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Abstract

Simulated annealing is an attractive, but expensive, heuristic for approximating the 

solution to combinatorial optimization problems. Since simulated annealing is a general 

purpose method, it can be applied to the broad range of NP-complete problems such as 

the traveling salesman problem, graph theory, and cell placement with a careful control of 

the cooling schedule.

Attempts to parallelize simulated annealing, particularly on distributed memory 

multicomputers, are hampered by the algorithm’s requirement of a globally consistent 

system state. In a multicomputer, maintaining the global state S involves explicit mes­

sage traffic and is a critical performance bottleneck. One way to mitigate this bottleneck 

is to amortize the overhead of these state updates over as many parallel state changes as 

possible. By using this technique, errors in the actual cost C(S) of a particular state S 

will be introduced into the annealing process.

This dissertation places analytically derived bounds on the cost error in order to 

assure convergence to the correct result. The resulting parallel Simulated Annealing 

algorithm dynamically changes the frequency of global updates as a function of the 

annealing control parameter, i.e. temperature. Implementation results on an Intel iPSC/2 

are reported.
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I. INTRODUCTION

For many important practical or theoretical problems, the objective is to choose a 

“best” solution out of a large number of candidate solutions or solution space. Such 

problems are typically known as combinatorial optimization problems. A combinatorial 

optimization problem is formalized as a pair (5, C), where S is the finite - or possibly 

countably infinite - set of configurations (also called configuration or search space) and C 

a cost function, C:S —¥ R, which assigns a real number to each configuration. For con­

venience, it is assumed that C is defined so that the lower the value of C, the better (with 

respect to the optimization criteria) the corresponding configuration. The problem now is 

to find a configuration for which C takes its minimum value, i.e. an (optimal) configura­

tion iopl satisfying

Copl = min C(i) for V i 

where Copl denotes the optimum (minimum) cost.

Most combinatorial optimization problems are NP-hard [GaJo79]. Such problems 

involving a combinatorial effort which is bounded by a polynomial function of the size of 

the problem are unlikely to be well solvable. Therefore approximation algorithms or 

heuristics are used with no guarantee that the solution found by the algorithm is optimal.

A. EXAMPLES OF COMBINATORIAL PROBLEMS

In this section, stock cutting as well as VLSI placement are defined as model prob­

lems.

1. VLSI Placement. [ShMa91] defines the VLSI placement problem as follows: 

Given an electrical circuit consisting of modules with predefined input and output termi­

nals and interconnected in a predefined way, construct a layout indicating the positions of 

the modules so that the estimated wire length and layout area are minimized. The inputs
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to the problem are the module description, consisting of the shapes, sizes, terminal loca­

tions and the netlists describing the interconnections between terminals of the modules. 

The output is a list of locations for all modules. Figure 1 provides an example of place­

ment, where the circuit schematic of (a) is placed in the standard cell layout style in (b). 

Optimal chip area usage is required to fit more modules into a given chip area. Minimal 

wire length is needed to reduce the capacitive delays associated with longer nets and to 

speed up the operation of the chip.

The cost function C is chosen to be the weighted sum of three components

C = a f w + P fa + r f 0

where f w is the weighted total wire length; the length of a net is esimated by com­

puting the half-perimeter of the bounding box including all the pins connected to the net. 

f a is a function of the total area of the chip; the total area of the chip is calculated as the 

area of its bounding box, i.e., the smallest rectangle including all the cells. f 0 is the total 

overlapping area between cells; this component has to be zero at the end of the algorithm, 

to achieve a feasible placement, a, /?, and y are nonnegative weights.

2. Stock Cutting. One common combinatorial optimization problem that arises fre­

quently in applications is the stock cutting problem. Rectangular and/or irregular patterns 

are allocated onto a large stock sheet of finite dimensions in such a way that the resulting 

scrap will be minimized. This problem is common to many applications in aerospace, 

shipbuilding, VLSI design, steel construction, shoe manufacturing, clothing and furniture. 

This problem is commonly known as the stock cutting problem or the 2D bin packing 

problem.

Because of the nature of the composite stock sheet, most applications do not allow 

the patterns to be rotated by any random angle. In other words, patterns may rotate only 

for a limited number of rotation angles. The dissertation addresses using parallel
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Placement 
(cell, x, y):
(1,0,6001 
(2.0.400)
3,100, 400)
4, 100, 600)
5, 0. 2(X))
6, 0.0)
7, 75,200)
H, 10i),0)
9, 2(X), 0) 
lb, 156, 200) 
11,300, 600
12. 200, 600)
13, 3(X), 400)
14, 2(X), 400)
15, 3(X), 0) 
16,250, 200)

(b) Output: module coordinates

Figure 1. Cell Placement: Problem Definition [ShMa91]
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computing techniques to reduce the run time. Also a cost function is made up of the 

affinity relation between patterns, the distance from the origin, and overlap penalty 

between patterns [LMPD92]. Consider the cost function C as being

c = - a ^  + p Z d h + r l , o l,j
a‘J

where a, p, and y are positive real numbers indicating the contribution of each of 

the components in the cost function. ait} is the affinity relation between pattern i and j. 

dlfJ is the distance between pattern i and j . dio represents the distance of pattern i from 

the origin. Oitj is the overlap between pattern i and j.

A sample pattern placement is shown in Figure 2.

Figure 2. A Sample Placement for 50 Patterns
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There are similarities in defining a cost function of VLSI placement and stock cut­

ting problems. Two problems try to minimize the chip area for VLSI placement and 

stock sheet area for stock cutting. The affinity relation term of stock cutting corresponds 

to the wire length term of VLSI placement, the cluster term to the chip area term, and the 

overlap penalty term between patterns to the overlap term between cells respectively. So, 

the cost functions of stock cutting and VLSI placement problems are defined similarly.

B. COMBINATORIAL OPTIMIZATION METHODS

In this Section, various kinds of combinatorial optimization methods are discussed 

which can be used to solve the VLSI placement or stock cutting problem.

1. Linear Programming. Linear programming methods have been extensively 

researched. Work on the stock cutting problem has been done by Gilmore and Gomery 

[GiGo61, GiGo63, GiGo65], Geoffrion and Marsten [GeMa72], and Haessker[Haes80]. 

In general these methods involve a solution of the problem through the development of 

mathematical models. These consist of an objective function that is to be minimized or 

maximized and constraint functions indicating the limitations on the allowed values of 

the variables of the objective function. Both the objective and constraint functions are 

linear functions of variables. Any model may be transferred to the following standard 

form:

minimize Cj x x + c2x2 + • • • + cnxn

subject to

aUx 1 + £*12*2 + ---- ^ a\nxn ~ b\

a 2\ x \ +  a 22x 2 d *" a 2nx n ~  b 2

G-mlx \ &m2x 2 +  ‘ • * +  &mnx n ~  b m
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The stock cutting problem may result in a mathematical model consisting of hun­

dreds and even thousands of variables and constraints. The above mentioned work has 

concentrated on finding special structural characteristics of the model and developing 

techniques that exploit these structures. These methods have successfully been applied to 

a broad class of stock cutting problems. There are, however, many real situations for 

which these methods are not appropriate due to their structure or size. In many cases, this 

is caused by special restrictions. For such problems, other methods— often heuristic 

ones— are used.

2. Dynamic Programming. Dynamic programming is one often used heuristic 

method. Dynamic programming is an algorithm design method that takes a model of the 

problem and converts it into a series of single stage problems. This transformation is 

intuitively based on the principle that an optimal set of decisions has the property that 

whatever the first decision is, the remaining decisions must be optimal with respect to the 

outcome which results from the first decision. The difficulty is in the time required to 

determine the optimal decisions. Otherwise, the problem degrades into an enumeration 

of the decisions and then determining which is the best. This has exponential complexity. 

Studies of dynamic programming approaches to the stock cutting problem have been 

done by Beasley [Beas85a, Beas85b] and Sarker [Sark88].

3. Tree-Search. Another class of heuristics often used is the tree-search method. 

This method enumerates all possible solutions in a tree-like organization. Many different 

organizations may exist for the solution space. Heuristics exist for finding the solution to 

the problem by traversing the tree. These heuristics will start out on one path and will 

terminate when either an optimal solution is believed to have been found or the path is 

known to result in an unsatisfactory solution. It is difficult to determine which path to 

start on and once on a particular path, determining whether the path is worth traversing, 

i.e. if lower costs are possible or whether to proceed on a different path. Work has been
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done by Christofides and Whitlock [ChWh77], Hinxman [Hinx80], and Beasley 

[Beas85a, Beas85b].

4. Iierative Improvement. Another heuristic used is the iterative improvement 

method [PaSt82, LiKe73]. Application of the method of iterative improvement requires 

the definition of a solution space, a cost function, and a set of moves that can be used to 

modify a solution. Define a solution S| = (% , sn , • • •, sim) on m variables. A solution s’ is 

a neighbor (neighboring solution) of a solution s if s' can be obtained from s via one of 

the moves. In this method, one starts with an initial solution represented by 

s0 = (5oo, 50it • • •, s0m). At iteration i, if the current solution is s, then its neighbors are 

examined until a neighboring solution si+1 is found with a new lower cost. In that case, 

si+1 is the new solution and the process is continued to examine the neighbors of the new 

solution. The algorithm terminates when it arrives at a solution which has no neighbor­

ing solutions with a lower cost.

This process tends to minimize the cost but can get trapped in a poor solution, i.e. it 

may be at a local minimum, but not a global minimum. Figure 3 shows how this may 

happen. If s0 is the initial configuration selected, then the iterative improvement method 

will choose configuration A as the optimum. However, if s0 is the chosen initial configu­

ration, then the iterative improvement method will choose configuration B as the opti­

mum. Solution A is a local minimum. All neighboring solutions have a higher cost than 

A, hence iterative improvement is trapped at A. However, B is the configuration that 

minimizes the cost; it is the global solution. Thus, iterative improvement is sensitive to 

the choice of the initial configuration.

To avoid some of the aforementioned disadvantages, one might think of a number of 

alternative approaches. The iterative improvement algorithm can be used for a large 

number of initial configurations, N. In this case, for N  -> ©o, a global optimum can be
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Configurations

Figure 3. Local Minimum Problem

found with probability 1. The search can be refined by information gained from previous 

runs. The second approach is that acceptance of transitions which correspond to an 

increase in the cost function is in a limited way (in an iterative improvement algorithm 

only transitions corresponding to a decrease in cost are accepted). The second approach 

is probabilistic, in nature. Next we survey some probabilstic algorithms such as genetic 

algorithms, Tabu search, and simulated annealing.

5. Genetic Algorithms. Genetic algorithms (GA) are a class of machine-learning 

techniques that gain their name from a similarity to certain processes that occur in the 

interactions of natural, biological genes [Morr91, Wayn91]. A GA is based on feedback 

received from its repeated attempts at a solution. Each attempt a GA makes towards a 

solution is called a gene; a sequence of information that can somehow be interpreted in 

the problem space to yield a possible solution. Deciding how to encode genes to repre­

sent possible solutions in a particular problem space leads to the next requirement: a
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suitable objective function. An objective function must be able to interpret the data con­

tained within a gene and decide how good a solution it represents.

Each pass through the set of optimization steps is called a generation. The opti­

mization steps in each generation are called reproduction, crossover, and mutation. In 

reproduction, the first part of a generation, genes from the previous generation are dupli­

cated and form the new population. The fitness of a gene, conferred by the objective 

function, is used to decide how likely that gene is to reproduce. Genes that are more fit 

are more likely to be duplicated; less fit genes have a poorer chance. However, reproduc­

tion is ruled by chance, so it is possible for less fit genes to be reproduced. It is important 

that all sorts of genes, both fit and unfit, are maintained in the population. After repro­

duction, the genes undergo crossover, where pairs of genes are selected at random. The 

gene pairs then exchange parts of their sequences. The result is two new genes. In the 

crossover step, the genes exchange subsequences that contain good information about 

solutions. Hopefully, this exchanging will result in genes that are better than their ances­

tors. The final step in a generation is mutation. This optimization entails randomly alter­

ing a very small percentage of the genetic sequences present in the population. Mutation 

may introduce new concepts into the population.

In summary, a GA is actually a series of steps. Initially, a random population of 

genes is created. Then, an attempt is made to optimize the fitness of the genes by running 

through generations of optimization steps (reproduction, crossover, and mutation).

6. Tabu Search. The Tabu Search (TS) is an optimization technique based on 

selected concepts from artificial intelligence [Glov90]. TS is founded on three primary 

themes: (1) The use of flexible attribute-based memory structures, designed to permit 

evaluation criteria and historical search information to be exploited more thoroughly than 

by rigid memory structures (as in branch and bound) or by memoryless systems (as in 

simulated annealing and other randomized approaches). (2) An associated mechanism of
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control—i.e, for employing the memory structures—based on the interplay between con­

ditions that constrain and free the search process (embodied in tabu restrictions and aspi­

ration criteria). (3) The incorporation of memory functions of different time spans to 

implement strategies for intensifying and diversifying the search. Intensifying strategies 

refer to procedures for reinforcing move combinations and solution features historically 

found good, while diversification strategies refer to driving the search into new regions.

This TS method is an iterative technique which explores a set of problem solutions 

denoted by S by repeatedly making moves from one solution s to another solution s' 

located in the neighborhood N(s) of s. This is a metaheuristic, since at each step it uses a 

heuristic to move from one solution to the next, guiding the search in S. To avoid being 

trapped in a local minimum, a guidance procedure must be able to accept a move from s 

to s' even if the value of the objective function f(s') > f(s).  But when a solution s 

worse than s may be accepted, cycling may occur, causing the process again to be trapped 

by returning repeatedly to the same solution. The Tabu Search approach seeks to counter 

the danger of entrapment by incorporating a memory structure that forbids or penalizes 

certain moves that would return to a recently visited solution. The notion of using mem­

ory to forbid certain moves (i.e., to render them tabu) can be formalized in general by 

saying that the solution neighborhood depends on the time stream, hence on the iteration 

number k. That is, instead of N{s) a neighborhood is denoted N(s, k). For instance, sup­

pose memory is employed that recalls solution transitions over some time horizon. 

N(s, k) is created by deleting from N(s) each solution that was an immediate predecessor 

of s in one of these transitions. The form of the procedure that uses these modified (tabu) 

neighborhoods is shown in Figure 4.

It is to be emphasized again that a nontrivial, strategically generated sample of the 

solution neighborhood is examined at each step, and a best element from the sample is 

selected (subject to avoiding moves that are classified tabu). The goal is therefore to
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Procedure ThbujSearch

Choose an initial solution s in S 

s*:= s and k:= 1

While the stopping condition is not met do 

k:= k+  1

Generate V* £  N(s, k)

Choose the best s in V* 

s:= s'

if f ( s  ) < f(s*) then s*:= s 

end while

Figure 4. Procedure of Tabu Search

make improving moves to the fullest extent allowed by the structure of N(s, k ), balancing 

trade-offs between solution quality and computational effort in examining larger samples. 

A crucial aspect of the procedure involves the choice of an appropriate definition of 

N(sf k). Due to the exploitation of memory, N(s, k) depends upon the trajectory fol­

lowed in moving from one solution to the next. As a starting point, consider a form of 

memory embodied in a Tabu List T  that records the ITI solutions most recently visited, 

yielding N(s, k) = N(s) -  T. Such a recency based memory approach will prevent cycles 

of length less than or equal ITI from occurring in the trajectory. Memory is also used in 

TS in a kind of learning process: having visited several situations, it is deemed worth­

while to observe whether the good solutions visited so far have some common properties. 

This generates an intensification scheme for the search. Intensification by itself is insuffi­

cient to yield the best outcomes for general classes of optimization problems. The
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complementary notion of diversification must be invoked to allow the most effective 

search over the set S.

7. Simulated Annealing. Simulated annealing was independently introduced by 

Kirkpatrick et. al. [KiGe83] and Cemy [Cem85]. Application of the simulated annealing 

heuristic requires (1) formulation of an appropriate cost or energy function, (2) formula­

tion of an appropriate cooling schedule, (3) formalization of a move or state perturbation, 

and (4) parallelization of simulated annealing for speedups.

Simulated annealing is a method of optimization designed to avoid the pitfalls inher­

ent in other optimization methods, such as the iterative improvement approach. It seeks 

the global or near global minimum of a function without getting trapped in a local mini­

mum. Simulated annealing is well suited to optimize functions of several hundred vari­

ables or more, especially when the functions are not smooth, i.e. have many local mini- 

mums. Simulated annealing has been used in solving chip placement, image processing, 

and the traveling salesman problem.

Definition 1-1: When the new cost is greater than the current cost, this proposed move 

is called a hill climbing move.

Simulated annealing is a stochastic algorithm for solving discrete optimization prob­

lems. Theoretical studies have shown that a global optimum can be reached with unit 

probability in infinite time provided a set of conditions are satisfied [Haje85]. One of the 

major obstacles towards successful application of simulated annealing to combinatorial 

optimization problems is its massive requirement of computation time, arising from the 

probabilistic hill climbing nature of the method. Various approaches have been proposed 

to speed up the simulated annealing process.
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1. Careful control of the cooling schedules.

2. Improved move generation.

3. Parallel implementation.

From the mentioned combinatorial optimization methods, linear programming, 

dynamic programming, and tree search methods are not suitable for large problem sizes. 

Genetic algorithms, Tabu search, and simulated annealing are popular heuristic algo­

rithms. Among these heuristic algorithms, simulated annealing has a sound theoretical 

basis for analysis of the convergence to the optimal results. This will aid in the analysis 

done in this dissertation.

