
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Nov 1993

Asynchronous Parallel Schemes: A Survey Asynchronous Parallel Schemes: A Survey

Eric Jui-Lin Lu

Michael Gene Hilgers
Missouri University of Science and Technology, hilgers@mst.edu

Bruce M. McMillin
Missouri University of Science and Technology, ff@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Lu, Eric Jui-Lin; Hilgers, Michael Gene; and McMillin, Bruce M., "Asynchronous Parallel Schemes: A Survey"
(1993). Computer Science Technical Reports. 41.
https://scholarsmine.mst.edu/comsci_techreports/41

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/41?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

Asynchronous Parallel Schemes:
A Survey

Eric Jui-Lin Lu
Michael G. Hilgers

Bruce McMillin

November 1993

CSC 93-19

Abstract
It is well known that synchronization and communication delays

are the major sources of performance degradation of synchronous par­
allel algorithms. It has been shown that asynchronous implementa­
tions have the potential to reduce the overhead to minimum. This
paper surveys the existing asynchronous schemes and the sufficient
conditions for the convergence of the surveyed schemes. Some com­
parisons among these schemes are also presented.

Department of Computer Science
University of Missouri-Rolla

Rolla, Missouri 65401

1 Notation
A m x n matrix A can be represented by (a,j) where 1 < 1 <
and o,j € R is an element of A. Similarly, 1 is an element of
the vector x G R". To avoid confusion, a sequence of vectors in Rn will be
denoted by x(k), k = 0 ,1 ,_____ The absolute value of A (or x) will be a matrix
\A\ (or a vector |a:|) whose components are the absolute values of A (or x).
A vector x is said to be positive (nonnegative) if each of its components is
positive (nonnegative). The spectral radius of A is denoted as p(A). N is the
set of nonnegative integers.

The mathematical model of a fixed point problem is of the form:

(1.1) x = F{x)

where F: Rn —*• Rn is a function and x = , x n) € R". When
F(x) represents a system of equations, Equation (1.1) is usually written in
the form of

(1.2) Xi = fi(xi , . . . , xn) for all = 1 ,... , n

where F(x) = (fi(x), • • • , /„(x)) and fi(x) is a function from R" to R.

2 Introduction
There is a great deal of research devoted to solving a system of equations
iteratively using parallel computers. In most of the work done in this area,
the solutions of the system are obtained by distributing computational load
among processors while maintaining coordination among processors by global
shared memory or by message passing. The parallel algorithms of this type
are called synchronous parallel algorithms.

Let Xi(t) be the value of Xi residing in the memory of the ith processor
at time t. A synchronous iterative execution of Equation (1.2), as defined in
[1, 2], can be described mathematically by the formula

(2.1) f /<(*1 ,Xn(t)), if t € T*'
otherwise.

1

where tis an integer-valued variable used to index different iterations, not
necessarily representing real time, and T ‘, an infinite subset of {0 ,1 ,2 ,...} ,
is the set of time indices at which X{ is updated.

In a synchronized iterative execution, each processor has to wait for all the
other components to be updated before starting next iteration. For example,
to numerically solve a system of two equations using a parallel computer of
two processors, the second iteration of processor 1 cannot be executed until
the updated component £2(1) is received from processor 2, and vice versa.
This is shown in Figure 1.

Figure 1: Synchronized Iterative Execution.

The shadow areas between two consecutive iterates are idle times. Thus, the
performance of a synchronous algorithm is largely affected by com m unication
channels and the slowest processor.

Asynchronous iterative execution, on the other hand, allows processors
to continue computation without requiring them to wait for all the other
components to be updated. Once a updated component arrives, this new
value is incorporated in the next evaluation. This can be seen in Figure 2.

2

time

Figure 2: Asynchronous Iterative Execution,

Since synchronization is the major source of performance degradation,
asynchronous iterations have the potential to outperform their synchronous
counterparts. The developed results have been applied to a wide variety of
iterative algorithms to solve problems such as dynamic programming, short­
est path problems, network flow problems, unsupervised pattern clustering,
consistent labeling, and artificial neural networks [3, 4, 5, 6].

The purpose of this paper is to survey the existing asynchronous schemes
and their sufficient conditions for the convergence. Although this survey is
by no mean complete, it gives readers a fairly good overview of work from
the past three decades.

Additionally, we will analyze the relationship among the sufficient con­
ditions for the convergence of the surveyed asynchronous schemes. For the
convenience of such analysis, we present some definitions and theorem in next
section. Then the surveyed models are presented in chronological order.

In the final section, we summarize the pros and cons of asynchronous
models. With the knowledge of the asynchronous scheme, we also summaries
the properties of asynchronous models. As indicated in the surveyed papers,
there are some difficulties that need to be solved. These difficulties and the
possible future research axe illustrated in this section.

