
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Dec 1993

Subsumption in Modal Logic Subsumption in Modal Logic

Dirk Heydtmann

Ralph W. Wilkerson
Missouri University of Science and Technology, ralphw@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Heydtmann, Dirk and Wilkerson, Ralph W., "Subsumption in Modal Logic" (1993). Computer Science
Technical Reports. 63.
https://scholarsmine.mst.edu/comsci_techreports/63

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/63?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

Subsumption in Modal Logic

D. Heydtmann* and Ralph Wilkerson

CSC-93-33

Department of Computer Science
University of Missouri-Rolla

Rolla, MO 65401

♦This report is substantially the M. S. thesis of the first author, completed December 1993

ABSTRACT

Subsumption has long been known as a technique to detect redundant clauses in the search

space of automated deduction systems for classical first order logic. In recent years several

automated deduction methods for non-classical modal logics have been developed. This thesis

explores, how subsumption can be made to work in the context of these modal logic deduction

methods.

Many modern modal logic deduction methods follow an indirect approach. They translate

the modal sentences into some other target language, and then determine whether there exists a

proof in that language, rather than doing deduction in the modal language itself. Consequently,

subsumption then needs to focus on the target language, in which the actual proof is done.

World Path Logic (WPL) is introduced as a possible target language. Deduction in WPL

works very much like in ordinary logic, the only significant difference is the need for a special

purpose unification, which unifies world paths under an equational theory (E-unification).

Relating WPL to a well understood first order logic of restricted quantification, the properties of

WPL, that make deduction work, are examined. The obtained theoretical results are the basis for

the following treatment of subsumption in WPL.

Subsumption is analyzed treating a clause as a scheme standing for the set of its ground

instances. Although the notion of ground instances in WPL is different from ordinary logic, it

turns out that - just like in ordinary logic - a clause Cl subsumes another clause C2, if there

exists a substitution 6 such that C10 £ C2. Once the special purpose unification has been

implemented into a theorem prover to allow for deduction in WPL, existing subsumption tests

then work without any further changes.

IV

ACKNOWLEDGEMENTS

I want to thank my advisor, Ralph Wilkerson, for his guidance while 1 was working on

this thesis. My thanks go also to the other members of the thesis committee - Bruce McMillin

and Michael Hilgers.

Throughout this work I was repeatedly supported by other researchers, who helped me

in my literature research, went to great length to make their work available to me, and openly

discussed their results with me. These include Marta Cialdea, Luis Farinas del Cerro, Alan

Frisch, lan Gent, Hans Jurgen Ohlbach, Larry Wos, and most of all, Richard Scherl.

1 would also like to thank the American-German Fulbright Kommission in Bonn and the

Institute of International Education in Chicago for their financial and visa sponsorship of my

graduate studies.

V

TABLE OF CONTENTS

Page

A B S T R A C T iii

ACKNOW LEDGEM ENTS..................... iv

LIST OF TABLES ... vii

LIST OF ABBREVIATIONS.. viii

SECTION

I. INTRODUCTION ... I

II. LITERATURE O V E R V IE W ... 4

III. SYNTAX AND SEMANTICS OF MODAL L O G I C ... 9

A. Syntax .. 9

B. Semantics .. 10

C. Different In terpreta tio n s .. 12

1. Temporal Interpretation ... 12

2. Epistemic Interpretation and Multimodal Logics 13

IV. TRANSLATION 15

A. Introduction ... 15

B. World Path L ogic .. 17

C. T he Concept of E -unification ... 20

1. Reflexivity 20

2. Sym m etry... 21

3. Path Properties................................. 21

4. T ransitivity ... 22

VI

Page

5. Combinations of Accessibility Restrictions.. 23

D . D e d u c t io n in WPL - An E x a m p l e .. 24

V. RML CONSTRAINT LOGIC ... 26

A. Translation into RML Constraint Lo g ic .. 26

B. Deduction in RML Constraint Lo g ic .. 33

VI. WORLD PATH LOGIC VS. RML CONSTRAINT L O G IC 37

A. Ground In sta n ces .. 38

B. Path Unification vs. Conjunction of Constraints 44

C. Unification as a T est For E-Solvability .. 50

D. Su m m a r y .. 58

VII. SUBSUMPTION 60

A. Unit Cl a u s e s .. 62

B. Multiliteral Clauses ... 66

C. Algorithmic. Subsumption Detection .. 70

D. Su m m a r y .. 73

VIII. EXTEN SIO N S.. 74

A. Varying Domain Lo g ic s .. 74

B. Multimodal Lo g ic s ... 77

C. Other Accessibility Restrictions 79

IX. C O N C LU SIO N ... 81

BIBLIO G RA PH Y.. ; ... 83

VITA 86

LIST OF TABLES

Vll

Table I. Accessibility Relation Restrictions and Their Axiom Schem ata.................. 12

Table II. ’Naive’ Translation from Modal Logic into First Order Predicate Logic . . . 15

Table III. Conversion Procedure from Modal Logic to World Path Logic 19

Table IV. Translation Function from Modal Logic to RML Constraint Logic 28

Table V. Accessibility Relation Restrictions and Their Axioms in Clausal Form 28

Table VI. Subsumption Test in WPL - An A lgorithm ... 71

Table VII. Subsumption Test, An E xam p le... 71

Table VIII. The Barcan Formula (BF) and its Converse (FB) ... 75

LIST OF ABBREVIATIONS

iff if and only if

FOPL First Order Predicate Logic

MCIU most general unifier

RML Reified Modal Logic

RML/CL - RML Constraint Logic

WLOG without loss of generality

WPL World Path Logic

I. INTRODUCTION

"If you can prove that it’s better, it’s not worth implementing;

and if you can’t prove that it’s better, it's not worth

implementing"

-- Lincoln A. 1

Even though Leibniz’ seventeenth century vision of a symbolic language for the

representation and mechanical solution of all scientific and mathematical problems2 has suffered

at the hands of the undecidability and incompleteness3 results of modern logic, the spirit of his

dream lives on within Computer Science. While the decision problem may be theoretically

intractable, it has shown practical to prove theorems of symbolic logic mechanically using

computers.

Efficiency, however, tends to be a major problem of such automated theorem provers or

automated deduction systems. Their performance depends not only on the fundamental deduction

method employed, but can also be improved by various optimization techniques. One of them is

called subsumption, and is motivated as follows: During the course of a deduction, a large

number of sentences is deduced from the given set of premises, until a deduction of the

hypothesis is found. At any deduction step, the system has to choose a small subset (usually two)

of the available sentences, to perform the next deduction on. Unfortunately, the search space of

generated sentences tends to grow rapidly, causing both space and time efficiency problems. The

technique of subsumption helps reducing the growth of the search space by detecting redundancies

within the set of sentences. The idea is the following: If C can be derived from B and A ’, where

sentence A ’ is just a variant of a more general or simpler sentence A, then C can also be derived

from B and A directly. Thus, A’ is not needed and can be discarded. A is said to subsume A’ .

1) Wallen, personal communication with lan Gent. 1989, as reported in [Gent 92|

2) for an overview of Leibnizian logic see [Styazhkin 69]

3) [Godel 31]

2

Early work in automated deduction focused almost exclusively on classical propositional

and first-order logics, and subsumption was treated in this context. In recent years, however,

several automated deduction methods for non-classical modal logics have been proposed. The

relative semantic richness of modal logics makes them suitable for the formalization of a broad

variety of human discourses and reasoning, and consequently, modal logics have gained

increasing popularity in many areas of computer science and artificial intelligence.

The notion of modal logic can be illustrated very quickly. Basically, modal logic can be

viewed as a means to merge language and metalanguage. The concept of modal operators

facilitates reasoning about theories, for instance a theory at a certain point of time (in a temporal

interpretation), or a theory of an agent’s knowledge (in an epistemic interpretation). Conceptually,

there are different worlds, each of which has its own truth interpretation, and the modal operators

represent an implicit discourse about the accessibility of these worlds.

The goal of this thesis is to explore how the ideas of classical subsumption can be applied

to modal logics. Since subsumption as a technique does not make sense per se, but only in the

context of a proof system, it cannot be treated independently from the framework of the

automated deduction method it is supposed to work in. This is especially important, since the

most promising modal logic deduction methods do not perform deduction directly in the modal

logic. Instead, they translate the modal language into a special easy to reason about target

language and then determine, whether there is a proof in that language. Following this route, the

question of subsumption in modal logic deduction reduces to subsumption in the target language.

Our approach is as follows: We present such a target language, called World Path Logic,

and demonstrate how modal deduction works in this language. Drawing upon previous results by

[Scherl 92], we then show how this World Path Logic can be represented in a first order

predicate logic (FOPL) with restricted quantification. FOPL with restricted quantification is

relatively well understood, and using the similarity between this language and World Path Logic,

we can prove several important properties of World Path Logic.

Building on these results, we finally define subsumption for World Path Logic, show how

subsumption can be detected, give an algorithm, and prove the correctness of the method.

It was shown in earlier works that deduction in a language like World Path Logic can be

performed very similarly to ordinary first order logic. The only main difference is the need for

3

a special purpose unification routine [Auffray, Enjalbert 89]. It is our contribution to prove that

similar results hold for subsumption: As it turns out, Robinson’s classical subsumption detection

algorithm [Robinson 65] also works for World Path Logic, once the changes to the unification

method have been made.

The remaining part of this introduction is devoted to a chapter by chapter outline of the

thesis. Chapter II surveys relevant works in the fields of modal logic deduction and of

subsumption. While considerable research has been done pertaining to the former, the latter has

apparently not received a great deal of attention in the automated deduction community. To our

knowledge, this thesis is the first work dealing explicitly with the problem of subsumption in

modal logic deduction.

After the general background of modal logics has been presented in Chapter III, modal

logic deduction via translation into World Path Logic (WPL) is the subject of Chapter IV. The

language of WPL is defined and a translation function from modal logic to WPL is given. The

centerpiece of WPL deduction is a special purpose unification method, which unifies terms under

an equational theory (E-unification). This method has been adopted from [Auffray, Enjalbert 89],

Chapter IV concludes with a detailed example of a deduction in WPL.

Chapter V presents yet another language, Scherl’s RML Constraint Logic (RML/CL)

[Scherl 92], as a means for modal logic deduction. RML/CL is less a language for practical

applications, but through its well understood theory and closeness to ordinary first order logic

it provides valuable insights into how deduction works in languages like WPL. Chapter VI

discusses the relationship between WPL and RML/CL further. Drawing on the similarity between

WPL and RML/CL, several important properties of WPL deductions are established and proven.

Chapter VII applies the usual definition of subsumption to WPL and establishes a

criterion for subsumption detection. Using the theoretical results from Chapter VI, we prove that

subsumption in WPL works just like in ordinary first order logic.

Chapter VIII discusses several possible extensions of the method, before finally Chapter

IX concludes this thesis with a short summary of the results and some closing remarks.

4

II. LITERATURE OVERVIEW

This chapter presents a brief overview on relevant works in the areas of (a) automated

deduction in modal logics and (b) subsumption. Automated deduction in FOPL has been a well

researched field for almost 30 years, since Robinson’s landmark paper on resolution [Robinson

65]. Modal logic deduction, however, is a relatively young discipline, with the first considerable

work done in 1982 [Farinas 82], Since then, a variety of modal deductive methods have been

proposed.

These methods can be roughly classified into two groups, the direct and indirect methods

[Pelletier 90], Direct methods establish a proof theory for modal logics, whereas indirect methods

translate the modal logic under consideration into some other language - usually a form of FOPL

- and then determine whether there is a proof in that target language.

Probably one of the most prominent representative of the direct approach is [Abadi,

Manna 86, 90], The method extends Robinson’s resolution method with special inference rules

for modal operators. Although Robinson’s resolution principle was originally based on formulas

in normal form, it can also be stated in terms of non-clausal resolution. Because there is no

straight-forward clausal normal form of modal logic, Abadi and Manna’s method is based on this

non-clausal resolution. An example for one of their modal inference rules is: (° a) A (0 /8) h-

O (a A ^) . The intuitive interpretation of this rule is: if a holds in all accessible worlds and /?

holds in some accessible world, then there must be a reachable world in which both a and /3

hold. The restrictions on the accessibility relation are represented by the corresponding Hilbert

style axioms, for instance h- <pin a reflexive system. As [Scherl 92] points out, a major

problem of Abadi and Manna’s method is the ’cut’ rule l- <p v ~><p , that is required to make

the method complete for first order modal logic. Since the cut rule holds for arbitrary formulas

<p. the branching is infinitely large at any point in the search space. Heuristics have to be

employed to decide, when and where to apply the cut rule.

Geissler and Konolige [Geissler. Konolige 86] propose a method, where the formula is

converted into clausal form as usual, except that this conversion does not effect what lies inside

the scope of modal operators. Using special inference rules, the unsatisfiability of a set of

sentences S is reduced to unsatisfiability of another set S’ , such that at least one sentence in S’

has less modal operators than in S. The method - or in an implementation the automated theorem

5

prover - is then applied recursively on S’ , until it has been reduced to an unsatisfiable set of

classical logic sentences.

A special characteristic of Geissler and Konolige’s approach is the introduction of a so-

called bullet operator • . It is attached to variables and skolem terms within the scope of a modal

operator, if they stem from quantifiers outside of the scope of the modal operator. The bullet

restricts the way in which unification can be done: if a variable • x is marked, it can only be

replaced by a term that is marked itself.

The main drawback of Geissler and Konolige’s approach is its recursive nature. An

automated theorem prover would need to call itself recursively at each particular resolution step,

thus adding considerable complexity. Since a call to a theorem prover is not guaranteed to

terminate, it is essential to interleave the calls from one particular step with calls from other steps

to maintain completeness [Scherl 92],

Another approach that uses ’semantic’ attachment similar to the preceding one, is

presented in [Cialdea 86, 91]. Building on earlier work by [Farinas 82], the method employs a

mix of classical and special purpose modal resolution rules. Where Geissler and Konolige use the

bullet operator, Cialdea attaches a numerical index to skolem terms and variables, indicating the

modal level of the governing quantifier. Again, the index serves as a restriction on unification.

A variable can only be unified with a term, if the variable’s index is the same or higher than the

term’s index. As for Geissler and Konolige’s method, a binary attachment sufficed, because it

would be used anew at every recursive level. Since Cialdea’s method does not rely on recursive

calls, a numerical attachment is needed.

With respect to the classification into direct and indirect methods, the techniques of

Geissler, Konolige, and Cialdea are considered hybrids. They do not translate the modal logic

into some other language, but they facilitate the reasoning within the modal language with their

special attachments.

Other than the direct and hybrid methods, truly indirect methods translate modal logic

into some other representation and then search for a proof in that language, rather than in the

modal logic language itself. From their semantics, the modal operators can be interpreted as a

quantification over what is usually referred to as ’worlds’ . Translation methods make this implicit

6

discourse explicit by translating modal operators into quantifiers. The result is then ordinary first

order predicate language or a language very close to it.

The first work using explicit translation for automated theorem proving purposes was

reported by [Morgan 76], The benefit of translation into classical logic is obvious: it makes all

the existing deduction machinery available for modal logic. The method of ’naive’ translation into

FOPL is appealing for its simplicity, but much of the structure and compactness of the original

modal formula gets lost over the process of translation. The resulting FOPL expressions are

oftentimes very large in size, and inefficient in terms of automated theorem proving.

In recent years indirect modal deduction methods, that translate modal logic into non-

classical target logics, have received increasing attention. The target logic gives the worlds special

syntactical and semantic consideration, yet it is close enough to FOPL to benefit from existing

deduction machinery. Using ideas from [Fitting 83], Jackson and Reichgelt [Jackson, Reichgelt

87, 89] translate the modal operators to indices which are attached to predicates as well as to

other terms. Starting from an initial world 0, the respective modal context of a subformula is

encoded into a sequence of terms. The □ operator is replaced by some world variable, say w,

and the O operator by a skolem function of the variables governing it. As an example, □ O P is

translated into pf(w):w:0. Predicates and terms then unify only if their world denoting indices

unify.

Auffray and Enjalbert propose a very similar method [Auffray, Enjalbert 89]. What is

an index in Jackson and Reichgelt’s method, is here stored as an additional argument, called

’path’ , to predicates and functions. Except for minor syntactical differences (among other things,

the order is reversed), this path equals Jackson and Reichgelt’s index. Auffray and Enjalbert’s

important contribution is the concept of E-unification, which describes unifying world paths under

an equational theory. The equational theory reflects the specific properties of the world

accessibility relation. If this relation is known to be reflexive, for instance, then the equational

theory states w: 1 = w , where 1 is an artificial neutral element. Thus, the paths 0:sk:w and 0:sk

E-unify with the substitution }l/w }. Under the concept of E-unification, each specific accessibility

relation calls for its own special purpose unification algorithm.

Ohlbach develops a translation method [Ohlbach 88, 93], in which the accessibility

relation is represented in deterministic access functions. Such a function is a one place function

that maps worlds into accessible worlds. Since multiple worlds can possibly be accessible from

7

each given world, multiple functions apply to each world. The modal formula □ O P is translated

into Vf 3g P(f°g), such that fog is the composition of the two individual functions, where f

returns a world accessible from the initial world and g is a world accessible from that world.

Ohlbach’s chain of functions corresponds closely to Jackson and Reichgelt’s world indices and

Auffray and Enjalbert’s paths.

A general framework for modal logic deduction has been developed by Frisch and Scherl

[Frisch, Scherl 91; Scherl 92]. First order logic with restricted quantification is used in the

presence of a restriction theory. Frisch and Scherl do not commit themselves to a particular proof

system, they show how a general class of deduction methods for first order logic can be

systematically transformed into a modal logic proof system. In particular, they show that the

sequence oriented methods of Jackson and Reichgelt, Auffray and Enjalbert, and Ohlbach can be

generated as particular instances of the framework. Using insights from constraint logic

reasoning, this enables them to show, how sequence unification arises in modal logic.

The work reported in this thesis is based on the sequence oriented methods of Jackson,

Reichgelt, and Auffray, Enjalbert. Scherl’s work [Scherl 92] provides the theoretical background

we utilize for proving certain properties of subsumption in the context of modal logic deduction.

While most of the aforementioned methods are resolution based, Wallen [Wallen 90]

proposes a matrix and tableau method, that does not require prenexing, skolenrization, and

conversion to normal form. This method was later reconstructed and generalized by [Gent 92]

based on a logic of restricted quantification similar to the one utilized in [Scherl 92],

In contrast to modal theorem proving, not very many publications deal with subsumption.

Robinson’s famous paper on resolution [Robinson 65] defines subsumption and gives the

subsumption algorithm used in Chapter VII of this thesis. Loveland introduces the notion of

subsumption, which is weaker than general subsumption, but more useful for practical purposes

[Loveland 78], He also examines, how subsumption as a deletion strategy effects the underlying

resolution strategy within a theorem proving system.

Currently, research is underway as to how temporal subsumption can be used in the

context of distributed algorithms verification. The goal is to detect and remove redundant

assertions in a verification proof outline [Schollmeyer, McMillin 93]. The temporal model used

here, however, is very much tailored to the specific purposes of program fault tolerance.

8

Summarizing this survey of relevant works in the fields of modal logic deduction and of

subsumption, considerable work has been done pertaining to the former, while the latter has

apparently not received a great deal of attention in the automated deduction community. To our

knowledge, this thesis is the first work dealing explicitly with the problem of subsumption in the

context of modal logic deduction.

9

III. SYNTAX AND SEMANTICS OF MODAL LOGIC

This chapter presents the basic background on modal logic, based upon [Scherl 92,

Farinas 91, Jackson & Reichgelt 89, Wallen 90]. The notion of modal logic has been around for

a number of decades, it can be traced back to the works of C.l.Lewis from 1912 to 1932 [Scherl

92], A pivotal milestone was Kripke’s paper on the semantics of modal logic [Kripke 63]. His

possible-worlds semantics form the basis for nearly all modern modal logic systems. But before

we go into semantics, we will first have a brief look at the syntax.

A . S yn ta x

Modal logic is an extended form of ordinary propositional logic or first-order predicate

logic. Throughout this paper, however, we usually mean its first-order version, when we speak

of modal logic. The language of modal logic adds two new unary operators, □ and 0 , to its

FOPL counterpart. These are usually referred to as the operators of and of ,

respectively. All well-formed formulas of FOPL are also well-formed formulas in the modal logic

language. Additionally, if <pis a well-formed formula, then so are □<? and O <p. For instance, 3x

0 (P (x) A 0 °Vy(Q(y) v R)) is a well formed formula in modal logic.

The operators □ and 0 can be interpreted in multiple ways. If modality is understood

to express the concept of necessity, then the operators denote two different types of truth.

reads as V is necessarily true’, whereas Ocp means V is possibly true’ , This approach attempts

to capture the distinction between things that could not be false (necessary truth), and things, that

just happen to be true (contingent truth). In a temporal interpretation and 0<p would be read

as V holds always’ and V will hold eventually'. When modal logic is used as a logic of agents

and knowledge, then &<p means ’the agent knows <p'.

All these interpretations have in common the duality between □ and O, i.e. 0 can be

expressed in terms of O<p = So, in essence, the operator 0 does not really add

semantics to the language. It rather serves as a syntactical convenience.