The dissertation is organized as follows: In Section II, the theory of simulated 

annealing is presented, and convergence properties are proved. Section III discusses the 

various types of efficient cooling schedules and improved move generations. In Section 

IV, a taxonomy of parallel simulated annealing techniques is discussed. Section V dis­

cusses the previous cost-error-tolerant schemes and the shortcomings of the traditional 

cost error measurement method. In Section VI, a new cost-error-tolerant scheme is pro­

posed by relaxing synchronization to improve parallel speedups. Section VII presents the 

implemental details of the parallel space-decomposition algorithm. Section VIII discusses 

the experimental results of relaxing synchronization. Finally Section IX concludes with 

future research areas.
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II. THEORY OF SIMULATED ANNEALING

The simulated annealing algorithm is based on the analogy between simulation of 

the annealing of solids and the problem of solving large combinatorial optimization prob­

lems (Table I) [KiGe83], The ground states (global optimum) of a complex physical sys­

tem can be reached by heating the system up to some high temperature (melting point) 

and then cooling it slowly, maintaining an equilibrium condition. Thus all possible states 

are considered allowing to visit the increased energy states, i.e. hill climbing moves. At 

each temperature value T, the solid is allowed to reach thermal equilibrium, characterized 

by a probability of being in a state with energy E given by the Boltzmann distribution 

[LaAa88]

Pr[E = E] =
1

W )

r E ' 
kbT ,

(2-1)

where Z(T) is the normalization factor depending on the temperature T and kb is the

E \
Boltzmann constant. The factor e x p --------

l  *bT
is known as the Boltzmann factor.

A. BASIC SEQUENTIAL ALGORITHM

Metropolis et. al. [MeRo53] propose a Monte Carlo method, which simulates this 

evolution to thermal equilibrium of a solid at a fixed value of the temperature T. In simu­

lated annealing, the initial temperature is set sufficiently high so that all moves are 

accepted. With a small perturbation of the current state space, a new state is reached. Let 

AC be the difference of the energies (cost) of current state and new state, i.e. the cost of 

the new state minus the cost of the current state. The probability that a proposed move is 

accepted or rejected in simulated annealing is determined by the Metropolis criterion:

( AC ^
l,exp(— — )

v 1 y
Pr[AC is accepted] = min (2-2)
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Physical Systems Optimization Problems

State(Structure) Configuration

Energy Cost

Phase Transition Move Generation

Ground State Optimal Solution

Quick Cooling(Quenching) Iterative Improvement

Slow Cooling(Annealing) Simulated Annealing

Table I. Analogy between Physical Systems and Optimization Problems,

If a proposed move is accepted, then the new state becomes the current state; if the pro­

posed move is rejected, the current state remains unchanged. The above procedure con­

tinues until the system reaches thermal equilibrium, i.e. the probability distribution of the 

states approaches the Boltzmann distribution. The Pascal-like pseudo code for simulated 

annealing is shown in Figure 5.

[LuMe86] shows that simulated annealing performs better than repeated application 

of the iterative improvement method. Quantitatively, the upper time bound for iterative 

improvement is 0(5), however, the upper time bound of the simulated annealing method 

is 0(N ln 151), where N is size of neighborhood of any state and 5 is the total size of the
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PROCEDURE SIMULATED ANNEALING

begin

INITIALIZE;

k:= 0; 

repeat 

repeat

PERTURB(config. i -»  config. A Q ); /* evaluation of the cost change */ 

if A Cjj < 0 then accept

else if exp(-ACylTk) > random [0,1) then accept; 

if accept then

UPDATE(configuration j); 

until equilibrium is approached sufficiently closely;

Tk+i := f(Tk)< 
k:=k+l;

until stop criterion —  true (system is ‘frozen’); 

end.

Figure 5. The Metropolis Procedure

configuration space. In S is a bound for the number of Markov Chains, which is derived 

in [LuMe86]. Since, generally, N is polynomial and S is exponential in the size of the 

input of the problem, execution of simulated annealing takes polynomial time while the 

iterative improvement algorithm takes exponential time.
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B. ASYMPTOTIC CONVERGENCE IN MATHEMATICAL MODEL

The simulated annealing method accepts deteriorations of the system, i.e. configura­

tions that correspond to an increase in the cost function, according to the Metropolis cri­

teria (2-2). This method prevents from getting stuck in local minima, thus enables the 

final result to arrive at a global minimum.

The sequence of transitions of simulated annealing can be represented by a Markov 

Chain, since the outcome of a transition depends only on the outcome of the previous 

one. There are two types of formulation for the simulated annealing algorithm [LaAa88]. 

One is the homogeneous algorithm, where each Markov Chain is generated at a fixed 

value of the control parameter (temperature), and the control parameter is decreased 

between subsequent Markov Chains. Another is the inhomogeneous algorithm, where 

the value of the control parameter is decreased in between subsequent transitions.

Definition 2-1: Let the transition matrix P(T) be defined as

with generation probability Giyj{T) for generating configuration j from configuration i, 

and acceptance probability Atj{T) for accepting configuration j, once it has been gener­

ated from i, and \N\ is the size of neighborhood configuration space.

Vj * i 
j  =

(2-3)

Definition 2-2: (Irreducibility) Given any two states i and j , j  is reachable from i.

Vi, j: p\j(T) > 0, for some finite k
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Definition 2-3: (Reversibility) The generation probabilities from i to j  and from j  to i 

are the same for any state i and j.

ViJ'- Gi,j = Gj,t

which means the Markov process is aperiodic.

Definition 2-4: If the temperature is fixed at T, then the Markov Chain has the stationary 

transition probability distribution

*oo(0 exp

where ZT = X  ̂ M O exp
Vi

M O  = 

CO')''

c o n
T ,

(2-4)

is known as the partition function for the system, is

the stationary transition probability distribution when the temperature (T) is positive 

infinity.

Theorem 2-1 [Lam88]: In the time homogeneous Markov Chain, if the irreducibility and 

reversibility conditions are satisfied and the Markov Chain length is infinite at a given 

temperature T, then a global optimum can be found with probability one.

Proof: In the time homogeneous Markov Chain, if both the irreducibility condition and 

the reversibility condition exist, then the Markov ergodic convergence theorem [Sen81] 

applies. That is, lim Pr[.?<.€ i ,] = X  M O  where iom denotes the set of minimum
*->oo y  ,v; yft fopf

value states, since when the Markov Chain goes to infinity at a fixed temperature, it 

reaches the stationary condition (Definition 2-4). This implies that

limr-> o lim Pr[ske i ,]
k ->  oo r

_r*=r
= 1
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because at a very low temperature there is no move which deteriorates the state of the 

system, i.e.,

exp
/

V
AC > 0

So by letting T tend to 0 as k tends to infinity, the final equilibrium probability distribu­

tion is obtained

ff(0 = 0
if i e iopl 
otherwise

□

State i is said to be local minimum if no state i with C ( t) < C(i) is reachable from 

state i at cost C(i).

Definition 2-5 [Haje85]: Define the depth of a local minimum i to be +oo, if state i is a 

global minimum. Otherwise, the depth of i is the smallest energy E, E>0, such that some 

state i with C(i') < C(i) can be reached from i at height C(i) + E.

So the depth refers to the minimum hill climbing energy to get out o f the local mini­

mum (Definition 1-1).

Theorem 2-2: [Haje85] In the time inhomogeneous Markov Chain, in addition to the 

time homogeneous conditions(irreducibility, reversibility and infinite Markovian transi­

tions), if the temperature is decreased as an inverse logarithm, then the probability of the 

convergence to the global optimum is one.

Proof: Since the time homogeneous case is proven in Theorem 2-1, only the temperature 

decrement condition need be proven.
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a) For any state i that is not a local minimum

lim Pr[^* = i] = 0
k —»oo

b) Suppose that the states in B are local minima of depth d. Then

lim P r ^ e  B]=0
k—>oo

if  and only if

X  exp
*=i

(

v TkJ
+ OO.

c) (Consequence of (a) and (b)) Let d* be the maximum of the depths of all states 

which are local, not global, minima. Let iop, denote the set of global minima. Then

lim Pr[s*eiop,] = 1
oo

if and only if

X  exp
*=i

f - — 1
= 4* oo.

If Tk assumes the parametric form

T  =  c
log(k+1)

then condition (c) is true if and only if c > d*. So convergence to the global minimum is 

guaranteed with probability one. □

Since the decrement of temperature is represented as

T, =
____

\og(k + l)
for X > d \ (2-5)

this Markov Chain schedule is a logarithmic schedule [Lam88]. Although the
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logarithmic schedule can be shown to converge asymptotically to globally optimal solu­

tions, its computation time is high. This is because the logarithmic schedule has to guar­

antee convergence even in the worst case of stepping into a deep local minimum(d‘), no 

matter how unlikely such an event is to occur.

An alternate annealing schedule can be based on approximate equilibrium criteria 

[Whit84]. This annealing schedule no longer guarantees convergence to the global opti­

mal solution, but gives a better performance in practice.

C. STATISTICAL PHYSICS IN SIMULATED ANNEALING

Contrary to the annealing schedule based on Markov Chains, [Whit84] developed 

another annealing schedule based on the quasi-equilibrium criteria. There are important 

scales in equilibrium dynamics such as expected cost, variance and specific heat, etc. 

The behavior of simulated annealing can be characterized with these scales.

Since the sequential annealing schedule is applied to the parallel version, the follow­

ing statistics are important to analyze the behavior of annealing and to speedups.

Definition 2-6: Let the expected cost in equilibrium be

< C (T)> = 'ZC {i)q i{T) (2-6)
ieS

where q(T) is the stationary distribution at temperature T,

Pr[ configuration = i ] = qt{T) =
Q{T)

exp
C(0

where Q(T) is a normalization constant depending on the temperature.

Definition 2-7: The variance of the cost in equilibrium is

<r\T) = < (C (7 >  < C(T) >)2 > = < C2(T) > -  < C{T) >2 (2-7)
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Definition 2-8: The specific heat is

a < c(T) > c72
3T ~ T2 (2-8)

A large value of specific heat signals a change in the state of the order of a system, 

and can be used in the optimization context to indicate that freezing has begun and hence 

that very slow cooling is required. Equations 2-6 through 2-7 are well known in statisti­

cal physics and they serve an important role in the analysis of the mechanics of large 

physical ensembles at equilibrium. They will be used in deriving the optimal cooling 

schedules in Section III.

Definition 2-9: [GrHa85] (Ergodicity) Markov process X(t) is ergodic if, with probabil­

ity one, all its "measures" can be defined or well approximated from a single realization, 

x0(t), of the process.

Since statistical measures of the process are usually expressed as time averages, this 

is often stated as X{t) is ergodic if time averages equal ensemble averages, that is, 

expected values. The mechanics of a physical multi-particle system is compatible with a 

statistical ensemble. The time average of a mechanical quantity of the system under 

macroscopic equilibrium is equal to the corresponding ensemble average (Definition 2-9). 

So a number of useful macroscopic quantities can be derived given the equilibrium distri­

bution of the system.

In discussing annealing schedules, it is useful to graph <C(T)>, the average energy 

at a fixed temperature vs. the log scale of temperature (Figure 6). This graph will be 

referred to as the annealing curve. It tracks the progress of the annealing in a way that is 

tied to the fundamental quantities in the system, and is relatively independent of the 

details of how the annealing schedule is carried out. Many annealing problems have been



23

Figure 6. Annealing Curve

studied showing similar annealing curves. The overall features include:

1) There is a minimum cost, C0, below which the system never goes. This must be the 

case; the system has some finite global minimum.

2) There is a maximum average cost, Coa. There certainly must be a maximum cost; 

the system is finite, and some configuration provides a finite upper bound on the 

cost. Beyond this, in the infinite temperature limit, any attempted move will be 

accepted, regardless of whether it increases or decreases the cost. Hence, at very 

large temperatures, the system moves randomly through its states, and the observed 

average cost is just the average of the costs of all of the possible states of the sys­

tem.
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3) The annealing curve makes a transition at a low temperature, T from an intermedi­

ate cost region to a low cost region, with < C(T) > decreasing with T > Tf , 

and< C(T) > « C0 for T <Tf .

4) The annealing curve makes a transition at a high temperature, T0, from the high cost 

region to the intermediate cost region. This transition fluctuates heavily.



25

III. SEQUENTIAL SIMULATED ANNEALING

In Section II, it was shown that the simulated annealing algorithm converges to a 

globally minimal configuration asymptotically with probability one. However, in any 

real implementation of the algorithm, asymptotic convergence can only be approximated.

Simulated annealing is not an algorithm per se, in the sense of a prescribed sequence 

of operations to solve a set of problem. Rather, it is a paradigm for constructing algo­

rithms to solve optimization problems of a particular character. Design of good annealing 

algorithms is nontrivial. The design of the herein annealing algorithm is comprised of 

five parts [KrRu87]:

1) Configuration Space: The set of allowed configurations of the system must facili­

tate easy representation of each state and easy generation of perturbations.

2) Move Set: The set of feasible moves must be rich enough so that all reasonable 

solutions can be found by applying a sequence of moves from this set. In addition, 

these moves must be relatively inexpensive to compute since many moves will be 

performed.

3) Cost M etric: The metric must be incrementally computable so that the time to 

evaluate each move is minimal. For placement problems, this metric must be physi­

cally meaningful. That is, the placements with the smallest area have the least cost. 

Since the Metropolis criterion depends on the cost change, cost metric must properly 

represent the difference of cost between the new and current states.

4) Cooling Schedule: The manner in which the temperature T is lowered during 

annealing (the temperature schedule) is crucial. Starting too cold, stopping too hot, 

or cooling too quickly all produce suboptimal solutions. Starting too hot, stopping 

too cold, or cooling too slowly wastes CPU cycles. Analytical and adaptive heuris­

tic techniques have been proposed for controlling this schedule. The number of
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moves evaluated at each temperature to approximate equilibrium must also be deter­

mined.

5) D ata Structures: The ability to propose and evaluate moves efficiently hinges on a 

good representation for the basic objects in the problem. For placement, this means 

structures for modules and nets arranged so that connectivity and spatial location are 

quickly assessed.

Although the simulated annealing framework is conceptually straightforward, 

design of a successful annealing-based algorithm involves considerable engineering 

judgement in the process of designing the five components just described.

In deciding the optimal cooling schedule, the following parameters must be speci­

fied.

1. Initial value of the control parameter (temperature): T0

2. Final value of the control parameter: Tj-

3. Length of the Markov chain at any control parameter Tk: Lk

4. Decrement of the temperature: Tk+l = f ( T k)

Particular choice for these four parameters is referred to as a cooling schedule. The 

choice of these parameters is very important to balance the quality of the final result and 

the computation time. Additionally, for efficient operation, a controlled move generation 

strategy is needed.

A. IN ITIA L VALUE OF TH E CONTROL PARAMETER: T0

The initial value of temperature, T0, is determined in such a way that virtually all 

transition moves are accepted. This means that for T0 -»  oo, the stationary distribution is 

given by the uniform distribution of the set of configurations S.
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[JoAr87] determined T0 by calculating the average in cost, AC which counts only

the positive cost change, for a number of random transitions and solved T0 from

(  ___
AC

Zo = exp — —— , where Zo is initial acceptance ratio (usually 0.8 to 0.9). So
V

;+)
Tn =

AC 

InU o1)
(3-1)

Figure 7. Density of States for a Typical Problem [Whit84]

A more elaborate approach by [Whit84] was based on the configuration density 

function, co(C), which is the number of possible states of the system, per unit 

cost(energy), at cost C.

<y(C) = -i- {ieSI C < C(z)> C + dC} (3-2)
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Using the acceptance probability, the probability density at a given temperature T is giv­

en by

( r  - C  \
' w '  optco(C) exp

n(C,T) = T J
Z(T)

(3-3)

oo

where Z(T) = J  o)(C)txp
r , ^r  -  c

^  ^  opt dC . Copt is the cost of the optimal state.

So the expected cost in equilibrium

< C(T) >= f  c'Q(c, T)dc (3-4)

Assuming that co{C) is Gaussian near the average energy C and a standard deviation cr0 at 

To-

a>(C) «  exp
( C - C ) 2> 

V 2oo >
(3-5)

When a)(C) is given by equation (3-5), equation (3-4) becomes [Reif65]

< C(T) > = C0„i + a/2 • a0 y  +
e

V*(l + erf(y))
(3-6)

where y s  ±  ^
V 2 l 0̂ T )

For large T, lyl »  1 and y > 0. So equation (3-5) yields [Whit84]

CT02
< C(T) > ~ C - - ~ (3-7)

The characteristic high temperature T0 can be identified with the temperature at which 

< C{T0) > is just within thermal noise (standard deviation) of C. This is the temperature
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at which (C -  < C(T0) >) £ ct0, that is,

To ^  ctq

So the system is "hot enought" at T0.

Huang et. al. [HuRo86] proposed the initial temperature similar to White’s

3ct0T« = -
ln P

(3-8)

where P is the acceptance ratio at high temperature. P is usually set to 90%. So at high 

temperature, 3cr0 worse cost is accepted with probability P. To calculate cr0, an initial 

exploration of the configuration space is performed. During the exploration, all the gen­

erated states are accepted, i.e., the temperature is assumed infinite. In this manner, the 

standard deviation (cr0) is calculated at the initial temperature.

B. FINAL TEMPERATURE: Tf

[Sech87] proposed that the stopping criterion be implemented by recording the 

value of the cost function at the end of each temperature during the annealing process. 

The annealing process ends when the value of the cost function has remained unchanged 

for a sufficient number of Markov chains.

[Whit84] considers a state with cost Cx that is just above a nondegenerate local min-

(  C , - C 0)  1
imum with cost C0. If exp ^------------J<  —, then there is no hill-climbing process,

where L is the length of Markov chain. This means that the probability of accepting a 

transition from the state of cost C0 to the state of Cx is smaller than 1IM. So

Ci — Cq
T f < —-------

* In M (3-9)
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Finally, [HuRo86] proposed that when the equilibrium is established, the difference 

of maximum and minimum costs among the accepted states at that temperature be com­

pared with the maximum change in cost in any accepted move during the constant tem­

perature. If they are the same, apparently all the accessible states have comparable costs 

and there is no need to continue the simulated annealing process. The temperature is then 

set to zero and the algorithm becomes a standard greedy random selection algorithm.

C. LENGTH O F MARKOV CHAIN: Lk

A sufficiently long chain length is required to reach quasi-equilibrium at each tem­

perature. Lk is the length of the Markov Chain at a given temperature. The simple 

choice for the fixed Lk is that, for each value Tk, a minimum amount of transitions should 

be accepted. However, as Tk approaches 0, transitions are accepted with decreasing 

probability. Thus Lk is ceiled by some constant. Usually Lk is some integer multiple of 

the maximum number of neighboring states.