3 Definitions and Examples
In this section, we will present some definitions and theorem for the conve­
nience of the analysis that we will make in the following sections. We also

3

present some examples which have been proved in the literature.

Definition 3.1 Let X be a set and d a function from x the set R+
of non-negative real numbers satisfying the following properties. For all y,
z in X,

(3.1) d(x, y) = 0 if and only if = y;
(3.2) d(x, y) = , x);
(3.3) d(x,z) < d(x,y) + d(y,z).

Then d is called a metric or distance function on X and y) is called the
distance from x to y. The set X with metric d is called a metric space and is
denoted by (X , d).

It is easy to verify that the following functions are distance functions.

1. If x, y6 R, d{x , y) = |a: - y\.

2. Any norm can induce a metric by setting ||a; — y\\ = d(x, y). Particular
examples are:

• d(x,y) = \\x - j/Hi = E"=i |*« - Vi\-
• d(x,y) = ||ar - y \\2 = [£"=i(z; -
• d(x,y) = \\x - r /||o o = max,=i .„ |x,- - y t\.

Definition 3.2 Let (X, d) be a metric space and —» function.
The F is contractive with respect to the metric d provided that there is a
positive number a < 1 such that,for all x, y in X,

(3.4) d(F(x), F(y)) < , y).

Definition 3.3 (X, d) is a complete metric space if every Cauchy sequence
{xn} inX converges to a point in X. {xn} is a Cauchy sequence in X if, for
any e > 0, there exists an N6 N such that d(xm, xn) < e, for all m , n > N.

Theorem 3.1 (Banach’s fixed point theorem) Let(X,d) be a complete
metric space and F: X —» Xa contractive function. Then F has a unique
fixed point in X.

4

Definition 3.4 A normed space X with the norm || • || is called a Banach
space if X is a complete metric space for the metric d defined on X by the
formula,

d(x,y) = ||# —

As proved in [10], both (R, | • |) and (Rn, || • ||) are complete metric spaces
and Banach spaces.

4 Chaotic Iteration
The idea of a chaotic iteration was introduced by Chazan and Miranker in
1969 [7]. The proposed model is used to solve systems of linear equations of
the form

(4.1) Ax = b

where A,an n x nmatrix where o, j € R, is symmetric and positive definite,
and x, b€ Rn. Let Dbe a diagonal matrix where dy = aiti and E = D — A.
We have x = D~xE x + D~xb. Then let B = D -1E and C — D~l , so we have

x = Bx + Cb.

Since B , C, and b are given, the operator F of Definition 4.1 is defined as:

(4.2) F(x) = B x + Cb.

Definition 4.1 A chaotic iterative scheme (F,0) is a class of sequences ofn-
vectors, x(j), j — 0 ,1, — Each sequence in this class is defined recursively
by

(4.3) ar<(j + l) =
f i M j ~ h(j)),• • • , x n(j - kn(j))) ,

i ¥= kn+
i = K+i{j)

x(0) is given. F :Rn —̂ R" is a function of the form F(x) = (fi(x), • • • , f n(x)).
0 is a sequence of n + 1 -vectorssuch that 0 = {ki(j) ,k2(j) , . . . ,kn+1(j)j,
j = 0 ,1 , . . . , with the following properties:

For some fixed integer s > 0

5

(a) 0 < ki(j) < s, for i = 1 ,.. . , nand j = 0 ,1 ,...

(b) 1 < kn+i(j) < n, for j = 0,1, . . .

Moreover, kn+i(j) = i infinitely often for each i, 1 < * < n.

This definition may be interpreted as follows: At each instant of time
j , the kn+i(j)th component of x(j) is updated while the remaining n —
1 components are unchanged. The updating uses the first component of
x(j — ki(j)), the second component x(— k2(j)), etc. Every component is
updated infinitely often, and no update uses a value of a component which
was produced by an update s or more steps earlier.

Note that Definition 4.1 implies that no processor can drop out of com­
puting forever. Furthermore, since kn+i(j) can be any value from 1 to n, the
update sequence (fcn+i(l), fcn+i(2),. . .} is arbitrary as long as the condition
(a) of Definition 4.1 is satisfied. For example, for a system of two equations,

can be {1 ,2 ,1 ,2 ,...} , {2 ,1 ,2 ,1 ,...} , {1 ,1 ,2 ,1 ,...} , etc.
As a consequence, the problem is solved, using the chaotic relaxation, in
chaotic appearance. In addition, any numerical method that follows a spe­
cific update sequence is a special case of the chaotic iteration. Gauss-Seidel
and Jacobi methods, for examples, are two special cases of the chaotic iter­
ation schemes.

