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ABSTRACT

iii

Human sequential decision-making involves two essential questions: (i) "what to 

choose next?", and (ii) "when to stop?". Assuming that the human agents choose an al

ternative according to their preference order, our goal is to model and learn how human 

agents choose their stopping time while making sequential decisions. In contrary to tradi

tional assumptions in the literature regarding how humans exhibit satisficing behavior on 

instantaneous utilities, we assume that humans employ a discounted satisficing heuristic to 

compute their stopping time, i.e., the human agent stops working if the total accumulated 

utility goes beyond a dynamic threshold that gets discounted with time. In this thesis, 

we model the stopping time in 3 scenarios where the payoff of the human worker is as

sumed as (i) single-attribute utility, (ii) multi-attribute utility with known weights, and (iii) 

multi-attribute utility with unknown weights. We propose algorithms to estimate the model 

parameters followed by predicting the stopping time in all three scenarios and present the 

simulation results to demonstrate the error performance. Simulation results are presented 

to demonstrate the convergence of prediction error of stopping time, in spite of the fact that 

model parameters converge to biased estimates. This observation is later justified using 

an illustrative example to show that there are multiple discounted satisficing models that 

explain the same stopping time decision. A novel web application is also developed to em

ulate a crowd-sourcing platform in our lab to capture multi-attribute information regarding 

the task in order to perform validations of the proposed algorithms on real data.
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1. INTRODUCTION

Sequential decision-making is a situation where an agent makes a series of decisions 

over multiple stages. At each such decision stage, the agent observes all the available 

alternatives and chooses one that it believes is the optimal choice to meet its final expected 

outcome. Here an agent can be a human or a computer algorithm. As computer scientists, 

we are more interested in the designing algorithmic agents that make optimal decisions 

when presented with a situation where sequential choices have to be made. However, all the 

decisions/choices might not encompass an immediate or a deterministic reward, and such 

delays/uncertainties in the outcome make agents rely on the feedback while making their 

next decision. This uncertainty leads to two major questions: (i) "what to choose in the 

next stage?", and (ii) "when to stop?". These problems have been studied extensively in the 

literature and many have modeled real-world problems/situations as sequential decision

making problems and designed algorithms to find the optimal choice and the optimal 

stopping time. For example, Roohnavazfar et.al., in [1], modeled the problem of searching 

optimal path in a dynamic network as a sequential decision-making problem and proposed 

a solution to find an optimal route using Nested Multinomial Logit model. Wu et.al., in [2], 

modeled dynamic rate allocation and spectrum sharing problem in cognitive radio networks 

as a sequential decision problem and proposed an algorithm to minimize the average total 

power consumption in each scheduling cycle using dynamic programming. Schulze et.al., 

in [3], explained how a worker sequentially chooses tasks in a crowdsourcing platform 

like Amazon MTurk. In crowdsourcing applications, researchers have also designed many 

recommendation engines to assist worker’s decisions [4, 5].

Note that all the works mentioned earlier modeled agents as expected utility max

imizers, where the agents’ objective is to minimize cost, or maximize reward. In fact, 

most of sequential choice settings addressed in the literature rely heavily on the theory of
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expected utility maximization (EUM), which is constructed over an axiomatic framework 

proposed by Von Neumann and Oskar Morgenstern [6]. It has been shown through many 

psychological experiments that human abilities have both physical as well as cognitive lim

itations [7]. Such limitations naturally violate some of the axioms in EUM theory, which 

makes human decision makers incapable of performing an indefinite search for the optimal 

solution. Simon first pointed out these violations in his seminal book on Bound Rationality 

[8] and introduced the term Satisficing to characterize human decision-making. He defined 

satisficing as an agent's decision to stop choosing among the options when a threshold is 

met. However, in this thesis, we propose a novel heuristic called Discounted Satisficing 

to model the diminishing zeal due to increasing lag in deciding the stopping time. This 

diminishing zeal can be mathematically modeled as a discount factor that deteriorates the 

decision maker's threshold, and the agent avoids making a decision until the discounted 

threshold is met.

1.1. MOTIVATION FOR THIS WORK

Discounted satisficing heuristic models our ability to perform mental tasks and 

make decisions wears thin when it’s repeatedly exerted. For example, in [9], Danziger et al. 

showed that prisoners prefer to have parole approved in the morning than in the afternoon 

as they believe that the judge’s decision might be affected by the number of cases he/she 

has heard all day. Likewise, many people strongly believe that "More isn’t always better." 