10

B. Semantics

The most widely accepted semantics concept for modal logic is Kripke’s possible worlds

semantics [Kripke 63], Basically, a set of worlds and a binary accessibility relation between

worlds is added to the FOPL semantics. Recall that FOPL semantics are given in terms of

models. A model M for FOPL is a pair < D ,I > , such that:

• D is the domain

• I is the interpretation function. If f is an n-ary function4 in FOPL, then 1(f)

maps Dn to D. If P is an n-ary predicate in FOPL, then 1(P) is a function

mapping Dn to {TRUE, FALSE}.

The semantic value of a formula < punder a model M = < D,I > , denoted as M, is

inductively defined as follows:

m [Vx<pJ M = TRUE, iff5 for every d G D: H^{d/x} J M = TRUE6

= FALSE, otherwise

m [3 xv>]1m = TRUE, iff there exists a d G D: H ^ {d /x }IM = TRUE

= FALSE, otherwise

m 11 - , p l M = TRUE, iff M M = FALSE

= FALSE, otherwise

m J a-*/? 1 M = FALSE, iff Eor 1 M = TRUE and [0] M = FALSE

= TRUE, otherwise

m m t 1, . . . , tn)] M = I(P)(It| l M,. . . ,E tnl M), if P is an n-ary predicate

symbol

m i f (t1, . . . , g i M = K O dtj II tnl M), if f is an n-ary function symbol

m [t i M is undefined, if t is a variable

the modal case a model needs to carry information about the worlds and their

accessibility. Specifically, a model M for modal logic is a six-tupel < W,w0,K,D,D*,I > .

4) We treat constants as 0-ary functions, and atomic propositions as 0-ary predicates.

5) if and only if

6) <p{d/x) means: substitute d for every x occurring in <p

11

• W is the set of worlds

• w0 is the initial world, a distinguished element of W

• K QW2 is the accessibility relation. WjKw2 iff w2 is accessible from W|.

• D is the domain, such that D = U w6 w Dw , where Dw is the domain of world

w

• D* is the domain function, which maps each world w G W to its domain Dw

• I is a binary interpretation function. Its two arguments are a world w and a term

t, which is either an n-ary function or an n-ary predicate. Iw(t) maps D" to D or

to {TRUE, FA LSE}, respectively.

In modal logic each world possesses its own domain Dw and its own interpretation Iw.

The truth of a formula is always evaluated with respect to a current (or initial) world. Thus, to

say a formula is true, is to say, it is true in the initial world of the model under consideration.

The other worlds come into play, when the modal operators O and O are used. is true in the

current world, if <pis true in ail worlds accessible from the current world. Conversely, is

true in the current world, if there is an accessible world in which <p holds.

In order to adapt our FOPL semantics definition for the modal case, we need to replace

I by Iw(). Furthermore, we need to add the following two lines, which define the meaning of the

modal operators □ and O .

■ I D<plM = TRUE, iff for every world w £ W such that w0Kw:

< W.w,K.D>D*,|> = t r u e

= FALSE, otherwise

• II Oip]M = II - iD_i<p 1m

An alternative and more frequently used denotation for = TRUE is M -

(read: M satisfies <p). A formula <p is valid in a model, if it holds in every world of the model,

i.e. Vwgw < W ,w,K,D,D*,I > >= <p.A formula is said to be valid with respect to a class of

models C, if it is satisfied by all models in C. A common classification of models is by the

restrictions which are imposed on the accessibility relation. The properties of the accessibility

relation are a key factor throughout modal logic, and reflecting this importance, we use them to

define different systems of modal logic.

12

Table I lists some of the possible restrictions along with the axioms, that characterize each

of them. If the accessibility does not follow any particular restriction, then we speak of the modal

logic K. There is actually one axiom, that holds in all modal logics, thus also in K: If <p valid,

then so is &<p. This axiom merely reflects the definition of a formula being valid in a model.

Table I. Accessibility Relation Restrictions and Their Axiom Schemata

Modal

Logic Restriction Axiom

D serial V w 1 E W 3w 2 E W w 1l<w2 Dtp Otp

T reflexive V w -j E W w 1K w 1 Dtp -*• tp

B sym m etric V w v w 2 E W if w 1K w 2 then w 2K w 1 tp -*■ □ 0 tp
4 transitive V w v w 2,w 3€ W if w 1l(w 2 and w 2K w 3 then w 1l(w 3 Dtp DDip
5 euclidian V w 1,w 2,w 3 E W if w 1 K w 2 and w 1K w 3 then w 2K w 3 Otp DO tp

Different restrictions go along with different axioms, as indicated in the table. If we are

guaranteed that there is always another world accessible from every world, then we have modal

logic D, which is serial, and □<? -»> Oy? is an axiom. This is not trivial, recall that Eyj is

vacuously true, if no other world is accessible. Conversely, if we are given the axiom

then it follows that the accessibility relation is serial.

It is not uncommon for a modal logic to abide by several accessibility restrictions. The

name of the logic then consists of the individual letters characterizing the restrictions. For

instance, the accessibility relation of the logic KTB4 is reflexive, symmetric, and transitive, thus

an equivalence relation. The seriality of KTB4 comes basically ’for free’ , due to the reflexive

property.

C. PrFFERENT INTERPRETATIONS

1. Temporal Interpretation. Modal logics can be used to formalize a broad variety

of human discourses and reasoning. One application is the reasoning about time. It is possible.

13

of course, to deal with time in ordinary FOPL, as in the predicate tomorrow).

The temporal (modal) logic, however, gives the temporal factor special syntactical and semantic

consideration.

The modal worlds represent different instances of time, and they are ordered in a linear

fashion by the accessibility relation. In this temporal interpretation means, tp will hold in all

futures (always), whereas 0<pis interpreted as saying that will hold at some future point of

time (eventually). & 0 ir_rains(Seattle)expresses the fact, that at any given future time, it will

eventually rain in Seattle, whereas O □ it_rains(Seattle)is a pessimistic view of the big rain, that

will come some day and will last forever. Clearly, the accessibility relation is transitive and must

be antisymmetric, otherwise we would get caught in "time loops".

Some authors use O as a third modal operator. Quoted the 'next’ operator, indicates

that <p holds at the very next moment, as opposed to ’eventually’ or ’ in all futures’ [Abadi,

Manna 90].

An important application area within computer science, where temporal logics are

employed, is the field of program verification, especially with respect to concurrent programs.

Most properties about programs, that one would like to prove, fall into two categories [Owicki,

Lamport 82]: liveness properties, which state that something good eventually does happen, and

safety properties, which state that something bad never happens. Thus, liveness properties can

be expressed in terms of the O operator, whereas safety properties lend themselves to the o

operator. Program termination is an example for a liveness property, while mutual exclusion -

no two processes are in their critical section at the same time - would be a typical safety property.

The question of temporal subsumption in the context of program verification has received some

attention lately, the goal here is to increase the efficiency of proof systems for distributed

programming [Schollmeyer, McMillin 93],

2. Epistemic Interpretation and Multimodal Logics. Another application for

modal logics is the reasoning about knowledge of agents. This use of modal logics is usually

referred to as an epistemic interpretation. In this context, □ < can be read as: the agent knows <tp.

Conversely, c -u p means, the agent knows that tp does not hold. This is different from -!□<£,

which states that the agent has no knowledge as to the truth of tp. The other modal operator, O ,

has no particular interpretation other than a syntactical abbreviation for - iO - i.

14

While it is nice to have a means to formalize a single agent’s knowledge, it is more

challenging to deal with multiple agents, each of whom has his own knowledge about the world

and about the knowledge of his fellow agents. Representing multiple agents requires distinct

modal operators for each agent, which we call o A and o R. The formula o A <p reads ’agent a

knows tp’ , and DgOAp is read as ’agent b knows that agent a knows that holds’ .

We will illustrate this with a simple version of the famous Wise-Man Puzzle which is

frequently used throughout the literature as a test problem for formalizations of knowledge and

belief [Geissler, Konolige 86], [Genesereth, Nilsson 87], [Scherl 92]:

There are two wise men who are told by their king that at least one

o f them has a white spot on his forehead. In fact, both have a white spot.

Every wise man can see the other’s forehead, but not his own. Suppose

wise man B says he does not know whether he has a white spot. The

problem is then to prove that A knows lie himself has a spot on his

forehead.

The givens are: (i) A knows that if he does not have a spot, B will be aware of that (ii)

A knows that B knows that at least one of them has a white spot and (iii) A knows (because B

said so) that B does not know whether he has a spot.

These statements can be represented in multimodal logic as follows:

(i) □ A ('“>spot(A) -* E g -1 spot(A)) (3.1)

(ii) □ An B(spot(A) v spot(B)) (3.2)

(iii) □ Ai n Bspot(B) (3.3)

The hypothesis is:

DAspot(A) (3.4)

The treatment in the following chapters is restricted to monomodal logics for simplicity’s

sake, but in Section VIII.B we will present an extension to multimodal logics and prove the Two

Wise-Men Puzzle.

15

IV. TRANSLATION

A . In tr o d u c t io n

The possible worlds semantics, as described in Chapter III, treats the modal operators □

and O much like a quantification over a set of worlds. Essentially, the operators represent a

discourse about worlds and their reachability. The discourse is implicit though, since there are

no syntactical entities, like constants or variables, which actually denote the worlds. And indeed,

it is definitely not easy to cope with the modal operators in a deduction system without naming

the worlds.

A way of making the worlds and the accessibility restrictions syntactically visible is to

translate modal formulas into classical FOPL, where the modal operators are converted to explicit

quantifications, and the accessibility relation is represented by a new binary predicate, say K().

U<P then translates to Vw (K(0,w) tp), while 0<p is written as 3w (K(0,w) A where 0 is

the current or initial world. More formally, the translation function T(^) can be recursively

defined as shown in table II:

Table II. 'Naive' Translation from Modal Logic into First Order Predicate Logic

T = t(0 ,tp)
t(\N,Dip) = Vw' (K(w,w')-*t(w ' ,tp)),where w' is an all new variable

t(w, O = 3w' |K(w,w') At(w',tp)), where w' is an all new variable

t(w,Vx = Vx t(w ,tp)
t(w,3x tp) = 3x t(w ,tp)
t(w,C7 V /?) = t(w,a) v t(w,/?)
t(w,a A /?) = t(w, a)A t(w,/?)
t(w, = ->t(w, D̂)

As an example, n (a A O -i/J) translates to Vw((K (0,w ,) -+ (a A 3 w 2 (K .(W],w 2) A m.
In addition to translating the formula, we would also need to express the accessibility axioms of

the modal logic system under consideration in FOPL. This is straightforward, the transitive logic

K4, for instance, needs Vwj,w2,w3 K(W|,w2) a K(w2,w3) -* K (W j ,w 3) to be valid. Once

16

everything has been transformed into FOPL, we can then use all the deduction machinery

available for FOPL.

This method of ’naive’ translation into FOPL is clearly an indirect modal logic deduction

method in terms of the classification used in Chapter II. Direct methods establish a proof theory

for modal logics, whereas indirect methods translate the modal logic under consideration into

some other language and then determine whether there is a proof in that target language.

’Naive’ translation into FOPL is appealing for its simplicity, but much of the structure

and compactness of the original modal formula gets lost over the process of translation. The

resulting FOPL expressions are frequently very large in size, and inefficient when it comes to

automated theorem proving.

In recent years other indirect modal deduction methods that translate modal logic into

non-classical target logics, have received increasing attention. The target logic gives the worlds

special syntactical and semantic consideration, yet it is close enough to FOPL to benefit from

existing deduction machinery. We will be looking at a target logic, in which the worlds are

represented by special sequences. If we think of the worlds and the accessibility relation as a

digraph, in which the nodes represent the worlds and the edges correspond to the accessibility

relation, then a sequence represents the path through the graph from the initial world to the

current world.

Our target logic is a slight variation of the path logic introduced in [Auffray, Enjalbert

89] and the sequence representation used in [Scherl 92]. We will call it World Path Logic,

abbreviated as WPL. WPL is an efficient language to do modal logic proofs in. Section IV.B

introduces WPL and gives a translation procedure from modal logic to WPL. In order to do

deduction in WPL, a special unification method is needed. This so-called E-unification is the

subject of Section IV.C. Finally, Section IV.D shows by a detailed example, how deduction is

done.

The analysis of WPL’s key properties, however, is postponed until Chapter VI. The

reason is that the theoretical properties of WPL are best being studied by relating it to yet another

language, which is introduced in Chapter V. It is Scherl’s RML Constraint Logic (RML/CL)

[Scherl 92]. RML/CL is less a language for practical applications, but through its well understood

17

theory and closeness to ordinary first order logic it provides valuable insights into how deduction

works in languages like WPL.

To keep the presentation simple, we will impose some restrictions on the modal logic

under consideration. These restrictions hold from now on until Chapter VIII, in which possible

extensions of the method are explored:

• the domain is constant in all worlds

• the logics are monomodal, i.e. there is just one accessibility relation

• the accessibility relation is serial, i.e. from every world there is always another

accessible world, and also, we limit the accessibility restrictions to be some

combination of reflexivity, symmetry, transitivity. This leaves us with the modal

systems KD, KT, KDB, KD4, KTB, KT4, and KT57

B. W orld P ath L ogic

Formally, World Path Logic is a three-typed FOPL. The first two types are D, the

domain of discourse, and P, the world paths. P is a compound type, the paths are sequences of

variables, constants, and functions of type W. W is the set of worlds.

The idea is to attach the access path from the initial world through the world domain to

the current world as an additional argument to every predicate and function. As an example, the

world path of predicate P in the formula O ° P is denoted as: 0-»sk-»-w.

ODP (4.1)

translates to

P(0-»-sk-*w) (4.2)

0 denotes the initial world, sk is a skolem constant (due to the existential quantification

character of the 0 operator), and w is a world variable. As a convention throughout this thesis,

all variables of type W begin on a ’w’, all skolem constants and functions of type W begin on

’sk', and all functions of type D begin on an T .

7) the systems KT4 and KT5 are also referred to as S4 and S5, respectively

18

Now consider the modal formula

□ OP (4.3)

Naive translation into FOPL yields:

VW| (K (0,W |) -+ Bw 2 (K (W |,w 2) A P))

and after conversion into Skolem8 Conjunctive Normal Form we obtain:

Vw, ((-iK (0 ,W |) vK(w |,sk |(w j)) A (i K (0 ,W |) v P)) (4 .4)

Converting (4.3) into WPL yields

P(0-^-W|^-sk,) (4.5)

which is a much shorter representation of the same semantics as (4.4). The complete translation

procedure from modal logic to WPL is given in table III.

As shown in table III, the translation of the O operator introduces a skolem term like

sk’ . Although this term does not explicitly show any world arguments, the world path preceding

sk is considered an implicit argument to sk. Let us look at the expression OOP again. It

translates into P(0-*w-*sk). Suppose we wanted to make the implicit argument visible. Then the

WPL expression would be P(tF*-w-»-sk((H>-w)). But there is no need to write the path 0-»w twice,

because no matter what operation is performed on a world path, the world argument to the

skolem function will always be identical to the prefix of the world path leading to and

immediately preceding sk. Thus, we just leave the argument out, and consider 0-K 1-*...-*tn-»,sk(X)

an abbreviation for 0-K|-^...^tn-*sk(0-*t|-*...-H:n,X).

Note also, that the procedure distinguishes between rigid and non-rigid predicates and

functions. A rigid predicate or function has the same interpretation in all worlds. It does not

depend on the current world, and thus, it is not necessary to have the world path as an argument.

In all examples given in this thesis, however, we will assume all predicates and functions to be

non-rigid, i.e. world dependent.

As an example of the translation procedure, consider the modal expression

□ Op(x) A O 0(p(g(y))-»-q(y)) »- O V xO O q (x) (4.6)

Eventually we want to show, that (4.6) is a theorem in the modal logic KT4. The i= operator is

read as ’entails’ or ’ implies’ . The left-hand side of »= is referred to as the set of premises, the

right-hand side is the consequent. More precisely, holds, iff all models, that satisfy ce, also

8) Skolemization, the technique of eliminiating existential quantifiers, is based on and named after [Skolem 20]

19

Table III. Conversion Procedure from Modal Logic to World Path Logic

Input: Modal Logic formula
Output; World Path Logic formula tp'

1) Close formula, i.e. universally quantify all free variables.
2) convert to Negation Normal Form (move all negation operators inward to the

literals)
3) apply translation function T()̂ as follows:

• T (tp) = t (O ,0 , tp)
• t(s,X,o<p) = t(s-^w ,x,tp) introduce new variable of type W
• t(s,X, Otp) = t(s-*sk(X),X,#>> Skolemization, sk is an all new

function of type W
• t(s,X,Vx tp) = t(s,Xu{x},v>) add x to the set of universally

quantified variables
• t(s,X,3x tp) = t(s,X,{f(s,X)/x} Skolemization, f() is an all new

function of type D

• t(s ,X,av p) = t(s,X,o) v t(s,X,/?)
• tls.X.o A /?) = t(s,X,o) A t(s,X,/?)
• t(s,X, -tip) = —> t(s ,X ,tp)

• t(s,X,p(tv ...,tn)) = p(s,t(s,X,t1),...,t(s,X,tn)) if p is a non-rigid predicate
• t(s,X,p(t.,.... tn)) = p(t(s,X,t1).... t(s,X,tn)) if p is a rigid predicate i
• t(s,X,f(ti.... tn)) = f(s,t(s,X,t1),...,t(s,X(tn)) if f is a non-rigid function /

constant
m t(s, X, f (t i tn)) = f(t(s,X,t1),...,t(s,X,tn» if f is a rigid function / constant

4) convert formula to clausal form

satisfy /?. In order to prepare (4.6) for a later refutation proof, we need to negate the consequent

and add it as a conjunct to the premises. This step yields the modal formula:

□ Op(x) A 0 □(p(g(y))-»q(y)) A -i O V xD O q(x) (4.7)

As for now, however, we are just concerned about the translation of (4.7) into WPL. Step

1 and 2 convert it into negation normal form. The result is:

□ 0 p(x)

a 0 □ (p(g(y))-*-q(y))

A 0 3x On ~>q(x) (4.8)

Application of the translation function T () in step 3 of table III yields three clauses:

p(0->w1-»sk,,x) (4.9)

20

- ip((H-sk2-*w2,g(0-*sk2-*'W2,y)) v q(0-̂ -sk2-*’W2,y)

“i q (0-*w 3-»sk3-*w4, f(0-*-w 3))

(4.10)

(4.11)

This completes the translation into WPL. Next, we will look at unification in WPL.

C . T h e C o n c e p t o f E -un ipication

Resolution in WPL amounts to classical resolution with a special purpose unification

technique for world paths. Two WPL predicates unify only if they are possibly in the same

world, i.e. if their world paths unify. Consider (4.2) and (4.5). They unify with the most general

unifier (MGU) cr = {sk/W|;sk|/w}. Thus, the common world is skj, which is reachable from the

initial world 0 through the world sk.

As a specialty of the world path unification method, the elements of two world paths are

not always pair-wise unified. The idea is to let the unification method reflect the accessibility

axioms.

1. Reflevivitv. Consider the two sequences 0-*-sk and 0-*-w-»sk. They do not unify,

unless the accessibility relation is guaranteed to be reflexive. In that case, we can safely

instantiate w with 0. The resulting path 0-*0-*sk is basically equal to 0-^sk, because both paths

lead to the same world.

More formally, two paths E-unify,if they are equal with respect to a certain equational

theory.9 For the case of reflexivity (modal logic KT), a neutral element M’ is introduced, and

the axiom

Vw w-»l = w

makes up the equational theory. As for our example, we would instantiate w to the neutral

element 1, and obtain the path 0-H-»-sk. This path is then equal to 0-*-sk, since we can replace

every occurrence of the subsequence 0-»l by 0 according to the equational theory.

9) The following presentation of E-unification is due to [Auffray, Enjalbert 891. [Ohlbach 88] deserves credit for
the implementational aspects.

21

An actual implementation of this unification method for reflexivity would have to check

for every variable in the path, if deletion of the variable from the path leads to a one-to-one

unification, i.e. a pair-wise syntactical identity of the paths under consideration.

It is easy to show that a unique MGU does not always exist. Just consider die paths

0-»sk)-*sk2 and 0-»W|-»w2-*sk2. Possible MGUs in this case are {l/w)(sk2/w2} and {sk2/W|,

l/w2}.

2 . S ym m etry. Now let us examine the symmetric logic KB. Consider the modal

formulas OOOQ(a) and iO Q (x) . Their WPL counterparts are Q(0-*-sk,-*w |-»sk2,

a(0-*sk|-*Wj-*sk2)) and ~iQ(0-»-w2,x). Symmetry tells us that there is a connection from sk(back

to 0. An instantiation of w, to 0 gives us the path O^skj —»0—»sk2 which is equivalent to 0-»sk2 and

thus unifiable with the second path (H-w2, provided sk2 is substituted for w2.

Formally, inverse elements () ” 1 are introduced, and

Vw,w’ w-^w’-^w’ -1 = w

is the equality theory for logic KB. Replacing skj— 1 for W| in our example yields the predicate

O(0-*-skj—»ski— ŝk2,a(0—̂skj-^-skj— 1̂ -sk2)), which can be reduced to Q(0^»sk2,a(0-*sk2)) using

the equality theory.

Implementationwise, the unification algorithm for symmetric logics has to consider for

each variable, if the removal of that variable along with its immediate predecessor leads to a

unification.

As with reflexivity, symmetry can lead to multiple MGUs. Consider the paths 0-*sk|^sk2

and (H-wj-^w^Wj-^sk2. Possible MGUs are { W]- l /w2, sk,/w3 } and { w2- l /w3, sk]/wj }. 3

3 . Path P rop erties. At this points it becomes clear, why the translation function uses

the full path in arguments to (non-world) skolem functions as opposed to just the last world term.

