
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Dec 1993

Process Driven Software Engineering Environments Process Driven Software Engineering Environments

John Hayes Lampkin

T. Lo

Daniel C. St. Clair
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Lampkin, John Hayes; Lo, T.; and St. Clair, Daniel C., "Process Driven Software Engineering Environments"
(1993). Computer Science Technical Reports. 59.
https://scholarsmine.mst.edu/comsci_techreports/59

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/59?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

Process Driven Software Engineering Environments

J. Lampkin*, T. Lo, and D. St. Clair

CSC-93-36

Department o f Computer Science
University o f Missouri-Rolla

Rolla, MO 65401

*This report is substantially the M. S. thesis o f the first author, completed December 1993

COPYRIGHT NOTICE

© 1993
JO HN HAYES LAMPKIN
ALL RIGHTS RESERVED

ABSTRACT

Software development organizations have begun using Software Engineering Envi
ronments (SEEs) with the goal of enhancing the productivity of software developers and
improving the quality of software products. The encompassing nature of a SEE means
that it is typically very tightly coupled with the way an organization does business. To
be most effective, the components of a SEE must be well integrated and the SEE itself
must be integrated with the organization.

The challenge of tool integration increases considerably when the components of
the environment come from different vendors and support varying degrees of “open
ness”. The challenge of integration with the organization increases in a like manner
when the environment must support a variety of different organizations over a long peri
od of time. In addition to these pressures, any SEE must perform well and must “scale”
well as the size of the organization changes.

This paper proposes basing the Software Engineering Environment on the software
development process used in an organization in order to meet the challenges of integra
tion, performance, and scaling. The goals and services of distributed operating systems
and Software Engineering Environments are outlined in order to more clearly define
their roles. The motivation for using a well defined software development process is es
tablished along with the benefits of basing the Software Engineering Environment on
the software development process. Components of a SEE that could effectively support
the process and provide integration, performance, and scaling benefits are introduced
along with an outline of an Ada program used to model the proposed components. The
conclusion provides strong support for process driven SEEs, encourages the expansion
of the concept into other “environments,” and cautions against literal interpretations
of “process integration” that may slow the acceptance of this powerful approach.

IV

A BSTRA CT.. iii
ACKNOW LEDGEMENTS... vi
LIST OF FIGURES ... vii
LIST OF TABLES.. viii
SECTION

I. INTRODUCTION.................................... 1

A. Background .. 1

B. The Software Development P rocess.................... .. 2

C. In tegration........................ 3

D. Performance .. 4

E. The Operating System 5

F. SEE Components... 5

G. Other Environments.................................. 5

H. Organization 6

I. Terminology..............................■ 6

II. OPERATING SYSTEMS 8

A. Classical Operating Systems 8

B. Network Operating Systems........................ .. 9

C. Distributed Operating Systems 13

D. Distributed Operating System Goals 13

E. Distributed Operating System Services............................ 16

III. SOFTWARE ENGINEERING ENVIRONMENTS 19

A. T ools...................... 19

B. Tool S e ts .. 19

C. Software Engineering Environments 19

D. Software Engineering Environment Goals 21

E. Software Engineering Environment Services... 26

IV. COMMON GROUND ... 31

A. Goals .. 31

B. Services... 32

C. Summary 35

V. SOFTWARE DEVELOPMENT PROCESS ... 36

A. M otivation... 36

B. D efinition... 38

TABLE OF CONTENTS

V

VI. PROCESS DRIVEN ENVIRONM ENTS.. 43

VII. BENEFITS OF THE SEE .. 44

A. The Software Development Process as a Foundation for the SEE 44

B. Team Integration.......... 44

C. Management Integration .. 45

D. Control Integration.. 45

E. Performance.. 46

F. Some Guidelines 47

G. Integration with the Organization.. 48

VIII. PROCESS COMPONENTS OF THE SEE .. 50

A. Automating the Software Development Process........ 50

1. A gents.. 50

2. Binders 52

3. Scheduler .. 52

4. Dispatcher .. 53

B. Performance.. 53

1. Scenarios ... 54

2. Analysis.......... ... 63

C. Scalability.. 65

IX. M O D E L ... 66

A. Implementation... 66

1. Active Com ponents... 66

2. Event Trees................................ 67

3. Communication 68

B. Experiments 69

X. CONCLUSIONS.. 70

REFERENCES ... 71
V IT A ... 74

TABLE OF CONTENTS

VI

ACKNOWLEDGEMENTS

Acknowledgement in this thesis is little recognition for the support provided by my
wife over the term of its development. There are some things that can not be fully ex
pressed in words, no matter how carefully they are thought out. I t’s not easy caring for
two small children (no matter how well behaved) while your spouse spends time doing
school work. Somehow she kept everything going, and for that, I am eternally grateful.

Figures Page

1. Software Process Template 3

2. The ISO OSI Reference M odel........ 10

3. SEE Framework Reference M odel........................ 21

4. User Interface Development Model .. 29

5. Sample OSF / Motif Window...................................... 29

6. The Key Process Areas by Maturity L ev e l.................... 37

7. Percent of Organizations in Each Process Maturity Level 38

8. Sample Development Process .. 41

9. Placing CASE Tools in the Context of an Organization .. 49

10. Major Components Supporting Process Integration.................... 51

11. Best Case Agent to Agent Communication... 54

12. Performance Scenario 1 .. 57

13. Performance Scenario 2 ... 58

14 Performance Scenario 3 .. 60

15. Performance Scenario 4■ ■ 61

16. Performance Scenario 5 ... 62

17. Performance Scenario 6 — Worst C ase -. 63

vii

LIST OF FIGURES

LIST OF TABLES

Tables Page

I. Transparency in a Distributed Operating System 14

II. Service Terminology . , ... 33

III. Scenario Overview 5 6

IV. Scenario Summary .. 64

Vlll

I. INTRODUCTION

The broad objective of this research was an improved method of developing
software. Researching this general topic led to the more focused objective of establishing
a mechanism to integrate the software development process with the Software
Engineering Environment (SEE). Requirements of integration were that it should be
done in such a way that it provided context for tool communication; context for user
interaction; and support and enforcement of the software development process. The
resulting system should be capable of handling changes to the software development
process, the software, or the hardware that comprise the SEE. The system should also
perform well in a distributed environment.

As this paper documents, the objective was met by defining a collection of active
SEE components. The components integrate the software development process with the
SEE and they place all SEE activity within the context of the software development
process. New components can be added readily. Existing ones can be modified or
removed as necessary. The components communicate in a manner that allows their
addresses to be determined at run time. An additional benefit to the approach is that
it is not exclusively tied to the software development domain.

A . BACKGROUND

Since the invention of the first computer, the world has become increasingly
dependant upon computer systems. In order to meet the rising demand with a quality
product, software development organizations have increasingly defined their own
Software Engineering Environments (SEE) to assist software development. Initial
SEEs simply provided a collection of “tools” to automate some of the tasks involved in
software development. Today, the emphasis is on integrating the tools in the SEE to
provide software development teams with a coordinated, highly productive environ
ment.

With many software development organizations pursuing the same goal, a new
industry has emerged over the last decade whose purpose is to develop and sell SEEs (or
portions thereof). Naturally, this industry is addressing the problem of integrating tools
in the SEE. Some companies have addressed the problem in a “closed” fashion — one
in which they do not make the key elements of their tools or data easily accessible to
other tools in the environment. Others have addressed it in an “open” fashion — where
the company makes key elements of their tools and data easily accessible to other tools
in the environment. Typically, the closed solution has been the approach of companies

2

that intend to provide a total SEE solution. Companies addressing a portion of the
solution tend to approach it in an open manner.

While economic arguments can be presented for both approaches, the open
approach appears to have the edge. Witness, for example, Rational Corporation’s
evolution of the Rational Environment™ from a proprietary system that ran on a
proprietary hardware platform to Rational Apex™, an environment that runs on Unix
platforms [1], Witness also the SEE provided by Digital Equipment Corporation.
Digital’s SEE is large and attempts to provide a total solution. None-the-less, it does so
in an open manner, through standards [2], Many other cases could be cited with just a
quick look at the industry, but the point here is not to argue for one approach over the
other, it is to observe that the more flexible approach is winning the battle of supply and
demand.

It is natural for a flexible approach to be preferred over the long term. Tools that
are the best in class today may be the worst tomorrow. A SEE that lets an organization
unplug the old tool and plug in the new tool will carry a distinct advantage. There is
another issue, however. No software organization is like any other. Each organization
has its own standards and procedures. It is important for a SEE to allow the organization
to define its own method of developing software — its own process.

B. THE SOFTWARE DEVELOPMENT PROCESS

A substantial amount of work has been done in the area of software process
definition by the Software Engineering Institute (SEI) at Carnegie Mellon University.
The SEI has created a Capability Maturity Model (CMM) and an assessment and
evaluation methodology that allow the process maturity of an organization to be rated
[3]. With the emergence of the CMM, software organizations have increased their
emphasis on well defined and documented software development processes. Figure 1
shows an example of the type of diagram typically used to show the tasks (the rectangles
in the diagram), task relationships, and participating roles for a process. Typically, a
short task description would be provided in the task rectangles shown in Figure 1. Other
pages would then be used as required to provide detailed information such as the entry
criteria and exit criteria for individual tasks, a more complete task description, and a list
of products.

The software development process is designed to ensure that all checks and
balances are in place in order to provide a quality product every time. The process has
a heavy influence on the culture in an organization. A SEE that supports or assists the
process will be more readily accepted by the developers than one that does not.

3

C. INTEGRATION

It is somewhat enlightening, then, to observe that through the short history of
SEEs, the kinds and degrees of integration have typically focused on the technical nature
of the environment [4, 5,6]. Questions such as the following were used to determine the
degree of integration:

• Do the tools provide a consistent user interface (presentation integration)?

• Can the tools use the same data without transformation (data integration)?

• Can the tools use services provided by one another (control integration)?

Software Engineering Environment integration was evaluated purely in the
context of the components within the SEE. Integration of the SEE within the context
of the organization was not considered. The focus has shifted in the last few years.

Articles have started to appear that discuss SEE integration within the context of
the software development organization [4, 7, 8]. It is becoming more generally
recognized that an environment that offers familiar paradigms to the software developer
is more readily accepted, used, and effective than one that does not. Assuming a
competent user interface, a process driven environment is familiar and almost intuitive
because it simply supports the process that developers already use.

Organizations that develop SEEs are more encouraged as they begin to understand
the potential productivity gains that a process driven approach is able to offer.
Additional encouragement has been provided by recent advances in the areas of
presentation, data, and control integration. Witness, for example, the number of

4

products that have been built upon the Field model of coarse grained control integration
[9], included are: HP SoftBench, HP CASEdge, SUN ToolTalk, DEC FUSE, and IBM
SDE/6000 [10]. In addition to supporting control integration, these products all share
another important characteristic - network transparency.

Integrating the tools that comprise a SEE typically requires integrating tools that
run on different hardware platforms, possibly running different operating systems. For
example, a developer on a VAX VMS workstation might be running a compiler and linker
locally, a testing program on a Silicon Graphics Unix machine, and a configuration
management program on an HP Unix machine. An integrated SEE might allow the
developer to select an icon representing a particular source unit from the configuration
management system and drag and drop the source unit icon onto the icon representing
the compiler. The source unit would automatically be checked out of the configuration
management system and compiled. A more sophisticated SEE might allow the source
file to be dropped onto an icon representing the linker. The linker tool would determine
whether this unit, or any units upon which this unit depends, require compilation. If
compilation is required, the files would be automatically checked out of the
configuration management system, compiled in the proper order, and then linked to
form an executable file. This scenario can likewise be extended to run the appropriate
test cases after building the executable. Further extensions can be made to include
metrics generation and collection, documentation updates, and so on. The point is that
the components of the SEE work together locally or across a network and they do so in
a manner that is transparent to the user.

Performance issues become important quickly. Sending a message to a tool on a
remote machine takes a lot longer than making a subroutine call. The more interaction
between tools that is required, the bigger the potential performance problem. To
exacerbate this situation, data and control integration are reaching lower and lower
levels. Data integration at the file level is known as “coarse” data integration. “Fine”
data integration deals with items such as individual source statements in a program or
individual paragraphs in a document. Control integration at the tool level is known as
“coarse” control integration. “Fine” control integration deals with the function or
procedure level. The trend is toward fine data and control integration [10]. Supporting
fine levels of integration increases the overhead required for tool cooperation and thus
increases the performance demands on the SEE.

D. PERFORMANCE

An approach to providing both fine and coarse grain data and control integration
has been outlined by Harrison, Osher, and Kavianpour [10]. They call their approach

5

“Object-Oriented Tool Integration Services (OOTIS)”. Their approach is based upon
object oriented database technology and focuses on the performance demands of fine
grained data and control integration. While this technology is necessary and important,
a weakness seems to remain in one area of coarse grained control integration. When one
tool requires the services of another tool and the second tool is not currently available
on the system, the first tool must wait for the second to become available before it can
proceed. Examples would be logging into a database, or loading a tool into memory for
execution. On some systems, this could cause a considerable delay.

Later sections of this paper will show that a process driven SEE can relieve this
problem. A process driven SEE does not remove the need for performance improving
technologies such as those used by OOTIS, however, and neither of these solutions
removes the dependence of the SEE upon the services provided by the operating system.
Whether integration is coarse or fine, some bindings will be made at run time because
the system must be assumed to be dynamic. A SEE component can not always expect
another component with which it communicates to be on the same machine in the
network every time. It may move dynamically based upon load, it may move simply
because the system administrator moved it, or it may not be there at all because the
machine is down. In any case, no assumptions should be made and it is likely that
operating system services will be used.

E . T H E O PERA TIN G SYSTEM

A SEE provides the environment in which software developers work, but it does not
replace the operating system. A look at the goals of and the services provided by both
operating systems and SEEs reveals that the two seem to be converging. Topics such as
distributed computing are being addressed in both areas. It seems likely that some of
the functions being built into todays SEEs will be in tomorrows operating systems.

