
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

21 Oct 1993

Using Temporal Subsumption for Developing Efficient Error-Using Temporal Subsumption for Developing Efficient Error-

Detecting Distributed Algorithms Detecting Distributed Algorithms

Martina Schollmeyer

Bruce M. McMillin
Missouri University of Science and Technology, ff@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Schollmeyer, Martina and McMillin, Bruce M., "Using Temporal Subsumption for Developing Efficient Error-
Detecting Distributed Algorithms" (1993). Computer Science Technical Reports. 49.
https://scholarsmine.mst.edu/comsci_techreports/49

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/49?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

U sin g Tem poral Subsum ption for
D evelop ing Efficient

E rror-D etecting D istr ib u ted
A lgorithm s 1

Martina Schollmeyer and Bruce McMillin
October 21, 1993

CSC 93-28

Abstract
Distributed algorithms can use executable assertions derived from program veri

fication to detect errors at run-time. However, a complete verification proof outline
contains a large number of assertions, and embedding all of them into the program
to be checked at run-time would make error-detection very inefficient.

The technique of temporal subsumption examines the dependencies between
the individual assertions along program execution paths. In contrast to classical
subsumption, where all logical expressions to be examined are true simultaneously,
an assertion need only be true when the corresponding statement in the distributed
program has been executed. Thus, temporal subsumption based on the set of
assertions derived from a verification proof and in combination with the set of
all legal states in the system, allows for the removal of (partial) assertions along
execution sequences.

We assume a fault model of Byzantine (malicious) behavior, and therefore an
individual process cannot check itself for faults. We assume that a non-faulty
process will always perform the correct computation so that once external data
(obtained through communication) has been verified, the local computation does
not need to be checked. A non-faulty process can thus detect faults produced by a
faulty process based on the information it receives from it.

1This work was supported in part by the National Science Foundation under Grant Numbers MSS-
9216479 and CDA-9222827, and, in part, from the Air Force Office of Scientific Research under contract
numbers F49620-92-J-0546 and F49620-93-I-0409 and, in part, by a grant from the University of Missouri
Research Board.

1

1 In troduction
Error-detecting algorithms work by checking assertions, at run-time, to detect hardware,
communication [3] and software errors [8]. A properly chosen set of assertions, such as
those generated from program verification, guarantees that, when operationally evalu
ated, the program meets its specification [6].

Mili [9] was the first to notice the relationship between program verification and fault
tolerance of a program through software specified executable assertions. However, his
approach was designed for the sequential verification environment. The development
of executable assertions for a program in the distributed environment is more complex.
Since information given in an individual process can only be communicated by message
passing, the scope of the tests that may be performed by the local assertions is limited
to testing received messages and to testing the local state of a process.

The axiomatic approach to program verification is based on making assertions about
program variables before, during, and after program execution. These assertions char
acterize properties of program variables and relationships between the variables at the
different stages of the program execution [2]. Axiomatic proof techniques for distributed
systems are described in [10]. They include, besides the sequential proof of a program, a
proof of non-interference, a satisfaction proof, and a proof of freedom of deadlock.

In an error-detecting program we embed assertions derived from program verification
into the actual program code. In a possibly faulty environment, we require the executable
assertions in each individual process to examine the behavior of other, possibly faulty,
processes. This means that every process must be suspect of the data received from
any other process which it considers to be potentially faulty. The assertions are then
operationally evaluated at run-time.

We want to allow for Byzantine faultiness in the individual processes. This fault
model allows for malicious behavior such as sending inconsistent messages to different
processes. In general, a Byzantine faulty process will never be able to detect its own
faultiness and thus its errors can only be detected by some other, non-faulty, process.
Therefore, the assertions on the communication and the information received during the
communication are vital to detect possible faults in other processes.

A complete verification proof outline on a distributed program contains a large number
of assertions. There exist pre- and post-assertions to each statement in a program.
However, we do not want every one of these assertions to be evaluated at run-time. Since
verification proofs are tedious, often only parts of the program are verified completely.
Many times only an incomplete proof outline is available or assertions are weakened.

Thus, turning every assertion into an executable assertion would inevitably slow down
execution of the program due to the large overhead imposed by checking each statement
by the appropriate assertion. In addition, many redundant checks would be performed. In
responsive or safety-critical applications we only have a brief amount of time to perform
an operational evaluation and thus we need to select a subset of assertions that provides
complete error-coverage with minimal overhead.

The goal of this paper is to introduce a method for selecting this subset of assertions
such that the number of assertions is small and such that we can retain the same error
coverage in the program with the reduced set as with the complete set.

2

initial
state

final
state

Figure 1: Sequences of states leading from an initial program state to the solution

In the next section we give a brief summary of the method to be used. We then
explain the model of the system used in this paper to describe the individual processes
and their interactions in a distributed system. We introduce a method for reducing the
number of assertions from the original set of assertions to a smaller set of assertions
that achieves the goals described above. The method used is based on the theory of
subsumption.

2 R educing th e N um ber o f E xecutab le A ssertions
In this section we give a brief summary of the model to be developed in more detail in
the following sections of this paper. It provides an overview for the reader to be able to
follow along with the development of the theory. The respective definitions will be given
in the appropriate sections of the paper.

The model to be used here is based on a message-passing, distributed system. We
use states to describe the status of a distributed program. From a verification proof
outline we obtain assertions from each program statement, which imply the truth of
the current program state with respect to each individual process. The model of the
distributed program is based on interleaving semantics, which means that there exist
many possible paths through a distributed program, based on the partial orders of the
individual process executions. However, verification of the program must show that the
processes are non-interfering with respect to their proofs.

Figure 1 shows a set of paths through a distributed program from a shared initial
state to a shared final state, where the desired solution to the problem is found. Each
path denotes a sequence of states of the overall program.

This global sequence can be divided into sequences of local states for each individual
process of the distributed system. The outwardly observable events in such a distributed
system are communications only. The individual state-to-state transitions within the
distributed program, which form an execution sequence, are not observable. Between

3

communications, there exist strictly sequential execution sequences for each process, and
the sequences for all processes can be interleaved based on the individual partial orders
and requirements with respect to communication. Figure 2 shows some global states for
a distributed program with three processes. This figure gives a general idea of how the
global states can be obtained by performing cuts across the complete set of processes.

Figure 2: Different possible global states in an interleaving program

Each of the global states described in Figure 2 forms one of the possible states given
in Figure 1. Such a global state which describes the overall program status can also be
called a world. Sequences of worlds make up possible executions of a program.

