure the substitution contains [i =  

{sk|/w2}, thus making the third and first literal equal. Conveniently, n also unifies the other two 

literals. Hence, the problem is reduced to testing the E-solvability of

E -  K(0,sk]) a K(skj,sk2(sk,)) (6.10)

This constraint is already ground, and it also follows from E. Thus, (6.9) is E-solvable, and the 

empty clause 0  has been successfully deduced.

Now translate the same modal formula, O Qq A □ 0  -iq, into WPL:

q(0-^-sk1-^W|) (6.11)

q (0-^w2—sk2) (6.12)

These two clauses unify along the path O-’-s k ,-* ^  , resolving into the empty clause. Note the 

similarity between this ground path and the grounded constraint in (6.10). We want to prove that 

both, the unified paths of (6.11) and (6.12) as well as the conjuncted constraints in (6.10), 

necessarily end in the same world, sk2 . 16 But first, we need to define what is meant by the 

worlds that a path or a constraint can end in.

16) actually in sk2(skj). Recall that 0-^skj-*sk2 is an abbreviation for 0-»skj-*sk2(sk]),
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Definition 6.6 (Ground Last Worlds of a Path) Given a path GrLW(P) denotes the set o f 

possible ground last worlds o f that path:

GrLW(P) =  { last(Po) \ Po is E - and ground }

Given a set o f paths S, GrLW(S) =  U P6S GrLW(P).

Example: Consider the paths in (6.11) and (6.12), and assume a serial logic KD. Then 

GrLW(0-*sk,->w,) =  { sk2(sk,), f(sk,) } 17 and GrLW(0^w2-*sk2) =  { sk2(sk,), sk2(f(0)) }.

Definition 6.7 (Ground Last Worlds of a Constraint) Given a world term t and a constraint 

C constraining t, (t occurs in the rightmost K literal o f the constraint), GrLW(t.C) denotes the 

set o f all possible ground instances of t such that the constraint C is E-

GrLW(t.C) =  {to | to is ground and 3/x such that E >-

As an example, consider the constraints from (6.7) and (6.8). GrLW(wj, 

K(0,skj) A K(sk,,w ,) ) =  { sk^sk,), f(sk,) } , and GrLW(sk2(w2), K(0,w2) A K(w2,sk2(w2)) ) =  

{ sk2(skj), sk2(f(0)) }.

Notice that the examples to definition 6.7 result in the same world, sets as the examples 

to definition 6.6. The next theorem states this identity, i.e. it justifies that the set of possible last 

worlds of a path P is equal to the set of possible last worlds of P’s RML/CL counterpart 

constraint^P):

Theorem 6.2 Given a WPL path P and a constraint theory) E, GrLW(P) =  

GrL W( Pn, constraint (P)).

Proof: Take an arbitrary predicate, say )\  and construct the WPL literal

dummy(P). Its E-ground instances are equal to GrLW(P). More precisely: dummy(f)

Hgr{dummy(?)) if and only if t E  GrLW(P). This follows by the definition of E g r() and 

GrLW().

Next, construct the corresponding RML/CL predicate Then

its E-ground instances are also equal to dummy (l) E

17) f() is assumed to be the function used in the seriality axiom K(w,f(w))
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Egr’(d«wzwy(Pn)/ constraint^)) if and only if t G GrLW(Pn,P). This again follows from the 

definitions of Egr’Q and GrLW ().

Now it suffices to show that 'Lgr(dummy(Pj) =  Egr'(dummy(Pn) / constraint^*)). But this 

is guaranteed by theorem 6.1. ■■

With the proof of the above theorem we have reached the first goal of this section. Based 

on the findings of Section A we know that the translation of modal logic into WPL has a path P, 

where the translation into RML/CL has a constraint equivalent to constraint(P). And theorem 6.2  

states that both represent the same set of final worlds.

The next theorem which we are working towards will establish what we intended to prove 

as the second goal of this section: Unification of paths is equivalent to the conjunction of 

constraints, as far as possible final worlds are concerned. This proof uses the lemmas 6.2 to 6.4, 

which will be presented next.

Consider the world sk2(sk|)), which is the solution of (6.9), where two constraints are 

joined. Note that it is identical to the intersection of the two sets pertaining to the two individual 

constraints, as listed in the example to definition 6 .7 . As one might expect, this is not a 

coincidence. The following lemma establishes this relationship:

Lemma 6.2 (Ground Worlds Set Intersection) Given two constrained world terms, tj and 

along with their constraints, Cj and C2, then:

GrLW(tjfx, Cjnt A C2n) =  GrLWftj.Cj) D GrLW(t2,C 2) 

where fi is the MGU o f tj and t2 .

Proof: ( £ )  Take any w such that w G GrLW(t(^, Cj/x A C /̂x). Thus, w =  tj/xa for 

some a , and C^fia is E-solvable, since C t/x A Ĉ /x is E-solvable by definition 6 .7 . Therefore, w 

G GrLW(t|,C[). A symmetric argument holds for w G G rL W ^ C ^ ).

( 2 )  Now, take any w such that w G GrLW O:^^) and w G G rL W ^ C y . Then w =  

t (a  for some a, and w =  t2jS for some /3. Assume WLOG18 that C 1 and C2 are variable 

disjoint. Thus, w =  tj(or/3) =  t2(o:/5). Hence, t] and t2 unify with an MGU, say /x. Thus, (a/3) 

= jxcr for some possibly empty a. Since w =  t Ĝ GrLW tt^C,), C^g-o must be E-solvable.

IS) WLOG = without loss of generality
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The same holds for C ^kt. Thus, the conjunct C j/kt A i s  E-solvable. Thus, w E  GrLW(t,^, 

C| fi A C^). ■■

Lemma 6.3 (E-consistency of Ground Paths) Given constraint theory E, a ground world 

path P is E- consistent i f  and only if

E *= constraint(P)

that is: E -  K(P0,P ,) A ... A K (P„_j,Pn)

Proof: Since all P; are ground, the definition of E-consistency requires 

E •- K(P0,P,) A ... A ^ P j^ .P i.^ -K C P j.j.P j)

for all i. This is:

S -  K(P0,P|)

E * K(P0,P|) -  K(P„P2)

E -  K(P0,P,) A K(P,,P2) - K ( P 2,P3)

E -  K(P0,P,) A ... A K(Pn_2,Pn_,) -*> K(Pn_,,Pn)

This is equivalent to:

E -  K(P0,P,) A ... A K(Pn_,,Pn) ■■

The next lemma states that there can only be one access path to each world. For instance, 

it is not possible to have the two paths O-^skj-^skj and 0-*sk3-*sk2 in the course of a deduction. 

In other words, once the final world of a path is known, the whole path is determined.

Scherl proved a similar property of the Least Herbrand Model of E. Freely phrased, a 

ground literal is true in the Least Herbrand Model if and only if it is true in all models. Thus, 

saying K (t,,t2) is true in the Least Herbrand Model, is saying E *  K(t|,t2). If the accessibility 

of t2 from tj in the Least Herbrand Model is represented as an edge in a graph such that the 

vertexes are ground worlds, then the graph forms a tree with 0 as the root [Scherl 92],

Lemma 6 .4  (Ground Path Identity) Given two ^-consistent paths P and Q such that both are 

ground, and last(P) =  last(Q), then P = Q.
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Proof: Suppose P ^  O- Since both paths are ground and E-consistent, lemma 6.3 

applies. Thus:

E -  K(P0,Pj) A ... A K(Pn_ „ P n) 

and E -  A ... A K(Qm_ ,,Q 1T1).

By the hypothesis, Pn =  Qm. Going from right to left, there must be a first term in P that 

differs from its counterpart in 0 -  Formally, there must be an i such that P; ^  Qj, where 

j = i + m—n and Pi+k = Qj+k for all k €  { l , . . . ,n  — i}. Thus, E >= K(Pi,t) A K(Qj,t), where t =

f’ i+i =  O j+ I-

Now, tlie clause that makes K(Pj,t) true, cannot be the reflexivity axiom. As covered in 

Section IV.C, whenever unification substitutes the neutral element T  into the path, the ’ 1’ will 

be removed right away, because the equality theory states Vw w-»l =  w. Thus, there is no pair 

PX-*PX + 1 in the path such that Px =  Px+ ).

Similar reasoning holds for symmetry and the inverse element ( ) _ l . Now consider an 

application of transitivity, where unification substitutes the substring of another path into the first 

path, as in P0-*P r^ (Q k ----^ Q k + iW V *-" This substitution is possible, because K(P|,Qk + ;) 

follows from transitivity. But P] and Qk+i are not immediate neighbors in the path. Thus, there 

is no pair Px-*Px+) in the path such that K(PX,PX+I) relies on the transitivity axiom in E.

Therefore, the only remaining clauses in E, that can possibly make K(Pj,t) and K(Qj,t) 

true, are the seriality clause and the skolem clauses. In order for a K literal to be entailed by E, 

it must match a right-hand side of one of the clauses in E. Recall that all clauses in E are definite, 

so the have exactly one positive literal, which makes up the right-hand side of a clause. The 

positive K literals in the seriality clause and in tlie skolem clauses are of the form K(w,f(w)), 

where f is some function name. However, the translation procedure into WPL ensures no two 

clauses in E use the same function f in their positive K literal. The translation introduces a new 

function, different from all other functions, at every skolemization step.

Thus, since t is ground, both KCP t̂) and K(Q-,t) match the positive literal of the same 

clause, which is of the form K(w,f(w)). But then P; must be equal to Qj, thus contradicting our 

initial assumption that P; ^  Qj. ■■
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Now we have all the machinery available to prove that unification of paths is equivalent 

to the conjunction of constraints, as far as possible final worlds are concerned. This proof will 

complete the second section of this chapter.