Example 1 (Gauss-Seidel). Let 0 be defined by = = ... =
kn(j) = 0 and kn+i(j) = (j mod n) + 1. Here = 1 and kn+i(j) = i, for
each i = 1,...,«, exactly once in every n updates. This scheme is precisely
the Gauss-Seidel relaxation procedure. For n = 2, we can see the execution
sequence from the following table.

j h (j) j - h j ~ h (j) X l (j + 1) Z2O' + 1)
0 l 0 0 ^ i (l) = / i (^ i (0) , ^ (0)) £2(1) = #2(0)
1 2 l 1 x i(2) = # i (l) ^2(2) = f 2 (x 1(l) , x 2 (l))
2 1 2 2 aq(3) = f 1(x1(2 #2(3) = x 2{ 2)
3 2 3 3 # i(4) = £ i (3) #2(4) = /2 (^ !(3),a ;2 (3))

Example 2 (Jacobi). Let 0 be defined by ki(j) = ... = kn(j) = [fcn+ i(i)—l]
and kn+\(j) = (j mod n) + 1. Here s = n and kn+\(j) = i, for each =
1,..., n, exactly once in every n updates. This scheme is precisely the Jacobi

6

relaxation procedure. For n = 2, we can see the execution sequence from the
following table.

j h (j) j - h j ~ h (j) x i { j + 1) X2U + 1)
0 l 0 0 z i(l) = /i(z i(0),x2(0)) x 2(l) = x2(0)
1 2 0 0 xi(2) = Xi(l) x2(2) = / 2(a;i(0),a;2(0))
2 1 2 2 *i(3) = f 1(x 1(2) , x 2(2)) rr2(3) = x 2(2)
3 2 2 2 xi(4) = ari(3) ^ (4) = / 2(a;i(2),a:2(2))

In [7], Chazan and Miranker showed that

T heorem 4.1 Let (F, 3) be a chaotic iteration scheme. The sequence of
iterates x(j) generated by (F, 3) converges to the solution of Equation (4-2) if
and only if p(\B\) < 1.

Now, considering the chaotic iteration scheme corresponding to over and
under relaxation with parameter u, we have

x = u(Bx + Cb) (1 — u)x.

Or,
x = (I — uD xA)x +

If B u = I — uD XA, Cw = uC, then = Bux + Cwb. The chaotic
iteration with u is denoted as (F“ , J).

T heorem 4.2 The scheme (Fu,0) converges for all 3 on assumptions of
Definition 4-1 when p(\B\) < 1, and 0 < 2/(1 + p(|£ |)).

In [8, 9], Miellou extended the chaotic iteration scheme. The extensions
include (1) more than one component of x(j) can be updated at each instant
of j , and (2) the operator F can be non-linear.

Let { Jj} be a sequence of non-empty index set where j € { 0 ,1 ,...} and
Jj C {1 ,... , n}. Equation (4.3) is rewritten as

(4.4) Xi(j + 1) =
f i(xi(j - h (j)) , • • • ,Xn(j ~kn(j))),

* 0 '/?)
i € />,

7

where i occurs in {Jj} an infinite number of times. Moreover, it is assumed
that every component of x will be updated at least once in every consecutive
s iterates.

The extended model can be interpreted as follows: At each iterate j ,
every ith component of x(j), for all i € Jj, is updated while the remaining
components are unchanged. All updates occur concurrently and use the
first component of x(j — ki(j)), the second component x(j — k%(j)), etc.
Every component is updated infinitely often, and no update uses a value of
a component which was produced by an update s or more steps earlier.

Definition 4.2 Let F : D(F) —* E where D(F) C E and E = n"= i Ei
where {!£,•} is a set of Banach spaces. For any given point u € D(F), we say
that F is contracting in u for the vector norm r) if

(a) there exists a nonnegative nx n matrix T such that

r){F{u) — F(v)) < Tr){u —), Vu e D(F).

(b) p{T) < 1.

where r]{x) — (||a;i|| • • • ||£n||) for any €

In general, we say F is pseudocontraction. Note that Miellou defined the
vector norm rjas a canonical vector norm (la norme vectorielle canonique).
For Ei = R, 1 < i <n, the vector norm rj(x) = (|xci| • |xn|) = |a;| for
x € E = Mn. Thus, the vector norm rf is still a vector when R” and the
condition (a) can be rewritten as

| F(u)- F(v)| < T\u- 1>|, Vv € R".

With the above definition, Miellou showed that

Theorem 4.3 I f Fhas a fixed point x* 6 D(F) and is contracting in x* for
the vector norm rj, the sequence {rc(j)}, defined in convergence to the
fixed point x*.

Note that if F is contracting on D(F) (ie. for all x € D(F)), the above
theorem also holds.