From a verification proof outline of the program we obtain assertions for each individ
ual process which describe the conditions that have to be met after the execution of each
individual statement. We use these assertions for error detection and embed them into
each of the individual programs for error detection. However, the number of assertions
obtained from such a verification proof is very large.

To reduce the number of executable assertions to be embedded into the program
for error detection, we want to remove the ones that are implied by others that have
been encountered earlier in the program. It is apparent that the later assertions will be
redundant with respect to error detection since we assume that we can only detect faults
in other processes. We can subsume these assertions, and we will restrict the subsumption

4

to occur between communication points only due to the reasoning above about partial
orders.

Figure 3 gives an overview of the scope of this work. We will perform the reduction of
assertions only for each of the local processes and we will not concern us with the global
system in general. In addition, we will restrict ourselves to performing this reduction of
assertions in an environment only that allows for soundness and (relative) completeness
of the system to be used.

Figure 3: Scope of the work presented in this paper

In the following section we introduce the foundations of the system model and then
continue with a discussion of how to transform the subsumption theory discussed in
the field of automated reasoning into a theory used for removing assertions in the proof
outlines derived using axiomatic semantics.

3 Tem poral Subsum ption
In this section we first give a brief overview about other work done in this area and how
it relates to the results presented here. The work in subsumption that is described in [1],
and which appears to be the only other work in this area, is a very general model which
is not directly applicable to program verification and the methods described here.

After the discussion of the general model, we then introduce the terminology used
for the remainder of the paper which deals specifically with distributed systems. We will
describe the derivation of temporal subsumption from classical subsumption and will
then provide the inference rules for the model at hand.

3.1 Subsum ption in M odal Logic
In recent years, non-classical modal logics have gained more and more acceptance. Be
cause of the increased use of such logics, automated deduction systems have been devel
oped to make proofs using these logics easier. Subsumption has long been known as a

5

technique to detect redundant clauses in the search space of automated deduction sys
tems for classical first order logics. Because of the need to develop similar techniques for
non-classical modal logics, [1] examined how subsumption can be made to work in the
context of these modal logic deduction systems.

Modal logics, such as temporal logic, reason about possible , i.e. not every
statement made will be true all the time but only in certain specific worlds. Paths can
lead from one world to the next, and depending on the path selected, different truths can
be shown. Thus, it is easy to see that whatever needs to be proven depends on a specific
path, and a logic called World Path Logic (WPL) is introduced in [1] as a possible target
language in which a proof can be done. [1] then continues to develop a subsumption
model which will work in this environment. For more details, the reader is asked to refer
directly to the material presented in [1].

It can easily be seen how this this concept of sequences of worlds and paths con
necting them could be related to programs and the program statements which are also
connected by “paths” through the program. The approach by [lj, although more ab
stract since it deals only with modal logics as such, was developed concurrently at UMR
with the approach presented in this paper. In contrast to the work by [1], the model
presented in this work deals specifically with distributed programs and describes a very
different approach for generating subsumption rules as they are very closely linked to the
application, distributed programs.

3.2 Terminology
A distributed program P consists of a set of processes running concurrently on a set of
n processors. Each individual process P ;,l < i< constitutes a sequential program.
For each of the individual processes there exists a proof outline 93; which contains the set
of assertions inducing the program. An assertions </> is a logical expression, derived from
program verification, which describes the conditions that must be met by the program
in connection with a particular program statement. We use the notation to denote
the assertion associated with a program statement t. The assertion then describes a
state which is expected to be true after the statement t has been executed. The state
associated with t is denoted by st.

Definition 3.1 The set of assertions derived from a verification proof outline is called
the set 03, and that the set of all states s that can be true in the corresponding program
for all paths taken through the program and all initial conditions is called the set 6. For
an individual local program P;, the respective sets are called 93;, which corresponds to the
proof outline of the local program, and 6 ;, the set of local states.

For the remaining part of this section we will examine only global states which describe
the status of all individual processes combined. These global states are not attached to
an individual statement but are formed by the local states which may be true simultane
ously. All global states permitted in the program, independent of an individual execution
sequence, are contained in the set 6.

(Note: We allow for interleaving semantics and we will not describe in detail how the
global states can be obtained and attached to the statements and states of the individual

6

local processes. It suffices to say that this transformation can be done but a detailed
explanation would add too much bulk to this section. The reader is asked to accept that
such global states exist since we will refer to them here only in the abstract sense. In a
later section we will refine this model to work with local processes.)

The execution of a distributed program can be decomposed into a relation on the
individual local processes P;, based on the individual proof outlines Vi containing the
sets of assertions 9J;. Thus, a program execution E describes a set of snapshots of the
global system based on the execution of the individual processes, i.e.

E C {#! X 0J2 X X • • • X 2J„}

and E is only a subset of the cross-product since, due to communication and synchro
nization, some combinations of assertions in the different individual processes may not
be allowed to be true simultaneously. A program execution thus describes the set of
consecutive truths with respect to the assertions in the individual programs.

An accessibility relation describes which states can be reached directly from a cur
rent state by executing the next program statement in any one of the individual pro
cesses. Based on the accessibility relation, a distributed program will move from an initial
(global) state to a state at which the solution to the problem to be solved is obtained.
The accessibility relation can also allow for synchronization of processes at communica
tion points by forcing a process, that has reached a communication or synchronization
point, to wait until the other participating process has reached the corresponding state
in its program.

An execution of a distributed program, based on an initial state satisfying its pre
condition, and an accessibility relation, provides a state sequence consisting of a set of
global states C 6 that forms a possible program execution.

Definition 3.2 The projection function 11; gives the mapping from the global view of the
distributed system into the local view of an individual process. Thus, for any specific state
St £ 6 in the global proof, 11;(s*) = s\ denotes a local state in process P;. slt can then be
associated with an individual program statement and its post-assertion in the local proof.

The accessibility relation R guarantees that during the execution of a distributed
program at least one of the processes will make progress, i.e. execute the next statement.
If a state Sj £ 6is directly accessible from a state s; 6 6, i.e., sj is a possible next state
of S{, then we denote this by writing s;R.Sj, where both .s,-, sj £ &. This can also be
written using the notation Sj = sf.In a distributed program there may at each step
exist several next states, depending on which of the processes make progress.

Definition 3.3 A general accessibility relation, without special considerations with re
spect to communication or termination, is a binary relation R on the set of all states &,
as follows:

smR sn Vi[(II;(sn) = n,-(sm)) V (II;(sn) = (II;(sm))+)] A 3j[Uj(sn) = (Ilf(sm))+]

7

Definition 3.4 A transitive relation that gives the set of all (global) states Sj that can
be reached from an initial state S{ £ 6, the set of future states of S{} is given as

RSi — ^ ^ I (3iSri ? Sr23 ’ Slich that SriR.«Sr25 ' ' ' 7 *-vm

so that RSi denotes the set of states that are possible in the future of Si.