The Markov Chain length Lk as a function of temperature Tk is defined by Huang. 

Huang et. al. [HuRo86] proposed to detect thermal equilibrium by keeping track of two 

counters for the number of accepted moves. They record energy values within and with­

out the interval [C(T) -  acr, C(T) + a a), where C{T) is the measured average energy at 

temperature T. If the number of accepted moves within the interval reaches its target 

first, the system is considered in thermal equilibrium; if the number of accepted moves 

without interval reaches its target first, both counters are reset to zero and the counting is 

initiated again.

The target values for the within and without interval counters are set to 3erf(0.5)N 

and 3(l-erf(0.5))N, respectively, where N is a parameter measuring the size of the opti­

mization problem. In order to guarantee the validity of C(T), this method invokes this 

detection mechanism only after a total of N moves has been accepted. It is possible that
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the system may never arrive at thermal equilibrium using this scheme. Therefore, the 

system is also considered in thermal equilibrium if the number of steps is greater than the 

maximum generation limit, M, where M is the number of states that may be reached in 

one move.

D. DECREM ENT O F TEM PERATURE: TM = f ( T k)

Small temperature decrements are used to avoid the necessity of long Markov 

chains for re-establishing equilibrium at each new value of the control parameter (temper­

ature). A frequently used decrement rule is given by

where a is a constant smaller than but approximately 1. Kirkpatrick et. al. [KiGe83] pro­

posed this rule with a  = 0.95. However, the efficient decrement ratio is dependent on the 

cost distribution. In [Sech87], various decrement ratios based on the annealing curve are 

used. Moreover when the annealing is done at a high temperature, a  can be low.

The variable decrement of temperature is based on the assumption that the station­

ary distributions for succeeding values of the control parameter should be nearly the 

same,

Tm  = a - Tk , k = 0 ,1 ,2 , • • • (3-10)

(3-11)

for some small real number 5.

The equation (3-11) is satisfied if

Vie S: exp -
f  C ( i ) -C opA
l  Tk J

(3-12)

Assuming that the value of the cost function is normally distributed for a given value of 

T, then the ACiapil is normally distributed with mean u(Tk) = C(Tk) -  Copt and variance
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<72(r*) = C2(Tk) -  (C(Tk))2 [AaLa85]. It is shown that

> r J  1 +
ln(l + <?)7\. T 1

3<r(7-*) J
(3-13)

In [HuRo86], a  cooling schedule is derived using the annealing curve [Whit84] —  a 

curve of the equilibrium average energy, < C{T) >, versus the logarithm of the tempera­

ture, log(7) —  to guide the temperature change. The idea is to control the temperature so 

that < C(T) > decreases in a uniform manner. From the slope of the annealing curve,

d < C{T) > d<C(T)>
a In(T) ' dT

(3-14)

From the well known equation (3-8):

9 < C(T) > cr2 
dT ”  72

it follows that

a < c ( T )  > _ a2 
a in (D  “  T

The slope itself can be approximated by AC(T) / (ln(Tk+l) -  ln(Tk)), where AC(7) is the 

change in the average cost at a different temperature. Hence,

which leads to

AC(T) _ (j 
\n(Tk+,) - \n (T k) ~  Tk

Tm  = Tk ■ exp
Tk -AC(T)

(T~

To maintain quasi-equilibrium, the expected decrease in the average cost must be less 

than the standard deviation of the cost. AC(T) = -  ko  where X < 1. A typical value of X 

is 0.7. Finally,
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Tm  = Tk • exp(-A — ) (3-15)
G

In the actual implementation, the ratio of Tk+i/Tk is lower bounded by a small number 

(typically 0.5) to prevent a drastic decrease in temperature caused by the flat annealing 

curve at high temperatures.

E. CONTROLLED M OVE GENERATION STRATEGY

With a controlled move generation strategy, the simulated annealing algorithm can 

approach equilibrium faster and the acceptance ratio can be increased. This results in 

faster annealing.

Greene and Supowit [GrSu84] proposed to bias the generation of transitions by 

using a list of the effects of each possible transition on the cost function. Suppose that 

configuration i is given and let Wtj(T) for each of the R possible transitions be given by

Wy(T) = min { l,ex p (-(C 0 ) -  C(/))/T)}, (3-16)

where T is the current value of the control parameter. Instead of the traditional genera­

tion, where G,j is given by

Gy = R~l (3-17)

Gy(T) is defined as

Gy(T) =
WtJ(T) 

f Wik(T)
k= 1

Ve Rt

and Ay = 1 (for all i and j). i.e. all transitions are accepted once they are generated. 

Thus, if the length of a Markov chain is determined by a minimal number of accepted 

transitions L, then each Markov chain will have length L. It is called the rejectionless 

method.
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[Whit84] proposed another method. During execution of the simulated annealing 

algorithm, the value of the control parameter is gradually decreased. The lower the value 

of T, the lower the probability for acceptance of a transition, which corresponds to a large 

increase in the cost function. For high values of T, where virtually all transitions are 

accepted, it would therefore be helpful to bias the generation of transitions in favor of 

large transitions. This suggests a strategy for the move set being adapted to the tempera­

ture scale.

At the highest temperatures, only the largest cost change moves (i.e. the ones with 

the largest < IACI >) are made. Smaller cost change moves change the cost by trivial 

amounts, and are not useful in helping the system come to equilibrium. As the tempera­

ture decreases, use smaller cost change moves (i.e. ones with smaller < IACI >), appropri­

ate to that temperature. Larger cost change moves change the cost by such a larger 

amount, that they are accepted only with an extremely low probability. Finally White 

claims that for each value of T, the change of the cost must be fairly continuous as it pro­

ceeds to equilibrium at that temperature. Thus each move in the move class should 

change the cost by somewhat less than the average thermal fluctuations at equilibrium. 

This means that, at any temperature T, move classes should be selected which give

< ! A C I > « r ,  (3-18)

to within a standard deviation in the distribution of IACI’s and such that

< IACI > < V< C2(T) > - (<  COO >)2 • (3-19)

[Sech88] proposed the range-limiter window, in order to generate moves which have 

a reasonable probability of acceptance in the placement problem. When an object i is 

selected for displacement, the range-limiter window is centered at (x0, y0), corresponding 

to the center of object i. The randomly selected new location for object i must lie within 

the range-limiter window. At the beginning of the annealing process, the window size is
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set to be large enough to contain all the objects and it shrinks slowly as the temperature 

decreases. In fact, the height and width of the window are proportional to the logarithm 

of the temperature.

JogioOO
WX(T) = <  •

Jog,n(jT)
Wy(T) = W°y - i ~ r -  (3-20)

W* represents the window span in the x-direction at the initial temperature(r0). W°y rep­

resents the window span in the y-Uireetion at the initial temperature. The value of X was 

chosen such that for the initial temperature, the term on the right most side of the above 

equations is normalized to one. That is,

X = p'°8|° r° (3-21)

where p  is in the range 1 < p  < 4.

Despite this tuning, simulated annealing is still time-consuming. In the next section 

the speedup of simulated annealing through parallelism will be explored.
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IV. PARALLEL SIMULATED ANNEALING

The development of distributed multiprocessors depends on the recent appearance 

of powerful microprocessors and inexpensive memory’. It also has lead to the develop­

ment of commercial, microprocessor based, shared memory multiprocessors. In a shared 

memory system, processors are connected via a fast bus in small scale systems, while 

large multiprocessors contain hundreds or thousands of processors connected to memory 

modules via an interconnection network.

The most striking difference between distributed memory multiprocessors and 

shared memory multiprocessors is network latency. If memory is truly "shared", it must 

be possible to access any portion of memory within a few instruction cycles. This 

implies that the multiprocessor interconnection network must be faster and correspond­

ingly more expensive than a multicomputer interconnection network. This high perfor­

mance, high cost interconnection network permits parallel tasks to interact much more 

frequently using the shared memory than is possible by passing messages on a distributed 

multiprocessors network [ReFu87]. However, shared memory is limited in its ability to 

provide massive computing speedups.

Definition 4-1: The speedup achieved by a parallel algorithm running on p processors is 

the ratio between the time taken by that parallel computer executing the fastest serial 

algorithm and the time taken by the same parallel computer executing the parallel algo­

rithm using p processors.

To reduce execution time, researchers have parallelized simulated annealing. Since 

simulated annealing is an inherently sequential process, it is hard to implement this algo­

rithm in parallel without changing the final result. So great care has been devoted to state 

generation, control of the cost error, and dividing the state space among the processors.



37

Consider following questions [Gree89]:

1. How is the state space divided among the processors?

2. Does the state generator for the parallel algorithm produce the same neighborhood 

as the sequential algorithm? How are states generated?

3. Can moves made by one processor cause cost-function calculation errors in another 

processor? Are there any mechanisms to control these errors?

4. What is the speedup? How does the final cost vary with the number of processors? 

How fast is the algorithm, when compared to an optimized sequential program?

Functional Decomposition Spatial Decomposition
Simple Serializable Set Shared State-Space
Decision Tree Systolic

Figure 8. Parallel Simulated Annealing Taxonomy [Gree89]

Parallel simulated annealing can be divided into synchronous and asynchronous 

[Gree89]. In synchronous, there are functional decomposition, simple serializable set, 

decision tree, altered spatial decomposition and systolic methods. In asynchronous, there
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are spatial decomposition and shared state space methods. In synchronous algorithms, 

cost calculations are correct. However careful consideration is still required for generat­

ing the move set. But synchronous algorithms have a scalability problem; so only limited 

speedup is possible. In asynchronous algorithms, cost calculations are not correct, so an 

error in the cost must be tolerated to retain the convergence properties of the synchronous 

algorithms.

A. DISTRIBUTED VS. SHARED MEMORY IN SIMULATED ANNEALING

Different schemes of state maintenance and algorithm implementation are used 

between distributed and shared memory. In parallel applications of simulated annealing, 

it is important to note the problem of interacting parallel moves, i.e. in the case of the 

placement problem, if two processors propose moves simultaneously to the same location 

which is empty, the object will be overlapped. This problem is most easily solved on 

shared memory machines. In such architectures, each processor can easily and quickly 

access the global state of the layout configuration. Therefore, interacting moves can be 

identified, or the problem may be repartitioned to minimize future erroneous moves.

On the other hand, in a distributed memory architecture such as a hypercube, there 

is no globally available, centrally located system state. Such state information is dis­

tributed among the processors. So updating the entire global state involves explicit mes­

sage traffic, potentially between distant nodes, and is a critical bottleneck. To mitigate 

this bottleneck, it becomes necessary to amortize the cost of these state updates over as 

many parallel moves evaluations as possible, and to optimize the speed of each required 

update. [JaRu87] used two kinds of update schemes. One is a global state updating, 

while the other is a partial state updating, where a processor distributes its local state 

information to only a selected subset of the other processors. By careful design of the 

topological arrangement of the processors, all processors will eventually receive this 

update information, although it may be delayed.
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B. SERIAL-LIKE ALGORITHMS

Serial-like convergence algorithms maintain the convergence properties of sequen­

tial annealing. Three synchronous parallel algorithms preserve the convergence proper­

ties of sequential simulated annealing: functional decomposition, simple serializable set, 

and decision tree decomposition.

1. Functional Decomposition (FD). Functional decomposition algorithms exploit 

parallelism in calculating the cost function. [KrRu87] used a functional decomposition 

algorithm for VLSI circuit placement in parallel on shared memory. [KrRu87] divided 

individual moves into subtasks and distributed them across cooperating processors. The 

work of a move consists of selecting a feasible perturbation in the move set, evaluating 

the cost change, deciding to accept or reject, and updating a global data-base. Since 

shared memory is employed, no configurations have to be communicated.

These tasks are fine-grain parallelism and the processors have to synchronize at least 

once per move evaluation. Parallelism is strictly limited since only a limited number of 

connected cells and nets are perturbed. One can extract a maximum speedup of 1+2 j  + k, 

where j  is the average cells affected per move, and k is the average wires affected per 

move. The disadvantage is that as the number of processes cooperating to evaluate each 

move increases, synchronization overhead also increases, reducing the expected speedups 

from greater parallelism. [KrRu87] conjectured that the parallelism is not more than 10. 

The advantage is that FD algorithms are temperature independent, so when the accep­

tance rate is high at high temperatures, a speedup is possible.

2. Simple Serializable Set (SSS). The SSS algorithm computes several complete 

moves in parallel. If a collection of moves affect independent state variables, distinct 

processors can independently compute the cost change (AC) without communicating.
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Begin

Choose some random initial configuration s ;
Repeat

s s';
Parallel Block Begin

/
s <— some random neighboring configuration^);

C0 <— block-length-penaltyCs);

Cli0 <— overlap for affected cell c0 before move;

• • • Cj j  <— overlap for affected cell cj before move;

C2>o <— overlap for affected cell c0 after move;

• • • C2j  <r- overlap for affected cell cj after move;

C3(0 <— length change for affected wire w0;

■ ‘ ' Ob,* length change for affected wire wk\
End Parallel Block

AC C0 + (C1(0 + • • • + Cw ) -  (C2)o + • • • + C2J) + (C3i0 + — i- C3i*); 

if accept(AC, 7) then 

Parallel Block Begin 

update overlap values; 

update blocks and cells; 

update wire w0;

• • • update wire wk;
End Parallel Block 

recompute T ; 

until stop criteria;

End;

Figure 9. Algorithm FD for VLSI Placement
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The moves can be concluded in any order, and the result will be same. The simplest is a 

collection of rejected moves because the order is irrelevant and the outcome is always the 

starting state. The sequence formed by taking all rejected moves, and appending one 

accepted move is always serializable. At low temperatures, the acceptance rate is often 

very low. So in [KrRu87], the SSS algorithm uses this property in low temperature 

regions.

[RoDr90] used the SSS algorithm over the entire temperature region, T0 —> 7^. 

They implemented the parallel algorithm on a distributed memory transputer array. In the 

low temperature region, if a{T) < 1 IN where a(T) is the acceptance ratio at temperature 

T and N is the number of processors, less than one move out of N  will be accepted. 

Thus, the processors attempt moves on their own variables, asynchronously, in parallel, 

until one of the N  processors accepts a move. When an accepted move is found, the pro­

cessors are synchronized, their memories are updated with the new configuration, and the 

next evaluation step take place. For the performance evaluation, if there are no accep­

tance moves, M -  0, then count N moves as progress towards equilibrium. If M > 0, 

then the N  -  M rejected moves and one accepted move are counted as progress to equi­

librium. So the expected speedup

E[\SSS\) = Pr(M = 0) • N  + f  Pr(M = +
m=1

= A - ( l - a ( D ) + l - ( l - a ( r ) ) *  (4-1)

where ISWI means the size of the serializable subset.

In the high temperature region(a(T) > l/N), each processor is allowed to evaluate 

one move only and waits until all the other processors complete their evaluation. Then, 

one of the accepted moves is selected at random, the processors memories are updated 

with the new configuration, and the next evaluation step takes place. For the performance 

evaluation, number the processors in an arbitrary, but definite order, from 1 to N. Then



42

a(T)
(dotted)

0.01 0.1 1 10 100 1000 
Temperature

Speedup
(solid)

Figure 10. Performance Model for SSS [KrRu87]

denote by n, the number of the first processor in the list which accepts a move and count 

n moves as progress to equilibrium. The average speedup

E(n) = ( N + \ ) i ( N - r + l )  (4-2)

where r moves out of P are rejected.

Algorithm SSS has limitations. Some annealing schedules [Lam88] maintain an 

acceptance rate at relatively high values (0.44) throughout the temperature range by 

adjusting the generation function. An important observation is that FD and SSS algo­

rithms are not mutually exclusive. With sufficient parallel resources, one could evaluate 

several moves in parallel and also divide each of these parallel moves into cooperating 

subtasks.
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3. Decision Tree Decomposition (DTD). [ChEd88] proposed the DTD algorithm. 

Each move consists of move, evaluate, decide and update. Because decisions are 

binary(accept the move or reject the move), the SA algorithm can be viewed in terms of 

selecting a particular path through a binary decision tree. Figure 11 shows a binary tree 

in which each of the nodes can be viewed as performing a move/evaluate/decide task. 

The two children of each node correspond to the two possible decision results. The paths 

correspond to available communication paths between the processors.

Figure 11. Decision Tree Decomposition [ChEd88]

A vertex generates a move in time tm, evaluates the cost in time te, and decides 

whether to accept in time td.
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Figure 12. Timing Diagram [ChEd88]

1. Each processor along a reject path can start performing its move/evaluate/decide 

task as soon as its parent node has indicated a start of the process(i.e. after a Tc 

delay). That is, since it is on the reject path, no state change information must be 

communicated. This can be seen in Figure 12 in the start of the move task(Tm) on 

Node 3 relative to its parent on Node 1.
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2. Each processor along an accept path can start performing its move/evaluate/decide 

task as soon as the move taken by its parent has been communicated. That is, since 

the new state of the parent has been communicated, a new move can be undertaken 

by the child processor without inducing a state conflict. This can be seen in Figure 

12 in the start of the move task on Node 2 relative to its parent on Node 1.

At high temperatures, the acceptance rate is nearly 1, so the tree will be heavy on 

the accept side. As the temperature decreases, the tree will become heavy on the reject 

side. In the complete binary tree, speedup is expected log2 N( the depth of tree) for N 

processors. However, by skewing the tree, a rough estimate of the speedup possible over 

all temperatures can be obtained by assuming a linear, symmetric acceptance probabil- 

ity/temperature curve. At each end of the temperature schedule, the tree depth is N, and 

at the mid-point of the temperature the tree depth is log2 N. So the average speedup will 

be (N + log2N)l2.

In numerical simulations, where Td = Tc , Tm = 2 ■ Td , Te = K ■ Tm, the speedup 

fall flat. In VLSI placement since tm »  te, the speedup is less than 2.5 on 30 processors. 