From the previous discussion, we know that the scheme proposed by
Chazan and Miranker is a special case of Miellou’s model. It is interesting
to verify that

8

C orollary 1 F :
< 1, then

be an operator of the form F(x) = Bx + C.

(a) F has a unique fixed point x*.

(b) F is contracting in x* for the vector norm rj.

[Proof:] Since (En, || • ||^), where

||a?||" = max |^ -|, > 0

is a weighted maximum norm, is a complete metric space [10], it
is sufficient to show that F is contracting on Rn with respect to
II • ll£ to P ^ e (a).
Let *, y€ Rn. Then,

r](F(x)-F(y)) = \B{x-y)\ < \B \\x-y\ = \B\r](x-y), V*,y € R n.

Since |P | is non-negative and p(\B\) < 1, then, see [9],

H^(*)-^(y)IIS,<a||*-yBS>
where a< 1.
Let d(x,y) = ||x — y ||^ . By Banach’s fixed point theorem, F has
a unique fixed point i* 6 I " .
It has been proved in part (a) that F is contracting on Rn. Thus,
F is contracting in ** 6 M” for the vector norm rj. □

5 Asynchronous Iterative Scheme
Motivated by [7,8,9], Baudet proposed an asynchronous iterative scheme [12]
in 1978. Unlike the chaotic iteration scheme which does not allow use of the
values which was produced by an update s or more step earlier, the asyn­
chronous iterative scheme has no restriction on the choice of the antecedent
values used in the evaluation of an iterate. Furthermore, the operator F
considered in the asynchronous iterative scheme can be linear or non-linear.
The formal definition of the scheme is presented below.

9

Definition 5.1 Let F be an operator from R" to R". An asynchronous iter­
ation corresponding to the operator F and starting with a given vector x(0)
is a sequence x(j), j — 0, 1 , , of vectors Rn defined recursively by

(5.1) Xi(j + 1) =
Xi(j)
fi(xi(Tl (j)),■ . •

if i & Jj
%f i E J j

where 3 = {Jj\j = 0 ,1 ,2 ,...} is a sequence of nonempty subsets of { l , . . . , n}
and 3 = {(T\{j), . . . , rn(j))\j = 0 ,1 ,2 ,...} is a sequence of elements in N” .

In addition 3 and 3 are subject to the following conditions, for each i =
1 ,... , 77.

(a) 0<Ti(j) < j , j = 0 ,1 , . . . ;

(b) Ti(j), considered as a function of j, tends to infinity as j tends to infinity;

(c) i occurs infinitely many often in the set Jj, j = 0 ,1 ,2 ,__

An asynchronous iteration corresponding to F, starting with rc(0) and defined
by 3 and 3, will be denoted by (F,x(0),3,3).

In the definition of the chaotic iteration, there exists a fixed integer s
such that Ti(j) > j — s > 0 for j = 0 ,1 ,2 , . . . and i = 1 ,2 ,_ Clearly,
this condition implies the condition (b) of Definition 5.1, and, in the sense,
asynchronous iterations provide a generalization of the chaotic iteration.

Baudet defined the contracting operator F as follows:

Definition 5.2 An operator F from Rn to R" is a contracting operator on
a subset D of Rn if

(a) there exists a nonnegative nx nmatrix A such that

\F(x) - F(y)| < T\x — 2/|, Var, €

(b) P{T) < 1.

Then, he proved the following theorem:

Theorem 5.1 I f F is a contracting operator on a closed subset D o/R n and
if F(D) C D, then any asynchronous iteration (F,x(Q),3,3) corresponding
to F and starting with a vector x(0) in D converges to the unique fixed point
of F in D.

10

Thus, for the sequence {^(j)} generated by Equation (5.1), it converges
to the unique fixed point if the operator F is contractive on the whole domain
of the operator. On the other hand, for the sequence {rr(j)} generated by
Equation (4.4), it converges to the unique fixed point only if the operator
F is contractive in a point of the domain. Thus, the condition required for
Equation (5.1) to converge is stronger than the one required by Miellou’s
model.

6 Asynchronous Fixed Point Algorithms
In 1983, Bertsekas proposed an algorithmic model for distributed computa­
tion of fixed points. As indicated in [13], the computation model is similar
to the models presented by Chazan and Miranker[7], Miellou [8, 9], and
Baudet[12]. This model has been further refined by Bertsekas and Tsitsiklis
in [1, 2].

The asynchronous model in [1, 2] is defined as

(6.1) *<(* + !) = { ^ (t) ,W W)’" ' ’*’ W W))’ W t l P .

where rj(t) are times satisfying

0 < rj(t) < t , Vt > 0.
Note that, unlike the chaotic iteration [7, 8, 9] and the asynchronous it­
erative schemes [12] which all processors have the same set of (t,(£)} for
j € {1 ,... ,n}, the asynchronous model allows each processor i has its
own set of (rj(t)}. So, the chaotic iteration and the asynchronous itera­
tive schemes are special cases of Equation (6.1). Any particular choice of the
sets T* and the values of the variables rj(t) is called a scenario.