Theorem 6.3 Given two -̂consistentpaths, PI and P2, and two constrained world terms, and 

t2, along with their constraints, C; and C2, such that:

• GrLW(Pl) =  GrLW(tj.Cj)

• GrLW(P2) = GrLW(t2,C2)

then GrLW(S) = GrLW(t/p, C jp  A C2p), where S = {Pia  j a is an MGU o f PI and P2} and

p is the MGU o f fj and t2.

Proof: By lemma 6.2, G r L W ( t {p , C>  A = G rLW (t,,C ,) H GrLW(t2,C2). Thus, 

it suffices to show that:

• GrLW(S) = GrLWO^C]) H GrLWCtj.C^

( £ )  Take any member w of any GrLW (Pla) such that a is an MGU of PI and P2. 

Then w is last(Plop) for some p such that Plop is E-consistent and ground (definition 6.6).

Thus, w is also a member of GrLW (Pl), with substitution But then, by the theorem’s

hypothesis, w is also a member of GrLW (t,,C]).

Since Pier =  P2cr, a similar argument shows that w is also in GrLWft^C^).

( 2 )  Supposew G GrLW(t,,C|) Pi GrLWCt^C^), but w £  GrLW (Pla) for any tr such 

that a is an MGU of PI .and P2. Then w G GrLW (Pl) and w G GrLW(P2). Thus, there exist 

an a  and a (8 such that w = last(Pla ) =  last(P2/3). Therefore, by lemma 6.4, P la  =  P2/3. WLOG 

assume, PI and P2 are variable disjoint. Then there must exist an MGU a of PI and P2 such that 

(a/3) =  op for some possibly empty p. Thus, PI a  =  and w = 1 and P\op =  P\a

is E-consistent. But then w G GrLW(Plcj), which contradicts our assumption. * ■

C. U nification  as a T est  F or  S-So lva bility

Whenever two constraints are combined during the course of deduction in RML 

Constraint Logic, the E-solvability of the joint constraint has to be tested. A constraint is
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E — solvable, if there is a ground instance of that constraint such that it is entailed by E. 

Unfortunately, the results of a test for E-solvability are not reused in subsequent tests of new 

constraints that are derived from existing ones. Moreover, the constraints get longer and longer 

as the deduction progresses. Thus, the method is quite inefficient.

All methods that work with path unification of some sort [Jackson, Reichgelt 87; Auffray, 

Enjalbert 89; Ohlbach 88; Frisch, Scherl 91] have an important edge over the constraint logic 

method. They do not require an explicit test for E-solvability. Unification takes care of it. World 

paths do not unify, unless their combination is E-solvable. What is more, by instantiating world 

variables in the path, the implicit E-solvability test works incrementally. The role of unification 

can be interpreted as to instantiate variables just enough to ensure this E-solvability, but to delay 

the actual choice of ground instances for as long as possible.

In this section we will demonstrate that these properties apply to our World Path Logic. 

In particular, we will prove that all paths which can possibly occur during the course of a 

deduction, are E-solvable. Our approach works along the notion of E-consistency, as defined in 

definition 6 .1 . In order to prove that all paths are E-solvable, it suffices to prove that:

(a) the initial paths resulting directly from the translation into WPL are E-consistent

(b) instantiating a path with a most general unifier of two paths preserves E- 

consistency

(c) every E-consistent path corresponds to a E-solvable constraint

Property (a) has already been proven as lemma 6 .1 . The proof of property (b) is quite 

long and tedious; therefore, we will do (c) first.

Theorem 6 .4  (E-consistency => E-solvability) Given world path such that P is 

then constraint(P) is E-solvable.

Proof: constraint(P) is equal to K(P0,P]) A ...A  K(Pn_ ! ,P n). By definition, this 

conjunction is E-solvable, iff there exists a substitution p such that (K(P0,P ,) A ... A 

K(Pn_ | ,Pn)) t̂ is ground and

E N (K(P0,P ,) A ... A K(Pn_ ,,P n))/t (6.13)
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Construct m recursively as follows, where f ()  is the function used in the seriality axiom 

K(w,f(w)) in E:

Mo = {}

Mj =  M i_|°{f(Pi_i)/Pi} , if P; is a variable

Mi =  Mi-i , otherwise

M = Mn

Thus, fi substitutes every variable term Pj with f(Pj_]) ensuring that P; is accessible from P;_j 

by seriality. The point of having a recursive definition of m is to cover the case, where the path 

has multiple variables in a row, thus making sure only ground terms are substituted for variables. 

Thus, (K(P0,P|) A ... A K(Pn_|,Pn))M is ground as far as world variables are concerned.

The conjunction may still contain some non-world variables, but then we can expand m 

to substitute them with any domain element, say ’a’ , without affecting the accessibility at all. 

The proof of (6.13) is by contradiction. (6.13) is equivalent to

E n. K(P0,P ,)m a ... A K (P „_,,P n)M (6.14)

Suppose (6.14) does not hold. Then there must be leftmost K literal K(Pj_|,Pj)M which is not 

entailed by E. Thus:

E « /19 K(Pj_|,Pj)M (6.15)

but E -  K(P0,P ,)m A ... A K(Pj_2 ,Pj_ j)m (6.16)

Pj can either be a variable or not. Suppose it is, then K(Pi_ , ,P j)M =  K(Pj_ 1,f(Pi_ ,) ) .  But 

E entails this literal by seriality, thus contradicting (6.15).

Now suppose P; is not a variable. Then, by E-consistency of P,

E .  K(P0,P ,) A... A K(Pj—2’Pj —,) K(Pj—, >Pj) (6.17)

The conjunction in (6.16) is just an instance of the antecedent in (6.17). Thus E >= K(P;_ | ,Pj) î 

which is a contradiction to (6.15). ■■

It remains to be shown that instantiating a path with a most general unifier preserves E- 

consistency. First, we will prove this for a substitution on P such that a is the MGU of this

path P and some other path. Then this result will be extended to show that a can be an MGU of

any two paths, not necessarily including P. The following lemma is needed for the proof:

19) *■! is meant to denote the negative n operator. reads: a  does not entail j3



53

Lemma 6.5 (No New World Variables in Skolem Arguments) Let P be a world path and 

a function term in P. Then all world variables occurring in Px also occur in the P fs prefix

P < r-^ P,-1-

Proof: It follows from the translation function that this property holds for all initial paths 

resulting from translation. Moreover, if it holds for P, then it must also hold for Pa. This follows 

from the properties of substitution. Thus, the property is preserved over the course of a 

deduction. ■■

Theorem 6.5 (E-consistency Preservation, Part 1) Given a constraint theory E, two E- 

consi stent paths P and Q, and an MGU o o f P and Q, then Po will also satisfy the property o f  

E-consistency.

Proof: WLOG assume P and Q are variable disjoint. Let us also assume WLOG that o 

= { t l / x l , . . . }  such that no variable x l ,...,x n  occurs in any of the terms tl ...tn. We will now redo 

the substitution in P and 0 step by step from left to right.

Let prefix(n,P) denote the first n + 1 terms of P, i.e. prefix(n,P) =  P0-*...-»-Pn. Then the 

following property holds for P, Q, k, and o (induction hypothesis):

• prefix(k—1 ,P) =  prefix(k—1,Q)

• prefix(k — 1 ,P) does not contain any variable that o substitutes

• P and 0  are E-consistent

This property certainly holds for the base case k =  1, the MGU o, and the initial paths 

P and 0 ,  which are E-consistent by lemma 6.1. As the inductive step will now show, we can 

always pick a non-empty p, p Q o,and apply it to P and 0  such that the induction hypothesis 

holds for P’ , O’ , k’ , and o', where

• P’ =  P p

• 0 ’ =  0  M

• o’ =  a - p

The proof is basically an induction on the cardinality of o. Since o is reduced in size at 

every induction step, it will eventually be empty. This means that the complete substitution will 

have been performed. Thus, the resulting P’ is Pa (P and o from the base case), and it is still 

consistent with E which was to be proven.
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We will now complete the proof with the details of the inductive step. Consider the world 

terms Pk and Qk and distinguish six cases:

(i) Both terms are variables and a contains a substitution /x such that /x =  {P k/Qk} or /x

=  (Qk/Pk}. Perform this substitution, i.e. let P’ =  P/x, and let O’ =  Qm- The induction

hypothesis then holds for P’ , O’ , k’ = k + l ,  and =  - /x. ■

(ii) Both terms are non-variables, i.e. a function (we consider constants zero-ary

functions). Then the function must be the same in Pk as in Qk, otherwise P and 0  would not

unify. Let us look at possible variables in the argument terms to that function. Concerning the

world variables, it follows from lemma 6.5 that they also occur in prefix(k,P). And by the 

induction hypothesis, a does not substitute them. Thus, all world variables in Pk, if any, equal 

their respective counterpart in Qk.

As to the non-world variables, do all substitutions /x in pertaining to them and remove 

those /x from a, yielding P\Q',<7’ respectively.

In order to show that P’ is E-consistent, we need to have E >= K, A ... A K;_ , -*• K; 

for every non-variable world term P’ j in P\ Since we did not substitute world-terms, P’j is a non

variable term if and only if Pj is a non-variable. Thus, all the clauses that need to be entailed by 

E for P’ , have corresponding clauses in P, of which they are instances. So, if E entails

K(P0,P ,) A ... A K t P j .^ P j .^ - K t P j .^ P j )  

then E also entails the instance

(K (P 0,P ,) A ... A K(Pi_ 2,P j_ j) -*• K(Pi_ I,Pj) )

which is equal to

K(P’0,P ’ ,) A ... A K(P’I_ 2,P"i_ 1) K(P’j_ , ,P ’i)

A similar argument holds for Q\ Thus, the hypothesis holds for P’ , Q\ a ’ =  a —/x, and 

k’ =  k+ 1. ■

(iii) One term is a variable, the other term is not. WLOG assume, Pk is the variable. 