Interestingly, at low temperatures, the DTD algorithm is same to SSS algorithm. How­

ever, at high temperatures small evaluation/decision time savings can be achieved using 

the DTD algorithm.

C. ALTERED GENERATION ALGORITHM S

State generation can be modified to reduce inter-processor communication. These 

altered generation methods change the pattern of state space exploration, and thus change 

the solution quality and execution time.

1. Spatial Decomposition. In spatial decomposition techniques, state variables are 

distributed among the processors, and variable updates are transmitted between proces­

sors as new states are accepted if the proposed move does not conflict with another move.
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Since parallel moves are done synchronously, cost calculations are always correct. Spa­

tial decomposition techniques are typically implemented on message-passing multipro­

cessors.

a) Cooperating Processors (CP). Processors must carefully coordinate move gen­

eration to avoid conflicting moves for the correct cost calculation. A cooperating proces­

sor algorithm disjointly partitions state variables over the processors. A processor that 

generates a new state notifies other affected processors. Then those processors syn­

chronously evaluate and update the state.

[BrBa88] used this algorithm to minimize the number of routing channels for a 

VLSI circuit on the Intel iPSC/2. The basic idea of the algorithm is to start with the num­

ber of tracks equal to the channel density, assign sets of adjacent tracks to processors 

arranged in a linear reflected gray code fashion, selectively move nets in parallel between 

tracks of nodes which are paired up, and broadcast information to other nodes to update 

their data structures. Processors proceed in a lockstep communication pattern. At each 

step, all processors are divided into master-slave pairs. The master processor randomly 

decides among four move classes:

Intra-displace: each node of a pair performs a displacement move within its own set of

subnets and tracks.

Inter-displace: master node displaces a subnet from its track domain to a track within

the domain of the slave node.

Intra-exchange: each node of a pair performs an exchange move within its own set of 

subnets and tracks.

Inter-exchange: master and slave nodes each select a subnet to exchange each other.

Since the move generation is changed, the speedup cannot be calculated directly. 

Experiments indicate superlinear speedups, from 2.7 on 2 processors to 17.7 on 16
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processors. This results are from a near optimal initial state and at high temperatures, the 

Markov Chain length is too small to reach the equilibrium. So the near optimal initial 

state preserved to the final result. Since [BrBa88] restrict the move only to the neighbor 

processors, using a greater Markov Chain length than that of the sequential algorithm, the 

equilibrium condition is reached.

b) Independent Processors (IP). In the IP algorithm, processors must not generate 

moves that affect other processors’ state variables, that is, each processor generates state 

changes which affects only its own variables. To guarantee that the annealing algorithm 

searches the entire state space, state variable redistributions must be done periodically.

Figure 13. Rubber Band TSP Algorithm
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[AlCa89] used the IP algorithm for the traveling salesman problems. The initial 

random configuration is stretched out like a rubber band, and the number of cities are 

equally distributed among the processors. Each processor anneals its own paths by swap­

ping corresponding endpoints. After a fixed a number of tries in each processor, the total 

path length is computed, and a new temperature is chosen. After state variables are re­

distributed, above procedure is repeated.

In experiments, the 30 processors versus 2 processors speedup ranged from about 8 

for a 243 city TSP, to 9.5 for a 1203 city TSP. Speedup versus single processor is not 

reported. The IP algorithm is not applied in general. For example, in VLSI design, most 

cells are connected. So applying IP algorithm always causes cost error.

2. Shared State Space. Shared state-space algorithms make simultaneous, indepen­

dent moves on a shared-memory state-space. No cost-function errors can occur. 

[DaKi87] used this algorithm for optimizing gate-array placement by locking both 

affected cells and wires before move generation. However, changes in the state genera­

tion function caused poor convergence. In a shared memory simulation of the IBM RP3, 

the speedup is 7.1 for 16 processors, with poor results. 3

3. Systolic. [AaBo86a, AaBo86b] and [MeRo53] presented the systolic algorithm 

which relies on the property that simulated annealing brings a thermodynamic system 

toward the Boltzmann distribution.

The systolic annealing algorithm divides each Markov chain into a number of sub­

chains. The quasi-equilibrium is preserved by adjusting the intermediate results obtained 

for the subsequent Markov chain after each of its subchains. Suppose there are P proces­

sors and the chain length is N. We divide one chain into P subchains of length 

SL = LaVp J, Tkm the temperature for the mth subchain of the Markov chain Mk, and 

sk>ntti the z'th configuration vector of the subchain Mk m. At any PICK  node on processor
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Figure 14. Systolic Algorithms [AaBo86b]

p, we must decide between state s„_liPtSL computed by processor p at temperature Tn_u 

and state sn>p_ 1>SL computed by processor p -  1 at temperature Tn. We make the choice 

according to the Boltzmann distribution. The relative probability of picking sn_ltP>SL is

Po
1

z o r - i )
exp C ( s n-l.p ,sD  ~  C opt

Tn-i
(4-3)

and the relative probability of picking sniP̂ i<SL is

1  (  C ( s n,p-l,SL)  ~  C opt
p 1 = Z(Tn)

exp
V

(4-4)

Z{T) is the partition function over the state space

Z(T) = X  exp
se S V J

where S is the entire state space and Copl is the optimal cost.
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The PICK node then selects sn_Up>SL and s„tP.USL with probabilities

P(sn-l,p,SL)
P 0

Po + Pi
P ( s n,p~l,SL)

Pi
Po + Pi

(4-5)

The temperature decrement is defined as

T,k,m
k+1'm~ l n ( l +£ i1 4 . ______ 1 TO / 'T '  \  Kyfll3 <y{TKm)

(4-6)

where cr(TkM) is the standard deviation of the costs of subchain Mk<n

The important observation is that the partition function, Z, is not easily calculated 

and the optimal cost is generally unknown. The important requirement for convergence 

is that the annealing process must reach quasi-equilibrium at the end of the first subchain 

at each temperature. However, if the number of processors increases, the length of the 

subchain SL decreases. This leads to an incorrect standard deviation, so the temperature 

decrement is not correct.

[KiKi90] suggested the stepwise-overlapped parallel annealing algorithm(SOPA) for 

these problems. The Markov chains Mk_p and Mk are both assigned to the same proces­

sor. Thus before starting Markov chain Mk, the standard deviation d T k_p) of the Markov 

chain Mk_p is known. The new temperature for the Markov chain Mk is calculated as 

follows:

Tk = T*-x
ln(l + 5) 

+ 3<r(7\_p)
T

(4-7)

For the Markov chain Mk of 1 < k < P, o(Tk_p) is not available, so we use the standard 

deviation of the initial temperature, o0, instead. d T k_p) may be rather outdated informa­

tion with which to calculate Tk, but it is better than erroneous estimation of the standard 

deviation from the first subchain of Mk_i. SOPA introduced complex moves. Since both
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the optimal cost and partition function are generally unknown, the configuration choice in 

PICK node is done by the metropolis criteria. So the probabilistic choices of complex 

moves(picking the previous Markov chain configuration) are considered as simple 

moves.

The numerical results show that the quality of the final solutions improved as the 

number of processors increased. With 8 processors operating on a 15 x 15 uniform grid 

of cities, the systolic algorithm obtained a mean path-length of 230, at a speedup of about 

6.2, while the sequential algorithm obtained an average of about 228.5. An important 

tiling is that we can get speedups using SSS parallel algorithms only in the low tempera­

ture region with a low acceptance rate. However, the speedup of the Systolic algorithm is 

independent of the temperature, so the Systolic algorithm can be used over the entire tem­

perature range.

[AaBo86] developed the cluster algorithm, which is similar to the SSS algorithm. 

The basic idea underlying the cluster algorithm is to use all available processors for the 

generation of one Markov chain at a given temperature. In the cluster algorithm, a 

Markov chain is generated by using all available processors, in such a way that system 

perturbations, cost calculations, and acceptance decisions are done in parallel. System 

updates can only be done after each other and while an update is carried out, all proces­

sors are halted until the system is adapted to the new configuration. To achieve this, the 

procedures WAIT(s) and SIGNAL(s) are introduced, acting on the same semaphore s 

where s is the state variable.

With the cluster algorithm, speedups are achieved only in the low temperature 

region, as for the SSS algorithm. To increase the efficiency in the upper temperature 

region, similarly to the systolic algorithm, the concept of subchains is introduced. This 

modified systolic algorithm (the division algorithm) can be described as follows. Let N 

be the number of processors, L the length of a Markov chain, and l = f L/N~\ the length of



52

a sub-chain. In the division algorithm, independent processors copy the current state, 

then complete a stream of moves at the same temperature. The PICK operation chooses 

among the results, like the complex moves in [KiKi90]. The division algorithm has a lin­

ear speedup. However, in the lower temperature region, the deviation from the tempera­

ture region becomes prohibitive, so this algorithm is not suited for the lower region. This 

is due to the fact that the sub-chain length is too short to enable the process to restore 

quasi-equilibrium.

D. ASYNCHRONOUS ALGORITHMS

Asynchronous algorithms use a method related to chaotic relaxation, since proces­

sors operate on outdated information. Since simulated annealing randomly selects hill­

climbing moves, it can tolerate some errors. Under the right conditions, annealing algo­

rithms can evaluate the cost using old state information, but still converge to a reasonable 

solution. So it is important to find an upper bound on the cost error at a particular tem­

perature to maximize a speedup in the parallel implementation.

1. Asynchronous Spatial Decomposition. Asynchronous spatial decomposition 

methods partition state variables across different processors. However, in asynchronous 

algorithms, each processor also maintains read-only copies of state variables from other 

partitions. When a processor evaluates a new state, it uses only local copies of state vari­

ables.

a) Clustered Decomposition (CD). [CaRo87] presented a clustered decomposition 

algorithm, which divided state variables (macro cells) equally among the processors, 

while putting dependent variables (adjacent or connected macro-cells) on the same pro­

cessor. The macro-cell placement problem has been implemented on the Sequent Bal­

ance 8000, a multiprocessor system with a shared memory architecture. Utilization is 

greater than 80 percent using up to 8 processors. This algorithm used overlap method.
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No advantage can be obtained by restricting the configuration space to the set of feasible 

solutions. And more, simply checking that a cell is moved to an empty spot is at least as 

time consuming as computing the overlap for the cell.

In addition, the Timber-Wolf package has shown that the quality of the final solu­

tion, as well as the speed with which convergence is reached, improved if intermediate 

overlaps are allowed. This algorithm used a clustering method. If cells are assigned 

which are neighbors to the same processor, the probability of generating a move that will 

bring two cells to overlap because of an error in the cost calculation should be low. This 

algorithm partitions the moves among the processors by partitioning the set of cells to be 

placed on the P processors with nearly equal cells. For each processor p, we compute 

the center of gravity Xp of the cluster Cp

Xp = £  x(c)A(c) (4-8)
L  A ( c )  ceCp 

ce Cp

And the moment of inertia

r p = X  Ix(c) -  X / A ( c ) (4-9)
ce Cp

where x(c) is the center of cell c and A(c) its area.

The cluster cost is then defined as

p
cluster cost = wcc x X  r,- (4-10)

i=i

where wcc is a nonnegative user defined weight. If a cell is passed by a processor to 

another one that owns cells which are close to this cell, then the cluster cost decreases 

because the moment of inertia of the system also decreases. The cluster method is pro­

posed as a mechanism to reduce the risk of error at low temperature.
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b) Rectangular Decomposition (RD). [GrDa89] presented a simpler approach, rect­

angular decomposition, which divides the grid of a VLSI placement problem into disjoint 

rectangles, then shifts the boundaries after each stream. At low temperatures, interdepen­

dent state variables typically share a rectangle. This algorithm is implemented on the 

simulated RP3 environment.

For sharp, minimum width is 2 System randomly selects horizontal 
slice for spare processors.

Sharp and Sharpthin configurations with 8 processors.

Fuzzy (edges are ±1 from sharp) Proportional (only origin moves) 

Figure 15. Rectangular Decomposition Schemes [GrDa89]
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Four different variants were tried, proportional, sharp random, sharpthin random and 

fuzzy random (Figure 15). Proportional rectangles method divides the layout into equally 

sized rectangles, roughly proportional to the overall layout size. Then we randomly 

select the origin for this grid. The sharp random rectangles method divides the grid into 

rectangles with a minimum width and height of 2. The sharpthin random rectangles 

method is similar to the sharp random method, except that the minimum width and height 

is 1. The fuzzy random rectangles method is also similar to the sharp random method, 

except that the borders are fuzzy. All rectangular decomposition schemes produced small 

errors and converged close to the minimum. Among the 4 methods, as the number of 

processors increased, the sharp random rectangles method produced the best result. 

However, the speedup was not reported.

2. Asynchronous Shared State-Space. [DaKi87] investigated modifications of the 

standard annealing method for circuit placement using simulated shared memory. Each 

processor randomly picks two chips, sets a flag so that no other processor can move either 

of these two chips, and attempts to exchange their positions.

Three methods were implemented. Method A locks both the chips considered for 

interchange and all the nets that involve these two chips. In Method B l, only the chips 

considered for a move are locked, and the correct histograms of wires, and therefore the 

cost, are recalculated after all trials at a given temperature are completed. However, 

Method B2 does not correct the histograms and cost at each temperature.

In comparing the speedups for Method A and both Methods B as the number of pro­

cessors increased, the efficiency of Method A dropped faster than that of either of the 

Method B’s. Method B2 yielded superlinear speedups in 2 and 4 processors while the 

results diverged due to cumulative error. Method Bl gave a comparable quality of 

results. Method Bl employed a maximum number of chips with efficiencies about 80%.
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E. CONCLUSION

Table II summarizes the various parallel algorithms. In general, speedup is greater 

using distributed memory than using shared memory. Also the distributed memory 

scheme does not have the scale problem.

Speedups of the Parallel Algorithms

Algorithm Memory "type Speedups

FD [KrRu87] shared not more than 10

SSS [RoDr90] distributed l/a(T), where a(T) is the acceptance rate

DTD [ChEd88] distributed (N + N log2 N)/2 for N  processors

CP [BrBa88] distributed 17.7 on 16 processors (super-linear sppedups)

IP [Gree90J ? 9.5 for 1203 city TSP (30 vs. 2 processors)

Shared state space shared 7.1 on 16 processors [DaKi87]

Systolic [KiKi90] shared 6.2 on 8 processors

CD [CaRo87] shared 80% utilization on 8 processors

RD [GrDa90] distributed ?

Table II. Comparison of Parallel Algorithms
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V. GENERAL CONCEPTS OF COST ERROR

To make annealing run faster, parallel processing is a logical candidate. The main 

difficulty is the maintenance of the global state S of the annealing process. This is further 

complicated by the desirability of using distributed memory multiprocessors or multi­

computers which have no single global picture of the state.

The simulated annealing algorithm can be looked upon as a random iterative 

improvement algorithm, with a certain probability of making mistakes by accepting hill 

climbing moves that increase the cost to get out of the local minima. Since simulated 

annealing randomly selects hill climbing moves, it can tolerate some cost errors. Thus, 

an approximate calculation, instead of an exact calculation, which uses old state informa­

tion from other nodes can be used to evaluate the cost function. This modified procedure 

is an asynchronous algorithm, whereas, a straightforward implementation of parallel sim­

ulated annealing is strictly synchronous (and sequential!).

Under the proper conditions, annealing algorithms can evaluate the cost using old 

state information, and still converge to a reasonable solution. So it is important to find an 

upper bound on the cost error at a particular temperature to maximize speedups in the 

parallel implementation. Herein these two algorithms will be differentiated as Sequential 

Simulated Annealing (even for a parallel version since the sequence of state updates is 

the same as for a sequential version) for the former and Error-Present Simulated Anneal­

ing for the latter.

Cost error tolerance plays a useful role in multiprocessing. When processors inde­

pendently operate on different parts of the problem, they need not synchronously update 

other processors. A processor can save several changes, and then send a single block to 

the other processors. Asynchronous algorithms require a minimum of synchronization. 

However, at low temperatures, the cost error may degrade the final result unless corrected
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by a later move. So, simulated annealing does not have an unlimited tolerance for cost 

error.

Section V.A explains how a cost error can occur in multicomputers. Section Y.B 

defines the traditional error measurement method and discusses previous work on cost- 

error-tolerant schemes. In Section V.C, three interesting phenomena of the cost error- 

present algorithm and shortcomings of the traditional error measurement method are dis­

cussed. The analysis is applied to the composite stock cutting problem using a simulated 

annealing algorithm which features asynchronous parallel spatial decomposition on the 

stock sheet.

A. OCCURRENCE OF COST ERROR

Figure 16. Errors Can Cause Annealing Failure [Gree89]

Consider a system with two state variables x  and y and also some state 

s = < x ,y  > e S  (Figure 16). Let the cost function be f ( x  + y). Now put x and y on two
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separate processors. Each processor proposes a move: processor 0 generates x x -  1, 

while processor 1 generates y <— y — 1. In both cases, the cost change, AC < 0, so each 

move will be accepted. However, the cost function error causes the state to jump to a 

high local minimum. At low temperatures, the annealing algorithm probably will not 

escape this local minimum trap.

B. PREVIOUS W ORK ON ERROR TOLERANCE

[JaDa88] describes the characteristics of cost errors at different temperatures. The 

error in the cost function is defined to be the difference between the real change in cost 

from initial to final states and the estimated change in cost, which is equal to the sum of 

the changes in cost(AQ for processor i) at each processor.

Definition 5-1: The cost error (AE) is defined as the difference between the actual (real) 

cost change and the estimated (measured) cost change. That is, due to the local copy of 

the out-dated information, the actual cost change calculation may be different from the 

estimated cost change.

A£ = ACfl -  ACe = (Ca/ -  Cai) ~ £  AC, (5-1)
i=i

where ACa is the actual cost change, ACe is the estimated cost change. Caj  is the actual 

final cost and Cai is the actual initial cost. AC) is the estimated cost change in processor 

i, and P is the total number of processors.

This cost error measurement scheme will be referred as the traditional error mea­

surement scheme. There are shortcomings in this traditional error measurement scheme. 

These are discussed in the next sub-section V.C.