For the algorithm to make any progress at all, it is not allowed to have
Tj(t) remain forever small. Furthermore, no processor should be allowed to
drop out of the computation and stop iterating. Thus, certain assumptions
must be imposed. And based on the following assumptions, the asynchronous
model can be classified as total asynchronism and partial asynchronism.

A ssum ption 6.1 (Total asynchronism) The sets T* are infinite and if
{f*.} is a sequence of elements o fT ' which tends to then tends
to infinity, for every j, when k tends to infinity.

11

A ssum ption 6.2 (P artia l asynchronism) There exists a positive constant
s such that:

1. For every t >0 and every i, at least one of the elements of the set
{<, t + 1 ,... , t + s — 1} belongs to T*.

2. There holds
t - s < Tj(t) < t , T*.

3. There holds rf(t) = t, for all i and € T*.

The constant s, called asynchronism m, bounds the amount by which
the information available to a processor can be outdated.

T otal A synchronism The sufficient conditions for the totally asyn­
chronous algorithms to converge are presented in the following theorem.

Theorem 6.1 Let X = n?=i Xi C nf=i Rn' . Suppose that for each i €
{1 ,... ,p}, there exists a sequence {Xi(k) of subsets of Xi such that:

(a) Xi(k + 1) C Xi(k), for all k >0.

(b) The sets X(k) = ITf=i Xi(k) have the property f (x) G X(k + 1), for all
x G X .

(c) Every limit point of a sequence {#(&)} with the property x(k) G X(k)
for all k, is a fixed point of f.

Then, under total asynchronism, and ifx(0) G A”(0), every limit point of
a sequence (:r(t)} generated by the asynchronous iteration is a fixed point of
f

The key idea behind Theorem 6.1 is that eventually x(t) enters and stays
in the set X(k)\ furthermore, it eventually moves into the next set 1).
But will the following situation, as illustrated in [14], happen?

[Example] Suppose that D is defined by the following inequali­
ties in M2:

0 < #i < 2, 0 < #2 <
and let the value of the function at the point (2,2) be (1,1), i.e.,

F(2,2) = (l , l) .

12

If the initial value x(0) = (2,2) and the computation of is
faster than x%, then x(l) = (1,2) which is not a member of D.
Thus, we cannot tell whether or not the sequence converges since
x(l) is out of the domain of F.

Due to the condition (b) in Theorem 6.1 which assures that x (l) must be
in X (l) C AT(0) C D, the stated situation will be excluded. Bertsekas and
Tsitsiklis call the condition (b) the Box Condition.

Partial Asynchronism As implied by the assumption of partial asyn­
chronism, the value of x(t + 1) depends only on), x(t — 1),... , + 1),
and not on any earlier values x(r), r < — Thus, old values are purged
from the system after at most s time units. Now, let z(t) = —
1),... ,x(t — s + 1)) and z(t) G Zfor all t > 0 . Also, we denote by X* the
set {# G X \x = f (x)} of fixed points of / , and by Z* the set of all elements
of Z of the form (x*, .. . ,£*), where x* is an arbitrary element of X*

Theorem 6.2 (Lyapunov Theorem) Consider the asynchronous iteration.
Suppose that f is continuous and that the partial asynchronism assumption
holds. Suppose also that there exist a positive integer t* and a continuous
function d : Zi-» [0, oo) with the following properties:

(a) For every 2(0) ^ Z* and for every scenario, we have d(z(t*)) < d(z(0)).

(b) For every z(0) 6 Z , for every t> 0, and for every scenario, we have
d(z(t + 1)) < d(z(t)).

Then, we have z* G Z* for every limit point € the sequence {^(t)}.

7 Generalized Asynchronous Iterations
The variables manipulated in all of the asynchronous schemes discussed in the
previous sections are continuous and defined in the vector space Rn. However,
many relaxation techniques involve the manipulation of symbolic or discrete­
valued data. To solve the problems of discrete-valued data asynchronously,
Uresin and Dubois, in 1986, proposed their generalized asynchronous scheme.
In [15, 14, 6], they showed that, if the mapping is contractive, a generalized
asynchronous relaxation converges to a unique fixed point in an arbitrary

13

set, finite or infinite, countable or not. The results are used to prove the
convergence of three asynchronous algorithms for the all-pairs shortest path
problem, the scene-labeling problem, and a neural net model.

