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ABSTRACT

One of the concerns in computer science involves optimizing usage of 

machines to make them more efficient and cost effective. One item of 

particular concern is the use of secondary storage devices, devices that 

store data other than in the main memory of the computer to which it is 

attached. The times for searching for data on these devices consistently 

proves to be a contributing factor in inefficient computer usage.

One data access method that avoids searching when possible is the 

hashing method. A function is defined to return the record number of a 

record based on its key field. The record can then be read in directly. 

A problem exists when more than one key maps to the same record number, 

called a collision, and must be dealt with, usually adding search time in 

the process.

Training a neural network to do this avoids these collisions. The 

Hamming network, based on the Hamming distances of two binary patterns, is 

trained to map the key fields directly to the record number of the data. 

The key must be converted to a binary format. The program passes the key 

to the network that simultaneously calculates the form of the Hamming 

distance between that key and all keys known to be in the file. A MAXNET 

network takes these distances and reduces them until no more than one is 

positive. The record number is found from the results, and the data can 

be accessed directly. All disadvantages from the software version are 

virtually eliminated.
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I. INTRODUCTION

Computer central processing units continue to accelerate in 

instruction processing times. Memory speeds up as ways of designing 

integrated circuits evolve. And though access time to secondary storage 

devices improves, data storage and retrieval still set upper limits to 

computer efficiency and speed.

Many methods have been developed in software to alleviate this 

problem. But software implementations add their own limitations to the 

problem. It would be desirable to blend in neural network structures with 

contemporary computing hardware to increase the speed of the methods now 

in software form.

With advances in hardware technology, computing models that were 

originally possible only through simulation can now find realization in 

electronic circuits. In particular, the neural network technologies 

become more than mathematical formulae and software procedures. 

Commercial neural network systems now exist so that machines that learn 

are no longer a promise of the future but are a reality of today.

The current and future applications of neural networks include 

target identification and tracking, speech recognition and synthesis, 

image processing and decision making systems similar to expert systems 

[Caudill, 1987, 48]. Instead of being programmed (in conventional terms) 

with algorithms and functions, neural networks are "trained" to supply the 

correct response for a given input stimulus. This gears them more towards 

the type of problem humans solve easily than towards the type computers 

now solve [Caudill, 1987, 48].

In this particular case, the idea centers around training neural
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networks to access data directly from files on secondary storage devices. 

Due to flexibility in neural net models and the inherent speed of a 

hardware implementation, this paper proposes that neural networks can and 

will be a solution to slow rates of data retrieval. This proposal does 

not involve increasing transfer times of the data nor times dependent on 

the individual storage device. It instead demonstrates a way to 

accelerate the process of locating the appropriate data on the storage 

device, which is the main drawback of software solutions.

Journal articles refer to neural networks designed to solve this 

problem. However, they are only mentioned in passing. No details are 

given, and at best, the type of model being used is mentioned. Therefore, 

it was neccessary to take these references and eliminate any work already 

considered. This was rather easy since most references were to database 

queries, and this particular form of data storage and retrieval is not 

considered. Other references did not discuss the particular access method 

chosen, nor did they discuss the neural network model chosen.
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II. FILE ACCESS METHODS

When considering efficiency in computing, one element poses the 

problem of causing the central processing unit to be idle for sometimes 

intolerable amounts of time. That element is data retrieval from 

secondary storage devices. Over the years, improvements in technology 

have sped up the access time for these devices. However, they continue to 

contribute to CPU idle time and spent resources. Therefore, the manner in 

which the data is stored and retrieved has been of great interest in 

optimizing computer usage.

There exist several types of storage devices. One class of storage 

devices depends on storing data sequentially due to physical constraints 

of the device. An example is magnetic tapes which require data to be 

stored sequentially along their length. The tape must be advanced and 

rewound to read and write data, making it difficult to go to specific 

positions. Direct access storage devices will be considered here--that 

is, devices on which data can be randomly placed. Magnetic disks and 

drums fall within this category. For simplicity sake, when speaking of 

the storage device, it will be assumed that the device is a magnetic disk.

A. DEFINITIONS

It is essential to define some terms involved in data storage before 

continuing. These terms include ways the data is organized logically 

(from the programmers standpoint) and physically (on the storage device).

1. Data Representations. A collection of related data about an 

individual or item that is treated as a separate unit is called a record.
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Each portion of a record which gives one specific attribute of the item or 

individual is called a field. A collection of logically related records 

on a medium separate from the internal storage of the computer is a file. 

A unique field that distinguishes a record from all others in the file is 

called a key [Tremblay, 1975, 143]. In some instances, more than one 

field must be used to generate a unique key. For example, in a file of 

student data, the student identification number is used as the key. 

However, in a file of addresses where individuals have not been assigned 

such a number, the three fields comprising the name of the individual 

(last name, first name, middle initial) may be used to distinguish the 

records.

2. Addresses. When discussing the physical organization of the 

records, the term address is used to indicate a given record's placement. 

If the address indicates the physical location of the record on the 

storage device, it is termed the absolute address of the record. If the 

address reflects the record's position with respect to the beginning of 

the file, the address is referred to as the relative address. Finally, 

the record number is the physical position of a given record in a file, 

counting from the beginning of the file. This means the first record has 

record number 0, and the nth record in a file has record number n-1.

3. File Organization. Once the file is created, there must exist 

some way to retrieve the appropriate data. The way the file is arranged 

may be a part of the retrieval method. If the records are placed in 

consecutive positions in the file, the file is said to be arranged 

sequentially. If the records of the file are ordered by the values of the 

keys, the file is said to be sorted. When a second file is created
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containing the keys and the addresses of the records of a data file, the 

data file is said to be indexed, and the second file is called an index 

file. The following sections detail these arrangements and how data is 

retrieved from them.

B. SEQUENTIAL FILES

The simplest way to organize records is to write them to the file in 

contiguous areas on the storage device as the data is obtained [Tremblay, 

1975, 213]. The resulting file is called a sequential file. Sequential 

files require little maintenance when records are added later since they 

are appended at the end of the file. If records are deleted, the file can 

be rewritten without those records, or records at the end of a file can be 

copied on top of the records to be deleted. The size of the file is 

changed to ignore the duplications at the end of the file.

1. Sequential Search. Records are retrieved in a straightforward 

manner. One starts at the beginning of the file and checks the key of 

each record in turn until the key for the desired record is found. Then 

the record is read in full from the file. This method of searching for 

the key is called a sequential search. The average amount of time to 

retrieve the record is proportional to n/2 where n is the total number of 

records in the file [Tremblay, 1975, 213]. Note that if the record is not 

in the file, the entire file will be searched before this can be 

discovered.

2. Blocking. One way to improve transfer rates in sequential files 

is to organize the records in physical blocks of data. Instead of reading 

in a single record at a time, a block of data is read into memory, and
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records are accessed from this until a record from a different block is 

required. The problem with blocking is the assumption that consecutive 

records will be needed at the same time. If this is not true, then 

instead of transfer times based on individual records, transfer times are 

based on retrieving entire blocks and increase accordingly.

The blocking size is dependant on the size of the records, how the 

blocking size affects retrieval efficiency and limitations of the 

hardware. Only best guesses can be offered to set the blocking sizes 

without actually experimentation on the file and the program that accesses 

the file.

C. SORTED FILES

The second file organization method revolves around a sequential 

file that has been ordered by the value of the keys. Such a file is said 

to be sorted. The keys may be sorted in ascending order (they increase as 

the file is traversed from beginning to end) or in descending order (they 

decrease from beginning to end.)

1. Sorting Methods. Many sorting methods have been devised to 

order the records in a file. Insertion sorts involve stepping through the 

file by positions, determining which record belongs in each position, then 

copying the record to that position. Recursive sorts involve breaking up 

the file into segments that eventually result in single records or smaller 

sorted segments. Then the segments are fitted back together in larger, 

sorted segments as the order in which they are broken up is reversed. 

Merge sorts involve taking sorted files, or sections of files, and 

combining them to give a single sorted file. Though this list does not
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exhaust the available sorting schemes, it does give a flavor of the 

variety that exists.

When evaluating the efficiency of sorting methods, it can be shown 

that the optimal method for a given file depends on how close the file is 

to being sorted. Some sorts work better when the file is not very sorted. 