Definition 5-2: An optimistic error occurs when the cost error (AE) is positive from 

Definition 5-1, i.e. the estimated cost change (ACe) is less than the actual cost change 

(A CJ, ACfl > ACe > 0. Since the Metropolis criterion (equation 2-2) is used for the cost
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A C , A  Cg
changes, e t  >  e~ t  , the acceptance ratio is increased in the case of an optimistic 

error. In other words, the candidate move is accepted while this move may be rejected in

AC, AC„
sequential (error-free) simulated annealing since e t > e t . This kind of error is 

called an optimistic error and this move an optimistic move.

Definition 5-3: A pessimistic error occurs when the cost error (AE) is negative, i.e. the 

actual cost change is less than the estimated cost change, ACe > ACa > 0. This being the 

reverse case of an optimistic error, the acceptance ratio is decreased in the case of a pes­

simistic error.

Definition 5-4: The stream length, s, is defined as the number of continuous moves 

before the global update where all local informations are broadcast and updated.

[JaDa88] observed that the average cost error in the high temperature region 

increases with an increase in the stream length. However, the average cost error reduces 

and finally drops to 0 in the low temperature region because in the low temperature 

region, the acceptance ratio of moves is small and consequently, there are very few inter­

acting moves causing cost errors.

[Grov86] presents a cost-error-tolerant scheme based on the analogy with statistical 

mechanics to show that cost errors which are much smaller than the temperature do not 

change the results of the algorithm. In statistical mechanics, all macroscopic properties 

of a material can be derived from the partition function z, which is defined as the sum of

the Boltzman factors over all possible states, z = X  exP(— ~zr)- With this method, the
ieS T

maximum stream length in a fixed temperature can be probabilistically predicted based 

on the expected magnitude of a cost error.

[BaJo90] suggest an adaptive stream length control. The goal is to find an upper 

bound on the maximum permissible cost error at a particular temperature. By adjusting
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the stream length dynamically, the average cost error can be limited to a specific range. 

This method is based on the move acceptance curve in which the acceptance ratio P is 

given by:

P = Prob[move accepted I AC > 0] • Prob[AC > 0]

+ Prob[movt accepted I AC < 0] • Prob[AC < 0] (5-2)

where AC is the proposed cost change. By considering the induced cost error and the 

Metropolis criteria, the acceptance ratio with cost error can be rewritten as

p E = e-<̂ ±EVT . pwb[a c  > o ] + Prob[AC < 0] (5-3)

where E is the total amount of cost error at a fixed temperature.

If the acceptance ratio with cost error (PE) is held to within 5 percent of a normal 

distribution, a pessimistic cost error bound JB+ and an optimistic cost error bound 2L are 

approximated as follows:

B + < -T  ■ ln(l -  0.05) = 7720

B. < T- ln(l + 0.05) = 7721 (5-4)

If the average cost error after a stream length is higher than (7721), the stream length is 

reduced commensurate with that excess. If average cost error is lower than (7742), the 

stream length is increased slowly. A 5 percent deviation in composite acceptance is set 

experimentally to maintain convergence.

C. ANALYSIS O F COST ERROR

There are two different types of cost errors: Temporary errors and cumulative errors 

[Dura89]. Temporary errors occur when two processors simultaneously consider inter­

acting moves. For example, in the stock cutting problem, if two processors attempt to 

move an object simultaneously to the same location which is empty, the objects will over­

lap. If the processors investigate the overlap of the moved objects after each move, the
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system gets a single, consistent and correct state. Cumulative errors develop when local 

state information used to compute the cost becomes increasingly out of date as the 

annealing process continues. In the stock cutting problem, the affinity relation cost 

becomes incorrect as the stream length increases, because as the stream length increases, 

the local information gets out-dated. [Dura89] observes that a temporary error has only a 

minor affect on the convergence of simulated annealing, while a cumulative error appears 

to have a strong affect on convergence.

When a cost error affects the annealing process, there are some interesting phenom­

ena. First, from Definition 5-1, [JaDa88] and [CaRo87] say that the cost error is mostly 

negative and the absolute value of the cost error is large at high temperatures, but goes to 

zero as the temperature decreases. The ratio of accepted versus attempted moves tends to 

be very small at low temperatures, even if the range limiter tries to keep it large. With 

very few moves accepted, the probability of accepting parallel moves is also very small. 

Furthermore, even if moves generated in parallel are actually accepted, they are range- 

limited, so that the error cannot be arbitrarily large at low temperatures.

In the stock cutting problem, Figure 17 indicates that the cost error measured by the 

traditional scheme (Definition 5-1) is not mostly negative. However, the cost error only 

for the accepted hill climbing moves is mostly negative. Figure 18 indicates that the 

absolute value of the average cost error of pessimistic moves and that of optimistic moves 

are almost the same in the high temperature region. However, the absolute value of the 

average cost error of pessimistic moves is a little smaller than that of optimistic moves in 

the critical and the low temperature regions. Figure 19 shows that the number of 

accepted pessimistic moves is greater than that of accepted optimistic moves. From 

above figures (Figure 18 and 19), it is expected that the total pessimistic cost error is 

greater than the total optimistic cost error. This corresponds to Figure 17.
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Figure 17. Total Cost Error for All Accepted Hill Climbing Moves (Stream length is 125) 

(• • •: AE for all accepted moves, —: AE only for the accepted hill climbing moves)

Secondly, when a cost error is present, [R0BI86] states that the average acceptance 

ratio increases in the low temperature region as the number of processors increases. This 

is due to the misinformation causing some moves that would not have been made in 

sequential simulated annealing. Further moves are then necessary to make up for these 

"wrong" moves, thus increasing the acceptance ratio. In the stock cutting problem, Fig­

ure 20 depicts the acceptance ratio of hill climbing moves. The acceptance ratios of the 

optimistic and pessimistic hill climbing moves are almost same. So from Figure 19 and 

20, it can be expected that the pessimistic hill climbing moves occur more frequently than 

the optimistic moves. This can be explained by noting that the hill climbing move tends 

to be estimated higher than the actual cost by using the out-of-date local information.
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Average 
Cost Error

Figure 18. Average Cost Error for One Accepted Hill Climbing Move (Stream length is 125) 

(• • •: I < AE > 1 for optimistic moves, — : I < AE > I for pessimistic moves)

Number
of

Accepted Moves

Figure 19. Total Number of Accepted Hill Climbing Moves (Stream length: 125) 

(• • • : for optimistic moves, —  : for pessimistic moves)
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The acceptance ratio of the error-present algorithm is smaller than that of the 

sequential simulated annealing algorithm, because a pessimistic move occurs more fre­

quently than a optimistic move and a pessimistic move decreases the acceptance ratio. In 

the critical (middle) temperature region, a decreasing number of hill climbing moves 

occurs. Since only hill climbing moves affect the acceptance ratio, the acceptance ratios 

of the error-present algorithm and the sequential simulated annealing algorithm are nearly 

the same. In the low temperature region, most accepted moves have negative cost 

change. However, with incomplete information, some moves are accepted, which would 

not have been accepted in the sequential simulated annealing algorithm. So the accep­

tance ratio of the error-present algorithm is increased slightly (Figure 21).

The third phenomenon in the presence of cost error is the reduced fluctuation of the 

average change in cost as a function of temperature(< AC > vs. T) at high and intermedi­

ate temperature regions [DaPfS7]. Since pessimistic moves occur more frequently, the 

fluctuations in cost are reduced in the high temperature region. So the system is likely to 

be kept in the high local minimum. The average cost using the error-present algorithm is 

less than that of sequential simulated annealing algorithm because the hill climbing 

moves are rejected more frequently in the error-present algorithm (Figure 22).

Figures 17 through 21 are drawn from the stock cutting of 16 irregular patterns in 4 

processors. The Markov Chain length is 500, and temperature decrement ratio is 0.98.

There are shortcomings in the traditional cost error measurement scheme (Definition 

5-1). Since there is no way to calculate the actual cost without global information, the 

traditional error measurement scheme is to calculate the cost error after a global update as 

a difference between the actual cost change(ACfl) and the estimated cost change(ACe) 

using Definition 5-1. However, this method has inherent problems.

This method counts only the accepted moves, i.e. if the candidate move is a pes­

simistic hill climbing move, ACe > ACa > 0, and this move is rejected, this move may be
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Acceptance
Ratio

Figure 20. Acceptance Ratio of Hill Climbing Moves (Stream length: 125) 

(• • •: for optimistic moves, —  : for pessimistic moves)

Acceptance
Ratio

Figure 21. Acceptance Ratio of All Moves
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Figure 22. Flutuations of Cost 

(• • •: sequential annealing, — : stream length is 125)

A C , a  c a
accepted in sequential simulated annealing because e t  <  e  t  . This kind of cost 

error cannot be included with this method. In other words, this method cannot calculate 

the cost error of rejected moves.

The second problem is that when both the actual cost change(AC^) and the esti­

mated cost change(A Ce) are negative, regardless of the cost error, the candidate move is 

accepted. However, the difference in cost, ACa -  ACe, is added to the total amount of 

cost error, even though the acceptance of the move is correct, i.e. there is no error in the 

move decision.

Finally, the optimistic error (ACa > ACe > 0) and the pessimistic error 

(ACe > ACa > 0) are compensated during a stream length. Only the rough average error
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can be conjectured. So this traditional error measurement scheme can be used only quali­

tatively. It indicates us at which temperature large cost errors occur.

These three problems are corrected by a new cost error measurement scheme, with 

some assumptions (see Section VI).
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VI. A NEW ERROR TOLERANCE METHOD

In this section, a new cost error measurement scheme is presented. Using the mea­

sured amount of cost error, an optimal stream length is derived based on the hill climbing 

nature of simulated annealing. Bounds on the cost error are proved analytically to be a 

function of global update frequency, or stream length s. Erroneous move decisions due to 

the cost error (AE) will be proved to be exponentially distributed with respect to fixed 

temperature (T > 0). With this known distribution, the probability of an erroneous move 

decision and the amount of cost error due to the erroneous move decision can be deter­

mined in s parallel moves without global updating, or in stream length

Figure 22 shows one possible interpretation that as the stream length increases, the 

hill climbing power decreases since the fluctuations in cost reduce in the error-present 

annealing process. The decreased hill climbing power can be compensated for by an 

increased additional Markov chain length. That is, the additional move generations pro­

vide a greater chance of a hill climbing move. Since the cost error increases as the stream 

length increases, the optimal stream length and the additional Markov chain length are 

proportional to keep the convergence as in sequential (error-free) annealing process 

because as the stream length increases the cost error increases too. When the stream 

length is fixed, the generated cost error must be tolerated by changing the additional 

Markov chain length dynamically.

Meanwhile, when the additional Markov chain length is fixed, the tolerable amount 

of the cost error, bounds of the cost error, is fixed, so the stream length is varied accord­

ing to the bounds of the cost error. With the increment of the Markov chain length, the 

annealing process converges to the good results with a reasonable speedups. Since the 

additional Markov chain length is fixed in the experiment, the amount of cost error must 

be controlled by increasing or decreasing the stream length. By adjusting the global
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update frequency, the convergence property is maintained with the same degree as in the 

sequential annealing process.

Here the distribution of the move acceptance and the erroneous move decision are 

defined.

Theorem 6-1: The acceptance move decision is exponentially distributed with respect to 

the parameter T > 0.

Pro6[Move accepted with cost change [0, AC] ]

_ A C 
= 1 - e  t

Proof. Define the continuous random variable X to be a function which associates a posi­

tive real number, the hill climbing cost change (AC) with each possible outcome of an

AC

accepted move decision. The probability of move acceptance is e~  t when the cost

_ A C
change is (AC, oo). So the cumulative distribution of move acceptance is 1 -  e  t  when 

the cost change is [0, AC], which is the exponential cumulative distribution function.

Prob[X < AC]

= 1 -  Prob[X > AC]

= 1 -  Prob[Move accepted with cost change AC]

A C

=  1 -  e  t

So the continuous random variable X  has an exponential distribution with respect to the 

parameter T > 0. □
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Since the estimated and actual cost changes are different, erroneous moves can 

result. Consider two possible cost changes, AC, and AC2 where AC] > AC2 where it is 

not known which is the actual and which is the estimated cost change. If a move is 

accepted with a smaller cost change, ACj, while the move is rejected with the larger cost 

change, AC2, then an erroneous move of error, A E = A C2 -  AC], has occurred.

Theorem 6-2: The erroneous move decision is exponentially distributed with respect to 

the parameter T > 0, given that the candidate move is accepted with smaller cost change, 

ACj, between the actual and the estimated cost changes.

Pro&[The erroneous move decision with cost error [0, AC] ]

= /Yofr[Move rejected with cost change AC2

I Move accepted with cost change ACj]

AE

= 1 -  e t

Proof: Define a continuous random variable yAC] to be a function which associates a 

positive real number, the cost error of the hill climbing move (AC), with each possible 

outcome of the erroneous move decision. Consider two cost change values ACj and AC2 

with AC2 > ACj. Then AC = AC2 -  ACj. The erroneous move decision is the event that 

the candidate move with the smaller cost change, AC,, is accepted, while the candidate 

move with the larger cost change, AC2, is rejected. The random variable yACl represents 

the excess life of the move acceptance, i.e. yACl = SN{AC[)+1 -  Cu where N(AC) is the 

number of acceptances with cost change [0, AC], and Sn is the sum of the cost change 

when the move is accepted n times. 5 is the sum of the random variable X  in Theorem 

6-1. So, yACl represents how long the acceptance move decision is maintained given that 

the candidate move with the smaller cost change, AC,, is accepted. In other words, 

Sn(AC\)+i is the cost change of the move rejection given that the candidate move v/ith cost
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change AC, is accepted.

Prob[ytC] £ AE] = Prob[S N̂ Clw  ~ AC, ^  AS]

= Prob[SN{AĈ x < AE + AC,]

(from V(C) Z n <=> S„ < C.)

= Prob[N(AE + ACX) Z N(ACX) + 1]

= / ,ro6[7/(A£ +ACj) -  N(ACX) > 1]

= 1 -  Prob[N(AE + AC,) -  N(ACX) < 0]

= 1 -  Prob[N(AE + ACx)-N (A C x) = 0]

(Since the number of rejections is non-negative.)

= 1 -  Prob[N{AE) = 0]

(From the memoryless property of 

exponential distribution. (Theorem 6-1))

A£
= 1 -  e t . □

In Section VI.A, the move decisions are classified according to the actual cost 

change (ACa) and the estimated cost change (ACe) and the probability of the erroneous 

move decision is calculated from Theorem 6-2 by a case-by-case analysis. In Section 

VI.B, the amount of cost error is measured probabilistically regardless of whether the 

move is accepted or rejected. This cost error measurement method is unlike the tradi­

tional cost error measurement scheme (Definition 5-1). This method includes the cost 

error due to rejected moves. In Section VI.C, since cost error can be tolerated by hill 

climbing moves, the measured amount of cost error is used to derive the optimal stream 

length.
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A. CASE-BY-CASE STUDY OF ERROR MODEL

There are 4 possible cost change cases (Case 6-1 through Case 6-4) each with 4 pos­

sible sub-cases, that is:

1) A move is accepted based on an estimated cost change and also based on an actual 

cost change.

2) A move is accepted based on an estimated cost change, however will be rejected 

based on an actual cost change.

3) A move is rejected based on an estimated cost change, yet will be accepted based on 

an actual cost change.

4) A move is rejected based on an estimated cost change and also based on an actual 

cost change.

In sub-cases 1) and 4), the move decision is correct regardless of the cost error used. 

However, in sub-cases 2) and 3), an erroneous move decision occurs due to the cost error.

Since the actual cost change cannot be calculated at run time, the estimated cost 

change is used in an acceptance decision using the Metropolis criteria (equation 2-2).

Case 6-1: ACe > A Ca > 0 (Pessimistic move)

The first case is that the actual cost change (ACa) and the estimated cost change 

(ACe) for one move are positive and the estimated cost change is greater than or equal to 

the actual cost change.

Define one move error AEx = ACe -  ACa, where A£] > 0

1) The move is accepted with the estimated cost change A Ce , where the probability of

, AC.
a move acceptance is exp(--------) .

T
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1-1) This move will be accepted with the actual cost change A Ca as well because 

the probability of a move acceptance with the actual cost change is greater than 

or equal to the probability of a move acceptance with the estimated cost

change, i.e. exp
(  ACe\

< exp (  A O . So the move decision is correct

regardless of the cost error.

2) The move is rejected with the estimated cost change A Ce , where the probability of a

AC.
move rejection is 1 -  exp(— — ).

2-1) This move can be accepted with the actual cost change A Ca with a probability 

P  j, where

P] = Prcb[Move accepted with ACn P i  Move rejected with A C J 

= Prob[Move rejected with ACJMove accepted with A C J •

Prob[Mov& accepted with A C J 

= Prob[The erroneous move decision with cost error A £ J  •

[Move accepted with ACe -  A £ J

f  AC j \  AC'-AE,

l - e  t \. e t from Theorem 6-2

= e t
ACe f  AE\ \

e t -  l

2-2) When this move is rejected with the actual cost change ACU, there is no erro­

neous move decision.

Case 6-2: A Ca > ACe > 0 (Optimistic move)

The second case is that the actual cost change and the estimated cost change for
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one move are positive, however the actual cost change is greater than or equal to the esti­

mated cost change.

We define one move error AE2 = ACa -  AC„ where AE2 > 0

1) The move is accepted with the estimated cost change AC, , where the probability of

a move acceptance is exp(- )•

1-1) If this move is accepted with the actual cost change ACa, then there is no error.

1-2) This move can be rejected with the actual cost change ACa with probability P2, 

where

P2 = Prob[move accepted with AC, P i move rejected with A C J 

= Pro/?[Move rejected with ACa I Move accepted with A C J •

Prob[Move accepted with A C J 

= Prob[The erroneous move decision with cost error A £2] •

Pro/JM ove accepted with A C J

ACe (  \

- e  t l - e  t from Theorem 6-2

2) The move is rejected with the estimated cost change ACe .