Then there must be a substitution /x =  { t/Pk } in a such that t is an instance of Qk. Let P’ =  P/x 

and observe that

K(P’0,P ’ |) A ..

is just an instance of

• A K(P’k_ 2,P \ _ ,)  -  K(P’k_ , ,P ’k) (6.18)

K(Q0,0 , )  A . .. A K(Qk_ 2,Qk_ , ) - K ( Q k_ „ Q k) (6.19)
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because prefix(k—1 ,P) =  prefix(k —1,Q) and a does not effect prefix(k— 1,P). Since (6.19) is 

entailed by E, so is (6.18).

Next consider the terms P’ ; in P’ , such that i >  k. We need to show that E *  K| A ...  

A Kj_, -+ Kj for every such non-variable world term P’j. Note that P’j is a non-variable if and 

only if Pj is. p =  { t/Pk } does not substitute any Pj, because every P; is different from Pk. This 

follows from the unique prefix property (theorem 4.1). As in case 2, if E entails

K(P0,P ,) A . . .  A K(Pj_2,P j_j) K(Pj_j,Pj) 

then E also entails the instance

( K(P0,Pj) A . . .  A K(Pj_2,P j_ ,) — K(P1_ 1,Pi) ) M

which is equal to

K(P’0,P ’ 1) A .. .  A K(P’i_ 2,P 'j_ 1) — K(P’j_ , ,P ’j)

Thus, P’ has the property of E-consistency. The induction hypothesis holds for P\ 

Q’ =  Qfx = Q, k’ =k , and o' =  o —p.

Recall that P’k and Qk are not necessary equal. Both are function terms, however. And 

if they are actually not identical, then case (ii) will apply at the next round. ■

(iv) Reflexivity holds, and the neutral element M’ is substituted for the variable Pk or 

Qk. WLOG assume it is Pk, which is then deleted from the world path under application of the 

equality theory for reflexivity, Vw w-*l =  w. Thus, P’j =  Pj for all j <  k, and P’j =  P|+! 

for all j ^  k. Consider a skolem function term P’j, such that j >  k. We need to show that

E -  K(P’0,P ’ ,) A .. .  A K(P’j_2,P’j_ 1) -  K(P’j_ ,,P ’j) (6.20)

E-consistency of P tells us that

E * K(P0,P ,) A . . .  A K (Pj_, ,Pj) -*■ K(Pj,Pj + l) (6.21)

Since Pk is a variable, we can instantiate it to Pk_ j:

E •= K(P0,P ,) A . . . A  K(Pk_ , ,P k_ 1) A K(Pk_ „ P k + 1) A . . . A  K(Pj _ „ P j ) - K ( P j ,Pj + 1)(6 .22 )  

Note that the reflexivity axiom Vw K(w,w) is part of E. Thus, we can resolve the literal 

K(Pk_ j ,P k_ ,)  in (6.22) away, yielding:

E -  K(P0,Pj) A . . .  A K(Pk_ lfPk + 1) A . . .  A K(Pj _ , ,  Pj) K(Pj, Pj + j) (6.23)

This is actually identical to:

E -  K(P’0,P ’ ,) A . . .  A K(P’k_ „ P ’ k) A .. .  A K(PL_2,P ’j _ 1) -  KCP’j - i .P ’j) (6.24) 

And (6.24) again is equal to (6.20). Thus, P’ preserves E-consistency. The induction hypothesis 

holds for P’ , Q’ =  Q, k’ = k , o '= o —p. ■
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(v) Svmmetrv holds, and the inverse element Pk 1 is substituted for the variable Pk + 1 

(or Qk+1, WLOG assume it is Pk+,). Then Pk and Pk + 1 can both be deleted from the world 

path under application of the equality theory for symmetry,

Vw,w’ w-^w’-^w’ -1 =  w

Thus, P’ j =  Pj for all j <  k, and P’j =  Pj +2 for all j >  =  k. Consider a skolem function 

term P’j, such that j >  =  k. We need to show that

E -  K(P’0,P ’ t) A ... A K(P’j_ 2,P ’j„ j )  -  K(P’j_ , ,P’j) (6.25)

Recall that P is E-consistent. Thus:

E -  K(P0,P ,) A ... A K(Pj,Pj + 1) - K ( P i + 1,Pj+2) (6.26)

Since Pk + 1 is a variable, we can instantiate it to Pk_ (:

E -  K(P0,P|) A ...A  K(Pk_ „ P k) A K(Pk,Pk_|) A K(Pk_ „ P k+2) A ...A  K(Pj,Pj+|) -

K(Pi + 1,PJ+2) (6.27)

Note that the symmetry axiom Vw,w’ K(w,w’) -*■ K(w’,w) is part of E. Thus, we can resolve 

the literal K(Pk,Pk_ j)  in (6.27) away, yielding:

E -  K(P0,P ])A ...A K (P k_ „ P k) A K(Pk_] ,Pk+2) A ...A  K(Pj,Pj + 1) K(Pj + 1,Pj+2) (6.28) 

Next, we want to get rid of K(Pk_ , ,P k). Suppose Pk is a . Then, by E-consistency

of P,

E -  K(P0,P ,) A ... A K(Pk_ 2,P k_ ,)  -  K(Pk_ ] ,P k) (6.29)

Now suppose Pk is a variable. In this case we can just instantiate Pk to f(Pk_|) and use the 

seriality axiom, which is part of E:

Vw K(w,f(w)) (6.30)

Either way, (6.29) or (6.30), we can resolve K(Pk_ 1,Pk) out of (6.28), yielding:

E m K(P0,P ,) A ... A K(Pk_ , ,P k+2) A ...A  K(Pj,Pj+1) -*• K(Pj + ),Pj+2) (6.31)

This is actually identical to:

E *  K(P’0,P ’ ,) A ...A  K(P’k_ „ P ’ k) A ...A  K(P’j_2,P ’ j_ ]) -*■ K(P’j _ 1,P ’ j) (6.32)

And (6.32) again is equal to (6.25). Thus, P’ (and O’) preserve E-consistency. The induction

hypothesis holds for P’ , O’ , o’ = o —fi, and k’ =k . ■

(vi) Transitivity holds, and the variable Pk is being substituted by a subsequence of Q. 

H =  I (Qk-* .. .- i-Qk+j)/Pk } 's ‘n a- UsinS the equality theory axiom for transitivity,

Vw,w’,w” w-^w’-s-w” =  w^-(w!^-w” )

P0^ . . .-*Pk_ |-*-(Qk-*. • ^ Q k + i)^ pk + r4”- • ^ pnthe path
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can be rewritten as

p0"*- • •->Pk -  • •- *Qk + i"*'P k + 1- * - ' ^ P n

Thus, P’j =  Pj =  Qj for all j< k ,  P’j = Qj for all j, such that k <  j <  k +  i, and P’j 

= Pj_j for all j >  k +  i. Consider a skolem function term P’j, such that j <  k +  i. Since 

prefix(k + i,P’) =  prefix(k + i,Q) and Q is consistent with E, it follows that

E *  K(P’0,P ’ ,) A... A K(P’j_ 2,P ’j_ ,)  -* K(P’j_ ],P ’j) (6.33)

We need to show, that (6.33) also holds for skolem function terms P’j, such that j >  k +  i. As 

previously stated, P’ j = P j a n d ,  since P is E-consistent, we know:

E *  K(P0,P,) A...A K(PJ_ I_2,Pj_i_ 1)-K (P j_ I_ 1,PJ_i) (6 .34)

This can be rewritten as:

E n. K(Q0,Q,) A ... A K(Qk_„Pk) A K(Pk,P’k+i + 1) A ... A K(P’j_2,P’j_,) 

Note that the transitivity axiom

Vw,w’,w” K(w,w’) A K(w’,w”) -»■ K(w,w”)

KCP’j_|,P*j) (6 .35)

is part of E. Thus, the following is also deducible:

E -  K(Qk_ „ Q k) A ... A K(Qk+i_ l,Qk+i) - K ( Q k_ „ Q k+i) (6.36)

Since Pk in (6.35) is a variable, the literals K(Qk_ !,P k) in (6.35) and K(Qk_|,Qk + i) in (6.36) 

are unifiable witli { Qk+]/Pk }> and therefore, (6.35) and (6.36) resolve to:

E *= K(Q0,Q ,) A ... A K(Qk+i,P ’k+i + 1) A ... A K(P’j _ 2,P ’j _ l) - K ( P ’j _ l,P ’j) (6.37) 

This, however, can simply be rewritten to:

E -  K(P’0,P ’ ,) A. . . A K(P’j _ 2,P ’j _ 1) -* K(P’;j_ ! ,P ’j) 

which means that P’ has the property of E-consistency. The induction hypothesis holds for P’ , 

Q’ =  Qjjl =  Q, a ’ =  ff—/i, and k ’ =  k +  i+1.

This concludes the proof of the E-consistency preservation (part 1) property. ■■

Theorem 6.6 (E-consistency Preservation, Part 2) Given a constraint theory’ E, three E- 

consistent paths P, Q, R, and an MGU a o f Pand Q, then Ra also satisfy the property of

L-consistency.

Proof: The key to this proof is the observation that for every two paths P, R, resulting 

from the translation into World Path Logic, there is an integer k >  0, such that 

■ prefix(k,P) =  prefix(k,R)

and i> k  , j> k  P i ^
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In other words, two paths are identical lip to a certain point in the path, and then they are 

completely different. This follows from the structure of modal logic and the translation function. 

