
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Dec 1987

Multilist and inverted file system performance measurements Multilist and inverted file system performance measurements

Ashok Chandramouli

George Winston Zobrist
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Chandramouli, Ashok and Zobrist, George Winston, "Multilist and inverted file system performance
measurements" (1987). Computer Science Technical Reports. 62.
https://scholarsmine.mst.edu/comsci_techreports/62

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/62?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

MULTILIST AND INVERTED FILE SYSTEM
PERFORMANCE MEASUREMENTS

Ashok Chandramouli*and George Zobrist

CSc-87-16

*This report is substantially the M.S. thesis of the first
author, completed December,]987.

11

ABSTRACT

This study evaluates the multilist and inverted file systems. It

describes the structure of the two file system and then proceeds to

investigate the performance. The performance is based on quantitative

estimates of space requirements for file system, time to retrieve

records, time to insert a record, time to delete a record, time to

update a record and time to exhaustively read and reorganize the file

system. The study then investigates specific situations in which one

file system seems to perform better than the other.

XV

TABLE OF CONTENTS

Page

ABSTRACT .. i i

ACKNOWLEDGEMENT ... iii

LIST OF ILLUSTRATIONS... vii

LIST OF TABLES ... viii

I. INTRODUCTION .. 1

II. HARDWARE PARAMETERS 3

A. BLOCKS AND BLOCKING FACTOR 3

B. SEEK TIME ..4

C. ROTATIONAL LATENCY 4

D. TRANSFER RATE 6

E. BULK TRANSFER R A T E 6

F. BUFFERS ... 7

G. BLOCK UPDATE 7

H. QUANTITATIVE MEASURES 8

1. FETCH RECORDS 8

2. INSERT RECORD 8

3. DELETE RECORD 8

4. UPDATE RECORD 8

5. READ ENTIRE FILE 9

6. REORGANIZATION OF FILE 9

7. FILE S I Z E 9

III. MULTILIST FILE SYSTEM 10

A. STRUCTURE 10

1. FILE 10

V

2. DIRECTORY................................. 10

3. SEQUENTIAL STRUCTURE 11

4. B-TREE STRUCTURE 13

B. RECORD SIZE 16

C. DIRECTORY S I Z E 16

a. SEQUENTIAL STRUCTURED DIRECTORY . . . 16

b. B-TREE STRUCTURED DIRECTORY 17

D. TIME TO FETCH 18

E. TIME TO I N S E R T 20

F. TIME TO D E L E T E 22

1. DELETION OF AN ATTRIBUTE NAME-VALUE PAIR . 22

2. DELETION OF R E C O R D S 23

G. TIME TO U P D A T E 23

1. IN-PLACE U P D A T E 23

2. UPDATE WITH NEW ATTRIBUTES 24

H. TIME FOR EXHAUSTIVE R E A D 24

I. TIME TO REORGANIZE........................ 26

1. DIRECTORY REORGANIZATION 26

2. FILE REORGANIZATION....................... 27

IV. INVERTED FILE SYSTEM 28

A. STRUCTURE 28

1. FILE 28

2. DIRECTORY................................. 28

B. FILE SIZE 32

C. TIME TO FETCH 34

D. TIME TO I N S E R T 35

E. TIME TO D E L E T E 36

1. DELETION OF AN ATTRIBUTE NAME-VALUE PAIR . 36

2. DELETION OF A RECORD 37

F. TIME TO U P D A T E 37

1. IN PLACE U P D A T E 37

2. UPDATE WITH NEW ATTRIBUTES 37

G. TIME FOR EXHAUSTIVE R E A D 38

H. TIME FOR REORGANIZATION 38

V. R E S U L T S .. 40

A. CONCLUSION...................................... 41

BIBLIOGRAPHY .. 42

VITA ... 43

APPENDICES

A. NOMENCLATURE 44

B. PROGRAM TO CALCULATE THE PERFORMANCE PARAMETERS . . 46

C. INPUT PARAMETERS AND RESULTS 59

vi

Figure Page

1 BLOCK WITH VARIABLE LENGTH RECORDS 5

2 FILE AND SEQUENTIAL I N D E X 12

3 B-TREE STRUCTURED INDEX 14

4 INVERTED LIST R E C O R D S 29

5 INVERTED LIST DIRECTORY AND ADDRESS LISTS 30

vii

LIST OF ILLUSTRATIONS

viii

LIST OF TABLES

Table Page

I INPUT VALUE SET 1 59

II PERFORMANCE VALUES FOR INPUT SET 1 60

III PERFORMANCE VALUES FOR INPUT SET 2 61

IV PERFORMANCE VALUES FOR INPUT SET 3 62

V PERFORMANCE VALUES FOR INPUT SET 4 63

1

I. INTRODUCTION

Information storage and retrieval systems organize and store

information in a space efficient manner and provide for the quick

retrieval of necessary information. The information may be structured

data as in database systems or it may be loosely tied textual data of

documents. The information items must be collected and organized in a

coherent manner into a file structure so that: operations such as

retrieval and update can be achieved efficiently. File structures vary

in complexity and organization and should be chosen in order to obtain

optimum performance. Inverted and multilist structures are two such

file structures. Many commercial information storage and retrieval

systems are based on inverted and multilist file structures.

The multilist structure (also known as threaded lists in

literature) permits records having the same characteristics to be

linked together in a list [1]. A record may contain many links and

may be a member of one or more lists. The inverted structure, on the

other hand, removes the links from the records and places all the

links as a separate record. Both systems require a directory which is

a structure to assist in locating the desired record or set of

records.

Inverted and multilist file structures have been analysed for a

track oriented tree structured directory [2]. However, the following

analysis is carried out for both a sequential structured directory and

a hardware independent B-Tree structured directory. The hardware

parameters as derived by Wiederhold [3], are used in the analysis.

2

Chapter 2 presents the hardware parameters necessary for analysis

and introduces measures of performance. Chapter 3 and chapter 4

provide a detailed analysis of the file systems and chapter 5

discusses the situations under which one file system seems to perform

better than the other.

3

II. HARDWARE PARAMETERS

This chapter investigates the basic hardware parameters necessary

to evaluate the multilist and inverted list file organizations. The

parameters are applicable to direct access devices such as disks and

drums.

A. BLOCKS AND BLOCKING FACTOR

A block is the unit of information or data transferred between

external storage devices and the buffer in the core memory. Between

any two blocks there is a gap (G) to permit the read/write head to

prepare for the next operation. The gap size depends on the device

characteristics and is specified by the manufacturer. An optimal

block size should be selected for good performance. Small block sizes

increase the number of interblock gaps (G) and thus waste secondary

storage. Large blocks, on the other hand, require larger buffers and

greater transmission times. A logical record is the smallest unit

which a program manipulates. The fitting of one or more records into a

block is referred to as blocking. The number of records per block is

referred to as the blocking factor (Bfr). In fixed blocking, each

block contains an integral number of records. If B denotes the block

size and R, the average record size, then the blocking factor (Bfr) is

Bfr = FLOOR(B/R) Records / block (2.1)

The wasted space per record (W) is the sum of waste due to gap (G) and

waste due to record fitting. With fixed blocking, the waste due to

record fitting can be neglected. In this case,

W = G / Bfr Characters / Record (2.2)

4

With variable length records, an average of (1/2 * R) of the block is

unused. Within each block record delimiters are necessary to separate

the records. If the size of record delimiter is denoted by P, then

Bfr = (B - 1/2 * R) / (R + P) Records / Block (2.3)

The wasted space per record W, with variable length records, as shown

in figure 1, is

W = P + (0.5 * R + G) / Bfr Characters / Record (2.4)

B. SEEK TIME

The seek time is the time required to position the access mechanism

over the right track. Since it is not feasible to compute the

instantaneous seek time for each access, the average seek time is used

for the performance evaluation. The average seek time (s) is generally

provided by the manufacturer and is based on uniform access over all

the cylinders. However, by placing files on adjacent cylinders, a

lower value of seek can be obtained.

C. ROTATIONAL LATENCY

Rotational latency (r) includes the delay between the completion of

seek and actual transfer of data. In devices which can recognize

blocks at their own begin point, the average latency is given by

r = 60 * 1000 / (2 * rpra) ms (2.5)

where rpm is revolutions per minute and r is the average latency in

milliseconds.

R: Record
U: Unused

R

P: Pointer

Fig. 1. BLOCK WITH VARIABLE LENGTH RECORDS

6

D. TRANSFER RATE

The transfer rate (t) is the instantaneous rate at which the data

is transferred from or to the direct access device. The transfer rate

is dependent on the device characteristics and is provided by the

manufacturer. The time to transfer a block of size B (block transfer

time), Btt is

Btt = B / t ms (2.6)

E. BULK TRANSFER RATE

When transferring large quantities of data sequentially, the

transfer rate has to be scaled by a factor to take into account the

interblock gaps and minimal seeks which occur at cylinder boundaries.

The adjusted transfer rate is referred to as bulk transfer rate (t').

The effect of gaps on transfer rate can be evaluated by considering

the time to transfer a block of data. In time (R + W) / t, R bytes of

data are transferred. Thus, the bulk transfer rate is

t' = R / ((R + W) / t) Characters/ms (2.7)

If s' denotes the effective seek time per block, then the bulk

transfer rate adjusted for gaps and seeks is given by

t* = R / (((R + W) / t) + s') Characters/ms (2.8)

To evaluate s*, the operating environment has to be considered. In a

multiprogrammed environment, a seek may occur after transfer of every

block. In this case s' = s / Bfr. If there is no contention for the

seek mechanism, a minimal seek occurs once every cylinder and in most

7

direct access devices this seek to an adjacent cylinder is less than

2r. The value of s' lies between 2r and s / Bfr. It must be chosen to

reflect the operating environment.

F. BUFFERS

A block from a direct access device is read into an area of core

memory called the buffer. The required record is selected from the

buffer for processing. For sequential reading of large quantities of

data using bulk transfer rate, it is assumed that two buffers are

available. This permits the loading of one buffer while reading from

the other buffer. The computation time (cbi0ck ̂ f°r ProcessinS one

buffer, should be less than the time to load the buffer. If this

condition is violated, but the condition r > > Btt holds, then

t' can be modified to

t' = 2 * B / ((2 * r + 2 * Btt + s') characters/ms (2.9)

G. BLOCK UPDATE

Updating a record in a block requires a read and a subsequent write

operation. In many instances, it is necessary to rewrite the block in

the same location on the direct access device. If the insertion of the

record in the block in core buffer can be done under the condition

that the computation time c « 2 * r, then the time to rewrite the

record (Trw) is given by

Trw 2 * r ms (2 . 10)

8

H. QUANTITATIVE MEASURES

The quantitative measures used to study the performance of file

systems are described in this section.

1. FETCH RECORDS. Fetching is the operation of retrieving a

record or a subset of records to satisfy a query. Fetching of records

is a two step process. The necessary blocks have to be located

followed by the transfer of blocks to core memory. The time required

for this operation is quantified as time to fetch (Tf).

2. INSERT RECORD. Insertion is the operation of adding a new

record. The inserted record may have to be fitted into a specific

location, which may necessitate the shifting of certain records. These

costs are measured as time to insert (Ti).

3. DELETE RECORD. Deletion is the operation of removing a

record from the file. This is accomplished by physically removing the

record and shifting subsequent records or by logically deleting the

record with a special mark. This cost is denoted by time to delete

(Td).

4. UPDATE RECORD. Certain situations may require that data

within a record be modified. This operation is termed as record

update. The modified data is merged with the unmodified data, and the

record is rewritten either in the same location or at a new location.

This cost is quantified as time to update (Tu).

9

5. READ ENTIRE FILE. Some application functions require the

reading of the entire file. This time is quantified as time for

exhaustive read (Tx).