Properties that depend on the transitivity of the accessibility relation can be defined
based on the set RSi. For example, given any two states s*, sj £ 6, if Sj £ Rsn then we say
that Sj is reachable from S{. In our definition, a possible interpretation of ”reachability”
is equivalent to finitely many applications of ’’accessibility”.

Definition 3.5 A forward concurrency point describes a state sj £ 6 that will occur in
every possible execution sequence at some time in the future of the current state S{.

(Vsr £ 6)((<sr £ RSi A sr ^ Sf) —> sj £ R Sr))

Definition 3.6 Correspondingly} a backward concurrency point describes a state s ̂ £ 6
that must have occurred in every possible execution sequence at some point in the past.
Thus9 (\/(si ^ sb A ->(s& £ RSi) A Si £ 6)(.s; £ RSb).

The intermediate states between concurrency points can vary dependent on differ
ent interleavings of the individual processes. They form an execution sequence which
represents a possible path through the distributed program.

We can also define partial concurrency points, which are concurrency points that will
occur for a subset of processes only. An example for this are communication points during
synchronous communication: both participating processes need to reach a state in which
a matching communication pair is formed.

Using this model, we can describe how a program can reach a fixed point in its
computation, i.e., the desired solution. This will be a forward concurrency point with
respect to the accessibility relation: all possible execution sequences should lead to the
termination point at which the solution will be presented. This requires that a unique
solution exists and that it can always be reached. This fixed point corresponds to a state
associated with the post-assertion of the distributed program.

4 Subsum ption o f A ssertions: T he Full M odel
A state St is associated with an assertion cj)t such that St is true after the program
statement t has been executed. However, this connection between state and statement
is obvious only in a local process but not for the distributed system as a whole since
we do not have global statements. As mentioned before, assertions describe properties
of program variables and relationships between the variables at the different stages of
the program execution. Assertions are usually expressed in predicate logic, and therefore
executable assertions are logical expressions which are expected to be true during the
execution of the program after a particular program step.

8

Definition 4.1 Formally, an assertion on a program statement t, is associated with
a state st (E 6, which must be satisfied after the execution o ft. Thus,

st h

where is an assertion which is part of a proof outline, i.e. <ft G 21. At the same time,
there exist several states sti which could be true after a statement t is executed, depending
on which path through the program was selected and which initial state was given. Thus,
for each assertion <f)t on a statement t ,

4>t ^ £ 6

We now define a model that allows us to decide which of the many assertions that
are contained in a complete proof outline must be retained so that all faulty behavior
that can be detected by the complete set of assertions can still be detected with the
reduced set of assertion. We base our model on the theory of subsumption. We remove
assertions in a proof outline that are already implied by other assertions since they do
not contribute to the error coverage provided by the other assertions. Also, executing
these redundant assertions will only cause the execution time of the program to increase.
Thus, we remove assertions that can be subsumed by earlier assertions.

Subsumption provides the mathematical justification for assertion-reduction tech
niques that may seem intuitive to those familiar with the derivation of proof outlines of
distributed programs and the selection of subsets of assertions to be embedded into a
program as error-detecting executable assertions.

In the (automated reasoning) literature, subsumption is defined as follows [5]:

Definition 4.2 A clause C subsumes a clause D if and only z/VC —?► VD is valid, and
VC is the notation for the universal closure of the clause C .

In automated reasoning all clauses to be examined are in skolemized form and thus
contain no existential or universal quantifiers. Using assertions on a program or in a
proof outline, we do not want to skolemize but rather keep the quantifiers, and thus we
will use the following, refined, definition for subsumption.

Definition 4.3 A clause C(x) subsumes a clause D(x) if and only if (Vx)(C(x) —>
D(x)) is valid.

The justification for this refined definition can be found in Appendix A.
To define subsumption on a set of assertions in a verification proof outline, we look

at current and future program states and the corresponding assertions. For right now
we simply consider a set of assertions obtained from a verification proof and the set of
states of the corresponding program.

At this point we will neglect the connection between program statements and asser
tions or states but use abstract states and assertions not attached to any specific program
statements to introduce the subsumption model. In a later section we will then refine
the general subsumption model obtained here and combine the local program statements
with the assertions and the states they describe.

9

Let S{ be a state of a program P and let Sj be a state in the future of s;, i.e. Sj G RSi
and Sj G 6. Then there exists a sequence of states s*, sri, sr2, • * • , <srm, Sj G 6, starting
at Si and terminating at Sj, which must be expressible using the accessibility relation R,
such that SiRsri, sriR sr2, * * * , srmRsj is a permitted sequence of states and sr.+1 = s f .
Each of the states is associated with an assertion <f> G 27.

We now need to modify Definition 4.3 to fit a proof outline and the assertions con
tained in it rather than just a collection of clauses in propositional logic. For this we need
to remember that during a program execution not all assertions can be true at the same
time but that we evaluate assertions along a path through the program. This means
that subsumption is not performed on a set of clauses, which all must be true simultane
ously as in automated reasoning, but we perform temporal subsumption which describes
dependencies between current and future states in the program. We will express these
dependencies using the accessibility relation and its transitive closure.

In order to describe this temporal dependency between assertions, we will use a symbol
different from the regular implication since we do not want to perform classical
subsumption using logical implication, but temporal subsumption with respect to the
predicate transformations encountered during the program execution.

Definition 4.4 An assertion fa implies a later assertion fa along a path e through the
program with respect to the predicate transformations along this path, if we have an
execution sequence e, starting at S{} terminating at Sj, i.e.}

e — R,s _̂j_25 •; i ITsj

such that Si \=h and sj f= <pjand SjE RSi. We can write this as) which
can be abbreviated by writing (fa f a <pj).

We first consider the basic case of temporal subsumption derived directly from Defi
nition 4.3. We will call this method of subsuming assertions (23,

Definition 4.5 An assertion fa associated with the state s; (23,6) -subsumes <pj associ
ated with Sj along a path e starting at sl and terminating at if and only if

(sj E R Si)A (fa fa)

Definition 4.5 provides the temporal connection between sets of assertions by requiring
the assertions to be examined for (23, S)-subsumption to be assertions on states in the
future of an initial state s*. In addition, it removes the requirement of the universal
quantification in Definition 4.3 since the assertions are examined sequentially, one step
at a time, instead of concurrently.