Others work better when the file is almost sorted. In light of this, some 

sorting systems have been created to use different sorts at different 

times during the process of sorting a single file.

Some programming language implementations supply sorts as part of 

the library accompanying the compilers. Operating systems come with 

utility programs that often include programs designed to do nothing more 

than sort files. So sorting a data file is not much of a concern, 

especially to the user.

2. Maintaining Sorted Files. Maintenance is more complicated than 

for simple sequential files. Adding a record becomes more difficult. The 

record must be inserted in its proper place, requiring that following 

records must be moved by one position. If many records are to be added, 

it may be more effective to append the new records to the end of the file 

and resort the file. Deleting files can be done by marking the deleted 

records in some way, and rewriting the file in order, skipping those 

records which are marked.

3. Sequential Search. Retrieving records in a sorted file can be 

done with the help of a sequential search as described above. The average 

time to retrieve a record is, again, proportional to n/2 where n is the 

number of records in the file [Tremblay, 1975, 213]. This time, a record 

not in the file is determined sooner, when a key is found that exceeds the
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value of the search key (assuming the file is assorted in ascending 

order.)

4. Blocking. Blocking may be more suited to a sorted file. In 

unsorted file, since records are randomly placed, there may be no 

correlation between the order in which they are stored and the order in 

which they are processed. In a sorted file, blocking helps reduce 

retrieval times since records are often processed by the order of the 

keys.

5. Binary Search. With a sorted file on a direct access device, 

another search method is possible: the binary search. In general terms, 

the file is divided into halves. The half determined to contain the 

record is then divided into halves, and the process is repeated until the 

record is found. This method takes advantage of random accessing and 

gives a tangible rationale for bothering to sort the data.

The binary search proceeds as follows. The middle record of the 

file is determined by taking the number of records in the file and 

dividing it by two. If the desired key matches the key of the middle 

record, the search is terminated, and the data is read. If the desired 

key falls below the middle key, the lower half of the file is divided in 

half and the process repeated till the desired record is found. If the 

desired key falls above the middle key, the upper half of the file is 

searched in the same fashion.

The average search time for the binary search method is proportional 

to log2 n, where n is the number of records in the file [Tremblay, 1975, 

213]. To contrast average search times, for n = 8, the sequential search 

is proportional to 8 / 2, or 4. The binary search is proportional to the
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log2 8, or 3. For n * 1024, the sequential search time is proportional to 

512, and the binary search time is proportional to 10, an increase factor 

of 50. The amount of time to sort the file is well justified as the size 

of the file increases and as the records in the file are accessed more 

often.

D. INDEXED FILES

The final method to be discussed in this chapter is a progression 

from the previous method. The data file is still a sequential file that 

may or may not be sorted. The difference is that a second file is created 

that acts as an index into the data file.

1. Index Files. The records of the index file have two fields: 

the key from the data record and the address of the corresponding record. 

The index file is then searched for the key, and the address is used to 

retrieve the data from the data file. The index files are usually sorted, 

and a search method similar to the binary search is used to search them.

2. Advantages and Disadvantages. A major advantage of the index 

file manifests itself in files with large records. To sort such files, 

the data in each record has to be moved, and this increases sort time. 

Sorting the index file poses no such problem. Also, in some systems, all 

the data in the records must be read in to look at just the key, and this 

adds to the search time. This poses no problem when the search involves 

only the key and the address.

The two main disadvantages revolve around the extra disk space 

required by the index file, and the increased complexity of maintaining 

the file. The extra space is an obvious detraction from the problem, and



10

there is no way to eliminate this, though there are ways to minimize it. 

In some indexing systems, there are hierarchies of indexes, as will be 

discussed, and they add to the required disk space.

Maintaining the index files is the most notable drawback. When 

records are added or deleted, the data file can be handled in the 

straightforward manner of any sequential file. But each time the data 

file is altered, the index file must be rebuilt. In some implementations, 

changes to the data file are recorded in a special file, and they are made 

at the same time so the index file needs rebuilding a minimum number of 

times. The changes will not be noted by users until they are effected, 

which is not desirable. Management methods have been developed to make 

the changes apparent to the user without actually being made to the data 

file. These systems are very complex and considerations must be made for 

instances when two or more users issue conflicting commands on the same 

data (for example, when one person is modifying a field while another is 

deleting the record.)

3. Other Index Systems. Other, more complex systems have been 

developed to make indexing more flexible. Instead of an index file that 

is sequential, there may be a hierarchy of indexes which eventually lead 

to the actual addresses in the data file. In effect, the indexes are 

followed down the hierarchy as one would search through a sorted file with 

a binary search. Instead of determining which half of the remaining 

records to test, the tests result in selecting which index to continue to 

follow. If the key were lower than the key at the given point in the 

hierarchy, one would search one path while a second path would be searched 

if it were greater than the key. And if the key were matched, the path
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would lead to the correct entry in the index file, or possibly directly 

into the data file.

Some systems use this idea, except they have a list of keys at each 

stage for comparison instead of a single key. Each key gives the highest 

key on the list at the next level. The list is searched until a key that 

matches or exceeds the desired key is found. That entry points to the 

next list of keys to search, or when the last level in the hierarchy is 

reached, the entry points to the desired entry in the data file. The 

number of levels in the hierarchy depends on the size of the data file and 

the number of keys in each list.

One system that uses this last idea stores the indexes within the 

data file. The records are stored in blocks of records. The indexes are 

stored in blocks of the same size, and the blocks are marked to 

differentiate them from the record blocks. Each block of records has a 

corresponding index block. Then there is a hierarchy of indexes built on 

these indexes. A management system for this index method simplifies 

maintenance by altering existing index blocks when the corresponding data 

blocks are altered. However, this system is expensive and may not be a 

feasible alternative for some applications.

The last method to be discussed will be detailed in the next 

chapter. The method works for sequential files that need not be sorted. 

It removes the need for a search algorithm by ideally going directly to 

the record desired.
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III. HASH METHODS

After considering the above file storage and retrieval methods, 

which demonstrate a progression to increase speed and efficiency, we will 

now consider a method that does not increase the amount of disk space 

used. Some disadvantages do exist with this method, as will be discussed, 

but it will serve as the basis for an improved system. The method is 

called hashing.

A. DESCRIPTION

Generally speaking, the hash method works by passing the key of the 

desired record to some function, called a hash function. The return value 

of the hash function is the relative position of the desired record within 

the data file, or the record number. The hash function is used to both 

build the file and retrieve data from the file. The following is a more 

detailed description of the method. Note that references to addresses 

refer to the record number, from which the relative address is calculated 

by multiplying the record number by the length of a record.

To begin with, all the keys found in the file constitute a set. 

There exists a second set comprised of the addresses of the records. The 

hash function, denoted h(k) for key k, is a mapping of the set of keys to 

the set of addresses [Tremblay, 1975, 214]. As will be discussed, the 

addresses are determined after the function is established.

In practice, the mapping is seldom one-to-one. That is, more than 

one key can be mapped to the same address. Obtaining a proper function, 

one that is one-to-one, is a non-trivial task [Tremblay, 1975, 215].
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Producing a proper function may mean producing a complex function which 

may take so much time to evaluate that the desired increase in speed of 

the method will be negated.

Once a function has been defined, the file can be built. First, a 

file is created with a specified number of blank records. There must be 

at least as many blank records as there are data records. The keys are 

passed to the hash function, and the data records are written to the 

appropriate position based on the return value.

B. CONSIDERATIONS IN DEFINING THE HASH FUNCTION

In informal terms, we wish to take the key, perform some 

operation(s) on it, and derive the address of the record in that matter. 

These operations serve as the hash function. To simplify matters, we will 

assume the records are fixed length.

One of the things considered in devising a hash function is that the 

set of keys seldom contains all possible keys. A way of operating on the 

keys is devised so that more than the actual keys can generate return 

values from the hash function. Ideally, this will distribute the return 

values over the actual keys so that there will be fewer instances of keys 

generating the same address. Such a function can be thought of as a 

"near" proper function.

The reason for a near proper function and unique hash values will be 

discussed shortly. Suffice it to say that when the hash function has been 

defined, it should evaluate quickly and will have a minimal number of 

redundant return values.
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C. COLLISION RESOLUTIONS

What is the problem with the hash function mapping more than one key 

to the same address? As mentioned before, the function is determined 

before the addresses are. This is due to the way the file is created, by 

writing records to the address the hash function determines from its key. 