6. REORGANIZATION OF FILE. Periodically, it may be necessary to

rearrange the records within the file to improve performance and to

reclaim space occupied by deleted records. The periodicity of

reorganization is dependent on the type of file and the frequency of

insert, delete and update operation. This time is quantified as time

for reorganization (Ty).

7. FILE SIZE. File size indicates the storage required by the

file system including the directory and other access structures.

The operations of record fetches, record insertions, record updates

record deletions, exhaustive reading and reorganization of the file

are executed by combination of seeks, latency, reads and writes.

Generalized hardware parameters are used in the performance

measurements to provide independence from the actual physical

specifics of the underlying hardware.

Most file systems have access structures, besides data, to

facilitate the access of data in the file. This improved access to

data is reflected in the reduced fetch times but is obtained at the

expense of increased space requirements to store the data and the

access structures. An optimal file system should be designed

considering the performance requirements for a given application in

relation to the space requirements of the file system.

10

III. MULTILIST FILE SYSTEM

A. STRUCTURE

The multilist file system is composed of two parts - a file and a

directory.

1. FILE. The file is a collection of logical records. Each

record consists of one or more data values called the attribute value

and an identification of that value, called the attribute name. Each

record may be considered as a collection of one or more attribute

name-value tuple (also referred to as attribute) and non indexed data.

All records, possessing a particular attribute name-value tuple are

linked together to form a list. The head of the list is obtained by

decoding the directory. There are no restrictions on placement of

records within the file. One of the distinguished attribute name-value

pairs is the primary key which is found in all records. It uniquely

identifies the record in question. The structure of the records is

shown in Figure 2.

2. DIRECTORY. The directory decodes the key into an address of

a head of a list. It is a collection of indexes, one for each

attribute in the file. The attribute name-value pair of the records to

be matched with a term in a query is known as a key. A query is a

disjunction or conjunction of one or more terms or negated terms. The

output of the directory for a given key specifies the length of the

list, in addition to the address of the head of the list.

11

To satisfy a query, the directory is decoded for each term in the

query to obtain the head of the list. If the query is a conjunction of

terms, then the records of the shortest list are retrieved, and

checked for the presence of other terms of the query. If the query is

a disjunction of terms, then all records associated with all the terms

of the query are retrieved. Negated terms require the searching of all

the records in the file which is accomplished by the use of the

primary index since this index has pointers to all the records in the

f ile.

The length of the list obtained by decoding the directory is used

to provide presearch statistics such as the anticipated number of

records which would satisfy the query.

There are a number of possible structural representations of the

directory. The sequential and B-Tree representation are considered in

the following analysis.

3. SEQUENTIAL STRUCTURE. In this type of structure, each

attribute is associated with an index. The index entry consists of an

attribute value, head address and the length of the list, as shown in

Figure 2. The primary index has one entry for each record in the file.

The index entries are not maintained in any specific order. A new

index entry for an attribute is created by appending the entry to the

index at the end. Deletion of an index entry is carried out by turning

on an associated bit with the entry.

12

FILE ;
J--, --- J

r i

i_________________________________ i

VI Al LI

V2 A3 L2

V3 A9 L3

Attribute AR Index

1

DIRECTORY

Al, A2....... : Address VI, V2
PR........... . Primary Attribute AR, BR
LI, L2........: List Length

Value
Attribute

Fig. 2. FILE AND SEQUENTIAL INDEX

13

This type of arrangement is suited for files in which the attribute

index is small and can be kept in core memory for the duration of the

search.

4. B-TREE STRUCTURE. The B-Tree structured directory is suited

for files which have a large number of values for an attribute. The

directory maintains an index for each attribute. The index for a

particular attribute is tree structured as shown in the Figure 3. More

information on B-Tree structure can be obtained from references [4],

[5] and [6].

Each entry in an index block is a value-address-length tuple and

each block has some integral number of tuples. The lowest level of the

tree has one entry for every value of the attribute. The blocks at the

lowest level are successively indexed, until there remains only one

index block at the root.

The number of entries per index block y is known as fanout. To

facilitate insertions and deletions in the index, each index block is

allocated some reserve space. The insertion and deletion algorithms

maintain the effective fanout yeff between y and y/2 and all leaves

at the same level.

The insertion process is as follows. The appropriate location of

the new value in the lowest level block is found. If there is space in

the index block, the entry is inserted and the insertion process is

complete.

Al, A 2 ... : Addresses VI, V 2 : Values
0 : Null Addresses Li, 1 2... : List Length

Fig. 3 B-TREE STRUCTURED INDEX

15

If the block is already full, then a new block is fetched, half the

entries are transferred to the new block and a new index entry is

created at the next higher level block. This higher level block may

become full, necessitating a split. The splitting process may

propagate all the way up to the root, in which case, a new root block

is created with two entries, one for the old root block and one for

the new block at that level.

During the deletion process, an entry from the block may be

removed, leaving less than y/2 entries. If the total number of entries

in the block and its neighbor is less than y, then the blocks should

be combined and the entry corresponding to one of the blocks in the

higher level is deleted. This deletion process may propagate and lead

to the deletion of an entry in the root block. The root block itself

may be deleted, if it has only one entry, thus reducing the height of

the tree by one.

The height of the B-Tree for a given index depends on the average

number of attribute values n„ for an attribute name and the effectived
fanout yeff • It is given by

x = CEIL(logyeff na) Levels (3.1)

16

B. RECORD SIZE

Each logical record is a collection of attribute name-value tuples.

Associated with each tuple is a link field which indicates the next

record possessing the same tuple. Since the name and the value are of

variable length, two separator characters are necessary to mark them.

If A denotes the average attribute name length, V, the average

attribute value length, a', the average number of attribute name-value

tuples per record, P, the link field length, N, the average non

indexed data length per record, then the Record Size (R) is

R = a'* (A + V + P + 2) + N Characters (3.2)

If all the attribute name-value pairs occur in the same order and

position within a record, then the attribute name need not be

explicitly stored within each record. In this case,

R = a'* (V + P) + N Characters (3.3)

The number of records that can be stored per block Bfr, can be

computed using equations 2.1 or 2.3.

C. DIRECTORY SIZE

The index entry length (R^) is the sum of the value field, head

address field and the list length field. The length of the head

address field and the list length field can be assumed to be of the

same length (P). Then, R^ is given by

= V + 2 * P Characters (3.4)

17

a. SEQUENTIAL STRUCTURED DIRECTORY. The fanout or the number of

index entries per block, yeff is given by

y = FLOOR(B / Ri) (3.5)

The directory size is the product of the number of attributes in the

file and the average index size of an attribute. If a denotes the

total attribute name-value tuples in the file and na denotes the

average number of entries per attribute in each index then the

directory size (S^) is

S^ = CEIL(na / y) * B * a Characters (3.6)

b. B-TREE STRUCTURED DIRECTORY. The number of blocks necessary

for an index with x levels is calculated as follows. If i^ denotes

the number of blocks in level 1 , then

i^ = CEIL(na / yeff) Blocks (3.7)

and the number of blocks necessary at any level p, is given by

ip = CEIL(ip_1 / yeff) Blocks (3.8)

The size of the directory S^ , is sum of the size of index for each

attribute.

p=x
S^ = a * B * ^ ip Characters (3.9)

p=l

The number of blocks necessary for n records

total space (S) for the file and the directory,

is CE1L(n / Bfr). The

if there are n records

in the file is

18

S = Sd + B * CEIL(n / Bfr) Characters (3.10)

D. TIME TO FETCH

In order to satisfy a query, the directory is decoded and the

records associated with a particular list are retrieved.

For a sequential structured directory, half the number of blocks in

the attribute index have to be searched to get the desired entry. With

an average of na entries in each index, the number of blocks per

index is CEIL(na / y). The index blocks may not be contiguous on the

storage device and therefore each access of the index block requires a

seek, a latency and a block transfer operation or (s + r 4- Btt) ms.

If T ^ denotes the time to decode the directory then,

Tfd = (1 / 2) * CEIL(na / y) * (s + r + Btt) ms (3.11)

For a tree structured directory, the root block has to be fetched

and the appropriate entry in the index blocks has to be followed until

the lowest level block is obtained which provides the head address and

the list length. The required blocks may not be contiguous and

therefore a seek, a latency, and a block transfer operation is

required to access each block. The time required to decode the

directory (Tfcj) is

Tf^ = x * (s + r + Btt) ms (3.12)

Every query can be considered as a disjunction of subqueries. Each

subquery consists of

19

1. A term or a conjunction of terms with at least one non-negated term

(type 1 subquery).

2. A negated term or a conjunction of negated terms (type 2 subquery).

Let Nt denote the average number of terms per subquery and Nn

denote the average number of non-negated terms per subquery. For the

first type of subquery, the directory is decoded for all the Nn

non-negated terms of the subquery and the shortest list is determined.

The records in the shortest list are retrieved and checked for the

presence or absence of the required attribute name-value pairs. It is

possible to group records according to a particular list to reduce

block accesses. This grouping of records is possible according to only

one list. Since there are a number of lists, one for each attribute

name-value pair, it is assumed that retrieval of each record of the

list requires a block access. Since the blocks may not be contiguous

on the storage device, a seek, a latency and a block transfer

operation is required for each block transfer. The time required to

satisfy this type of query is

Tfn = Nn * Tfd + Ls * <s + r + Btt> ms (3.13)

For the second type of subquery, all the records in the file have

to be retrieved to try to satisfy the subquery. This is accomplished

by retrieving the records through the primary index, and checking for

the absence and presence of the necessary attribute name-value pairs.

Retrieval of all the records through primary index requires n * Tfd

ms. Retrieval of all the records can be accomplished more efficiently

by exhaustively reading the file which requires Txd ms as calculated

20

by equation 3.25 and 3.26. The time required (Tfg) to satisfy this

type of subquery is

Tf = n * + n * (s + r + Btt) ms (3.14)

The time to retrieve all the records in the query which is a

disjunction of subqueries is the sum of the fetch times of individual

subqueries. If n^ and n£ denote the the number of subqueries of type 1

and type 2 respectively, then

E. TIME TO INSERT

With every insertion of a record, the index for each attribute has

to be updated. The inserted record may contain attributes for which

attributes per inserted record for which values exist in the index.

2. There are no entries in the index. Let a’n denote the average

number of attributes per inserted record for which new values have to

be created in the attribute index.

In the case of a sequential structured directory, for a'0

attributes, the index entry is located and fetched, and the current

head address of the index entry is inserted in the link field of the

new record. The head address field of the index entry is written with

the address of the inserted record. The time for this process can be

quantified as

(3.15)

1. Entries exist in the index. Let a'0 denote the average number of

(3.16)

21

For a'n attributes, the insertion procedures involves fetching the

last block of the appropriate index and creating a new entry. It can

be assumed that the address of the last block of the index is

available in core memory. If T^n denotes the time for this process,

then

Tin = a'n * (s + r + Btt + TfW) ms (3.17)

For a B-Tree structured directory, the insertion process causes one

of the two conditions listed above to occur. For a'Q attributes, the

insertion process requires + Trw as before.

For an attributes, a new entry has to be inserted in the

appropriate index at the leaf. This would involve a search from the

root block, until the appropriate leaf block is found. With a

probability of (1 / (y / 2)) an index block split will be necessary.

The entries have to be distributed in the new block followed by

rewriting of the new block and its parent block with a new entry. The

time for the this process Tin is

Tin = a'n * (Tfd + T ^ + 2 / y * (s + r + Btt + 2 *

Tre)) ms (3.18)

The time to update the directory for an insertion of a record is

Tid Tio + Tin ms (3.19)

After updating the directory for the record insertion, the record has

to be inserted in the desired block, which has to be fetched and

rewritten with the record requiring s + r + Btt + T ^ ms. The total

time to update the index and insert the new record is

22

Ti = Tid + (s + r + Btt +) ms (3.20)

F. TIME TO DELETE

1. DELETION OF AN ATTRIBUTE NAME-VALUE PAIR. The link field of

each record contains a delete bit which indicates the logical presence

of that attribute name-value pair. Deletion of an attribute

name-value pair can be accomplished by logically turning on the

associated delete bit. It is assumed that the deletion procedure

specifies the primary key value of the record in which the attribute

name-value pair is to be deleted in order to make an unambiguous

deletion.