Having full paths in arguments to skolem function is what [Auffray, Enjalbert 89] call strong

skolemization. Consider the predicate Q(0-»skl—W|,f(0-»skl-*W|)) and the substitution o =

{sk ,_ l /w2}. The result is 0 (0 ,f(0)). Now apply a to the same predicate Q without a full path in

f(), i.e. Q(0-*skl-*W],f(wi)). This time the result is Q(0,f(sk j_1). The second occurrence of the

inverse element could not be resolved with its predecessor, because there was no predecessor

present. Therefore, it is important to have the unique prefix property.

22

Theorem 4.1 (Unique Prefix Property) Multiple occurrences o f the same world term always

have, the same predecessor, and consequently, the same prefix. Also, a variable cannot occur as

parr o f its own prefix. Terms like Q (0 - + w t ~ * ' w2’ f(Ch*w2-*-wor like cannot occur.

The unique prefix property [Auffray, Enjalbert 89], called prefix stability in [Ohlbach 88]

follows directly from the translation function. Thus, whenever we substitute an inverse element

for a variable, it will resolve with its predecessor at any occurrence of the variable. There will

never remain any inverse elements in the path.

Moreover, paths in WPL are inherently linear. They do not branch off as in

Q(0-»-a-»-w, f(0-*h-»w ’)) (4.12)

where multiple occurrences of 0 have different successors. Note that (4.12) does not violate the

unique prefix property. It cannot occur in WPL though:

Theorem 4 .2 (Unique Successor Property) Within same WPL literal, occurrences o f

a world term t, that have a successor, have the same successor.

As with the unique prefix property, the unique successor property follows immediately

from the translation function. Unification has to preserve both properties. 4

4. Transitivity. Finally, we consider unification under transitivity (logic K4). It is

somewhat more complex than for the cases of reflexivity and symmetry. At first sight, it would

appear that this equality axiom will do the job:

Vw,w’ ,w” w-*w’-*w” = w-»w” (4.13)

Now let us apply this axiom to unify the paths

0-»a-»sk-*b (4.14)

and 0-*w-»b. (4.15)

Substituting sk for w yields the path 0-*sk-*-b, which is equal to the first path under the

axiom (4.13). We need to keep in mind, however, that (4.14) is just a short form for

0->-a^sk((H>-a)-*b (4.16)

Thus, when sk is substituted for w, it really is sk(O-^a), which is inserted into the second path,

yielding 0-»sk(0-»a)-*b. But this path violates the unique successor property, because 0 is once

succeeded by sk(), and another time by ’a’ .

23

What needs to be done in order to cope with the transitivity in the previous example, is

the substitution of a subsequence of (4.16), a->sk(0-*a), for w, yielding the unique successor

property preserving path

0-^(a-*sk(0-»a))-*b (4.17)

(4.17) is equivalent to (4.16), if we make associativity of the binary operator an

axiom:

Vw,w\w” w-^w’-nv” = w-*(w’-*w”) (4.18)

Note that the binary infix sequence construct operator is left-associative. Hence, there

are no parentheses needed on the left-hand side of (4.18). An implementation of the unification

algorithm for transitivity will mutually try to match up variables of one path to non-empty

subsequences of the respective other one. Again, multiple MGUs are possible, but only in a finite

number.

5 . Combinations of Accessibility Restrictions. As to the combination of any two

out of the three properties transitivity, reflexivity, and symmetry, their basic ideas can simply be

combined. The equational theory is comprised of the two individual axioms, and the strategies

of the implementations are used concurrently.

A special case is the logic KTB410, where the accessibility relation has all three

properties, i.e. is an equivalence relation. The relation partitions the set of worlds into

equivalence classes, out of which we only need to consider the class that contains the initial world

0. The elements in all other classes are unreachable. Within the class that contains 0, the worlds

are totally connected. Thus, we can reduce any world path to an equivalent one of length one (0)

or two (0-*t, where t is some world denoting term). The paths 0-*w and 0 unify with {1/w},

while the paths 0-Hj and O-K2 unify only if the terms t{ and ^ unify. Therefore, we have at most

one MGU.

10) KTB4 is equivalent to KT5, which is more commonly known as S5

24

D. Deduction in W P L - An E x a m ple

Now that the machinery of world path unification is available, let us go back to proving

the theorem (4.6) in the modal logic KT4. Recall:

□ Op(x) A 0 D(p(g(y)) -* q(y)) *■ O Vx □ O q(x) (4.6)

We have already done the negation of the right-hand side and translation into WPL,

yielding:

p(0-»W|^-sk|,x) (4.9)

ip(0-»sk2-»w2,g(0^sk2-^w2,y)) v q(0^sk2-»w2,y) (4.10)

_iq(0^-w3—sk3-^W4,f(0^-w3)) (4.11)

In order to prove (4.6), we can try a refutation resolution proof of the clauses (4.9) through

(4.11). Resolution in WPL is basically like ordinary FOPL resolution with the special purpose

unification method for world paths. We will start out trying to resolve (4.9) and (4.10). The p()-

predicates unify with

a = { sk|/w2, sk2/w1; g(0-*sk2-*w2,y)/x }

Thus, the resolvent of (4.9) and (4.10) is:

q(0-*k2- s k 1>y) (4.19)

But the world paths in (4.19) and (4.11) do not unify. So we must start out by E-unifying the q()-

predicates in (4.10) and (4.11). Recall that the reflexive and the transitive equality theorem are

in the KT4 equation theory. Thus, one of the E-unifiers is:

a = { sk3-»w4/w2 , sk2/w3 , f(0-*w3)/y }

(4.10) and (4.11) then resolve to:

->p(0-^sk2-^(sk3-*w4), g(0-*sk2->w2,f(0-»w3))) (4.20)

(4.20) and (4.9) unify with

a ’ = { sk2-»sk3/w, , sk|/w4 , g(0-*sk2->w2,f(0-*-w3))/x }

yielding the empty clause E 11 as the resolvent. This concludes the refutation proof of (4.6).

Summing up this chapter, we introduced World Path Logic as a language to perform

modal logic deduction in and showed how to translate modal logic formulas into WPL. We

presented the concept of E-unification, a special kind of world path unification, which has the

11) we use H instead of □ to distinguish it clearly from the modal operator □

25

restrictions on the accessibility relation built into it. Deduction then works very similar to

deduction in ordinary FOPL.

World Path Logic as a language is quite similar to languages for modal deduction

proposed by other authors [Auffray, Enjalbert 89 and Scherl 92], Our contributions are:

(a) we use only the last universally quantified world as an argument to skolem

functions, not all of them. This point is further elaborated on in theorem 5.1 in Chapter V.

(b) we state the unique successor property (theorem 4.2). As a consequence of this

property along with the unique prefix property (theorem 4.1), world paths in world skolem

functions equal the prefix of that skolem function in the path, as in O-*>w-*-sk(0-*w). This allows

us to simplify the notation: The WPL translation function omits world paths from world skolem

functions. 0^-w^sk is then understood as an abbreviation for 0-*w-*sk(0-»w).

(c) skolemization is integrated into the translation function.

The next chapter will present another language, which will help us to analyze the

properties of WPL in Chapter VI.

26

V . R M L C O N ST R A IN T L O G IC

The previous chapter gave an introduction to World Path Logic. We showed how to

translate modal logic into WPL, how deduction works, and presented the special kind of world

path unification needed for the deductive process. Doing proofs the language of WPL is one

thing, reasoning about the language is another. To be able to prove properties of WPL, we first

need to develop a deeper insight into its semantics.

One possible way of approaching the semantics is to relate them to modal logic according

to the translation function given in table III, and then go from modal logic back to.FOPL. Our

approach is different though. This chapter will introduce yet another logic, which modal logic

can be translated to. It is called Reified Modal Logic (RML) [Frisch, Scherl 91]. Basically, it is

a constrained form of first order predicate logic. Stressing this fact, we refer to this language as

’RML Constraint Logic’ or, in short, RML/CL.

As it turns out, WPL is very close to RML/CL. In fact, there is a direct correspondence

between the two languages, and WPL can be viewed as just another syntactical representation of

RML/CL. Thus, properties of the relatively easy to reason about constraint first order logic carry

over to WPL. This relationship between RML/CL and WPL will be the focus of Chapter VI.

This chapter’s presentation of RML/CL is based on [Frisch, Scherl 91] and [Scherl 92],

It is divided into two parts. The first section covers the translation from modal logic into

RM L/CL, whereas the following section presents how to do deduction in RML/CL, and justifies

why it works.

A. Translation into RML Constraint Logic

As mentioned before, the modal operators o and O can be seen as an implicit discourse

about worlds and their accessibility. In Section IV.A we presented a ’naive’ translation into

regular FOPL. that made this discourse explicit using quantification over worlds and a special

binary predicate K(wl,w2), which can be read as: "world w2 is accessible from world w l".

While this translation makes the whole FOPL proof machinery available, the drawback is

27

inefficiency due to far more complex formulas. In addition, it appears that much of the syntactical

and semantic structure of modal logic formulas gets lost in the translation.

The underlying idea of reified modal logic (RML), a non-modal language with

constrained quantifiers, is to capture some of that modal structure by giving the predicate K ()

special syntactical and semantic consideration. There are designated constraint predicates which

K() is one of. Actually, K () is the only one in a constant domain logic. A varying domain logic,

in which a different domain is associated with each world, would require another constraint

predicate, e.g. EXIST(x,w), to denote that x is an element of w’s domain. To keep things simple,

we are only considering constant domains for the time being, thus we do not need the EXIST(

) predicate. Conversion into RML results into a set of constrained sentences plus a constraint

theory E. Depending on whether a predicate is a constraint predicate or a regular one, it can only

occur in designated places. While the constraint predicates, as the name suggests, are only

allowed (a) in the constraints and (b) in E, the regular predicates can only occur everywhere else.

For instance, nP is translated to the constrained sentence Vw.K(0 P(w), while OP

translates to 3w.K(0 w) P(w). These sentences are semantically equivalent to Vw (K(0,w) -* P(w))

and 3w (K(0,w) A P(w)), respectively. In another example, □ 0 P translates to Vx.K(0 x) 3y.K(x y)

P(y). This sentence can be read as saying for all x, such that x is a world accessible from the

initial world 0, there exists a y, such that y is a world accessible from x, such that P is true in

world y.

The translation function into modal logic is given in table IV. Note that every predicate

and function has an additional parameter, the current world, to account for changing

interpretations in different worlds.

As an example, consider the KT4 modal logic set of sentences from the previous chapter

(4 .7), which are repeated here as (5.1-5.3).

□ O p(x)

0°(p(g(y)) q(y))

“i O Vx □ O q(x)

(5.1)

(5.2)

(5.3)

Translation into RML Constraint Logic yields the sentences:

^ Wl:K(0,wl) 3w2:K(w1,w2) P(W2’X)

3w ’ :K(0.w3) V w <:K(w3,w4) P (w 4’g (w 4 ^)) q (w 4>y)

(5.4)

(5.5)

28

Table IV. Translation Function from Modal Logic to RML Constraint Logic

Input: Modal Logic formula ip
Output: RML Constraint Logic formula T((p)

• T M = t(0,<p) {0/wo} substitute 0 for w0

• t(i,ci<p) = Vwi + 1:K(wi(w i + 1) t(i + 1

• t(i, O tp) = 3wi+1:K{Wj,wi + 1) t(i + 1

• t(i,Vx = Vx t(i ,tp)

• t(i,3x tp) = 3x t(i,v)
• t(i,oA/?) = t(i,a) A t(i,/ff)
• t(i , a v (1) = t(i,a) v t(i,yff)
• t(i, -'tp) = -’ t(i,<c>)
• t (i , p (t - | tn)) = p (Wj, t(i ,t,).... t(i,tnl) where p is a predicate
• t(i,f(tv ...,tn)) = flWj.tli.t,).... t{i,tn)) where f is a function or

constant

“ ■ 3ws:K(0,w5) V x V w 6:K (w 5,w 6) 3w 7:K(w 6,w7) q (w 7-x) (5 -6)

The constraint theory E must reflect the restrictions on the accessibility relation for the

modal logic system under consideration. Thus, E contains one or more of the axioms listed in

table V.

Table V. Accessibility Relation Restrictions and Their Axioms in Clausal Form

Modal Logic Restriction Axiom

D serial Vw 1 K(w1,f(w1l|
T reflexive Vw 1 K(w1 ,w1)
B symmetric Vw 1 ,w2 K(w1,w2) K(w2,w1)
4 transitive Vw1,w2,w3 K(wv w2) A K(w2,w3) K(w1,w3)
5 euclidian Vw 1,w2,w3 K(w1,w2) a K(w1,w3) K(w2,w3)

The next step is the conversion of the sentences to prenex normal form. While the

quantifiers are brought to the outside, the negation operators are moved towards the literals,

turning around the quantifiers along the way. This is very much like in ordinary first order

predicate logic, with one exception though: Consider the formula

29

(3 w :K(t,w) «) v &(5 -7)

Moving the quantifier outward, i.e.

3 w :K(t,w) (a v P) (5 -8)

requires that there is actually a world reachable from t. If not, and if 0 is also true, then the

formula (5.7) evaluates to true, while (5.8) is false. If, on the other hand, the seriality axiom is

part of the constraint theory E, then from every world there is always another world accessible,

and moving the quantifiers to the front is safe. A similar argument holds for the formula

(V w :K(t,w) «) A 0 -

The modal logic system of our example, KT4, is not explicitly serial, nevertheless the

reflexivity axiom guarantees that there will always be an accessible world. Seriality is entailed

by reflexivity.

Sentences (5.4) and (5.5) are already in prenex form, and (5.7) converts to

V w 5:K(0,w 5) 3x 3w 6:K (w5,w6) V w 7:K (w 6,w7) " ’‘i K ’*) (5-9)

Once a formula is in prenex normal form, 12 is used to get rid of the

existential quantifiers. We will hriefly describe how to eliminate the leftmost existential

quantifier; the method can then be used repeatedly to make all of them obsolete. Note that a

prenex form sentence is of the form:

V x,:C , ... Vxn_ ,:C n_ , 3xn:Cn <p (5.10)

where <pis a prenex form formula, n > 0, and 3xn is the leftmost existential quantification. The

C;s are the constraints. They are of the form K(t,Xj), if Xj is a world variable, otherwise the

constraint is empty (ordinary quantification).

In the process of skolemization every occurrence of xn in <p is replaced by a function term

sk(x,...... x„_|). where sk is an all new function symbol, distinct from all other function symbols.

The universally quantified variables serve as arguments to the function. However, there is one

special consideration that distinguishes skolemization in RML Constraint Logic from non-modal

constraint logic: While [Frisch, Scherl 91] use all universally quantified world variables as

12) named after the Norwegian mathematician Thoralf Skolem, who proved that this technique of existential
quantifier elimination preserves satisfiability [Skolem 20]

30

arguments to skolem functions, we will only use the last one. This is justified by the following

theorem:

Theorem 5.1 (Only One Relevant World At Each Level) <p be RML Constraint Logic

formula, which has not been skolem ized, such that <p is o f the form

^X/tCj ... Vxlt_j:Cn_] ‘P

Let Xj be the highest indexed world variable such xk, where are non-world

variables. Then the other world variables x-, where j < i , do not occur within the scope o f 3xJ(,

i.e. neither in Cn nor in p . Furthermore, xi occurs only in the constraint Cn, not in <p’ itself

Proof: The formula <p is the translation of a modal logic formula. It follows from the

translation function listed in table IV, that the constraint Cn consists of K(xj,xn) and nothing else.

As far as references to worlds in the formula <p\ consider for instance the formula Q Q Oa. Then

the interpretation of a depends on the world accessed by the modal operator immediately

preceding cx. The formula a cannot contain any reference to any other world. In fact, a cannot

contain explicit references to worlds at all, because there is no syntactical entity representing the

worlds. ■ »

Another justification for omitting all but the last world variable in skolem functions is

given later on by lemma 6.4. It states that given two access paths from the initial to the current

world, where all worlds are ground terms, those paths are equal, if their last world is. In other

words, there are no two distinct ground paths ending in the same world. Thus, the other worlds

can be viewed as a function of the last world. This standpoint may seem counterintuitive, but

lemma 6 .4 is restricted to models over the Herbrand Universe. This, however, is all we need to

be able to reason about the satisfiability of formulas [Herbrand 30] which is what deduction and

theorem proving is all about. Therefore, it suffices to use the last (or current) world in skolem

functions. The skolemized version of (5.10) is:

V xi:C, ... Vxn_ , :C n_| { sk(X)/xn } 13) (5.11)

13) This is a substitution. A substitution is generally denoted as <p { tl/xl, . . . , tn/xn}, where all occurrences of X;
in tp are simultaneously replaced by their respective tj counterpart

31

where X = { x, | 1 < i < n and if x, is a world variable, then there is no other world variable

Xj with i < j < n }.

In addition, information needs to be added to the constraint theory E. Recall that 3xn:Cn

<P is actually an abbreviation for 3xn (Cn A <p). Hence,

V x,:C , ... Vxn_ ,:C n_ , (Cn A <p) {sk (...)/xn} (5.12)

is equal to:

(V x,:C , ... Vxn_ i :C U_| <p {sk(...)/xn}) A (V x,:C , ... Vx11_ l:Cn_ , Cn {sk(...)/x„})

(5.13)

The left conjunct is equivalent to (5.11), whereas the right hand conjunct of (5.13) goes

into the constraint theory E. Since Vx^C, a is just an abbreviation for VX| (C, -*■ a) , the right

hand side of (5.13) can be rewritten as:

V x ,...x n_ , C, A ... A Cn_ , - (C n }sk (...)/xn}) (5.14)

Each Cj, if not empty, is a K predicate, with the first argument equal to the second argument of

the preceding K literal. So the clause added to E is of the form:

V... K(0,Xj) A ... A K(xn_2,xn_|) -* K(xn_|,sk(...)) (5.15)

In our example, skolemization of the sentences (5.4), (5.5), and (5.9) yields:

Vw':K(0,wl) p(sk,(W|),x) (5.16)

Vw4:K(sk2,w4) P(w4,g(w4,y)) -* q(w4,y) (5.17)

V w s :K(0.w5) V w 7:K(sk3(w5) ,w7) “ ^ 7, ^ 5)) (5 .1 8)

The above skolemization requires the following sentences to be added to the constraint theory E:

Vw, K(0,w,) -* K(W|,skj(w,)) (5.19)

K(0,sk2) (5.20)

Vw5 K(0,w5) -* K(w5,sk3(w5)) (5.21)

In addition to these sentences, E contains the accessibility axioms from table V for the logic

system KT4, i.e. reflexivity and transitivity:

Vw, K(W],w,) (5.22)

Vw,,w2,w3 K(W],w2) A K(w2,w3) -»• K(w,,w3) (5.23)

Note the following property of the RML constraint theory E:

32

Theorem 5 .2 AH o f the clauses in the constraint theory E are definite clauses. [Frisch, Scherl

91]

Proof: Clearly, all sentences added by skolemization are of the form of expression (5.15)

which is a definite clause. The only other sentences in E are those representing the accessibility

axioms, as shown in table V. They all are also definite clauses. ■ *

The next step after skolemization is the conversion to clausal form such that each clause

is a disjunction of literals. As usual, we admit the implication operator within clauses, since

<v -*■ (3 is just an abbreviation for v /3. In our actual example however, there are no changes

necessary, since the sentences (5.16) to (5.23) are already in clausal form.

Note that a constrained clause of the form

Vw,:K(0,W|) ... Vw]1:K(w11_|,wn) (5.24)

is equivalent to

Vw, ...w„ (K(0,w,) A... A K(wn_ | ,wn)) -»> (5.25)

Now, since it is common to drop universal quantifiers, the above clause can be written as

tp/ K(0,w,) A ... A K(wn_ ,,w n) (5.26)

where the right hand side to the slash is the constraint. This convention allows for the elimination

of all quantifiers and conversion of the remaining formula into conjunctive normal form. Each

clause is associated with a constraint, which is a (possibly empty) conjunction of K predicates.

With this convention the final result of translating our modal logic example into RML

Constraint Logic is:

a) the set of constrained clauses:

p(sk,(w ,),x) / K (0,w ,) (5.27)

P(w4,g(w4,y)) q(w4,y) / K(sk2,w4) (5.28)

“iq(w7,f(w5)) / K(0,w5) a K(sk3(w5),w7) (5.29)

b) the constraint theory E:

K(0,W)) -*• K (w ,,sk,(w ,)) (5.30)

K(0,sk2) (5.31)

K(0,w5) -» K(w5,sk3(w5)) (5.32)

K(w1,w 1) (5.33)

K(W|,w2) A K(w2,w3) -*• K(W[,w3) (5.34)

33

Summarizing the procedure, the implicit discourse about worlds in a modal logic set of

sentences is made explicit by translating the modal operators into constrained quantifications over

worlds, with world variables as additional arguments to predicates and functions. The resulting

set of constrained sentences is accompanied by a constraint theory E, which accommodates the

axioms pertaining to the accessibility relation. After converting the set of constrained sentences

to prenex form, skolemization eliminates the existential quantifiers. Skolemization of constrained

quantified variables requires the addition of clauses to the constraint theory E. Finally, the set of

constrained sentences is converted to clausal form, and the universal quantifiers are dropped,

while their constraints are conjuncted and associated to each clause.