Consider any two literals and the modal operators, that they are in the scope of. Since scopes are 

nested structures, the operators that have both literals in their scope, must all be outside of the 

operators which have only one of the literals in their scope. The common outside operators 

account for the common prefix of the two world paths.

Now consider the paths R, which is given to be E-consistent, and Po, which is E- 

consistent by theorem 6.5. Recall the method of the proof of theorem 6.5. Two E-consistent paths 

were unified step by step from left to right, preserving E-consistency of the full paths at every 

single step. Since F and R are identical on the first k elements, a substitution of a into R is in 

effect the same as a partial unification of R and F from left to right for the first k elements. In 

the previous proof of theorem 6.5 we also unified two paths stepwise from left to right, and each 

partial unification step preserved E-consistency of the whole path. Thus, following the approach 

of the previous proof, the resulting path of the partial unification, which is Ra, must still be E- 

consistent. ■■

D. Su m m a r y

When the same modal logic formula is translated into both World Path Logic and 

RML/CL, then there is a close similarity between the WPL terms and the RML/CL terms. In 

particular, for every WPL term there is corresponding RML/CL term such that (a) the WPL 

term’s path matches the constraint of the RML/CL term and (b) the WPL term equals the 

RML/CL term, except that the WPL term uses paths where the RML/CL term has simple world 

terms. Furthermore, Section A proved that WPL terms have the same ground instances as their 

corresponding RML/CL terms.

Section B related the world paths to RML constraints. In particular, we showed that a 

world path resulting directly from the translation represents the same set of worlds as its 

corresponding constraint in RML/CL. Applying the results from Section A, this means that they 

are also equal with respect to their ground instances. Moreover, we proved that this identity is 

preserved over a deduction step. In other words, unification of paths is equivalent to the 

conjunction of constraints as far as possible final worlds and ground instances are concerned.



Since the ground instances are equal to begin with and throughout the deduction, we have a 

ground refutation in RML/CL if and only we have a ground refutation in WPL. In addition. 

Section C confirmed that the test for E-solvability of the RML constraints is obsolete in WPL, 

because two paths unify if and only if the conjunct of the corresponding RML constraints is E- 

solvable. Thus, the soundness and completeness results from RML/CL deduction carry over to 

WPL deduction.

Deduction methods are usually expected to be sound and refutation-complete20. This 

means, all derivable formulas follow from the set of premises (soundness), and if the set of 

premises is unsatisfiable, then there exists a deduction ending in ’false’ or, in a clausal resolution 

system, the empty clause (completeness). RML/CL deduction was shown to be sound and 

complete in [Scherl 92]. As we have just showed, there is a direct correspondence between 

deduction in WPL and in RML Constraint Logic, to the effect that every deduction step in WPL 

can be simulated in RML/CL and vice versa. Therefore, deduction in World Path Logic is sound 

and complete, too.

Now that we have obtained a theoretical understanding of deduction in World Path Logic, 

we are ready to approach subsumption in the next chapter.

20) as opposed to 'deduction complete’ . Most methods cannot deduce a tautological clause like b v -ih, where 
h is a new literal not occurring in the premises, although b v ~>b is entailed by the premises [Wos 93].
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VII. SUBSUMPTION

Chapter VI concluded with the statement that deduction in WPL is sound and complete. 

While soundness and completeness are essential issues, practical implementations of automated 

theorem provers have to face a broader variety of problems. For instance, it is nice to know that 

a refutation will eventually be found, if the set of premises is unsatisfiable, but how long is 

eventually’? If the set of premises is in fact satisfiahle, then the system might search forever for 

a refutation proof. This undecidability of FOPL and extended first order logics like modal logic 

is a fundamental problem of computer science which cannot be overcome even by developing 

more sophisticated algorithms. Nevertheless, designing the proof search more efficient helps to 

ease the practical consequences of this theoretical problem.

There are several ways to improve the efficiency of this search. A clausal resolution 

based theorem prover usually generates a large amount of clauses, most of which later turn out 

not to be needed for the proof. Also, at any deduction step, the theorem prover has to decide 

which clauses out of the large search space of given and derived clauses to resolve next. 

Resolution strategies are concerned with a good choice of clauses to be resolved next, in order 

to obtain a proof fast. Other methods are aimed to keep the set of clauses to choose from small. 

This is what subsumption is designed to do. The basic idea of subsumption is to remove those 

clauses that can be derived from a single other clause. If clauses B and C resolve to clause D, 

where B follows directly from clause A, then D can also be derived from A and C. Thus, B is 

unnecessary and redundant. We say A subsumes B. One can distinguish three different types of 

subsumption [Wos 93]:

(i) Forward Subsumption. Once a new clause B has been derived, it is compared 

against the set of existing clauses to see, if there is a clause A among them such that B is 

subsumed by A. Then B is dropped.

(ii) Backward Substimntioh. Once a new clause B has been derived, it is compared 

against the set of existing clauses to see, if there is a clause A among them such that B subsumes 

A. Then the old clause A is replaced by B.

(iii) Ancestor Subsumption. Once a new clause B has been derived, it is compared 

against the set of existing clauses in order to see, if there is a clause A among them such that A 

=  B. In terms of subsumption, A =  B means: A subsumes B, and B subsumes A. Then the
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clause with the shorter derivation path is kept, and the other one is removed. The motivation 

behind this is to obtain short proofs.

Ancestor subsumption is somewhat different from the other two kinds, in that it involves 

checking the length of derivation paths. This, however, is not within the scope of our treatment. 

We are only concerned about ’simple’ subsumption detection as in (i) and (ii). Here is a more 

formal definition of subsumption:

3K *

Definition 7.1 (Subsumption) A formula u subsumes a formula i <-V V

denotes the universal closure o f a formula such that all free  variables are universally quantified.

The statement 'a  subsumes fi' can be read as: a  implies /3, entails fi, or a is more 

general titan /3. The universal closure reflects the understanding that all free variables are meant 

to be universally quantified. Suppose a: and f3 are part of a given and/or derived set of formulas 

such that all formulas hold jointly. Then taking the universal closure of the conjunction of all 

formulas is equivalent to universally closing every single formula, because Vx (o:(x) A <p(x)) = 

(Vx a(x)) A (Vx <p(x)). Therefore, the universal quantifier can be applied to every single formula 

like a and f3.

Note that definition 7.1 is quite general. It does not restrict a  and to be clauses. Also, 

the logic language under consideration is not specified. Subsumption is of practical relevance only 

in deduction systems. Thus, when we speak of subsumption in modal logic, we mean 

subsumption in the language that we are doing modal logic proofs in. As pointed out in Chapter 

II, some deduction methods construct their proofs directly in modal logic, while other techniques 

prefer an indirect approach. They translate modal logic formulas into another language and then 

try to do the proof in that target language. With the World Path Language presented in Chapter 

IV, we follow this direction. Thus, the problem of subsumption in modal logic, i.e. in modal 

logic proof systems, reduces to the problem of subsumption in the target language.

There is also another reason for dealing with subsumption at the target language level. 

Using subsumption checks makes sense only if the possible benefits outweigh the costs for the 

subsumption tests. While subsumption is relatively easily determined among clauses, it can be 

quite expensive in more complex structured formulas. Unfortunately, modal logic formulas cannot
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always be converted into an equivalent clausal form such that clauses do not contain any 

conjunctions. Just consider the example <p =  p v 0 (q  Ar). Conversion to clausal form would 

mean breaking up the inner conjunction such that q and r end up in different clauses. But then 

there is no way to represent the fact that q and r pertain to the world.

Therefore, the rest of this chapter will be devoted to examining subsumption among 

World Path Logic clauses. Nevertheless, it is still possible to check if one modal logic formula, 

say a,subsumes another one, say fi. Just translate a A ~>fi into WPL and search for a refutation 

proof.

The rest of this chapter is organized as follows: Section A covers subsumption for unit 

clauses, i.e. clauses that consist of just one literal. Section B extends those results to non-unit 

clauses. Then we will present an algorithm for subsumption detection and prove its correctness 

in Section C. Finally, this chapter closes with a summary of the results in Section D.

A. Unit Clauses

This section treats subsumption for WPL unit clauses. Unit clauses consist of exactly one 

literal. This makes subsumption relatively easy to determine, because one literal, say LI, 

obviously entails another one, say L2, only if the predicate is the same in both LI and L2, and 

if either both are negative or both are positive.

By definition 7.1, LI subsumes L2 if and only if V* LI >- V* L2. From the semantics 

of universal quantification, V* L is true, if all of L ’s ground instances are true. In this respect, 

we can treat a universally closed literal with variables as a scheme standing for all of its ground 

instances. So, if G(L) denotes the set of all ground instances of L, then LI subsumes L2 iff 

G(L1) 2  G(L2).

For WPL, however, this is not entirely true. A literal like p(0-»w) does not entail all 

ground instances such that we can instantiate w with any world. The variable w stands only for 

those worlds that are accessible from world 0. The quantification is in fact constrained. 

Remember that WPL expressions are a representation of modal logic. As for our example,
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p(0-*w) represents the modal logic term Dp. And °p  does not require p to hold in all worlds, 

but only in those that are accessible from the current world, which is 0.

Let us extend the previous example, and find out which worlds w may be instantiated to. 

Suppose the set of modal logic sentences under consideration is { Dp, □ O -ip, Oq }, and the 

modal logic is serial only (system KD). The translation into WPL yields: {p(0^w), 

ip(0-»w 2-»,sk|), q((H-sk2)}. Then the only possible instantiations for w are sk2 and f(0), where 

f ()  is the function used in the seriality axiom in the constraint theory E. The literal p(0—̂sk^ is 

not a ground instance that V p(0-»w) stands for, because sk, is not necessarily accessible from 

0.