In both types of directory structures, the appropriate primary

index entry has to be located and then the record has to be fetched.

This requires Tfd + (s + r + Btt) ms. The record is rewritten in the

same location with a delete bit turned on. This requires T ^ ms. With

the probability 1/L, the attribute name-value pair may be the only

record in the list. Deletion of this attribute name-value pair would

require that index entry be logically deleted which would take T ^

ms. The time required to delete an attribute from a record is

Td = Tfd + O + r + Btt> + Trw + (1 / L) * Trw ms (3.21)

23

2. DELETION OF RECORDS. Deletion of an entire record is

accomplished by turning on a delete bit which is associated with the

primary attribute name-value pair. The time necessary for this

operation is T ^ + (s + r + Btt) + T^. The primary index entry has

to be logically deleted, which requires rewriting the primary index

entry within T ^ ms. If Tdr denotes the time to delete the entire

record, then

Tdr = Tfd + (s + r + Btt) + 2 * Tw ms (3.22)

G. TIME TO UPDATE

1. IN-PLACE UPDATE. When the attribute value is modified to

another existing value, the process is referred to as in-place update.

For each attribute to be updated, the record has to be physically

deleted from the list and inserted as the head of a new list. In order

to physically delete an an attribute name-value pair, the index entry

has to be located and on the average, half the list has to be searched

to locate the desired attribute name-value pair. This requires T£d + L

/ 2 * (s + r + Btt) ms. The link field of the predecessor of the

attribute name-value pair to be deleted, has to be rewritten with the

address of the successor attribute name-value pair, requiring Trw ms.

The record to be updated has to be inserted as the head of the new

list which requires locating the appropriate entry for the new value

and changing the head address to point the updated record. This

requires Tfd + T ^ ms. Finally, the updated record is written in the

same location with the link field of the modified attribute containing

the head address of the entry prior to insertion. The rewriting of

24

the record would require s + r + Btt ms because the list update

operation may have moved the seek mechanism to a different track. If

a'u denotes the number of in-place update attributes, then

Tu = a'u * <Tfd + (L / 2) * (s + r + Btt) + TfW + Tfd + Trw) +

s + r + Btt ms (3.23)

2. UPDATE WITH NEW ATTRIBUTES. A record updated with the

addition of an attribute name-value pair has to be rewritten in a new

location, since it cannot fit in the old location. The record has to

be logically deleted from the current position which requires Tdr ms

and then inserted in the new location which requires T^ ms.

Tu = Tdr + Ti ras <3-24>

H. TIME FOR EXHAUSTIVE READ

Exhaustive reading requires the fetching of all records in the

file. Since each record is uniquely identified by the primary key

value, exhaustive reading can be done through primary index.

In the case of a sequential structured directory, the entries in

the primary index have to be fetched and the only record associated

with each entry in the index has to be retrieved. The primary index

has n entries, one for each record, and therefore CEIL(n / yeff)

blocks have to be read. If Txd denotes the time to read the directory

exhaustively, then

Txd = CEIL (n / yeff) * (s + r + Btt) ras (3.25)

25

In the case of B-Tree structured directory, it can be assumed that

the index blocks which are in the path from the root to the lowest

level of the index are available in core memory. Most practical file

systems do not have index depth exceeding three to four levels and

therefore only a few index blocks have to be made available in the

core.

From each second level index block, with yeff accesses, it is

possible to access all the child level 1 index blocks. Similarly, with

ye££ 2 + ye££ accesses, it is possible to access all level 1

descendants of a level 3 block. With an x level tree, the number of

accesses to exhaustively read the directory is

p=x— 1
Txd = £ yeff p ms (3-26)

P=1

If horizontal pointers are maintained linking all level 1 blocks, then

exhaustive read can be performed by reading all level 1 blocks

sequentially. In this case, equation (3.25) applies after taking into

account the reduced fanout due to pointers linking level 1 index

blocks.

The total time to exhaustively read the records is the sum of the

time to read the directory and n records in the file.

Tx = TX(j + n * (s + r + Btt) ms (3.27)

26

I. TIME TO REORGANIZE

Reorganization becomes necessary to reclaim space occupied by

deleted records and attributes. When available space becomes critical,

reorganization is necessary. Reorganization may also be necessary to

improve performance when lists become excessively long with deleted

attributes and records.

1. DIRECTORY REORGANIZATION.

Reorganization of the directory requires reading the index entries

of all the attributes in the file and rewriting it after removing the

deleted entries. In the case of a sequential structured directory,

for each index CEIL(nQ / yeff) blocks have to be read and rewritten

after removing the deleted entries. The time to reorganize the

directory, Ty^ is

Tyd = a * (CEIL(na / yeff) * (s + r + Btt) + Trw) ms (3.28)

For a B-Tree structured directory, the physical deletion of an

entry may require combining the block and its neighbor and thus

leading to the deletion of an entry in the higher level block. This

process may propagate up to the root. The probability of combining two

blocks is 1 / (y / 2). The time required for directory reorganization

would be

Tyd = a * (x * (s + r + Btt) + T ^ + 2 / y *

(s + r + Btt + 2 * T ^)) ms (3.29)

27

2. FILE REORGANIZATION. The records have to be read one at a

time and written at the new location requiring Tx + n * (s + r + Btt)

ms. Since the address of the record has been modified, the link

fields and the head address fields pointing to this record have to be

modified. This is done by stepping through the lists until the desired

record is located and updating the predecessor record link field or

the head address field of the index entry with the new address. This

process has to be carried out for n records each with a' attribute

name-value pairs, requiring n * a' * C^fd + L / 2 * (s + r + Btt) +

Trw) ms. The time required for the reorganization of the directory

and the file is

Ty = Tyd + Tx + n * (s + r + Btt) + n * a’ * (Tfd + L / 2

* (s + r + Btt) + T ^) ms (3.30)

The reorganization process can be carried out in increments, since

after rewriting each record and updating the link fields, the file is

in a usable state. With incremental reorganization, it is possible to

service requests between reorganizations and thus the system can

remain on line at all times.

28

IV. INVERTED FILE SYSTEM

A. STRUCTURE

The inverted file structure, like the multilist file structure, is

composed of two parts, file and directory.

1. FILE. The file is a collection of logical records. Each

record consists of attribute name-value pairs and non indexed data and

is distinguished by a special attribute name-value pair called the

primary key. The structure of the records in the file is shown in fig

4.

2. DIRECTORY. The directory is a collection of indexes, one for

each attribute in the file. Each index entry consists of an attribute

value, an address and a list length field. The address field points to

a list of addresses of all records possessing the attribute name-value

pair in question (figure 5). The list length field indicates the

number of records possessing the attribute name-value pair. The

addresses in the address lists are maintained in a monotonic sequence,

which improves fetch time of records. The primary index is a special

index in which the address field of an index entry directly points to

a record rather than a list of addresses since each primary value is

associated with only one record. The primary index is identical to the

primary index of a multilist file system.

29

Al PR = VI AR = VI N

A2 ___

PR = V2 AR = V2 BR = VI N

Al

PR = V3 AR = V2 BR = VI N
A4

PR = V4 AR = VI N

PR: Primary Attribute
Al, A2: Address

AR, BR....: Attributes
VI, V2___ : Values

Fig. 4. INVERTED LIST RECORDS

30

’I

PRIMARY INDEX

1 r-

VI Al

V2 A2

V3 A3

V4 A4

VI A5 LI

V2 A6 L2

V3 A7 L3

--- L I---

DIRECTORY

ATTRIBUTE AR INDEX

A5

A6

A7

Al A4 A9 A10 All A8
A8

A13 Empty

ADDRESS LISTS

L.

VI, V2..... : Values
LI, L2..... : List Length Al, A2,......: Addresses

Fig. 5. INVERTED LIST DIRECTORY AND ADDRESS LISTS

31

To satisfy a query, the directory is decoded for each term in the

query to obtain the address lists. If the query is a conjunction of

terms, an intersection of the address lists gives the addresses of the

records satisfying the query. If the query is a disjunction of terms,

then an union of address lists is performed. To satisfy a query

consisting of a conjunction of negated and non-negated terms the

addresses found in the negated term's list are deleted from the

non-negated term's list and the records corresponding to the remaining

addresses are retrieved. An isolated negated term or a conjunction of

negated terms require the search of the entire file, which is best

accomplished by accessing all the records through the primary index.

The length field in the index entry is used to provide presearch

statistics. The directory is assumed to have a sequential or a B-Tree

structure which have been discussed in previous sections.

The address lists are stored in contiguous blocks on the storage

devices and in most practical file systems only a few blocks are

necessary to accommodate each address list because of the large number

of addresses that can be stored in a block. Each address list can be

visualized as a collection of L small records, each of size P,

arranged in contiguous blocks. The time requirements to manipulate the

address list are analysed and used later to evaluate the performance

of an inverted file system.

In order to locate an address in the address list after decoding

the directory, the address list blocks have to be read sequentially

until the desired block is obtained. This requires (L * P / t') ms.

The use of bulk transfer rate is appropriate here since the address

blocks are contiguous and are read sequentially. If Tfa denotes the

time to fetch an address from the address list, then

Tfa = 1 / 2 * (L * P / t') ms (4.1)

32

Insertion of an address in the address list requires locating the

position of insertion and rewriting all addresses beyond the insertion

point. Locating the position of insertion requires T.£a ms. On the

average, half the blocks of the address list are rewritten after

locating the insertion point requiring (1 / 2) * CEIL(L / y) * (Btt

+ Trw) ms. The seek and the latency can be neglected here since it

is assumed that all the address blocks of a given list are contiguous.

The time required to complete the insertion of an address in the

address list is

Tia = Tfa + 1 / 2 * (CEIL(L / ya) * (Btt + Trw)) ms (4.2)

B. FILE SIZE

Each record is a collection of attribute name-value pairs and non

indexed data. Since the name and value fields are of variable length,

two separator characters are necessary to mark them. Unlike the

multilist structure, no link fields are necessary. If A denotes the

average attribute name length, V, the average value length, and N, the

average non indexed data length per record, then the record size R, is

estimated as

R = a' * (A + V + 2) + N Characters (4.3)

33

If the attribute values can be identified without explicitly storing

the attribute name within the record, then the record size R is

estimated as

R = a' * V + N Characters (4.4)

The space requirements for the address lists is estimated as

follows. Each address block contains a fixed number of addresses and

a pointer to another block to accommodate additional addresses. If P

denotes the size of the address and ya denotes the number of

addresses per block, then

ya = FLOOR((B - P) / P) Addresses/Block (4.5)

The total space for the address lists, assuming that L denotes the

average number of addresses per attribute name-value pair, a, the

total number of attribute name-value pairs in the file and na , the

average number of entries per index , is is

Sa = a * na * B * CEIL(L / ya) Characters (4.6)

The total space requirement for the file, the directory and the

address lists assuming that there are n records in the file, is

S = Sj + Sa + B * CEIL(n / Bfr) Characters (4.7)

where , the space requirement for the directory, can be estimated

using equations 3.6 through 3.9.

34

C. TIME TO FETCH

To satisfy a query, the directory has to be decoded to get the

index entry of each term in the query. The addresses in the address

lists have to be retrieved. Every query can be considered as a

disjunction of subqueries as discussed in the previous chapter.