As mentioned before, an (executable) assertion that can be (23, 6)-subsumed by an
other assertion can be removed from the proof outline (or from the program) without
changing the fault coverage of the program, i.e., the program’s ability to detect errors.
It can be seen that the (23, 6)-subsumption process retains all assertions containing new
information, since these assertions are generally not implied by any previous assertions,
and future assertions containing equivalent or dependent information will be subsumed.

10

However, we need to guarantee that assertions in the future of .s,- are (93, 6)-subsumed
and removed only if they are related to fa.Thus we expand on Definition 4.5 to ensure
a direct dependency between the two states and and the corresponding assertions
fa and fa.

Definition 4.6 An assertion fa associated with the state (93, (S)-subsumes fa associ
ated with Sj along a path e starting at s; and terminating at Sj, if and only if

(sj G RSi)A (fa -A fa)/\
(Vsr G S)(sr G RSi A Sj G RSr “A- ((</>; —>• </v) A (</>r —>• <j>j)))

This guarantees that fa and <fj are directly related since there exists no intermediate
assertion <fr that would prohibit fa to be (93, 6)-subsumed by fa

(Note: at this point in time we still only look at a set of assertions derived from
program verification and not at the statements associated with them. For more detail
on how assertions can be determined from a program using axiomatic semantics see [2]
and [4]).

To reduce the number of assertions that need to be examined as candidates for (93,
subsumption, we want to divide the program into parts that can be examined indepen
dently. In general, we want these sections to be enclosed by a forward and a backward
concurrency point. As described earlier, non-interference of the sequential proofs allows
for arbitrary interleavings of the execution sequences of individual processes, and two
processes only synchronize when vital information has to be exchanged. In a proof envi
ronment using global auxiliary variables (GAVs) in the assertions, we can delay the com
munication of the GAVs until an actual communication occurs. Thus, GAVs are treated
as local variables in each process and become known to other processes only when they
are communicated instead of being communicated and known instantaneously. This is
possible due to the non-interference of the sequential proofs [7].

Since this delay of the communication of the ’global’ knowledge contained in the
GAVs retains the soundness and (relative) completeness of the proof system used for
the verification proof, we can use the same boundaries here for the (93, 6)-subsumption.
This means that we subsume between communication points only, which will provide our
backward and forward concurrency points.

D efinition 4.7 A communication point describes a global state in which two processes
have synchronized and are communicating with each other.

We thus modify Definition 4.6 to allow for subsumption between two concurrency
points, associated with the states sci and sc2 £ © , as follows:

Lem m a 4.1 An assertion fa associated with the state s, (93,6)-subsumes fa associated
with Sj along a path e starting at s, and terminating at Sj, between the concurrency points
sci , s C2 G &, if and only if

(si G RScl U {scl})A (sjG RSi) A (sC2 G
(fa —y fj) A (Vsr G ©)(sr € RSi A Sj G RSr ((fa > fa) A (fa

and cl and c2 are the backward and forward concurrency points, respectively, correspond
ing to two consecutive communication points in an execution sequence.

11

This lemma follows directly from the reasoning above and [7].
During program execution, and thus in the proof outline, only few variable values or

relationships change from program step to program step. Assertions describe program
states and they are therefore often conjunctions of clauses describing individual variables
and their relationships with other variables.

Definition 4.8 assertion fa associated with a state G © can be factored into a set
of partial assertions where

= {fa | (fa fa) A -'(fa -» fa) A
fa = fa,lA fat2A • • • A fatn}

and each fa is a partial assertion.

When we perform (23, ©)-subsumption, we want to remove as many assertions, or
partial assertions, as possible. Thus, we want to consider all of an assertion (pj as
we look for subsumable conjuncts of cpj. We can thus expand Definition 4.6 to allow for
subsumption of partial assertions (between concurrency points) as follows:

Definition 4.9 The assertion fa associated with the state st (23, 6)-subsumes the partial
assertion ipj associated with Sj along a path e starting at st and terminating at Sj, between
the concurrency points ,sci, sc2 G 6, if and only if

(•sci)'sc2 G ©)A (S{G RScl U {s ci}) A (Sj6) A (sC2 G) A (fa —> A
(Vsr G ©)(sr G RSi A Sj G RSt ->■ (3 fa) ((fa fa) A (fa A A

ipj G A faG 4>r)

Subsumption on partial assertions thus reduces the overall number of assertions as
well as the size of individual assertions, which means that the individual assertions can
be weakened.

Definition 4.10 The set of critical assertions is the set of partial assertions fa at
every state Sj G 6 such that

Went = \J\/Sies{'lPi\fa cannot be (93,©)- }

->(3sr G ©)[(s< G RSr) A (fa A fa) -»■ (Vs< G ©)(st G RSr A Si G R3t ->•
A 1Pt)((fa fa) A (fa — > A fa G A fa £ $t)]

The set of critical assertions provides the set of assertions that is required to detect
all errors caused by a faulty process. Thus, it is an important set of assertions to be
embedded into the program as executable assertions in an error-detecting program. Since
processes are unable to detect their own faults, we need to ensure that error-detection can
be performed by other processes through the variables and values that are communicated.

Since we delay the exchange of GAVs to occur at the same time as a regular com
munication, we can take advantage of this combined communication of variables and
limit (23, ©)-subsumption to occur only between communication points as described in

12

Lemma 4.1. Thus, we can enforce that after each communication all state information
will be verified, since it is new information for each subsumption process, and addition
ally, after the communication, all variable assignments that involve new information are
checked through assertions as well.

Theorem 4.1 Subsumption between concurrency points provides a set of (partial) asser
tions that includes the critical set, Thus} the following condition must hold:

®crit !“== ®conc.points

Proof: The set of critical assertions is a subset of the (partial) assertions such that
no assertion can be derived from any preceding assertion for every possible execution
sequence (see Definition 4.10). We need to show that if a partial assertion ipcrit £ %3crit
then if crit £ ĉonc.points must also hold.

We assume that there exists a partial assertion ipcrit that is a critical assertion and
occurs al slate scra. This means that between concurrency points cl and c2 the assertion
cannot be (21, 6)-subsumed under the following condition:

if crit £ 0̂conc.points

“'(3sr £ @)[(sr £ Rsc i U {*Scl}) A (Scrit £ ^ (^c2 £ -̂ AScrit) A (<ĵ r ̂ P̂er it) ^
(Vst G S)(st G RSr A scrit G Rst —>■ ̂ 'fit) A (if>t A

^ critG <&crit A G $;]
This means that for concurrency points we restrict the subsumption to the subset

of states between ,sci and sc2. In Definition 4.10 we (21, 6)-subsume for the set of states
64.10 = (Vs* G &)(scrit G RSt)i which describes states occurring before 4>crit is encountered.
Between concurrency points we (21, 6)-subsume for the set of states

= ^ ^ scl ̂ A Scrit G

Thus, Sconc.pointŝ 64.10 since the set of states to examine is limited. If - ’(Bs; G 5'4.io)(</>i
(2J, 6)-subsumes 'ficrit) then it follows that ->(3 G Sconc.points)(<f>j (21, 6)-subsumes
Since Sconc.pointŝ 64,10* t—1

5 Subsum ption in th e Local P rocesses
The subsumption model introduced in the previous section is designed for the verification
environment of a distributed system where a compositional proof system is used. As
mentioned before, we generally have multiple processes that execute in parallel. The
non-interference of their sequential proofs is vital for a proper functioning of the program.
If we examine the individual assertions in the local processes, we can see that each of
them describes part of a global view such that none of them interfere and such that an
existing global invariant is never violated.