Definition 6.5 defines the E-ground instances of a WPL literal, and E g r(), the set of E- 

ground instances, accordingly. Given a literal L, Egr(L) is the set of all LAST(Lo), such that La 

is ground and E-consistent. E-consistency makes sure that only accessible worlds are instantiated, 

and LAST() (see definition 6.2) replaces all world paths by their last element. Therefore, we can

state the following lemma:

Lemma 7.1 Given two WPL literals L I and L2, LI subsumes L2 iff 2

Our goal is to show that a subsumption test in World Path Logic works just like in 

regular first order predicate logic. That is: LI subsumes L2, if there exists a substitution a such 

that L2 =  L la . In other words, LI subsumes L2, if L2 is an instance of L I. However, 

substitution in WPL is more complex than in FOPL. WPL substitution effects not merely regular 

variables, but also world paths, and can thus contain special elements as described in the section 

on world path unification. These are, for instance, the neutral element in the case of a reflexive 

logic, inverse elements, if the logic is symmetric, and nested subpaths in the case of transitivity. 

Regardless of these differences, the subsumption test method is basically the same: it means 

finding a substitution a such that L la  =  L2.

Theorem 7.1 (W PL Literal Subsumption) Given two WPL literals LI and L2 such that LI and 

L2 result from modal logic, translation or are derived the course o f a deduction, then Li 

subsumes L2 i f  and only i f  3 aLla—L2.
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The restriction on LI and L2 has no practical relevance, because for all practical purposes 

of subsumption, there is no other source where WPL literals can stem from. As for the proof 

however, the restriction ensures the E-consistency of LI and L2.

Proof: By lemma 7.1, LI subsumes L2 iff Egr(Ll) 2  Egr(L2). Thus, it suffices to show: 

Egr(Ll) 2  Egr(L2) iff 3ct Ll<r =  L2

"If": Pick any E-ground instance of L2, say L 2’ . Then L 2’ =  L2^ for some t̂. Thus, L2' 

=  L2/x =  LI on is also a E-ground instance of LI. ■

"only if": First, we will prove that Egr(L2) is not empty. For if Egr(L2) were empty, 

then Egr(LI) 2  Egr(L2) would hold trivially, regardless of the existence of a substitution o.

L2 is E-consistent, because it either results directly from modal logic translation, then it 

is E-consistent by lemma 6.1 (initial E-consistency). Or it was created in the course of a 

deduction, then it is E-consistent by theorem 6.6 (E-consistency preservation). Lemma 7.2, which 

follows right after this proof, states that all E-consistent literals have at least one E-ground 

instance. Thus, Egr(L2) ^  0 .  Now suppose Egr(Ll) 2  Egr(L2), but there exists no a such that 

LI a =  L2. We will show that this assumption leads to a contradiction.

Case I : LI and L2 do not unify. Then LI and L2 have no E-ground instance in common, 

because a common ground instance of LI and L2 would mean the existence of a unifier. But 

since Egr(L2) ^  0 ,  L2 has at least one E-ground instance that is not a E-ground instance of L I . 

Thus, Egr(Ll) 2  Egr(L2) cannot hold. ■

Case 2 : LI and L2 do unify, but the most general unifier substitutes a non-variable term, 

say t, for a variable in L2. say x (otherwise L la  =  L2 would hold for some a). This leads to two 

sub-cases:

Case 2a : Suppose x is a non-world variable. Then, provided the Herbrand-Universe 

contains more than one element, we can substitute a ground term other than t, say t\ for x. Since 

Egr(L2) & 0 ,  and since the E-consistency of L2 does not depend on the actual instance of non

world terms, L2|t’/x} must have at least one E-ground instance which is also a E-ground instance 

of L2. But since t ’ ^ t .  it cannot be a ground instance of L I. Thus. Egr(L l) 2  Egr(L2) cannot 

hold.



One might argue, if t ’ occurs in the path only, then t’ does not necessarily occur in a E- 

ground instance, because by definition 6.5 only the last world of a path shows up in a E-ground 

instance. However, it follows from lemma 6 .4 , that no two paths end in the same final world, 

unless they are fully identical. Thus, if t occurs in one path and f  in the other, the corresponding 

E-ground instances cannot be identical. ■

Case 2b: Suppose x is a world variable. Thus, it occurs in the world path of L2. Let y 

be the immediate predecessor of x in the path, and instantiate x with f(y), where f ( ) is the 

function used in the seriality axiom in E. Then, L 2’ =  L 2 {f(y)/x } is still E-consistent, and 

therefore, by lemma 7.2, it possesses E-ground instances. Each of these is different from every 

E-ground instance of L I, because every instance of LI has a term t, where L 2’ has a f () . And 

l ^  f ( ), because f ( ) does not occur in any path. It is not used in the initial translation, and by 

the same token, f ( ) cannot be part of an MGU of any two paths. Therefore, no path during the 

course of a deduction can possibly contain f () . Thus, Egr(LI) 2  Egr(L2) cannot hold. Again, 

it does not make a difference, whether x occurs as the last element of the path or before. The 

same argument as in case 2a applies. *  *

What remains to be done to complete the above proof, is a proof of the following lemma: 

Lemma 7 .2  Every -̂consistentWPL literal has at least one L-ground instance.

Proof: Theorem 6.4 states that the RML/CL literal, which corresponds to a E-consistent 

WPL literal, has a E-solvable constraint, if the WPL literal is E-consistent. And if its constraint 

is E-solvable, then the RML/CL literal has at least one E-ground instance. This follows from 

definition 5.1. Therefore, the RML/CL counterpart of the WPL literal has E-ground instances. 

But then, the WPL has E-ground instances too, since theorem 6.1 states that WPL literals have 

the same E-ground instances as their RML/CL counterparts. ■ *

Summarizing this chapter, we have shown that subsumption of WPL unit clauses can be 

tested in the same way as for regular FOPL predicates, that is by searching for a substitution. 

The next section will establish a similar result for clauses with more than one literal.
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B. Multtliteral Clauses

While unit clauses consist of exactly one literal, we use the term ’multiliteral clause’ for 

clauses with an unrestricted number of literals, not necessarily more than one. In this sense, every 

clause is a multiliteral clause, even a unit clause. However, we find this terminology useful to 

allow for a clear distinction between clauses which necessarily have exactly one literal, and 

clauses that do not.

The main difference between subsumption in the two cases is that clauses can be of 

different length and yet subsume each other. For instance, the clause (p v q) subsumes the 

clause (p v q v r). As another difference, multiliteral clauses can be tautologies as in (p v —>p), 

which unit clauses cannot be. Although tautological clauses are subsumed by every other clause, 

if we take the definition of subsumption strictly, the task of detecting and deleting tautologies in 

a deduction system is usually considered a separate issue [Wos 93],

As in the case of unit clauses, we would like to treat a universally quantified WPL 

multiliteral clause as a scheme standing for its E-ground instances:

Definition 7.2 (E-ground Instances of Clauses, Set EGC) Given a WPL clause C =  ( L t v 

... v L n )and a substitution a such that Co is variable free , LAST(Co) is a E- instance o f

C if  and only i f  each L p  is -̂consistent,where <  / <  n.

E GC(C) is a function that maps C to the set o f all such instances of C.

Our motivation to require all literals in a ground clause to be E-consistent, as opposed 

to just one literal, is the goal to keep a WPL expression equivalent to its RML/CL counterpart. 

If the WPL clause is

C =  ( L, v ... v Ln ) (7.1)

then the corresponding RML/CL is

C’ =  ( s ,/c , v ... v sn/cn ) (7.2)

where Sj =  LAST(L-) and C; = consrraint(path(L-)) for each i from 1 to n. (7.2) is equivalent to

C’ =  (c,-*s,) v ... v (cn *"Sn) (7.3)

which in turn is equivalent to

C’ = (s, v ... v sn) / (Cj A ... A cn) (7.4)
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It follows from (7.4) and from the definition of E-ground instances (definition 5.1) that all

constraints c , ........ cn need to be E-solvable simultaneously. Thus, if we want C and C’ to have

the same E-ground instances, it is necessary to have the paths of all literals in C E-consistent, not 

just one.

Conjecture 7.1 (Ground Instance Equivalence) a clause

C  =  ( L ,  v . . .  v L n

and an RML Constraint Logic clause

C ’ = (s, v...v sn) /  (c i A ... A cn)

where s; =  LAST(Lt) and r- =  constraint (path ) for each from 1 to n, then EGC(C) =

Z gr(C ’).

A proof of conjecture 7.1 would probably parallel the proof of theorem 6.1, which states 

a similar relationship about ground literals. Using our definition of WPL ground clauses, let us 

now return to the topic of subsumption.

As opposed to the unit clause case, "Cl subsumes C2" does not mean EGC(Cl) 5  

EGC(C2), because the E-ground clauses of C2 may be longer than the E-ground clauses of C l, 

and still be subsumed. Treating a clause as a set of its literals, we can however establish the 

following relationship:

Lemma 7.3 Given two WPL clauses C l and C2, C l subsumes C2,

^C1 :C1 'eZ G Z (C l) Cl ’ ^  C2\

Proof: C l’ entails C 2’ , because all literals in the disjunction C l ’ occur also in the 

disjunction C2’ . And if every E-ground clause of C2 is entailed by some E-ground clause of C l, 

then V* Cl » V* C2, because V* Cl in turn entails all of its E-ground clauses. But by definition 

7.1, V* Cl <- V* C2 means, Cl subsumes C2. ■  '*

The next theorem lifts this result to the level of variables.