When the hash function maps a key to an address already taken, the first 

record will be overwritten by the second one making it impossible to 

retrieve the data of the first record. When the file is being accessed, 

it means a key evaluating to an address that has data from a different 

record. The occurrence of two keys mapping to the same address is called 

a collision.

How are collisions resolved? First, when the file is created, some 

method must be found to include all records in the file. The same method 

must be designed so that all records can be accessed once the file is 

constructed. The following paragraphs describe three methods used and 

will outline the method used in the example program.

1. Chaining. The first method is called chaining [Augustein, 1979, 

539]. It requires that there be a blank record for each possible value 

returned by the hash function. When the hash function maps a key to a 

blank address, its data is written there. If the address is occupied, the 

data is appended to the file, and the new address is written to a special 

field in the record at the old address. When a third or successive key is 

mapped to the same address, the record is checked to see if another record 

has been added. If so, it gets the address and checks to see if another 

record has been added. It does this until it gets to the last record in 

the chain and adds the record as described above.
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To extract a record from this file, the key is passed to the hash 

function. The record at that address is checked for a matching key. If 

the keys match, the data is read. Otherwise, the special field is read 

for the address of the next record in the chain. This process is repeated 

until the record is found or until the end of the chain is reached, at 

which time it is determined the record is not in the file.

2. Open Addressing. The second method is a general method called 

open addressing or rehashing [Augustein, 1979, 537]. When a collision 

occurs, the address is passed to a second function, called a rehash 

function, that returns a new address. If a collision occurs again, the 

process is repeated until a blank record is found (or until the desired 

record for retrieval is found). If the series of rehashes results in a 

blank record being addressed when attempting a retrieval, this signals 

that the desired record is not in the file.

Exactly what the rehash function does depends on the implementation. 

There is a concern with how long it takes to evaluate the rehash function 

and how many times it must be called to resolve collisions to maintain 

efficiency. The range of return values of the rehash function must match 

that of the hash function. Also, it is desirable that if there are blank 

records in the file, the rehash function will not get into a loop 

returning the same series of values repeatedly without encountering a 

blank record. If this is not the case, it is not guaranteed that all 

collisions will be resolved.

One difference in open addressing and chaining is the fact that all 

the file space must be allocated beforehand and is fixed. With chaining, 

since records are appended to the end of the file, there is no way of
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controlling the size of the file. But chaining initially allocates enough 

disk space to handle the possible return values and not every record.

The question that arises is how much space must be allocated? If 

only enough space for all the records is allocated, collisions will 

increase as the file fills up, and the rehash function will end up being 

called excessively. If too much space is allocated, much of the space 

will be unused, and this defeats one of the aims of the solution. If the 

number of entries in the file is fixed, adding just 10% to the total size 

of the file will help [Augustein, 1979, 553]. For hash functions using a 

division method (discussed below), it has been found that if the total 

number of records the file can contain is a prime number, the distribution 

of the addresses over the set of keys will be good [Augustein, 1979, 553].

3. Linear Probing. The last collision resolution method is a 

specific case of open addressing, called linear probing [Augustein, 1979, 

537], The rehash function simply returns the next address following the 

initial address. In other words, when creating a file, when a collision 

occurs, the file is searched sequentially for the next occurring blank 

record. When retrieving records, the file is searched sequentially until 

the desired key is found. Should a blank record be encountered, as above, 

the search is terminated in failure.

A problem with linear probing occurs when the end of the file is 

reached. If this is not taken into account, the program will attempt to 

read beyond the end of the file. This will cause an error in some 

language implementations. In the rehash function, if the input value in 

the file is found to be the last record in the file, it will return the 

first address in the file. This has a wraparound effect, the file being
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treated as if the last record were followed by the first record.

Another problem is that if too many collisions occur, the amount of 

time spent on the sequential search reduces the effectiveness of the 

method. Again, increasing the size of the file helps to avoid this 

problem.

D. EXAMPLE HASH FUNCTIONS

Now that the collision resolution methods have been described, we 

will consider some of the hash functions used. Some involve arithmetic 

operations on the key. Some operate on segments of the key. Others 

operate on bit patterns within the key.

1. The Division Method. The simplest method is the division method 

[Augustein, 1979, 540]. A numeric key is divided by the total number of 

records in the file. The remainder of this division is the return value. 

(This function is represented by h(k) = mod(k, n) and is described as 

taking k modulo n, where k is the key and n is the number of records in 

the file.) The range of the return values is 0 to n-1, which is the 

desired range. As mentioned above, if n is prime, the return values have 

a good distribution over the keys, improving effectiveness.

To give an example, assume there is a file with 100 records (n = 

100.) The return values will be in the range 0 to 99, which will actually 

be just the last 2 digits of the key. If the key is 3432, h(3432) = 

mod(3432, 100) = 32. So the record associated with key 3432 will be 32 

records into the file.

2. The Mid-Squares Method. A second method is called the 

mid-squares method [Tremblay, 1975, 219]. The numeric key is squared, and
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the middle few digits are extracted. Since the return value is governed 

by the number of digits, the file size must be a power of 10. For 

example, if the middle 3 digits are used, the file size must be 1000 for 

the return values to fall into the appropriate range. If the middle bits 

are taken, and not digits, then the file size must be a power of 2, which 

gives more flexibility for file sizes. For example, if the middle 5 bits 

are used, the file size must be 32 for the return values to be valid (2 to 

the 5th power is 32).

To give an example, if the key is 3432 and three digits are 

required, the result is the middle 3 digits of 3432 * 3432, or 11,778,624, 

which would be 778. In a file of 1000 records, the record would be 778 

records into the file.

3. The Folding Method. The folding method is another method of 

turning a key into a record number. The key is folded in on itself. That 

is, the key is broken into segments with a specific number of digits, and 

these segments are added together (or in the case of bits, exclusive-or'ed 

together) to give a result with the specific number of digits (or bits.) 

If the number of digits is exceeded due to a carry, it is folded again 

until the desired number of digits are left. As with the mid-squares 

method, since the return values depend on the number of digits or bits, 

the file size must be a power of 10 or 2.

An example of this method is as follows. Again, for the key 3432, 

break the key into two digit segments: h(3432) = 34 + 32 = 66. So in a 

file of 100 records, the record would be 66 records into the file.

4. Combining Methods. There are other functions that are 

available, but the above three should give an idea of the way record
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numbers are calculated from keys. The other alternative is to combine 

functions to get a hybrid function. Because the keys used for the project 

programs were text, the folding method and division method were combined 

to give one of the hash functions used for comparison.

Since each character has an ASCII numeric representation in the C 

language, it is easy to access these numbers in character type variables. 

So, the folding took place by adding the ASCII codes of the characters 

together. Then to get the result in the appropriate range, this sum was 

divided by the size of the file, and the remainder was returned as the 

record number.

5. Weighted Sums. The second function used in the project programs 

was based on the influence of each character position in sorting the file. 

It was assumed that the keys would be distributed evenly enough that they 

could be distributed evenly within the file in some semblance of 

alphabetic ordering. Because the first letter of the key has the most 

influence on positioning words in alphabetic sequence, this position was 

given the strongest weight. Since the number of keys was small, the last 

characters had little or no influence on the position. The weights 

assigned to each position reflect this.

After tweaking the factors of the hash function and comparing the 

numbers of collisions, the final factors in sequence for the formula were 

as following: .75, .08, .05, .05, .03, .02, .009, .001

The size of the file was 50 records. Since the values of the ASCII 

code for the characters (lower case only) are 97 for 'a' through 122 for 

'z', they were reduced by 97 to give their position in the alphabet. This 

position was scaled from a range of 25 (if 'a' = 0, 'z' = 25) to the
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record numbers in the file (in the range of from 0 to 49) by multiplying 

the result by 49 / 25. For a key of only a's, the result is 0 while for a 

key of only z's, the result is 49. These are the extreme return values 

and the desired range for these values.
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IV. NEURAL NETWORKS

What are neural networks? They are described as a group of computer 

models of how the brain might work [Bower, 1988, 344]. Labels include 

connectionist models, parallel distributed processing models, neuromorphic 

models [Lippmann, 1987, 4], and learning machines [Brown, 1987, 16].