F . SE E CO M PO N EN TS

The trend toward distributed computing will have a heavy influence on the way
components of a SEE are integrated. In fact, it can seem to stand at odds to the notion
of integration. Both integration and distribution are essential features of SEE
components, however. SEE components must work together across the network to
accomplish the objectives of the SEE. A set of components are introduced in this paper
that combine to provide process integration in a distributed manner.

G. O T H E R EN V IRO N M EN TS

It is important to note that while this paper discusses process driven Software
Engineering Environments, the concept of process based computing can and should be

6

applied to other areas. The concept can be applied to any area where it is helpful for the
software in use to have an understanding of the context in which the user is working,
or where there is a desire for a number of software components to work together to assist
the user.

Would it be beneficial, for example, for a home PC to automatically disable the
children’s software when it was bed time; for it to prevent them from changing the clock
setting (i.e. bed time); for it to automatically load a spreadsheet program and the
appropriate file when mom or dad selected ‘Balance the Checking Account’ from a
menu? These examples may stretch the point, but they demonstrate the application of
this concept in what may be a more familiar domain. The computer was provided with
certain rules of the house and simply enforced them. Properly written rules will allow
the freedom of experimentation because the rules will prevent harmful situations like
data loss. In a household, this may not be a large problem, but in organizations where
200 people may be working on a project at one time, there is always someone who did
not get the word. The ability to reach those people through the process in real time is
a powerful tool.

H. ORGANIZATION

This paper is divided into ten major sections. Section I begins the paper by
providing the objective and exploring the general topic. Section X provides a summary
of the conclusions.

Sections II through IX can be divided into two parts. The first part, sections II
through IV, provides a review of the literature on the subjects of operating systems and
Software Engineering Environments. It builds evidence that operating system services
and SEE services appear to have some overlap. The second part of the paper, sections
V through IX provides a review of the literature on the subjects of software development
processes and process driven Software Engineering Environments. It builds evidence
to support the use of the software development process as a fundamental element in a
SEE. It also introduces SEE components designed specifically to provide process
integration that supports tool integration, performance, and scaling.

I. TERMINOLOGY

The word “process” represents a particular challenge when the operating system
and software development process domains are discussed concurrently. In general, the
context should make the meaning of the word sufficiently clear throughout this paper.
However, in some cases, the term “software development process” is used in place of
“process” to ensure clarity.

7

The term Software Engineering Environment (SEE) is not universal. The term
Computer Aided Software Engineering (CASE) is often used for similar purposes. Where
CASE or iCASE (integrated CASE) were used in material referenced by this paper, they
were not modified and will thus appear.

8

II. OPERATING SYSTEMS

Operating systems perform two basically unrelated functions. They provide users
with a convenient interface and they manage the system resources [11]. Operating
systems can be placed into categories based upon their characteristics. Though the
names differ slightly among references, there are generally three categories of operating
systems: classical, network, and distributed.

The goal of this section is to introduce distributed operating systems. Classical and
network operating systems will be introduced first in order to provide some background.

A . CLASSICAL O P E R A T IN G SY ST E M S

The classical operating system provides resource management and an interface that
reduces the effort required to manage hardware resources. A classical operating system
may run on a computer with multiple processors if the processors share memory.

Services of a classical operating system can typically be grouped into the following
five major categories: Command Interpretation, Processes, Memory Management, File
Systems, Input / Output. To reinforce the close tie between an operating system and the
hardware, it is worth noting that the last four categories map directly to the following
major hardware components: CPU, Memory, Secondary Storage, Input / Output
Peripherals.

Commands can be provided directly by a user via some input device such as a
keyboard or mouse, or they can be provided by a user’s program. Each command must
follow a specified syntax in order to be recognized. Once a command is recognized, the
operating system attempts to execute it.

A process is a program in execution [12]. System users initiate the execution of
processes using operating system commands. On a multiprogramming system, when
one process is performing an operation that does not require the CPU (e.g. I/O), that
process gives up the CPU so that a process that is ready to use the CPU may do so. On
a multiprocessing system, many CPUs are available to execute processes at the same
time. With regard to processes, the operating system will normally:

• Create and delete processes

• Suspend and resume processes

• Provide for process synchronization

Provide for process communication

Handle deadlocks

Schedule processes for execution

9

A file is a logical storage unit on the system. The physical properties of a file are
defined by the particular storage device (e.g. disk, tape). Files are typically organized
into directories. Directories provide hierarchical organization of files. With regard to
files, the operating system will normally:

• Map the logical file onto the physical device
• Provide consistent file access regardless of device

• Control file access

• Create and delete files

• Create and delete directories
• Support primitives for manipulating files and directories

• Provide protection from unauthorized access

Memory is an array of bytes, each with its own address. A process must be placed
in memory in order for it to be executed. A file must be placed in memory in order for
it to be accessed. With regard to memory management, the operating system will
normally:

• Decide which files and processes are to be loaded into memory when memory
space becomes available

• Keep track of which parts of memory are currently being used and by whom

• Allocate and deallocate memory space as needed

Input to a computer can be received from devices such as keyboards and disk drives.
Output provided by a computer can be received by devices such as terminals and disk
drives. With regard to input / output, the operating system will normally:

• Cache disk accesses in memory
• Communicate with device drivers

• Schedule disk accesses

• Allocate storage
• Manage free space

B . NETWORK OPERATING SYSTEMS

As the number of computers increased over time, so did the desire to connect
machines tp one another. Network operating systems were introduced. Network

10

operating systems provide the same functions as classical operating systems while
providing the additional capability to access files and other computers across the
network. Each computer runs its own network operating system.

The difference between a classical operating system and a network operating
system is not large. The network operating system requires the addition of a network
interface controller and software to drive it. In addition, it requires software to perform
remote login and remote file access. The additions are most effectively described with
the use of the International Standards Organization (ISO) [13] Open Systems
Interconnection (OSI) Reference Model [14, 15], shown in Figure 2.

Application Application

Presentation Presentation

Session Session—

Transport Transport- -

Network - 5 - Network Network - < ---------> J Network

Data Link Data Link - e - - > ■ Data Link Data Link

Physical Physical * ---------- ► Physical Physical

H O ST PSE PSE H O ST

Figure 2. The ISO OSI Reference Model [16]

There are seven layers in the ISO OSI Reference Model. Every layer in the model
defines a different set of software capabilities that distinguish a network operating
system from a classical operating system. The lower three layers primarily provide data
communication functions while the upper three layers primarily provide data processing
functions.

Logically (see dashed lines in Figure 2), each layer communicates with the
corresponding layer on a different machine in the network. In reality, however, only the
physical layers have direct connection. The other layers communicate directly only with
the layer above and the layer below. Data from the application layer is handed to the
presentation layer which performs some transformations and passes it to the session
layer, etc. Once at the physical layer, the data is moved from one machine to another.
In a local area network, data is typically broadcast to all machines. Each machine will
only accept data addressed to it. In a wide area network, Packet Switching Exchanges
(PSEs) are likely to be involved [16]. A PSE is simply a special purpose computer that
sends and receives packets of data through the network on behalf of other computers.

1]

Either way, once the data has reached the targeted machine, it moves from the physical
layer up to the application layer, with each layer processing and removing overhead
information added by the corresponding layer on the sending machine.

Logically, a collection of data passed from one machine to another is called a
message. In order for the definition of a message to be generic, however, a message must
be allowed to be any length. Since the physical buffer used by the hardware that provides
data communication must be a fixed size, messages are typically further divided into
packets. A length restriction is applied to packets.

Predefined protocols, which are precisely-defined rules, are used to ensure proper
communication between a layer on the sending machine and the corresponding layer on
the destination machine. The following paragraphs describe each layer [16,17].

The application layer consists of protocols with which an application gains access
to the network. For each application class that requires network communication, an
application level protocol is required. For two application processes to exchange
meaningful information, they must agree on the semantics of all aspects concerning the
intended exchange of information. Examples of application level protocols include
terminal emulation protocols and file transfer protocols.

The presentation layer provides data format conversions to place the data in an
external data representation before it is transmitted across the network. The
presentation layer also provides data format conversions to read the external data
representation and convert it to a format that is known to the machine receiving the
data. The following cases provide good examples of the usefulness of the presentation
layer:

• When the bit order in machine words on the source (e.g. an IBM) are in a
different order from those on the destination (e.g. a VAX)

• When data is encrypted for additional security while on the network

• When data is compressed for improved performance

The session layer establishes and maintains a virtual connection called a session
between processes in different machines connected by a network. A process on one
machine works through the application and presentation layers on the same machine
to tell the session layer the name of a service that it wants to use on another machine.
The session layer then works with the session layer on the destination machine to
establish a virtual connection with a server process on the destination machine. One of
the processes then makes the virtual connection name known. If the other process
requests a connection with the same name, a virtual connection has been established

12

between the two processes. Subsequent communication between the processes takes
place through this virtual connection. The connection can be terminated by either
process.

The transport layer provides network independent message transport service
between machines on a network. The following services are typical of the transport
layer:

• Translates network independent transport addresses into network specific
addresses

• Segments messages into appropriately sized packets at the source, and
reassembles them in the proper sequence at the destination

• Ensures that messages are transferred reliably

The network layer transfers data packets across the network. It relieves the
transport layer of the need to know anything about the operational characteristics of the
specific transmission facility.

In a wide area network, the network layer would establish a route from source to
destination, through as many intermediate nodes as required. In a local area network,
the network layer functions are usually handled by the data link layer. When this is the
case, the network layer is not required.

The data link layer is responsible for the error-free transmission of packets across
a network. The following services are typical of the data link layer:

• Initialization.
Initialize a link.

• Mechanism to Segment Information.
Subdivides data packets into blocks (or frames) in order to increase the
chance of transmitting without error in a noisy environment.

• Error Checking.
Errors are detected, and where possible, corrected.

• Data Synchronization.
The receiver must align a character decoding mechanism to match the
character encoding mechanism of the sender.

• Flow Control.
Ensure that a sender does not transmit an amount of data that exceeds the
receiver’s ability to handle it.

• Abnormal Condition Recovery.
Detect and recover from lost connections.

13

• Termination.
Terminate the link (hardware is still connected),

The function of the physical layer is to transmit data bits over some medium
connecting two pieces of communications equipment. This layer includes the hardware
that drives the network and the circuits themselves.

Most equipment today is analog, requiring amplitude or frequency modulation to
transmit data. The trend toward digital communication equipment will reduce the
complexity of this layer in the future.

C. DISTRIBUTED OPERATING SYSTEMS

As hardware costs have continued to decrease while performance has increased,
more powerful software applications have become available. Users again have the desire
to increase their capability to interact. Enter the concept of distributed operating
systems. A distributed operating system provides network resource management and
an interface that reduces the effort required to use network hardware resources. It
provides the same services as the classical operating system except the services apply
across a network of computers that do not share memory. Logically speaking, the
network ends up looking like one big computer to the distributed operating system.

The distributed operating system has to walk a line between separation and
transparency. The physical distance among computers creates difficult problems to
solve when the objective is to create the appearance that all computers are acting as one.

In addition to the typical services provided by classical and network operating
systems, a distributed operating system will add the services described in section II.E.

D . DISTRIBUTED OPERATING SYSTEM GOALS

The primary goal of a Distributed Operating System is to provide a single system
view of the entire network. This view must be achieved at both the system user and
system programmer levels. The following paragraphs address the goals of transparency,
performance, reliability, and scalability.

Unless it affects performance, or the method of access, system users are usually not
concerned that a particular program is running on a specific computer or that a
particular file is on a specific disk. Programs, on the other hand, may be written to
interface with other programs using mechanisms that are highly dependant upon the

14

computer on which they are running (e.g. a global section of memory). In short, the
single system view is easier to provide to a user than it is to a program.

Tanenbaum [11] defines five types of transparency that a distributed operating
system should provide. These five types are shown in table I.

Table I. Transparency in a Distributed Operating System [11]
Kind Meaning
Location transparency Users and programs can not tell where the resources

are located
Migration transparency Resources can move at will without changing their

names
Replication transparency Users and programs can not tell how many copies exist
Concurrency transparency Multiple users and programs can share resources auto

matically
Parallelism transparency Activities can happen in parallel without users or pro

grams knowing

Location transparency allows resources to be accessed in a manner that is totally
independent of their location. The name of a resource should not be tied to its location.

Migration transparency allows the system to be reconfigured or files or databases
to be moved without affecting the way the resource is accessed. This is similar to location
transparency. The difference is that migration transparency not only says that it does
not matter where a resource is, the resource may also be moved.

Replication transparency allows the operating system to make multiple copies of a
widely read file, for example, at various locations across the system. This can improve
performance by changing many long-distance network references into local cluster or
possibly computer references.

Concurrency transparency allows the operating system to handle a case when, for
example, more than one user tries to write to the same file at the same time without
corrupting the file and without resorting to an error message to the user. The operating
system will automatically synchronize access to resources accessed by more than one
user.

Parallelism transparency allows a programmer, for example, to ignore the fact that
their system includes a certain number of CPUs that can be used to solve a highly parallel
problem. Instead of describing how to break up a task among various processors, the
programmer can count on the operating system to break it up appropriately.

15

An advantage of a distributed system is that the workload can be distributed across
a number of computers in a parallel fashion. While this naturally speeds up processes
that are relatively autonomous, when processes communicate frequently, the additional
network traffic may present a bottleneck that slows the overall performance beyond a
non-distributed solution. The decision to migrate a process to a remote host has both
a direct (processor speed) and indirect (network traffic) affect on performance. Where
processes exhibit very little interprocess communication, processor speed is a more
important factor. Where processes exhibit a lot of interprocess communication, network
traffic is a more important factor. A system that automatically distributes processes
should be able to dynamically adjust for these factors.

That being said, any system that automatically distributes processes across a
geographically dispersed area must also consider the geographic distance from the
computer where the process request is being made. As a rule, the greater the distance
the longer the propagation delay. Even a process that has little communication with
other processes may be unacceptably slow if the distance between communicating
processes is too great. In addition, the time to simply load a process into the memory
of a remote computer in order for it to execute may be prohibitive.