If the subquery is a type 1 subquery, then the directory has to be

decoded for each of the Nt terms of the subquery and the address list

has to be retrieved. The time required to fetch all the addresses in

the address list is (L * P / t’) or 2 * Tfa ms. Finally, the records

associated with the addresses which satisfy the query have to be

retrieved. If Lg denotes the shortest address list, a fraction of

records f, of this list, satisfying the query is retrieved and the

time required for this process can be estimated as f * Ls * (s + r +

Btt) ms. The time required to satisfy this type of subquery is

Tfn = Nt * (Tfd + 2 * Tfa) + f * Ls * (s + r + Btt) ms (4.5)

For the subquery with a negated term or a conjunction of negated

terms, the address of all the records have to be retrieved through the

primary index, in addition to the address lists corresponding to each

term of the query. The addresses corresponding to the negated terms

have to be deleted from the primary address list and the remaining

records have to be retrieved. The addresses of all the records in the

file can be retrieved by exhaustively reading the primary index, the

time for which can be computed using equations 3.25 and 3.26. A

fraction q of all the n records in the file have to be retrieved. The

time requirements to process a negated subquery is

35

Tfg = Txd + Nt * ('Tfd + 2 * T f a) + q * n * (s + r + Btt) ms(4.9)

If the query contains n^ subqueries of the first type and ^ queries

of the second type, then

D. TIME TO INSERT

The inserted record has a'0 attribute name-value pairs for which

entries exist in the directory and a'n attribute name-value pairs for

which new entries have to be created in the directory. The directory

has to be decoded for the attribute name-value pairs existing in the

index and the list length field of the appropriate entry has to be

incremented by one. This requires T ^ + Trw ms. For new attribute

name-value pairs, new indexes have to be created requiring s + r + Btt

ms. The total time to update the directory T ^ for an insert

operation is

For the a'0 attributes with entries existing in the index, the

address of the record being inserted has to placed in position in the

address lists, requiring Tia ms as shown in equation 4.2. For a’n

attributes, new address lists have to be created requiring s + r + Btt

+ T ^ ms. The time required to update the directory and the address

list for an insertion operation is

(4.10)

Tid = a'o * (Tfd + Trw > + a'n * <s + r + Btt) ms (A.11)

(A.12)

36

Finally, the record has to be written, which requires s + r + Btt ms.

The total time to complete the insertion of a record is

T± = Tua + (s + r + Btt) ms (4.13)

E. TIME TO DELETE

1. DELETION OF AN ATTRIBUTE NAME-VALUE PAIR. Deletion of an

attribute is accomplished by turning on the delete bit which is

associated with the address in the address list. Since the delete bit

is located with the address and not with the record, it is not

possible to ascertain the deletion of an attribute name-value pair

when the record is read through some other index. Therefore, another

bit associated with the attribute name-value pair is also turned on.

The deletion procedure requires that the primary key value be

specified to make an unambiguous deletion. The primary index has to be

decoded to obtain the address of the record in which the attribute

name-value pair has to be deleted. This requires T ^ ms. The index

entry for attribute name-value pair to be deleted has to be located

and retrieved, which requires T ^ ms. The address list has to be

searched and the the appropriate address located for the delete bit to

be turned on. This requires T£a + T ^ ms. The record has to be

fetched and the delete bit associated with the attribute name-value

pair has to be turned on, requiring s + r + Btt + Trw ms. With a

probability (1 / L), the index entry may have to deleted since the

attribute being deleted may have been the only one in the address

list. This requires (1 / L) * T ^ ms. The time required to

37

selectively delete an attribute is the sum of all these components and

is given by

Td = 2 * Tfd + Tfa + Trw + (1 / L) * Trw +
s + r + Btt + Trw ms (4.14)

2. DELETION OF A RECORD. Deletion of a record is accomplished

by writing a special marker in the list length field of the primary

index entry and by turning on the delete bit associated with the

primary attribute value. The time required is

Tdr = Tfd + Trw + s + r + Btt + Trw ms (4-15)

F. TIME TO UPDATE

1. IN PLACE UPDATE. In place update involves the deletion of

the record address from the current list and inserting the address in

a new list. Deletion of the address requires T^ ms and insertion of

the address in the new list requires T ^ + T^a ms. The record has to

be fetched and rewritten with updated attribute name-value pairs

requiring s + r + Btt + T ^ ms. The time required for an in-place

update can be estimated as

Tu = au * (Td + Tfd + Tia) + (s + r + Btt + tw) ms (4. 16)

2. UPDATE WITH NEW ATTRIBUTES. Since the updated record cannot

be fitted in the old location, the record has to be rewritten in the

new location after deleting it from the old location. The deletion of

38

record requires ms and the insertion of the record requires

ms.

G. TIME FOR EXHAUSTIVE READ

Exhaustive read can be performed by accessing all records through

primary index. The time to exhaustively read the directory can be

calculated using equations 3.25 and 3.26. For each of the n entries

in the primary index, the records have to be read, which requires n *

(s + r + Btt) ms. The time required for exhaustive read is

H. TIME FOR REORGANIZATION

The reorganization procedure for the file system is as follows.

First, the directory is reorganized, the time for which can be

computed using equations 3.28 and 3.29.

The address lists may have to be moved to new locations, which

requires reading and rewriting the address lists. If the time for

rewriting an address list is the same as reading it, then the time to

reorganize the address lists Tya , for all the a * nfl address lists is

(4.17)

Tx = TX(j + n * (s + r + Btt) ms (4.18)

Tya = a * na * 2 * (L * P / t') ms (4.19)

The records have to be read exhaustively and rewritten, which requires

Tx + n * (s + r + Btt) ms. For each record, the old address of the

record has to be deleted in all the a' address lists of which this

39

record is a member and the new address has to be inserted in the right

location to maintain the sequence. Deletion of an address from the

address list requires ms and insertion of the address in the

appropriate location in the address list requires Tia ms as computed

by equations A. 14 and 4.4. The time required for the reorganization

of the entire file is

Ty = Tyd + Tya + Tx + n * (s + r + Btt) + n * a' *

(Td + Tia) ms (4.20)

The reading and rewriting of records can be done in increments. Thus,

it is possible to service requests between reorganizations and the

system can remain on line at all times.

40

The performance measurement formulas derived in the preceding

chapters have been incorporated into a program to compute the results.

The results for different sets of input values were studied and the

following observations can be made.

For the input values of table I, the performance measurement

results for sequential and tree structured directory are shown in

table II. It can be observed that for multilist and inverted file

systems with a large number of entries per index, the B-Tree

structured directory exhibits better performance over the sequential

structured directory. This is due to the fact that with a B-Tree

structured directory, fewer index blocks have to be retrieved to

obtain a desired index entry as compared to a sequential structured

directory.

The input values in table III and table IV are identical except

that the input values of table III represents a single non-negated

terra query (type 1 subquery) while the input values of table IV

represent a single negated term query (type 2 subquery). It can be

observed that the fetch time values of records satisfying a subquery

consisting of a negated term or a conjunction of negated terms (type 2

subquery) is very large. This is because negated subquery processing

amounts to searching the entire file. This type of subquery processing

may have to be relegated to background (off line) or restricted during

peak hours to avoid performance deterioration.

V. RESULTS

41

The fetch time of an inverted file system, in most cases, is better

than the fetch time of a similar multilist file system. However, The

fetch time of a multilist file system is better than that of a similar

inverted file system when the query consists of a single non-negated

term or a disjunction of non-negated single terms as illustrated by

table V.

A. CONCLUSION

The preceding analysis makes no attempt to determine how to measure

many of the input parameters such as ratio of query response to total

number of records, average number of entries per index, etc. A user

trying to select a file system is encumbered to understand the

structure of the file systems and carefully estimate the input

parameters to get meaningful results. It is suggested that a layer of

software be designed which uses record templates, graphics, etc so

that a user can actually enter a model file as he sees it, and from

which the input parameters necessary for this software package can be

calculated. This would make the performance measurement techniques

transparent to the user.

42

BIBLIOGRAPHY

1. Weizenbaum, J. , "Knotted List Structures", Communications of the

ACM. Vol III, No 4, 1960, 161-165.

2. Lefkovitz, David, File Structures For On-Line Systems. Hayden Book

Company,Inc, New Jersey, 1969.

3. Wiederhold, Gio, Database Design. McGraw-Hill, 1983.

4. Yao,A., "Random 3-2 Trees", Acta Informatica. vol 2, No 9, 1978.

5. Bayer, R., "Symmetric Binary B-trees: Data Structures And Maintenance

Algorithms", Acta Informatica. Vol 1, 1972, 290-306.

6. Landauer, W.I., "The Balanced Tree And Its Utilization In Information

Retrieval", Transactions On Electronic Computer of IEEE. Vol EC-XII,

No 5, 1963.

43

VITA

Ashok Chandramouli was born in Attur, India. He received his

primary and secondary education in Madras, India. He received a

Bachelor of Engineering degree in Mechanical Engineering from

University of Madras, India in July 1984.

He has been enrolled in the Graduate School of The University

of Missouri-Rolla since August 1985 in the Department of Computer

Science.

44

A

Bfr

Btt

c

f

G

L

Ls
N.

Nt
n

nfi
P

q

n

Ri

APPENDIX A

NOMENCLATURE

Attribute name length

Average number of attributes per record

Average number of update attributes per update

Average number of insert attributes with values in the index

Average number of attributes for an insert with new values

Blocking factor

Block transfer time

Compuation time

Ratio of query response to Ls

Gap size

Number of blocks at level p for a B-Tree index

Average number of records per attribute name-value pair.

Shortest list length for a subquery

Avg Number of non-negated terms in a subquery

Avg number of terms in a negated and a non-negated subquery

Number of records in the file

Average number of entries in a index.

Pointer length or address length

Ratio of query response to n

Rotational Latency

Record length

Index entry length

Seek Time

Size of the file system

45

Directory size

t' Bulk Transfer rate

Time to delete an attribute of a record

T̂ j. Time to delete the entire record

Tf Time to satisfy a query

T£j Time to fetch an entry in the index

Tfn Time to process non-negated query

Tfg Time to process negated query

T^ Time to insert a record

T^a Time to insert an address in an address list

T̂ jj Time to update the directory for inserting a record

T ^ Time to rewrite

Tu Time to update a record

Tua time to update the directory and the address lists

Ty Time to reorganize the file and the directory

Tyfl Time to reorganize the address lists

Ty^ Time to reorganize the directory

Tx Time to exhaustively read the records

Txd Time to exhaustively read the directory

W Wasted space per record

x Number of levels in a B-Tree structured index

y Fanout

ya Number of addresses per block

ye££ Effective fanout

46

APPENDIX B

PROGRAM TO CALCULATE THE PERFORMANCE PARAMETERS

'PROCESS OPTIONS MAR(2,72,1) NOSOURCE;

** THIS PROGRAM COMPUTES THE INVERTED AND MULTILIST
** PERFORMANCE PARAMETERS

v***********/
(SIZE): CALC:
PROCEDURE OPTIONS(MAIN);

0 DECLARE
(AJPRIME,
A,
A_UPD,
ATTR_LEN,
VALUE_LEN) FIXED DEC(4),
(REC_SZ,
BLOCK_SZ,
BFR) FIXED DEC(9,2),
PTR_SZ FIXED DEC(3),
N FIXED DEC(8),
DISK_TYPE FIXED DEC(2),
TRW FIXED DEC(8,2),
BTT FIXED DEC(9,2),
T_PRIME FIXED DEC(7,2),
S FIXED DEC(10,2),
R FIXED DEC(8,2),
GAP FIXED DEC(8,2),
TRANSFR_RTE FIXED DEC(8,2),
/* DENSITY IS FREE SPACE IN AN INDEX BLOCK */
DENS FIXED DEC(3,2) INIT(0.69),
(F_RAT,
Q_RAT) FIXED DEC(4),
(N_N,
N_T) FIXED DEC(3),
(LIST_LEN,
LIST_SHR) FIXED DEC(6),
(NON_DATA,
A_NEW) FIXED DEC(4),
(N_ONE,
N_TWO) FIXED DEC(3),
VAL_TOT FIXED DEC(5),
(SDS,
SDB) FIXED DEC(15,2),
(TFDS,
TFDB) FIXED DEC(10,2),
(TYDS,
TYDB,
TXDS,
TXDB) FIXED DEC(15,2),