Theorem 7.2 (Clausal Subsumption) Given two WPL clauses Cl and C2, Cl subsumes C2, 

i f  there exists a substitution o such that C la  Q C2.
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Proof: Pick any E-ground clause C2’ of C2. Then there is a substitution /x such that C2' 

= C2/x. Consider C l ’ =  C Ictjx. All of its literals are also in C 2’ , thus they are all E-consistent, 

because as a E-ground clause, all literals in C2’ are E-consistent according to definition 7.2. But 

then C l ’ is also a E-ground clause. Hence, for every E-ground clause C2’ of C2 there is a E- 

ground clause of C l ’ of Cl such that C l’ <= C2’ . Thus, by lemma 7.3, Cl subsumes C2. * ■

Notice that theorem 7.2 uses "if" instead of "if and only if". In fact, the "only if" part 

does not work. For one, tautological clauses are entailed by every other clause. But even if we 

exclude tautological clauses from our treatment, there are cases where a clause CI entails a clause 

C2 without the existence of a substitution cr such that Clff C2. The following example is taken 

from [Loveland 78]:

Vx p(x)-*p(g(x)) -  Vx p(x)—p(g(g(x)))21 (7.5)

The clause on the left, call it C l, subsumes the clause on the right, C2, but no single 

instance of Cl is a subformula of C2. On the ground clause level, no ground clause of Cl implies 

any ground clause of C2. Cl and C2 do not have any ground clause in common. However, each 

ground clause of C2 is entailed by two ground clauses of C l. For instance, p(a)-*p(g(g(a))) is 

entailed by p(a)-»p(g(a)) and p(g(a))-*p(g(g(a))) together.

We could avoid this problem, if we restricted the clauses such that a literal may not occur 

positively and negatively within the same clause. This restriction would solve the problem of 

tautological clauses as well. Thus, using this restriction, the "if" in theorem 7 .2  could be replaced 

by an "if and only if". This approach is not practical though, because deductions cannot avoid 

dealing with clauses, in which the same predicate occurs twice. In fact, there are many cases 

where subsumption among clauses of this kind can be successfully detected using the substitution 

criteria. As an example, consider this slight variation of the clauses (7.5) [Loveland 78]:

Vx p(x)-*-p(g(y)) -  Vx p(x)-p(g(g(x))) (7.6)

Reflecting, what can and what cannot be detected using the substitution criteria, Loveland 

introduces a different definition [Loveland 78] of subsumption which we adopt for WPL:

21) These clauses are FOPL clauses, but since the language of WPL is a superset of the language of FOPL, they 
are also WPL clauses.
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Definition 7.3 (0-subsumption) A WPL clause C 6-subsumes a WPL clause D iff there exists 

a substitution 0 such that C6 Q D and C has no more literals than D.

Using this definition, (7.6) is a case of 0-subsumption, while (7.5) is not. And as far as 

tautological clauses, they are 0-subsumed by some other clause only if a part of the tautological 

clause is actually an instance of the subsuming clause. It is easy to see that every case of 0- 

subsumption is also a case of subsumption. This follows immediately from the definition and 

from theorem 7.2.

Definition 7.3 also takes care of another problem which we have not addressed before: 

a clause subsumes its factor. If two or more literals of a clause C have an MGU o, then C.a is 

called tx factor of C. For instance, p(g(y)) is a factor of and is subsumed by (p(x) v p(g(y))). This

would appear to call for the deletion of the factor. But resolution is known to be incomplete 

without factoring. Definition 7 .3 ’s restriction that C may not have more literals than D makes 

sure that D is not a factor of C.

It turns out that the weaker 0-subsumption is a more useful deletion criteria than plain 

subsumption. The distinction between 0-subsumption and regular subsumption was not needed in 

the previous section, because there is no difference when only unit clauses are considered. 

Neither can a unit clause be a tautology, nor can a unit clause contain the same predicate in a 

positive literal and in a negative literal at the same time, nor can a unit clause be a factor of 

another unit clause.

In summary, this section extended the results for unit clauses to clauses with no 

restrictions on the number of variables. Subsumption can be tested in the same way as for regular 

FOPL clauses, that is by searching for a substitution. We defined 0-subsumption to account for 

the special problems mentioned above. None of these problems are due to the modal character 

of WPL, all of them are also prevalent in ordinary FOPL. An actual algorithm for 0-subsumption 

detection will be presented in the next section.
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C. Algorithmic Subsumption Detection

The test for 0-subsumption is best being processed using the deduction machinery already 

available. Given two WPL clauses C and D, the method basically tries to refute V C A ->V

D. Since the second conjunct is equivalent to 3 “iD, skolemization requires the instantiation of 

the variables in C2 with distinct new constants that do not occur in either C or D. This 

instantiation can also be understood as protecting them against being substituted in the search of 

a substitution 6 such that CO e= D. In the special case where C and D are unit clauses, this 

process is sometimes referred to as ’half unification’ [Wos 93], because we are looking for a 

unifier that affects only one side, namely C.

As an important result of the two preceding sections, subsumption in World Path Logic 

can be tested in the same way as in ordinary FOPL. In essence, it consists of the search for a 

substitution. Thus, any subsumption test for ordinary FOPL will also work for WPL. Table VI 

shows such a subsumption test algorithm. The algorithm employs resolution to find out, if such 

a substitution exists. As covered in Section IV.D, resolution in WPL is not significantly different 

from ordinary first order resolution. Resolution again involves unification, and it is only at that 

level where World Path Logic subsumption tests really differ from ordinary FOPL subsumption. 

Special purpose unification procedures are needed as described in Section IV.C.

As for the given subsumption test algorithm however, this does not make a difference, 

because it does not specify the particular details of unification. It just uses unification.

The algorithm in table VI is taken from [Chang, Lee 73] and [Robinson 65] with step 1 

added to check for factorization. The following example illustrates the procedure. Consider the 

clauses

C =  _ iP(0-*sk3-»w1,x) V Q(0-*w2,f(x),a) 

and D = -iP(0-*w3,z) V Q((H*sk1̂ sk2, f(h(y)),a) V “ ip(0-*sk3,h(y))

in a reflexive and transitive logic (KT4). Running the algorithm on C and D, it turns out that C 

0-subsumes D. The algorithm’s execution is traced in table VII.

Theorem 7.3 (Correctness of Algorithm) Given two WPL clauses C and D, the algorithm 

listed in table VI terminates with "C 6-subs um.es D " if and only if  C 6-subsum.es D . Furthermore, 

the algorithm is guaranteed to terminate.
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Table VI. Subsumption Test in WPL - An Algorithm

Input: Two WPL clauses, C and D (D = D1 v ... v Drn)

(1) if # of literals in C > ft of literals in D 
then output "factorization", stop

(2) let p = {  a-j/x-j, ..., ar/xn } ,  where are the variables in D and
a a n are new constants, not occurring

(3) set W = {  -iD jp  , ... , ~'Dmp } ,  a set of unit clauses
(4) set k = 0
(5) set U° = {C}, a set of clauses
(6) if U k contains b

then output "C Q-subsumes D ", stop
(7) let U k+1 = /  resolvents of all C 1 and C2 I C, €  U k and W
(8) if  Uk + 1 = 0

then output "C does not 6-subsume D ", stop 
else set k  = k + 1,goto (6).

Table VII. Subsumption Test, An Example

Input: C = -iP(0-»sk3-*w1,x) V Q(0-*w2,f(x),a)
D = -iP(0-»w3,z) V Q(0-»sk1-»sk2, f(h(y)),a) V iP(0^-sk3,h(y))

Step (2) p = { sk4/w3 , b/y , c/z }
Step (3) W = { P(0-»sk4,c) , -iQ(0-*sk.,-i*sk2,f(h(b)),a) , P(0-*sk3,h(b)) }
Step (4) k = 0
Step (5) U° = { -iP(0-*sk3->w1(x) V Q(0-*w2,f(x),a) }
Step (7) U1 = { -iP(0-»sk3-»w1fh(b)), Q(0-*w2,f(h(b)),a) }
Step (8) k = 1
Step (7) U2 = { H }
Step (8) k = 2
Step (6) " C ^-subsumes D "

Proof: "if": If C 0-subsumes D, then, by definition, C has no more literals than D. 

Thus, the algorithm does not terminate in step 1. Also by definition, there exists a 8 such that 

C8 £  d Let D’ =  { Dj, ... ,  Dk } be the literals in D such that D’ £  d  and C =  D\ Let W’ 

= { —1D|/a , ... , -|Dk/i } , W’ £  W. Then there exists a linear ground refutation of {C0/x} u 

W ’ , where R0 =  C0/x, and Rj =  R ;_ , - D;/x, is a deduction sequence of ground clauses such that 

each Rj is an instance of a member of Uj. Clearly, Rk =  h , hence h £  Uk, thus the algorithm 

terminates in step 6 with " C 0-subsumes D ".
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"only if" : Suppose the algorithm terminates in step 6 with " C 0-subsumes D ". Then 

there is a linear deduction of the empty clause e  (in Uk) with C as the top clause (in U0), where 

each of the k resolution steps removes one literal of an instance of C. Let a be the substitution 

comprised of all unifiers of this particular deduction, a effects only C, since the literals in W are 

already ground. Thus, Co = D ’fi where D’ is the partial clause of D consisting of those k 

literals that contributed to the deduction of E. Consider the constants in /a . By their choice in step 

2, they do not occur in C nor in D’. Replace all occurrences of these constants in a by the 

variable, they are substituting in /x. Let the result of this operation be 0. Then C0 =  1)'. 