While these considerations are important, it is also important for a distributed
system to acknowledge that different jobs have different priorities. Some can tolerate
slow performance while others can not.

The “grain size” of parallelism is typically a primary factor in performance. Fine
grain parallelism might execute individual source code instructions in parallel, although
distributing them across a network would have questionable value. Coarse grained
parallelism might execute entire programs in parallel.

Leslie Lamport [11] has described a distributed system as, “One on which I cannot
get any work done because some machine I have never heard of has crashed.” The goal
of a distributed operating system should not only be performance improvement through
the effective distribution of processes across network components, but also the reliable
execution of all tasks. Where a failed task can only be tolerated in extreme conditions,
fault tolerance may be built into the system to allow recovery or at least to maintain data
integrity.

A distributed operating system may not notify the user of errors that occur during
processing if it can recover and complete the task. This is analogous to a tape drive that
encounters an error reading a tape but uses an error recovery routine to derive the data
and thus recover from the error.

16

Deitel [18] has outlined techniques commonly used to recover from equipment
failures they are:

• Multiple copies of critical data for the system and the various processes
should be maintained.

• The operating system is designed to run under degraded conditions.

• The hardware includes error detection and correction capabilities.

• Idle processor capacity is used to perform search for potential failures before
they occur.

• The operating system directs a functioning processor to take control of a
process running on a failing processor.

It is important that the system does not assume a minimum or maximum number
of resources. Future systems will likely contain many more processors and be more
geographically dispersed. Witness the French Post, Telephone and Telegraph
administration which is installing a terminal in every household and business in France
[11]. These terminals will form a huge country-wide network.

It is also possible, however, for a system to downsize. To remove unwanted traffic
or communication, a cluster of computers may be removed from a larger network. The
operating system should be able to handle this.

E . D ISTR IB U TE D O PERA TIN G SYSTEM SERVICES

The following paragraphs describe services provided by distributed operating
systems in order to meet the goals outlined above. On the whole, the services described
below focus on single, global mechanisms that perform the same operation regardless
of their location and regardless of the location of the user.

A single, global interprocess communication mechanism should be provided.
Processes will be distributed to different hosts across the network depending upon
current load conditions. When two processes communicate, they must be allowed to
communicate in the same manner regardless of the hosts on which they are running.
A global mechanism provides a level of transparency that allows processes to run
correctly without change and without being conscious of their host machine or the host
machine of the process with which they are communicating.

A single, global protection scheme should be provided. Files and, in some cases,
commands can be protected from access by certain users. A single, global protection
scheme allows the operating system to protect against unauthorized access in a

17

consistent way with minimal overhead. It also provides a level of transparency to
processes or users that wish to modify access control. Regardless of their host machine,
they use the same commands.

A single method of process management should be provided. Section II .A lists
process management functions that an operating system typically performs. Without
a single method of process management, deadlock detection and process scheduling are
very difficult to perform. In addition, it is possible that different methods of process
management could lead to different results depending upon the hosts that happen to be
chosen. Providing a single method of managing processes across the network allows
users to understand how their processes will be managed and it ensures that processes
will be managed in the same way every time they are run, regardless of the hosts on
which they execute. User and system processes that monitor process execution and take
action based upon results will also be far easier to maintain.

As an example of the difficult issues related to process management, the following
case is offered. The designer of a distributed system would want to allow one program
to be divided into parts that could be run on several processors around the network in
parallel. All of this must be done in a manner that is transparent both to the program’s
author and to its user. While this concept can be stated and understood in these simple
terms, the solution will be very complex. Among other things, the distributed operating
system will have to schedule many different parts of many different programs across
many different computers. Each computer may have a different effective processing
speed. The overall network performance must be maintained or improved through it all,
else there was little reason to provide the distributed operating system.

A single set of system calls should be provided. Processes that make calls to
operating system routines must have a single set of calls from which to select. In
addition, these calls must make sense in a distributed environment. In other words, the
system calls used by a process should not limit its use to particular host computers on
the network, and the system calls should not be restricted to those present in an
operating system that supports a single computer.

Operating system kernels should be identical on all CPUs. With a single set of
system cfllls and required coordination of global activities, identical operating system
kernels would increase the reliability of the system and reduce the maintenance costs.
Each kernel could manage the local memory and schedule local processes.

A single, global file system should be used. If a process can execute on any host in
the network, it is essential that file access be consistent regardless of the host. A single,
global file system will provide this. In addition, performance gains can be made by

18

migrating a file around the network depending upon the location of the process that is
currently accessing the file. With the potential that a file has been relocated (migrated)
by the operating system, and the potential that a number of different users may want
to write to one file, a single, global file system is a natural choice.

19

III. SOFTWARE ENGINEERING ENVIRONMENTS

In the following paragraphs, the evolution of the Software Engineering Environ
ment is explored. In reading the paragraphs below, it is useful to think of the
development of software as a series of phases on a horizontal plane. This is intended to
be generic and is not meant to propose a waterfall, spiral, or any other approach to
software development.

A . T O O L S

A “tool” is an application program that provides assistance in performing some
task. Early environments for software development were comprised of individual tools
that either performed a basic function on many objects (e.g. an editor) or performed a
very specific function on specific objects (e.g. an assembler). From the perspective of a
software life-cycle with phases on the horizontal plane, there was little or no horizontal
integration among tools.

B . TO O L SE T S

In an effort to improve software developer productivity, horizontal integration
among tools began to take place. In some cases, the software developers initiated the
integration themselves [5]. Tool sets began to emerge that provided horizontal
integration among tools within a single life-cycle phase, or in some cases among multiple
life-cycle phases. Typically, tool sets that span more than one phase work with objects
in adjacent phases. In no case does a tool set provide all operations required on all objects
across the entire life-cycle.

C. SOFTWARE ENGINEERING ENVIRONMENTS

A Software Engineering Environment (SEE) has been defined as “a software based
system which provides automated support for the engineering of software systems and
for the management of the software process [19].” It is an attempt to achieve horizontal
integration across all life-cycle phases. Because different vendors typically provide
products that support individual or adjacent phases, implementation of a SEE has
proven elusive.

The motivation for capable Software Engineering Environments has primarily
been economic. Paul Strassman has compared current software development to the

20

medieval guild environment"... where each town makes its own shoes, kills its own cows,
tans its own leather and, if you’re lucky, three years later you get custom-made shoes
that cost a great deal of money [19].” Mr. Strassman is the Director of Defense
Information. He goes on to say, “The number one priority of the Department of Defense,
as I see it, is to convert its software technology capability from a cottage industry to a
modern industrial method of production [19].”

With this thought in mind, it is interesting to observe that Norman and Chen
anticipate “The field of software metrics will continue to grow in the 1990’s, because
using metrics in conjunction with tools and methods and applying statistical process
control will help us better manage the development process [20].” This statement would
seem to support Strassman’s number one priority, as it is directly in line with the proven
approach used by Edward Deming to improve quality in manufacturing industries.
Deming is a proponent of defining, measuring, controlling, and engineering the
characteristics of processes and products.

Software Engineering Environments today do little to support this philosophy, but
they are working toward it. A current SEE is typically a collection of “integrated”
application programs (software tools), each of which functions in a fairly autonomous
manner. Integration among tools has been achieved to varying degrees and will be
discussed below. The Reference Model for the Framework of a Software Engineering
Environment, accepted by the National Institute for Standards and Technology (NIST),
formerly the National Bureau of Standards, and the European Computer Manufactur
ers Association (ECMA) [21], will be used to aid the discussion.

A SEE framework, however, is more than just a model. Framework products are
being developed whose sole function is tool integration. The SEE framework can be
defined as “The infrastructure for tool integration. A product whose main role is to
integrate a set of Computer Aided Software Engineering tools while providing little
direct functionality of its own [19].” The products listed in the second paragraph in
section I.C. (HP SoftBench, ...) would all be considered frameworks.

The NIST / ECMA model was developed with three objectives in mind [19]:

• To support the identification of areas in SEE architectures requiring further
development

• To provide a common reference for describing existing standards

• To improve standards

The reference model is shown in Figure 3. Because of appearance, it is often called
the “toaster model.” The SEE framework products provide the services identified by

21

the shaded areas in Figure 3. The model logically divides services provided by the
framework. The services are discussed later.

Object Management Services

Tool Slots

Software Development
Process Management Services
User Interface Services

Message Services

Figure 3. SEE Framework Reference Model [19]

D. SOFTWARE ENGINEERING ENVIRONMENT GOALS

The goal of a Software Engineering Environment is to “support software
development - specifically, to provide a software-engineering team with a productive
and efficient environment so that engineers can produce high-quality software on time
and within budget [6].” It is interesting to note, however, that SEE developers usually
discuss their goals in terms of the two competing notions of open systems and integrated
systems.

An open system is one in which the steps required for an application to be considered
part of the system are both easy and well defined. It is important for a SEE to be open
because it is widely recognized that tools from various vendors will be combined to form
the full SEE. As new tools become available, possibly from different vendors, they
should be incorporated into the environment if they improve the SEEs ability to support
software development.

An integrated system is one in which all of it’s “components function as part of a
single, consistent, coherent whole [22].” This definition brings to mind the distributed
operating system goal of a single view of the system. In the case of the SEE, the
components are limited to software components, but like the distributed operating
system, integration must be provided at both the system user and system programmer
levels.

One way to meet both open and integrated demands is through the use of interface
standards. With well defined interface standards, tools can be plugged into an

22

environment effortlessly, and they will immediately be integrated with the other tools
in the environment. Currently, there is disagreement about where standards should be
applied. Never-the-less, everyone seems to agree that the answer lies in a better
understanding of integration.

Much of the research to this point in the area of integration has used the definitions
supplied by Anthony Wasserman [23]. As discussed before, however, a trend toward
characterizing the integration of a SEE with the organization in which it is used has
begun. This is an important trend, but should not be followed to the exclusion of the
previous work. Both are and will remain relevant. Brown and McDermid would argue
this point, saying that the only integration that is relevant is that with the organization
[6],

Looking at the two camps in more detail, Anthony Wasserman has identified five
kinds of integration: platform, presentation, data, control, and software development
process [23]. (Many researchers use only the last four to define the scope of their analysis
related to a SEE.) Brown and McDermid argue that this approach loses sight of the real
purpose of a SEE. They too have identified five kinds of integration: interface, software
development process, tool, team, and management [6].

Comparing the approaches, it can be seen that “software development process”
integration is identified in both. Brown and McDermid’s “interface” integration is
equivalent to Wasserman’s “presentation” integration. Wasserman’s “data” and
“control” integration can be mapped into Brown and McDermid’s “tool” integration.
“Team” and “management” integration remain a focal point of Brown and McDermid
but were not included in Wasserman’s analysis. The following paragraphs will describe
these categories in more detail.

The goal of presentation integration is to improve the efficiency and effectiveness
of the user’s interaction with the environment by reducing his cognitive load [22]. Since
a SEE is typically comprised of a number of independent tools, each tool may have its
own user interface. The user interface for each tool may use different commands, key
stroke sequences, or mouse sequences to accomplish equivalent functions. When the
same person uses both tools, that is confusing. A highly integrated SEE would have few,
if any, of these differences in the user interface. The cognitive load can be further
reduced if the interface is intuitive.

The two major properties of presentation integration are 1) appearance and
behavior, and 2) the interaction paradigm. These are explained below.

Tools that use the same symbols for the same purpose; that use the same verbs and
commands for the same operations; and, that exhibit equivalent response times could

23

be said to have appearance and behavior integration. The most important result is that
a user can move from one tool to the next without changing their mental model of the
system.

Some tools present graphical objects to their user in order to promote a mental
image of the system. For example, a data file on the computer may be accessed by first
opening an image of a cabinet, then opening an image of a folder, then finally, opening
an image of a document. From this presentation, it might be assumed that the user
would metaphorically adopt a mental model of the computer file structure that is
equivalent to paper filing cabinets. Now suppose that the information in the file was
really held in a database and was presented in the file through some document link
technology. If the user is asked to update the data in the database directly, unless the
same cabinet / folder / document paradigm is obvious, it will be a very difficult job at best.
Tools that use the same mental models (paradigms) are said to have interaction
paradigm integration.

The goal of data integration is to ensure that all the information in the environment
is managed as a consistent whole, regardless of how parts of it are operated on and
transformed [22]. Data integration is not relevant among tools that do not share
persistent or non-persistent data.

Interoperability is a measure of the amount of work required to allow tools to use
the same data. If two tools use the same data but a format conversion must be performed
in order for one of the two tools to use it, the tools do not exhibit interoperability
integration. Interoperability can be measured from both the user perspective and from
the developer perspective. When a user has to take some action in order to allow two
tools to use the same data, the tools do not have interoperability integration from the
user perspective. When the developer has to take some action in order to allow two tools
to use the same data, the tools do not have interoperability integration from the
developer perspective.

Tools that use the same data should not maintain duplicate copies of that data.
There should be one instance of all data in the system in order to optimize disk space and
ensure consistency. This does not preclude replicated data that may be intentionally
maintained by a distributed database or operating system.

Under the condition that two data values in a database may have some restrictions
relative to one another, it is possible that two tools operating independently on
individual data values may violate the value restrictions. Tools that have data
consistency integration do not violate such rules.

24

Data exchange is a form of integration similar to interoperability. Where
interoperability applies only to persistent data, data exchange applies to persistent and
non-persistent data that is exchanged between tools that are running. Data exchange,
then, is a measure of the amount of work that has to be done in order to exchange data
between tools. A distinction between interoperability and data exchange is relevant
because the two may use different mechanisms to implement the integration.

Synchronization is similar to data consistency. Where data consistency applies only
to persistent data, synchronization applies to persistent and non-persistent data
between tools that are running. Synchronization, then, is a measure of the extent to
which cooperating tools communicate changes they make to shared, non-persistent
data.