For a local process Pi we now have statements t \ corresponding assertions <j>\ and
matching states sj, as described in Section 4. The set of permitted states for this process
is denoted by 6,- and the set of assertions is a part of the verification proof outline and
thus the assertions are in 21;.

13

5.1 Terminology of a M essage Passing Environment
In the full model of (2J, 6)-subsumption, as described in the previous section, we can
examine a global proof of the system. However, in an actual implementation of a dis
tributed system, we have non-interfering proofs and thus independent processes which
exchange information through message passing. Thus, a temporally consistent global
view is hardly ever required, and usually not even observable. However, by combining
all local views, a complete snapshot of the system can be obtained which does not need
to be consistent, i.e., local copies of global variables don’t need to have the same values.

For example, the accessibility relation R, which describes the transition from one
global state to the next, and the set RSt, which provides the set of all states that can
be reached from an initial state st, are not observable at run-time since we do not know
at all times the actions of each individual process. In general, we cannot predict which
global state will be the next state in an execution sequence since the set of possible next
states allows for any one or even all of the local processes to make progress. Only at com
munication points can synchronization ever be achieved. During consecutive executions
of a distributed program, based on the same initial state, there thus exist many different
possible execution sequences which nevertheless will arrive at the same final state. This
is caused by the non-determinism of the progress of the independent processes which pro
vides a large number of possible interleavings and thus a correspondingly large number
of possible states.

For processes whose proofs are non-interfering we thus want to concentrate on the
local accessibility relation R, which provides a possible next state for each individual
process Pi.

Definition 5.1 The projection function n , provides the local view of a process P{ such
that n,(R) = R„ as given in Definition 5.2. From the proof outline SJ,' of the individual
process P{, the projection function obtains the local assertion f>\ on the statement t% in
Pi, describing the local state s\.

Definition 5.2 The local accessibility relation Rj for process is obtained by using the
projection function n on the global accessibility relation, i.e., R; = n ^ R). It provides
the next state (s^.)+ that can be reached from the local state s].. It is defined only between
communication points, i.e., concurrency points.

An execution sequence for a local process Pi can be expressed by using the local acces
sibility relation R,, such that sj0R is a permitted sequence
of states. Thus, si £ R j means that si is an element in the set of future local states1 f'Tl *{0
of . The next local state can thus be determined based on an initial state, the infor
mation that was received during communication, and the path that is taken through the
program.

T heorem 5.1 Each process P;, 1 < i < n, constitutes a sequential program which forms
a well-ordered sequence T{ between communication points or points of non-determinism,
based on an initial state s\0) where

Ti = {s^ lt2’> >Stk

14

and where s\Q is a communication point and s\n is the next communication point in the
local execution sequence.

(Note that s\ precedes s\k in T{ if j < k and thus s\, is executed before If k = j + 1
then s\k is the local state immediately following s\. and there exists no other state in T{
that comes in between. This is also denoted by writing ($J)+.)

Proof: A global proof of a distributed system consists of the conjunction of the non
interfering sequential proofs 9J*. Between concurrency points it does not matter which
process is making progress as long as at least one process does (Definition 3.3). Without
loss of generality we can therefore assume that, between concurrency points, only one
process Pi is making progress while all other processes are idle. This means that between
concurrency points cl and cl G 6

(30 (

(3s,.fc e (S)(*5ciR,.Sro, S}*QR,Sri, lR«sC2) A
s* R ■ s1 R ' A (V; + «)(Vfc)(Uy(SrJ = = si,))

where the s^ are states local to process P{ which can be obtained through the projection
function IIi(srk). Thus, for each individual step srfe+1 = sfk in the set of global states 6
between the concurrency points the following must hold:

(Vi 5* i)(nj(«rM1) = n ,(srt)) A (n ,(sr>+1) = « j +)

Once P{ reaches its next concurrency point it will wait for the process(es) it needs to
synchronize with and it becomes idle. Then another process will proceed. The accessi
bility relation R as defined in 3.3 allows for this consecutive sequential execution of the
individual processes. Thus, H fE) provides the sequential proof 9J; of an individual pro
cess Pi between concurrency points and thus a well-ordered execution sequence between
communication points can be obtained and labeled as T*. □

We now define the local accessibility relation R ,■ to obtain this well-ordered execution
sequence directly from the sequential proof.

6 Subsum ption R efined for a Set o f Local P rocesses
As mentioned before, in a compositional proof systems we do not have assertions on
global states. Therefore, we use local assertions on each local execution sequence. For a
specific process P;, a local assertion <p\.provides an assertion describing the local state
s\ ,̂ and the program state and a statement of the program are related as in Definition 4.1.
We now assume a specific process P and we will use no superscript to indicate that we
are now looking at local expressions only. Instead we will label each statement within the
local program as tj which is associated with a corresponding post-assertion <t>t, without
any superscript indicating a particular process.

Using only local processes, we can now refine the subsumption model given earlier
into a model designed for the local environments of a compositional proof system.

15

T heorem 6.1 For an arbitrary process P } the assertion <j)ti describing a state s%\ local
to P (23, 6)-subsumes the assertion <ft2 describing a state st2 local to P, along a path
if and only if

(st2 G RStl) A <̂ 2) A
(Vsr G &local)(Sr £ Rsn A St2 G RSr ~> ((</>tl 0r) A (</>r —̂ ^ 2)))

where the r are intermediate statements in the program, <fr are the corresponding asser
tions and the sr describe states in the execution sequence which are implied by assertions
in the proof outline.