D efinition 7.1 Let S be an arbitrary set, finite or infinite, countable or not.
Let F be an operator from S n to S'” . An asynchronous iteration corresponding
to the operator F and starting with a given vector x(0) is a sequence x(j),
j = 0 ,1 , of vectors of S n defined recursively by

(7.1) xi(j + 1) = x iU)
,Xn(Tn{j)))

if i & Jj
if i € Jj

where 3 = {Jj\j= 1 ,2 ,...} is a sequence of nonempty subsets 1 ,.. . , n}
and 3 = {(ri (j) , . . . , rn(j))\j = 1 ,2 ,...} is a sequence of elements in N".

In addition 3 and 3 are subject to the following conditions, for each i =
1 ,.. . ,n :

1- Ti(j)<j, j = 1,2, . . . ;

2. Ti(j), considered as a function of j, tends to infinity as j tends to infin­
ity;

3. i occurs infinitely many often in the = 1 ,2 ,__

An asynchronous iteration corresponding to F, starting with #(0) and defined
by 3 and 3, will be denoted by (F,x(0),3,3).

The above asynchronous scheme is directly derived from Baudet’s asyn­
chronous scheme. However, since the considered operator is defined from S n
to Sn instead of from R" to R”, Uresin and Dubois defined the contracting
operator as follows:

D efinition 7.2 An operator F from S n to S n is an asynchronously contract­
ing operator on a subset D = D \x x • • • x Dnof S n if and only if there
is a sequence {>!(&)} of subsets of S n, such that

(a) A(0) = D,

(b) x 6 A(k) implies F(x) € A(k + 1) for 0 ,1 , . . . ,

14

(c) A(k + 1) C A(k) for all k = 0 ,1 , . . . ,

(d) lim^oo A(k) = {£},

where £ is the point of convergence.

With the generalized definitions of asynchronous iteration and contracting
operator, they proved that

T heorem 7.1 I f F is an asynchronously contracting operator on a subset
D = D\ x x Dn of S n,then an asynchronous iteration (F,x(0),8,‘J)
corresponding to F and starting with a vector r(0) in D converges to a unique
fixed point of F in D.

Except for the above theorem, Uresin and Dubois also proposed an in­
teresting convergence criteria which is applicable to all cases where the syn­
chronized version of the iteration is known to converge.

T heorem 7.2 An asynchronous iteration corresponding to F,
which is defined in S n, converges to a unique fixed point, £, if the following
conditions hold:

(a) there exists an ordering relation such that x ', then F(x) < F(x'),
and also F(x) < x for all x, x' € S n, and

(b) the synchronous iteration corresponding to F and starting with a:(0) > £
converges to £.

8 Summary
According to the definitions in [1,2], the models proposed in [7, 8, 9,16] are
partial asynchronous algorithms. On the other hand, the models proposed
in [12, 15, 14, 6] are totally asynchronous algorithms.

It is well known that p(A) < 1 is a necessary and sufficient condition for
a system of linear equations, F(x) = Ax + b, to converge sequentially (or
synchronously). It can be easily shown that, if p(A) < 1 and A is nonnegar
tive, then F is contractive on Rn with respect to weighted maximum norm
|| • ||£,. From the discussions in Sections 4 and 5, we know that the asyn­
chronous algorithms converge if the operator F is contractive with respect
to the weighted maximum norm. Thus, we can conclude that

15

Proposition 1 For solving a system of linear equations +
where A is nonnegative, an asynchronous algorithm (either partial or total)
converges if its counterpart synchronous or sequential algorithm converges.

Note that if A is negative, then the above proposition may be not true
because p(A) < p(|A|). Even when p(A) < 1 , it is possible that p(|A|) > 1 .

An example can be seen in pages 435-437 [1].

8.1 Pros and Cons
From the previous discussions, we can now summarize the potential advan­
tages that may be gained from asynchronous execution:

• Reduction of the synchronization penalty. The reduction is obtained
by allowing processes to continue evaluation without requiring them to
wait for all the other components to be updated.

• Reduction of programming complexity The chaotic form of the relax­
ation eliminated considerably programming time in coordinating the
processes.

• Reduction of the effect of bottlenecks. In the synchronous executions,
processes have to wait for the slowest process among them at a syn­
chronization point. This is not true in the asynchronous execution.

• Convergence acceleration due to the the incorporation of the newest
values into the execution whenever available. Whenever a new value
is evaluated or received from other processor, asynchronous algorithms
incorporate such new values into next computation. This, in general,
will accelerate the convergence.

Though the asynchronous algorithms have several advantages over the
synchronous algorithms, it has some drawbacks: •

• Due to the chaotic ordering, the asynchronous iteration could be di­
vergent even if the corresponding synchronous (or sequential) iteration
converges. One example can be found in [1] at page 438.

16

* The analysis of convergence, convergence rate, and stability is often
difficult even if the convergence of the asynchronous iteration can be
established.