The goal of control integration is to allow the flexible combination of an
environment’s functions, according to project preferences and driven by the underlying
software development processes the environment supports [22]. Control integration,
then, addresses control transfer and service sharing issues. Control integration can be
evaluated in terms of the number of services offered by a tool that are required by
another tool in the environment. It can also be evaluated in terms of the number of
services a tool uses that are provided by another tool in the environment.

The goal of Software Development Process integration is to ensure that tools
interact effectively in support of a defined software development process [22]. Tools that
make assumptions about the process in which they will be used may be difficult to
integrate in sites where the assumptions are not valid (e.g. a design tool that assumes
a specific design methodology).

The software development process is made up of a number of steps. Each step yields
a result. Step integration is a measure of the extent to which tools work together to help
achieve the desired result. An example of a collection of tools that are not integrated with
respect to the software development process step follows.

A system processes a C+ + source file into a C source file, compiles and links the C
source, and then runs with a debugger that displays the C source file lines. This system
is not doing as much as it might to help the user debug the C + + source file. The tools
are therefore not integrated with respect to the software development process step.

Each step in the software development process is composed of a number of events
that can or must occur. A precondition to using a tool may be the occurrence of some
event (e.g. a unit test could be run after a successful compile and link). Event integration
is a measure of the degree to which tools generate the events necessary for other tools
to run.

25

Constraints may be placed on software development process steps or events.
Constraints disallow progression toward steps or events that, if the constraint were not
violated, would be allowed. Like data consistency integration and synchronization
integration, constraint integration is concerned with tools working together within the
guidelines of imposed constraints. Data consistency and synchronization are concerned
with constraints on data. Constraint integration is concerned with constraints on
functions provided by tools. In other words, use of a particular function in one tool may
preclude use of a particular function in another tool. Constraint integration is a measure
of the degree to which tools work together to provide appropriate functions in support
of a software development process.

Brown and McDermid have defined tool integration in terms of the ability to record,
share, and transfer information among tools [6]. Five degrees of tool integration have
been defined. From low integration to high integration, they are: carrier, lexical,
syntactic, semantic, and method.

The term “carrier” is borrowed from the field of electronic communications. Here
it is intended to mean a common input / output format among all tools. Unix’s file
representation was the motivation for defining this level. All tools that are integrated
at the carrier level have a common way to read and write data that they share.

A collection of tools that understand the format of the input / output are said to be
integrated at the lexical level. These tools can use the same data or exchange data among
themselves. A drawback for tools that are not integrated beyond this level is replication
of code that parses or generates the input / output.

Tools that are integrated at the syntactic level agree on the rules used to format data
that they exchange. These tools do not have to replicate code that parses or generates
input / output, nor do they have to repeat actions to analyze, validate, and convert data.

At the semantic level, tools not only agree on the rules governing allowed data
formats, they also agree on the meaning of the operations on the data. Tools can base
their operations on the results of other tool operations without prior knowledge of the
exact results.

Tools at the method level know the available data structures, the allowed operations
on those data structures, and they know their role in the software development process.
Method level integration provides the opportunity to:

• Constrain tool use to the correct point in the life cycle

• Offer guidance on what may be the best action at a particular time

26

• Automate any consequential actions (one tool can tell other tools about a
change it made that will affect the data they both process)

Tools that exhibit team integration foster work performed by a group of people.
This involves supporting both shared and personal data and tools, and providing
methods for effective communication using the environment.

When tools exhibit management integration, management information is automat
ically derived from data and events in the system. This provides managers with accurate,
up-to-date information leading to more informed decisions.

E. SOFTW ARE E N G IN E E R IN G ENVIRO NM ENT SERV ICES

The following paragraphs present services that a typical SEE would provide in
order to accomplish the goals above. The goal that is accomplished is identified along
with the description of the service.

The message services provided by the SEE framework allow tools to pass messages
among one another in a manner that makes the location of the individual tools
transparent. In addition, message services track the status of message delivery. These
services provide support for control integration.

Digital Equipment Corporation, Silicon Graphics Incorporated, and SUN Micro
systems Incorporated have formed a “CASE Messaging Alliance” in order to more
rapidly achieve messaging standards. In October 1992, the alliance produced a
document titled “CASE Interoperability Message Sets” that “contains high-level
semantic — not syntactic — specification of messages in sets [24].” The document also
defines requirements for the messaging services. These requirements bring insight into
the types of services provided by this portion of the SEE Framework. Paragraphs that
follow have been extracted from the aforementioned document.

The following capabilities must be provided within the messaging
environment:

• The ability to deliver messages representing requests for function
ality;

• The ability to deliver messages representing notifications of events;

• A mechanism or set of services for application message registration;

• A set of policies regarding delivery of messages;

• A mechanism or set of services to allow consistent delivery of a set
of messages.

27

Message Delivery

Messages may be of two distinct types: Requests or Notifications.

Request messages are used to request that specific functional services be
performed. An indication of the success or failure of the functional service
must be provided to the requestor, as well as providing any additional reply
required by the definition of the message.

Note - Functions that may be time consuming will return success or
failure to indicate status of the initiation of a function. When the function
actually completes the function will return a notification indicating the
success or failure of the function.

Notification messages are used to provide notification to other applica
tions in the CASE environment of events and state changes and do not require
a response or affirmation of receipt.

The messaging environment must provide a reliable mechanism or set of
services for delivering both these types of messages, as well as delivering the
responses associated with the request messages.

Message Registration

The messaging environment must provide a mechanism or set of services
to allow an application to define which messages it is capable of receiving. This
registration capability should also provide the appropriate initialization
services required for messaging to other applications in the messaging
environment. Such services may cover the identification of the application to
the environment, and the set up of communications between the environment
and the application.

Policies for Message Delivery

The messaging environment needs to have a well defined set of policies
that control the delivery of messages.

Consider the following algorithm for dispatching messages.

When a message is sent, the messaging environment will first:

1. Consider all currently available recipients of messages;

28

2. Finding no acceptable receiver, consider doing one of the following:

a. Auto-starting an application on behalf of the user

b. Send a failure message back to the requester, at this point the requester
can make an intelligent decision as to whether to wait or report failure back
to the user.

The auto-start capability enables an environment implementation to
expand to fit the user’s needs without user intervention.

Message Addressing

The messaging environment should provide a mechanism or set of
services to enable one application to assure consistent delivery of a set of
messages to a particular application or set of applications. For example, this
would enable an application to have all of its edit requests serviced by a single
editor instance, or enable all notifications to be sent to a select group of
applications. Such a capability should be defined by the implementation,
including the mechanism(s) to initiate, define the attributes of, and terminate
the connection.

A possible implementation of this idea is to use a form of addressing that
identifies, a receiver by the function it performs. For example, an editor
application would identify itself as “ascii text editor” so that any message that
requests an ASCII text editor function could be handled by the application.
T h is form o f ad d ressin g a lso en ab les d ifferent ap p lications to supp ly th e sam e

fu n ctio n s.

The user interface services provide sets of routines that perform all interactions
with the user and form a foundation for a common user interface across all tools in the
SEE. These routines will not, in themselves, force a common look and feel among all
tools in the SEE. Application developers must follow style guidelines to achieve a
common look and feel. User interface services support presentation integration.

Open Software Foundation Motif (OSF/Motif) represents a set of user interface
services. As an explanation of the way OSF/Motif would be used by a developer, the
OSF/Motif Programmer’s Guide, includes Figure 4 [25].

Application developers would use services provided by OSF/Motif to create
standard user interface objects. Developers also have the opportunity to use lower level

29

Application

M otif Widgets

Xt Intrinsics

X Window System

OS and Networking

Hardware Platform

Figure 4. User Interface Development Model [25]
services that provide basic functions but do not attempt to provide common objects from
the user point-of-view. As an example of the use of OSF/Motif, a typical application
might produce a window that looks like the one in Figure 5.

...i OSF M otif

File Edit C om m an d s O p tio n s Print H elp

mJjsJ .

d

Figure 5. Sample OSF / Motif Window

Examples of the services typically provided by user interface services include:

• Ability to display predefined objects such as pointers, buttons, scroll bars,
labels

• Ability to cause objects to respond to mouse and keyboard inputs or not

• Ability to group individual display objects

• Ability to display a named group of objects

The software development process management services manage the current state
of the environment, and enforce software development process rules. The software

30

development process rules define valid states and the criteria required to transition from
one state to the next.

Software development process management services support software develop
ment process integration. Typical services include the ability to define roles, the ability
to define states and state transitions, and the ability to define the roles and events that
are required to cause a state transition.

The object management services control access to all objects in the SEE. Each
object may be a composite of many atomic elements. Examples of objects include:
documents, source files, and problem reports. If all objects in the SEE are accessed via
their object name, regardless of the method used to maintain them, then components
of the SEE that access the objects are insulated from the specifics of database, library,
or file access.

Object management services support data integration. Typical services include:

• Version control

• Check-in, check-out

• Copy, delete, rename

• Report generation

31

IV. COMMON GROUND

After covering the purpose, goals, and services of operating systems and
environments in the last two sections, this section will narrow the focus to Distributed
Operating Systems (DOS) and Software Engineering Environments. It will identify
ways that the two might complement each other.

The motivation behind investigating distributed operating systems and Software
Engineering Environments in the same context is performance. As we have seen in the
last two sections, both systems are concerned with the transparent integration of system
components. While SEEs are concerned with software components (application
programs), distributed operating systems Eire concerned with both hardware and
software components. However, both SEEs and DOSs are concerned with transparency
from the system user and system programmer perspectives.

A . G O A LS

Ultimately, distributed operating systems and Software Engineering Environ
ments both seek to improve the productivity of their users. The two differ in the level
at which they attack the problem, however, due to their role in the overall system. Their
roles in the overall system are a natural result of their evolution.

Distributed operating systems have evolved from network and classical operating
systems. Goals of the distributed operating system are oriented toward providing the
necessary functions to allow efficient utilization of hardware resources for all current
system users.

Software Engineering Environments, on the other hand, have evolved from
application tool sets and stand-alone application tools. SEE goals are oriented toward
providing efficient user services that enhance the productivity of a team of software
developers.

The goal and service terminology in the previous sections was intentionally
presented in a manner consistent to its presentation in other literature in order to
emphasize the different perspectives to a similar problem space. While the goals
presented in the previous sections continue to be important, the following paragraphs
attempt to provide a single perspective for goals that are shared by distributed operating
systems and Software Engineering Environments. The following goals address the user
interface, transparency, executable process integration, team and management integra
tion, performance, reliability, scalability, and efficiency.

32

The development environment should provide a consistent, intuitive interface.
More specifically, equivalent operations should use the same commands and commands
should be accepted that have meaning in the context of the user’s software development
process.

The development environment should appear as a single environment in which a
team of developers and managers cause the project to progress through the software
development process by performing specific operations. The user should be able to
choose which development efforts are visible among any parallel development efforts.
Specific software and hardware components used in an operation should not be visible
unless visibility to this level is specifically requested by the user. A “user” may be a
system user, or a system programmer.

The development environment should provide a “method level” of integration
among executable processes. In other words, it should provide a level of integration such
that the tools know the available data structures, and they know their role in the
software development process.

The development environment should provide group communication mechanisms.
It should provide levels of shared and personal data and executable processes. It should
provide automatic collection of data relevant to the management of a software
development effort.

The development environment should provide consistent performance for equiva
lent tasks. It should provide acceptable response and turn-around times.

The development environment should be available for use when required. It should
recover from limited failure or, minimally, maintain data integrity.

The development environment should integrate new software development process
steps, events, and constraints, new types of data, new tools, new hardware, or new
versions of either with ease. It should allow any of the above to be removed or modified
with ease.

With the exception of replicated data for improved performance, the environment
should maintain one copy of every data item. It should not maintain a process in memory
that cam be reloaded at a later time without loss of performance.

B . S E R V IC E S

There aire some overlaps in the services provided by distributed operating systems
and Software Engineering Environments. In table II, SEE service names are in the

33

left-most column and Distributed Operating System service names are in the middle
column. The right-most column presents a single term that will be used to identify the
SEE and DOS services in the remainder of this paper.

Overlap between SEE and DOS services occurs in the Object Management and
Interprocess Communication services. With a slightly expanded object definition,
Process Management and System services might overlap with Object Management
services as well. While it seems likely that future operating systems will treat processes
and system services as objects [26], that prospect will not be investigated here.

Table II. Service Terminology
SEE Service Distributed Operating

System Services
Combined Service

Terminology
User Interface Services User Interface Services 1

Software Development Pro- i
cess Management Services

Software Development Pro
cess M anagement Services

Object M anagement Services Single, Global Protection
Scheme
Single, Global File System

Object Management Services

Message Services Single, Global Interprocess
Communication Mechanism

Interprocess Communication
Services

Single Method of Process
Management

Process Management Ser
vices

Single Set of System Calls System Services

Distributed operating systems tend to provide support for files. They provide
services to create, read, write, delete, and update files. They also provide services to
protect files against unwanted access. All services, the files, and their attributes must
be part of a global system.

Software Engineering Environments tend to be object oriented. While objects can
be files or groups of files, they can also be database fields or groups of database fields.
All objects must be part of a global object system, and must be protected by a global
access mechanism.

Treating data as an object allows the underlying data structure to be handled as a
logical entity. This eases the burden of maintaining tools that access the data, and tools
can be used in many environments as long as the object format is the same, but there
is a cost. An additional step is introduced with every data transaction. The extra step
involves translating the generic object format into the actual data storage format.

For performance reasons, it would be best to place these services in the operating
system. Due to the transient and site specific nature of the objects, however, it is not

34

reasonable to believe that all object services could be handled by the operating system.
In the near term, it seems more reasonable to assume that object management services
must be layered on top of operating system services. Object management services will
also very likely rely upon a database. Tools that access objects in the Software
Engineering Environment must not bypass the object management services. The object
management services must have a well defined tool interface and must exhibit good
performance.

Distributed operating systems must provide interprocess communication (IPC)
across an entire network. The services are not limited to message passing. Global
memory and remote procedure calls are two other possibilities. The DOS is responsible
for locating the processes that are participating in the communication. The action of
locating processes must be transparent to the participants. In addition, many to many
communication must be supported.