REC_FRMT CHAR(l);
DECLARE INFILE STREAM FILE INPUT,

SYSIN STREAM FILE INPUT,
SYSPRINT PRINT FILE OUTPUT,
(DEC,ABS,FLOOR,CEIL,ONLOC) BUILTIN;

CALL ENTER_DATA;
CALL DISP_DATA;
CALL DISK_PARM;
CALL DISK_CALC;
CALL MULT_FILE(SDS,SDB,TFDS,TFDB,TXDS,TXDB,TYDS,TYDB)
CALL INVT_FILE(SDS,SDB,TFDS,TFDB,TXDS,TXDB,TYDS,TYDB)
/***
** READ THE NECESSARY DATA **

ENTERJDATA: PROCEDURE;
GET FILE (SYSIN) EDIT (BLOCK_SZ) (COL(1),F(9));
CALL VALID(1,9999,BLOCK_SZ);
GET FILE(SYSIN) EDIT(N) (COL(1),F(8));
CALL VALID(1,9999999,N);
GET FILE(SYSIN) EDIT(N_N) (COL(1),F(3));
CALL VALID(0,9,N_N);
GET FILE(SYSIN) EDIT(N_ONE) (COL(1),F(3));
CALL VALID(0,9,N_0NE);
GET FILE(SYSIN) EDIT(N_T) (COL(1),F(3));
CALL VALID(1,99,N_T);
GET FILE(SYSIN) EDIT(N_TWO) (COL(1),F(3));
CALL VALID(0,99,N_TWO);
GET FILE(SYSIN) EDIT(VAL_TOT) (COL(1),F(6));
CALL VALID(1,9999,VAL_TOT);
GET FILE(SYSIN) EDIT(LIST_LEN) (COL(1),F(6));
CALL VALID(1,99999,LIST_LEN);
GET FILE(SYSIN) EDIT(LIST_SHR) (COL(1),F(6));
CALL VALID(1,99999,LIST_SHR);
GET FILE(SYSIN) EDIT(F_RAT) (COL(1),F(4));
CALL VALID(1,100,F_RAT);
GET FILE(SYSIN) EDIT(Q_RAT) (COL(1),F(4));
CALL VALID(1,100,Q_RAT);
GET FILE(SYSIN) EDIT(PTR_SZ) (COL(1),F(3));
CALL VALID(1,9,PTR_SZ);
GET FILE(SYSIN) EDIT(REC_FRMT)(COL(1),A(1)) ;
IF (REC_FRMT = 'F') | (REC_FRMT = 'V') THEN;
ELSE PUT SKIP LIST ('INVALID RECORD FORMAT1);
GET FILE(SYSIN) EDIT(A_PRIME) (COL(1),F(4));
CALL VALID (1,99,A_PRIME);
GET FILE(SYSIN) EDIT(A) (COL(1),F(4));
CALL VALID (1,99,A);
GET FILE(SYSIN) EDIT(ATTR_LEN) (COL(1),F(4));
CALL VALID (0,25,ATTR_LEN);
GET FILE(SYSIN) EDIT (VALUE_LEN) (COL(1),F(4));
CALL VALID (1,25,VALUE_LEN);
GET FILE(SYSIN) EDIT (NON_DATA) (COL(1),F(4));
CALL VALID (1,200,N0N_DATA);
GET FILE(SYSIN) EDIT (A_UPD) (COL(1),F(4));

48

CALL VALID (1,99,A_UPD);
GET FILE(SYSIN) EDIT (A_NEW) (COL(1),F(4));
CALL VALID (1,99,A_NEW);
GET FILE (SYSIN) EDIT(DISK_TYPE) (COL(1),F(2));
CALL VALID(1,2,DISK_TYPE);

END ENTER_DATA;

** DISPLAY INPUT DATA

DISP_DATA: PROCEDURE;
PUT FILE(SYSPRINT) PAGE;
PUT SKIP(2) EDIT ('INPUT PARAMETERS’) (C0L(20),A);
PUT SKIP(O) EDIT ('________________ ') (C0L(20) , A) ;
PUT SKIP(2) FILE(SYSPRINT) EDIT ('BLOCK SIZE (BYTES)',BLOCK_SZ)

(COL(1),A,COL(75),F(10));
PUT SKIP(2) FILE(SYSPRINT) EDIT (’TOTAL '||
'NUMBER OF RECORDS IN THE FILE (N)',N) (COL(1),A,COL(75),F(10));
PUT SKIP(2) FILE(SYSPRINT) EDIT ('NUMBER OF NON NEGATED TERMS ’||
'IN TYPE 1 SUBQUERY (NN)’,N_N) (COL(1),A,COL(75),F(10));
PUT SKIP(2) FILE(SYSPRINT) EDIT('NUMBER OF TYPE 1 SUBQUERIES (Nl)',
N_ONE) (COL(1),A,COL(75),F(10));
PUT SKIP(2) FILE(SYSPRINT) EDIT (’NUMBER OF TERMS '||
'IN TYPE 1 OR TYPE 2 SUBQUERY (NT)’,N_T) (COL(1),A,COL(75),F(10));
PUT SKIP(2) FILE(SYSPRINT) EDIT ('NUMBER OF TYPE 2 SUBQUERIES (N2)',
N_TWO) (COL(1),A,COL(75),F(10));
PUT SKIP(2) FILE(SYSPRINT) EDIT ('AVERAGE NUMBER OF ENTRIES '||
'PER INDEX (NA)’,VAL_TOT) (COL(1),A,COL(75),F(10));
PUT SKIP(2) FILE(SYSPRINT) EDIT ('AVERAGE LIST LENGTH (L)'

,LIST_LEN) (COL(1),A,COL(75),F(10));
PUT SKIP(2) FILE(SYSPRINT) EDIT ('AVERAGE NUMBER OF RECORDS ’||
'IN THE SHORTEST LIST (LS)',LIST_SHR) (COL(1),A,COL(75),F(10));
PUT SKIP(2) FILE(SYSPRINT) EDIT ('THE RATIO OF QUERY RESPONSES '||
'TO THE SHORTEST LIST (F)',F_RAT,'%') (COL(1),A,COL(75),

F(10),X(1),A);
PUT SKIP(2) FILE(SYSPRINT) EDIT ('THE RATIO OF QUERY RESPONSES TO ’ | |
'TOTAL RECORDS IN THE FILE (Q)',Q_RAT,'%') (COL(1),A,COL(75),
F(10),X(1),A);
PUT SKIP(2) FILE(SYSPRINT) EDIT ('POINTER SIZE (P) '
,PTR_SZ,'BYTES’) (COL(1),A,COL(75),F(10),X(1),A);

IF (REC_FRMT = 'V') THEN
PUT SKIP(2) FILE(SYSPRINT) EDIT ('RECORD FORMAT ','VARYING')
(COL(1),A,COL(77),A);

ELSE
PUT SKIP(2) FILE(SYSPRINT) EDIT ('RECORD FORMAT ','FIXED')
(COL(1),A,COL(79),A);

PUT SKIP(2) EDIT ('AVERAGE # OF ATTRIBUTES PER RECORD (A")',A_PRIME)
(COL(1),A,C0L(75),F(10));

PUT SKIP(2) EDIT('TOTAL # OF ATTRIBUTES IN THE FILE (A) ',A)
(COL(1),A,COL(75),F(10));
PUT SKIP(2) EDIT (’AVERAGE ATTRIBUTE_NAME LENGTH ’,ATTR_LEN)
(COL(1),A, COL(75),F(10));
PUT SKIP(2) EDIT('AVERAGE ATTRIBUTE_VALUE LENGTH (V)',VALUE_LEN)
(COL(l),A,COL(75),F(10));

49

PUT SKIP(2) EDIT('AVERAGE NON INDEXED DATA PER RECORD (N) ',
NON_DATA,'BYTES') (COL(1),A,COL(75),F(10),X(1),A);
PUT SKIP(2) EDIT('AVERAGE NUMBER OF UPDATE ATTRIBUTES ' | |
'PER UPDATE OPERATION (AU)',A_UPD) (COL(1),A,COL(75),F(10));

PUT SKIP(2) EDIT('AVERAGE NUMBER OF NEW ATTRIBUTES ' | |
'PER INSERT OPERATION (AN)’, A_NEW) (COL(1),A,COL(75),F(10));
PUT SKIP(2) EDIT('TYPE OF STORAGE DEVICE USED',DISK_TYPE) (COL(l),A,

COL(75),F(10));
END DISP_DATA;
/*************************************
** VALIDATE INPUT DATA **
*A******««A******ffrrVr*****«*****«V:*»** j

VALID: PROCEDURE (LBOUND.HBOUND,VALUE);
DCL (HBOUND,

LBOUND,
VALUE) FIXED DECIMAL (11,2);

IF (VALUE < LBOUND) | (VALUE > HBOUND) THEN
DO;
PUT FILE (SYSPRINT) LIST('ERRROR: '||

'INPUT VALUES NOT IN PROPER RANGE');
SIGNAL ERROR;

END;
END VALID;
/***************************************
** READ DISK PARAMETERS FROM FILE **

DISK_PARM: PROCEDURE;
DCL TEMP FIXED DEC(2,0);
GET FILE (INFILE) EDIT (TEMP) (COL(1),F(1,0));
DO WHILS(1DEHR1TYPE
GET FILE(INFILE) EDIT (TEMP) (COL(1),F(1,0));
END;
GET FILE(INFILE) EDIT(S,R,GAP,TRANSFR_RTE) (COL(3),F(10,2),
C0L(15),F(8,2),C0L(25),F(8,2),C0L(35),F(8,2));

END DISK_PARM;

DISK_CALC: PROCEDURE;
DCL YA FIXED DEC(14),

WASTE FIXED DECIMAL(9,6);
BTT = BLOCK_SZ / TRANSFR_RTE;
TRW = 2 * R;
YA = (BLOCK_SZ - PTR_SZ) / PTR_SZ;
WASTE = GAP / YA,
T_PRIME = 0.5 * TRANSFR_RTE * (PTR_SZ / (PTR_SZ + WASTE));
END;

50

** MULTILIST FILE CALCULATIONS

MULT_FILE: PROCEDURE(SDS,SDB,TFDS,TFDB,TXDS,TXDB,TYDS,TYDB);
YEFFS FIXED DEC(9,2),
YEFFB FIXED DEC(9,2),
X FIXED DEC(3),
FILE_SZS FIXED DEC(15,2),
FILE_SZB FIXED DEC(15,2),
(SDS,
SDB) FIXED DEC(15,2),
TFDS FIXED DEC(10,2),
TFDB FIXED DEC(10,2),
(TFS, TFB,
TIS, TIB,
TDS, TDB,
TDRS, TDRB,
TUS, TUB,
TUNS, TUNB,
TXS, TXB,
TXDS, TXDB,
TYDS, TYDB,
TYS, TYB) FIXED DEC(15

CALL MULT_SIZE(FILE_S ZS,FILE_SZB,YEFFS,YEFFB,X ,SDS,SDB);
CALL MULT_FETCH(TFS,TFB,TFDS,TFDB,X);
CALL MULT_INST(TIS,TIB);
CALL MULT_DLET(TDS,TDB,TDRS,TDRB,TFDS,TFDB);
CALL MULT_UPDT(TDS,TFDS,TDB,TFDB,TDRS,TDRB,TUS,TUB,

TUNS,TUNB.TIS,TIB);
CALL MULT_EX(TXS,TXB,X,TXDS,TXDB);
CALL MULT_REORG (TYS,TYB,TXS,TXB,TYDS,TYDB);
CALL MULT_DISP;