Proof: Instead of arbitrary states S{,Sj we now use local states st associated with
program statements t. Thus, based on Definition 4.6, we replace states Si and Sj by the
local states 5*1 and st2, and the intermediate state sr in 4.6 now becomes a local state
sr. From this substitution, immediately the above theorem follows. □

We again introduce concurrency points as subsumption boundaries. This is based on
efficiency reasons as well as error-detecting ability and the soundness and completeness
of the proof system used [7]. We want to verify the correct execution of each statement,
and we also want to ensure that data that was obtained from other processes meets its
specifications and that the current states are permitted states. Thus, we restrict the
subsumption to be performed between communication points only, i.e., the concurrency
points, and we verify the complete state after each communication.

T heorem 6.2 The assertion <fn describing the local state St 1 (23, 6)-subsumes the asser
tion <f>t2 describing st2 between two statements cl and c2 along a path e, where sc2 G RSc\)
if and only if

(sti G RSc 1 U {sci}) A (st2 G RSti) A (sc2 G RSt2) A ^ 2)A
(Vsr G <5local)(Sr £ Rsn A St2 G RSr ~> ~> <t>r) A (<f>r <̂ 2)))

where cl and c2 are the backward and forward concurrency points, respectively, corre
sponding to two communication points in the proof outline.

Proof: As in Theorem 6.1, we use the local states t l and t2 instead of the states S{
and Sj, and we also use the local state sr instead of the global state sr as the intermediate
state. The theorem then follows immediately from Lemma 4.1. □

The (23, 6)-subsumption for the local processes can also be extended for partial as
sertions. This refined version can easily be obtained through a similar derivation from
Definition 4.9.

Theorem 6.3 The assertion <f>t\ describing the local state sti (23, 6)-subsumes the partial
assertion on state st2 between two communication points cl and c2 along a path e,
where sc2 G jRSc1 } if and only if

(sti G RScl U {*5ci}) A (5*2 £ Rsn) A (sC2 G Rst2) A {<j>n ^ 2)A
(V^r G &local)(Sr £ Rsn A St2£ Rsr —•t ((<M Ipr) A (tpr ^ 2)) A

1pt2 £ $t2 A Vv £ $r)
Proof: We use the same reasoning as for Theorem 6.2 and Definition 4.9. The

theorem then follows immediately. □

16

7 Subsum ption in a Program
The following discussion provides a model for subsumption for each sequential process
in a distributed system. The general subsumption rule given in Definition 4.9 can be
refined for the programming constructs such as branching, looping, and non-branching
execution.

The computation and program counters are part of each local state. To simplify
the relationship between states and statements, the computation counter is added at
run-time and incremented by one for each statement execution. It thus provides the
execution sequence for any program execution. This allows us to express relationships
between states which are now firmly associated with a statement. The value of the
communication counter for a specific statement may vary from execution to execution.
Also, all program execution in a loop is unrolled so that each statement in the program
will have a unique label.

Definition 7.1 The binary relation -< on the set of statements in an execution sequence
indicates, based on the computation counter, which statement is executed before another.
Thus, t\ -< t2 means that statement t\ is executed before statement Therefore, in
an execution sequence the state st2, which is true after executing statement must be
reachable from state stl,at statement i \ , i.e. £ RSti.

T heorem 7.1 The binary relation t\ - < t2 is anti-symmetric and transitive.

Proof: The anti-symmetry of the relation can be shown by examining an execution
sequence and the set of future states. If t\ -< then s<2 must be reachable from stl
and thus st2 £ R Sti. This also means that the computation counter at stl is less than
the computation counter at s<2. Because of a resulting conflict with the computation
counters, it can never be true that stl £ RSt2.Therefore, the binary relation -< is anti
symmetric.

For transitivity we need to prove that ((£i -< A ~< -» -< t3). Based on
the computation counter, if t\ is executed before then st2 £ RSti. Similarly, for -< t3,
s*3 £ RSt2. Due to the transitivity of the reachable set , we can conclude that £ RStl
and thus t\ -< t3. Thus, the binary relation -< is transitive. □

Definition 7.2 The binary relation = on the set of program statements in an execution
sequence indicates, that the program statements examined have the same computation
and program counters, and that they have the same state associated with them. Thus
t]_ = t2 means that the two states associated with t± and t2, stl and s<2, are identical.
This relation is reflexive.

T heorem 7.2 For any execution sequence, the binary relation on the set of statements
(ti < t2) •<=>■ (fi -<t2 \/ ti = t2) describes a total order based on the computation counter.

Proof: The statements ti and t2 provide the value of the computation counter at
which the respective states and st2 are or become true. Since the relation = is reflexive

17

and it is combined with the relation -<, which is anti-symmetric and transitive, it follows
that < must be a partial order, i.e.,

(V(.tu t2))[((ti,t2)E S= V (<i,t2) E S J ((^1 ,^2) € 5<)]

where the sets ,5' indicate the sets of all ordered pairs in the corresponding relations.
To prove a total order, we need to show that any two states within an execution

sequence are related by the relation <. For an execution sequence sto'RlStl ,
• • • , stn_lR istn and two arbitrary states st< and st within this sequence, we can determine
RSt. and RStj and therefore whether t ,--< tjor tj -<ti as described in Definition 7.1. Thus,
for any pair of states stiand stjif -'(ti = tj) then (ti -< tj) V (tj -< ti) must hold, i.e., one
of the statements must be executed before the other. Thus, < forms a total order. □

In contrast to Definition 4.9 where we “attached” the execution sequence between
two states and performed (03, 6)-subsumption, we now look at program statements in a
program with unrolled loops and subsume between them. Thus, we examine the set of
all statements X in an execution sequence and subsume between them for the different
possible types of programming constructs. We call this revised model, based on the set
of assertions and program statements, (93, X)-subsumption.

In order to determine the status of the current computation, we define a function
at(tk) which compares the value of the current program counter with the value of the
program counter for statement tk-

Definition 7.3 The function at(tk), where is a branching or looping statement of the
program, checks if the current program counter corresponds to the program counter value
for statement tk- I f at(tk) is satisfied then the guard is satisfied and we have an execution
sequence e = stjR,-st .+1, • • • , stk_1R-iStk where <ftk must be true at Otherwise,
evaluates to false, stk is not the next state in e.

Definition 7.4 A tag point is a program statement that denotes either the start or
the end of a particular program construct such as a branching, looping, or strictly non
branching construct, or a communication point.

7.1 Non-Branching Programs
A program segment without any branching can follow only one path. Thus, the subsump
tion process evaluates, starting at an initial state, if there are any (partial) assertions
along this path which are implied by the current assertion according to Definition 4.9 with
respect to the predicate transformations. These assertions can then be (5J, X)-subsumed.

We can describe a non-branching program segment with no embedded communication
points using the local accessibility relation R;. Starting at an initial state Sti there exists
only one possible state sequence to the end of the non-branching segment.