The requirements of a SEE are similar to those of a DOS with regard to interprocess
communication. However, because operating systems do not currently provide the
services described above, current SEEs must provide the services they require
themselves. Additionally, the object oriented nature of a SEE makes interobject
communication the real issue for tools within the SEE. Interobject communication is
another level above interprocess communication in that additional information is
necessary in order to know whether a process known to the operating system represents
an entire object or possibly just one method of an object. It is most reasonable to put the
burden of interobject communication, should it be required, on the SEE and
interprocess communication on the DOS.

If distributed operating systems can begin to provide efficient message services that
make process location transparent, a large burden will be removed from current SEE
implementations. In addition, expanding DOS IPC services so that they automatically
start a process on the node that will yield the highest performance will lower
maintenance of any SEE that attempts to perform that function now and will at the same
time improve overall network performance. Some interesting points can be raised on
this last issue. For example, it is likely that it would be beneficial for the DOS to know
something about the way a process that it is loading will be used in order to make a good
long term decision. Will the process be used interactively? Will it serve many other
processes over a period of time or will it perform one operation and terminate? The SEE
will be able to provide “educated guesses” to answer these questions. Thus, additional
benefits can be realized if DOS designers look beyond some of the assumptions made in
current operating systems and gain an understanding of the type of information that
may be available from the SEE.

35

C. SU M M AR Y

Goals that are common to DOSs and SEEs emphasize that user interaction with the
system should take place in a context with which the user is familiar; specific details of
an operation including performance and reliability mechanisms should be transparent
to the user; and the environment should be efficient, reliable, exhibit top performance,
and accommodate the addition or removal of environment components.

Current SEEs must provide some services that have features not yet available in
DOSs. When these features are added to the services provided by DOSs, a synergy will
develop that will likely improve system performance, through non-redundant functional
implementation at the proper level, and reliability, through dependence upon a single
set of services with proven reliability. Improved user productivity will be the natural
result.

36

V. SOFTWARE DEVELOPMENT PROCESS

Using the software development process as the basis for a SEE provides an effective
mechanism to achieve the goals and services outlined in the preceding sections. Later
sections will introduce new concepts that describe this in more detail. This section
returns to the literature and focuses on the motivation for and definition of the software
development process.

A . MOTIVATION

In every software organization, there is a defined way to generate the product.
Granted, some organizations may be considered “ad-hoc,” and probably have little to do
with formally defined software development processes, but the fact that a term can be
assigned to the way they do business means that it is defined in some sense. In an effort
to allow organizations to assess their current process maturity and to provide a road map
for continuous process improvement, the Software Engineering Institute (SEI) at
Carnegie Mellon University created the Capability Maturity Model for Software (CMM)
[3].

The CMM does not say how to define a software development process, but it
provides an excellent tool for an organization to gain insight into its current processes.
Using the CMM, an organization can identify which parts of their process are good,
which parts are bad, and which parts are missing. The CMM defines five maturity levels
for a software organization. A list of “key processes” is associated with all but the lowest
level. The key processes associated with a particular level identify the issues that must
be addressed in order for an organization to be considered to have that level of maturity.
Levels build on one another. That is, in order to achieve level 2, you must meet the
criteria for level 1 and the criteria for level 2. Figure 6 lists the key process areas for each
maturity level in the CMM. Figure 6 also identifies both the name and number
associated with each level, and the overriding characteristic required to move from one
level to the next.

The SEI has also developed formal assessments and evaluations to support the
CMM. After being assessed, an organization can potentially gain new customers by
advertising that they are a level x organization. Intuitively, this makes sense. The
maturity level acts as a sort of consumer’s guide rating. Someone from outside an
organization can get an idea of the processes followed in the organization by
understanding the key processes associated with the levels identified in the CMM. They
will feel confident that past success is an indication of future success. Use of the CMM
has increased the visibility of the processes used to develop software.

37

CONTINUOUSLY IMPROVING
PROCESS --------------

PREDICTABLE
PROCESS

Optimizing
PROCESS CHANGE MANAGEMENT

TECHNOLOGY CHANGE MANAGEMENT^
DEFECT PREVENTION

Managed (4)
SOFTWARE 0UAL1TY MANAGEMENT
QUANTITATIVE PROCESS MANAGEMENT

STANDARD, CONSISTENT
PROCESS

DISCIPLINE]
PROCESS

(7 >

Defined (3)
PEER REVIEWS
INTERGROUP COORDINATION
SOFTWARE PRODUCT ENGINEERING
INTEGRATED SOFTWARE MANAGEMENT
TRAINING PROGRAM
ORGANIZATION PROCESS DEFINITION
ORGANIZATION PROCESS FOCUS

Repeatable (2)
SOFTWARE CONFIGURATION MANAGEMENT
SOFTWARE QUALITY ASSURANCE
SOFTWARE SUBCONTRACT MANAGEMENT
SOFTWARE PROJECT TRACKING AND OVERSIGHT [
SOFTWARE PROJECT PLANNING
REQUIREMENTS MANAGEMENT

(1)

Figure 6. The Key Process Areas by Maturity Level [3]

T he m otiva tion b eh in d th is increased em p h asis on softw are p rocesses is sta ted in

th e first sen ten ce o f th e CMM [3].

After two decades of unfulfilled promises about productivity and quality gains
from applying new software methodologies and technologies, industry and
government organizations are realizing that their fundamental problem is the
inability to manage the software process. [27]

In case the point is lost on potential contractors, the Department of Defense has
started to require contractors to have a specific maturity level before they are allowed
to submit proposals on certain programs. This challenges the vast majority of software

38

development organizations. Figure 7 shows the percentage of organizations in each level
after the SEI had assessed 296 projects.

90
80

SITES 70
(%) 60

50
40
30
20
10
0

Figure 7. Percent of Organizations in Each Process Maturity Level [28]

As positive incentive, however, some organizations have willingly tracked the
return on investment (ROI) when using process driven software development. These
organizations did not use process driven software engineering environments, the ROI
is strictly a result of improved process focus.

According to James Over [28], software quality improvements of 100 times are
possible and not unreasonable on large projects; software productivity of 10 times are
possible with larger gains projected; and a ROI of greater than 5 to 1 is possible. In other
words, for every $15,000 to $20,000 invested, $100,000 is generated. The source of this
information is the Juran Institute. Two specific cases support these claims [28]. Hughes
Ground System Group documented savings of $2 million per year when using a process
driven approach to software development. Raytheon documented that “every software
initiative dollar invested in 1990 [to change to a process driven approach to software
development] saved 7.7 project dollars.”

In short, then, it seems that the benefits of process oriented software development
are extensive. Since at legist one major software customer, the Department of Defense,
will not accept proposals without evidence of process maturity, it also seems that the
penalty of not using a process oriented software development approach can be severe.

B . D E F IN IT IO N

ST

1 2 3 4 5
Software Process Maturity Level

It is worth noting, especially when considering the use of the software development
process as a basis for providing automated assistance, that an important feature of a

39

process is that it provides some guidance and some tolerance when the process itself
breaks down.

Processes are rarely foolproof, and adding more detail to a process so that every
possible case is covered seems to increase the likelihood that a new case will be found that
is not covered. There is a definite art to defining a process at the appropriate level.
Generally, it should be accepted that there are portions of the process that can be defined
to a level that they can be automated, if desired, and there are portions of the process
that cannot. Such a simple statement seems obvious, but it would likely provide great
benefit if it were reviewed daily by any team assigned to define or document the software
development process for their organization.

The software development process, in the general sense, is “a set of activities,
methods, practices, and transformations that people use to develop and maintain
software and the associated products [3].” More specifically, the software development
process can be characterized as a set of roles, responsibilities, tasks, task relationships,
entry criteria, exit criteria, and products. The purpose of the software development
process is to provide a basis for long-term productivity and quality improvement in a
software organization. Instead of relying upon heroic personal efforts of a dedicated
staff, the organization can repeat the same process they have used in the past, with minor
improvements from lessons learned, and expect a successful development effort. The
key is predictability.

Tasks are steps in the software development process. A task can be carried out by
a computer or it can be carried out by a person. Task relationships define the order in
which tasks can be started (enacted). Tasks may be enacted sequentially, or in parallel.

Tasks can be defined by states in a state diagram. Task relationships are defined
by the state diagram. Each state represents a step in the software development process.
Each transition from one state to another represents the completion of a step in the
software development process and the start of a new one. The actual work is performed
by a person, by a tool or by both while the SEE is in a particular state. When the work
associated with a step in the software development process is complete, a transition is
made to the next state where work related to that state can then begin.

It is worth noting that a software development process, when considered as a whole,
will necessarily have work in progress in many states at the same time. The most obvious
example of this might be a large project that has a number of developers. Some of the
developers will be in the design phase while others may have completed design,
completed implementation, and are now testing.

40

In addition, it is possible for a task to have subprocesses. That is, the process can
be defined in a hierarchical manner. One task may break into one or more subprocesses.
If a task is composed of a number of subprocesses, all of the subprocesses are considered
to start concurrently when the parent task is started. This is a powerful mechanism for
maintenance of the process itself, and for team and management integration. The
process has many conceptual levels, any of which can be viewed at one time.

In order to clearly define responsibility and ensure quality work, access controls
must be allowed on the states and on the transitions. The most natural way to control
access seems to be through the use of “roles.”

People or active SEE components that have been assigned to roles carry out tasks.
Roles provide a convenient grouping and abstraction mechanism. Using roles reduces
the coupling between the process definition and the individual people or active SEE
components, allowing one to change without the other. A person or active SEE
component may be assigned to multiple roles. Responsibilities are associated with a role.
Assigning a person or active SEE component to a role assigns the corresponding
responsibilities to them. Responsibilities include privileges to access SEE data or to
execute SEE components. Responsibilities might also be defined as a requirement to
perform a task. For example, the responsibilities of the Project Software Manager could
be to review and approve documentation.

Some operating systems have what are called access control lists. An access control
list is a list of the people that can access an object along with a specific indication of their
access rights (e.g. (Jones:Read,Write,Delete; Smith:Read,Execute; others:none)). This
mechanism is useful, but names of individual members of the organization do not belong
in the software development process definition. The software development process is a
definition of the work that is performed, the dependencies of the work, and the roles of
the people authorized to perform the work and verify its quality. With this in mind, it
is natural to replace an individual name, such as Jones, with a role, such as Developer
when defining access control related to a software development process.

Assigning a role to a state defines the type of people that can perform the work
associated with that process step. Likewise, assigning a role to a state transition defines
the people who are authorized to declare that work has been satisfactorily completed in
the current state and work in the next state may now begin. Prior to performing any
work in a process driven SEE, a person must be assigned to their appropriate role(s).
In other words, prior to performing a requested action, the SEE will verify that a person
has been authorized to perform the action by comparing the role assigned to that person
in this part of the software development process with the list of roles authorized to
perform the action.

41

A simple example of a development process is shown in Figure 8. This example
shows a portion of the development process that might be used for source code.
Typically, source code evolves from being “in work” to being “under test.” After testing,
it is either declared “tested”, if it passes the tests, or if it does not pass the tests, more
work has to be done so it is again “in work.” In Figure 8, the states In-Work, Under-Test,
and Tested, along with the relationships indicated by the arrows, are meant to reflect
this activity. In-Work is the start state and Tested is the final state.

Figure 8 also shows roles assigned to each state and transition. Even with this
simple example, it can be seen that while a Tester can place source code into the In-Work
state, only a Tester that is also a Developer can work on it. By ensuring that no Tester
is also a Developer, a degree of control is established.

This method works at a high level, but could turn out to be somewhat awkward in
practice. A better implementation would allow a role to be used as the default access
control list, but also as the set from which individuals may be selected to establish a more
restrictive access control list. In other words, a role would define the set of people that
may perform certain work, however, for particular objects, the list may be further
restricted.

An implementation that would support this mechanism would allow a specific
individual to be assigned as the Developer for a specific source file. While the software
development process simply defines a Developer as someone that can work on source
code, the SEE allows the list of developers to vary for each source code file. Jones, then
could be assigned as the Developer of a particular source code file. Smith could be
assigned as the Developer of a different source code file, but could also be assigned as the
Tester for Jones’ source without any fear that Smith would find a problem in Jones’
source and take it upon himself to correct Jones’ source. Smith was not assigned as the
Developer of Jones’ files and therefore can not access them in the In-Work state.

42

Each task has an associated set of entry criteria, exit criteria, and products. The
set may be empty. Required products may be incorporated into the entry or exit criteria.
A task cannot be enacted until the preceding tasks have completed and the entry criteria
are satisfied. A task can not complete until the exit criteria are satisfied. Products will
be produced during task enactment and may be available before the task completes.

43

VL PROCESS DRIVEN ENVIRONMENTS

While other process driven environments may exist or be in development, there are
currently two process driven efforts that are notable for their maturity. One is a SEE
developed by the University of Southern California (USC) [4], the other is a “process
engine” developed by Hewlett Packard (HP) [29]. Features of both are described below.

Both approaches use a process engine. The process engine is responsible for
following the defined software development process, spawning tasks when appropriate,
and keeping track of the status of tasks. HP calls their product (SynerVision) a process
engine, but their definition is a little broader and includes things like a user interface.
The process engine is really the primary component in a process driven SEE. It is
responsible for all progress through the process.

The USC approach has two distinct and separate user interfaces, a developer
interface and a manager interface. In the USC system, a developer enacts the tasks in
the software development process while the manager controls them. Each user interface
supports the specific responsibilities of the roles expected to use it. The USC approach
uses multiple windows.

The HP approach has a single user interface for all roles. While developers and
managers perform different functions, roles are used to restrict the actions. The HP
interface basically presents the software development process as a textual hierarchy of
tasks (each task on a new line with each level in the hierarchy indicated by indenting the
line from the line above). The HP approach uses one window.

The USC approach defines their software process as “a collection of objects
representing activities, artifacts, tools, and developers [4].” Like this paper, the term
“task” is used to represent a step in the software development process. Tasks are broken
down into other tasks and actions. Actions have four attributes assigned to them that
can be used to define products and roles. These attributes are: agent (equivalent to
“role” in this paper), required resource, tool, and provided resource.