According to a study conducted by Sheena Iyenger and Mark Lepper in 2000 [10], the 

popular belief in retail markets that a customer is more likely to find the right product if 

given more options is asserted to be wrong. In fact, the paper demonstrated that the table 

presenting more options of jam for customers to try is less likely to being purchased from. 

This is because people often experience fatigue when presented with multiple options 

to choose from or when the outcome of the decision is not immediately observed. In 

such situations, people make decisions hastily, which are later repented and can have a
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severe effect on their mental and physical health. For instance, to guard innocent online 

users against bullying, fake news, disturbing and even illegal content on their social media 

handles, companies employ content moderators who carefully examine the user-uploaded 

content on the company’s social media and remove them whenever they are deemed against 

the company guidelines. Companies like Facebook, Twitter, Youtube, and Instagram, whose 

main business is into social media, have millions of users uploading diverse content on their 

social media handles. An average content moderator reviews thousands of videos, tweets, 

pictures each day dealing with extreme content taking a mental toll on them. A recent 

article in The Verge [11] reported that the tech giant Facebook offered a settlement of $52 

million to more than 11,000 content moderators who developed depression, addictions, 

and other mental health issues while they worked moderating content on their social media 

platform. Facebook outsourced this job to Cognizant, which employs most of its workforce 

in India and the U.S. to perform content moderation. When Verge interviewed 1,000 

content moderators at Cognizant’s Phoenix site, most of them reported an overpowering 

urge to sob and increased feelings of isolation and anxiety. To mitigate this problem, 

many companies used automated tools based on Artificial Intelligence (AI) such as object 

recognition algorithms to identify objectionable content within images [12]. However, this 

automated approach has not been very effective for diverse reasons such as heterogeneous 

content (e.g. images, videos, hate messages and tweets), multi-attribute sensitivity (e.g. 

race, gender and color) and contextual information. As a solution, Accenture recently 

proposed a ’bionic’ content moderation model, a human-in-loop AI system [13], which 

decreases the need for thousands of human content moderators via automating the flagging 

process using AI algorithms in order to decrease the number of review tasks. Another recent 

work done at Google [14], discusses how AI can be used in reducing emotional impact on 

the content moderator via gray-scaling and blurring images.
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In spite of all these attempts, the problem of cognitive distress amongst content 

moderators continues to linger within this industry. In fact, this problem also exists in 

many other sectors where workers perform multiple tasks sequentially for long hours with

out breaks. For example, the most common problem faced by an assembly worker in a 

manufacturing production line is the lack of flexible breaks whenever needed. Likewise, 

driving fatigue is the cause for ~ 13% of all large-truck accidents in the U.S. each year. 

In the same way, work-related post-traumatic disorder is common in military and police 

professionals, health care workers, firefighters, and first responders. The common reason 

behind all of the aforementioned cases is that people make ineffective decisions regarding 

when to stop working because of their financial problems, low economic background and 

performance pressure within the organization. Consequently, these workers pay a high price 

via compromising their mental health in the long run.

1.2. OUR CONTRIBUTION

In this thesis, my goal is to predict the worker's stopping time via modeling their 

decisions using a discounted satisficing heuristic. By doing so, our vision is to lead the 

research community towards mitigating mental stress disorders through effective interven

tions that are designed based on the worker’s cognitive state. The main contributions of this 

thesis are three-fold:

• model worker’s sequential decisions using discounted satisficing heuristic

• develop novel learning algorithms to estimate model parameters,

• validate these models using simulation and real-world experiments.

More specifically, the stopping time of a human agent is examined in 3 different scenarios by 

modeling his/her utility as (i) a single-attribute function, (ii) a multi-attribute function with 

known weights (iii) a multi-attribute function with unknown weights. Algorithms have been 

developed to estimate model parameters and predict stopping time efficiently in all three
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scenarios. The first algorithm is designed to estimate model parameters using concepts 

such as log-linearization, linear algebra, and polygon clipping, when agent decisions are 

based on a single-attribute utility. Although the algorithm has shown good convergence on 

the simulation-data, the performance of the algorithm on real-data is not very encouraging. 