2-1) This move will be rejected with the actual cost change A Ca as well because 

ACa > ACe. So there is no erroneous move decision.

Case 6-3: (AC, > 0 P  ACfl < 0) U  (ACfl > 0 p  AC, < 0)

In Case 6-3, the cost error is greater than the absolute value of the estimated cost 

change, so the signs of the estimated and actual cost changes are different. Computing 

these two probabilities is somewhat complex, thus any error control scheme will be
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complex. These two cases happen rarely since the cost error is much smaller than the 

cost change in real experiments. Thus, the occurrence of these events is ignored.

Case 6-4: ACe < 0 U  ACa < 0

In Case 6-4, a move will be always accepted and there is no cost error, since the 

decision of move is correct, i.e. move is accepted also with the actual cost change ACa.

The summary of the above cases are in Table III, where AE is the amount of the cost

error.

Pessimistic Move(ACe > ACn) Optimistic move(ACfl > ACa)

Move acc w/ ACe rej w/ A Ce acc w/ A Ce rej w/ A Ce

acc w / ACfl 0
A Ce /  A E \

e t  ■ e r - 1
V )

0 -

rej w/ ACfl - 0
AC„ f  A E \

e t ■ l - e t
v )

0

Table III, Probability of the Cost Error in a Hill Climbing Move

B. NEW  COST ERRO R M EASUREM ENT SCHEM E

In the new cost error measurement scheme, the total amount of cost error is calcu­

lated throughout a given stream length, 5. Unlike previous methods (Section V.B) which 

ignore cost errors from rejected moves and find the optimal stream length heuristically,
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this new method calculates the cost error analytically based on the results in the previous 

section.

Lemma 6-1: The actual cost change (ACa) is represented as the sum of the estimated cost 

change (ACe) and the cost error throughout an iteration i.

ACa = ACe ± AE

= A Ce ± / • a  • I < E > I

Proof: AE is the total amount of cost error throughout a fixed stream length, s. The abso­

lute value of the average error (I < E > I) is calculated when one move is accepted. For 

example, one move is accepted in Processor P, and the Processor P2 does not know that. 

Then the absolute value of the average cost error I < E > I can be calculated when the 

Processor P2 tries the move generation. The cost error AE throughout an iteration i, can 

be represented as an average error (I < E > I) times the total number of accepted moves 

throughout an iteration i. The total number of accepted moves is the acceptance ratio (a) 

times the iteration So AE = i ■ a  • I < E > I. □

Since a cost error occurs only with a positive cost change in this analysis, to calcu­

late the cost error, it is necessary to compute a probability for the conditions of Case 6-1 

and Case 6-2.

Theorem 6-3: Prob[ACe > ACa > 0] + Prob[ACa > ACe > 0] = Prob[ACe > 0]

Proof:

Prob[ACe > ACfl > 0]

= Prob[ACe > ACa I ACe > 0, ACfl > 0] • Prob[ACe > 0, ACa > 0]

= Prob[ACe > AC,, I ACe > 0, ACfl > 0] • Prob[ACa > 0 I ACe > 0]

• Prob[ACe > 0]
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= Prob[ACe £ ACfl I ACe > 0] • Prob[ACe > 0].

Since Prob[ACa > 0 I ACe > 0] = 1, from the assumption that the cost error is not 

greater than the absolute value of the estimated cost change, i.e. the estimated cost 

change and the actual cost change have the same signs.

Similarly,

Prob[ACa 2> ACe > 0] = Prob[ACa > ACe I ACe > 0] • Prob[ACe > 0]

So

Prob[ACe > AC,, > 0] + Prob[ACa > ACe > 0]

= Prob[ACe > AC,, I ACe > 0] • Prob[ACe > 0] +

Prob[ACa > ACe I ACe > 0] • Prob[ACe > 0]

= Prob[ACe > 0 ] □

The next task is to estimate the Prob[ACe > 0]. Since Prob[ACe > 0] is a function 

of state configuration, i.e. in a maximum cost, Prob[ACe > 0] is zero in a move genera­

tion, while in a local minimum cost, Prob[ACe > 0] is one in a move generation.

Lem m a 6-2: The probability of positive estimated cost change is

Hi ^ { A C ,( i J ) > 0 ) ( 0

Prob[ACe > 0] = —----——--------  , for any state i
N(i)

Proof: State j  is any neighbor of state i. ACe(i, j ) is the estimated cost change of a move 

from state i to state j. N(i) is the number of neighbor states from state i. The proof is 

obvious by using the specified indicator, /.□

Since N(i) and ACe(i, j ) are not known in advance, it is difficult to estimate the 

Prob[ACe > 0]. However, during the running of the algorithm, the estimated cost change
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can be calculated. So only when the estimated cost change is greater than zero, the total 

probability of cost error (PT) is counted.

When the probability of optimistic and pessimistic errors is defined, the estimated 

cost change (ACe) and cost error (AE) are fixed, i.e. the optimistic and pessimistic cost 

errors are the same (Figure 18) and the actual cost change is calculated from the prede­

fined estimated cost change and cost error (Lemma 6-1).

Definition 6-1: The probability of optimistic cost error

A  c e f  AE \
Popt = Prob{ACa > ACe > 0] • e t ■ e t - 1

l  J

Definition 6-2: The probability of pessimistic cost error 

Ppes = Prob[ACe > ACa > 0]
ACt N > X

e  t  . e  t - 1
V )

In Section V.C, it is shown that the total pessimistic cost error are greater than the 

total optimistic cost error. This can be explained by the next theorem with some assump­

tions.

Theorem 6-4: The probability of a pessimistic cost error is greater than that of an opti­

mistic cost error with the following four assumptions.

1. The cost error (AE) is less than the estimated cost change in the hill climbing move.

2. The amount of the pessimistic and optimistic cost error are same, AEx = AE2 from 

Case 6-1 and 6-2.

3. Only measure the estimated cost change is measured and the actual cost change can 

be expected, or calculated, by the estimated cost change using Lemma 6-1.
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4. The probabilities of the pessimistic move and the optimistic move are same in the 

hill climbing move generation, i.e. Prob[ACa > ACe > 0] = Prob[ACe ACa > 0].

Proof: With assumption 4, and Definition 6-1, 6-2, it is obvious that the probability of a 

pessimistic cost error is greater than that of an optimistic cost error. So a large pes­

simistic cost error is more likely to be accepted than an optimistic cost error. □

The probability of optimistic cost error (Popt) is always in [0,1] from Definition 6-1. 

The probability of pessimistic error (Ppes) must be checked to be in [0, 1], Pessimistic 

errors only happen in Case 6-1.

So, ACe > ACa > 0

=> ACe ^  ACfl , AC,, > 0 

=> ACe > ACe -  AE , ACe~ A E > 0  

=❖  AE > 0 , AE < ACe 

=> ACe > AE > 0

=J> 1 > Ppes > 0 from Definition 6-2

So the range of the probability of pessimistic error is well defined.

Theorem  6-5: Since a cost error occurs only in a positive cost change, the total probabil­

ity of cost error, PT, is given by

AC, f  AE \
PT = Prob[ACe > 0] • e t ■ e t - 1

v

Proof:

P  T ~  P  pes +  Popt

= Prob[Ce > AC,, > 0]
AC, f  AE \

e t ■ e t - 1
\  /

+
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AC, (  AE \
Prob[ACa ;> ACe > 0] • e t .

AC, f  AE \
<. ( Prob[ACe > ACa > 0] + Prob[ACa > ACe > 0 ])  • e t ■ e t -  1

V  J

_  (AE \
= Prob[ACe > 0] • e t 

Now the cost error can be determined using the probability of cost error (PT).

ACc f AE \
• e -1 -  1

V )

Theorem  6-6 : The amount of cost error in the hill climbing move (ACe > 0) is

AC, f  AE \
E = ACe e t - U r  -  1

Proof: Since Prob[ACe > 0] = 1, the probability of cost error in the hill climbing move is 

given by

AC, r AE \
PT = e t e t - 1 From Theorem 6-5

V

So,

E = ACe ■ PT

= A Ce -e t
AC, ( AE \

e t -  1 
V )

given that ACe > 0

[Dura89] say that some problems or algorithms [JaRu87] are more resistant to the 

cost error than the others [RoK190, R0BI86]. This robustness to the cost error can be 

explained by Theorem 6-7.
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Theorem  6-7: The total amount of the cost error (E) depends on the portion of the cost 

error (AE or i • a  • I < E > I) in the estimated cost (ACe).

Proof. The cost function is made up of the cost-error-dcpendent terms which result in the 

cost error in calculating the cost function and the cost-error-independent term which do 

not result in the cost error. For example, in t h e  composite stock cutting problem, the 

cluster term and the overlap penalty term are the cost-error-independent terms, while the 

affinity relation term is the cost-error-dependent term (Section VII.C). From Theorem 

6-6, when the cost error, AE, has only a small portion of the estimated cost error, ACe, 

i.e. AE «  ACe, the total probability of the cost error goes to 0,

AC, f  AE \

E «  e t ■ e t -  1
V )

ACr-A E  AC,

= e r ~  -  e~~f

Since ACe > AE > 0 in the hill climbing move, the total amount of cost error (E) is 

always positive. So robustness to the cost error depends on the portion of the cost error 

(AE) in the estimated cost (ACe). □

It was shown that the traditional cost error measurement scheme (Definition 5-1) has 

three shortcomings (Section V.C). These three shortcomings of the traditional method are 

corrected with the assumption in Theorem 6-4. The shortcomings are corrected as fol­

lowings. First, the new cost error measurement method includes the cost error of the 

rejected moves (Definition 6-2 and Theorem 6-5). Second, this method does not include 

the cost error of the negative cost change moves, because the move decision is always 

correct regardless of the cost error used. Finally, there is no compensated cost error 

between the pessimistic and optimistic cost errors because this method adds the the prob­

abilities of the pessimistic and optimistic cost error (Theorem 6-5).
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C. MAXIMUM BOUND OF TOLERABLE ERROR

In this section, the optimal stream length is derived for the measured amount of cost 

error. Since a cost error is tolerated by hill climbing moves, a maximum bound on the 

cost error can be defined using a maximum bound on the hill climbing move.

Let d(s) be the maximum amount (or depth) of cost which can be hill-climbed at a 

given temperature T and stream length s. Then

d( s ) J
e~ t > -  => d (s)< T \ns  (6-1)

s

This means that there is a possibility to choose d(s) hill climbing move in s moves 

[Whit84]. The maximum hill climbing depth is a function of temperature and log of the 

stream length.

The error-present simulated annealing has a small hill climbing power than sequen­

tial simulated annealing, so the error-present algorithm is likely to be kept in a local mini­

mum due to cost error (Figure 22). Hill climbing power is the degree of accepting the hill 

climbing move. In order to get out of the local minimum and converge to the optimal 

result, the error-present algorithm must have the same hill climbing power as the sequen­

tial simulated annealing algorithm. Since the decreased hill climbing power is due to the 

cost error, the following theorem is derived.

Theorem 6-8: The hill climbing depth of the error-present algorithm (de) is less than 

that of the sequential algorithm (da) by at most the amount of error (E).

da <de + E

where da is the hill climbing depth of sequential simulated annealing for one hill 

climbing move, de is the hill climbing depth of the error-present algorithm for one hill 

climbing move, and E is the hill climbing error derived from Theorem 6-6.
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Proof: A loss of hill climbing power is introduced only by pessimistic errors

A Ca
(ACe > ACa > 0). Hill climbing power, probabilistically, is da = ACa ■ e~ t in the

A C ,

sequential annealing process and de = ACe • e t in the error-present annealing process. 

Using E (from Theorem 6-6) and pessimistic condition (AE = ACe -  ACa where 

ACe > ACa > 0), we have

ACa (
d0 -  ide + E) = a Ca ■ e T -

A C , ______ __________

A Ce ■ e~  t  +  ACe • e  t  • | e  t  -  1
v ‘ ' “ i)

A C ,

= AC, • e  t  -  AC, • e  t

AC'-AE  \

y

A C a A C a

= ACfl • e T - A C  • e r

A C fl

= e~ T ■ (ACa -  ACe) < 0 

So, da < de + E. □

From Lemma 6-1 

From pessimistic condition

Next, an extra stream length («) is required for the decreased amount of hill climb­

ing depth, £ ( 5), throughout the stream length s .

Definition 6-4: The extra move («) to tolerate the cost error E(s) is given by

e(s) j m
e t > -  , so u > e T  from Equation 6-1

u

For a given temperature T, at least u moves have a hill climbing power E(s); and 

with stream length s, there is a hill climbing power de(s) in an error-present algorithm.

fUf) j
e t > -  

s

Lem m a 6-3:
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Proof: The proof is obvious from equation (6-1). □

Now the stream length sa can be calculated for the error-tolerable algorithm having 

a regular hill climbing depth da(s). That is, in order to increase the hill climbing depth to 

match that of sequential simulated annealing, the stream length sa is needed.

Theorem  6-9: When the total amount of cost error (E(s)) occurs during stream length s, 

sa = s • u stream length is needed to tolerate the cost error.

Proof:

da d '+E
e t > e t from Theorem 6-8

d„(s) de(s)+E(s) d 'js) E(a)
e t >e t = e t ■ e t from ergodicity theory

> -  • -  from Definition 6-4 and Lemma 6-3
j1 u

So sa = s ■ u stream length is needed for the error present algorithm to have the 

same hill climbing depth as the sequential annealing process has in the stream length s. 

□

The next task is how to define the extra stream length factor u for speedups, consid­

ering the time for a global update. From Definition 6-4,

E(s) j

E(s) < T • In u, since e t  > -  (6-2)
u

In order to decrease the extra stream length factor u for speedups, the maximum tolerable 

cost error E(s) must be decreased as well. However, the extra stream length factor u and 

the maximum tolerable cost error E(s) are inversely proportional.
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PROCEDURE ERROR-TOLERANT SIMULATED ANNEALING 
begin

INITIALIZE;
k:=0;
repeat

calculate I < E > I in Tk /* Average cost error in one accepted move */
E(s) = 0 /* E(s) is the total amount of cost error in a given stream length */
repeat

PERTURB(config. i —> config. j, AC^);
if Ac(j < 0 then accept
else

ACjj (  l a l<£>l '

E(s) = E(s) + ACtj ■ e ~  ■ e ~ ^ ~  -  1
l  )

/* i is the ith iteration in the stream length */
/* a  is the acceptance ratio */ 

if exp(—AC(j/Tk) > random [0,1) then accept; 
if accept then

UPDATE(configuration j); 
until equilibrium is approached sufficiently closely;

Tk+i ;=  f(T ky, 
k:= k+1;
if ( E(s) < Tk • log« ) /* u — 1.1 */

increase stream length 
else

decrease stream length
until stop criterion =  true (system is ‘frozen’);

Figure 23. The Error-Tolerant Simulated Annealing
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For example, if a 10% increase of Markov chain length is allowed, i.e. u = 1.1, then 

the maximum error bound E(s) can be calculated using equation (6-2). If the measured 

amount of cost error in a given stream length 5 is greater than the maximum bound cost 

error E(s), the stream length will be decreased. If the measured amount of cost error in a 

given stream length s is less than the maximum bound cost error E(s), the stream length 

will be increased. When the stream length is changed, the Markov chain length s is kept 

fixed, i.e. Markov chain length M = stream length (s) x  # of global updates in a given 

temperature. The pseudocode for the error-tolerant scheme is in Figure 23.
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VII. IMPLEMENTATION OF PARALLEL SPACE-DECOMPOSITION

This section discusses the space-decomposition simulated annealing algorithm in 

distributed memory multiprocessors (multicomputers) such as a hvpercube. The target 

problem is the composite stock cutting problem.

The composite (oriented 2D bin packing) stock cutting problem is discussed in Sec­

tion I.A.2. The shapes are not constrained to be convex polygons or even regular shapes. 

The one side of the stock sheet, i.e. the length of the ^-direction, which is called the nest 

width, is fixed. The objective is to minimize the other side ( y-direction) given that all 

pattern information is known.

The input is the vertex coordinates of the patterns and the nest width. The output is 

the locations of all the patterns which minimize the y-length of the stock sheet bounding 

box. The stock sheet bounding box is the minimum square which surrounds all the pat­

terns.

Section VILA explains how an affinity relation is calculated. The affinity relation is 

denoted by for a pair of patterns / and j. It is used in the first term of the cost function 

in Section I.A.2. In Section VII.B, three types of moves, such as displacement, exchange, 

and rotation moves, are discussed. Section VII.C defines the cost function in detail and 

the cooling schedule is discussed in Section VII.D. In Section VII.E, the efficient method 

for finding overlap is presented. Finally, Section VII.F explains the parallel spatial 

decomposition implementation in detail.

A. PREPROCESS OF SIMULATED ANNEALING

In the preprocess of simulated annealing, a bitmap is generated for each pattern at 

all allowed rotations and the affinity relation is calculated for every pair of patterns. 

Since the patterns are irregular, they can have edges in arbitrary directions. Formulating
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algebraic constraints that detect overlap between two patterns is very tedious. Therefore, 

a bitmap representation is used for the patterns. In generation of bitmap, first the bound­

ing box is determined for the pattern, and the outside, boundary, and inside elements of 

bitmap are different each other for easy calculation of affinity relation and overlap detec­

tion.

Definition 7-1: The affinity relation, a{j, is made up of edgewise adjacency term and 

bounding box term for every pair of patterns i and j.

an = a  f a + p f d

where f a is the weighted edgewise adjacency and f d is the function of the density 

of bounding box for patterns i and j. a  and p  are nonnegative weights.

The boundary bitmap elements with distance n represents that the minimum dis­

tance o f boundary bitmap elements of two patterns.

Distance = min Dlm , for all patterns i and j
Vie Hi 
Vme IIj

where B, is the set of boundary bitmap elements of a pattern i and Dlm is the dis­

tance between the bitmap element / of a pattern i and the bitmap element m of a pattern j

So the distance of the overlap boundary bitmap elements is 0.