A. HISTORY

The initial basis of neural computing theory arose from a paper in 

1943 by McCulloch and Pitts discussing how neurons in the brain might 

function. Another paper by Donald 0. Hebb described how neurons might 

learn. The actual concept of neural networks took form in a doctoral 

dissertation by Marvin Minsky called "Neural Networks and the Brain-Model 

Problem". The first learning machine was built by Minsky and Dean Edmonds 

out of tubes, clutches and a gyropilot. And the first landmark neural 

network model, the perceptron, was developed by Frank Rosenblatt in the 

1950's [K1 imansaukas, 1988, 347].

B. THE RETINA AND BASIC NEURAL NETWORK ELEMENTS

The model of the perceptron holds many of the key elements of the 

general organization of neural networks. Rosenblatt based the model on 

the retina of the eye. The retina contains several light sensors arranged 

in a matrix. These sensors are connected to processing elements, or 

demons, that serve the purpose of recognizing certain patterns 

[K1imansaukas, 1988, 348]. The output of the processing elementss goes 

through a type of threshold logic unit which fixes the value to a certain
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level when a specific input occurs.

This description of the retina can be broken down into the distinct 

parts of neural networks. First of all, the sensors correspond to the

inputs of the neural net. Based on the type of signal to process, the

inputs can be digital (0 and 1, or -1 and 1 depending on the model) or 

continuous. Next comes the connections to the processing elements. In 

the case of the retina, they are established and trained by predetermined 

genetic patterns. In the case of neural networks, there are defined 

connection architectures and learning methods to set the connection 

weights. Then there is the processing element which is responsible for 

processing the input based on the connections. Some thresholding function 

can be found in most neural network models, forcing the inputs to be at 

certain levels to distinguish responses. Finally, there are the outputs 

which convert the inputs into values representing some interpretation of 

the inputs as seen by the processing element.

C. DEFINING NEURAL NETWORKS AND THEIR PARTS

The goal of designing neural network models is to establish some new 

means of solving problems that conventional computing methods cannot 

handle easily or well. Given a model based on biological processes and on 

processing that occurs in human thinking, it is hoped that computer 

science can move one step closer to achieving artificial intelligence in 

its truest sense. It is also hoped that other sciences can benefit by a 

better understanding of the human brain and thought processes.

1. Inputs. The first part of the neural network, the given factor, 

is the inputs. The neural network models are designed to interpret these
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inputs intelligently and intelligibly. Inputs can take two forms. They 

can be continuous or digital in nature. Continuous data describe 

quantities where digital data usually describe qualities.

a. Continuous Data. The input data from the sensors in a retina, 

as described above, are continuous. The source is light striking the 

sensors causing certain chemical and electron activities. The activity 

varies as the intensity of the light varies and as the wavelength of the 

light varies.

In neural networks, there are many forms of continuous input. In 

target recognition, there are several types of sensors feeding input to 

the networks--radar signals, infrared readings, seismographic data and so 

on. In speech recognition, sound waves act as inputs after being 

converted to electric signals. In chemistry applications, there are 

different instruments for taking readings in chemical processes, such as 

pH, electric potentials and nuclear magnetic resonance patterns, which can 

serve as input data for neural networks.

b. Digital Data, Qualitative forms of data are presented to neural 

nets as digital data. For example, in vision processing, an image is 

divided into a large array of smaller images, each of which corresponds to 

an element in an array of bits. Bits may be set to 1 if most of the small 

image is covered and 0 if not. A series of inputs may represent 

qualifications for a loan, where each position represents a single quality 

and the state of the input determines whether the quality applies to the 

given individual. An input vector may be a binary representation of some 

code, such as the binary form of a number.

c. Operating on Inputs. As will be described later, there may be



24

multiple layers of processing elements within a given neural network. The 

result of these extra layers is the combination of the inputs in different 

ways. It has been demonstrated that if inputs undergo nonlinear 

transformations before being presented to the input layer of a neural 

network, the hidden layers may be removed as their functionality is still 

present [Pao, 1989, 60].

2. Processing Elements. The second element of the neural model is 

the processing element. Each has multiple inputs and a single output. 

Each input is assigned a connection weight that influences its 

contribution to the processing element. The dot product (or weighted sum) 

of the inputs and the weights (both of which can be thought of in vector 

form) gives the initial value of the processing element. One extra input, 

called a bias, is added to serve as a threshold for the processing 

element.

This threshold determines whether the processing element "fires" or 

not. That is, the bias value times the weight of its connection to the 

processing element is subtracted from the dot product of the inputs and 

their weights. This forces the weighted sum to be a certain value for the 

output to be positive (or in some cases, nonzero.) A bias' weights are 

sometimes different for different processing elements since their 

thresholds are usually different.

Finally, this output may have to go through a transfer function 

before going to the next layer. The transfer function sometimes serves to 

alter the data so it is in a format the next layer requires. Several 

functions are used for this purpose. They may be linear functions, that 

is, the sum is simply passed on or multiplied by a gain before being
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passed on. The sigmoid, or s-shaped, function is a popular function. It 

is a continuous monotonic mapping of the input into a value between 0 and 

1. It is based on the reciprocal of the constant e raised to the negative 

of the weighted sum [K1imansaukas, 1988, 161]. The hyperbolic tangent is 

similar to the sigmoid function, except that it maps into the range of -1 

to 1. Each neural network model requires some form of these or other 

functions for transferring information between layers.

3. Connections. All the processing elements, once defined, are 

then interconnected is some manner to form a network. It is within these 

connections that the knowledge of the network is found. The way the 

processing elements are connected and their corresponding weights hold the 

knowledge.

a. Feedforward Designs. First of all, the different architectures 

or network designs determine the manner in which the networks converge or 

process the input. In a feed forward architecture, information passes 

from the inputs to the processing element layer(s) and finally on to the 

output layer, using the summation or dot products and transfer functions 

of the particular network models. The individual layers have no feedback 

connections from one layer to another or to itself [K1 imansaukas, 1988, 

8] .

b. Feedback Connections. If there are feedback connections, the 

values in the layers oscillate or change states until such a time as the 

values stabilize or until some other convergence criterion is met. At 

this time, the information is passed to the output buffer[Klimansaukas, 

1988, 8].

c. Resonating Networks. A third connection model involves two
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layers which resonate as values change and interact until the network 

reaches a stable state [K1 imansaukas, 1988, 481]. In some 

implementations, the network can accept input from either layer, and the 

corresponding values of the opposite layer will be produced.

d. Random Connections. Some models work best with connections made 

randomly between given layers. In the perceptron network model, the input 

to middle layers may be connected randomly while the middle to output 

layers are fully connected. The randomness focuses certain features to 

specific areas in the network as it is being trained so that those 

features can be identified and evaluated later [K1imansaukas, 1988, 351].

e. Middle Lavers. When passing inputs directly to the output 

layer, the amount of knowledge represented by the connections may not be 

sufficient as was shown by Minski and Papert in their book Perceptrons. 

The manner certain processing element models function is by breaking the 

input patterns into different parts of a single space. Without a middle 

layer, the way the space is divided is not sufficient for some tasks. The 

middle layers are included so that inputs can be combined nonlinearly, in 

effect, increasing the knowledge within the connections. However, in some 

cases, if the middle layers are too large, the network will memorize the 

input patterns rather than learn the general features of the input. If 

the middle layers are too small, the network will require extra time for 

convergence. The size of the middle layer is up to the user [Caudill, 

June 1988, 54].

4. Weights. Once the connections are established, the network is 

trained as described in the next section. During this process, the 

connection weights are first set, and then as training progresses, the
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weights are modified until the network displays the desired behavior. 

These weights constitute the second aspect of the neural networks' 

knowledge.

a. Magnitude. As one considers a single connection, two things 

become apparent. Weights have magnitude and they have an associated sign. 

The magnitude determines how much a processing element influences the 

processing element it is connected to [K1 imansaukas, 1988, 6]. The closer 

the magnitude of the weight is to 0, the less influence it has. The 

closer it is to one, the more influence it has. A single processing 

element may have a strong influence on one element while virtually none on 

a different element.

b. Sign. The sign of a connection determines the manner the 

transmitting processing element influences the receiving processing 

element. If the sign is positive, the connection is said to be excitatory 

and contributes to the weighted sum of the receiving processing element. 