The conversion procedure outlined above preserves satisfiability, as was shown by

[Frisch, Scherl 91], This means that a modal logic set of sentences <p is satisfiahle if and only if

S u E is satisfiahle, where S and E are the set of constrained sentences and the constraint theory

resulting from the conversion into RML Constrained Logic. Based on this translation, the next

section will present how deduction works in a constraint logic.

B. Deduction in RML Constraint L ogic

This section presents a deduction system for Constraint Logic, that is based on and has

been developed from regular FOPL deduction. A central point for the understanding of this

section is the relationship between quantified variables and their instances. In a first order logic

clause like P(x) Q(x) the implicitly universally quantified variables can be interpreted either

as just certain elements in the syntactical structure of the clause, or they can be understood as

placeholder such that the clause is viewed as a scheme standing for the set of all its ground

instances (a ground instance A of an expression B is a substitution o into B, such that A = Ba

is variable-free). This notion is motivated by Herbrand's Theorem [Herbrand 30], which states

that a set of quantified sentences is satisfiahle if and only if the finite set of its ground instances

is. Then first order logic deduction can be performed using simple propositional deduction on the

set of ground instances. This is rarely done, however. Unification is used instead. Ever since the

advent of resolution in the 1960s, virtually every automated theorem proving system has used

unification to treat universally quantified variables. Where a deduction system for ground

instances checks for equality of terms, a corresponding system for quantified sentences tests for

34

unifiability instead. The idea of unification is to instantiate a variable only as far as necessary,

delaying the actual choice of ground instances for as long as possible. Thus, deduction on

quantified sentences is itself schematic for deduction on ground sentences. As an example

consider resolving P(x,y) Q(x,y) with P(a,f(z)), yielding Q(a,f(z)). Note that every ground

instance of the resolvent can also be obtained by resolving two ground instances of the clauses.

What is more, every resolvent on the ground level is also an instance of Q(a,f(z)).

This relationship between deduction on quantified sentences on the one hand and

deduction on ground sentences on the other, is usually formalized in a lemma.. It states that

if S’ is a resolvent of S j’ and S2\ and if S j’ , S2’ are instances of the quantified sentences S| and

S2, then there is a resolvent S of S, and S2 such that S’ is an instance of S. In other words, every

deduction on the ground instances of a set of sentences can be made schematically from the

sentences themselves.

Deduction for Constraint Logic works in a very similar way. The important difference

is that a Constraint Logic sentence does not stand for all of its ground instances, but only for

those that obey the constraints attached to the variables:

Definition 5.1 (E-ground Instance) Let s/C be. a constrained sentence, E the constraint theory,

and a a substitution such that so is ground. Then so is 'Z-e round instance o f s/C, Co

solvable.

Definition 5 .2 (E-solvability) Given a constraint C, C is said to be iff there exists

a substitution p such that Cp is ground and E *= Cp.

Definition 5.3 (Set of E-ground Instances Egr’) L g r ’(s/C) is a function mapping s/C to the

set o f all its 1,-ground instances: L g r ’(s/C) = {sj so is ground and there exists a p such that

Cop is ground and E ~ Cop}.

Notice that E is used only to determine whether the constraint is solvable. The E-ground

instances themselves do not contain any variables nor any constraints.

As to the satisfiability of a set of Constraint Logic sentences, a variant of die Herbrand

Theorem applies. The Constraint Herbrand Theorem [Frisch, Scherl 91] states that, given a set

35

of constrained skolem normal form sentences S and a constraint theory E, S u E is satisfiahle

if and only if the set of all E-ground instances of members of S is satisfiahle14.

Thus, deduction in Constraint Logic could be done performing ordinary propositional

resolution on the E-ground instances of the constrained sentences. This is valid, because E

becomes irrelevant once the set of all E-ground instances has been obtained.

But then again, we could as well do the deduction schematically on the quantified level.

Suppose ordinary FOPL deduction derives s3a from the sentences s, and s2, where a is the

substitution used in the particular deduction. Then in Constraint Logic, (s3 / C, A C2)a can be

deduced from s,/C| and s2/C2, provided die joint constraint CjAC^ is E-solvable. This is

justified by the argument that all resolvents of E-ground instances of s,/C| and s2/C2 must

simultaneously satisfy both constraints. If, however, C, A C 2 is not E-solvable, i.e. no such

ground resolvent exists, then (s3 / C, A C^o is not a scheme for any derivable ground sentence,

and the deduction would not be sound in this case.

What we have described above, is manifested in the Constraint Lifting Lemma [Frisch,

Scherl 91]: Given a set of constrained clauses S and a constraint theory E, if s’ is derivable from

the E-ground instances of S by constraint resolution, then there is a clause s derivable from S,

such that s ’ is a ground instance of s.

Furthermore, constraint resolution is complete. If S u E is in fact unsatisfiable, then the

empty clause can be derived [Frisch, Scherl 91].

Let us now go back to our example, and try a refutation proof of (4.6), which is repeated

here as (5.35)

□ Op(x) A O Q(p(g(y))-» q(y)) i- O V xD O q(x) (5.35)

We have already negated the right hand side, added it to the other two conjuncts on the left, and

translated the sentences into skolem normal form RM L/CL, yielding S, the set of constrained

clauses in (5.27)-(5.29), and the constraint theory E in (5.30)-(5.34). The q() literals in (5.28)

and (5.29) unify with a = { w4/w7, f(w5)/y } , yielding the resolvent

- lP(w4,g(w4,f(w5))) / K(0,w5) A K(sk3(w5),w4) A K(sk2,w4) (5.36)

14) Restrictions apply: all constraints must be positive, and E must contain definite clauses only. This restriction
is met by RML Constraint Logic in most modal systems.

36

The constraint is E-solvable with p = { sk2/w5, sk3(sk2)/w4 }, because

E ► K(0,sk2) A K(sk3(sk2),sk3(sk2)) A K(sk2,sk3(sk2))

Next, (5.36) is resolved with (5.27). The most general unifier of the p() literals is a = { sk,(w ,)

/ w4 , g(skj(W|),f(w5)) / x } , and the resolvent is

ia / K(0,w5) a K(sk3(w5),sk,(w ,)) A K(sk2,skj(W|)) A K(0,w,) (5.37)

Thus, we have derived the empty clause. We just need to make sure the constraint is E-solvable.

A possible solution is p = { sk3(sk2) / W| , sk2 / w5 }, since

E - K((),sk2) A K(sk3(sk2),sk,(sk3(sk2))) A K(sk2,sk,(sk3(sk2))) A K(0,sk3(sk2)). (5.38)

Let us compare this solution with the refutation proof of the same theorem in WPL.

There the empty clause was finally derived resolving the two p() literals in (4.9) and (4.20) along

the world path 0- -̂sk2-*sk3-»sk,. As mentioned by the WPL translation function in Chapter IV,

the skolem functions have their path prefix as implicit world arguments. Thus, O-^sk^sk^sk ,

is just an abbreviation for 0~*sk2(0)-»'sk3(sk2(0))-*’sk1(sk3(sk2(0))). Notice the resemblance between

this path and the terms in the constraint of (5.38). The first conjunct in (5.38) tells us that sk2

is accessible from 0, the second conjunct suggests that sk3 is accessed from sk2, and sk, from

sk3. The last two conjuncts follow by the transitive property of logic KT4.

Apparently, (5.38) utilizes the same world path 0-»sk2-»sk3-*sk, in some way. There

seems to be a close relationship between deduction in WPL and deduction in RML Constraint

Logic. This relationship will be the focus of the next chapter.

37

V I. W O R L D PA T H L O G IC VS. R M L C O N ST R A IN T L O G IC

The previous chapter presented modal logic deduction via translation into RML Constraint

Logic. We showed how to do deduction in Constraint Logic, and justified why it works. As far

as deduction in World Path Logic, Chapter IV covered the '-part. Explaining it works,

is the issue of this chapter.

Our approach is to relate WPL to RML/CL, thus drawing upon the close correspondence

between the two languages. We are going to show that a deduction in WPL can be simulated in

RML/CL. Thus, Frisch and Scherl’s soundness and completeness results for RML/CL, as

surveyed in Chapter V, carry over to W PL.15 The presentation is divided into 4 sections,

covering the following topics:

• WPL terms have the same ground instances as corresponding RML/CL terms, where

the WPL term’s path matches the RML/CL term’s constraint (Section A).

• The conjunction of constraints in RML/CL deduction corresponds to the unification

of paths in WPL. In particular, we show that (a) a world path resulting directly from

the translation represents the same set of worlds as its corresponding constraint in

RML/CL, and (b) this identity is preserved over a deduction step. In other words,

unification of paths is equivalent to the conjunction of constraints, as far as possible

final worlds are concerned (Section B).

• The test for E-solvability in RML/CL deduction is replaced by unification in WPL.

Two paths unify if and only if the conjunct of the corresponding RML constraints is

E-solvable (Section C).

• Tieing together the results of the first three sections, we argue that a deduction in

WPL can be simulated in RML/CL (Section D).

15) It should be noted that the idea of proving properties of one deduction method by relating it to deduction in
a first order logic of restricted quantification, is not unique to us. |Gent 92| as well as (Scherl 92) pioneered this
approach. In fact, Scherl uses it to prove properties of his world sequence representation. His theorems and proofs
are quite different though.

3X

A. Ground Instances

Suppose we translate the same modal logic expressions into WPL and into RML

Constraint Logic, using the same skolem function names in both translations. For instance,

consider <p = DOq. While the translation into WPL yields q(CH-w-»sk|), which is an

abbreviation for q(0-*’W-»sk1(0-»,w)), the translation into RML Constraint Logic results in the

sentence S = {q(sk((w)) / K(0,w) }, and in the clause K(0,w) -* K(w,skj(w)) as part of the

constraint theory 2, Since this clause is in 2 , we can safely extend the constraint by the conjunct

K(w,sk|(w)) without narrowing down the solution space. This gives us the equivalent sentence

q(sk|(w)) / K(0,w) A K(w,sk|(w)), where the constraint represents the full world access path

from the initial world 0 to the world in the q() literal, sk|(w). Note that this path is the same

path as in the WPL translation, q(0-*w-»sk|(0-*w)). Now, while the translation into WPL does

not explicitly set up a constraint theory 2 , we know that for every non-variable term t in the

world path, a translation into RML/CL would put a clause with K (...,t) on the right hand side

into 2, This is a key property of WPL, and we refer to it as T^-consistency. A more formal

definition of 2-consistency will follow shortly.

In essence, the information of 2 is stored implicitly in the world paths that result from

the translation into WPL. More precisely, it is the part of 2 which is created by skolemization.

The remaining part of 2 is the one pertaining to the accessibility restrictions. This information

is not stored in the paths, however, it is embedded into the world path unification algorithm.

Recall from Section IV.C that the unification algorithm employs special features, depending on

the accessibility axioms under consideration. Therefore, 2 is not really needed as an explicit

entity in WPL.

Before we define 2-consistency, we need to go over a few notations regarding paths and

accessibility:

Notations: Given a world path P, let P; denote the i-th term in the path such that P =

P0-H-P|-i*...-»,Pn. Then last(P) = Pn, and length(P) = n. Furthermore, let K be the binary FOPL

predicate corresponding to the accessibility relation. The accessibility of P; from P;_j in terms

of FOPL cannot be written as K(Pi_j,Pj),because the paths would violate the FOPL syntax, but

it can be expressed as K(P'j_j,P’j), where P’j is defined as follows:

• P’j = Pj . if Pj is a variable

39

• P’j = skx(Var(Pj)), if Pj is of the form skx(...) , where Var(Pj) is the set of all world

variables and non-world variables in the term Pj.

Example: Translate <p = □ O □ 0 q into WPL. This yields q(P) with the path P =

0 -*w1-»sk1-»-W2-»-sk2 , which is an abbreviation for:

P = 0-*w]-»sk | ((H-w |)^-w2-^sk2(0-*w |-*sk, (0-*-w |)-*-w2) -

Then P4 = sk2(0-*-w1-»'Sk](0-»w])-*W2), and K(P’3,P’4) = K(w2,sk2(W|,w2)).

For notational convenience however, we will omit the primes when the meaning is clear.

Also, at times we will use Kj as an abbreviation for K(P’j_ (, P’ when the path is

understood. ■■

Definition 6.1 (E-consistency) Given a WPL path R and a constraint theory E, R is said to be

^-consistent, i f fo r any prefix P o f Rsuch that length(P) = n and last(P) is a non-variable,

E - Kj A ... A

A WPL literal is said to be E- c o n s i s t e n t ,i f its path is.

As mentioned before, paths resulting from the translation into WPL are E-consistent. This

is expressed in the following lemma:

Lemma 6.1 (Initial E-consistency) Let P be a prefix o f an initial world path, i.e. a world path

resulting directly from translation of modal logic, into WPL. Then, is a non-var,

E a - a

Proof: Let Pvl, Pv2, Pvm be all the variables in P such that Vj is the index of the j-th

variable in P. Then

Kvl A ... A - Kn (6.1)

must be a clause in E. As an example, consider the path 0-*w1-»sk](0-*w1)-»W2--»,sk2(0-*-W|-»-

sk^O-^Wj)-*^). The corresponding clauses in E are: K(0,Wj) -* K(sk,(w1),w2) and K (0,w ,) A

K(skl(w1),w2) -*• K(w2,sk2(w ,,w2). This follows clearly from the RML skolemization procedure.

Now take any literal Kj such that Pj is a non-variable. There must be a clause in E with

Kj on the right-hand side:

K̂ ,, A ... A Kyj -» Kj

40

where Vj < j. The left hand side of this clause consists of all the literals K ,̂ such that x < j and

Px is a variable. Thus, the left hand side is implied by the left-hand side of (6.1), and we can add

K(to the antecedent of (6.1):

Kj A Kyi A ... A Kvm^ K 11

After repeated application of this argument we will eventually have extended (6.1) to the clause

K, A ... A Kn_, -» Kn.

Up to this point, we have not yet defined the semantics of a WPL expression. For that

purpose, we will draw upon the similarity between WPL and Constraint Logic. As previously

mentioned, every WPL clause resulting from the translation has a corresponding clause in

Constraint Logic. This holds for WPL formulas in general.

Given a WPL literal L (P ,...) , the corresponding Constraint Logic term is: LAST(L) /

constraintP) , where LAST{) and constraint) are defined as follows:

Definition 6.2 (Function L A ST ()) Given a WP literal L, LAST(L) maps L t o L ’ such that L '

is the result o f the following operation on the syntax o fL : (a) copy L to L ’, (b) replace all world

paths P in L ' by lasr(P).

Note that a WPL literal can contain more than one path, as in the translation of ° 3 x 0 q,

which is q(0-*-w-*sk], f(0-*w)). The other paths are due to skolemization. All those paths,

however, are prefixes of the first path. This is guaranteed by the unique prefix property (theorem

4.1) and the unique successor property (theorem 4.2).

As for this example, remember that every skolem term in a path has all of its prefixes

ending in a variable as implicit arguments. O-^w-^skj is just an abbreviation for O-^w-^sk^O-^w).

Thus, L/lST^O-^w-^sk^tO-^w))) = q(sk](w),f(w)).

Definition 6 .3 : (Function path()) The function path() extracts the path out o f a WPL literal.

Let L be a WPL literal o f the form q(P,...).Then path(L) = P.

Definition 6.4: (Function constraint)) The constraint) function converts the path P of a

WPL literal into a corresponding conjunction of K literals. Given a path P, constraint(L) = K,

A A K length(P)-

41

As an example, let L again be q(0-*-w-*sk| ,f(0-*-w)). Then is K(0,w)

A K(w,skj(w)).

As to the semantics of a WPL literal with variables, we will treat it as a scheme standing

for the set of its ground instances. Similar to Constraint Logic, however, we want to consider

only instances that are justified by the constraint theory. We will refer to those instances as E-

ground instances.

More precisely, the set of E-ground instances of a WPL literal L should be identical to

the set of E-ground instances of its Constraint Logic counterpart LAST(L) /

This is achieved by the following definition:

Definition 6.5 (E-ground Instances of W PL, Set Egr) Given a literal L and a

substitution o such that La is variable free , LAST(Lo) is a instance o f L if and only

La is L-consistent.

E gr(L)is a function mapping L to the set o f all such instances

Theorem 6.1 (Ground Instance Equivalence) Given a WPL literal L, the set o f

its E-ground instances is equal to the set o f E-ground instances o f its Constraint Logic

counterpart LAST(L) I'constraint (P) , i . e .

Egr(L) = Egr Y LAST(L)/constraint(path(L))).

What this theorem says, is that it does not matter whether we go from a path to its

ground paths and then convert it into RML Constraint Logic as in LAST(La), or if we switch to

Constraint Logic first, and then take the E-ground instances, i.e. ’ such that there exists

a grounding substitution p such that E - constraint (path (L))o'fi. This is not trivial: if we

substitute on the WPL literal directly, then the length of the path can change, as the substitution

can contain the neutral element ’ 1’ , inverse elements, or sub-paths, in the cases of reflexivity,

symmetry, and transitivity, respectively. If, however, the substitution is done on the Constraint

Logic equivalent, then the length of the access path is predetermined by the number of K-

conjuncts in the constraint.

Proof of theorem 6 .1 :

Part fa): £gr(L) 2 Egr’(LAST(L) / L)))

42

Take any element of Egr’(LAST(L) / cons(P)) , where P = L). The element

equals LAST(L)o for some substitution o such that is ground. Also, there must exist

a p such that constraint(P)op is ground. Now perform the same substitutions directly on L, and

hence, on the world path P. The joint substitution op cannot contain any special symbols like the

neutral element (reflexivity), inverse elements (symmetry), or world path substrings (transitiv ity),

because they are not defined for Constraint Logic. Therefore, =) =

LAST(Lap), and constraint^*)op = consrraint(Pop) = constraint(path(Lop)). Furthermore, since

£ >= consrraint(P)op by definition of E-ground instances in Constraint Logic, E -

constrainr(pa.rh(Lop)). Thus, path(L op)is E-consistent, and therefore, LASTXLop) = LAST(L)o

is a member of Egr(L).

As an example, consider QOq in modal logic KT. The WPL translation yields L =

q(0^>w-»-sk1), the corresponding constraint theory of translation into Constraint Logic is E =

}K(w,w); K(0,w)-»K(w,sk](w)) } . The Constraint Logic equivalent of L is LAST(L) /

constraint(path(L)) = q(skj(w))/K(0,w) A K(w,skj). Its only E-ground instance isq(sk|(0)), where

o = {0/w} and p = { } . This, however, is also a E-ground instance of L, because the path of

Lff t̂, 0-4>^sk|(0), is E-consistent. ■

Part (h): Egr(L) £ Egr’(LAST(L)/constraint(patli(L)))

We will prove this by showing that for every grounding substitution a on a E-consistent

path 0, where Q=path(L), we can construct a grounding substitution o' for the Constraint Logic

counterpart LAST(L)/consrraint(Q) such that:

(a) if Qo is E-consistent then E * constraint(Q)o'

(b) la.st(Qo) = Qno\ where n =length(Q)

The proof is by induction on the cardinality of a. As the induction hypothesis, suppose

the preceding statement holds for all Q, o as long as |a| = n. That is, we can then construct a

o' such that conditions (a) and (b) are met.

The induction hypothesis holds trivially for the base case, where 0 is already ground, o

= { } , and o' = (} .

43

Now, take another E-consistent path P and a singleton substitution /x such that P/x = Q.

Then we can construct a /x’ such that (a) and (b) hold for P instead of Q, (p,a) instead of a, and

(/xV) instead of o’ , thus extending the cardinality of the substitution under consideration to n+ I.

We need to distinguish four cases:

(i) /x = {1/P;} and the accessibility relation is reflexive. Then Q = P/x =

. . .-*P;_]-*P;_|_j-*... Thus, constraint(P) = constra/(Q) A K (Pj_,,P;). We need to show that

E •- (constraint̂) A K(P;_ j,Pj)) /xV

for some /x’ . Let /x’ be { Pj_|/P; }. Then, since Pj does not occur in 0 , this is equal to

E i- c o n s t r a i n t ^) o’ A K(P; _ (,Pj_ j) o’

The left conjunct holds by the induction hypothesis, the right conjunct follows from the

reflexivity axiom in E.

For property (b) assume the critical case i =n , i.e. /x substitutes the last term of the world

path P. By the induction hypothesis, l a s t (P f i o) = Pn_,ff\ Conveniently, Pn /x’ = Pn_ , . Thus,

last(P(fxo)) = Pn_|ff’ = (Pn/ x > ’ = P„ o')- ■

(ii) /x = {P i_ 1- I /Pj} and the accessibility relation is symmetric. Then Q = P/x =

...^ P j_ 2^ P j+ |^... Thus, constraint)̂A K(Pi_ 2,Pi_ i) A K(Pi_ , ,P i) A K(Pj,Pi+1) •=

constraint^). It suffices to show that

E i- (constraint̂)A K(Pi_ 2,Pi_ 1) A K(Pi_ , ,P i) A K(Pj,Pi+1)) ft o'

for some /x’ . Let /x’ be { Pi_ 2/f>i }, if Pj_| is a non-variable. Otherwise let /x’ be {Pj_2^Pi>

f(Pj_2)/P j_ i}, where f() is the function used in the seriality axiom K(w,f(w)) in E. Then, since

P; does not occur in Q, and K(Pj,Pi+ |)/x’ = K(Pj_2,Pi + 1) is part of), this is equal

to

E constrai.nt(Q) o' A K(Pj_2,P j_j) A K (P j_,,P j_2) /xV

The leftmost conjunct holds by the induction hypothesis, the rightmost literal follows from

K(P1_ 2,Pi_|)/x'a’ by the symmetry axiom in E. Now consider the remaining literal

K(Pj_2,Pj_|)/xV . If Pj_ , is a variable, then f(Pj_2) is substituted for P j_ (, and the literal is

entailed by the seriality axiom. Otherwise, if P;_ j is not a variable, then K(Pj_2,Pj_|) follows

from the E-consistency of P.