Definition 7-2: Edgewise adjacency is determined by comparing the boundary bitmap 

elements of a pair of pattern i and j  given that any two boundary bitmap elements are 

overlapped.

f aim = sum of overlap boundary bitmap elements +

— x sum of boundary bitmap elements with distance 1
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where f a represents the edgewise adjacency when the boundary bitmap element l 

of a pattern i and the boundary bitmap element m of the other pattern j  are overlapped 

(Figure 24). Since two boundary bitmap elements are fixed by the overlap, the locations 

of two patterns are fixed.

The affinity relation, a(j, represents the tendency of pattern i and to attract pattern j. 

Since the patterns are not regular, two patterns are unlikely to fit together perfectly. So, 

an adjacency edge with distance 1 is weighted half that of an adjacency edge with dis­

tance 0. This will help two patterns to get together with a small distance. For example, 

in Figure 24, the edgewise adjacency counts the number of the overlap boundary bitmap 

elements which is ax. It also counts the number of boundary bitmap elements with dis-

a 2tance 1 which is a2. Then the total edgewise adjacency will be a} + This edgewise

adjacency calculation is implemented easily by traversing the boundary bitmap elements 

of one pattern and counting the overlap and distance 1 boundary bitmap elements given 

that any two boundary bitmap elements are overlapped. The edgewise adjacency relation 

for every edge between two patterns is calculated. A maximum edgewise adjacency and 

(x , y) coordinate of the two patterns are selected.

The minimal bounding box surrounding two patterns cannot be guaranteed by only 

the edgewise adjacency. In other words, maximizing edgewise adjacency is not the same 

as minmizing the bounding box (Figure 25). So the density of the bounding box, p, is 

incorporated to the affinity relation. When all patterns are packed, the density of the 

stock sheet is important. So when two patterns which form the minimal bounding box fit 

together, the density of the stock sheet comprising all patterns is likely to be large. The 

affinity relation is made up of two terms, edgewise adjacency and the density of the 

bounding box surrounding two patterns.
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where a , /? are weight constants and p  is the density of the bounding box.

Figure 24. Calculation of Affinity Relation

Maximize edgewise adjacency Minimal bounding box

Figure 25. Edgewise Adjacency and Minimal Bounding Box
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B. M OVE SET

Three types of moves are allowed in order to change the configuration of the given 

patterns.

<E>j: Displace a pattern to a new location.

<J>2: Exchange two patterns.

<E>3: Change the rotation of a pattern.

Moves are selected randomly to guarantee the mobility of the pattern.

1. Description of Displace Move : d^. In the operation O j, an arbitrary pattern is 

picked randomly and a new location is selected randomly within the range-limiter win­

dow. At the beginning of the annealing process, the window size is to be large enough to 

contain a space of all patterns. Then it shrinks slowly as the temperature decreases. 

When the acceptance rate is less than 44%, the window size decreases slowly. Large dis­

tance moves usually imply large values of the cost change, AC. At low temperatures, 

only moves which result in small positive cost change have a reasonable chance of being 

accepted. Hence, at low temperatures, the large distance moves are almost invariably 

rejected. In order to generate moves which have a reasonable probability of acceptance, 

these large distance moves are prohibited by the use of a range-limiter window.

The Rotation Move (d>3) is incorporated into the Displace Move (<bj). In the opera­

tion <J>j, all allowed rotations are tried. Since the patterns are irregular, this strategy 

increases the acceptance ratio significantly.

2. Description of Exchange Move : d>2. Two patterns are randomly selected and an 

interchange is attempted. 0 2 does not apply the range-limiter window in selecting the 

two patterns. Also, for simplicity, the Rotation Move is not incorporated into this move. 

The Exchange Move ( 0 2) operation changes the cost larger than the Displace Move (<D])
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operation. So the exchange move is more likely to be rejected as the temperature goes 

down. The ratio of selecting moves <!>] vs. d>2 1S 1:1 in the high temperature region. 

However, as the temperature decreases, the ratio of d>2 decreases also. In the final low 

temperature region, <t>, vs. d>2 is 20:1.

3. Description of Rotate Move : <t>3. A pattern is selected at random to have its ori­

entation changed. The amount of the rotation angle is randomly chosen among the 

allowed rotations. The coordinate rotation from [x(, y,] to [xj, yj] is done by

[xj, y j] = lx,, y,l
COS djj

-  sin (Jq
sin Gy 
cos 0(j

where 6tj is the difference of angle between rotation i and j.

Since the rotate move ( 0 3) is incorporated to the displace move (<Pj), when the 

desired distance of the displace move is 0, we rotate a pattern for all possible rotation 

angles until the move is accepted.

C. COST M ETRIC: C

The cost function is made up of the affinity relation (a ,j)  between patterns, the dis­

tance from the origin (dio) of a particular pattern, and the overlap penalty (o(y) between 

patterns.

C =

where dltJ is the distance between pattern i and j, and a, ft, and y are positive real

numbers that indicate the contribution of each of the components in the cost function.
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d ( j
1. The Affinity Relation Term : - Z Z  . • The first term is minimized when two

V i VJ a y

patterns having a high affinity relation are getting closer together. Since the affinity rela­

tion represents the degree of edgewise adjacency and the density of the bounding box of 

two patterns, the higher the affinity relation is, the greater the possibilty of saving scrap 

area. This term also influences packing density. As two patterns draw closer, the rota­

tions with high affinity relations are likely to occur. However, the contribution of the 

affinity relation to the cost is smaller as the distance between two patterns increases. In 

other words, the affinity relation of the nearby patterns are given more weight than that of 

the patterns far away.

2. The Cluster Term : Z du. When the cost function minimizes the second term, all
Vi

patterns cluster around the origin line (x-axis) and minimize the length of the y -d irec­

tion. While the affinity relation term affects the match of two patterns, the second term 

makes all the patterns come together into a small bounding box.

3. The Overlap Penalty Term : Z Z 0. The third term is a penalty function for the
Vi Vj

overlap of two patterns. Experimentally it has been shown that good results are achieved 

by allowing overlap in the high temperature region. Since a bitmap is used to represent 

patterns, it is easy to count the number of overlap bitmap elements between two patterns.

D. CO OLIN G  SCHEDULE

In implementing the simulated annealing algorithm, the following parameters must 

be specified.

1. Initial value of the temperature: T0

2. Final value of the temperature: T{
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3. Length of the Markov chain at a certain temperature T k: L k

4. Decrement strategy of the temperature: T k+l =  f ( T k)

A choice for these parameters is referred to as a cooling schedule. The cooling 

schedule must balance the quality of the final result with the computation time required.

1. Initial Value of the Temperature : T 0. The initial value of the temperature, T 0 , is 

set so that virtually all moves (transitions) are accepted. Then all possible configurations 

can be considered from the initial state. In this experiment, the initial temperature is set 

such that the cost is constant for some fixed Markov chain length, i.e. for several consec­

utive temperatures.

2. Final Value of the Temperature : T f . Since an important characteristic of simu­

lated annealing is the hill-climbing move, the final temperature is defined such that a hill­

climbing move does not occur any more below the final temperature, T f .  In this experi­

ment, the stopping criterion is implemented by recording the value of the cost function at 

the end of each temperature in the annealing process. The final temperature is satisfied 

when the value of the cost function is not changed for some fixed Markov chain length.

3. Length of Markov Chain : L k. L k is the length of the Markov chain at a certain 

temperature T k . The chain length must be long enough so that the annealing process 

reaches a quasi-equilibrium state after L k tries at temperature T k . The simple criterion 

for the fixed L k is that for each temperature T k , a minimum amount of transitions should 

be accepted. However, as T k approaches 0, the transitions are accepted with decreasing 

probability, so L k is bounded by some constant. Usually, L k is some integer multiple of 

the maximum number of neighborhood states. In this experiment, L k is set to be some 

integer multiple of the problem size, and the limit of transition is 4 x  L k .
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4. Decrement Strategy of the Temperature : TK+] = f (T k). A small temperature 

decrement is chosen in order to avoid the necessity of a long Markov chain length for re­

establishing a quasi-equilibrium state at each new temperature. In this experiment, a 

fixed decrement ratio, a, is used.

TM = cx ■ Tk where k = 0, 1, 2, 3, • • •

where is 0.95 <, a  < 0.99

This strategy decreases the temperature proportional to the logarithm of the temperature.

E. DATA STRUCTURE

Since simulated annealing is cpu-intensive, an efficient data structure is needed for 

move generation and evaluation of the cost function. The ability to propose and evaluate 

moves efficiently hinges on a good representation for the basic objects in the problem. 

Since a bitmap representation is used for the patterns, move generation moves all bitmap 

elements of a pattern to find the overlap with the other pattern. However, to enhance effi­

ciency, another data structure is used which saves only the boundary bitmap elements of 

the pattern. When a pattern is moved, the relative location to the other pattern is calcu­

lated. When each bounding box of two patterns is overlapped, the boundary bitmap ele­

ments of one pattern are compared with a whole bitmap elements of the other pattern and 

vice versa.

In evaluating the cost function, most of the effort is spent on calculating the affinity 

relation cost. The preprocessor calculates the affinity relation for all allowed rotations of 

each pair of patterns. This will save much time at the expense of more storage space.

F. SPATIAL D ECO M PO SITIO N  M ETHOD

The problem must be decomposed among the processors to minimize the erroneous 

calculation of the cost function. Among the three terms of the cost function, only the
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P R O C E D U R E  F 1 N D J D V E R L A P

b egin

P ick  a pattern i and a position (x , y )  random ly; 

for all patterns j& i  do

if  bounding b oxes o f  pattern i and j  are overlapped  

com p u te the num ber o f  overlap betw een  boundary bitm ap  

o f  a pattern / and a w h o le  bitm ap o f a pattern j ;  

com p u te the num ber o f  overlap betw een  boundary bitm ap  

o f  a pattern j  and a w h o le  bitm ap o f  a pattern i;

end;

Figure 26. The Pseudo Code for Finding Overlap

affinity relation term needs a global state, so it is desirable to cluster near patterns into 

one processor.

The stock sheet is nearly equally divided in the ^-direction. Each processor governs 

a space and handles the pattern whose reference coordinate belongs to its own space. The 

reference coordinate of the pattern is the smallest (x, y) of the bounding box surrounding 

the pattern. The maximum range-limiter window size is restricted to the neighboring pro­

cessor space. This restricts the mobility of patterns. However, in large sized problem, 

the mobility of a pattern is not impaired. Actually, when each processor handles at least 4 

patterns, an optimal result is obtained with reasonable speedups. With this restriction of 

the maximum range-limiter window size, the number of synchronizing processors is at 

most two. This simplifies the code and facilitates the asynchronous run of all the proces­

sors.
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Figure 27. Finding Overlap

1. Move Operation. Since the maximum range-limiter window size is restricted to 

the neighboring processor space, move displacement occurs between at most two neigh­

boring processors. Since the overlap penalty cost is high, every processor must have the 

exact bitmap information if the pattern lies in its own space. That is, if the pattern lies 

within the boundary of two processors, then each processor has exact bitmaps which per­

tain to its own space.

a) Intra-Processor Displacement. When the entire bitmap, i.e. all elements of the 

bitmap, of a picked pattern lies within the space before and after the displacement move, 

a local move displacement can be made because the neighboring processors are not 

affected in bitmap manipulation.

b) Inter-Processor Displacement. If the bitmap of a picked pattern lies across the 

boundary before or after the displacement, the two neighboring processors involved
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Processor P i  handles 

pattern 1,2, 3, 4.

Processor P2 handles 
pattern 5, 6, 7.

Figure 28. Spatial Decomposition

cooperate in the move to calculate the exact number of overlapping bitmap elements. 

This is an inter-process displacement.

When the move is an inter-processor displacement, the master processor picks a pat­

tern and the neighboring processor involved in the bitmap manipulation becomes the 

slave processor in the inter-process displacement. The master processor sends the infor­

mation of the selected pattern and the candidate displacement location to the neighboring 

processor. If the slave processor is the master processor and the master processor is the 

slave processor simultaneously, deadlock happens. In other words, if the two neighbor­

ing processors do inter-processor displacement move operation simultaneously, each pro­

cessor will be waiting response from each other forever. To prevent deadlock, when a 

slave processor is asking another cooperation to the neighboring (master) processor, the 

arrived displacement request is rejected. If not, the slave processor accepts the request
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Master Processor Slave Processor

Pick a pattern randomly 

disp-ask ---------- __
disp-response

if not rejected if not rejected

calculate cost __ calculate cost

move decision

if accepted if accepted
update state update state

Figure 29. Inter-Processor Displacement

message from the master processor. The master processor calculates the cluster term of 

the cost function which calculates the distance from the origin line.

Each processor calculates its own affinity relation part of the cost function and the 

overlap penalty. The upper processor calculates the affinity relation on the its own and 

upper located patterns, while the lower processor calculates the affinity relation on its 

own and lower located patterns. Then the slave processor sums the costs from the two 

processors and makes the move decision. The slave processor sends a decision to the 

master processor. If the move is accepted, each processor changes its information. Since 

all allowed rotations are considered prior to an accepted move, the acceptance ratio 

increases. This scheme gives good results in the experiments.
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c) Intra-Processor Exchange. The intra-process exchange operation is to inter­

change two patterns whose bitmaps are inside the same processor space. When the pro­

cessor selects two patterns randomly, first the processor determines if the entire bitmaps 

of the two patterns are inside the space before and after the exchange operation. If both 

bitmaps are inside the space, the processor exchanges the reference coordinates of the 

two patterns locally.

Master Processor Slave Processor

Pick two patterns randomly

exch-ask *----—____
exch-response

if not rejected if not rejected

calculate cost __ calculate cost

move decision

if accepted if accepted
update state update state

Figure 30. Inter-Processor Exchange of Type I

d) Inter-Processor Exchange. There are two kinds of inter-processor exchanges. 

The first case is when the master processor selects two patterns randomly from its own 

space; but, the selected two bitmaps lie across the boundary before or after the exchange 

operations. The two neighboring processors must cooperate to calculate the exact
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number of overlapped bitmap elements and the affinity relation. The master processor 

sends the selected pattern information to the neighboring slave processor. When the slave 

processor is requesting another inter-move, this exchange-ask is rejected. If not, the two 

processor cooperate in calculating the overlap penalty and the affinity relation costs. This 

is type I inter-processor exchange.

The second case is when two processors each pick a pattern randomly from its own 

space and exchange the two patterns with each other. This is type II inter-processor 

exchange. Since the cooperating processors must be at most two, type II inter-processor 

exchange selects patterns accordingly.
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2. Fast Evaluation of the Move Decision. In the simulated annealing algorithm, the

AC

move decision, e t  , is applied many times for a state change. Exponential evaluation 

requires 107 //sec epu time on VAX 11/780 running VMS. Substantial reductions in the 

computation time for the evaluation of the exponential function can be achieved by using

_ A C
a table look-up technique [NgRa86]. Of course, the Metropolis criterion, e t , need only 

be evaluated when both AC and T are positive quantities since the new state is always

AC
accepted when AC < 0. For simplicity, set x  = —  where x is always positive. Actually,

if x  exceeds 88, e~x is essentially 0, and if x is less than 10-7, e~x is approximated as 

(1 -  *). So the range of interest x for evaluating e~x is 10-7 < x < 88. In terms of powers 

of 2, the range of interest is 2-23 < * < (27 -  40). So a range of 30 bits are of interest. If 

x is multiplied by 223, then the floating point number can be directly converted and stored 

as a 32-bit integer such that the least 30 significant bits are of interest.

We can divide 30 bits to 3 sets of 10 bits. 

set 1 is e~x for 2-3 < x  < 27 

set 2 is e~x for 2-13 < x < 2-3 

set 3 is e~x for 2-23 < * < 2~13

The first set is stored in table 1 and uses the value of —-  as the table index. The second
2~3

X
set is stored in table 2 and uses the value of as the table index. Finally, the third set

• A
is stored in table 3 and uses the value of —rr as the table index. At the start of simulated2 23

annealing, these three sets of 1024 evaluations are performed using the exact exponential 

function and these values are stored in the table.

The evaluation then proceeds as follows: (1) The most significant group of 10 bits 

of x  (bits 29 through 20) are shifted right by 20 bits and the ten bits are masked out. This
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quantity determines index 1, the index into table 1. (2) The next most significant group 

of 10 bits of x (bits 19 through 10) are shifted right by 10 bits and the ten bits are masked 

out. This quantity determines index 2, the index into table 2. (3) The least significant 

group of 10 bits of x  (bits 9 through 0) are masked out. This quantity determines index 3, 

the index into table 3. The value of e~x is given by:

e~x = (table l[ index 7]) (table 2[index 2]) (table 3[index 3])

This technique requires only 3 table look-ups, 3 floating point multiplies and 2 shift­

ing operations. The exact value of e~x can differ from the table look-up value by at most 

2-23= 1.192 x  10-7. However, since the most time is spent in the move generation and the 

cost calculation in the experiment of the composite stock cutting problem, this fast evalu­

ation of the move decision does not lessen the running time significantly.

3. Global Update. During a predefined stream length, each processor generates 

moves asynchronously independent of the other processors. When a processor finishes 

the predefined stream length of move generations, it sends a termination signal to the host 

processor. When the host processor gets the termination signals from all processors, it 

sends a global update signal to all working processors. Then all working processors 

cooperate on the global update of information by communicating its own information to 

all other processors using a tree-reduction method and determine the new stream length 

according to the amount of cost error which has occurred during the previous stream 

length. In the global update, a maximum of 2 move-requests from the neighbor proces­

sors may be pending in the message buffer. So during the global update, any pending 

move-requests must be checked and removed in the first 2 tree-reduction operations. 4

4. Lazy Update. Since the global update takes much time, a lazy update is used 

which updates configuration information with out-of-date information. Because the cost 

error is caused only in calculating the affinity relation part and as the patterns are closer,
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Procedure Evaluation of e~x 

begin

if X < 0 

t x >  1 ; 

else if x > 88 

= 0;

else if x < 10-7 

e~x = 1 -  x; 

else

i = x * 223; /* i is 32-bit integer */

e“x = tablel[i»20] * table2[i»10 & 0x3ff] * table3[i &0x3ff|;

end;

Figure 32. Fast Evaluation of Move Decision

the cost error can be larger, this lazy update scheme works well, i.e. it reduces the cost 

error fairly.