If the sign is negative, the connection is said to be inhibitory, and 

detracts from the weighted sum of the receiving processing element. This 

means that if an output requires a given input so it may be set on, the 

connection should be strong and the weight positive.

c. Connection and Weight Interaction. It is the interaction of the 

weights and the connections that store the knowledge the neural network 

has learned. This is not an easy point to enumerate as the interactions 

sometimes appear to perform by magic. If the effects of one input pattern 

are considered, the interaction might be seen by examining the states of 

the individual processing elements. Which connections influence which 

elements in what ways may be apparent under these circumstances. But when
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trying to characterize the entire network in general, no method appears to 

be sufficient to the task. This becomes worse as the number of layers 

increases.

5. Learning. To separate neural networks from vector manipulation 

and to give meaning and significance to the connections and weights, 

learning methods must be considered. The main idea behind learning models 

is to let the network learn by example [K1 imansaukas, 1988, 10]. Instead 

of setting down explicit rules to guide the network, the knowledge evolves 

as the learning proceeds. There are two ways learning is carried out. 

Unsupervised learning leaves most of the details to the network, and 

supervised learning requires some outside means of adjusting the weights 

[K1imansaukas, 1988, 10].

a. Unsupervised Learning. In unsupervised learning, only the input 

stimuli are presented to the network. The network organizes itself so 

that the connection weights allow each element to react strongly to a 

different set of stimuli or similar type of stimuli patterns. As this 

happens, the inputs are arranged in clusters based on these reactions.

b. Supervised Learning. In supervised learning the input stimuli 

are presented. The output of the network is then compared to the desired 

output, and the network is altered to move the output values closer to the 

desired values. There are basically three learning methods which are used 

in varying forms in different models. Hebbian learning consists of 

strengthening connection weights for a processing element if the input on 

that connection is high when the output is high. Delta rule learning is 

based on reducing the error between an input to a processing element and 

its desired output. Competitive learning involves modifying a connection
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to a processing element only when it has a stronger response to a stimulus 

than other, competing processing elements [K1 imansaukas, 1988, 11].

c. Learning Times. Due to the learning rules, some networks take 

longer than others to train. Sometimes it is due to the amount the

weights are altered. If the amount is minute, it will take longer, though 

it should learn details more finely than networks that are trained with 

larger amounts. Also, since there are so many connections in some 

networks, the process takes time to fine tune the weights.

6. Association of Systems. Lastly, there are two types of systems, 

auto-associative and hetero-associative [K1imansaukas, 1988, 218]. The 

type of system desired determines what the network expects during 

learning.

a. Auto-Associative Networks. An auto-associative network is one 

in which the output should match the input. That is, one trains the 

network to reproduce the input at the output layer. The idea is to give 

noisy data and retrieve the original data from the network with the noise 

filtered out. However, the systems may have outputs different than the 

inputs to benefit from characteristics of this type of system. Only the 

input patterns are needed to train these networks.

b. Hetero-Associative Networks. In a hetero-associative network, 

the input and output are expected to be different. This type of model can 

be thought of as mapping one data set, the inputs, to another data set, 

the outputs. Training in this case requires both the input and the output 

patterns.

7. New Trends and Organizations. The field of neuro-computing is 

by no means exhausted. New models and modes of organization are being
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devised and tested. As mentioned before, inputs are being altered to give 

more functionality to networks with fewer layers. These functional links, 

as they are described, allow higher order networks without the 

accompanying layers and connections [Pao, 1989, 60]. Neural nets are also 

being arranged in hierarchies with one level of networks feeding the 

inputs of succeeding levels of networks. The resulting hierarchies can be 

thought of as networks of networks [Caudill, June 1988, 53], And learning 

rules are being modified, such as the recent development of an 

unsupervised form of Hebbian learning [Hinton, 1987, 1].

D. APPLICATIONS

A discussion of neural networks would not be complete without a 

discussion of their applications.

1. Image Processing. One area of interest is image processing. 

Neural network technologies are being developed in medical image 

processing, machine-vision, handwriting verification and other areas 

[Buffa, 1988, 48]. Supplying vision to computers allows automatic 

processing without the aid of human help and without the aid of intense 

programming and formula manipulation. Precision afforded by robotic 

systems and diagnostic systems now available will increase with this added 

source of data and verification.

2. Robotic Motion. Neural networks are being developed to guide 

robotic motion [Josin, 1988, 53]. The main problem with the robotic 

motion comes when redundant degrees of freedom in a robotic arm produce 

equations with no unique solution. Inverse transformation functions are 

required to handle this condition. They are made up of transcendental
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functions which must be programmed, and they require extensive 

computation. Neural networks on the other hand are trained to perform 

these functions without the complexities normally involved.

3. Natural Language Processing. Natural language processing is 

being done with neural networks [K1 imansaukas, 1988, 15]. A neural 

computing system has been designed to learn the past tense of English 

verbs. It begins at a child-like stage and gets to a point where it can 

synthesize new verb forms from incomplete data.

4. Combinatorial Problems. Neural networks have also shown promise 

in solving combinatorial problems, such as the traveling salesman problem 

[K1imansaukas, 1988, 19]. The goal is to find the shortest route around 

a circuit of cities a salesman is to travel. This type of problem also 

has application in routing phone calls. Neural networks have been designed 

to solve problems of this nature.
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V. THE HAMMING NETWORK

A restatement of the problem is in order at this time. In the 

original terms, the problem centers around training neural networks to 

access data directly from files on secondary storage devices in a manner 

that makes the process more efficient with respect to time and disk usage. 

In terms of neural networks, the problem becomes one of presenting a 

pattern (the key) to a neural network which will behave like a hashing 

function by returning the record number for that key. Though not 

discussed in detail earlier, the type of neural network used will be a 

pattern classifying network.

A. PATTERN RECOGNITION

Pattern recognition involves taking some input and indicating what 

known pattern, or exemplar, the input most closely resembles 

[K1imansaukas, 1988, 13]. Part of the idea is to filter out noise that 

may be included with the input values. If the network used is 

auto-associative, the output will be the exemplar pattern the network has 

learned. If the network is hetero-associative, each output node 

represents one of the exemplars, and the value of each node will give an 

indication of how close the input pattern matches the represented 

exemplar.

For the purposes of the problem, the hetero-associative models offer 

the desired output. An auto-associative model will return data that will 

not be usable. The hetero-associative model will generate a vector that 

can be used to get the record number needed. This establishes a link
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between hash functions and neural networks--a neural network, in the form 

of a pattern classifier, can be built to simulate the type of function 

required.

B. HASH FUNCTIONS AND PATTERN RECOGNITION

As we consider this link, one of the problems of the conventional 

hash functions involves addressing collisions. This results from 

obtaining the address after the function. If it were possible to create 

the file first, then construct the function so that the keys are mapped to 

the correct address, collisions would vanish. Since hashing methods work 

backwards, collisions do occur.

However, in a neural net implementation, we can begin with the 

address and derive the "function". Since neural networks learn from 

example, the addresses must be known, and therefore, the file exists 

without the problem of collisions. The exemplar patterns will be the 

keys. Each key will map to its own class, which will be its record 

number. Since the output nodes of the network correspond to the classes 

of the input patterns, they simply have to be numbered with the record 

number associated with that class.

C. CHARACTERISTICS OF PATTERN CLASSIFIERS

The many uses of pattern recognition as a concept manifest 

themselves in as many ways in the neural network implementations. Part of 

this stems from having a neural network model and fitting problems to its 

peculiarities. Some of the models will not meet the needs of the problem 

under consideration.
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K _____ Counter-Propagation Networks. For example, in the

counter-propagation network, the input consists of a vector whose elements 

are ordered digital or continuous data. The vector is ordered in that 

each piece of data, or each input node, corresponds to one of the 

characteristics of the objects to be classified [K1imansaukas, 1988, 491]. 

The values in the vector represent the quality or measure of the 

characteristic--say the color of the object or its velocity. This 

particular model allows more information in its inputs than is needed, and 

therefore, results in a complexity that is not necessary.