For property (b) assume the critical case i= n , i.e. /x substitutes the last term of the world

path P. By the induction hypothesis, last(P^o) = Pn_ 2ff\ Conveniently, Pn /x’ = Pn_ 2. Thus,

Iast(P(no)) = P„_2 (P y) o ’ = Pn (ji’o’). m

44

(iii) fi = {(R 1-*...-»Rk)/Pi} and the accessibility relation is transitive. Then Q = P/* =

...-*P i_»|-*R|-*...-*,Rk-*Pj+ i-*... Thus, constrai) A K(Pi—, ,Pj) A K(Pj,P;+ ,) >-

constraintiP). It suffices to show that

E ►- {constraintiQ) A K(Pt_ , ,P ;) A K(Pi,Pi + 1))

for some /i\ Let be { Rk/Pj }. Then, since P; does not occur in Q, this is equal to

E »- constraint{Q) o' A K(Pj_|,Rk)cr’ A K(Rk,P i + |)a’

The leftmost conjunct holds by the induction hypothesis, the rightmost literal is already part of

constraintiQ). K(P;_|,Rk) follows from constraint^) by the transitivity axiom in E, since

K(Pj_ j, R|) A ... A K(Rk_|,Rk) is part of constraint(Q).

For property (b) assume the critical case i = n, i.e. /i substitutes the last term of the world

path P. By the induction hypothesis, l a s t (P fio) = Rku’ . Conveniently, Pn = Rk. Thus,

lastU'ino)) = Rka ’ = (P llM> ’ = Pn (/*V). ■

(iv) fi = {t/Pj}, such that non of the cases (i) - (iii) applies. In other words, t is an

ordinary world term. In that case let fi = f i , and the properties (a) and (b) follow trivially. This

completes the proof of theorem 6.1. ■■

B. Path Unification vs, Conjunction of Constraints

Both WPL and RML/CL use world terms to make modal logic’s implicit discourse about

possible worlds visible. While RML/CL restricts world terms by explicit constraints and a

separate constraint theory E, the world paths serve a similar purpose in WPL. When it comes to

deduction, WPL uses the unification of world paths, whereas a resolution step in RML/CL

requires the conjunction of two constraints, plus the unification of their last world term. In effect,

both methods have a deduction step narrow down the set of possible worlds.

This section’s goal is to show two things: (a) a world path resulting directly from the

translation represents the same set of worlds as its corresponding constraint in RML/CL, and (b)

this identity is preserved over a deduction step. In other words, unification of paths is equivalent

to the conjunction of constraints as far as possible final worlds are concerned.

As an example, consider the translation o fO D q A Q O -iq which results in the set of

RML/CL sentences S =

45

q(w,) / K(sk,,w1) (6.2)

-iq(sk2(w2)) / K(0,w2) (6.3)

and the constraint theory E =

K(w,f(w)) (6.4)

K(0,sk,) (6.5)

K(0,w) -*• K(w,sk2(w)) (6.6)

Given this E, S can be rewritten in this equivalent extended form:

q(wj) / K (0,sk,)A K (sk1,w 1) (6.7)

-iq(sk2(w2)) / K(0,w2) A K(w2,sk2(w2)) (6.8)

where each constraint corresponds to the full access path from the initial world 0 to the respective

current world. Resolution of (6.7) and (6.8) with the unifier a — { sk2(w2)/W| } yields:

H / K(0,sk,) A K(sk|,sk2(w2)) A K(0,w2) A K(w2,sk2(w2)) (6.9)

The next thing to do is to check E-solvability of the constraint in (6.9). This means

finding a grounding substitution for the constraint such that the constraint is entailed by E. Note

that the first literal, K(0,sk,), is an instance of the third, K(0,w2). If the first literal is true, then

we do not need to worry about the third. We just make sure the substitution contains [i =

{sk|/w2}, thus making the third and first literal equal. Conveniently, n also unifies the other two

literals. Hence, the problem is reduced to testing the E-solvability of

E - K(0,sk]) a K(skj,sk2(sk,)) (6.10)

This constraint is already ground, and it also follows from E. Thus, (6.9) is E-solvable, and the

empty clause 0 has been successfully deduced.

Now translate the same modal formula, O Qq A □ 0 -iq, into WPL:

q(0-^-sk1-^W|) (6.11)

q (0-^w2—sk2) (6.12)

These two clauses unify along the path O-’-s k ,-* ^ , resolving into the empty clause. Note the

similarity between this ground path and the grounded constraint in (6.10). We want to prove that

both, the unified paths of (6.11) and (6.12) as well as the conjuncted constraints in (6.10),

necessarily end in the same world, sk2 . 16 But first, we need to define what is meant by the

worlds that a path or a constraint can end in.

16) actually in sk2(skj). Recall that 0-^skj-*sk2 is an abbreviation for 0-»skj-*sk2(sk]),

46

Definition 6.6 (Ground Last Worlds of a Path) Given a path GrLW(P) denotes the set o f

possible ground last worlds o f that path:

GrLW(P) = { last(Po) \ Po is E - and ground }

Given a set o f paths S, GrLW(S) = U P6S GrLW(P).

Example: Consider the paths in (6.11) and (6.12), and assume a serial logic KD. Then

GrLW(0-*sk,->w,) = { sk2(sk,), f(sk,) } 17 and GrLW(0^w2-*sk2) = { sk2(sk,), sk2(f(0)) }.

Definition 6.7 (Ground Last Worlds of a Constraint) Given a world term t and a constraint

C constraining t, (t occurs in the rightmost K literal o f the constraint), GrLW(t.C) denotes the

set o f all possible ground instances of t such that the constraint C is E-

GrLW(t.C) = {to | to is ground and 3/x such that E >-

As an example, consider the constraints from (6.7) and (6.8). GrLW(wj,

K(0,skj) A K(sk,,w ,)) = { sk^sk,), f(sk,) } , and GrLW(sk2(w2), K(0,w2) A K(w2,sk2(w2))) =

{ sk2(skj), sk2(f(0)) }.

Notice that the examples to definition 6.7 result in the same world, sets as the examples

to definition 6.6. The next theorem states this identity, i.e. it justifies that the set of possible last

worlds of a path P is equal to the set of possible last worlds of P’s RML/CL counterpart

constraint^P):

Theorem 6.2 Given a WPL path P and a constraint theory) E, GrLW(P) =

GrL W(Pn, constraint (P)).

Proof: Take an arbitrary predicate, say)\ and construct the WPL literal

dummy(P). Its E-ground instances are equal to GrLW(P). More precisely: dummy(f)

Hgr{dummy(?)) if and only if t E GrLW(P). This follows by the definition of E g r() and

GrLW().

Next, construct the corresponding RML/CL predicate Then

its E-ground instances are also equal to dummy (l) E

17) f() is assumed to be the function used in the seriality axiom K(w,f(w))

47

Egr’(d«wzwy(Pn)/ constraint^)) if and only if t G GrLW(Pn,P). This again follows from the

definitions of Egr’Q and GrLW ().

Now it suffices to show that 'Lgr(dummy(Pj) = Egr'(dummy(Pn) / constraint^*)). But this

is guaranteed by theorem 6.1. ■■

With the proof of the above theorem we have reached the first goal of this section. Based

on the findings of Section A we know that the translation of modal logic into WPL has a path P,

where the translation into RML/CL has a constraint equivalent to constraint(P). And theorem 6.2

states that both represent the same set of final worlds.

The next theorem which we are working towards will establish what we intended to prove

as the second goal of this section: Unification of paths is equivalent to the conjunction of

constraints, as far as possible final worlds are concerned. This proof uses the lemmas 6.2 to 6.4,

which will be presented next.

Consider the world sk2(sk|)), which is the solution of (6.9), where two constraints are

joined. Note that it is identical to the intersection of the two sets pertaining to the two individual

constraints, as listed in the example to definition 6 .7 . As one might expect, this is not a

coincidence. The following lemma establishes this relationship:

Lemma 6.2 (Ground Worlds Set Intersection) Given two constrained world terms, tj and

along with their constraints, Cj and C2, then:

GrLW(tjfx, Cjnt A C2n) = GrLWftj.Cj) D GrLW(t2,C 2)

where fi is the MGU o f tj and t2 .

Proof: (£) Take any w such that w G GrLW(t(^, Cj/x A C /̂x). Thus, w = tj/xa for

some a , and C^fia is E-solvable, since C t/x A Ĉ /x is E-solvable by definition 6 .7 . Therefore, w

G GrLW(t|,C[). A symmetric argument holds for w G G rL W ^ C ^).

(2) Now, take any w such that w G GrLW O:^^) and w G G rL W ^ C y . Then w =

t (a for some a, and w = t2jS for some /3. Assume WLOG18 that C 1 and C2 are variable

disjoint. Thus, w = tj(or/3) = t2(o:/5). Hence, t] and t2 unify with an MGU, say /x. Thus, (a/3)

= jxcr for some possibly empty a. Since w = t Ĝ GrLW tt^C,), C^g-o must be E-solvable.

IS) WLOG = without loss of generality

48

The same holds for C ^kt. Thus, the conjunct C j/kt A i s E-solvable. Thus, w E GrLW(t,^,

C| fi A C^). ■■

Lemma 6.3 (E-consistency of Ground Paths) Given constraint theory E, a ground world

path P is E- consistent i f and only if

E *= constraint(P)

that is: E - K(P0,P ,) A ... A K (P„_j,Pn)

Proof: Since all P; are ground, the definition of E-consistency requires

E •- K(P0,P,) A ... A ^ P j^ .P i.^ -K C P j.j.P j)

for all i. This is:

S - K(P0,P|)

E * K(P0,P|) - K(P„P2)

E - K(P0,P,) A K(P,,P2) - K (P 2,P3)

E - K(P0,P,) A ... A K(Pn_2,Pn_,) -*> K(Pn_,,Pn)

This is equivalent to:

E - K(P0,P,) A ... A K(Pn_,,Pn) ■■

The next lemma states that there can only be one access path to each world. For instance,

it is not possible to have the two paths O-^skj-^skj and 0-*sk3-*sk2 in the course of a deduction.

In other words, once the final world of a path is known, the whole path is determined.

Scherl proved a similar property of the Least Herbrand Model of E. Freely phrased, a

ground literal is true in the Least Herbrand Model if and only if it is true in all models. Thus,

saying K (t,,t2) is true in the Least Herbrand Model, is saying E * K(t|,t2). If the accessibility

of t2 from tj in the Least Herbrand Model is represented as an edge in a graph such that the

vertexes are ground worlds, then the graph forms a tree with 0 as the root [Scherl 92],

Lemma 6 .4 (Ground Path Identity) Given two ^-consistent paths P and Q such that both are

ground, and last(P) = last(Q), then P = Q.

49

Proof: Suppose P ^ O- Since both paths are ground and E-consistent, lemma 6.3

applies. Thus:

E - K(P0,Pj) A ... A K(Pn_ „ P n)

and E - A ... A K(Qm_ ,,Q 1T1).

By the hypothesis, Pn = Qm. Going from right to left, there must be a first term in P that

differs from its counterpart in 0 - Formally, there must be an i such that P; ^ Qj, where

j = i + m—n and Pi+k = Qj+k for all k € { l , . . . ,n — i}. Thus, E >= K(Pi,t) A K(Qj,t), where t =

f’ i+i = O j+ I-

Now, tlie clause that makes K(Pj,t) true, cannot be the reflexivity axiom. As covered in

Section IV.C, whenever unification substitutes the neutral element T into the path, the ’ 1’ will

be removed right away, because the equality theory states Vw w-»l = w. Thus, there is no pair

PX-*PX + 1 in the path such that Px = Px+).

Similar reasoning holds for symmetry and the inverse element () _ l . Now consider an

application of transitivity, where unification substitutes the substring of another path into the first

path, as in P0-*P r^ (Q k ----^ Q k + iW V *-" This substitution is possible, because K(P|,Qk + ;)

follows from transitivity. But P] and Qk+i are not immediate neighbors in the path. Thus, there

is no pair Px-*Px+) in the path such that K(PX,PX+I) relies on the transitivity axiom in E.

Therefore, the only remaining clauses in E, that can possibly make K(Pj,t) and K(Qj,t)

true, are the seriality clause and the skolem clauses. In order for a K literal to be entailed by E,

it must match a right-hand side of one of the clauses in E. Recall that all clauses in E are definite,

so the have exactly one positive literal, which makes up the right-hand side of a clause. The

positive K literals in the seriality clause and in tlie skolem clauses are of the form K(w,f(w)),

where f is some function name. However, the translation procedure into WPL ensures no two

clauses in E use the same function f in their positive K literal. The translation introduces a new

function, different from all other functions, at every skolemization step.

Thus, since t is ground, both KCP t̂) and K(Q-,t) match the positive literal of the same

clause, which is of the form K(w,f(w)). But then P; must be equal to Qj, thus contradicting our

initial assumption that P; ^ Qj. ■■

50

Now we have all the machinery available to prove that unification of paths is equivalent

to the conjunction of constraints, as far as possible final worlds are concerned. This proof will

complete the second section of this chapter.

Theorem 6.3 Given two -̂consistentpaths, PI and P2, and two constrained world terms, and

t2, along with their constraints, C; and C2, such that:

• GrLW(Pl) = GrLW(tj.Cj)

• GrLW(P2) = GrLW(t2,C2)

then GrLW(S) = GrLW(t/p, C jp A C2p), where S = {Pia j a is an MGU o f PI and P2} and

p is the MGU o f fj and t2.

Proof: By lemma 6.2, G r L W (t {p , C> A = G rLW (t,,C ,) H GrLW(t2,C2). Thus,

it suffices to show that:

• GrLW(S) = GrLWO^C]) H GrLWCtj.C^

(£) Take any member w of any GrLW (Pla) such that a is an MGU of PI and P2.

Then w is last(Plop) for some p such that Plop is E-consistent and ground (definition 6.6).

Thus, w is also a member of GrLW (Pl), with substitution But then, by the theorem’s

hypothesis, w is also a member of GrLW (t,,C]).

Since Pier = P2cr, a similar argument shows that w is also in GrLWft^C^).

(2) Supposew G GrLW(t,,C|) Pi GrLWCt^C^), but w £ GrLW (Pla) for any tr such

that a is an MGU of PI .and P2. Then w G GrLW (Pl) and w G GrLW(P2). Thus, there exist

an a and a (8 such that w = last(Pla) = last(P2/3). Therefore, by lemma 6.4, P la = P2/3. WLOG

assume, PI and P2 are variable disjoint. Then there must exist an MGU a of PI and P2 such that

(a/3) = op for some possibly empty p. Thus, PI a = and w = 1 and P\op = P\a

is E-consistent. But then w G GrLW(Plcj), which contradicts our assumption. * ■

C. U nification as a T est F or S-So lva bility

Whenever two constraints are combined during the course of deduction in RML

Constraint Logic, the E-solvability of the joint constraint has to be tested. A constraint is

51

E — solvable, if there is a ground instance of that constraint such that it is entailed by E.

Unfortunately, the results of a test for E-solvability are not reused in subsequent tests of new

constraints that are derived from existing ones. Moreover, the constraints get longer and longer

as the deduction progresses. Thus, the method is quite inefficient.

All methods that work with path unification of some sort [Jackson, Reichgelt 87; Auffray,

Enjalbert 89; Ohlbach 88; Frisch, Scherl 91] have an important edge over the constraint logic

method. They do not require an explicit test for E-solvability. Unification takes care of it. World

paths do not unify, unless their combination is E-solvable. What is more, by instantiating world

variables in the path, the implicit E-solvability test works incrementally. The role of unification

can be interpreted as to instantiate variables just enough to ensure this E-solvability, but to delay

the actual choice of ground instances for as long as possible.

In this section we will demonstrate that these properties apply to our World Path Logic.

In particular, we will prove that all paths which can possibly occur during the course of a

deduction, are E-solvable. Our approach works along the notion of E-consistency, as defined in

definition 6 .1 . In order to prove that all paths are E-solvable, it suffices to prove that:

(a) the initial paths resulting directly from the translation into WPL are E-consistent

(b) instantiating a path with a most general unifier of two paths preserves E-

consistency

(c) every E-consistent path corresponds to a E-solvable constraint

Property (a) has already been proven as lemma 6 .1 . The proof of property (b) is quite

long and tedious; therefore, we will do (c) first.

Theorem 6 .4 (E-consistency => E-solvability) Given world path such that P is

then constraint(P) is E-solvable.

Proof: constraint(P) is equal to K(P0,P]) A ...A K(Pn_ ! ,P n). By definition, this

conjunction is E-solvable, iff there exists a substitution p such that (K(P0,P ,) A ... A

K(Pn_ | ,Pn)) t̂ is ground and

E N (K(P0,P ,) A ... A K(Pn_ ,,P n))/t (6.13)

52

Construct m recursively as follows, where f () is the function used in the seriality axiom

K(w,f(w)) in E:

Mo = {}

Mj = M i_|°{f(Pi_i)/Pi} , if P; is a variable

Mi = Mi-i , otherwise

M = Mn

Thus, fi substitutes every variable term Pj with f(Pj_]) ensuring that P; is accessible from P;_j

by seriality. The point of having a recursive definition of m is to cover the case, where the path

has multiple variables in a row, thus making sure only ground terms are substituted for variables.

Thus, (K(P0,P|) A ... A K(Pn_|,Pn))M is ground as far as world variables are concerned.

The conjunction may still contain some non-world variables, but then we can expand m

to substitute them with any domain element, say ’a’ , without affecting the accessibility at all.

The proof of (6.13) is by contradiction. (6.13) is equivalent to

E n. K(P0,P ,)m a ... A K (P „_,,P n)M (6.14)

Suppose (6.14) does not hold. Then there must be leftmost K literal K(Pj_|,Pj)M which is not

entailed by E. Thus:

E « /19 K(Pj_|,Pj)M (6.15)

but E - K(P0,P ,)m A ... A K(Pj_2 ,Pj_ j)m (6.16)

Pj can either be a variable or not. Suppose it is, then K(Pi_ , ,P j)M = K(Pj_ 1,f(Pi_ ,)) . But

E entails this literal by seriality, thus contradicting (6.15).

Now suppose P; is not a variable. Then, by E-consistency of P,

E . K(P0,P ,) A... A K(Pj—2’Pj —,) K(Pj—, >Pj) (6.17)

The conjunction in (6.16) is just an instance of the antecedent in (6.17). Thus E >= K(P;_ | ,Pj) î

which is a contradiction to (6.15). ■■

It remains to be shown that instantiating a path with a most general unifier preserves E-

consistency. First, we will prove this for a substitution on P such that a is the MGU of this

path P and some other path. Then this result will be extended to show that a can be an MGU of

any two paths, not necessarily including P. The following lemma is needed for the proof:

19) *■! is meant to denote the negative n operator. reads: a does not entail j3

53

Lemma 6.5 (No New World Variables in Skolem Arguments) Let P be a world path and

a function term in P. Then all world variables occurring in Px also occur in the P fs prefix

P < r-^ P,-1-

Proof: It follows from the translation function that this property holds for all initial paths

resulting from translation. Moreover, if it holds for P, then it must also hold for Pa. This follows

from the properties of substitution. Thus, the property is preserved over the course of a

deduction. ■■

Theorem 6.5 (E-consistency Preservation, Part 1) Given a constraint theory E, two E-

consi stent paths P and Q, and an MGU o o f P and Q, then Po will also satisfy the property o f

E-consistency.

Proof: WLOG assume P and Q are variable disjoint. Let us also assume WLOG that o

= { t l / x l , . . . } such that no variable x l ,...,x n occurs in any of the terms tl ...tn. We will now redo

the substitution in P and 0 step by step from left to right.

Let prefix(n,P) denote the first n + 1 terms of P, i.e. prefix(n,P) = P0-*...-»-Pn. Then the

following property holds for P, Q, k, and o (induction hypothesis):

• prefix(k—1 ,P) = prefix(k—1,Q)

• prefix(k — 1 ,P) does not contain any variable that o substitutes

• P and 0 are E-consistent

This property certainly holds for the base case k = 1, the MGU o, and the initial paths

P and 0 , which are E-consistent by lemma 6.1. As the inductive step will now show, we can

always pick a non-empty p, p Q o,and apply it to P and 0 such that the induction hypothesis

holds for P’ , O’ , k’ , and o', where

• P’ = P p

• 0 ’ = 0 M

• o’ = a - p

The proof is basically an induction on the cardinality of o. Since o is reduced in size at

every induction step, it will eventually be empty. This means that the complete substitution will

have been performed. Thus, the resulting P’ is Pa (P and o from the base case), and it is still

consistent with E which was to be proven.

54

We will now complete the proof with the details of the inductive step. Consider the world

terms Pk and Qk and distinguish six cases:

(i) Both terms are variables and a contains a substitution /x such that /x = {P k/Qk} or /x

= (Qk/Pk}. Perform this substitution, i.e. let P’ = P/x, and let O’ = Qm- The induction

hypothesis then holds for P’ , O’ , k’ = k + l , and = - /x. ■

(ii) Both terms are non-variables, i.e. a function (we consider constants zero-ary

functions). Then the function must be the same in Pk as in Qk, otherwise P and 0 would not

unify. Let us look at possible variables in the argument terms to that function. Concerning the

world variables, it follows from lemma 6.5 that they also occur in prefix(k,P). And by the

induction hypothesis, a does not substitute them. Thus, all world variables in Pk, if any, equal

their respective counterpart in Qk.