MULT_SIZE: PROCEDURE(FILE_SZS,FILE_S ZB,YEFFS,YEFFB,X,SDS,SDB);
FILE_SZS FIXED DEC(15,2),
FILE_SZB FIXED DEC(15,2),
INDX_BLK FIXED DEC(8),
TOT_BLK FIXED DEC(8),
BFR FIXED DEC(8),
X FIXED DEC(3),
YEFFS FIXED DEC(9,2),
YEFFB FIXED DEC(9,2),
REC_SZ FIXED DEC(9,2),
REC_IND FIXED DEC(9),
SDS FIXED DEC(15,2),
SDB FIXED DEC(15,2);

IF REC_FRMT = 'v' THEN
DO;
REC_SZ = A_PRIME * (ATTR_LEN + VALUE_LEN + PTR_SZ + 2) + NON_DATA;
BFR = FLOOR (BLOCKJSZ - 0.5 * REC_SZ) / (REC_SZ + PTR_SZ);

51

END;
ELSE DO;
REC_SZ = A_PRIME * (VALUE_LEN + PTR_SZ) + NON_DATA;
BFR = FLOOR(BLOCK_SZ / REC_SZ);

END;
REC_IND = (VALUE_LEN + 2 * PTR_SZ);
YEFFS = FLOOR(BLOCK_SZ / REC_IND);
YEFFB = FLOOR (DENS * BLOCK_SZ / REC_IND);
SDS = CEIL(VAL_TOT / YEFFS-) * BLOCK_SZ * A;
FILE_SZS = SDS + DEC(CEIL(N / BFR),10,0) * BLOCK_SZ;
INDX_BLK = CEIL(VAL_TOT / YEFFB);
TOT_BLK = INDX_BLK;
X = 1;
DO WHILB(I019X_BLK

INDX_BLK = CEIL(INDX_BLK / YEFFB);
TOT_BLK = TOT_BLK + INDX_BLK;
X = X + 1;

END;
SDB = A * BLOCK_SZ * TOT_BLK;
FILE_SZB = SDB + DEC(CEIL(N / BFR),10,0) * BLOCK_SZ;
END MULT_SIZE;

MULT_FETCH
DCL TFS

TFB
X
(TFNS,
TFNB,
TFGS,
TFGB)
(TFDS,
TFDB)

PROCEDURE(TFS,TFB,TFDS,TFDB,X);
FIXED DEC(15,2),
FIXED DEC(15,2),
FIXED DEC(3),

FIXED DEC(15,2),

0.5
X *

FIXED DEC(10,2);
* CEIL(VAL_TOT / YEFFS) * (S + R + BTT);
(S + R+ BTT);

N_N * TFDS + LIST_LEN * (S + R+ BTT);
N_N * TFDB + LIST_LEN * (S + R+ BTT);
N * TFDS + N * (S + R+ BTT);
N * TFDB + N * (S + R+ BTT);

TFS = N_ONE * TFNS + N_TWO * TFGS;
TFB = N_ONE * TFNB + N_TW0 * TFGB;
END MULT_FETCH;

TFDS
TFDB
TFNS
TFNB
TFGS
TFGB

** MULTILIST INSERT TIME CALCULATIONS **

MULT_INST: PROCEDURE(TIS,TIB);
DCL TIOS FIXED DEC(14,2),

TIOB FIXED DEC(14,2),
TINS FIXED DEC(14,2),
TINB FIXED DEC(14,2),

52

TIS FIXED DEC(15,2),
TIB FIXED DEC(15,2);

TIOS = (A_PRIME - A_NEW)* (TFDS+ TRW);
TIOB = (A_PRIME - A_NEW) * (TFDB + TRW);
TINS = A_NEW * (S + R+ BTT + TRW);
TINB = A_NEW * (TFDB + TRW + DEC((2 / YEFFS),10,2) *
(S + R+ BTT + 2 * TRW));
TIS = TINS + TIOS + (S +R + BTT+ TRW);
TIB = TINB + TIOB + (S + R+ BTT+ TRW);
END MULT.INST;
/**
** MULTILIST DELETE TIME CALCULATIONS *

MULT_DLET: PROCEDURE(TDS,TDB,TDRS,TDRB,TFDS,TFDB);
DCL (TDS,

TDB,
TDRS,
TDRB) FIXED DEC(15,2),
(TFDS,
TFDB) FIXED DEC(10,2);

TDS = TFDS + (S + R+ BTT) + TRW +
DEC((1 / LIST_LEN),6,2) * TRW;

TDB = TFDB + (S + R+ BTT) + TRW +
DEC((1 / LIST_LEN),6,2) * TRW;

TDRS = TFDS + TRW + S + R + BTT;
TDRB = TFDB + TRW + S+ R + BTT;
END MULTJJLET;

MULTILIST UPDATE TIME CALCULATIONS **
'/

MULTJJPDT: PROCEDURE(TDS,TFDS,TDB,TFDB,TDRS,TDRB,TUS,TUB,
TUNS,TUNB,TIS,TIB);

(TDS, TDB,
TDRS, TDRB,
TIS, TIB,
TUS, TUB,
TUNS, TUNB) FIXED DEC(15,2),
(TFDS, TFDB) FIXED DEC(10,2);

A_UPD * (2 * TFDS + 2 * TRW + DEC((LIST_LEN / 2),6,2))
+ S + R + BTT;
TUB = A_UPD * (2 * TFDB + 2 * TRW + DEC((LIST_LEN / 2),6,2))
+ S + R + BTT;
TUNS = TDRS + TIS;
TUNB = TDRB + TIB;
END MULTJJPDT;

** MULTILIST EXHAUSTIVE READ CALCULATIONS **
■k-k'k-trk-kkkk-khk-l'-ki'-k-irkkkkk-kk-kkk-kk*************** /

MULT_EX: PROCEDURE(TXS,TXB,X,TXDS,TXDB);

53

DCL (TXS,
TXB) FIXED DEC(15,2),
X FIXED DEC(3),
TEMPX FIXED DEC(3),
TXDS FIXED DEC(15,2),
TXDB FIXED DEC(15,2);

TXDB = 0;
TXDS = CEIL(N /YEFFS) * (S + R+ BTT);
TXS = TXDS + N * (S+ R+ BTT);
TEMPX = X - 1;
DO WHILE (TEMPX >= 1);

TXDB = YEFFB ** TEMPX + TXDB;
TEMPX = TEMPX - 1;

END;
TXB = TXDB + N * (S+ R+ BTT);

END MULT_EX;

MULTILIST REORGANIZATION TIME CALCULATIONS
<r************A****************^

MULT_REORG: PROCEDURE (TYS,TYB,TXS,TXB,TYDS,TYDB);
DCL (TYS,

TYB) FIXED DEC (15,2),
(TXS,
TXB) FIXED DEC(15,2),
(TYDS,
TYDB) FIXED DEC(15,2);

TYDS = A * (CEIL(VAL_TOT / YEFFS) * (S + R+ BTT + TRW));
TYDB = A * (X * (S + R+ BTT) + TRW + DEC((2 / YEFFS),9,2) *

(S + R+ BTT+ TRW));
TYS = TYDS + TXS +

N * (S + R+ BTT) + N * A_PRIME * (TFDS + DEC((LIST_LEN / 2),
9.2) * (S + R+ BTT) + TRW);

TYB = TYDB + TXB +
N * (S + R+ BTT) + N * A_PRIME * (TFDB + DEC((LIST_LEN /2),
9.2) * (S + R+ BTT) + TRW);

END MULT_REORG;

** MULTILIST RESULTS DISPLAY **
-k**-k-k*-is*1c-::****-tt*-k-k**-!<**h-************ /

MULT_DISP: PROCEDURE;
RFMT: FORMAT(COL(10) ,A,C0L(55),F(15,2),X(1),A);
PUT PAGE FILE(SYSPRINT);
PUT SKIP(2) EDIT ('MULTILIST FILE PERFORMANCE PARAMETERS ’ ||

'(SEQUENTIAL DIRECTORY)') (COL(20),A);
PUT SKIP(O) EDIT (’______________________________________ ' ||

'______________________ ') (C0L(20),A);
PUT SKIP(2) EDIT ('FILE SIZE: ',FILE_SZS,'BYTES') (R(RFMT));
PUT SKIP(2) EDIT ('DIRECTORY SIZE: ’, SDS,'BYTES') (R(RFMT));
PUT SKIP(2) EDIT (’TF: ’,TFS,'MS') (R(RFMT));
PUT SKIP(2) EDIT ('TI: ',TIS,’MS') (R(RFMT));

54

PUT SKIP(2) EDIT ('TD: ',TDS,’MS') (R(RFMT));
PUT SKIP(2) EDIT ('TDR: ',TDRS,’MS') (R(RFMT));
PUT SKIP(2) EDIT (’TU: ',TUS,'MS') (R(RFMT));
PUT SKIP(2) EDIT('TU(WITH NEW ATTRIBUTES): ',TUNS,’MS') (R(RFMT));
PUT SKIP(2) EDIT (’TX:',TXS,'MS') (R(RFMT));
PUT SKIP(2) EDIT('TY:’,TYS,'MS*) (R(RFMT));
PUT SKIP(2) EDIT ('MULTILIST FILE PERFORMANCE PARAMETERS ' ||

’(B-TREE DIRECTORY)’) (C0L(20),A);
PUT SKIP(O) EDIT ('_____________________________________ ' ||

.’) (C0L(20) , A);
PUT SKIP(2)
PUT SKIP(2)
PUT SKIP(2)
PUT SKIP(2)
PUT SKIP(2)
PUT SKIP(2)
PUT SKIP(2)
PUT SKIP(2)
PUT SKIP(2)
PUT SKIP(2)
END MULT_DISP;
END MULT_FILE;

EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT

('FILE SIZE: ',FILE_SZB,’BYTES') (R(RFMT));
('DIRECTORY SIZE: ', SDB,’BYTES') (R(RFMT));
('TF: ',TFB,’MS') (R(RFMT));
(’TI: ',TIB,’MS') (R(RFMT));
(’TD: ’,TDB,’MS’) (R(RFMT));
('TDR: ',TDRB,’MS') (R(RFMT));
('TU: ',TUB,’MS’) (R(RFMT));

EDIT('TU(WITH NEW ATTRIBUTES): ',TUNB,'MS’) (R(RFMT));
EDIT (’TX:',TXB,'MS') (R(RFMT));
EDIT('TY:',TYB,'MS') (R(RFMT));

/***
** INVERTED FILE CALCULATIONS **
*** j

INVT_FILE: PROCEDURE(SDS,SDB,TFDS,TFDB,TXDS,TXDB,TYDS,TYDB);
DCL (TFA,

TIA)
YA
X
FILE_SZS
FILE_SZB
(SDS, SDB)
(TFDS,TFDB)
(TFS, TFB,
TIS, TIB,
TDS, TDB,
TDRS, TDRB,

FIXED DEC(10,2),
FIXED DEC(9,2),
FIXED DEC(3),
FIXED DEC(15,2),
FIXED DEC(15,2),
FIXED DEC(15,2) ,
FIXED DEC(10,2),

TUS, TUB,
TUNS, TUNB,
TXS, TXB,
TXDS, TXDB,
TYDS, TYDB,
TYS, TYB) FIXED DEC(15,2);

YA = FLOOR((BLOCK_SZ - PTR_SZ) / PTR_SZ);
TFA = 0.5 * LIST_LEN * PTR_SZ / T_PRIME;
TIA = TFA + 0.5 * (CEIL(LIST_LEN / YA) * (BTT + TRW));
CALL FILE_SZ(FILE_SZS,FILE_SZB,SDS,SDB);
CALL INVT_FETCH(TFS,TFB,TFDS,TFDB);
CALL INVT_INST(TIS,TIB);
CALL INVT_DLET(TDS,TDB,TDRS,TDRB,TFDS,TFDB);
CALL INVT_UPDT(TUS,TUB,TUNS,TUNB,TDS,TDB);

55

CALL INVT_EX(TXDS,TXDB,TXS,TXB);
CALL INVT_REORG(TYS,TYB,TYDS,TYDB);
CALL INVT_DISP;

INVERTED FILE SIZE CALCULATIONS
v*****v t******A- ■J—UJ—l—l-J.