• An asynchronous algorithm may have converged (within a desired ac­
curacy) but the algorithm does not terminate because no processor is
aware of this fact. This results from the fact that, for asynchronous
execution, each processor has only partial information on the progress
of the execution. However, the determination of whether termination
conditions are satisfied is based on the global information.

8.2 Im plem entation
In this section, we give an example to illustrate some situations which may
occur when the asynchronous algorithms are implemented. We use the model
proposed by Bertsekas and Tsitsiklis. With minor modification, other models
also apply.

[Example] Consider an asynchronous algorithm involving two
processors and a system of two linear equations defined as follows:

/o j xi = 0.2xi + 0.6^2,
' ’ ' \ X2 = 0.6a?i + 0Ax2.

Processor i keeps local information of * = (a^a^), updates x\ at
times t€ T ', and transmits x\ to the other processor.
As shown in Figure 3, the following events occur:

t=0: Processor 1 updates a:} using (a;j(0), ^(O)) and transmits
it to processor 2, where it is received at time between 1
and t = 2. x 1 = (#}(l),a:2(0)), denoted as (1,0) in Figure
3, between t = 0 and t = 1. Processor 2 updates x\ using
(a;f(0),a'2(0)) and transmits it to processor 1, where it is re­
ceived at time between t = 1 and = 2. (a?f (1), a?i(0)),
denoted as (0,1) in Figure 3, during = 0 and = 1.

17

Processor 1

Processor 2

0 1 2 3 4 5

Figure 3: Asynchronous Iterative Execution.

t = l : Processor 1 updates x\ using (1,0) and transmits it to pro­
cessor 2, where it is received at time between = 2 and

t = 3. x 1 = (2,0) after t = 1 and before ar2(l) is received.
x l = (2,1) after ^ (l) is received. Processor 2 does not up­
date. However, according to Equation (6.1), x2 = (0,2) after

t = 1 and before £*(1) is received. After x |(l) is received,
x2 = (1,2). Note that a;|(l) = #2(2).

t= 2: Processor 2 updates x\ and transmits it to processor 1
where it is received at time between 3 and 4.

t= 3: Processor 1 updates x\ and transmits it to processor 2
where it is received at time between = 4 and = 5. Pro­
cessor 2 updates x2and transmits it to processor 1 where it
is received at time between = 4 and 5.

As a result, T 1 = (0 ,1 ,3 ,...} and T2 = (0 ,2 ,3 ,...} .

When the above asynchronous algorithm is implemented, it is likely that
the message :r2(l) is received by processor 1 at time between = 0 and
The situation is shown in Figure 4.

18

0 1 2 3 4 5

Figure 4: Asynchronous Iterative Execution.

As you can see from Figure 4, x}(2) is evaluated using x1 = (1,1) instead
of a;1 = (1,0) as shown in Figure 3. Consequently, the running result may
vary unless there is only one unique solution. For a system as Equation (8.1),
there is a unique solution; in other words, the running results are identical
in both cases shown in Figures 3 and 4. However, for a system as Equation
(8.2), the running result may vary.

/o o\ (%i = 0.4:ci + 0.6x2,
' ’ ' (X2 = 0.6xi + 0.4x2.

Readers are encouraged to verify this with the initial value x(0) = (1,2) and
the asynchronous execution shown in Figure 5.

Furthermore, since each processor has only partial (or local) information
of the whole system, the following conditions may occur.

19

0 1 2 3 4 5

Figure 5: Asynchronous Iterative Execution.

• Let asynchronism measure 5 = 2. Then 1 < ^ (3) < 3. So, processor 1
cannot update at t = 3 until x%(2) arrives. However, in practice, since
processor 1 has no global information, the local t value on processor
1 is 2 and, thus, processor 1 updates at = 3. In other words, each
processor increases its local t value by one whenever there is an update.
Since processor 1 does not know there is an update on processor 2 at

t = 2, the local t value on processor 1 is 2 at = 3 and processor 1
will update x\ without knowing it has to wait until x|(2) arrives. This
may break the assumptions made for partial asynchronous algorithms.
Though the stated situation may be solved by employing vector clock
and rollback [17, 18], the overhead is too huge to make asynchronous
parallel algorithms be attractive.

* Each processor may converge to some point which is not the solu­
tion. For example, to solve Equation (8.1), assume the initial value is
rr(0) = (1,2). Then processor 1 may converge to (1.5,2) if it does not
receive any new value from processor 2. This situation can corrected
by dedicating a node to check if the global solution is reached.

Since it is not practical to specify the scenario when you implement an
asynchronous algorithm, it is natural to evaluate * by using the latest up­
dated components. However, it implies the update sequence may vary from
one run to another and be non-reproducible.