This poor performance has motivated us to model agent decisions using a multi-attribute 

utility, for which three algorithms (two online and one batch learning) have been proposed 

in the case of known weights and one in the case of unknown weights to estimate the model 

parameters. These algorithms are designed using quadratic programming and alternating 

minimization techniques, and have shown a good convergence rate in the stopping time 

prediction on the simulation data.

The rest of the document is organized as follows. Section 2 provides an overview of 

the related work in human sequential decision-making. Section 3 discusses the proposed 

discounted satisficing heuristic in detail, along with proposed algorithms designed to es

timate model parameters. Section 4 provides the simulation results and overview of the 

crowdsourcing platform developed to carry out validations on real-data. Finally, Section 5 

summarizes our work in this thesis and provides an insight into our future work.
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2. LITERATURE REVIEW

Sequential decision-making in human agents has been extensively studied by diverse 

researchers from varied fields such as neuroscience [15, 16], computer science [1, 3, 2], 

statistics [17] and psychology [18, 19]. While computer scientists and statisticians focused 

on finding the optimal stopping time, neuroscientists and psychologists showed interest in 

modeling rationality behind human sequential decision-making. Various models have been 

proposed to describe the sequential decision-making in humans, most of which agree upon 

a behavior that people experience an exploration/exploitation dilemma while making an 

action/decision. For example, a person hunting for the best possible apartment in New 

York City may not know if the apartment they see next is the best for them, without any 

knowledge of all the unknown choices. This dilemma induces a trade-off between choosing 

an option via exploiting current knowledge (e.g. accept the apartment they currently like) 

and deciding to explore other options to learn the best choice (e.g. keep searching for 

new apartments). However, people's limitations (both cognitive and physical) makes it 

impossible to pursue an indefinite search for the best solution, thus making them to settle 

for a sub-optimal solution. This problem of finding an optimal solution is mathematically 

referred to as "Optimal Stopping Time Problems".

Before going deep into the optimal stopping time problems, let us first understand 

different paradigms/frameworks available in the literature to model the human sequential 

decision-making.

2.1. MULTI-ARMED BANDIT FRAMEWORK

The most used framework to model human sequential decision-making is Multi

Armed Bandit Framework. Thompson first coined this framework in 1933 for the application 

of clinical trials where he is trying to prescribe the treatment that has a higher success
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rate among the two available experimental treatments to as many patients as possible 

[20]. However, the effectiveness of the two available experimental treatments is unknown. 

Hence, choosing the treatment is decided sequentially based on past patients’ responses to 

his prescribed treatment. Such sequential decision settings are mathematically modeled 

as multi-armed bandit framework where an agent (human) is given multiple alternatives 

at each discrete-time, and when he/she chooses an alternative, observes a reward drawn 

from unknown probability distribution associated with each alternative. This framework 

first appeared in the literature in the late 1950s and early 1960s [21, 22, 23] as a reward- 

maximization problem where the agent plays a bandit machine with multiple arms, each 

of which, when played, yields a random reward drawn from an unknown distribution. 

This framework can be practically applied in many real-world situations such as routing 

algorithms in a communication network, tuning the look and feel of a website, datacenter 

design, radio networks. While dynamic programming offers a general solution for obtaining 

the optimal solution, its complexity grows exponentially with the number of alternatives. 

A practical solution was proposed to this computationally challenging problem in 1974 

when Gittins and Jones [24] proposed a dynamic allocation index, where they proved 

that selecting the option with the highest index results in an optimal solution. However, 

the dynamic allocation algorithm suffered from two drawbacks incase of Restless Bandits 

(where multiple bandits can be chosen at a discrete time), (i) computational difficulty 

and (ii) lack of insight into the nature of optimal policies. Addressing these drawbacks, 

there are techniques developed to improve the human sequential decision-making using 

Reinforcement Learning algorithms such as Q-learning, SARSA [25, 26, 27, 28], Bayesian 

Modeling [29, 30], differential equations [31] and decision tree with branch-to-branch 

interactions [32].
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2.2. OPTIMAL STOPPING TIME

Having known the optimal choice, the next important question in human sequential 

decision-making is: when to stop?. The theory of optimal stopping (or) early stopping 

is concerned with choosing a time to take a particular decision that involves whether to 

continue the experiment or quit. This problem is not new in mathematics literature [33] and 

has been studied in a gamut of domains such as statistics, economics, finance, and science 

(e.g. secretary problem, parking search problem, house selling problem [34]). This theory 

can address a range of issues, especially in the computer science domain, such as designing 

recommendation systems [35], enabling the caching in a server to accurately handle the 

object refreshing and the stale delivery problem [36], and deciding the stopping time for 

software testing [37]. Another interesting application lies in the area of computational 

finance, where online sellers use dynamic pricing by learning the purchase patterns of the 

consumers. Very recent work used a stopping time approach to protect consumers revealing 

their interests to these algorithms [38]. Traditionally, all the algorithms designed to predict 

the optimal stopping time models the decision maker as an Expected Utility maximizer who 

either attempts to maximize reward, or minimize cost.