The HP approach defines the software development process in terms of a hierarchy
of tasks and subtasks. Roles and products are assigned to tasks or subtasks. Both people
and tools can be assigned to the roles. Other attributes of tasks are user definable. Given
the appropriate conditions, tasks that have tools assigned to their associated roles will
execute automatically.

44

VII. BENEFITS OF THE SEE

Given the background on software development processes and on current process
driven SEEs presented in previous sections, this section will now explore the benefits of
a process driven SEE. Aspects of integration and performance are considered.

A. THE SOFTWARE DEVELOPMENT PROCESS AS A FOUNDATION
FOR THE SEE

The portions of the software development process that can be automated are not
the only useful portions when considering the use of software development processes in
a SEE. In fact, the primary motivation for a process driven SEE is the provision of
context.

In an organization with a well written software development process, any developer
could point to a task in the process to identify the work they are doing. They could point
to a role to identify their responsibilities relative to that task. With that information
alone, they have revealed a lot of information about what they are currently doing. A
look at the entry criteria for the task reveals important information about work already
performed. A look at tasks that preceded this one reveals more. A look forward provides
an indication of the tasks remaining. A look at the other roles assigned to the current
task reveals whether the person is working alone or as part of a team. A look at the
membership of all the roles for the entire process provides an indication of the size of the
team. It should be obvious that this list could continue to some length. The point is that
the process provides the context within which the tasks and roles have meaning. Given
the process and an indication of the tasks that are current, a lot of information is revealed
about where the development effort is and where it is going. Building the ability to use
this information into a Software Engineering Environment means a large difference in
the amount of assistance the environment can provide.

Instead of an environment that blindly does the work it is instructed to perform,
the environment has the “playbook” and knows what to expect and what is allowed. A
high degree of process integration in a SEE provides a strong foundation for team
integration, management integration, and control integration. It also provides a strong
method of improving system performance.

B. TEAM INTEGRATION

All individuals on a development team are assigned a role. Every task and task
transition has a role assigned to perform the work in the task or to authorize the

45

transition to the next task. Storing this information in the SEE provides a powerful
reference for manual lookups or automated actions. The environment, for example, can
mail a message to the individuals assigned roles in the next task when a current task is
complete. Teammates can easily communicate with other members of specific teams
without the need to maintain a number of potentially out of date mail distribution lists.
The environment is known to have one up to date list of the members of each team as
defined by the software development process. Communication could be performed using
role or team names in order to enhance the ability to reach just the right people with
minimal effort.

Communication among team members is also fostered through the fact that
everyone has visibility into the current state of the development effort. Everyone has
the ability to find out exactly what everyone else is doing.

C. MANAGEMENT INTEGRATION

Proper data for accumulation in management reports can only be extracted with
knowledge of context from the perspective of the software development effort as a whole.
The software development process provides this all encompassing view of the software
development effort. Tools can collect specific metric data when they operate within the
context of a defined process.

Because the entire development process is recorded in the environment, and the
environment knows which tasks are currently in work, a manager can quickly get a
feeling for the status of a project. Resources may be juggled if one person
characteristically has a large number of items in work while another typically has few.
Schedule progress can be tracked automatically by defining the schedule in terms of the
tasks of the software development process. The environment would simply keep track
of the tasks that are currently in work so the actual data on the schedule is just a “pretty
print” of this information.

D. CONTROL INTEGRATION

Interface standards are an important issue when considering control integration.
Tool interfaces must be designed in such a way that tools can work cooperatively.
Mapping the tools onto a software development process, identifying which tools are used
to perform which tasks, provides some insight into the types of information required in
an interface standard. For example, a process might identify that a lines of code metric
is to be collected every time a source unit is compiled. If the compiler is the tool that also
generates this metric, but it does so optionally, then it is important for the interface
standard to allow this option to be specified.

46

One method for doing this, and one which provides strong tool to tool control
integration as well is to use the process as a foundation for control integration in the
same manner that Diana has been used as a foundation for data integration in
environments such as the Rational Environment™. Diana is an “intermediate” source
code representation that maintains syntactic meaning [30]. Tools that reference this
representation are immediately provided with not only the basic data, but attributes of
the data as well. So, for example, a tool does not have to parse an entire file, or collection
of files, in order to find the place where two particular variables have been used in the
conditional portion of an if statement. The Diana representation retains information
about the components of the source units so the tool does not have to regenerate that
information by parsing the files. The tool still has to look through the Diana
representation for the specific combination of attributes desired to meet the criteria, but
this is a much more manageable task.

Using the software development process as a foundation for control integration
would mean the process would define the task that specific tools would perform, and it
would define the way that tools would work together in order to accomplish their tasks.
As a small example, a SEE might allow a software developer to drag and drop a source
file from the configuration management system to an icon representing the compiler.
The context provided by the software development process might tell the configuration
management system that the file should be fetched, but not reserved. It would tell the
compiler that it should generate metric data. It might also automatically cause a metrics
collection tool to gather the data generated by the compiler and store it with official
metrics for the project on which the developer is working.

While these steps could be automatically performed in some manner without the
use of an underlying process, the process provides the additional capability for the
environment to modify its behavior based upon the current position within the process.
It should be additionally noted that the user must have the ability, possibly within
constraints, to override the default actions defined for each task.

E . P E R F O R M A N C E

As noted previously, one of the major issues that seems to be unresolved with regard
to performance, is that of having to load, or in some way prepare, a tool for use. Typically,
system administrators will define the collection of software that is “resident” in memory
when a computer boots. Some guidelines are used when defining this list, but two of the
major factors are the amount of use the product is expected to have and the amount of
time it takes to load into memory. This has proven an effective method of addressing the
performance slow down when a new tool is requested, but there are some important new
considerations to make that reduce the effectiveness of this method.

47

The cost of some tools used in SEEs has driven most companies that use the tools
to purchase network licenses. A network license is one which allows the tool to be used
concurrently by a limited number of users regardless of their location on the network.
In other words, the software is available for use anywhere on the network but is not
loaded onto a machine until it has been requested there.

While the system administrator can not help in this scenario, strong process
integration in a SEE can. With strong process integration, the SEE knows what tasks
are current and what tools are required to support them. Additionally, it knows what
tasks are likely in the future. In addition to mailing a notification to individuals assigned
to a new task when a current task is complete, the SEE can load the tools necessary for
the new task if they are not currently available. It would be beneficial in some cases to
load tools for the next task prior to completion of the current task. The SEE could use
some criteria such as “when 80% of the subtasks have completed their assignment, load
the tools for the next task.”

F. SOME GUIDELINES

Even a high level knowledge of context can help. For example, if the testing tool a
software developer is using has been initiated by the environment to know that it is
operating in the design phase and not the formal test phase, for example, the tool would
not automatically record test results in the formal log. When the tool is used during the
formal test phase, it would automatically record the results in the formal log.

This example illustrates that use of the software development process is not
something that automatically means restrictions are imposed. To the contrary, the
emphasis should be placed on using the process to prevent mistakes and provide
automated assistance when possible. Restrictions should not be imposed without
justification. Reducing the freedom of the software developer can reduce their
familiarity with the software and thus actually reduce quality.

That being said, restrictions do have their place. It would not be wise to allow an
overambitious tester access to a developer’s source code. It would also not be wise to
allow the developer who is testing during the design phase to record their test results in
the formal log, even if they so desired. Their records can be kept in their own workspace,
and a SEE that has knowledge of the software development process can automatically
support this. Recording unofficial results with official ones may be a short term
convenience for a developer, but will likely distort project metrics and lead to incorrect
conclusions. It is important to give developers the flexibility to do their job, but it is just
as important to protect the development effort by preventing them from violating the
rules outlined in the software development process.

48

G. INTEGRATION WITH THE ORGANIZATION

As discussed above, it is important for a SEE to provide an interface that allows
users to perform work in a context with which they are familiar. This type of interface
is more intuitive, allowing implementation details to be more transparent. A high degree
of process integration can support this intuitive interface and lead to a high degree of
control integration. It also supports control, team, and management integration.

In an organization where the software development process is highly integrated
with the SEE, the foundation is in place to view the software organization as a part of
the larger organization. That is, in a software organization where individuals can be
viewed within the context of their roles on a development team, and development teams
can be viewed within the context of their roles within the software organization, the
basic elements exist to allow the software organization to view itself within the context
of the larger organization. Chen and Norman use Figure 9 to show the levels of support
provided by a SEE in relation to the activities of an organization [8]. Figure 9 provides
a starting point, then, for defining the roles of the software organization within the
larger context.

49

Integrated CASE

Framework for data, tool
and process integration

Infrastructure for
integrated data-, tool-,
and
process-management
services

Software process, project
management, and

measurement techniques
and tools

Task
assignments
and tool
invocations

Systems-development
techniques and tools

Corporate standards,
methods, tools, and
process models

Information - Systems
Development and

Management
Activities

Evaluation of methods,
tools, and processes

Project-level procedures,
policies, constraints, and
resource-allocation
decisions

Elicitation,
representation,
storage, analysis,
and transformation
of development
information

Estimation and
measurement of cost,
time, personnel, and
quality___________

Enterprise
Planning and design of IS

infrastructures

Cor
and

nmunication
influence

Project |
Management of systems

projects

Communication
and influence

-
Team and
Individual

Execution of software
processes

Productivity and
quality data

Figure 9. Placing CASE Tools in the Context of an Organization

50

VIII. PROCESS COMPONENTS OF THE SEE

This section introduces components of a SEE that provide software development
process integration. A SEE with these components would support the goals of control,
team, management, and process integration introduced in section III and would provide
the benefits outlined in section VIL The SEE would be scalable and provide high
performance.

A. AUTOMATING THE SOFTWARE DEVELOPMENT PRO CESS

The software development process must be defined in the system in a manner that
will allow components of the system to act based upon that definition. The
recommendation here, in brief, is to assign an active part of the SEE, an executable unit
referred to as an “agent,” to manage each task in the software development process.
When an agent is created by the operating system, the appropriate data structure is
placed in its portion of memory that defines the portion of the software development
process relevant to the task assigned to that agent.

More specifically, the current task definition, parent task definition, all child task
definitions, and the address of a binder would be provided to the new agent upon
creation. The information supplied to the agent would come out of a master context
repository and would be provided by the operating system. This mechanism is similar
to the Unix “fork” operation or the VAX VMS “spawn” operation. The difference is that
instead of the operating system creating a new executable process with a context that
is like their parents’, the operating system would create a new executable process with
a context based upon the position of the logically associated task within the software
development process.

Upon creation, the agent would define its own “mailbox” or “pipe” for
communication with other agents. It would then register the address of its mailbox with
its binder to indicate that it was ready to begin work.

The following paragraphs provide more specific information about each major SEE
component. Figure 10 provides a pictorial view of the major components defined below.
Arrows indicate lines of communication between the components.

1. Agents. Basic to the implementation proposed here is the concept of an agent. An
agent is an executable unit that is an active component in the SEE. Although the
previous paragraphs described an agent as an executable unit assigned to manage a task

51

Figure 10. Major Components Supporting Process Integration

in the software development process, there are really two types of agents: a task agent
and an application agent.

The task agent is the type that was previously described. It is an active part of the
SEE that directly supports the execution of a task in the software development process.
The existence of a task agent is evidence that the associated task in the software
development process is either in work or is expected to be in work soon. Remember that
in order to improve performance, tools may be pre-loaded or retained if they are expected
to be used soon.

An application agent is responsible for a particular executable that has been or is
likely to be requested by a task agent in order to accomplish its task. The executable
managed by the application agent might be a robust tool or some small utility. The
application agent oversees loading and unloading of the executable and translates
software development process information into commands that the executable
understands.

Basically, when a task in the software development process is started, a task agent
is created to manage it. Task agents are generic in function and operate based upon the
attributes of their associated task. When a tool or other executable in the SEE is started,
an application agent is started to manage it. Application agents are not generic but are
tailored to support the particular executable that they manage.

Agents communicate with other agents in a manner that makes their actual
location on the network immaterial. Agents communicate in order to accomplish
software development process tasks in a cooperative manner.

Like objects (in object oriented technologies), all agents are associated with a class.
The class defines the way the agent will respond to requests from the environment.

52

Responses are defined in terms of “methods” that are executed when the agent is
presented with specific “events.” Methods assigned by virtue of inclusion in a particular
class can be overridden by associating a different method with any software development
process task. When the associated task agent is created, it will be assigned the method(s)
associated with the process task in place of the method(s) provided by the class. (The
manner in which agents operate was inspired by both encapsulation mechanisms such
as those present in HP SoftBench, and by Frame-based Artificial Intelligence Systems
[31].)

When a task agent is started, it references its associated task to determine what to
do. If it finds that its associated process task is comprised of subprocesses, then the task
agent starts those subprocesses by starting other task agents to manage them. The first
task agent is considered the parent of the other task agents. The parent task then
communicates with its subtasks as required to respond to requests from the
environment.

It is also possible for a task agent to find, upon starting, that it will require some
number of executables in order to accomplish its task. The task agent would then locate
and register with the appropriate application agents that are managing the executables
that it requires. Registration is effected so that the application agent knows what agents
are using its services. An application agent that does not have any other agents
registered will turn itself in for termination.

2. B inders. Agents do not automatically know the addresses of all agents with which
they will communicate. In order to locate another agent, the first agent would make use
of a SEE component called a binder. A binder is another active component in the SEE.
It is responsible for forwarding agent requests to agents that it believes can best handle
the request. For performance reasons, there are a number of binders in the SEE.

Binders maintain a registry of agents and other system components. Every binder
registers every other binder, but each binder only handles specific classes of agents. A
binder that registers agents of a particular class will register all agents of that class that
are currently active in the SEE. If a binder receives a request targeted to an agent that
it does not register, it will forward the request to a binder that does register that class
of agent. Assuming an agent exists to receive the message, the message suffers a delay
of at most two binders along the way to its final destination.