As to the non-world variables, do all substitutions /x in pertaining to them and remove

those /x from a, yielding P\Q',<7’ respectively.

In order to show that P’ is E-consistent, we need to have E >= K, A ... A K;_ , -*• K;

for every non-variable world term P’ j in P\ Since we did not substitute world-terms, P’j is a non

variable term if and only if Pj is a non-variable. Thus, all the clauses that need to be entailed by

E for P’ , have corresponding clauses in P, of which they are instances. So, if E entails

K(P0,P ,) A ... A K t P j .^ P j .^ - K t P j .^ P j)

then E also entails the instance

(K (P 0,P ,) A ... A K(Pi_ 2,P j_ j) -*• K(Pi_ I,Pj))

which is equal to

K(P’0,P ’ ,) A ... A K(P’I_ 2,P"i_ 1) K(P’j_ , ,P ’i)

A similar argument holds for Q\ Thus, the hypothesis holds for P’ , Q\ a ’ = a —/x, and

k’ = k+ 1. ■

(iii) One term is a variable, the other term is not. WLOG assume, Pk is the variable.

Then there must be a substitution /x = { t/Pk } in a such that t is an instance of Qk. Let P’ = P/x

and observe that

K(P’0,P ’ |) A ..

is just an instance of

• A K(P’k_ 2,P \ _ ,) - K(P’k_ , ,P ’k) (6.18)

K(Q0,0 ,) A . .. A K(Qk_ 2,Qk_ ,) - K (Q k_ „ Q k) (6.19)

55

because prefix(k—1 ,P) = prefix(k —1,Q) and a does not effect prefix(k— 1,P). Since (6.19) is

entailed by E, so is (6.18).

Next consider the terms P’ ; in P’ , such that i > k. We need to show that E * K| A ...

A Kj_, -+ Kj for every such non-variable world term P’j. Note that P’j is a non-variable if and

only if Pj is. p = { t/Pk } does not substitute any Pj, because every P; is different from Pk. This

follows from the unique prefix property (theorem 4.1). As in case 2, if E entails

K(P0,P ,) A . . . A K(Pj_2,P j_j) K(Pj_j,Pj)

then E also entails the instance

(K(P0,Pj) A . . . A K(Pj_2,P j_ ,) — K(P1_ 1,Pi)) M

which is equal to

K(P’0,P ’ 1) A .. . A K(P’i_ 2,P 'j_ 1) — K(P’j_ , ,P ’j)

Thus, P’ has the property of E-consistency. The induction hypothesis holds for P\

Q’ = Qfx = Q, k’ =k , and o' = o —p.

Recall that P’k and Qk are not necessary equal. Both are function terms, however. And

if they are actually not identical, then case (ii) will apply at the next round. ■

(iv) Reflexivity holds, and the neutral element M’ is substituted for the variable Pk or

Qk. WLOG assume it is Pk, which is then deleted from the world path under application of the

equality theory for reflexivity, Vw w-*l = w. Thus, P’j = Pj for all j < k, and P’j = P|+!

for all j ^ k. Consider a skolem function term P’j, such that j > k. We need to show that

E - K(P’0,P ’ ,) A .. . A K(P’j_2,P’j_ 1) - K(P’j_ ,,P ’j) (6.20)

E-consistency of P tells us that

E * K(P0,P ,) A . . . A K (Pj_, ,Pj) -*■ K(Pj,Pj + l) (6.21)

Since Pk is a variable, we can instantiate it to Pk_ j:

E •= K(P0,P ,) A . . . A K(Pk_ , ,P k_ 1) A K(Pk_ „ P k + 1) A . . . A K(Pj _ „ P j) - K (P j ,Pj + 1)(6 .22)

Note that the reflexivity axiom Vw K(w,w) is part of E. Thus, we can resolve the literal

K(Pk_ j ,P k_ ,) in (6.22) away, yielding:

E - K(P0,Pj) A . . . A K(Pk_ lfPk + 1) A . . . A K(Pj _ , , Pj) K(Pj, Pj + j) (6.23)

This is actually identical to:

E - K(P’0,P ’ ,) A . . . A K(P’k_ „ P ’ k) A .. . A K(PL_2,P ’j _ 1) - KCP’j - i .P ’j) (6.24)

And (6.24) again is equal to (6.20). Thus, P’ preserves E-consistency. The induction hypothesis

holds for P’ , Q’ = Q, k’ = k , o '= o —p. ■

56

(v) Svmmetrv holds, and the inverse element Pk 1 is substituted for the variable Pk + 1

(or Qk+1, WLOG assume it is Pk+,). Then Pk and Pk + 1 can both be deleted from the world

path under application of the equality theory for symmetry,

Vw,w’ w-^w’-^w’ -1 = w

Thus, P’ j = Pj for all j < k, and P’j = Pj +2 for all j > = k. Consider a skolem function

term P’j, such that j > = k. We need to show that

E - K(P’0,P ’ t) A ... A K(P’j_ 2,P ’j„ j) - K(P’j_ , ,P’j) (6.25)

Recall that P is E-consistent. Thus:

E - K(P0,P ,) A ... A K(Pj,Pj + 1) - K (P i + 1,Pj+2) (6.26)

Since Pk + 1 is a variable, we can instantiate it to Pk_ (:

E - K(P0,P|) A ...A K(Pk_ „ P k) A K(Pk,Pk_|) A K(Pk_ „ P k+2) A ...A K(Pj,Pj+|) -

K(Pi + 1,PJ+2) (6.27)

Note that the symmetry axiom Vw,w’ K(w,w’) -*■ K(w’,w) is part of E. Thus, we can resolve

the literal K(Pk,Pk_ j) in (6.27) away, yielding:

E - K(P0,P])A ...A K (P k_ „ P k) A K(Pk_] ,Pk+2) A ...A K(Pj,Pj + 1) K(Pj + 1,Pj+2) (6.28)

Next, we want to get rid of K(Pk_ , ,P k). Suppose Pk is a . Then, by E-consistency

of P,

E - K(P0,P ,) A ... A K(Pk_ 2,P k_ ,) - K(Pk_] ,P k) (6.29)

Now suppose Pk is a variable. In this case we can just instantiate Pk to f(Pk_|) and use the

seriality axiom, which is part of E:

Vw K(w,f(w)) (6.30)

Either way, (6.29) or (6.30), we can resolve K(Pk_ 1,Pk) out of (6.28), yielding:

E m K(P0,P ,) A ... A K(Pk_ , ,P k+2) A ...A K(Pj,Pj+1) -*• K(Pj +),Pj+2) (6.31)

This is actually identical to:

E * K(P’0,P ’ ,) A ...A K(P’k_ „ P ’ k) A ...A K(P’j_2,P ’ j_]) -*■ K(P’j _ 1,P ’ j) (6.32)

And (6.32) again is equal to (6.25). Thus, P’ (and O’) preserve E-consistency. The induction

hypothesis holds for P’ , O’ , o’ = o —fi, and k’ =k . ■

(vi) Transitivity holds, and the variable Pk is being substituted by a subsequence of Q.

H = I (Qk-* .. .- i-Qk+j)/Pk } 's ‘n a- UsinS the equality theory axiom for transitivity,

Vw,w’,w” w-^w’-s-w” = w^-(w!^-w”)

P0^ . . .-*Pk_ |-*-(Qk-*. • ^ Q k + i)^ pk + r4”- • ^ pnthe path

57

can be rewritten as

p0"*- • •->Pk - • •- *Qk + i"*'P k + 1- * - ' ^ P n

Thus, P’j = Pj = Qj for all j< k , P’j = Qj for all j, such that k < j < k + i, and P’j

= Pj_j for all j > k + i. Consider a skolem function term P’j, such that j < k + i. Since

prefix(k + i,P’) = prefix(k + i,Q) and Q is consistent with E, it follows that

E * K(P’0,P ’ ,) A... A K(P’j_ 2,P ’j_ ,) -* K(P’j_],P ’j) (6.33)

We need to show, that (6.33) also holds for skolem function terms P’j, such that j > k + i. As

previously stated, P’ j = P j a n d , since P is E-consistent, we know:

E * K(P0,P,) A...A K(PJ_ I_2,Pj_i_ 1)-K (P j_ I_ 1,PJ_i) (6 .34)

This can be rewritten as:

E n. K(Q0,Q,) A ... A K(Qk_„Pk) A K(Pk,P’k+i + 1) A ... A K(P’j_2,P’j_,)

Note that the transitivity axiom

Vw,w’,w” K(w,w’) A K(w’,w”) -»■ K(w,w”)

KCP’j_|,P*j) (6 .35)

is part of E. Thus, the following is also deducible:

E - K(Qk_ „ Q k) A ... A K(Qk+i_ l,Qk+i) - K (Q k_ „ Q k+i) (6.36)

Since Pk in (6.35) is a variable, the literals K(Qk_ !,P k) in (6.35) and K(Qk_|,Qk + i) in (6.36)

are unifiable witli { Qk+]/Pk }> and therefore, (6.35) and (6.36) resolve to:

E *= K(Q0,Q ,) A ... A K(Qk+i,P ’k+i + 1) A ... A K(P’j _ 2,P ’j _ l) - K (P ’j _ l,P ’j) (6.37)

This, however, can simply be rewritten to:

E - K(P’0,P ’ ,) A. . . A K(P’j _ 2,P ’j _ 1) -* K(P’;j_ ! ,P ’j)

which means that P’ has the property of E-consistency. The induction hypothesis holds for P’ ,

Q’ = Qjjl = Q, a ’ = ff—/i, and k ’ = k + i+1.

This concludes the proof of the E-consistency preservation (part 1) property. ■■

Theorem 6.6 (E-consistency Preservation, Part 2) Given a constraint theory’ E, three E-

consistent paths P, Q, R, and an MGU a o f Pand Q, then Ra also satisfy the property of

L-consistency.

Proof: The key to this proof is the observation that for every two paths P, R, resulting

from the translation into World Path Logic, there is an integer k > 0, such that

■ prefix(k,P) = prefix(k,R)

and i> k , j> k P i ^

58

In other words, two paths are identical lip to a certain point in the path, and then they are

completely different. This follows from the structure of modal logic and the translation function.

Consider any two literals and the modal operators, that they are in the scope of. Since scopes are

nested structures, the operators that have both literals in their scope, must all be outside of the

operators which have only one of the literals in their scope. The common outside operators

account for the common prefix of the two world paths.

Now consider the paths R, which is given to be E-consistent, and Po, which is E-

consistent by theorem 6.5. Recall the method of the proof of theorem 6.5. Two E-consistent paths

were unified step by step from left to right, preserving E-consistency of the full paths at every

single step. Since F and R are identical on the first k elements, a substitution of a into R is in

effect the same as a partial unification of R and F from left to right for the first k elements. In

the previous proof of theorem 6.5 we also unified two paths stepwise from left to right, and each

partial unification step preserved E-consistency of the whole path. Thus, following the approach

of the previous proof, the resulting path of the partial unification, which is Ra, must still be E-

consistent. ■■

D. Su m m a r y

When the same modal logic formula is translated into both World Path Logic and

RML/CL, then there is a close similarity between the WPL terms and the RML/CL terms. In

particular, for every WPL term there is corresponding RML/CL term such that (a) the WPL

term’s path matches the constraint of the RML/CL term and (b) the WPL term equals the

RML/CL term, except that the WPL term uses paths where the RML/CL term has simple world

terms. Furthermore, Section A proved that WPL terms have the same ground instances as their

corresponding RML/CL terms.

Section B related the world paths to RML constraints. In particular, we showed that a

world path resulting directly from the translation represents the same set of worlds as its

corresponding constraint in RML/CL. Applying the results from Section A, this means that they

are also equal with respect to their ground instances. Moreover, we proved that this identity is

preserved over a deduction step. In other words, unification of paths is equivalent to the

conjunction of constraints as far as possible final worlds and ground instances are concerned.

Since the ground instances are equal to begin with and throughout the deduction, we have a

ground refutation in RML/CL if and only we have a ground refutation in WPL. In addition.

Section C confirmed that the test for E-solvability of the RML constraints is obsolete in WPL,

because two paths unify if and only if the conjunct of the corresponding RML constraints is E-

solvable. Thus, the soundness and completeness results from RML/CL deduction carry over to

WPL deduction.

Deduction methods are usually expected to be sound and refutation-complete20. This

means, all derivable formulas follow from the set of premises (soundness), and if the set of

premises is unsatisfiable, then there exists a deduction ending in ’false’ or, in a clausal resolution

system, the empty clause (completeness). RML/CL deduction was shown to be sound and

complete in [Scherl 92]. As we have just showed, there is a direct correspondence between

deduction in WPL and in RML Constraint Logic, to the effect that every deduction step in WPL

can be simulated in RML/CL and vice versa. Therefore, deduction in World Path Logic is sound

and complete, too.

Now that we have obtained a theoretical understanding of deduction in World Path Logic,

we are ready to approach subsumption in the next chapter.

20) as opposed to 'deduction complete’ . Most methods cannot deduce a tautological clause like b v -ih, where
h is a new literal not occurring in the premises, although b v ~>b is entailed by the premises [Wos 93].

60

VII. SUBSUMPTION

Chapter VI concluded with the statement that deduction in WPL is sound and complete.

While soundness and completeness are essential issues, practical implementations of automated

theorem provers have to face a broader variety of problems. For instance, it is nice to know that

a refutation will eventually be found, if the set of premises is unsatisfiable, but how long is

eventually’? If the set of premises is in fact satisfiahle, then the system might search forever for

a refutation proof. This undecidability of FOPL and extended first order logics like modal logic

is a fundamental problem of computer science which cannot be overcome even by developing

more sophisticated algorithms. Nevertheless, designing the proof search more efficient helps to

ease the practical consequences of this theoretical problem.

There are several ways to improve the efficiency of this search. A clausal resolution

based theorem prover usually generates a large amount of clauses, most of which later turn out

not to be needed for the proof. Also, at any deduction step, the theorem prover has to decide

which clauses out of the large search space of given and derived clauses to resolve next.

Resolution strategies are concerned with a good choice of clauses to be resolved next, in order

to obtain a proof fast. Other methods are aimed to keep the set of clauses to choose from small.

This is what subsumption is designed to do. The basic idea of subsumption is to remove those

clauses that can be derived from a single other clause. If clauses B and C resolve to clause D,

where B follows directly from clause A, then D can also be derived from A and C. Thus, B is

unnecessary and redundant. We say A subsumes B. One can distinguish three different types of

subsumption [Wos 93]:

(i) Forward Subsumption. Once a new clause B has been derived, it is compared

against the set of existing clauses to see, if there is a clause A among them such that B is

subsumed by A. Then B is dropped.

(ii) Backward Substimntioh. Once a new clause B has been derived, it is compared

against the set of existing clauses to see, if there is a clause A among them such that B subsumes

A. Then the old clause A is replaced by B.

(iii) Ancestor Subsumption. Once a new clause B has been derived, it is compared

against the set of existing clauses in order to see, if there is a clause A among them such that A

= B. In terms of subsumption, A = B means: A subsumes B, and B subsumes A. Then the

61

clause with the shorter derivation path is kept, and the other one is removed. The motivation

behind this is to obtain short proofs.

Ancestor subsumption is somewhat different from the other two kinds, in that it involves

checking the length of derivation paths. This, however, is not within the scope of our treatment.

We are only concerned about ’simple’ subsumption detection as in (i) and (ii). Here is a more

formal definition of subsumption:

3K *

Definition 7.1 (Subsumption) A formula u subsumes a formula i <-V V

denotes the universal closure o f a formula such that all free variables are universally quantified.

The statement 'a subsumes fi' can be read as: a implies /3, entails fi, or a is more

general titan /3. The universal closure reflects the understanding that all free variables are meant

to be universally quantified. Suppose a: and f3 are part of a given and/or derived set of formulas

such that all formulas hold jointly. Then taking the universal closure of the conjunction of all

formulas is equivalent to universally closing every single formula, because Vx (o:(x) A <p(x)) =

(Vx a(x)) A (Vx <p(x)). Therefore, the universal quantifier can be applied to every single formula

like a and f3.

Note that definition 7.1 is quite general. It does not restrict a and to be clauses. Also,

the logic language under consideration is not specified. Subsumption is of practical relevance only

in deduction systems. Thus, when we speak of subsumption in modal logic, we mean

subsumption in the language that we are doing modal logic proofs in. As pointed out in Chapter

II, some deduction methods construct their proofs directly in modal logic, while other techniques

prefer an indirect approach. They translate modal logic formulas into another language and then

try to do the proof in that target language. With the World Path Language presented in Chapter

IV, we follow this direction. Thus, the problem of subsumption in modal logic, i.e. in modal

logic proof systems, reduces to the problem of subsumption in the target language.

There is also another reason for dealing with subsumption at the target language level.

Using subsumption checks makes sense only if the possible benefits outweigh the costs for the

subsumption tests. While subsumption is relatively easily determined among clauses, it can be

quite expensive in more complex structured formulas. Unfortunately, modal logic formulas cannot

62

always be converted into an equivalent clausal form such that clauses do not contain any

conjunctions. Just consider the example <p = p v 0 (q Ar). Conversion to clausal form would

mean breaking up the inner conjunction such that q and r end up in different clauses. But then

there is no way to represent the fact that q and r pertain to the world.

Therefore, the rest of this chapter will be devoted to examining subsumption among

World Path Logic clauses. Nevertheless, it is still possible to check if one modal logic formula,

say a,subsumes another one, say fi. Just translate a A ~>fi into WPL and search for a refutation

proof.

The rest of this chapter is organized as follows: Section A covers subsumption for unit

clauses, i.e. clauses that consist of just one literal. Section B extends those results to non-unit

clauses. Then we will present an algorithm for subsumption detection and prove its correctness

in Section C. Finally, this chapter closes with a summary of the results in Section D.

A. Unit Clauses

This section treats subsumption for WPL unit clauses. Unit clauses consist of exactly one

literal. This makes subsumption relatively easy to determine, because one literal, say LI,

obviously entails another one, say L2, only if the predicate is the same in both LI and L2, and

if either both are negative or both are positive.

By definition 7.1, LI subsumes L2 if and only if V* LI >- V* L2. From the semantics

of universal quantification, V* L is true, if all of L ’s ground instances are true. In this respect,

we can treat a universally closed literal with variables as a scheme standing for all of its ground

instances. So, if G(L) denotes the set of all ground instances of L, then LI subsumes L2 iff

G(L1) 2 G(L2).

For WPL, however, this is not entirely true. A literal like p(0-»w) does not entail all

ground instances such that we can instantiate w with any world. The variable w stands only for

those worlds that are accessible from world 0. The quantification is in fact constrained.

Remember that WPL expressions are a representation of modal logic. As for our example,

63

p(0-*w) represents the modal logic term Dp. And °p does not require p to hold in all worlds,

but only in those that are accessible from the current world, which is 0.

Let us extend the previous example, and find out which worlds w may be instantiated to.

Suppose the set of modal logic sentences under consideration is { Dp, □ O -ip, Oq }, and the

modal logic is serial only (system KD). The translation into WPL yields: {p(0^w),

ip(0-»w 2-»,sk|), q((H-sk2)}. Then the only possible instantiations for w are sk2 and f(0), where

f () is the function used in the seriality axiom in the constraint theory E. The literal p(0—̂sk^ is

not a ground instance that V p(0-»w) stands for, because sk, is not necessarily accessible from

0.

Definition 6.5 defines the E-ground instances of a WPL literal, and E g r(), the set of E-

ground instances, accordingly. Given a literal L, Egr(L) is the set of all LAST(Lo), such that La

is ground and E-consistent. E-consistency makes sure that only accessible worlds are instantiated,

and LAST() (see definition 6.2) replaces all world paths by their last element. Therefore, we can

state the following lemma:

Lemma 7.1 Given two WPL literals L I and L2, LI subsumes L2 iff 2

Our goal is to show that a subsumption test in World Path Logic works just like in

regular first order predicate logic. That is: LI subsumes L2, if there exists a substitution a such

that L2 = L la . In other words, LI subsumes L2, if L2 is an instance of L I. However,

substitution in WPL is more complex than in FOPL. WPL substitution effects not merely regular

variables, but also world paths, and can thus contain special elements as described in the section

on world path unification. These are, for instance, the neutral element in the case of a reflexive

logic, inverse elements, if the logic is symmetric, and nested subpaths in the case of transitivity.

Regardless of these differences, the subsumption test method is basically the same: it means

finding a substitution a such that L la = L2.

Theorem 7.1 (W PL Literal Subsumption) Given two WPL literals LI and L2 such that LI and

L2 result from modal logic, translation or are derived the course o f a deduction, then Li

subsumes L2 i f and only i f 3 aLla—L2.

64

The restriction on LI and L2 has no practical relevance, because for all practical purposes

of subsumption, there is no other source where WPL literals can stem from. As for the proof

however, the restriction ensures the E-consistency of LI and L2.