When a processor completes the given substream length for the lazy update, it sends 

information to the adjacent processor. The substream length for the lazy update is less 

than or equal to half of the stream length for the global update. This substream length for 

the lazy update can be defined by a user or dynamically by calculating the maximum 

bound of the cost error.

For example, processor P, completes the substream length for the lazy update. Pro­

cessor Pt sends processor P,_] information of patterns which are owned by the current 

processor, P (, and down processors, PM through Pn where n is the total number of
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processors. Processor P( continues move generations without halting. Then processor 

Pt_j probes to determine if the lazy update messages came or not. If a lazy update mes­

sage arrived, processor Pt_x updates the information, i.e. the lazy update is asynchronous. 

This lazy update can be implemented downward, that is processor P, sends lazy update 

information to processor PM .

5. Load Balancing. The patterns move around all the stock sheet across the bound­

ary of the processor’s space. Some processors may happen to have too small or large a 

number of patterns. These load unbalances can be corrected dynamically during the 

specified stream length. However, in this research, for simplicity, the patterns are redis­

tributed after the predefined stream length or at the end of the temperature for simplicity.

6. Two High Specific Heat Regions.

A quantity corresponding to the thermodynamic specific heat is defined by taking 

the derivative with respect to temperature of the average value of the cost observed at a 

given temperature from equation (3-8), i.e.

S(T) =
a < c ( T )  >

d r
a 2

T 2

A large value of S(T) indicates a change in state of the order of a system. This can 

be used in the optimization context to indicate that freezing has begun and hence that 

very slow cooling is required. Just as a maximum in the specific heat of a fluid indicates 

the onset of freezing or the formation of clusters, here specific heat maxima are found at 

two temperatures, each indicating a different type of ordering in the problem. In this 

research, high specific heat in the high temperature region corresponds to the aggregation 

of clusters of patterns, i.e. it represents the rapid cost change in the cluster term in the 

cost function. Lower specific heat in the lower temperature region corresponds to the 

proper rotation of patterns, i.e. it represents the rapid cost change in the affinity relation
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term. Therefore patterns cluster near the origin line first and then proper rotations occur 

to further reduce the cost further.

Figure 33. The Specific Heat and Cost

7. More Weight on the Larger Area Pattern. When large area patterns are near the 

origin line, the packing density may be high, i.e. the bounding box surrounding all pat­

terns is small. This is because the large area pattern may have more scrap area in its 

bounding box, so when the large area pattern is at the end of stock sheet line, there may 

be more scraps. However, the small area patterns can be easily combined with other pat­

terns, resulting in a high packing density bounding box. So more weight is given to the 

second term (cluster term) of the cost function for a large area pattern. This can be com­

pared to give a large inertia moment to the origin line on the large area pattern. This 

strategy makes the large patterns cluster near the origin line, while the small area patterns 

fill out the scrap area resulted from clustering of the large area patterns.
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The large area pattern has another problem of mobility. There are more probabilities 

of move rejection for the large area pattern due to the overlap penalty. Large area pat­

terns are more likely to be stuck in their own places, while the small area patterns are 

moving toward the origin line more swiftly. So large area patterns congregate around the 

end of the stock sheet. To overcome this mobility bias, the pattern is selected for the 

move generation in proportion to the ratio of the area of the pattern. This increases the 

mobility of the large area patterns, while decreasing the mobility of the small area pat­

terns.
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VIII. EXPERIMENTAL RESULTS

The new adaptive error-tolerance method (Section VI), which will be referred to as 

the adaptive method, was implemented on a 16-node Intel iPSC/2. The target problem 

was the composite stock cutting problem (Section I), which was decomposed specially 

along space of the stock sheet (Section VII).

Figure 34. Final Cost vs. Stream Length

The parallel space-decomposition simulated annealing algorithm was implemented 

in 4 nodes. A total of 16 irregular patterns were used. The Markov chain length was 500. 

To track the behavior of the cost error, the weight of the affinity relation term was set 

much greater than that of the cluster term, since the cost error occurs only in the affinity 

relation term of the cost function. The fixed stream length method, which will be referred 

as the static method, was implemented twelve times on each stream length. The stream 

length was varied to note its effect on the cost error.
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Figure 34 shows that the average final cost starts to increase above stream length 10. 

Using 4 patterns per node and an optimal stream length of 10, the herein algorithm is 

much more robust with respect to the cost error than the floor planning algorithms of 

[JaDa88, Dura89], where the optimal stream length was set equal to the number of pat­

terns per node. This can be explained partly by Theorem 6-7. The portion of the cost 

error (AE) in the estimated cost (AC*) of the composite stock cutting problem may be 

smaller than that of floor planning problems. This can be due to the large range limiter in 

the composite stock cutting problem, so the information of the moved pattern is propa­

gated to the other processors. From Theorem 6-7, this reduces the total amount of the 

cost error, so the stream length can be increased keeping the convergence to the optimal 

results.

Comparing the stream length at each temperature (Figure 35) with the annealing 

curve (Figure 36), the stream length reduces to 2 in the critical region where specific heat 

is very high. However, the stream length increases to 125 far from the critical region, i.e. 

the global update is done only once at the end of each temperature. The stream length 

varies dynamically according to the annealing curve. This means the cost error has little 

affect on the annealing process away from the critical region, but affects it greatly in the 

critical region. This corresponds to the fact that the annealing process proceeds rapidly 

away from the critical region, but much more slowly in the critical region.

In Table IV, Adp means the adaptive method, and Static-10 means that the stream 

length was fixed at 10. Since the average final cost starts to increase above the stream 

length 10, the stream length of 10 was selected for the static method. The average final 

costs was almost the same. However, the standard deviation of the adaptive method was 

smaller than that of the static method, as expected. The average stream length of the 

adaptive method is larger than that of the static method. Since the number of global 

update was inversely proportional to the stream length, the average number of global
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Figure 35. Stream Length vs. Temperature

Figure 36. Annealing Curve
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updates was reduced 6.3 times in the adaptive method, compared to the static method. 

From the above data (Figure 35, 36, and Table IV), the adaptive method adapts the stream 

length dynamically, with comparable final results.

Mean Std. Dev. Worst Best

Adp -424.5 8.29 -414.4 -436.2

Static-10 -424.3 11.70 -402.9 -436.2

Table IV. Final Cost of Adaptive and Static Methods

As a second experiment, 16 different sets of patterns were implemented to observe 

the results of the adaptive method. The number of patterns varied from 128 to 160. Reg­

ular (rectangular) patterns were used for simple implementation, requiring no bitmap 

operation. A cooling schedule was set almost uniformly, such that the initial temperature 

was about 200,000, the temperature decrement ratio was 0.98 to 0.99, and the Markov 

chain length was 5,000 to 20,000. In this experiment, the packing density is considered. 

In other words, the weight of the cluster term in the cost function is balanced with that of 

the affinity relation term.

In Table V, Adp means the adaptive method and Static-5 represents the static 

method, where the stream length was fixed at 5. Table V indicates the speedups of both 

the adaptive method and the static method comparing with the sequential annealing pro­

cess. The mean of speedup of the adaptive method was greater than that of the static
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method over the entire processor range. However, the standard deviation of the adaptive 

method was always greater than that of the static method. Since the experiment was done 

on different sets of patterns, the run time may have varied according to the problem, in 

order to maintain the convergence in the adaptive method.

Figure 37 plots Table V. Figure 37 indicates that as the number of processors 

increased, the adaptive method was much better than the static method in speedups. As 

the number of processors increases, the global update time increased as well. Thus, the 

efficiency of the parallel implementation was reduced as the number of processors 

increased. Since the adaptive method reduced the global update frequency, the adaptive 

method achieved better speedups than the static method for a large number of proces­

sors.

Table VI compares the final cost of the adaptive method with that of the static 

method. The stream length of the static method varied from 5 to 100 where the conver­

gence was assumed to be maintained. The mean final cost of the adaptive method was 

smaller than that of the static method for the entire processor range. However, using 16 

nodes, the final cost of the parallel implementation was greater than that of the sequential 

annealing process. This may result from restricted mobility in move generation. Let the 

cost deviation of the parallel implementation be defined as:

„  _ . . Cost of Parallel - Cost of Sequential
Cost Deviation = ----------- —------ —---------—-----------

Cost of Sequential

The cost deviation of the parallel implementation using 16 nodes was less than 1% 

for the adaptive method and 1.2% for the static method. The standard deviation of the 

adaptive method was smaller than that of the static method for all node ranges. This cor­

responds to the previous experiments (Table IV).



114

node size Mean Std. Dev. Max. Min.

Adp 1.47 0.16 1.67 1.15
z

Static-5 1.18 0.09 1.28 1.02

A Adp 3.55 0.50 3.95 2.11
H

Static-5 2.76 0.29 3.16 2.05

8
Adp 6.98 0.94 7.64 4.13

Static-5 4.89 0.47 5.46 3.97

16
Adp 11.94 1.34 13.04 8.10

Static-5 7.63 0.84 9.45 6.35

Table V. Speedups of Adaptive and Static Methods

Speedups

Figure 37. Speedups of Adaptive and Static Methods
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node size Mean Std. Dev.

Seq. 583848 91797.9

2
Adp

Static

587628

588608

83453.7

83138.0

4
Adp

Static

578001

575734

77181.2

79882.2

8
Adp

Static

574773

575499

76009.6

75534.0

16
Adp

Static

589618

591113

75242.4

76073.4

Table VI. Final Cost of Adaptive and Static Methods.

determine the cost error behavior using a different set of the stream lengths. This experi­

ment was similar to the the first experiment (Table IV). However, the weight of the clus­

ter term was balanced with that of the affinity relation term in order to consider the pack­

ing density. The experiment was done 3 times using 128 regular patterns and 16 nodes. 

The initial temperature was set around 20,000; the decrement ratio was 0.98 to 0.985; and 

the Markov chain length was 10,000.
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Stream Length Time(Avg) Cost(avg) Performance(avg)

62 5 6.96378e+06 797019 5.55323e+12

208 7.059 le0+06 791015 5.58799e+12

125 7.31633e+06 790672 5.78597e+12

89 7.38138e+06 784053 5.78754e+12

69 7.48652e+06 794623 5.94925e+12

57 7.18042e+06 791005 5.67386e+12

45 7.52592e+06 787917 5.92617e+12

35 7.83123e+06 786564 6.15932e+12

26 8.44653e+06 784167 6.62457e+12

21 8.56733e+06 787604 6.75292e+12

16 9.43514e+06 788615 7.44400e+12

10 1.09276e+07 788676 8.61872e+12

5 1.74531e+07 783721 1.36727e+13

Avg 8.73649e+06 788896 6.88740e+12

Adaptive 7.20755e+06 786792 5.6697 le+12

Sequential 9.34506e+07 753421 NA

Table VII. Performance of Static and Adaptive Methods
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Performance
Ratio

(Adp/Static)

Figure 38. Performance of Adaptive vs. Static Methods

In Table VII, the performance is defined as the product of run time and cost, 

performance = run time x final cost

The performance was used as a parameter of a kind of goodness test for the trade-off 

between run time and cost. The cost deviation of the cost of the sequential process was 

4.4% for the adaptive method and 4.7% for the static method.

In Figure 38, the performance ratio is defined as the performance of the static

, , ............................  , Performance of Adaptive „
method over that of the adaptive method, — — ------------- —— :— . Figure 38 indicates

Performance of Static

that the static method can get a fairly good performance around the fixed stream length 

100. In other words, considering the trade-off between the run time and the cost, 100 is a 

desirable stream length. When the stream length was larger than 200, the run time 

reduces with a relatively small increase of the cost. So the performance defined here
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cannot represent the trade-off properly in large stream length regions. The performance 

of the adaptive method was lower than that of the static method in the proper regions. 

The average performance of the static method to that of the adaptive method was 0.82.

From the experimental results, the adaptive method is well suited for relaxing the 

frequency of the global updates, i.e. for increasing the stream length while maintaining 

the quality of the final results comparatively. Aside from the improved speedups, the 

adaptive method has an advantage over the static method in that, in the latter, much 

implementation is needed to determine the optimal stream length.
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IX. CONCLUSION AND FUTURE RESEARCH

Simulated annealing is applied successfully to a broad range of combinatorial opti­

mization problems, such as the traveling salesman problem, graph theory, VLSI design, 

and composite stock cutting. Since simulated annealing is a stochastic process, the real 

disadvantage is the massive computing time required to converge to a near optimal solu­

tion.

Many researchers have tried to fine tune the cooling schedule to reduce the comput­

ing time. This dissertation surveyed the theory and the sequential algorithms in Section 

II and III. However, the sequential annealing process is limited, being unable to reduce 

the massive computing time considerably due to the large amount of state changes 

required.

One promising approach for speeding up the simulated annealing is parallelization. 

From Section IV, distributed memory multicomputers show the most promise in achiev­

ing large parallel speedups. However, in a distributed memory architecture such as a 

hypercube, there is no globally available, centrally located system state. Updating the 

entire global state S thus involves explicit message traffic and is a critical bottleneck. To 

mitigate this bottleneck, it becomes necessary to amortize the cost of these state updates 

over as many parallel move evaluations as possible by using an approximate cost calcula­

tion. Thus, error in maintenance of the cost function C(S) is inevitable and bounds must 

be placed on this error in order to assure convergence to the correct result.

Section V analyzed the behavior of the cost error. The analysis showed that a pes­

simistic move occurs more frequently than an optimistic move. Since pessimistic moves 

are more likely to be rejected, the hill climbing power decreases (due to the cost error) 

compared to the sequential annealing process. This reduced hill climbing power keeps 

the annealing process in the high local minima.
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Section VI presented a new cost error measurement scheme which improved on the 

traditional methods, with some limitations. This method measures the cost error analyti­

cally based on the exponential distribution of the erroneous move decision. Section VI 

also proposed a new adaptive cost error-tolerance method in terms of stream length, 

based on the hill climbing power. This reduced hill climbing power is recovered by an 

additional small number of moves, i.e. by increasing the Markov chain length at a fixed 

temperature. The adaptive method derives the bounds on the cost error as a function of 

global update frequency, or stream length s.

Section VII discussed the details of parallel implementation on distributed multi­

computers to solve the composite stock cutting problem. Although the simulated anneal­

ing process is conceptually straightforward, design of a successful annealing algorithm 

involves considerable engineering judgment. The sample results are included in the 

Appendix.

The adaptive cost error-tolerance method was implemented with a static stream 

length method in Section VIII. The experimental results showed that the adaptive 

method was well suited for relaxing the frequency of the global update, maintaining com­

parable quality of the results. The adaptive method has an advantage over the static 

stream length method in that, in the latter, to determine the optimal stream length, the 

static method has to run many experiments. However, the adaptive method varies the 

stream length dynamically by choosing a large stream length in high and low temperature 

regions, and a small stream length in the critical temperature region.

For future research, since the asynchronous spatial decomposition method achieves 

greater speedups in the distributed memory multiprocessor, it may be desirable to imple­

ment this method on different problems, such as the VLSI placement problem and the 

traveling salesman problem, using the adaptive cost error-tolerance method. Since the
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adaptive method is independent of the problem, this will shed greater light on the utility 

of the adaptive method.

In the spatial decomposition algorithm, every processor has to hold sufficient space 

to ensure the mobility of patterns in move generation. If the space for the processor is too 

small, the pattern cannot move around freely because the pattern can move at most to the 

space of the neighbor processor. This is why the number of processor is limited two in 

inter-move operation for simplicity. So, the number of processors is limited in a small­

sized problem, even though a small size of problem consumes considerable computing 

time. Since the division algorithm in Section IV.C.3, as a modified Systolic algorithm, 

gives linear speedups in the high temperature region, it is desirable to combine the divi­

sion algorithm with a spatial decomposition algorithm in the high temperature region, and 

to combine a SSS algorithm with a spatial decomposition algorithm in the low tempera­

ture region. By doing this, the speedups increase considerably with large number of pro­

cessors. In the high temperature region, a set of processors form a cluster, which cooper­

ate to implement the spatial decomposition algorithm. Each cluster copies the current 

state, then completes a stream of moves at the same temperature. That is, a division algo­

rithm of a spatial decomposition algorithm is employed. In the low temperature region, 

the division algorithm is replaced by the SSS algorithm.

The second approach to the parallel implementation is using the pyramid architec­

ture (Figure 39). In a simulated annealing process, the ranger limiter scheme is used to 

increase the acceptance rate. The range limiter does not affect the irreducibility of the 

Markov chain, so it does not affect the convergence property. The range limiter simply 

prunes away some of those transitions whose probability becomes too small at low tem­

peratures. The pyramid architecture is fitted to the range limiter. In the high temperature 

region, the size of the range limiter is large, i.e. a large cost change move is allowed. So 

one processor is used which covers all space. As the temperature goes down, the size of
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Figure 39. Pyramid Architecture

the range limiter decreases also, i.e. only a small cost change move is allowed. So more 

processors can be used without hindering mobility in move generations. This method 

also decreases the cost error in the high temperature region, preserving the convergence 

property of the sequential simulated annealing algorithm with a very high utilization of 

processors.

The third approach for speedups in the sequential and parallel implementation is 

using the multigrid method (Figure 40). In the stock-cutting and non-slicing placement 

problems, bitmaps are used to represent modules or patterns. The required time for move 

generation is excessive because of bitmap manipulation. In the high temperature region, 

the overlap cost error can be tolerated easily. So a high level grid can be used for the pat­

tern, where the bitmap of every pattern is shrunk proportially, reducing the time for the
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Low Temperature High Temperature

Figure 40. Multigrid Method

move. The overlap cost error is caused by an inaccurate bitmap of the module. As the 

temperature goes down, the cost error becomes prohibitive. So a more fine grid is used 

for the patterns, which decreases the overlap cost error. Consequently in the final temper­

ature, the overlap cost error is removed. Finally, the bitmap represents all patterns accu­

rately. The key issue is when to change the grid size.
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APPENDIX

Sample Placement of Stock Cutting
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