3. Scheduler. In order to attempt to ensure that an application agent and its associated
executable already exist at the time they are requested, some task agents will request
that the application agents are started prior to their actual need. With a number of task

53

agents potentially making these requests at the same time, a focal point for coordination
is required. Of course, agents and executables can not limitlessly be loaded into memory
either, so a decision must be made to remove agents and executables. The scheduler is
responsible for deciding which new tasks to make available and which existing tasks can
be removed from the system. Note that the tasks are not actually loaded or removed by
the scheduler. In the case of task creation, the scheduler sends a request to the
dispatcher. In the case of task removal, the scheduler assigns priority rankings to those
agents that are not currently in use. The priority defines the likelihood that an agent
and executable, if applicable, will be requested in the near future, In general, the lower
the likelihood, the higher the chance for removal. The scheduler can determine the
likelihood of being requested through knowledge of the current task, upcoming tasks,
and the executables required to support them.

4. D ispatcher. The dispatcher actually loads new agents and removes existing ones
from the system. The dispatcher attempts to allocate SEE components across the
network in a manner that will provide peak performance. When the scheduler decides
it is time to load a new agent, the dispatcher decides where to put the agent and its
associated executable, if appropriate, on the system. The dispatcher itself decides when
an application agent and executable should be removed and which one will be removed.
It does this based upon the priorities assigned by the scheduler and rules designed to
balance the network load.

The dispatcher is well suited to be a component of a distributed operating system.
It would fit well as a “Process Management Service”, in the operating system sense,
defined in section IV.

B. PERFORMANCE

Current process driven SEEs have a process engine that references a repository to
manage the tasks associated with a software development process. The SEE components
introduced above distribute the work of the process engine across the task agents in the
SEE. Task agents are created with knowledge of their position in the software
development process. Once an agent establishes contact with another agent, it registers
the address of the other agent so that future contact will be direct. Figure 11 shows a
diagram of direct agent to agent communication. The figure shows that each agent has
a mailbox to queue messages in case it can not process messages as fast as it receives
them.

54

CAGENTL>g-H=

-►c

< agent~D

__J
Figure 11. Best Case Agent to Agent Communication

Without considering the performance of individual tools in the SEE, a number of
different performance analysis could be performed. Questions such as the following
could be asked:

• How many binders should there be relative to other agents?

• How should binders be distributed across the network? One per machine?
One per cluster?

• Should binders register agents based upon class or location on the network?

• How many binders should register a particular class of agent?

• What policy should be used by a binder when it selects another binder to
receive a request that it can not process? (If multiple binders register agents
of one class, it is likely that one of the binders that registers that class will
process the request faster than the others.)

Answers to these questions are probably best obtained through simulation.
Mathematical formulae could be developed to account for average queue behavior over
time, but the average case is by definition a compromise. The scheduler component of
this SEE has the ability to dynamically adjust the configuration of the environment by
recognizing the current demands and likely future demands through knowledge of its
position in the software development process. Accurate simulations could determine the
rules that the scheduler component would use.

1. Scenarios. Given that good rules have been developed for the scheduler, the worst
case performance behavior will come in the scenarios that follow. The scenarios are
presented according to increasing deviation from the best case of direct agent to agent
communication. Each scenario is accompanied by a figure that shows the SEE
components and the performance factors that must be considered. SEE components are
identified by named ovals. Each SEE component has an input queue (mailbox) from
which it receives messages. The input queue is shown as a small rectangle in each figure.
Message passing between agents is shown as a solid arrow. An agent starting another

55

agent and its associated executable is shown as a dashed arrow. Performance factors are
represented by numbers next to the input queues, solid arrows, and dashed arrows.
Performance factors under consideration are the time a message spends waiting to be
processed, the propagation delay required to transmit a message from one agent to
another, and the time required to prepare an agent and its associated executable to be
available for execution. Performance factors are numbered in sequence.

In each figure, the SEE components and performance factors that must be
considered over and above the best case scenario are identified by placing them on a grey
background. On each scenario after the first, performance factors that cause overall
performance to degrade from the previous scenario are circled.

Table III provides an overview of the scenarios. It shows the conditions of the
system that affect performance and identifies the scenario that discusses the
corresponding SEE actions. An “x” in table III represents a “don’t care” condition. That
is, due to other conditions, the condition in that column will not affect the actions taken
by the SEE components. Table III is arranged for readability. The scenarios are
numbered from best performing (scenario 1) to worst performing (scenario 6).

Table III shows that it is possible for the address of the agent to which a message
is being sent (the target agent) to be known, and yet the agent is not available. This is
an error condition. It could be the result of a machine crashing, a break in the network
cable, or other reasons. Regardless of the reason, in this error condition, the message
will be returned to the agent with an error flag set. The sending agent can then decide
whether to send the message to another agent, or it-may respond in a different way.

It should be noted that this condition is theoretically possible any time a message
is sent from one SEE component to another. A message from one binder to another may
not reach its destination because the second binder is inaccessible due to some atypical
condition. The following scenarios only consider the normal case of successful
communication.

56

Table III. Scenario Overview
Is Address of
Target Agent
Known?

Does Binder
Register
Target
Agent?

Is a Target
Agent
Available?

Is a Target
Agent Being
Initialized?

Yes X Yes X Best Case
Yes X No X Error

(see text)
No Yes Yes X Scenario 1
No Yes No Yes Scenario 3
No Yes No No Scenario 5
No No Yes X Scenario 2
No No No Yes Scenario 4
No No No No Scenario 6

57

S cen ario 1
Conditions: The first agent requires services from an application managed
by a second agent. The second agent and application are available but not yet
known to the first agent. The binder of the first agent has already registered
the second agent.
Environment actions: The first agent must send its request through its bind
er since it does not know the address of an agent that can service its request.
Note that the request is typically an actual service request by the first agent,
it is not simply a request for an agent of a particular class. The binder finds
an available agent (the second agent) in its registry and it forwards the re
quest directly to the second agent. The second agent processes the request
and replies to the first agent.
Performance vs. best case: Assuming all propagation delays are approximate
ly equal and processing time within a component is negligible, the total delay
versus the best case is the time spent in one additional queue (2) plus one addi
tional propagation delay (3). Figure 12 shows all steps in the scenario.

Figure 12. Performance Scenario 1

58

Scenario 2
Conditions: The first agent requires services from an application managed
by a second agent. The second agent and application are available but not yet
known to the first agent. The binder of the first agent does not register agents
of the desired class.
Environment actions: The first agent must send its request through its bind
er since it does not know the address of an agent that can service its request.
The binder of the first agent does not register this class of agent, so it must
look up the address of a binder that does and forward the request to that bind
er. The second binder will receive the request, find an available agent (the
second agent), and forward the message directly to the second agent. The se
cond agent processes the request and replies to the first agent.
Performance vs. best case: Assuming all propagation delays are approximate
ly equal and processing time within a component is negligible, the total delay
versus the best case is the time spent in two additional queues (2,4) plus two
additional propagation delays (3,5). Figure 13 shows all steps in the scenario.

59

S cen ario 3
Conditions: The first agent requires services from an application managed
by a second agent. The binder of the first agent registers the agents of the
desired class but the second agent is not available. The second agent is cur
rently initializing.
Environment actions: The first agent must send its request through its bind
er since it does not know the address of an agent that can service its request.
The binder of the first agent recognizes that it registers agents of this class,
but it does not have any agents registered. It must store the request and for
ward a request to the scheduler to load a new agent. The scheduler deter
mines that an agent of this class is already initializing, so it does not forward
the request. The dispatcher has already started the new agent. Once the new
agent has initialized, it sends a message to its binder to register. The binder
of the new agent then sends a message to all binders that register agents of
this class. The binder of the first agent is one of these. When it receives the
registration, it looks for any messages awaiting an agent of that class, finds
the message sent by the first agent, and forwards it to the new agent. The
second agent processes the request and replies to the first agent.
Performance vs. best case: Assuming all propagation delays are approximate
ly equal and processing time within a component is negligible, the total delay
versus the best case is 4 additional propagation delays (3,6,8,10), plus the
time spent completing the load of the new agent (assume 0.5 of the total load
time)(7), plus the time spent in four queues (2,4,7,9). Figure 14 shows all
steps in the scenario.

60

61

Scenario 4
Conditions: Same as scenario 3 except that the binder of the first agent does
not register agents of the desired class.
Environment actions: The binder of the first agent does not register this class
of agent, so it must look up the address of a binder that does and forward the
request to that binder. The second binder will receive the request, recognize
that it registers agents of this class, but it does not have any agents registered.
It must store the request and forward a request to the scheduler to load a new
agent. All other actions are described in scenario 3.
Performance vs. best case: Assuming all propagation delays are approximate
ly equal and processing time within a component is negligible, the total delay
versus the best case is five additional propagation delays (3,5,8,10,12), plus
the time spent completing the load of the new agent (assume 0.5 of the total
load time)(7), plus the time spent in five additional queues (2,4,6,9,11). Fig
ure 15 shows all steps in the scenario.

62

Scenario 5
Conditions: Same as scenario 3 except that the scheduler determines that it
must request a new agent to be loaded.
Environment actions: The scheduler must send a message to the dispatcher.
The dispatcher receives the message, determines the best location for the new
agent, and initiates the load. All other actions are described in scenario 3.
Performance vs. best case: Assuming all propagation delays are approximate
ly equal and processing time within a component is negligible, the total delay
versus the best case is five additional propagation delays (3,5,8,10,12), plus
the time spent completing the full load of the new agent (7), plus the time
spent in five queues (2,4,6,9,11). Figure 16 shows all steps in the scenario.

63

Scenario 6
Conditions: Same as scenario 5 except that the binder of the first agent does
not register agents of the requested class.
Environment actions: The first binder must determine that it does not regis
ter agents of the requested class, find the address of a binder that does, and
forward the message to that binder. All other actions are described in scenario
5.
Performance vs. best case: Assuming all propagation delays are approximate
ly equal and processing time within a component is negligible, the total delay
versus the best case is six additional propagation delays (3,5,7,10,12,14), plus
the time spent completing the full load of the new agent (9), plus the time
spent in six additional queues (2,4,6,8,11,13). Figure 17 shows all steps in the
scenario.

2. Analysis. Returning to the conditions presented in table III, when the address of the
target agent is not known by the sending agent, one propagation delay and one queue
delay are added because the message must go through the binder of the sending agent.
When the binder of the sending agent does not register the agents of the desired class,
an additional propagation and queue delay are added because the first binder will
forward the message to a binder that does track the agents of the desired class. If a binder
finds that no agent in the requested class is currently available, many actions must occur.

64

A message must be sent to the scheduler causing an additional propagation and queue
delay. The target agent must initialize, causing an additional delay. Once the target
agent initializes, it must register with its binder, adding an additional propagation and
queue delay. And, finally, the target agent’s binder must forward a registration notice
to other binders adding another propagation and queue delay. The time required for the
target agent to initialize is dependant upon whether it has already started or not. If an
agent has already started, then the average case of 0.5 times the normal initialization
time is used. If the initialization has not started, then the scheduler must request it by
forwarding a message to the dispatcher. This adds one more propagation delay and one
more queue delay. In addition, the full initialization time will be required. Remember
that initialization of an application agent involves loading an executable in memory.
Table IV shows a summary of this information. In table IV, “p” represents propagation
delay, “q” represents queue delay, and “i” represents time to initialize. “Scenario 1” has
been shortened to “S I”, “Scenario 2” to “S2”, and so on. Table IV shows the total time
from when the message is sent by the first agent until the response is received.

Table IV. Scenario Summary
Is Address of
Target Agent
Known?

Does Binder
Register
Target
Agent?

Is a Target
Agent
Available?

Is a Target
Agent Being
Initialized?

Total Time

Yes X Yes X Best: 2p+2q
Yes X No X Error

(see text)
No Yes Yes X Si: 3p+3q
No Yes No Yes S3: 5p+5q+ ̂ i
No Yes No No S5: 5p+5q+i
No No Yes X S2: 4p+4q
No No No Yes S4: 7p+7q+1/2i
No No No No S6: 8p+8q+i

Table IV makes it clear that initializing an agent is considered to be the overriding
influence on performance. Scenarios 4 and 5 illustrate this point. Scenario 5 is
considered to perform worse than scenario 4, so we have 4p+4q+i > 6 p + 6 q + ^ i which
can be reduced to ^ i > 2p+2q, and further refined to i > 4p+4q. The importance of
making resources available in advance is thus emphasized.

In comparing the performance of this system to others, remember that even if the
worst case scenario is required to establish communication, the best case of direct agent
to agent communication follows from that point forward. In addition, because the
environment is based upon the software development process, the scheduler component

65

and the task agents both have the ability to look ahead in order to anticipate requests
for agents of a particular class. This capability makes it very likely that an agent will
be available when requested as long as the user is working within a process that has the
task order and tools required defined. As mentioned previously, the existence of a
process driven SEE should not cause an organization to handcuff the developers. The
capability must still exist for individuals to use SEE resources that have not been
explicitly associated with a task in the process. It would be wise for the SEE to record
these events, however, so that the process can be reviewed for modification.

Another point to consider is that an environment that is not process driven does not
look ahead to upcoming tasks and prepare the environment since it has no knowledge
of upcoming events. Given that the time to load the new agent and associated executable
is the largest factor in the scenarios above, the worst case here, which will happen rarely,
is roughly equivalent to the common case in current operating systems.

When comparing the performance to current process driven SEEs, both have the
capability to look ahead to upcoming tasks so the distinguishing factor comes in the fact
that the components introduced here distribute the load of the process engine. In other
systems, it is more likely for the process engine to become a bottleneck.

C. SCALABILITY

Task and application agents can be seen as objects. These objects encapsulate either
a portion of the software development process, in the case of task agents, or an
application tool, in the case of application agents. It is easy to create or revise agents to
manage new or modified portions of the software development process. The complexity
of adding a new application agent to manage a new application is determined more by
the new application than by this collection of SEE components.

When considering projects that may add or subtract a number of users over time,
a SEE based upon the components introduced here would simply add or subtract the
appropriate number of agents and corresponding binders as required to meet current
demands.