Proof: By lemma 7.1, LI subsumes L2 iff Egr(Ll) 2 Egr(L2). Thus, it suffices to show:

Egr(Ll) 2 Egr(L2) iff 3ct Ll<r = L2

"If": Pick any E-ground instance of L2, say L 2’ . Then L 2’ = L2^ for some t̂. Thus, L2'

= L2/x = LI on is also a E-ground instance of LI. ■

"only if": First, we will prove that Egr(L2) is not empty. For if Egr(L2) were empty,

then Egr(LI) 2 Egr(L2) would hold trivially, regardless of the existence of a substitution o.

L2 is E-consistent, because it either results directly from modal logic translation, then it

is E-consistent by lemma 6.1 (initial E-consistency). Or it was created in the course of a

deduction, then it is E-consistent by theorem 6.6 (E-consistency preservation). Lemma 7.2, which

follows right after this proof, states that all E-consistent literals have at least one E-ground

instance. Thus, Egr(L2) ^ 0 . Now suppose Egr(Ll) 2 Egr(L2), but there exists no a such that

LI a = L2. We will show that this assumption leads to a contradiction.

Case I : LI and L2 do not unify. Then LI and L2 have no E-ground instance in common,

because a common ground instance of LI and L2 would mean the existence of a unifier. But

since Egr(L2) ^ 0 , L2 has at least one E-ground instance that is not a E-ground instance of L I .

Thus, Egr(Ll) 2 Egr(L2) cannot hold. ■

Case 2 : LI and L2 do unify, but the most general unifier substitutes a non-variable term,

say t, for a variable in L2. say x (otherwise L la = L2 would hold for some a). This leads to two

sub-cases:

Case 2a : Suppose x is a non-world variable. Then, provided the Herbrand-Universe

contains more than one element, we can substitute a ground term other than t, say t\ for x. Since

Egr(L2) & 0 , and since the E-consistency of L2 does not depend on the actual instance of non

world terms, L2|t’/x} must have at least one E-ground instance which is also a E-ground instance

of L2. But since t ’ ^ t . it cannot be a ground instance of L I. Thus. Egr(L l) 2 Egr(L2) cannot

hold.

One might argue, if t ’ occurs in the path only, then t’ does not necessarily occur in a E-

ground instance, because by definition 6.5 only the last world of a path shows up in a E-ground

instance. However, it follows from lemma 6 .4 , that no two paths end in the same final world,

unless they are fully identical. Thus, if t occurs in one path and f in the other, the corresponding

E-ground instances cannot be identical. ■

Case 2b: Suppose x is a world variable. Thus, it occurs in the world path of L2. Let y

be the immediate predecessor of x in the path, and instantiate x with f(y), where f () is the

function used in the seriality axiom in E. Then, L 2’ = L 2 {f(y)/x } is still E-consistent, and

therefore, by lemma 7.2, it possesses E-ground instances. Each of these is different from every

E-ground instance of L I, because every instance of LI has a term t, where L 2’ has a f () . And

l ^ f (), because f () does not occur in any path. It is not used in the initial translation, and by

the same token, f () cannot be part of an MGU of any two paths. Therefore, no path during the

course of a deduction can possibly contain f () . Thus, Egr(LI) 2 Egr(L2) cannot hold. Again,

it does not make a difference, whether x occurs as the last element of the path or before. The

same argument as in case 2a applies. * *

What remains to be done to complete the above proof, is a proof of the following lemma:

Lemma 7 .2 Every -̂consistentWPL literal has at least one L-ground instance.

Proof: Theorem 6.4 states that the RML/CL literal, which corresponds to a E-consistent

WPL literal, has a E-solvable constraint, if the WPL literal is E-consistent. And if its constraint

is E-solvable, then the RML/CL literal has at least one E-ground instance. This follows from

definition 5.1. Therefore, the RML/CL counterpart of the WPL literal has E-ground instances.

But then, the WPL has E-ground instances too, since theorem 6.1 states that WPL literals have

the same E-ground instances as their RML/CL counterparts. ■ *

Summarizing this chapter, we have shown that subsumption of WPL unit clauses can be

tested in the same way as for regular FOPL predicates, that is by searching for a substitution.

The next section will establish a similar result for clauses with more than one literal.

66

B. Multtliteral Clauses

While unit clauses consist of exactly one literal, we use the term ’multiliteral clause’ for

clauses with an unrestricted number of literals, not necessarily more than one. In this sense, every

clause is a multiliteral clause, even a unit clause. However, we find this terminology useful to

allow for a clear distinction between clauses which necessarily have exactly one literal, and

clauses that do not.

The main difference between subsumption in the two cases is that clauses can be of

different length and yet subsume each other. For instance, the clause (p v q) subsumes the

clause (p v q v r). As another difference, multiliteral clauses can be tautologies as in (p v —>p),

which unit clauses cannot be. Although tautological clauses are subsumed by every other clause,

if we take the definition of subsumption strictly, the task of detecting and deleting tautologies in

a deduction system is usually considered a separate issue [Wos 93],

As in the case of unit clauses, we would like to treat a universally quantified WPL

multiliteral clause as a scheme standing for its E-ground instances:

Definition 7.2 (E-ground Instances of Clauses, Set EGC) Given a WPL clause C = (L t v

... v L n)and a substitution a such that Co is variable free , LAST(Co) is a E- instance o f

C if and only i f each L p is -̂consistent,where < / < n.

E GC(C) is a function that maps C to the set o f all such instances of C.

Our motivation to require all literals in a ground clause to be E-consistent, as opposed

to just one literal, is the goal to keep a WPL expression equivalent to its RML/CL counterpart.

If the WPL clause is

C = (L, v ... v Ln) (7.1)

then the corresponding RML/CL is

C’ = (s ,/c , v ... v sn/cn) (7.2)

where Sj = LAST(L-) and C; = consrraint(path(L-)) for each i from 1 to n. (7.2) is equivalent to

C’ = (c,-*s,) v ... v (cn *"Sn) (7.3)

which in turn is equivalent to

C’ = (s, v ... v sn) / (Cj A ... A cn) (7.4)

67

It follows from (7.4) and from the definition of E-ground instances (definition 5.1) that all

constraints c , cn need to be E-solvable simultaneously. Thus, if we want C and C’ to have

the same E-ground instances, it is necessary to have the paths of all literals in C E-consistent, not

just one.

Conjecture 7.1 (Ground Instance Equivalence) a clause

C = (L , v . . . v L n

and an RML Constraint Logic clause

C ’ = (s, v...v sn) / (c i A ... A cn)

where s; = LAST(Lt) and r- = constraint (path) for each from 1 to n, then EGC(C) =

Z gr(C ’).

A proof of conjecture 7.1 would probably parallel the proof of theorem 6.1, which states

a similar relationship about ground literals. Using our definition of WPL ground clauses, let us

now return to the topic of subsumption.

As opposed to the unit clause case, "Cl subsumes C2" does not mean EGC(Cl) 5

EGC(C2), because the E-ground clauses of C2 may be longer than the E-ground clauses of C l,

and still be subsumed. Treating a clause as a set of its literals, we can however establish the

following relationship:

Lemma 7.3 Given two WPL clauses C l and C2, C l subsumes C2,

^C1 :C1 'eZ G Z (C l) Cl ’ ^ C2\

Proof: C l’ entails C 2’ , because all literals in the disjunction C l ’ occur also in the

disjunction C2’ . And if every E-ground clause of C2 is entailed by some E-ground clause of C l,

then V* Cl » V* C2, because V* Cl in turn entails all of its E-ground clauses. But by definition

7.1, V* Cl <- V* C2 means, Cl subsumes C2. ■ '*

The next theorem lifts this result to the level of variables.

Theorem 7.2 (Clausal Subsumption) Given two WPL clauses Cl and C2, Cl subsumes C2,

i f there exists a substitution o such that C la Q C2.

68

Proof: Pick any E-ground clause C2’ of C2. Then there is a substitution /x such that C2'

= C2/x. Consider C l ’ = C Ictjx. All of its literals are also in C 2’ , thus they are all E-consistent,

because as a E-ground clause, all literals in C2’ are E-consistent according to definition 7.2. But

then C l ’ is also a E-ground clause. Hence, for every E-ground clause C2’ of C2 there is a E-

ground clause of C l ’ of Cl such that C l’ <= C2’ . Thus, by lemma 7.3, Cl subsumes C2. * ■

Notice that theorem 7.2 uses "if" instead of "if and only if". In fact, the "only if" part

does not work. For one, tautological clauses are entailed by every other clause. But even if we

exclude tautological clauses from our treatment, there are cases where a clause CI entails a clause

C2 without the existence of a substitution cr such that Clff C2. The following example is taken

from [Loveland 78]:

Vx p(x)-*p(g(x)) - Vx p(x)—p(g(g(x)))21 (7.5)

The clause on the left, call it C l, subsumes the clause on the right, C2, but no single

instance of Cl is a subformula of C2. On the ground clause level, no ground clause of Cl implies

any ground clause of C2. Cl and C2 do not have any ground clause in common. However, each

ground clause of C2 is entailed by two ground clauses of C l. For instance, p(a)-*p(g(g(a))) is

entailed by p(a)-»p(g(a)) and p(g(a))-*p(g(g(a))) together.

We could avoid this problem, if we restricted the clauses such that a literal may not occur

positively and negatively within the same clause. This restriction would solve the problem of

tautological clauses as well. Thus, using this restriction, the "if" in theorem 7 .2 could be replaced

by an "if and only if". This approach is not practical though, because deductions cannot avoid

dealing with clauses, in which the same predicate occurs twice. In fact, there are many cases

where subsumption among clauses of this kind can be successfully detected using the substitution

criteria. As an example, consider this slight variation of the clauses (7.5) [Loveland 78]:

Vx p(x)-*-p(g(y)) - Vx p(x)-p(g(g(x))) (7.6)

Reflecting, what can and what cannot be detected using the substitution criteria, Loveland

introduces a different definition [Loveland 78] of subsumption which we adopt for WPL:

21) These clauses are FOPL clauses, but since the language of WPL is a superset of the language of FOPL, they
are also WPL clauses.

69

Definition 7.3 (0-subsumption) A WPL clause C 6-subsumes a WPL clause D iff there exists

a substitution 0 such that C6 Q D and C has no more literals than D.

Using this definition, (7.6) is a case of 0-subsumption, while (7.5) is not. And as far as

tautological clauses, they are 0-subsumed by some other clause only if a part of the tautological

clause is actually an instance of the subsuming clause. It is easy to see that every case of 0-

subsumption is also a case of subsumption. This follows immediately from the definition and

from theorem 7.2.

Definition 7.3 also takes care of another problem which we have not addressed before:

a clause subsumes its factor. If two or more literals of a clause C have an MGU o, then C.a is

called tx factor of C. For instance, p(g(y)) is a factor of and is subsumed by (p(x) v p(g(y))). This

would appear to call for the deletion of the factor. But resolution is known to be incomplete

without factoring. Definition 7 .3 ’s restriction that C may not have more literals than D makes

sure that D is not a factor of C.

It turns out that the weaker 0-subsumption is a more useful deletion criteria than plain

subsumption. The distinction between 0-subsumption and regular subsumption was not needed in

the previous section, because there is no difference when only unit clauses are considered.

Neither can a unit clause be a tautology, nor can a unit clause contain the same predicate in a

positive literal and in a negative literal at the same time, nor can a unit clause be a factor of

another unit clause.

In summary, this section extended the results for unit clauses to clauses with no

restrictions on the number of variables. Subsumption can be tested in the same way as for regular

FOPL clauses, that is by searching for a substitution. We defined 0-subsumption to account for

the special problems mentioned above. None of these problems are due to the modal character

of WPL, all of them are also prevalent in ordinary FOPL. An actual algorithm for 0-subsumption

detection will be presented in the next section.

70

C. Algorithmic Subsumption Detection

The test for 0-subsumption is best being processed using the deduction machinery already

available. Given two WPL clauses C and D, the method basically tries to refute V C A ->V

D. Since the second conjunct is equivalent to 3 “iD, skolemization requires the instantiation of

the variables in C2 with distinct new constants that do not occur in either C or D. This

instantiation can also be understood as protecting them against being substituted in the search of

a substitution 6 such that CO e= D. In the special case where C and D are unit clauses, this

process is sometimes referred to as ’half unification’ [Wos 93], because we are looking for a

unifier that affects only one side, namely C.

As an important result of the two preceding sections, subsumption in World Path Logic

can be tested in the same way as in ordinary FOPL. In essence, it consists of the search for a

substitution. Thus, any subsumption test for ordinary FOPL will also work for WPL. Table VI

shows such a subsumption test algorithm. The algorithm employs resolution to find out, if such

a substitution exists. As covered in Section IV.D, resolution in WPL is not significantly different

from ordinary first order resolution. Resolution again involves unification, and it is only at that

level where World Path Logic subsumption tests really differ from ordinary FOPL subsumption.

Special purpose unification procedures are needed as described in Section IV.C.

As for the given subsumption test algorithm however, this does not make a difference,

because it does not specify the particular details of unification. It just uses unification.

The algorithm in table VI is taken from [Chang, Lee 73] and [Robinson 65] with step 1

added to check for factorization. The following example illustrates the procedure. Consider the

clauses

C = _ iP(0-*sk3-»w1,x) V Q(0-*w2,f(x),a)

and D = -iP(0-*w3,z) V Q((H*sk1̂ sk2, f(h(y)),a) V “ ip(0-*sk3,h(y))

in a reflexive and transitive logic (KT4). Running the algorithm on C and D, it turns out that C

0-subsumes D. The algorithm’s execution is traced in table VII.

Theorem 7.3 (Correctness of Algorithm) Given two WPL clauses C and D, the algorithm

listed in table VI terminates with "C 6-subs um.es D " if and only if C 6-subsum.es D . Furthermore,

the algorithm is guaranteed to terminate.

71

Table VI. Subsumption Test in WPL - An Algorithm

Input: Two WPL clauses, C and D (D = D1 v ... v Drn)

(1) if # of literals in C > ft of literals in D
then output "factorization", stop

(2) let p = { a-j/x-j, ..., ar/xn } , where are the variables in D and
a a n are new constants, not occurring

(3) set W = { -iD jp , ... , ~'Dmp } , a set of unit clauses
(4) set k = 0
(5) set U° = {C}, a set of clauses
(6) if U k contains b

then output "C Q-subsumes D ", stop
(7) let U k+1 = / resolvents of all C 1 and C2 I C, € U k and W
(8) if Uk + 1 = 0

then output "C does not 6-subsume D ", stop
else set k = k + 1,goto (6).

Table VII. Subsumption Test, An Example

Input: C = -iP(0-»sk3-*w1,x) V Q(0-*w2,f(x),a)
D = -iP(0-»w3,z) V Q(0-»sk1-»sk2, f(h(y)),a) V iP(0^-sk3,h(y))

Step (2) p = { sk4/w3 , b/y , c/z }
Step (3) W = { P(0-»sk4,c) , -iQ(0-*sk.,-i*sk2,f(h(b)),a) , P(0-*sk3,h(b)) }
Step (4) k = 0
Step (5) U° = { -iP(0-*sk3->w1(x) V Q(0-*w2,f(x),a) }
Step (7) U1 = { -iP(0-»sk3-»w1fh(b)), Q(0-*w2,f(h(b)),a) }
Step (8) k = 1
Step (7) U2 = { H }
Step (8) k = 2
Step (6) " C ^-subsumes D "

Proof: "if": If C 0-subsumes D, then, by definition, C has no more literals than D.

Thus, the algorithm does not terminate in step 1. Also by definition, there exists a 8 such that

C8 £ d Let D’ = { Dj, ... , Dk } be the literals in D such that D’ £ d and C = D\ Let W’

= { —1D|/a , ... , -|Dk/i } , W’ £ W. Then there exists a linear ground refutation of {C0/x} u

W ’ , where R0 = C0/x, and Rj = R ;_ , - D;/x, is a deduction sequence of ground clauses such that

each Rj is an instance of a member of Uj. Clearly, Rk = h , hence h £ Uk, thus the algorithm

terminates in step 6 with " C 0-subsumes D ".

72

"only if" : Suppose the algorithm terminates in step 6 with " C 0-subsumes D ". Then

there is a linear deduction of the empty clause e (in Uk) with C as the top clause (in U0), where

each of the k resolution steps removes one literal of an instance of C. Let a be the substitution

comprised of all unifiers of this particular deduction, a effects only C, since the literals in W are

already ground. Thus, Co = D ’fi where D’ is the partial clause of D consisting of those k

literals that contributed to the deduction of E. Consider the constants in /a . By their choice in step

2, they do not occur in C nor in D’. Replace all occurrences of these constants in a by the

variable, they are substituting in /x. Let the result of this operation be 0. Then C0 = 1)'.

Therefore, CO Q D. Furthermore, the number of literals in C does not exceed the number of

literals in D. Otherwise the algorithm would have stopped in step 1.

Termination property: Since all clauses in W are unit clauses, the resolvents in U1 have

one literal less then their ancestors in U1-1. Thus, Uk will eventually either be empty or contain

the empty clause. ■■

Note that the algorithm correctly decides the clauses from example (7.5), where C = Vx

p(x)-*p(g(x)) and D = Vx p(x)-»-p(g(g(x))), not to be a case of 0-subsumption. Although C A -i D

is unsatisfiable, the empty clause is not derived. Responsible for this is the resolution strategy

which allows clause C to be used only once. And in fact, it would always take two ground

instances of C to derive one ground instance of D. Thus, C subsumes but does not 0-subsume D.

The test for 0-subsumption can be quite expensive at times, as several unification and

resolution operations are involved. On the other hand, subsumption tests can shorten the length

of deductions drastically. [Loveland 78] gives an example in which forward and backward

subsumption reduces the length of a refutation from some 100 clauses down to 12 clauses. So is

subsumption worth the effort? If it is our primary goal to find a short proof, then forward and

backward subsumption as well as the previously mentioned ancestor subsumption should be

employed to its fullest extent. If, however, it is more important to find a proof fast, then one

would probably be better off with a compromise of some sort. The possible gain by keeping the

number of clauses small is paid for with the costs for subsumption tests, with decreasing returns

when the literal count rises. Subsumption tests are most efficient when one of the clauses is a unit

clause, and some implementations restrict its application to just unit or two-literal clauses.

However, it is difficult to make a definite statement as to the optimal degree of using

7 3

0-subsumption, since its benefits depend too much on implementational aspects and on not yet

well enough researched problem qualities [Loveland 78].

D. Summary

Recapitulating this chapter, the problem of subsumption in modal logic, when translated

into clausal World Path Logic, parallels that of subsumption in ordinary clausal first order

predicate logic. We have proven in Sections A and B that a WPL clause C subsumes a clause D,

if there exists a substitution 0 such that C0 £ D, just like in FOPL. Any subsumption test

algorithm that works for FOPL will work for WPL as well. We have presented one possible

algorithm. It relies on resolution to find the substitution. As we showed in Section IV.D,

resolution in WPL works just like in FOPL. Resolution again is based on unification. So it is

only at the level of unification where the special WPL needs make a difference.

This is kind of nice, we can basically upgrade any old FOPL theorem prover into a

theorem prover for World Path Logic. The only change needed is the special purpose unification

routine as outlined in Section IV.C. And if we add on another front-end translator from modal

logic to WPL, we have a modal logic theorem prover at our hands. Once these changes have

been taken care of, the whole other theorem proving machinery comes for free, including

subsumption.

74

V III . E X TE N S IO N S

To keep the presentation simple, the treatment in the previous chapter was based on

several assumptions as to the modal logic under consideration. These restrictions were:

• we assumed the domain to be constant in all worlds

• the logics were implicitly monomodal, i.e. there was just one accessibility

relation

• we admitted only those accessibility axioms that can be represented in definite

clauses, i.e, reflexivity, symmetry, transitivity, euclidian. Furthermore, the

accessibility relation was required to be serial

While these restrictions still leave us with a broad variety of modal systems, sufficient

enough to cover many applications, it is worthwhile to explore what lies beyond. In this chapter

we want to discuss the implications of dropping the assumptions above, and what needs to be

done to extend our system to (a) varying domain logics, (b) multimodal logics, and (c) different

accessibility axioms.

A. Varying Domain L ogics

By maintaining world paths with the predicates, we made sure to resolve literals only

within the scope of the same world, thus taking into account that predicates are subject to

different true/false evaluations in different worlds. Similarly, the world path is kept track of in

an additional argument to non-rigid functions (and constants) in order to account for world-

dependent interpretations. Variables, however, had no world paths associated with them.

When the domain is not assumed to be the same in every world, then it becomes

important which world a variable belongs to. A formula with variables is a scheme standing for

the set of all its ground instances. But a variable from world i cannot be instantiated with just

anything, it represents only the elements from world i’s domain D;. Thus, given a variable x

from world i and a term t from world j, they unify only if t also exists in i. Now, when we

15

assumed a constant domain, this was not a concern, because every element from Dj was then also

an element of Dj, regardless of i and j.

But even when the domains are not given to be the same in all worlds, they are usually

not completely unrelated. Their relationship is expressed in terms of the Barcan-Formula (BF)

and its converse (FB). If the Barcan formula is a theorem of the logic, then the domains of all

accessible worlds are subsets of the current world’s domain. Conversely, if FB holds, then they

are supersets of the current world’s domain. Table VIII gives the two modal logic formulas and

states their meaning in terms of accessibility and domains.