Definition 7.5 The local accessibility relation R; for a non-branching program gives the
(unique) next state based on the current state in process Pi- SqR,-sq.+1 means that tj+i
is the statement to be executed immediately after statement tj and there exists no state
between stj and stj+l.

18

An execution sequence for a strictly non-branching program between two tag points
k\ and k2 and no intermediate communication points is

&k\ R*^tl , >S<i RjSj[2, j SjnRj'5^2 A (Vsr G S{)(^r £ A G R sr ̂ — ■Sq))

and &i denotes the set of local states of process P,.
Since we cannot subsume across communication boundaries, there exist three different

cases for strictly non-branching segments: (1) The initial state is a tag point k\ and the
terminal state is a tag point k2, and neither ki nor are communication points; (2) The
initial state is a communication point c\ and the terminal state is a tag point, In this
case, ci becomes a tag point; (3) The initial state is a tag point ki and the terminal state
is a communication point, c2. In this case, c2 becomes a tag point.

From now on we will divide non-branching segments containing communication points
into separate entities where the communication points become tag points and where the
other tag point in the sequence is set by either another communication point or by the
beginning or end of a new programming construct.

T heorem 7.3 In a program segment enclosed by tag points k\ and either of which
may be a communication point, with no communication points contained in the execution
sequence, the post-assertion on a statement ti, (QJ,X)-subsumes the partial assertion

on t2, along a path e, if and only if

(h< ti -< t2 kf)A —Y A
(Vr)(<! -< r -< t2->• (3 A) ((A A A)A (A a e $<2 a $ r))

where ti, t2, and r indicate the individual statements and their labels along e, and k\ and
k2 limit the scope of the subsumption in the program segment.

Proof: Consider Definition 4.9 which defines (QJ, 6)-subsumption for local states. We
re-write the term (sq € RSci U {.sCl}) A (st2G R Stl) A (■sc2 € R St2) in 4.9 as an execution
sequence using tag points (h i,k2) rather than communication points (01, 02) since tag
points can be used to describe any arbitrary subsequence not including communication
points:

•SfciR-i-Stn, 5tnR.,’Sfn+1 , • 1 • , Stm_ 1R,{S<77J, A
(3 rl)(s irl \= A i) A (3r2)(sir2 |= A *tr2 e

from which we can obtain the expression (ki -4 by assigning the respective
statement labels to each state. However, due to (,stl G RSr U {sC| }), we need to allow for ti
to be equal to Ci. However, since we substitute ki and for cj and C2, (hi < -<
follows.

Similarly, we can rewrite (sr G RStl A s<2 G RSr) from 4.9 as an execution sequence

■StlR»s t *) • • • , 5 t r R .-5 tr+1, • • • , s t l R i S hA A (s <2 |= A G

Again, (<1 -< r -< t2) follows immediately. Forming the conjunction of all terms and
combining them with the corresponding assertions in Definition 4.9, the above theorem
immediately follows. □

19

b\ b2

Figure 4: Two possible execution sequences between tag points and 62.

7.2 Branching Programs
Branching occurs when we use an alternative statement. We now define a local accessi
bility relation R, which allows multiple paths between two tag points and b2, where
the tag points are the backward and forward concurrency point for each sequence, re
spectively, i.e. the delimiters of the branching construct. Figure 4 shows a branching
construct with tag points b\ and b2.

Definition 7.6 The local accessibility relation R, a branching program gives a next
state based on the current state in process Pi. st.R»s<-+1 means that state st +1 is the state
immediately following sLj, and there exists no state in between. It is possible for multiple
next states to exist, i.e., s^R iStjl ors^.RiS^ and stjl stj2.

A set of execution sequences for a branching program between the tag points 61 and
b2 displays the following properties:

Sb\ R-i'Stfc) ■stfcRj'.Stfc+1 5 ' ’ ' 5 Stm-1 A
> stk2̂ Rsbl){sb2 £ RstklA S(,2 G A Sfkl (f Rstk2 A 2 ^)

which indicates that there exist at least two possible, disjoint paths between the concur
rency points bi and b2, one containing stkl and the other containing stk2.

When a branch is selected, its branching condition has to be true. This means that
at statement tb, which contains the branching condition for a particular branch,)
implies the branching condition 5 , i.e, at(tb)A as in Definition 7.3.

In a branching program segment enclosed by tag points 61 and , the subsumption
rule for non-branching programs segments will be used for the non-branching segments
in each individual branch. In order to subsume across the tag point b2 that terminates
the branching constructs, all branches need to agree on the (partial) assertions to be
subsumed from the post-assertion on b2. For this we will use the following rule:

Theorem 7.4 The partial assertion -tpb7 on b2 can be (%1,‘X)-subsumed if and only if all
assertions associated with states stj for which Sb2 is the next state, i.e. s^.Rj can
subsume fi,2 ■ Thus,

OAqXXi -<b2 f\ stjRiS62) A A 2)

20

Proof: The proof follows directly from Definition 4.9. We can safely assume that there
are no communication statements located between and since tj is the last statement
at the end of a branch and b2 is the statement immediately following. Thus, since there
are no intermediate statements, we consider only the requirement A V’t2)) which for
our case turns into (4>tj A A>2)-

If we want to allow subsumption that is valid for an arbitrary execution sequence
(or path) e through the program, we need to account for every possible sequence. Thus,
although it may be possible to subsume a (partial) assertion for a particular path ei, it
may not be possible for a different path e2- Therefore, it is necessary for all assertions
that immediately precede the execution of b2 to subsume the same partial post-assertion
on b2. Only then the subsumption can be performed independent of the path taken. By
adding the quantifier on the above condition, the theorem follows. □

This theorem shows that,when we subsume across the tag point indicating the end of
a branching construct, we need to ensure that the subsumable conjuncts can be derived
for all paths. If this is not the case then subsumption cannot be performed across this
boundary.

If a communication point is located inside any of the branches, we can simply divide
the program into branching and non-branching segments and apply Theorems 7.3 and
7.4 where appropriate, respectively.

7.3 Programs containing Loops
Looping constructs allow subsumption within the whole loop structure when we unroll it.
Looping involves temporal dependencies between assertions for the individual iterations
of the loop. For example, an assertion in the loop which can be subsumed during the
first iteration may not be subsumed during later iterations. Thus, we will always unroll
any loops.

A loop terminates if none of the guards can be evaluated to true, and for each program
execution the number of actual loop iterations may vary. In this paper we only consider
terminating loops. Figure 5 shows how a loop can be unrolled and examined. l\ indicates
the start of the looping construct, and l2 marks the end. The intermediate circles denote
the re-evaluation of the loop guard. Thus, l\ and are tag points that determine the
scope of the looping construct.