Therefore, CO Q D. Furthermore, the number of literals in C does not exceed the number of 

literals in D. Otherwise the algorithm would have stopped in step 1.

Termination property: Since all clauses in W are unit clauses, the resolvents in U1 have 

one literal less then their ancestors in U1-1. Thus, Uk will eventually either be empty or contain 

the empty clause. ■■

Note that the algorithm correctly decides the clauses from example (7.5), where C = Vx 

p(x)-*p(g(x)) and D = Vx p(x)-»-p(g(g(x))), not to be a case of 0-subsumption. Although C A -i D 

is unsatisfiable, the empty clause is not derived. Responsible for this is the resolution strategy 

which allows clause C to be used only once. And in fact, it would always take two ground 

instances of C to derive one ground instance of D. Thus, C subsumes but does not 0-subsume D.

The test for 0-subsumption can be quite expensive at times, as several unification and 

resolution operations are involved. On the other hand, subsumption tests can shorten the length 

of deductions drastically. [Loveland 78] gives an example in which forward and backward 

subsumption reduces the length of a refutation from some 100 clauses down to 12 clauses. So is 

subsumption worth the effort? If it is our primary goal to find a short proof, then forward and 

backward subsumption as well as the previously mentioned ancestor subsumption should be 

employed to its fullest extent. If, however, it is more important to find a proof fast, then one 

would probably be better off with a compromise of some sort. The possible gain by keeping the 

number of clauses small is paid for with the costs for subsumption tests, with decreasing returns 

when the literal count rises. Subsumption tests are most efficient when one of the clauses is a unit 

clause, and some implementations restrict its application to just unit or two-literal clauses. 

However, it is difficult to make a definite statement as to the optimal degree of using
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0-subsumption, since its benefits depend too much on implementational aspects and on not yet 

well enough researched problem qualities [Loveland 78].

D. Summary

Recapitulating this chapter, the problem of subsumption in modal logic, when translated 

into clausal World Path Logic, parallels that of subsumption in ordinary clausal first order 

predicate logic. We have proven in Sections A and B that a WPL clause C subsumes a clause D, 

if there exists a substitution 0 such that C0 £  D, just like in FOPL. Any subsumption test 

algorithm that works for FOPL will work for WPL as well. We have presented one possible 

algorithm. It relies on resolution to find the substitution. As we showed in Section IV.D, 

resolution in WPL works just like in FOPL. Resolution again is based on unification. So it is 

only at the level of unification where the special WPL needs make a difference.

This is kind of nice, we can basically upgrade any old FOPL theorem prover into a 

theorem prover for World Path Logic. The only change needed is the special purpose unification 

routine as outlined in Section IV.C. And if we add on another front-end translator from modal 

logic to WPL, we have a modal logic theorem prover at our hands. Once these changes have 

been taken care of, the whole other theorem proving machinery comes for free, including 

subsumption.
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V III . E X TE N S IO N S

To keep the presentation simple, the treatment in the previous chapter was based on 

several assumptions as to the modal logic under consideration. These restrictions were:

• we assumed the domain to be constant in all worlds

• the logics were implicitly monomodal, i.e. there was just one accessibility 

relation

• we admitted only those accessibility axioms that can be represented in definite 

clauses, i.e, reflexivity, symmetry, transitivity, euclidian. Furthermore, the 

accessibility relation was required to be serial

While these restrictions still leave us with a broad variety of modal systems, sufficient 

enough to cover many applications, it is worthwhile to explore what lies beyond. In this chapter 

we want to discuss the implications of dropping the assumptions above, and what needs to be 

done to extend our system to (a) varying domain logics, (b) multimodal logics, and (c) different 

accessibility axioms.

A. Varying Domain L ogics

By maintaining world paths with the predicates, we made sure to resolve literals only 

within the scope of the same world, thus taking into account that predicates are subject to 

different true/false evaluations in different worlds. Similarly, the world path is kept track of in 

an additional argument to non-rigid functions (and constants) in order to account for world- 

dependent interpretations. Variables, however, had no world paths associated with them.

When the domain is not assumed to be the same in every world, then it becomes 

important which world a variable belongs to. A formula with variables is a scheme standing for 

the set of all its ground instances. But a variable from world i cannot be instantiated with just 

anything, it represents only the elements from world i’s domain D;. Thus, given a variable x 

from world i and a term t from world j, they unify only if t also exists in i. Now, when we
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assumed a constant domain, this was not a concern, because every element from Dj was then also 

an element of Dj, regardless of i and j.

But even when the domains are not given to be the same in all worlds, they are usually 

not completely unrelated. Their relationship is expressed in terms of the Barcan-Formula (BF) 

and its converse (FB). If the Barcan formula is a theorem of the logic, then the domains of all 

accessible worlds are subsets of the current world’s domain. Conversely, if FB holds, then they 

are supersets of the current world’s domain. Table VIII gives the two modal logic formulas and 

states their meaning in terms of accessibility and domains.

Table VIII. The Barcan Formula (BF) and its Converse (FB)

Name Modal Logic formula Relation between domains

BF Vx Qp(x) nVx p(x) if K(i,j) then D| 2 Dj

FB □Vx p(x) Vx op(x) if K(i,j) then D| £ D(

In order to account for varying domains, we change the method as follows, combining 

ideas from [Cialdea 86] and [Jackson, Reichgelt 87]: First, the translation function from modal 

logic to WPL (table III) needs to be extended such that each occurrence of a variable is indexed 

with the path of the world, in which the variable was introduced. In particular, the line in table 

III that dealt with universal quantifiers is changed from:

• t(s,X ,V x <p) =  t(s ,X u (x },p )  

to:

• t(s,X ,V x cp) =  t ( s ,X u { x j ,^ ) ,  where =  {.xR/x}

Next, the unification method needs to be upgraded. A term t (variable or non-variable) 

and a variable x can only be unified, if t exists in the domain of x. Let path(x) be the path 

associated with x, and let path(t) be the path of t, that is t ’s index if t is a variable, or t ’s first 

argument if t is a function term. Then we need to distinguish four cases, depending on which 

combination of the Barcan formulas holds:
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(a) FB holds. Then the domains are monotonously increasing along the access path,

x and t unify only if x ’s world is reachable from t’s world, a is a unifier of x and t, only if

path(t)o is a prefix of path(x)a.We call this prefix-unification.

(b) BF holds. In this case, the domains are monotonously decreasing along the access

path. Conversely to (a), x and t unify only if t’s world is reachable from x ’s world, a is a unifier

of x and t, only if path(x)ois a prefix of path(t)a.

(c) Neither BF nor FB hold. Then there is no defined relation among the worlds’

domains. A possible unifier o of x and t has to comply to both restrictions of (a) and (b), i.e. 

patli(t)o is a prefix of path(x)a and path(x)a is a prefix of In result, the paths have to

be unifiable, such that path(i)a =  path(x)a. In other words, x and t have to be associated with 

the same world.

(d) Both BF and FB hold. In this case, if world j is accessible from world i, then D; 

£  Dj and Dj 2  Dj, thus Dj =  Dj. This is a constant domain logic, and unification can be 

performed regardless of path(x) and path(t).

Note that the special requirements of prefix unification come on top of the E-unification 

method for world paths as outlined in Section IV.C. The following example will illustrate WPL 

deduction in a varying domain logic.

Consider a logic, in which the WPL unification method employs prefix-unification to 

reflect the Barcan formula, as described in case (b) above. Our goal is to prove that the Barcan 

formula

Vx Dp(x) -► DVx p(x) (8.1)

is actually a theorem in this logic. First, (8.1) needs to be negated, so we can do a refutation 

proof later on:

Vx Ep(x) A OBx “ 'pfx) (8.2)

Translation into WPL, using the upgraded translation function, yields the clauses:

p((Hw,x0) (8.3)

-ip(0-*sk,f(0-*sk)) (8.4)

Resolution of (8.3) and (8.4) completes the refutation and yields the empty clause H. The 

necessary unifier is a =  {sk/w. f(0-*sk)/x0} . Note that the latter substitution is allowed, since the 

index of x, 0, is a prefix of the path 0-»-sk.
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If the logic under consideration is symmetric, then the Barcan formula implies its 

converse and vice versa. Suppose the Barcan formula is a theorem and K(i,j) holds for some i,j. 

Then by table VIII, D; 3  Dj. But K(i,j) implies K(j,i) by symmetry. Thus, Dj 2  D; . Hence D, 

= Dj, and we have in effect a constant domain logic, which means that both BF and FB hold 

jointly.

We conjecture that deduction in varying domain World Path Logic, using the restricted 

unification method outlined above, is sound. The subsumption detection algorithm from Section 

VII.C should work as well, since it is based on resolution and unification.

B. Multimodal L ogics

As mentioned in Section III.C, reasoning about the knowledge and belief of agents 

requires distinct modal operators, like e a , Oa , ° b, O b and so forth, where the subscript 

indicates the agent. Thus, there are multiple accessibility relations, one for each agent.

The translation function from modal logic to WPL converts the modal operators into 

world paths. For instance, OOP translates to P(0-»w-»-sk). The arrow in the path can be viewed 

as a binary infix operator representing the accessibility relation. So 0-*-w-*sk is equivalent to 

K(0,w) A K(w,sk). Now when we have to deal with different accessibility relations, we also 

need to introduce distinct path infix operators. Two lines need to be changed in the definition of 

the translation function (table III). The monomodal version was:

• t(s,X,D^) =  t(s-»w,X,<p)

• t(s,X, O tp) =  t(s-*sk (X),X,<p)

The new multimodal version is:

• t(s ,X ,n Kip) =  t(s-»Kw,X,(p)

• t(s,X , 0 K4£>) =  t(s-*Ksk(X),X,y>)

where the subscript letter K indicates the agent. Now, □ A O BP is translated to the WPL formula 

P(0-i-Aw-»Bsk).