20

8.3 Future Research
As seen in Figures 1 and 2, it is intuitive to assume that asynchronous al­
gorithm runs faster than its corresponding synchronous algorithm. How­
ever, is it possible that asynchronous algorithm converges slower than syn­
chronous one? Also, in the synchronous algorithm shown in Figure 6, will
asynchronous algorithm run at least as fast as synchronous one? Miellou ob­
tained the asymptotic rate of convergence for the chaotic iterative scheme [9].
Bertsekas and Tsitsiklis showed that, for solving system of linear equations,
partial asynchronous algorithm converges geometrically [2]. It is interest­
ing to know the convergence rate for totally asynchronous algorithm and, if
possible, how to optimize the convergence rate.

time

Figure 6: Synchronous Iteration with Overlapping Communication and Computation.

There have been some works done in solving systems of non-linear equa­
tions asynchronously. They all assumed that there is a unique fixed point and
proved that the asynchronous scheme converges to that fixed point. How­
ever, considering the errors introduced by computers when they are used to
solve the system numerically, it will be interesting to see if the asynchronous
scheme indeed converges to the expected fixed point.

At present, there is very strong evidence suggesting that asynchronous
iterations converge faster than their synchronous counterparts. However,
this evidence is principally based on analysis and simulation. There is only
a small number of related experimental works. Furthermore, the proper
implementation of asynchronous algorithms in real parallel machines can be
quite challenging and more experience is needed in this area.

21

References
[1] D. P. Bertsekas and J, N. Tsitsiklis, Parallel and Distributed Computa­

tion: Numerical Methods. Prentice-Hall, Inc., 1989.

[2] D. P. Bertsekas and J. N. Tsitsiklis, “Some aspects of parallel and dis­
tributed iterative algorithms - a survey,” , vol. 27, no. 1,
pp. 3-21, 1991.

[3] D. P. Bertsekas and D. A. Castanon, “Parallel synchronous and asyn­
chronous implementations of the auction algorithm,” Parallel Comput­
ing, vol. 17, pp. 707-732,1991.

[4] E. M. Chajakis and S. A. Zenios, “Synchronous and asynchronous im­
plementations of relaxation algorithms for nonlinear network optimiza­
tion,” Parallel Computing, vol. 17, pp. 873-894,1991.

[5] P. Tseng, D. P. Bertsekas, and J. N. Tsitsiklis, “Partially asynchronous,
parallel algorithms for network flow and other problems,” SIAM Journal
of Control and Optimization, vol. 28, pp. 678-710, May 1990.

[6] A. Uresin and M. Dubois, “Parallel asynchrnous algorithms for discrete
data,” Journal of ACM, vol. 37, pp. 588-606, July 1990.

[7] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear Algebra and
Its Applications, vol. 2, pp. 199-222, 1969.

[8] J. C. Miellou, “Iterations chaotiques a retards, etudes de la convergence
dans le cas d ’espaces partiellement or donnes,” CRAS, serie A t.278,
pp. 957-960,1974.

[9] J. C. Miellou, “Algorithmes de relaxation chaotique a retards,” RAIRO-
R l, pp. 55-82,1975.

[10] F. H. Croom, Principles of Topology. Saunders College Publishing, 1989.

[11] R. L. Burden and J. D. Faires, Numerical Analysis. PWS-KENT Pub­
lishing Company, fourth ed., 1989.

22

[12] G. M. Baudet, “Asynchronous iterative methods for multiprocessors,”
Journal of the Association for Computing Machinery, vol. 25, pp. 226-
244, April 1978.

[13] D. P. Bertsekas, “Distributed asynchronous computation of fixed
points,” Mathematical Programming, vol. 27, pp. 107-120,1983.

[14] A. Uresin and M. Dubois, “Sufficient conditions for the convergence of
asynchronous iterations,” Parallel Computing, vol. 10, pp. 83-92,1989.

[15] A. Uresin and M. Dubois, “Generalized asynchronous iterations,” in
Proceedings of the Conference on Algorithms and Hardware for Parallel
Processing, pp. 272-278, September 1986.

[16] D. Mitra, “Asynchronous relaxations for the numerical solution of dif­
ferential equations by parallel processors,” SIAM Journal on Scientific
and Statistical Computing, vol. 8, pp. s43-s58, January 1987.

[17] F. Mattern, “Virtual tiem and global states of distributed systems,” in
Procedings of International Workshop on Parallel and Distributed Algo­
rithms, pp. 215-226, Oct. 1988.

[18] C. Fidge, “Logical time in distributed computing systems,” Computer,
pp. 28-33, Aug. 1991.

23

	Asynchronous Parallel Schemes: A Survey
	Recommended Citation

	tmp.1600974007.pdf.usvfU