If a loop is entered, the looping condition must be true. If is the statement where
the looping condition is verified, then a,t(tif)must imply the looping condition B, i.e.,
at(tiJ A B. Similarly, the negation of the looping condition must be true when the loop
ends, i.e., at{ti2) A ->B where t/2 is the terminating statement of the loop.

In a looping program segment enclosed by tag points l\ and l2, the subsumption rule
for non-branching programs segments will be used for the non-branching segments within
the loop. In order to subsume across the tag point l2 that terminates a looping construct,
all branches that combine at l2 need to agree on the (partial) assertions to be subsumed.
It is important to note that, if the looping condition is not true, the program execution
will skip directly to the end of the loop and thus the pre-assertion on l\ needs to subsume
the same partial conjuncts as all branches.

We will use the following rule for looping constructs:

21

Figure 5: An unrolled loop between two tag points l\ and 1% bounding the looping con
struct.

Theorem 7.5 The partial assertion on can be if and only if all
assertions associated with states stj for which si2 is the next state, i.e. s ^ R ;^ , can
subsume tpi2. Thus,

(Vstj)((tj A I2A f i 2)

Proof: This theorem is identical to Theorem 7.4 which describes multiple branching,
except that it uses the label I2 instead of 62. Since loop constructs simply describe multiple
consecutive branching, the proof immediately follows from the proof of Theorem 7.4. □

Note that subsumption can be performed independent of the number of iterations
in the loop as long as there are at least two iterations. This is due to the fact that
for the first entry into the loop, the pre-assertion to the loop will be used to subsume
partial assertions for the first statement in the loop. For consecutive iterations, the last
assertion inside the loop body is used to subsume partial assertions on the first, repeated,
statement in the loop as the loop is unrolled (The subsumption will then be the same
for all consecutive iterations, i.e. A», etc.

The differentiation between these two cases also allows for an optimized static analysis
since we can evaluate the obtained assertion for one or the other, depending on the current
iteration number.

The different rules for branching, looping, and non-branching program segments can
be combined to obtain all other possible combinations of statements and program flows
with and without intermediate communication points.

8 C onclusion
In this paper we introduced an abstract model describing the relationship between pro
gram states, statements, and assertions. This model was used as the foundation for the
development of a set of subsumption rules that would allow for the removal of (partial)
assertions to be embedded into the program as executable assertions for error detection
at run-time, based on redundancy.

We can infer that the reduced set of assertions, after the subsumption has been
performed, will allow for the detection of the same set of errors as the complete set of

22

assertions. The goal will be to show that temporal subsumption can make error detection
more efficient in distributed algorithms, in addition to maintaining the same fault latency
as the complete set of assertion. This is especially important for fault-tolerant responsive
systems, where we want to detect errors as soon as possible with very little computational
overhead.

Continued development of this model as well as experimental results of a prototype
subsumption model will be discussed in future reports.

R eferences
[1] D. Heydtmann. Subsumption in modal logic. M.S. , Computer Science De

partment, University of Missouri-Rolla, 1993.

[2] C. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576—583, 1969.

[3] J. Jou and J. Abraham. Fault-tolerant matrix arithmetic and signal processing on
highly parallel computing structures. Proceedings of the IEEE, 74(5):732-741, May
1986.

[4] G.M. Levin and D. Gries. A proof technique for communicating sequential processes.
Acta Informatica, 15:281-302, 1981.

[5] D.W. Loveland. Automated Theorem Proving, chapter 4. Number 6 in Fundamental
Studies in Computer Science. North-Holland, New York, 1978.

[6] H. Lutfiyya, M. Schollmeyer, and B. McMillin. Fault-tolerant distributed sort gen
erated from a verification proof outline. 2nd Responsive Systems Symposium, 1992.
Springer Verlag.

[7] H. Lutfiyya, M. Schollmeyer, and B. McMillin. Formal generation of executable
assertions for application-oriented fault tolerance. Technical Report CSC 92-15,
UMR Department of Computer Science, 1992.

[8] B. McMillin and L. Ni. Executable assertion development for the distributed paral
lel environment. Proceedings of the 12thInternational COMPSAC, pages 284-291,
October 1988.

[9] A. Mili. Self-checking programs: An axiomatisation of program validation by ex
ecutable assertions. Proceedings of the 11th International Symposium on Fault-
Tolerant Computing, pages 118-120, 1981.

[10] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6:319-340, 1976.

23

A Justification of th e G eneral Subsum ption R ule
In Definitions 4.2 and 4.3 we introduce two different notations for subsumption. The first
one,

(1) (Vx)C(x) —»• (

uses the universal closure on each clause individually, whereas the second one requires
both clauses to be quantified together:

(2) (Vx)(C(x) -»■

From predicate calculus it follows that if 2 is valid then 1 must be valid as well. Thus
2 implies 1. However, we will now show that for our case, where we retain quantifiers
in the assertions, 1 does not always hold, and we will justify the use of 2 instead as the
basic rule for subsumption for the remaining sections of the paper.

Let Mbe a model for which the following condition holds: (Va:)(C'(x) —
D(x)). Suppose that (\/x)C(x) — > (Vo :)D(x)is valid. Let be another model such that
Af = {a e M \ M b C(a)}, so Af |= (Vx)C(.t). Let e with M)),
i.e., A4 1= (7(6) but AA D(b). Then b£ and thus Af)=), which leads to a
contradiction.

However, we can show that this is an invalid argument and thus it is not true that 1
implies 2.

The first problem arises when C(x) contains an existential quantifier such as C(x) —
(3 y)p(x,y). It is possible that the particular y that makes this condition true exists in
A4 but not in the subset of it, Af. In that case, Af |= (Vx)C(x) is false.

Another problem is encountered if D(x) is universally quantified, such as in an ex
pression D(x) = ->(3 y)q(x,y).It is possible that y does not exist in Af and thus)
will be true, but it may exist in A4 which then makes D(x) false in M .

These problems do not occur in the field of automated reasoning where Definition 4.2
was obtained from. There, all clauses are skolemized and the quantifiers removed. The
Axiom of Choice is applied to select an arbitrary variable instantiation to make each
clause true. However, during the execution of a program we only know at run-time
which variable values are required to make each assertion true. Thus, the quantifiers in
the assertions that describe possible ranges of values cannot be removed and the Axiom
of Choice cannot be applied. Therefore, the stronger definition of subsumption has to be
used, the Definition given in 4.3.

24

	Using Temporal Subsumption for Developing Efficient Error-Detecting Distributed Algorithms
	Recommended Citation

	tmp.1600974007.pdf.PTfpu