As far as unification is concerned, paths unify only if the infix operators match. For 

instance, P(0-*Ask) and P(0-*Bw) do not unify. However, P(0-»AW|) and P(0-*Bw2) unify with
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a =  {1/W|,  l/w2}, if the accessibility relations are reflexive. Recall the axioms for E-unification 

from Section IV.C:

• Reflexivity: Vw w-*l = w

• Symmetry: Vw,w’ £III

T£t£t£

• Transitivity: Vw,w’ ,w” w^w’-^w” =  w-Kw’-*w” )

Upgrading E-unification for the multimodal case, one set of axioms each is needed for 

every agent. In a two agent transitive logic KD4, for instance, the equational theory amounts to 

these two axioms:

Vw,w’,w” w ^Aw’-*Aw” =  w-*A(w’^ Aw” )

Vw,w’,w” w-*Bw’-*Bw” =  w-*B(w’-*Bw” )

Note that these axioms cannot be applied across different agents. In particular, the 

predicates P(0-»Aw) and P(0-»-Aski-*Bsk2) do not unify, because the paths 0—»-A(sk|-*-Bsk2) and 

0-»Ask1-*Bsk2 are not equal under the equational theory.

When Multimodal Logic is used to formalize reasoning about knowledge of agents, then 

usually the same accessibility restrictions hold for all agents. The question as to which modal 

logic to use, needs careful consideration. All the accessibility axioms listed in table I have their 

specific epistemic interpretation [Scherl 92], The seriality schema D, EA->OA =  -iCA v 

-iD- iA =  i(DAAD i A) =  “ '□(AA~iA) HE

—| cd (false)

can be interpreted as saying that the agent’s belief is consistent. The reflexivity schema T

□ A -  A

states that everything that is known is true, while the transitivity axiom 4

□ A -+ DDA

states that if an agent knows something, he knows that he knows it.

Let us now do an actual example of a proof in multimodal logic, and return to the Two 

Wise-Men puzzle from Section III.C.2. The problem was formalized in the modal logic sentences 

(3.1 )-(3 .4), which are reprinted here as (8.5) through (8.8). For this particular example, the 

accessibility restrictions are of no concern, since it turns out that the E-unification equality axioms 

are not needed for. the proof.

□ A (“ ispot(A) -* a B-ispot(A)) (8.5)
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(8 .6)

(8.7)

The hypothesis to be proven is:

o Aspot(A) (8.8)

Negation of the hypothesis and conversion of the sentences into negation normal form yields:

□ A (-ispot(A) -»■ □ B~«spot(A)) (8.9)

DADB̂ sPot^ )  v spot(B)) (8.10)

□ A0 B_,spot(B) (8.11)

0 A~ispot(A) (8.12)

The next step is translation into WPL:

spot(0-»AW|, A) V _'spot(0-»'Aw|̂ -BW2, A) (8.13)

spot(0--Aw3-*Bw4, A) V spot(0-»Aw3-*Bw4, B) (8.14)

- >spot(0-*Aw5-»'Bsk1, B) (8.15)

-'spot(0-*Ask2, A) (8.16)

The deduction sequence is as follows:

- ispot(0^-Ask2-»Bw2, A) [resolvent of 8.13, 8.16] (8.17)

spot(0-»Aw3-^Bsk1; A) [resolvent of 8.14, 8.15] (8.18)

B [resolvent of 8.17, 8.18] (8.19)

Thus, the wise-man A knows, that he has a white spot on his forehead.

[Scherl 92] proved this deduction method for multimodal logic to be sound and complete. 

We conjecture that subsumption works, just as usual, by finding a substitution. The algorithm 

described in Section VII.C should do the job without changes, since all the special requirements 

for multimodal logics are hidden in the unification process.

C. O t h e r  A c c e s s ib il it y  R estr ic tio n s

Throughout the previous chapters the accessibility relation was assumed to be serial. 

Also, as to the accessibility restrictions, we admitted only a subset of reflexivity, symmetry, 

transitivity, and the euclidian property.
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Lifting any of these limitations has serious consequences as for the proofs in Chapters 

IV through VII. For instance, seriality ensures that a E-consistent path is also E-solvable. 

Consider resolving the empty clause a  from the clauses P(0-*W|-*w2) and _ 'P(0-*w3-»-sk1). If we 

are not guaranteed that some world is reachable from world 0, then the deduction of a  is not 

sound, because there is no corresponding ground refutation.

Imposing the accessibility restriction to be some combination of reflexivity, symmetry, 

and transitivity made sure that all clauses in the constraint theory E were definite clauses, i.e. 

clauses with exactly one positive literal. Suppose we specify the accessibility relation to be 

connected. That means, if both b and c are accessible from a, then either is b accessible from c

or c from a. More formally, we can express connectivity as:

Vw|,w2,w3 K(w , ,w2) A K(w , , w3) -*■ K(w2,w3) V K(w3,w2) (8.20)

Now consider the following set of WPL sentences:

-ip(0-*sk,) (8.21)

->O(0-»sk2) (8.22)

P(0-*sk2-»-W|) (8.23)

Q(0-»sk,-*w2) (8.24)

These sentences are in fact unsatisfiable. Since both sk] and sk2 are accessible from 0, 

we can either instantiate W] with sk|, thus e  is the resolvent of (8.21) and (8.23), or we can 

instantiate w2 to sk2, which would allow us to infer E from (8.22) and (8.24). None of the 

resulting paths 0-»sk2-*sk| and 0-*sk|-»-sk2 is E-consistent however, since neither 

K(0,sk2) A K(sk2,sk|) nor K(0,sk|)A K(sk,,sk2) can be inferred from E.

The problem of how to handle subsumption, when the accessibility relation is not serial, 

or when an accessibility restriction cannot be expressed in a definite clause, remains an unsolved 

question.
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IX . C O N C LU S IO N

Subsumption is a technique to detect redundancies among the sentences in the search 

space of automated deduction systems. Naturally, the way subsumption is done depends on the 

logic used in the deduction system. This dependency is of particular relevance when deduction 

in modal logic is concerned, because modern modal logic deduction methods do not perform the 

deduction directly in modal logic. Instead, they translate the modal logic expressions into some 

other target language, and then determine whether there exists a proof in that language.

Drawing from existing work, we defined and introduced World Path Logic (WPL) as 

such a kind of target language in Chapter IV. All these languages have in common that the 

possible worlds semantic of modal logic is made explicit in world access paths, which are kept 

as syntactical items with the predicates and terms of the language. Our translation function from 

modal logic to WPL differs from existing work in two points: skolemization is integrated into the 

translation procedure, and simplified world path structures are used. Deduction in World Path 

Logic is very similar to deduction in ordinary first order logic. The significant difference lies in 

a special purpose unification method for world paths. World paths are unified under an equational 

theory which represents the restrictions imposed on the accessibility relation. Thus, the 

accessibility restrictions are encoded into the unification algorithm. The method is somewhat 

restricted as to the properties of accessibility relation: it has to be serial and can be closed under 

any combination of reflexivity, symmetry, and transitivity. Thus, the modal logic systems KD, 

KT, KDB, KD4, KTB, KT4(S4), and KT5(S5) are supported. In contrast to ordinary unification, 

the most general unifier is unfortunately not always unique. Thus, in a resolution based system, 

multiple resolvents may need to be created.

We developed a deeper understanding of World Path Logic by relating it to another 

language, RML/CL, a first order predicate logic with restricted quantification. The results from 

Chapters V and VI justified why modal deduction works in World Padi Logic, and provided us 

with the theoretical background for the following treatment of subsumption.

Using a standard definition of subsumption, we approached the topic by considering a 

WPL sentence as a scheme standing for the conjunction of its E-ground instances. This is not as 

trivial as it may seem, since not every possible variable free instance of S is considered ’legal'.
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In result, however, the problem of subsumption in modal logic, when translated into 

clausa) World Path Logic, parallels that of subsumption in ordinary clausal first order predicate 

logic. We were able to prove that a WPL clause A subsumes a clause B, if there exists a 

substitution 6 such that A 0Q B, just like in FOPL. Any subsumption test algorithm, that works 

for FOPL, works for WPL as well. We have presented one possible algorithm. It relies on 

resolution to find the substitution. As we showed in Section IV.D, resolution in WPL works just 

like in FOPL. Resolution again is based on unification. So it is only at the level of unification 

where the special WPL needs make a difference.

Although the results have only been proven for certain modal logics, we conjecture based 

on the discussion in Chapter VIII, that the results can be extended to multimodal logics as well 

as to varying domain modal logics. That is, the necessary changes to account for these extensions 

effect only the special purpose unification method. Resolution and the subsumption test should 

still work like before.

We were not able to extend the method to non-serial logics and to logics where the 

accessibility relation restrictions cannot be axiomatized in definite clauses. Future work might try 

to work on these extensions, and to prove the extensions which we were only able to conjecture. 

Also, it can be worthwhile to explore subsumption outside the realm of those deduction methods 

that work by translation.

And of course, testing out the deduction and subsumption methods in an actual 

implementation should provide valuable insights. Actually, the implementation should not be too 

difficult. At least one does not need to build an automatic theorem prover from scratch. 

According to our results, we can basically upgrade any old FOPL theorem prover into a theorem 

prover for World Path Logic. The only change needed is the special purpose unification routine 

as outlined in Section IV.C. And if we add on a simple translator from modal logic to WPL, we 

have a modal logic theorem prover at our hands. Once these changes have been taken care of, 

all the other theorem proving machinery comes for free, including subsumption.
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