FILE_SZ: PROCEDURE(FILE_SZS,FILE_SZB,SDS,SDB);
DCL FILE_SZS

FILE_SZB
REC_SZ
BFR
SDS
SDB
SA

IF (REC_FRMT = 'V')
DO;
REC_SZ = A_PRIME * (ATTR_LEN
BFR = FLOOR((BLOCK_SZ - 0.5 '

END;

FIXED DEC(15,2),
FIXED DEC(15,2),
FIXED DEC(9, 2),
FIXED DEC(IO),
FIXED DEC(15,2),
FIXED DEC(15,2),
FIXED DEC(15,2);
THEN

+ VALUE_LEN + 2)
• REC_SZ) / (REC.

+ NON_DATA;
SZ + PTR_S Z));

ELSE DO;
REC_SZ = A_PRIME * (VALUE_LEN) + NON_DATA;
BFR = FLOOR(BLOCK_SZ / REC_SZ);

END;
SA = VAL_TOT * A * BLOCK_SZ * CEIL(LIST_LEN / YA);
FILE_SZS = SDS + SA + DEC(CEIL(N / BFR),10 , 0) * BLOCK_SZ;
FILE_SZB = SDB + SA + DECCCEIL(N / BFR),10, 0) * BLOCK_SZ;

END FILE_SZ;

** INVERTED FETCH TIME CALCULATIONS **
t**** j

INVT_FETCH: PROCEDURE (TFS,TFB,TFDS,TFDB);
DCL (TFDS,

TFDB) FIXED DEC(10,2),
(TFGS,
TFGB,
TFNS,
TFNB,
TFS,
TFB) FIXED DEC(15,2);

TFNS = N_T * (TFDS + 2 * TFA) + DEC((FJRAT / 100),9,2) *
LIST_LEN * (S + R+ BTT);
TFNB = N_T * (TFDB + 2 * TFA) + DEC((F_RAT / 100),9,2) *
LIST_LEN * (S+ R+ BTT) ;
TFGS = TXDS + N_T * (TFDS + 2 * TFA) + DEC((Q_RAT / 100),9,2)
* N * (S + R+ BTT);
TFGB = TXDB + N_T * (TFDB + 2 * TFA) + DEC((Q_RAT / 100),9,2)
* N * (S + R+ BTT);
TFS = N_ONE * TFNS + N_TWO * TFGS;
TFB = N_ONE * TFNB + N_TWO * TFGB;

END INVT_FETCH;

56

** INVERTED INSERT TIME CALCULATIONS **
■** ir******-*-****- */

INVT_INST: PROCEDURE(TIS,TIB);
DCL (TIS,

TIB,
TIDS,
TIDB) FIXED DEC(15, 2);

TIDS = (A_PRIME - A_NEW) * (TFDS + TRW) + A_NEW * (S + R+ BTT);
TIDB = (A_PRIME - A_NEW) * (TFDB + TRW) + A_NEW * (S + R+ BTT);
TIS = TIDS + (A_PRIME - A_NEW) * TIA + (A_NEW + 1) * (S + R+ BTT);
TIB = TIDB + (A_PRIME - A_NEW) * TIA + (A_NEW + 1) * (S + R+ BTT);

END INVT_INST;

** INVERTED DELETE TIME CALCULATIONS

**

AJ.J.JL, r **•*"*

INVT_DLET: PROCEDURE(TDS,TDB,TDRS,TDRB,TFDS,TFDB);
DCL (TDS,

TDB,
TDRS,
TDRB) FIXED DEC(15,2),
(TFDS,
TFDB) FIXED DEC(10,2);

TDS = 2 * TFDS + TFA + 2 * TRW + DEC((1 / LIST_LEN),6,2) * TRW +
S + R+ BTT;

TDB = 2 * TFDB + TFA +2 * TRW + DEC((1 / LIST_LEN),6,2) * TRW + S +
R + BTT;

TDRS = TFDS + TRW;
TDRB = TFDB + TRW;
END INVT_DLET;
/***
** INVERTED UPDATE TIME CALCULATIONS **

INVTJJPDT: PROCEDURE (TUS, TUB, TUNS, TUNB, TDS, TDB) ;
DCL (TUS,

TUB,
TUNS,
TUNB,
TDS,
TDB) FIXED DEC(15,2);

TUS = A_UPD * (TDS + TIA) + (S + R + BTT + TRW);
TUB = A_UPD * (TDB + TIA) + (S + R+ BTT + TRW);
TUNS = TDRS + TIS;
TUNB = TDRB + TIB;

END INVT_UPDT;

** INVERTED EXHAUSTIVE READ CALCULATIONS **

57

INVT_EX: PROCEDURE(TXDS,TXDB,TXS,TXB);
DCL (TXS,

TXB) FIXED DEC(15,2),
TXDS FIXED DEC(15,2),
TXDB FIXED DEC(15,2);

TXS = TXDS + N * (S+ R+ BTT);
TXB = TXDB + N * (S+ R+ BTT);

END INVTJEX;
/**
** INVERTED REORGANIZATION TIME CALCULATIONS ***A***********************A*******V;*********'***** J
INVT_REORG: PROCEDURE (TYS,TYB,TYDS,TYDB);
DCL (TYS,

TYB,
TYDS,
TYDB) FIXED DEC(15,2),
TYA FIXED DEC(10,2);

TYA = 2 * VAL_TOT * A * DEC((LIST_LEN * PTR_SZ / T_PRIME),10,2);
TYS = TYDS + TYA + TXS + N * (S + R+ BTT) + N * AJPRIME * (TDS

+ TIA);
TYB= TYDB + TYA + TXB + N * (S + R+ BTT) + N * A_PRIME * (TDB

+ TIA);
END INVT_REORG;
*̂**
** INVERTED RESULTS DISPLAY **
*** j

INVT_DISP: PROCEDURE;
RFMT: FORMAT(COL(10),A,COL(55),F(15,2),X(1),A);
PUT PAGE FILE(SYSPRINT);
PUT SKIP(2) EDIT ('INVERTED FILE PERFORMANCE PARAMETERS ' ||

'(SEQUENTIAL DIRECTORY)') (COL(20),A);
PUT SKIP(O) EDIT (’____________________________________ ' ||

'______________________ ') (COL(20),A);
PUT SKIP(2) EDIT ('FILE SIZE: ',FILE_SZS,'BYTES') (R(RFMT));
PUT SKIP(2) EDIT (’DIRECTORY SIZE: ', SDS,'BYTES') (R(RFMT));
PUT SKIP(2) EDIT ('TF: '.TFS.'MS') (R(RFMT));
PUT SKIP(2) EDIT (’TI: ’,TIS,’MS’) (R(RFMT));
PUT SKIP(2) EDIT (’TD: ’,TDS,'MS’) (R(RFMT));
PUT SKIP(2) EDIT ('TDR: ',TDRS,’MS') (R(RFMT));
PUT SKIP(2) EDIT (’TU: ',TUS,'MS') (R(RFMT));
PUT SKIP(2) EDIT('TU(WITH NEW ATTRIBUTES): '.TUNS,'MS') (R(RFMT));
PUT SKIP(2) EDIT ('TX:’,TXS,'MS') (R(RFMT));
PUT SKIP(2) EDIT('TY:',TYS,'MS') (R(RFMT));
PUT SKIP(2) EDIT ('INVERTED FILE PERFORMANCE PARAMETERS ’ ||

'(B-TREE DIRECTORY)') (COL(20),A);
PUT SKIP(O) EDIT (’_____________________________________ ' ||

'__________________ ’) (C0L(20),A) ;
PUT SKIP(2) EDIT ('FILE SIZE: ’,FILE_SZB,'BYTES') (R(RFMT));
PUT SKIP(2) EDIT (’DIRECTORY SIZE: ', SDB,’BYTES') (R(RFMT));
PUT SKIP(2) EDIT ('TF: ',TFB,'MS') (R(RFMT));
PUT SKIP(2) EDIT ('TI: '.TIB.'MS') (R(RFMT));

58

PUT SKIPC2) EDIT (’TD: ’,TDB,’MS') (R(RFMT));
PUT SKIP(2) EDIT ('TDR: ’,TDRB,’MS’) (R(RFMT));
PUT SKIP(2) EDIT (’TU: '.TUB,’MS') (R(RFMT));
PUT SKIP(2) EDIT('TU(WITH NEW ATTRIBUTES): ',TUNB,’MS') (R(RFMT));
PUT SKIP(2) EDIT ('TX:',TXB,’MS’) (R(RFMT));
PUT SKIP(2) EDIT('TY:',TYB,'MS') (R(RFMT));
END INVT_DISP;
END INVT_FILE;

END CALC;
//LKED.SYSPRINT DD DUMMY
//GO.SYSPRINT DD SYSOUT=W
//GO.SYSIN DD *
1024
3000
0
0
1
1
20
100
20
100
100
6
V
10
20
4
10
50
3
2
1
//GO.INFILE
1 16.00
2 60.00

BLOCK SIZE (BYTES) (1..99999)
OF RECORDS IN THE MAIN FILE (1..9999999)
AVG it OF NON NEGATED TERMS IN TYPE 1 SUBQUERY(NN)
AVG # OF TYPE 1 SUBQUERIES
AVG it OF TERMS IN A SUBQUERY(NT)
AVG it OF TYPE 2 SUBQUERIES
AVG it OF VALUES PER ATTRIBUTE NAME
AVG it OF RECORDS PER ATTRIBUTE NAME-VALUE PAIR
AVG it OF RECORDS IN THE SHORTEST LIST
AVG RATIO OF QUERY RESPONSES TO SHORTEST LIST
AVG RATIO OF QUERY RESPONSES TO TOTAL RECORDS
POINTER SIZE(1..9)
RECORD FORMAT (F -- FIXED; V -- VARYING)
AVG it OF ATTRIBTES PER RECORD (1 ..99)
TOTAL it OF ATTRIBUTE NAME-VALUE PAIR PER RECORD (1
ATTRIBUTE_NAME LENGTH (BYTES) (1..99)
ATTRIBUTE VALUE LENGTH (BYTES) (1..999)
AVG NON INDEXED DATA PER RECORD (1..200)
AVG it OF UPDATE ATTRIBUTES (1.. 99999)
AVG it OF NEW ATTRIBUTES
TYPE OF DEVICE (1 .. 2)

(1..99999)

DD *
8.30
12.50

524.00
200.00

3000.00
312.00

IBM3380
IBM2319

/*

.99

59

APPENDIX C

INPUT PARAMETERS AND RESULTS

Table I. INPUT VALUE SET 1

INPUT PARAMETERS

BLOCK SIZE (BYTES) 512
TOTAL NUMBER OF RECORDS IN THE FILE (N) 30000
NUMBER OF NONNEGATED TERMS IN TYPE 1 QUERY 2
NUMBER OF TYPE 1 SUBQUERIES (Nl) 1
NUMBER OF TERMS IN TYPE 1 OR TYPE 2 SUBQUERY (Nl) 2
NUMBER OF TYPE 2 SUBQUERIES (N2) 0
AVERAGE NUMBER OF ENTRIES PER INDEX (NA) 1000
AVERAGE LIST LENGTH (L) 1000
AVERAGE NUMBER OF RECORDS IN THE SHORTEST LIST (LS) 20
THE RATIO OF QUERY RESPONSES TO THE SHORTEST LIST (F) 30%
THE RATIO OF QUERY RESPONSES TO TOTAL RECORDS IN THE FILE (Q) 30%
POINTER SIZE (P) 6 BYTES
RECORD FORMAT VARYING
AVERAGE NUMBER OF ATTRIBUTES PER RECORD (A') 10
TOTAL NUMBER OF ATTRIBUTES IN THE FILE (A) 20
AVERAGE ATTRIBUTE NAME LENGTH 4
AVERAGE ATTRIBUTE VALUE LENGTH (V) 10
AVERAGE NON INDEXED DATA PER RECORD (N) 50 BYTES
AVERAGE NUMBER OF UPDATE ATTRIBUTES PER UPDATE OPERATION (AU) 3
AVERAGE NUMBER OF NEW ATTRIBUTES PER INSERT OPERATION (AN) 2
TYPE OF STORAGE DEVICE USED 1