2. Hopfield Networks. In Lippmann's paper, he describes how a 

Hopfield network could be constructed for classifying the images of arabic 

numerals. The inputs represent the specific bits of the image's data 

[Lippmann, 1987, 9], They can correspond to the binary representations in 

the ASCII code for some letter of the alphabet. The Hopfield network 

described classifies the image data by producing the bit pattern of the 

exemplar matched by the input. That is, it is designed as an 

auto-associative system. As described earlier, this outputs more data 

than needed and in an unusable form.

A particular problem with the Hopfield network was discovered from 

observing some sample programs. If the input patterns were noisy enough, 

two spurious output formats were generated. The first consisted of two 

parts of different exemplars being combined into a new pattern. The

second output resulted in the failure of the network to converge. The

network oscillated between two partial patterns. It is also important for 

convergence to be guaranteed for the network model to be acceptable.

3. Size Constraints. Finally, pattern recognition problems may
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contain large numbers of exemplars and/or may require massive inputs. As 

the number of nodes increases, the interconnections increase drastically, 

and these increases are not small matters. The size of hidden layers can 

have similar effects. Depending on resources, the network may not be 

feasible or possible. A model that avoids this behavior and can still 

handle the problem at hand would be the most desirable model.

D. THE HAMMING NETWORK MODEL

It was with these considerations in mind that a Hamming network 

augmented with a MAXNET was chosen. The input layer accepts binary values 

with each node representing one bit of data. There are no hidden layers, 

reducing the hardware requirements of other model, as well as removing the 

need for a number of interconnections. Each output node represents one 

exemplar pattern. The exemplar patterns are loaded directly into the 

connection weights by a function described later. Finally, each input is 

connected to each output node with no feedback or interconnections within 

the Hamming network--that it, the Hamming network is a feedforward 

network.

The MAXNET, used to select the resulting class from the Hamming 

network's output, can be proven always to converge and to find the node 

with the maximum value. This node will indicate the class of the input.

1. Hamming Distances. The Hamming network is based on the measure 

of Hamming distances. Given two vectors of size n whose coordinates are 

binary, the Hamming distance is the number of coordinates where the two 

vectors differ [Tremblay, 1975, 365]. For example, the Hamming distance 

between (1, 0, 1, 1, 1) and (1, 1, 1, 0, 1) is 2. To match an input
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pattern to a given set of exemplars, the Hamming distances are calculated, 

and the exemplar that gives the smallest value is the best match. The 

implementation of the network based on this idea will be detailed later.

2. Perceotrons. The basic building block of the Hamming network is 

the perceptron. Recall that the perceptron was devised in the mid-1950's 

by Frank Rosenblatt to model the retina of the eye.

The perceptron processing element bears more detailed description. 

Each element has a number of inputs, including a threshold input whose 

value is constant. The element computes a weighted sum of the inputs and 

subtracts the threshold value. This weighted sum is calculated, as 

described above, by taking the dot product of the input values and their 

associated weights. The value is passed through a function which limits 

the output to 1 or -1, by which the processing element splits the inputs 

into two classes [K1imansaukas, 1988, 351].

In the perceptron model, the initial weights and thresholds are 

random. The weights are modified by an error function as described above. 

But this is altered when perceptrons are used to construct a Hamming 

network.

When a network of perceptrons is formed such that the inputs of all 

the processing elements are common, this network can be used to solve the 

problem at hand. As will be shown, each perceptron will be calculating a 

function of the Hamming distance of the input vector from the exemplar 

stored by its connection weights. The individual processing elements 

constitute the output layer of the Hamming network.

3. The Hamming Network Organization. With this in mind, attention 

will now be turned to the Hamming network model. As described, the inputs
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will be the key of a desired record. The connection weights represent the 

bit patterns of the keys for all existing data in the file. The weighted 

sum corresponds to a form of the Hamming distance. The sums are fed into 

a second network, the MAXNET, which sets it's nodes to 0 for all but the 

node with the highest value, which corresponds to the matched exemplar. 

The vector of the output nodes is converted to a record number within the 

data file. Finally, the record number is returned to the program as the 

return value of the hash function.

4. Connection Weights. In the perceptron network, the initial 

values of the connection weights are set randomly. The network then 

undergoes the learning in which the connection weights are altered so that 

the inputs will give the desired results. In the Hamming network, the 

correspondences between the inputs and output are known (each key, the 

input, will set a specific output node to a value higher than the others). 

Thus they can be set directly.

Since the perceptron model requires inputs of -1 or 1, the bits in 

the key are converted from 0, 1 to -1, 1. The weight of the connection 

from the ith input position to the jth processing element is set to the 

ith input value of the jth key. The weights will have the values -1 or 1.

Thus, if the bit pattern of a key is (0, 1, 0, 0, 1), it is changed 

to (-1, 1, -1, -1, 1). These become the weights from the inputs to the 

output node that corresponds to this key. Note that the Hamming distances 

give the number of positions where two patterns vary. The weights set in 

the manner described will give a value that is higher when more positions 

match. This is due to the form the input to the MAXNET requires, since it 

finds a maximum value.
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5. Thresholds. The thresholds of all the processing elements are 

the same, n / 2 ,  where n is the number of inputs. When the inputs are 

presented, the weighted sum will be the number of positions where the 

input matches the exemplar pattern of the given processing element minus 

the number of positions where the patterns vary. This threshold value 

serves to reduce the values of non-matching patterns so the MAXNET 

converges more quickly.

6. Example Weighted Sums. Assume the weights for a given 

processing element are set to (-1, 1, -1, -1, 1). The threshold value 

will be 5/2 or 2.5. Assume the input pattern (0, 1, 1, 0, 1) is presented 

to the network. The pattern is first converted to (-1, 1, 1, -1, 1). The 

weighted sum is:

(-1)(-1) + 1(1) + 1(-1) + (-1)(-1) + 1(1) = 3.

Subtracting the threshold leaves a value of 0.5. Assume that the original 

pattern is presented. The weighted sum is 5, and the final value is 2.5.

There will never be an output higher than the node corresponding to 

the input pattern if it is one of the exemplar patterns. In all cases, 

that value will be half the number of inputs.

7. Network Size. One of the reasons for choosing the Hamming 

network was the size. There is one processing element for each exemplar 

pattern. The number of connections is equal to the number of inputs times 

the number of processing elements. Some networks have connection schemes 

that increase the number of connections exponentially as nodes are added. 

This feature of the Hamming network makes it that much more attractive.

To compare the Hamming network with the Hopfield mentioned before, 

consider the systems with 100 inputs and 10 classes. The Hamming network
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requires 1000 connections where the Hopfield network requires almost 

10,000. With the Hamming network augmented by a MAXNET, only 100 more 

connections are required [Lippmann, 1987, 9].

8. The MAXNET. Once the Hamming network calculates its results, 

the outputs pass to a MAXNET network. The idea behind its function 

involves subtracting from a node's current value a fraction of the sum of 

the other nodes. The node with the highest value will consequently 

decrease at a slower rate than the other nodes. When it is the only 

nonzero node, the network has converged, and iterations cease.

The MAXNET has one node for each of the Hamming network outputs. 

Each node is connected to every node in the network. The weights of these 

connections are initialized as follows: if the connection links a node to 

itself, the weight is set to 0; if the connection links two distinct 

nodes, the weight is set to -e. e is the fraction used in decrementing 

the values of the nodes. It can be proven that MAXNET will always 

converge and find the node with the maximum value when e < 1 / M, where 

M is the number of classes.

When the Hamming network passes its output to the MAXNET, the MAXNET 

begins an iterative process. The value of a node for iteration t+1 is:

Examining the function, the current value of a processing element is its 

previous value minus a fraction of the sum of the other processing 

elements' values; then this value is passed through a threshold logic 

function. This is repeated until convergence, after which no more than

\  k*j

O £ j r k  £ M -  1
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one node remains positive. This node represents the class of the input 

pattern.

9. Interpreting the Output Vector. There now exists a vector with 

(at most) a single non-zero value. The vector can be returned to the 

software, and it can be converted to a number. For example, if the first 

position is numbered zero, the record number is k-1 when the kth 

coordinate is non-zero. Or the vector can be passed to a decoding circuit 

that performs the same conversion. The relative address of the record is 

calculated by multiplying the record number by the record length so that 

the record can be read directly. It is also possible to build the circuit 

to take the output vector from the MAXNET and convert it directly to the 

relative address.
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VI. THE IMPLEMENTATIONS

Three programs were written to compare the Hamming network 

implementation with software implementations. The following is a 

description of the programs. The conclusions drawn from the literature 

and the programs are given in the next chapter.