Table VIII. The Barcan Formula (BF) and its Converse (FB)

Name Modal Logic formula Relation between domains

BF Vx Qp(x) nVx p(x) if K(i,j) then D| 2 Dj

FB □Vx p(x) Vx op(x) if K(i,j) then D| £ D(

In order to account for varying domains, we change the method as follows, combining

ideas from [Cialdea 86] and [Jackson, Reichgelt 87]: First, the translation function from modal

logic to WPL (table III) needs to be extended such that each occurrence of a variable is indexed

with the path of the world, in which the variable was introduced. In particular, the line in table

III that dealt with universal quantifiers is changed from:

• t(s,X ,V x <p) = t(s ,X u (x },p)

to:

• t(s,X ,V x cp) = t (s ,X u { x j ,^) , where = {.xR/x}

Next, the unification method needs to be upgraded. A term t (variable or non-variable)

and a variable x can only be unified, if t exists in the domain of x. Let path(x) be the path

associated with x, and let path(t) be the path of t, that is t ’s index if t is a variable, or t ’s first

argument if t is a function term. Then we need to distinguish four cases, depending on which

combination of the Barcan formulas holds:

76

(a) FB holds. Then the domains are monotonously increasing along the access path,

x and t unify only if x ’s world is reachable from t’s world, a is a unifier of x and t, only if

path(t)o is a prefix of path(x)a.We call this prefix-unification.

(b) BF holds. In this case, the domains are monotonously decreasing along the access

path. Conversely to (a), x and t unify only if t’s world is reachable from x ’s world, a is a unifier

of x and t, only if path(x)ois a prefix of path(t)a.

(c) Neither BF nor FB hold. Then there is no defined relation among the worlds’

domains. A possible unifier o of x and t has to comply to both restrictions of (a) and (b), i.e.

patli(t)o is a prefix of path(x)a and path(x)a is a prefix of In result, the paths have to

be unifiable, such that path(i)a = path(x)a. In other words, x and t have to be associated with

the same world.

(d) Both BF and FB hold. In this case, if world j is accessible from world i, then D;

£ Dj and Dj 2 Dj, thus Dj = Dj. This is a constant domain logic, and unification can be

performed regardless of path(x) and path(t).

Note that the special requirements of prefix unification come on top of the E-unification

method for world paths as outlined in Section IV.C. The following example will illustrate WPL

deduction in a varying domain logic.

Consider a logic, in which the WPL unification method employs prefix-unification to

reflect the Barcan formula, as described in case (b) above. Our goal is to prove that the Barcan

formula

Vx Dp(x) -► DVx p(x) (8.1)

is actually a theorem in this logic. First, (8.1) needs to be negated, so we can do a refutation

proof later on:

Vx Ep(x) A OBx “ 'pfx) (8.2)

Translation into WPL, using the upgraded translation function, yields the clauses:

p((Hw,x0) (8.3)

-ip(0-*sk,f(0-*sk)) (8.4)

Resolution of (8.3) and (8.4) completes the refutation and yields the empty clause H. The

necessary unifier is a = {sk/w. f(0-*sk)/x0} . Note that the latter substitution is allowed, since the

index of x, 0, is a prefix of the path 0-»-sk.

77

If the logic under consideration is symmetric, then the Barcan formula implies its

converse and vice versa. Suppose the Barcan formula is a theorem and K(i,j) holds for some i,j.

Then by table VIII, D; 3 Dj. But K(i,j) implies K(j,i) by symmetry. Thus, Dj 2 D; . Hence D,

= Dj, and we have in effect a constant domain logic, which means that both BF and FB hold

jointly.

We conjecture that deduction in varying domain World Path Logic, using the restricted

unification method outlined above, is sound. The subsumption detection algorithm from Section

VII.C should work as well, since it is based on resolution and unification.

B. Multimodal L ogics

As mentioned in Section III.C, reasoning about the knowledge and belief of agents

requires distinct modal operators, like e a , Oa , ° b, O b and so forth, where the subscript

indicates the agent. Thus, there are multiple accessibility relations, one for each agent.

The translation function from modal logic to WPL converts the modal operators into

world paths. For instance, OOP translates to P(0-»w-»-sk). The arrow in the path can be viewed

as a binary infix operator representing the accessibility relation. So 0-*-w-*sk is equivalent to

K(0,w) A K(w,sk). Now when we have to deal with different accessibility relations, we also

need to introduce distinct path infix operators. Two lines need to be changed in the definition of

the translation function (table III). The monomodal version was:

• t(s,X,D^) = t(s-»w,X,<p)

• t(s,X, O tp) = t(s-*sk (X),X,<p)

The new multimodal version is:

• t(s ,X ,n Kip) = t(s-»Kw,X,(p)

• t(s,X , 0 K4£>) = t(s-*Ksk(X),X,y>)

where the subscript letter K indicates the agent. Now, □ A O BP is translated to the WPL formula

P(0-i-Aw-»Bsk).

As far as unification is concerned, paths unify only if the infix operators match. For

instance, P(0-*Ask) and P(0-*Bw) do not unify. However, P(0-»AW|) and P(0-*Bw2) unify with

78

a = {1/W|, l/w2}, if the accessibility relations are reflexive. Recall the axioms for E-unification

from Section IV.C:

• Reflexivity: Vw w-*l = w

• Symmetry: Vw,w’ £III

T£t£t£

• Transitivity: Vw,w’ ,w” w^w’-^w” = w-Kw’-*w”)

Upgrading E-unification for the multimodal case, one set of axioms each is needed for

every agent. In a two agent transitive logic KD4, for instance, the equational theory amounts to

these two axioms:

Vw,w’,w” w ^Aw’-*Aw” = w-*A(w’^ Aw”)

Vw,w’,w” w-*Bw’-*Bw” = w-*B(w’-*Bw”)

Note that these axioms cannot be applied across different agents. In particular, the

predicates P(0-»Aw) and P(0-»-Aski-*Bsk2) do not unify, because the paths 0—»-A(sk|-*-Bsk2) and

0-»Ask1-*Bsk2 are not equal under the equational theory.

When Multimodal Logic is used to formalize reasoning about knowledge of agents, then

usually the same accessibility restrictions hold for all agents. The question as to which modal

logic to use, needs careful consideration. All the accessibility axioms listed in table I have their

specific epistemic interpretation [Scherl 92], The seriality schema D, EA->OA = -iCA v

-iD- iA = i(DAAD i A) = “ '□(AA~iA) HE

—| cd (false)

can be interpreted as saying that the agent’s belief is consistent. The reflexivity schema T

□ A - A

states that everything that is known is true, while the transitivity axiom 4

□ A -+ DDA

states that if an agent knows something, he knows that he knows it.

Let us now do an actual example of a proof in multimodal logic, and return to the Two

Wise-Men puzzle from Section III.C.2. The problem was formalized in the modal logic sentences

(3.1)-(3 .4), which are reprinted here as (8.5) through (8.8). For this particular example, the

accessibility restrictions are of no concern, since it turns out that the E-unification equality axioms

are not needed for. the proof.

□ A (“ ispot(A) -* a B-ispot(A)) (8.5)

DAc]B(spot(A) V spot(B))

DA-lD BsPot B̂)

79

(8 .6)

(8.7)

The hypothesis to be proven is:

o Aspot(A) (8.8)

Negation of the hypothesis and conversion of the sentences into negation normal form yields:

□ A (-ispot(A) -»■ □ B~«spot(A)) (8.9)

DADB̂ sPot^) v spot(B)) (8.10)

□ A0 B_,spot(B) (8.11)

0 A~ispot(A) (8.12)

The next step is translation into WPL:

spot(0-»AW|, A) V _'spot(0-»'Aw|̂ -BW2, A) (8.13)

spot(0--Aw3-*Bw4, A) V spot(0-»Aw3-*Bw4, B) (8.14)

- >spot(0-*Aw5-»'Bsk1, B) (8.15)

-'spot(0-*Ask2, A) (8.16)

The deduction sequence is as follows:

- ispot(0^-Ask2-»Bw2, A) [resolvent of 8.13, 8.16] (8.17)

spot(0-»Aw3-^Bsk1; A) [resolvent of 8.14, 8.15] (8.18)

B [resolvent of 8.17, 8.18] (8.19)

Thus, the wise-man A knows, that he has a white spot on his forehead.

[Scherl 92] proved this deduction method for multimodal logic to be sound and complete.

We conjecture that subsumption works, just as usual, by finding a substitution. The algorithm

described in Section VII.C should do the job without changes, since all the special requirements

for multimodal logics are hidden in the unification process.

C. O t h e r A c c e s s ib il it y R estr ic tio n s

Throughout the previous chapters the accessibility relation was assumed to be serial.

Also, as to the accessibility restrictions, we admitted only a subset of reflexivity, symmetry,

transitivity, and the euclidian property.

80

Lifting any of these limitations has serious consequences as for the proofs in Chapters

IV through VII. For instance, seriality ensures that a E-consistent path is also E-solvable.

Consider resolving the empty clause a from the clauses P(0-*W|-*w2) and _ 'P(0-*w3-»-sk1). If we

are not guaranteed that some world is reachable from world 0, then the deduction of a is not

sound, because there is no corresponding ground refutation.

Imposing the accessibility restriction to be some combination of reflexivity, symmetry,

and transitivity made sure that all clauses in the constraint theory E were definite clauses, i.e.

clauses with exactly one positive literal. Suppose we specify the accessibility relation to be

connected. That means, if both b and c are accessible from a, then either is b accessible from c

or c from a. More formally, we can express connectivity as:

Vw|,w2,w3 K(w , ,w2) A K(w , , w3) -*■ K(w2,w3) V K(w3,w2) (8.20)

Now consider the following set of WPL sentences:

-ip(0-*sk,) (8.21)

->O(0-»sk2) (8.22)

P(0-*sk2-»-W|) (8.23)

Q(0-»sk,-*w2) (8.24)

These sentences are in fact unsatisfiable. Since both sk] and sk2 are accessible from 0,

we can either instantiate W] with sk|, thus e is the resolvent of (8.21) and (8.23), or we can

instantiate w2 to sk2, which would allow us to infer E from (8.22) and (8.24). None of the

resulting paths 0-»sk2-*sk| and 0-*sk|-»-sk2 is E-consistent however, since neither

K(0,sk2) A K(sk2,sk|) nor K(0,sk|)A K(sk,,sk2) can be inferred from E.

The problem of how to handle subsumption, when the accessibility relation is not serial,

or when an accessibility restriction cannot be expressed in a definite clause, remains an unsolved

question.

81

IX . C O N C LU S IO N

Subsumption is a technique to detect redundancies among the sentences in the search

space of automated deduction systems. Naturally, the way subsumption is done depends on the

logic used in the deduction system. This dependency is of particular relevance when deduction

in modal logic is concerned, because modern modal logic deduction methods do not perform the

deduction directly in modal logic. Instead, they translate the modal logic expressions into some

other target language, and then determine whether there exists a proof in that language.

Drawing from existing work, we defined and introduced World Path Logic (WPL) as

such a kind of target language in Chapter IV. All these languages have in common that the

possible worlds semantic of modal logic is made explicit in world access paths, which are kept

as syntactical items with the predicates and terms of the language. Our translation function from

modal logic to WPL differs from existing work in two points: skolemization is integrated into the

translation procedure, and simplified world path structures are used. Deduction in World Path

Logic is very similar to deduction in ordinary first order logic. The significant difference lies in

a special purpose unification method for world paths. World paths are unified under an equational

theory which represents the restrictions imposed on the accessibility relation. Thus, the

accessibility restrictions are encoded into the unification algorithm. The method is somewhat

restricted as to the properties of accessibility relation: it has to be serial and can be closed under

any combination of reflexivity, symmetry, and transitivity. Thus, the modal logic systems KD,

KT, KDB, KD4, KTB, KT4(S4), and KT5(S5) are supported. In contrast to ordinary unification,

the most general unifier is unfortunately not always unique. Thus, in a resolution based system,

multiple resolvents may need to be created.

We developed a deeper understanding of World Path Logic by relating it to another

language, RML/CL, a first order predicate logic with restricted quantification. The results from

Chapters V and VI justified why modal deduction works in World Padi Logic, and provided us

with the theoretical background for the following treatment of subsumption.

Using a standard definition of subsumption, we approached the topic by considering a

WPL sentence as a scheme standing for the conjunction of its E-ground instances. This is not as

trivial as it may seem, since not every possible variable free instance of S is considered ’legal'.

82

In result, however, the problem of subsumption in modal logic, when translated into

clausa) World Path Logic, parallels that of subsumption in ordinary clausal first order predicate

logic. We were able to prove that a WPL clause A subsumes a clause B, if there exists a

substitution 6 such that A 0Q B, just like in FOPL. Any subsumption test algorithm, that works

for FOPL, works for WPL as well. We have presented one possible algorithm. It relies on

resolution to find the substitution. As we showed in Section IV.D, resolution in WPL works just

like in FOPL. Resolution again is based on unification. So it is only at the level of unification

where the special WPL needs make a difference.

Although the results have only been proven for certain modal logics, we conjecture based

on the discussion in Chapter VIII, that the results can be extended to multimodal logics as well

as to varying domain modal logics. That is, the necessary changes to account for these extensions

effect only the special purpose unification method. Resolution and the subsumption test should

still work like before.

We were not able to extend the method to non-serial logics and to logics where the

accessibility relation restrictions cannot be axiomatized in definite clauses. Future work might try

to work on these extensions, and to prove the extensions which we were only able to conjecture.

Also, it can be worthwhile to explore subsumption outside the realm of those deduction methods

that work by translation.

And of course, testing out the deduction and subsumption methods in an actual

implementation should provide valuable insights. Actually, the implementation should not be too

difficult. At least one does not need to build an automatic theorem prover from scratch.

According to our results, we can basically upgrade any old FOPL theorem prover into a theorem

prover for World Path Logic. The only change needed is the special purpose unification routine

as outlined in Section IV.C. And if we add on a simple translator from modal logic to WPL, we

have a modal logic theorem prover at our hands. Once these changes have been taken care of,

all the other theorem proving machinery comes for free, including subsumption.

83

BIBLIOGRAPHY

[Abadi, Manna 86] Abadi, Martin and Manna, Zohar, "Modal theorem proving," in Proceedings
o f the 8thInternational Conference on Automated Deduction, Lecture Notes in Computer

Science, vol. 230, ed. Jorg H. Siekmann, pp. 172-189, Springer-Verlag, Berlin, 1986

[Abadi, Manna 90] Abadi, Martin and Manna, Zohar, "Nonclausal Deduction in First-Order
Temporal Logic," Journal o f the ACM, vol. 37(2), pp. 279-317, 1990.

[Auffray, Enjalbert 89] Auffray, Yves and Enjalbert, Patrice, "Modal theorem proving: an
equational viewpoint," in Proceedings, International Joint Conference on Artificial
Intelligence, pp. 441-445, Morgan Kaufmann, 1989.

[Chang, Lee 73] Chang, Chin Liang and Lee, Richard Char-Tung, Symbolic Logic and
Mechanical Theorem Proving, Academic Press, Orlando, 1973.

[Cialdea 86] Cialdea, Marta, line methodede deduction en thesis,
Universite Paul Sabatier, Toulouse, 1986. (cited in [Cialdea 91])

[Cialdea 91] Cialdea, Marta, "Resolution for some first-order modal systems," Theoretical
Computer Science, vol. 85, pp. 213-229, 1991.

[Farinas 82] Farinas Del Cerro, Luis, "A simple deduction method for modal logic," in
Information Processing Letters, vol. 14(2), pp. 49-51, April 20, 1982.

[Farinas 91] Farinas del Cerro, Luis and Herzig, Andreas, "Modal deduction with applications
in epistemic and temporal logics," to appear in Handbook of Logic in Al, ed. A. Galton,
D. Gabbay. Ch. Hogger, Oxford University Press 366/92, 5th draft, July 1991.

[Fitting 83] Fitting, Melvin, Proof Methods fo r Modal and D. Reidel,
Dordrecht, Holland, 1983. (cited in [Wallen 90])

[Frisch, Scherl 91] Frisch, Alan M. and Scherl, Richard Brian, "A general framework for modal
deduction," in Principles o f Knowledge Representation and Reasoning: Proceedings o f
the Second International Conference, ed. .1. A. Allen, R. Fikes, and E. Sandewall,
Morgan Kaufmann, 1991.

[Geissler, Konolige 86] Geissler, Christophe and Konolige, Kurt, "A resolution method for
quantified modal logics of knowledge and belief," in Proc. of the Conf. on Theoretical
Aspects o f Reasoning about Knowledge, ed. J. Halpern, pp 309-324, Morgan Kaufmann.
1986.

[Genesereth, Nilsson 87] Genesereth, Michael R. and Nilsson, Nils J ., Logical Foundations o f
Artificial Intelligence, Morgan Kaufmann. Los Altos. California, 1987. (cited in [Scherl
92])

[Gent 92] Gent, Ian P.. Analytic Proof Systems fo r Classical and Modal Logics o f Restricted
Quantification, PhD thesis. University of Warwick, Coventry, UK, March 1992.

u

[Godel 31] Godel, Kurt, "Uber formal unentscheidbare Satze der Principia Mathematica und
verwandter Systeme I," Monatshefte f i r vol. 38, pp. 173-198,
1931. Translation in: Van Heijenoort, Jean, From Frege to A Source Book
Mathematical Logic 1879-1931, pp 596-616, Harvard University Press, 1967.

[Herbrand 30] Herbrand, Jacques, R e c h e r c h e s s u r la demonstration, doctoral thesis.
Chapter 5, Sorbonne University of Paris, June 1930. Translation in: Van Heijenoort,
Jean, From Frege to Gddel - A Source Book in Mathematical. Logic , pp 529-
581, Harvard University Press, 1967.

[Jackson, Reichgelt 87] Jackson, Peter and Reichgelt, Han, "A general proof method for first
order modal logic" in: Proceedings, International Joint Conference on Artificial
Intelligence, pp. 942-944, Morgan Kaufmann, 1987

[Jackson, Reichgelt 89] Jackson, Peter and Reichgelt, Han, "A general proof method for modal
predicate logic," in Logic-based Knowledge Representation, ed. P. Jackson, H. Reichgelt,
and F. van Harmelen, pp. 177-228, Chapter 8, MIT Press, 1989.

[Kripke 63] Kripke, Saul A., "Semantical considerations on modal logic," Acta Pliilosopliica
Fennica,vol. 16, pp. 83-94, 1963. (cited in [Scherl 92])

[Loveland 78] Loveland, Donald W., Automated Theorem Proving: A Logical Basis, North-
Holland Publishing Co., Amsterdam, 1978.

[Morgan 76] Morgan, Charles G. "Methods for automated theorem proving in nonclassical
logics," IEEE Transactions on Computers, vol C-25, no. 8, pp. 852-862, August 1976.

[Ohlbach 88] Ohlbach, Hans Jurgen, "A resolution calculus for modal logics," in 9th
International Conference on Automated Deduction, ed. Ewing Lusk and Ross Overbeck,
pp. 500-516, Springer-Verlag, Berlin, 1988.

[Ohlbach 93] Ohlbach. Hans Jurgen, "Translation Methods for Non-Classical Logics - An
Overview," in Working Notes, AAAI Fall Symposion Series, pp. 113-125, October 22-24,
1993.

[Owicki, Lamport 82] Owicki, Susan and Lamport, Leslie, "Proving Liveness Properties of
Concurrent Programs," in ACM Transactions on Programming Languages and Systems,
vol. 4(3), pp. 455-495, July 1982.

[Pelletier 90] Pelletier. Francis Jeffrey, "Automated modal logic theorem proving in THINKER,"
1990. (cited in [Scherl 92])

[Robinson 65] Robinson, J.A. "A machine oriented logic based on the resolution principle,"
Journal o f the ACM, vol. 12, pp. 23-41, 1965.

[Scherl 92] Scherl, Richard Brian, A Constraint Logic Approach to Automated Modal Deduction.
PhD thesis. University of Illinois at Urbana-Champaign, 1992.

85

[Schollmeyer, McMillin 93] Schollmeyer, Martina and McMillin, Bruce M., Using Temporal
Subsumption fo r Developing Efficient Error-Detecting Distributed , technical
report no. CSC93-28, University of Missouri-Rolla, November 1993.

[Skolem 20] Skolem, Thoralf "Logisch-kombinatorische Untersuchungen iiber die Erfiillbarkeit
und Beweisbarkeit mathematischer Satze nebst einem Theorem iiber dichte Mengen,"

Videnskapsselskapets Skrifter, I. Mat. Nat Klasse, no. 4, pp. 1-36, Oslo, September
1920

[Styazhkin 69] History o f Mathematical Logic from Leibniz to Peano, MIT Press, Cambridge.
1969.

[Wallen 90] Wallen, Lincoln A., Automated proof search in non-classical , MIT Press,
Cambridge, Massachusetts, 1990.

[Wos 93] Wos, Larry, personal communication, September 1993.

86

VITA

Dirk Heydtmann was born on May 19, 1964, in Schleswig, Germany. Majoring in

Mathematics and Physics, he received an Abitur degree from Domschule Schleswig in 1983.

Subsequently, he joined a three year vocational training program with a local bank. Starting in

1986, he studied Computer Science and Business Administration at Fachhochschule Flensburg

College, Germany, and was awarded a Dipl-FH degree in 1990.

Following graduation, he worked for one and a half years as a systems analyst for Krupp

MaK Data System, a consulting firm out of Kiel, Germany. He left this engagement in July 1991,

when he was awarded a Fulbright Scholarship for graduate studies in the USA. Since then, he

has been a graduate student with the University of Missouri-Rolla, where he is currently

completing a Master’s degree in Computer Science.

	Subsumption in Modal Logic
	Recommended Citation

	tmp.1602164229.pdf.n5AkX