66

IX. MODEL

The previous section mentions that it would be appropriate to use simulation to get
an understanding of the rules to implement in the scheduler. This section describes an
Ada program that was developed to model the components introduced in the last section.

A. IMPLEMENTATION

The paragraphs below describe the major features and efforts to date related to the
program that models the components introduced in the previous section. The purpose
of modeling the system is really twofold. First, the model is useful to ensure that the
concepts presented in the previous section are sound. That is, implementing the basic
operations in the model provides the opportunity to make sure that the concepts are
possible to implement. Second, the model is likely to prove useful in developing rules
for the scheduler component of the SEE. Ada was chosen to implement the model both
because of its tasking mechanism, and because the implementation would provide an
interesting educational tool. It was also noted before starting the effort that compilers
are beginning to surface that allow Ada tasks to be run on processors across a network
(although at fixed locations). This will likely be an interesting application with which
to test the capabilities of those compilers.

1. Active Components. Task agents, application agents, binders, schedulers, and
dispatchers represent the active components in the system. All active components were
looked upon as agents. For example, a binder was viewed as an agent whose class was
binder. This is conceptually consistent with the notion of an agent. As a member of the
binder class, the binder agents responded using the methods of that class. That is,
binders performed binder methods, Other agents did not.

For the purposes of validating the concept, it was determined that, apart from the
capability to create other agents, there was no need to implement application agent
methods, or scheduler and dispatcher methods. This is not to say that these components
are unimportant or simple. In fact, the algorithms used by either of these two could
spawn a complete analysis of their own. Such an analysis is beyond the scope of this
paper, however, and implementation of special methods would only reveal that agents
of the scheduler or dispatcher class responded in a manner that was different from
agents of other classes. Since the binder and task agent already represented multiple
classes, this was already known to be true.

Each agent in the modeled system was actually an independent Ada task
instantiated by a main driver routine. Each task had the capability to register and

67

unregister other agents; to send and receive mail messages to and from other agents;
to build event trees, and to rebuild event trees mailed by another agent; and to detect
which methods had been triggered by external or internal events and to process the
methods in the proper order.

2. Event Trees. The software development process was viewed as a hierarchy of
subprocesses in this implementation. As mentioned before, a task in a software
development process may itself be composed of subprocesses. This concept was simply
extended so the process was viewed as one task at the highest level. That task breaks
down into subprocesses as the full definition of the process is fleshed out. The software
development process itself, then, becomes a hierarchy, or tree.

This approach makes sense conceptually and realistically. Software development
organizations rarely work one development effort at a time, and the different
development efforts that they work rarely have identical processes. If the process is
defined as a single task at the highest level, and all previously stated features are applied,
a great deal of power is achieved. Information can now be gathered at the project level
in the same manner as at any other level simply by triggering the methods of the task
agent assigned to manage the highest level task in the software development process
hierarchy.

Because tasks in a software development hierarchy are not only triggered by the
completion of a previous task, however, they also require that their entry criteria be met.
It makes sense, then to include a “trigger” on every task in the software development
process.

The “nodes”
a trigger

an action

#of lives

reply

of the event tree had the following components:
- to define the event(s) that would cause this node to fire and
the state in which the agent must be in order for the event to
have affect,
- that defined the method that would be executed when the node fires
and the state in which the agent will be placed once the method is
complete,
— defined the number of times this node could fire before it would be
deleted, and
— told the agent whether to build a reply message to report results
after the action was taken.

In addition, both the trigger and action components included parameters to further
refine either the conditions required for the node to be fired, or the action that would
take place once it was fired. There was also a component that was unexpected at the

68

beginning, but proved useful in simplifying the implementation. That component
allowed the agent to look past a particular component when it did not fire to see if the
nodes below that one would fire. This component had the same structure as the trigger
so that it too could specify certain conditions in which the node would essentially
disappear if it was not triggered.

Event trees, then, represented the software development process, and were
referenced by an agent upon receiving an external or internal event in order to determine
when a new action (software development process task) had been triggered. An agent
would receive input from another agent, process the input and then look in the event tree
to find all triggered actions. These actions were fired in turn and the triggered events
collected. This continued until either no more tasks were triggered, or an infinite loop
was detected that indicated an erroneous process definition.

3. C o m m u n ic a t io n . Communication among agents was facilitated by building a
generic mail package that also used tasks. The address of an agent was actually a
“mailbox” task that had been instantiated by the agent. Mail was “smart” in that a
message that was sent from an agent was carried by a courier, another Ada task, that
knew enough to go to the binder assigned to the sending agent to get a real address when
the sending agent did not provide one. If, however, there was some reason that the
courier could not reach the binder or the target destination within a reasonable amount
of time, as determined by the sending agent, it would return to the sending agent with
a flag set that indicated this condition.

This mail package simulates events that occur in real environments and had the
built-in feature to use the agent’s binder automatically, thus simplifying the statements
in the agent itself. In addition, by implementing the communication mechanism in this
manner, task rendezvous could be used to determine the number of couriers waiting at
a particular mailbox. This number is automatically collected by the mailbox tasks at
times when it is not at a rendezvous with another task, for example when a courier is
putting mail in the box or an agent is taking mail out. This number is actually a queue
size, and can be used to get an indication of the performance that can be expected by the
system under various scenarios of agent/binder assignment, different scheduling
algorithms, etc [32, 33].

As a final point, mail was instantiated so that the message that was mailed was the
same type as a node in an event tree. This provided the flexibility for the sending agent
or the main driver to issue a direct command by placing wildcards in the trigger fields,
or to simply forward portions of the software development process with the specified
triggers and actions in place. In the latter case, the actions represented tasks in the
software development process.

69

B . E X P E R IM E N T S

Most of the work with the modeling program was actually related to defining the
required data structures and appropriately allocating the logic. On many occasions, this
work forced the component breakdown whose final configuration is identified in the
previous section to be modified. Thus, the modeling program was helpful in defining the
system that it modeled even when it was under development.

Naturally, the program was built in parts, with verification of added capability
completed with each new piece. Once it was running, verification of the basic functions
was achieved. All verifications were visual. To facilitate verification, an “Output” class
agent was defined.

The output class agent was the only agent that could write output to the screen.
Thus, if any other agent received a message that commanded it to write something to
the screen, the method in that agent would instead forward the output to an output class
agent for display to the screen.

The first run was to demonstrate that the main driver could start an output agent
and direct it to write one message to the screen. The main driver created a message with
the “PutMessage” command as its action and sent it to the output agent.

Secondly, the main driver constructed a tree of messages to simulate a software
development process hierarchy. It added a “PutSubtree” command as the root of the tree
and forwarded the entire tree to the output agent. The output agent then had to
reconstruct the tree, recognize that the “PutSubtree” command was triggered and write
the subtree to the screen in a textual hierarchy fashion.

The next step was for the main driver to create both a binder and an output class
agent, tell the output class agent that it was to register with the binder, build and send
the same tree as before to the binder. The binder then recognized that the message was
for an output agent, looked in the registry, found the output agent’s address and
forwarded the tree for output to the screen.

Building the model system and running these experiments proved invaluable in
gaining a clear understanding of the system requirements and in verifying that the
components introduced in the previous section were based upon sound reasoning.

70

X. CONCLUSIONS

Goals and service level requirements of operating systems and Software Engineer
ing Environments appear to be converging. Operating systems initially provided basic
command interpretation and resource management. SEEs were initially a collection of
stand-alone tools. Both now seek to provide object management services and
interprocess communication services across a distributed network while providing a
single system view to the user.

Goals that are common to distributed operating systems and SEEs emphasize that
user interaction with the system should take place in a context with which the user is
familiar. They emphasize that specific details of an operation, including performance
and reliability mechanisms, should be transparent to the user. They emphasize that the
environment should be efficient, reliable, exhibit top performance, and accommodate
the addition or removal of environment components.

Current SEEs must provide some services that have features not yet available in
distributed operating systems. When these features are added to the services provided
by distributed operating systems, a synergy will develop that will likely improve system
performance, through non-redundant functional implementation at the proper level,
and reliability, through dependence upon a single set of services with proven reliability.
Improved user productivity will be the natural result.

Use of a process driven SEE provides not only a high degree of process integration,
but also facilitates control, team, and management integration. In addition, a process
driven SEE provides a foundation for improved system performance when application
software must be loaded or made available in real time.

Components of a SEE have been proposed that will allow integration of the software
development process, and provide improved performance over current environments.
The components have been modeled in an Ada program that verified the core functions.
The Ada program created here provides a foundation for future research of the proposed
SEE components themselves, and of Ada compilers.

Defining the software development process is not a simple task. Some portions of
the software development process can be automated others can not. Forcing automation
where it does not belong could lead to disgruntled users who, once bitten, will hesitate
to return to use this powerful approach. Continued research into the proper definition
of the software development process is warranted on this account.

71

REFERENCES

[1] The Rational Watch, Summer 1993, Vol. 3, No. 2

[2] COHESION Environment for CASE: Realizing Competitive Advan
tages from Software Engineering, Digital Equipment Corporation
1993

[3] Capability Maturity Maturity for Software, Version 1.1, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsyl
vania 15213, February 1993

[4] Process Integration in CASE Environments, E Mi, W. Scacchi, IEEE
Software, March 1992

[5] CASE Tool Integration: Long-Term Hopes & Near-Term Solutions,
New Sciences Associates, Inc., July, 1990

[6] Learning from IPSE’s Mistakes, A.W. Brown, J.A. McDermid, IEEE
Software, March 1992

[7] Strategies for Integrating CASE Environments, M. Jarke, IEEE
Software, March 1992

[8] A Framework for Integrated CASE, M. Chen, R.J. Norman, IEEE
Software, March 1992

[9] Interacting with the FIELD Environment, S.E Reiss, Software -
Practice and Experience 20(S1), June 1990

[10] Integrating Coarse-Grained and Fine-Grained Tool Integration, W.
Harrison, H. Ossher, M. Kavianpour, Proceedings of the Fifth Interna
tional Workshop on Computer-Aided Software Engineering (CASE ‘92),
July 1992

[11] Modern Operating Systems, A.S. Tanenbaum, Englewood Cliffs, NJ:
Prentice Hall 1992

[12] Operating System Concepts, A. Silberschatz, J.L. Peterson, Addison-
Wesley, New York, 1988

[13] The Role of the ISO in Telecommunications and Information
Systems Standardization, E. Loshe, IEEE Communication, January
1985

[14] Basic Reference Model for Open Systems Interconnection, ISO 7498,
1983

[15] Reference Model of Open System Interconnection, CCITT, Recom
mendation X.200, June 1984

72

[16] Distributed Systems Concepts and Design, G.F. Coulouris, J. Dolimore,
Addison-Wesley, New York, 1989

[17] Local Area Networks, G.E. Reiser, McGraw-Hill

[18] An Introduction to Operating Systems, H.M. Deitel, Addison-Wesley,
1983

[19] STSC Software Engineering Environment Report, Software Technolo
gy Support Center, Hill Air Force Base, 1992

[20] Working Together to Integrate CASE, R.J. Norman, M. Chen, IEEE
Software, March 1992

[21] Reference Model for Frameworks of Software Engineering Environ
ments, National Institute of Standards and Technology (NIST) and the
European Computer Manufacturers Association (ECMA), NIST Special
Publication 500-200, Technical Report ECMA TR/55, 2nd Edition,
December 1991

[22] Definitions of Tool Integration for Environment, I. Thomas, B.A.
Nejmeh, IEEE Software, March 1992

[23] Tool Integration in Software Engineering Environments, A.I. Wasser
man, Software Engineering Environments: Proceedings of the Interna
tional Workship on Environments, F. Long, ed., Springer-Verlag, Berlin,
1990

[24] The CASE Interoperability Message Sets: Release 1.0, Digital
Equipment Corp., Silicon Graphics Inc., Sun Microsystems Incorporated,
October 1992

[25] OSF/Motif Programmer’s Guide, Release 1.1, Open Software Founda
tion, PTR Prentice Hall, Englewood Cliffs, New Jersey, 1991

[26] Toward an Object-Oriented Framework for Designing Services in
Future Intelligent Networks, S.J. Greenspan, C.L. McGowan, M.C.
Shekaran, IEEE, 1988

[27] Report of the Defense Science Board Task Force on Military
Software, Office of the Under Secretary of Defense for Acquisition,
Washington, D.C., September 1987

[28] Process Driven Development, J.W. Over, STARS ‘92 Conference, “On the
Road to Megaprogramming”

SynerVision for SoftBench — A Process Engine for Teams, Hewlett
Packard, 1992

[29]

73

[30] Diana Reference Manual, G.Goos, W.A. Wulf, Department of Computer
Science, Carnegie-Mellon University, March 1981

[31] Frame System Concepts, Representing Knowledge as Frames, Fundamen
tals of Artificial Intelligence, McDonnell Douglas AI Center Training
Course

[32] Using Service-Level Indices to Manage the Quality of Computing
Services: A Case Study, A. Roeseler, A. von Mayrhauser, Journal of
Systems Software, 1992

[33] Choosing a Service-Level Indicator: Why Not Queue Length?, R.F.
Barry, J.L. Hellerstein, J. Kolb, R VanLeer

74

VITA

John Hayes Lampkin was born on 23 July, 1961 in Decatur, Illinois. He received a
Bachelor of Science degree in Computer Science from the University of Illinois at Urbana
in January, 1984.

Since graduation, Mr. Lampkin has been employed by McDonnell Douglas
Corporation in St. Louis, MO. He played a major role in the development of the Software
Engineering Environment that supports the F-15 Operational Flight Programs written
in assembly language. He was responsible for developing the Software Engineering
Environment that supports the F-15 Operational Flight Programs written in Ada. He
currently has a lead position in the McDonnell Douglas Aerospace-East (MDA-East)
Center for Software Engineering with primary responsibility for developing environ
ment components for use on all avionics programs in MDA-East.

	Process Driven Software Engineering Environments
	Recommended Citation

	tmp.1601987363.pdf._oxpV