60

Table II. PERFORMANCE VALUES FOR INPUT SET 1

MULTILIST FILE PERFORMANCE PARAMETERS fSEQUENTIAL DIRECTORY!
FILE SIZE
DIRECTORY SIZE
TIME TO FETCH
TIME TO INSERT
TIME TO DELETE AN ATTRIBUTE
TIME TO DELETE A RECORD
TIME TO UPDATE A RECORD (WITH EXISTING ATTRIBUTE)
TIME TO UPDATE A RECORD (WITH NEW ATTRIBUTE)
TIME TO EXHAUSTIVELY READ THE FILE
TIME TO REORGANIZE THE FILE

15810560.00 BYTES
450560.00 BYTES
25546.68 MS
4562.73 MS
579.41 MS
579.41 MS
4854.11 MS
5142.14 MS
766033.35 MS
3838518274.95 MS

MULTILIST FILE PERFORMANCE PARAMETERS (B-TREE DIRECTORY)
FILE SIZE
DIRECTORY SIZE
TIME TO FETCH
TIME TO INSERT
TIME TO DELETE AN ATTRIBUTE
TIME TO DELETE A RECORD
TIME TO UPDATE A RECORD (WITH EXISTING ATTRIBUTE)
TIME TO UPDATE A RECORD (WITH NEW ATTRIBUTE)
TIME TO EXHAUSTIVELY READ THE FILE
TIME TO REORGANIZE THE FILE

16056320.00 BYTES
696320.00 BYTES
24616.82 MS
950.39 MS
114.48 MS
114.48 MS
2064.53 MS
1064.87 MS
734372.00 MS
3698973370.76 MS

61

Table III.PERFORMANCE VALUES FOR INPUT SET 2

INPUT PARAMETERS

BLOCK SIZE (BYTES) 1024
TOTAL NUMBER OF RECORDS IN THE FILE (N) 3000
NUMBER OF NONNEGATED TERMS IN TYPE 1 QUERY 1
NUMBER OF TYPE 1 SUBQUERIES (Nl) 1
NUMBER OF TERMS IN TYPE 1 OR TYPE 2 SUBQUERY (Nl) 1
NUMBER OF TYPE 2 SUBQUERIES (N2) 0
AVERAGE NUMBER OF ENTRIES PER INDEX (NA) 20
AVERAGE LIST LENGTH (L) 100
AVERAGE NUMBER OF RECORDS IN THE SHORTEST LIST (LS) 20
THE RATIO OF QUERY RESPONSES TO THE SHORTEST LIST (F) 100%
THE RATIO OF QUERY RESPONSES TO TOTAL RECORDS IN THE FILE (Q) 100%
POINTER SIZE (P) 4 BYTES
RECORD FORMAT VARYING
AVERAGE NUMBER OF ATTRIBUTES PER RECORD (A') 10
TOTAL NUMBER OF ATTRIBUTES IN THE FILE (A) 20
AVERAGE ATTRIBUTE NAME LENGTH 4
AVERAGE ATTRIBUTE VALUE LENGTH (V) 6
AVERAGE NON INDEXED DATA PER RECORD (N) 50 BYTES
AVERAGE NUMBER OF UPDATE ATTRIBUTES PER UPDATE OPERATION (AU) 3
AVERAGE NUMBER OF NEW ATTRIBUTES PER INSERT OPERATION (AN) 2
TYPE OF STORAGE DEVICE USED 1

MULTILIST FILE PERFORMANCE PARAMETERS (B-TREE DIRECTORY)
FILE SIZE
DIRECTORY SIZE
TIME TO FETCH
TIME TO INSERT
TIME TO DELETE AN ATTRIBUTE
TIME TO DELETE A RECORD
TIME TO UPDATE A RECORD (WITH EXISTING ATTRIBUTE)
TIME TO UPDATE A RECORD (WITH NEW ATTRIBUTE)
TIME TO EXHAUSTIVELY READ THE FILE
TIME TO REORGANIZE THE FILE

788480.00 BYTES
20480.00 BYTES
2488.64 MS
455.95 MS
66.04 MS
65.88 MS
422.08 MS
521.83 MS
73920.00 MS
38345881.29 MS

INVERTED FILE PERFORMANCE PARAMETERS (B-TREE DIRECTORY)
FILE SIZE
DIRECTORY SIZE
TIME TO FETCH
TIME TO INSERT
TIME TO DELETE AN ATTRIBUTE
TIME TO DELETE A RECORD
TIME TO UPDATE A RECORD (WITH EXISTING ATTRIBUTE)
TIME TO UPDATE A RECORD (WITH NEW ATTRIBUTE)
TIME TO EXHAUSTIVELY READ THE FILE
TIME TO REORGANIZE THE FILE

655360.00 BYTES
20480.00 BYTES
2489.04 MS
522.48 MS
107.48 MS
41.24 MS
389.69 MS
563.72 MS
73920.00 MS
3633501.29 MS

62

Table IV. PERFORMANCE VALUES FOR INPUT SET 3

INPUT PARAMETERS

BLOCK SIZE (BYTES) 1024
TOTAL NUMBER OF RECORDS IN THE FILE (N) 3000
NUMBER OF NONNEGATED TERMS IN TYPE 1 QUERY 0
NUMBER OF TYPE 1 SUBQUERIES (Nl) 0
NUMBER OF TERMS IN TYPE 1 OR TYPE 2 SUBQUERY (Nl) 1
NUMBER OF TYPE 2 SUBQUERIES (N2) 1
AVERAGE NUMBER OF ENTRIES PER INDEX (NA) 20
AVERAGE LIST LENGTH (L) 100
AVERAGE NUMBER OF RECORDS IN THE SHORTEST LIST (LS) 20
THE RATIO OF QUERY RESPONSES TO THE SHORTEST LIST (F) 100%
THE RATIO OF QUERY RESPONSES TO TOTAL RECORDS IN THE FILE (Q) 100%
POINTER SIZE (P) 4 BYTES
RECORD FORMAT VARYING
AVERAGE NUMBER OF ATTRIBUTES PER RECORD (A') 10
TOTAL NUMBER OF ATTRIBUTES IN THE FILE (A) 20
AVERAGE ATTRIBUTE NAME LENGTH 4
AVERAGE ATTRIBUTE VALUE LENGTH (V) 6
AVERAGE NON INDEXED DATA PER RECORD (N) 50 BYTES
AVERAGE NUMBER OF UPDATE ATTRIBUTES PER UPDATE OPERATION (AU) 3
AVERAGE NUMBER OF NEW ATTRIBUTES PER INSERT OPERATION (AN) 2
TYPE OF STORAGE DEVICE USED 1

MULTILIST FILE PERFORMANCE PARAMETERS (B-TREE DIRECTORY)
FILE SIZE
DIRECTORY SIZE
TIME TO FETCH
TIME TO INSERT
TIME TO DELETE AN ATTRIBUTE
TIME TO DELETE A RECORD
TIME TO UPDATE A RECORD (WITH EXISTING ATTRIBUTE)
TIME TO UPDATE A RECORD (WITH NEW ATTRIBUTE)
TIME TO EXHAUSTIVELY READ THE FILE
TIME TO REORGANIZE THE FILE

788480.00 BYTES
20480.00 BYTES
147840.00 MS
455.95 MS
66.04 MS
65.88 MS
422.08 MS
521.83 MS
73920.00 MS
38345881.29 MS

INVERTED FILE PERFORMANCE PARAMETERS (B-TREE DIRECTORY)
FILE SIZE
DIRECTORY SIZE
TIME TO FETCH
TIME TO INSERT
TIME TO DELETE AN ATTRIBUTE
TIME TO DELETE A RECORD
TIME TO UPDATE A RECORD (WITH EXISTING ATTRIBUTE)
TIME TO UPDATE A RECORD (WITH NEW ATTRIBUTE)
TIME TO EXHAUSTIVELY READ THE FILE
TIME TO REORGANIZE THE FILE

655360.00 BYTES
20480.00 BYTES
73945.04 MS
522.48 MS
107.48 MS
41.24 MS
389.69 MS
563.72 MS
73920.00 MS
3633501.29 MS

63

Table V. PERFORMANCE VALUES FOR INPUT SET 4

INPUT PARAMETERS

BLOCK SIZE (BYTES) 512
TOTAL NUMBER OF RECORDS IN THE FILE (N) 5000
NUMBER OF NONNEGATED TERMS IN TYPE 1 QUERY 1
NUMBER OF TYPE 1 SUBQUERIES (Nl) 5
NUMBER OF TERMS IN TYPE 1 OR TYPE 2 SUBQUERY (Nl) 1
NUMBER OF TYPE 2 SUBQUERIES (N2) 0
AVERAGE NUMBER OF ENTRIES PER INDEX (NA) 200
AVERAGE LIST LENGTH (L) 1000
AVERAGE NUMBER OF RECORDS IN THE SHORTEST LIST (LS) 1000
THE RATIO OF QUERY RESPONSES TO THE SHORTEST LIST (F) 100%
THE RATIO OF QUERY RESPONSES TO TOTAL RECORDS IN THE FILE (Q) 30%
POINTER SIZE (P) 6 BYTES
RECORD FORMAT FIXED
AVERAGE NUMBER OF ATTRIBUTES PER RECORD (A') 5
TOTAL NUMBER OF ATTRIBUTES IN THE FILE (A) 5
AVERAGE ATTRIBUTE NAME LENGTH 4
AVERAGE ATTRIBUTE VALUE LENGTH (V) 10
AVERAGE NON INDEXED DATA PER RECORD (N) 50 BYTES
AVERAGE NUMBER OF UPDATE ATTRIBUTES PER UPDATE OPERATION (AU) 3
AVERAGE NUMBER OF NEW ATTRIBUTES PER INSERT OPERATION (AN) 2
TYPE OF STORAGE DEVICE USED 1

MULTILIST FILE PERFORMANCE PARAMETERS (B-TREE DIRECTORY)
FILE SIZE
DIRECTORY SIZE
TIME TO FETCH
TIME TO INSERT
TIME TO DELETE AN ATTRIBUTE
TIME TO DELETE A RECORD
TIME TO UPDATE A RECORD (WITH EXISTING ATTRIBUTE)
TIME TO UPDATE A RECORD (WITH NEW ATTRIBUTE)
TIME TO EXHAUSTIVELY READ THE FILE
TIME TO REORGANIZE THE FILE

889344.00 BYTES
35840.00 BYTES
122594.70 MS
377.99 MS
90.01 MS
90.01 MS
1917.71 MS
468.00 MS
122366.00 MS
307758560.12 MS

INVERTED FILE PERFORMANCE PARAMETERS (B-TREE DIRECTORY)
FILE SIZE
DIRECTORY SIZE
TIME TO FETCH
TIME TO INSERT
TIME TO DELETE AN ATTRIBUTE
TIME TO DELETE A RECORD
TIME TO UPDATE A RECORD (WITH EXISTING ATTRIBUTE)
TIME TO UPDATE A RECORD (WITH NEW ATTRIBUTE)
TIME TO EXHAUSTIVELY READ THE FILE
TIME TO REORGANIZE THE FILE

578560.00 BYTES
35840.00 BYTES
122634.70 MS
632.83 MS
159.55 MS
65.54 MS
833.58 MS
698.37 MS
122366.00 MS
6865610.12 MS

	Multilist and inverted file system performance measurements
	Recommended Citation

	tmp.1602079929.pdf.mBAhB