A. THE DATA

While doing research in another area, it was evident that textual 

keys presented an added disadvantage. Numeric keys can be compared in a 

straight forward manner. But text keys require comparisons of individual 

character positions which would increase the search time. And since the 

research demanded the fastest access method possible to effect the desired 

results, hash methods offered some promise.

The data is comprised of 25 PC-DOS commands and a brief description 

of their use and function. The command names are used as the keys. The 

maximum size of a description is 255 characters, so the record sizes were 

fixed at this value.

The programs serve as DOS help programs. The program prompts the 

user to enter a DOS command. The command is then passed through a hash 

function (or the simulated Hamming network), which returns the record 

number of the description in the data file. The arrangement of the data 

files is described with the particular implementations.

B. SOFTWARE HASH METHODS

The first two programs implemented two different funtions to get an
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idea of the complexities and flexibility of hash methods. For 

simplicity's sake, linear probing was used to resolve collisions. After 

testing the programs, the blank files were 49 records in length, even 

though this is almost twice the number of actual records. The reasons 

will be discussed shortly.

1. The Folding and Division Functions. As described above, due to 

the nature of the keys, the most convenient method is a form of the 

folding method. In the C programming language, strings of character 

variables are formed by allocating consecutive spaces to hold the ASCII 

character codes of the letters. Each code can be accessed directly, so 

the folding method could be implemented by treating each character as a 

distinct segment of the key and then adding their ASCII codes together. 

This was the first step in the first hash function used.

The second step forced the result to be in the desired range. The 

division method was used on the sum to get a value from 0 to 48, as the 

records are numbered in the file. Recall that this would involve dividing 

the sum by 49 and returning the remainder. Also, recall that if the 

number of records in the file is prime, the distribution is better over 

the set of keys. Though a file of 50 would present slightly less 

opportunities for collisions, there were in fact more collisions 

(including those resulting from rehashing) with the data used.

In Appendix B, it can be seen a number of collisions occurred as the 

last records were added. Apparently, the keys clustered around an area 

from record number 37 to record number 45. There were a total of 10 

collisions in this cluster, but only three of the records caused these 

collisions. And overall, there were only 14 collisions. This function
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performed adequately.

2. A Weighted Sum. As mentioned before, a second method was 

devised based on ordering the keys alphabetically. The factors each 

character code were multiplied by were, in order, .75, .08, .06, .05, .03, 

.02, .009, .001. Note that the last letters had almost no influence on 

the result. These factors were arrived at by testing different values, 

and since few of the keys had 8 characters (the maximum lenght of a DOS 

command), the last characters did not matter much.

Though the factors were tested and altered several times, there were 

still more collisions with this method than with the previous one. This 

was mostly due to the fact that there were clusters of keys in the 

resulting file because the commands were alphabetically close. In 

Appendix C, it can be seen that there were three small clusters of 

records. In one case, there was a range from record number 5 to 10 that 

filled up causing later collisions. In the other two cases, the record 

numbers 25 and 31 were returned 4 and 3 times, respectively. Overall 

there were 21 collisions, 1.5 times more than for the previous method.

3. Creating the File. The original data was stored in a sequential 

file that was indexed for easier access. The programs would read in the 

key and address for one of the entries from the index file. The 

description was then located and read in from the data file. The key was 

passed to one of the two hash functions described above, and the record 

number returned was used to write the description to the new data file. 

As was mentioned, linear probing was used for collision resolution. In 

this manner, the data files to be used with both hash functions were 

built, and a program had to be written for each function to do this.
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4. Reading Data from the File. Once the descriptions are stored in 

the new data file, a second program is used to access them. The program 

prompts the user for a DOS command. The entered command is passed to the 

hash function for the appropriate file, and the search is begun. If the 

key is not found at the record number returned, linear probing is again 

used to handle collisions. Once the key is found, the description is 

written to the screen, and the user is prompted for another command. If 

the key is not found, that is, if a blank key field is encountered in the 

search, the program reports this fact and again prompts the user for 

another command.

C. THE HAMMING NET IMPLEMENTATION

The Hamming network was implemented as described in the previous 

chapter. There were 8 characters in each key, with 8 bits per character, 

giving a total of 64 bits in each key and setting the number of inputs to 

the network to 64. There were 25 different commands in the data file, so 

there were 25 processing elements in the Hamming and MAXNET networks.

1. Initializing the Network. The index file mentioned above was 

used to load in the bit patterns of the keys (the ASCII codes of each 

letter) into the network. Since the bit patterns of the keys are 

represented internally by 0's and l's, they were converted to the required 

-l's and l's. These patterns, as described in the previous chapter, 

became the weights of the connections. Then the connections in the MAXNET 

were set as described above.

2. Running the Network. The user is prompted for a DOS command 

after the networks are initialized. The bit pattern of the command is
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converted to -l's and l's and presented to the network. The network 

processes the inputs as described. When the network converges, the 

outputs are checked so that the position of the nonzero output can be 

returned as the record number. The description is read from the file and 

displayed on the screen.

It was mentioned earlier that if a key was equally close to two of 

the exemplar patterns, the time for convergence increases. A feature was 

added to the program to force convergence when all the outputs are less 

than 0.00001, not just zero. Due to the way real numbers are represented 

in the C programming language, numbers become minute, and zero may require 

a long time to reach. After the network converges, the outputs are 

checked to see if there is a value over 0.00001. If so, there was a 

single exemplar matching the input closely, and it is displayed. If not, 

the outputs are checked for nonzero values (that will be less than 

0.00001). There will be more than one closely matching exemplar and every 

associated description is read and displayed after a message stating the 

output was ambiguous.



46

VII. A COMPARISON

Looking at the final product, the Hamming network implementation 

offers distinct advantages over the software implementation of hash 

methods. These advantages will be discussed, as will be the 

disadvantages. Some of the following observations come from implementing 

and running both versions.

A. DISK USAGE

One advantage the Hamming network implementation has over the 

software implementations and the indexed file methods is that Hamming 

networks need no more disk space than that necessary to store the data. 

Because of the mechanism of linear probing, free space must be available 

for collision resolution. Chaining also requires a number of blank 

records to be allocated to start the file, but not all of them necessarily 

get used.

Disk space is a major concern due to costs of secondary storage 

devices. They have come down in cost over the past few years, but they 

still demand optimization to be cost effective. Access speeds are also 

improving as technology advances. However, improved access times increase 

the cost of the storage devices.

B. FILE FORMATS

In a similar vein, the Hamming network requires only a simple 

sequential file. Since no collisions will occur, no special 

considerations have to be made for extra records or for chaining. With
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the conventional hash methods, as the file fills up, the gain in time is 

lost in collision resolution. So the need for free disk space in the data 

file must be met. The design of the file is greatly improved with the 

Hamming network.

C. SEARCH TIME

As the problem under consideration states, the time to access a 

record of data must be decreased to increase the efficiency of the 

computer's usage. The hash method improves access time by decreasing 

search time. There are two factors of the search time by which the 

Hamming network justifies its usage.

The first is the increase in speed due to a hardware implementation. 

With the hash function in hardware form, the Hamming network provides an 

immediate speed increase over the software implementation. It is not 

simply in going from machine code instructions to circuitry that this 

increase is found. The Hamming network is designed to perform many 

similar functions in parallel. Once the key reaches the inputs of the 

Hamming network, there is no number of instructions to count. The Hamming 

network is resolved in a single step because all the necessary operations 

occur simultaneously. And the MAXNET requires only a dozen or so 

iterations in many cases until it converges [Lippmann, 1987, 9],

The second factor is due to the way the Hamming network carries out 

the hashing. The file is defined beforehand, and the keys are made to map 

to the correct record number. There is no need for collision resolution 

as the network results in no collisions. Therefore, no time is spent in 

rehashing or in traversing chains of records to the correct position, and
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one of the disadvantages of hashing methods is thus eliminated.

D. MAINTENANCE COSTS

There is no apparent advantage in either implementation with respect 

to maintenance costs. For the software implementation, the file needs to 

be reconstructed before the file fills to prevent collision resolutions 

from slowing down the system. More free space must be added, and the hash 

function has to be revised to return the new range of record numbers.

In the Hamming network implementation, records just need to be 

appended to the file. But the Hamming network requires altering. If it 

is initially established with extra output nodes and their connection 

weights are set to 0, all that needs to be done as records are added to 

the file is to set the weights of one of the extra processing elements 

according to the key of the new record. Otherwise the network must be 

rebuilt entirely. How long this would take depends on the actual hardware 

used to build the network and should be considered when designing the 

system.

E. FILTERING NOISE

One feature available with the Hamming network, due to the basis of 

its design, is noise filtering. The Hamming network uses Hamming 

distances to select its output. Since the output processing element with 

the maximum value is selected, an exact match does not need to be found. 

If a mistake is made in entering the key, the correct key may still be 

found. With text keys, different tenses or misspellings may still 

generate the correct data. With the conventional hash method, if the key
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does not match exactly, there is no return data.

If the input matches a key exactly, the Hamming network is 

guaranteed to return the record number. However, if the input does not 

match a key exactly, it may have the same Hamming distance from two 

different keys. This will result in all the outputs being set to 0. 

Since the MAXNET reduces the values of each processing element by a 

fraction of the sums of the other elements, a point will be reached where 

the two are the only elements with non-zero values. The time it takes for 

them to reach zero will be slower than when this is not the case. Even 

when there are more than two, there are more values contributing to the 

amount each is decremented. This serves to speed up convergence.
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VIII. CONCLUSION

Though the problem under consideration is an old one and many 

solutions can be devised, adding neural network technologies gives a new 

dimension to viewing this and other problems. The Hamming network 

implementation of a hash function offers a solution, decreases the access 

time, and at the same time gives a flexibility not otherwise considered in 

filtering noise.

There are numerous problems for which neural network applications 

are being designed. Many of the designs consider the neural networks 

alone as the solutions to the problems. But the number of problems where 

existing technologies are the basis seems to be lacking. Radical promises 

made in the 60's and 70's are failing to emerge due to the failure to find 

the right atoms to describe intelligence [Vaughan, 1988, 346]. Until 

then, the old methods should be allowed to serve this purpose as best they 

can.

Computer science can benefit from the results of this research, but 

one has to be satisfied with more modest advances than were promised. In 

this case, the combining of a simple neural net paradigm with a software 

oriented algorithm gives definite and observable gains. Other areas of 

computer science will benefit similarly if ways of blending the two 

concepts together are discovered. It is a matter of identifying which 

ones are most compatible.
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APPENDIX A

Hamming Network Algorithm [Lippmann, 1987, 7]

Step 1. Assign Connection Weights and Offsets 

In the Hamming network:

0i = f '

0 <; i <; N  - 1, Os j <. M  - 1 

In the MAXNET network:

1, k  = 1

k  * 1, e < — ,
M

O z k , l < , M - l

In these equations w^ is the connection weight from input i to node j in 

the Hamming network, and 0 is the threshold in that node. The connection 

weight from node k to node 1 in the MAXNET network is tkt, and all 

thresholds in this subnet are zero. xJ,. is element i of exemplar j. Here 

and below N is the number of inputs and M is the number of exemplar 

patterns.

Step 2. Initialize with Unknown Input Pattern

N-l

M 0) = f t £
Vi-0

W ijX i ' 6 J

\

/

0 £ j  <. M  - 1

In this equation Pj(t) is the output of node j in the Hamming network at 

time t, X, is element i of the input pattern, and ft is the threshold logic 

nonlinearity. Here and below it is assumed that the maximum input to this



nonlinearity never causes the output to saturate.

Step 3. Iterate Until Convergence

H j (t + 1) - f t j (t) " e g  *( t) |

0 <. j , k  <. M - 1

This process is repeated until convergence after which the output of at 

most one node remains positive.

Step 4. Repeat for New Input by Going to Step 2.
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Key Record Col 1 i

assign 8 0
attrib 9 0
cd 3 0
chdir 32 0
cl s 28 0
comp 39 0
copy 2 0
dir 25 0
erase 38 0
format 12 0
join 40 0
label 22 0
md 13 0
mkdir 45 0
more 43 0
path 37 0
print 18 0
prompt 37 4
rd 18 1
rmdir 3 1
rename 44 0
subst 22 1
type 9 1
ver 39 3
vol 43 3
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Collisions for Hash Method Using Hash Function 2
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Key Record Col 1 i

assign 4 0
attrib 5 0
cd 2 0
chdir 3 0
cl s 5 1
comp 6 1
copy 7 1
dir 5 4
erase 8 2
format 10 1
join 15 0
label 15 1
md 17 0
mkdir 18 0
more 20 0
path 23 0
print 25 0
prompt 25 1
rd 24 0
rmdir 25 2
rename 25 3
subst 31 0
type 31 1
ver 31 2
vol 33 1



58

BIBLIOGRAPHY

Augustein, Moshe J. and Aaron M. Tenenbaum. data structures and 

pi/I programming. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 

1979.

Bower, Bruce. "The Brain in the Machine," Science News, vol 134 

(November 26, 1988), 344-345.

Brown, Robert Jay. "AI: An Artificial Neural Network Experiment," 

Dr. Dobb's Journal of Software Tools, vol. 12, no.4 (April 1987), 16-27.

Buffa, Michael G. "Neural Network Technology Comes to Imaging,"

Advanced Imaging, November 1988, 47-51.

Caudill, Maureen. "Neural Networks Primer Part I," AI Expert, vol.

2, no. 12 (December 1987), 46-52.

Caudill, Maureen. "Neural Networks Primer Part III," AI Expert,

vol. 3, no. 6 (June 1988), 53-59.

Caudill, Maureen. "Neural Networks Primer Part IV," AI Expert, vol.

3, no. 8 (August 1988), 61-67.

Caudill, Maureen. "Neural Networks Primer Part V," AI Expert, vol. 

3, no. 11 (November 1988), 57-65.

Caudill, Maureen. "Neural Networks Primer Part VII," AI Expert,

vol. 4, no. 5 (May 1989), 51-58.

Caudill, Maureen. "Neural Networks Primer Part VIII," AI Expert, 

vol. 4, no. 8 (August 1989), 61-67.

Caudill, Maureen. "Using Neural Nets: Part 1 Representing 

Knowledge," AI Expert, vol. 4, no. 12 (December 1989), 34-41.



59

Hinton, Geoffrey E. "Connectionis Learning Procedures," Technical 

Report CMU-CS-87-115 (version 2), December 1987, Carnegie-Mellon 

University, Pittsburg, PA.

Josin, Gary. "Integrating Neural Networks with Robots," AI Expert, 

vol. 3, no. 8 (August 1988), 50-58.

K1imansaukas, Casimir C. and John P. Guiver. NeuralWorks--An 

Introduction to Neural Computing. NeuralWorks User's Guide. Networks I, 

Networks II revision 2.00. Pitsburg, PA: NeuralWare, Inc., 1988.

Lippmann, Richard P. "An Introduction to Computing with Neural 

Nets," IEEE ASSP Magazine, April 1987, 4-21.

McClelland, J. L., et al. Parallel Distributed Processing: 

Explorations in the Microstructure of Cognition: Vols 1 and 2.

Cambridge, MA: Bradford Books, 1986.

Minsky, M, and S. Papert. Perceptrons. Cambridge, MA: MIT Press,

1969.

Pao, Yoh-Han. "Function Link Nets: Removing Hidden Layers," AI 

Expert, vol. 4, no. 4 (April 1989), 60-68.

Schwenk, Ulrich. VSAM Primer and Reference. IBM World Trade 

Systems Centers, 1979.

Silber, Margaret L. "Computational Tool or Curiosity," MOSAIC, vol. 

19, no. 2 (Summer 1988), 44-52.

Tremblay, J. P. and R. Manohar. Discrete Mathematical Structures 

with Applications to Computer Science. New York: McGraw-Hill Book 

Company, 1975.

Vaughan, Christopher. "Artificial Intelligence and Natural 

Confusion," Science News, vol. 134 (November 26, 1988), 346.


	A direct access method using a neural network model
	Recommended Citation

	tmp.1602080256.pdf.lOG5N