2.3. EXPECTED UTILITY MAXIMIZATION (EUM) THEORY

The concept of expected utility is first posed by Daniel Bernoulli to solve St.Petersberg 

paradox. He quoted that "The determination o f the value o f an item must not be based on 

the price, but rather on the utility it yields.. . .  There is no doubt that a gain o f one thousand 

ducats is more significant to the pauper than to a rich man though both gain the same 

amount" [39]. This concept introduced a new term called utility that captures how an agent 

evaluates the outcome of a choice. Specifically, Bernoulli developed a discounted utility 

framework where the agent valuates tasks differently across time. However, such a model 

does not capture the temporally changing goals of an agent, potentially due to fatigue.
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A few centuries later, John von Neumann and Oskar Morgenstern [6] stated nine 

axioms under which a rational agent with a total preference order always picks choices so 

as to maximize their expected utility. Even after seven decades of technical advancements, 

most researchers continue to model humans as utility maximizers because of mathematical 

tractability. However, a rational agent with such a model can search indefinitely among 

the available options until he/she finds the best option. Such a behavior contradicts human 

decision-making, especially since people often experience decision fatigue after a long ses

sion of decision making and eventually avoid making a decision. Such cognitive limitations 

of the human brain, which makes them deviate from the EUM behavior, are accounted by 

other behavioral models, which are classified broadly as Boundedly Rational models.

2.4. BOUNDED RATIONALITY AND SATISFICING

Bounded rationality assumes that people make decisions under diverse physical and 

cognitive limitations (e.g. problem size, limited memory). Herbert Simon [8] first coined 

the term to explain how humans deviate from EUM because they experience limits in 

formulating and solving complex problems and in processing (receiving, storing, retrieving, 

transmitting) information. He introduced the concept of satisficing to better describe the 

decision-making strategy of the human agent. Satisficing defines that the human agent stops 

searching among the options as soon as an acceptability threshold is met. The threshold 

value is intrinsic to the agent and depends upon his/her personality. In the past, extensive 

work has been done in understanding satisficing concept [8], mathematically modeling it 

[40] and how different it is from EUM [41, 42]. Effects of satisficing behavior in various 

domains have also been studied extensively [43, 44, 45], and techniques have been proposed 

to avoid this behavior as it leads to sub-optimal decisions [46].

A very relevant work to our thesis is done by Reverdy et.al.,, in [47], where they 

studied satisficing in multi-armed bandit problems. They investigated the concept of satis

ficing on two utility constructs: (i) mean reward, and (ii) instantaneous reward for choosing
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an option. They showed that the satisficing model defined based on each of these util

ity constructs is equivalent to the standard exploration/exploitation trade-off problem in 

multi-armed bandit problems with novel regret minimization notions corresponding to the 

utility constructs and presented bounds on performance. However, in the entire work, they 

believed that that the chosen threshold remains constant throughout the decision process.

However, in our work, we question the assumption made by the satisficing model that 

the threshold remains stationary over time. We believe that people experience discontent 

as time progresses and diminishes the threshold over time, making the agent satisfied much 

earlier than intended. This kind of behavior can be observed very frequently in our daily 

life. For instance, a driver in a ride-sharing company accepts fewer ride requests by the end 

of the day compared to the start of the day. To capture this diminishing behavior of human 

agents’ threshold levels, we propose a novel heuristic called Discounted Satisficing and 

propose novel algorithms to estimate model parameters and predict agent’s stopping time. 

This heuristic is primarily designed to predict crowd workers’ stopping time that performs 

hundreds of micro tasks every day.

2.5. CROWDSOURCING

Crowdsourcing is an online mechanism where any registered agency can outsource 

tasks to a large pool of unknown workers in the form of an open call on the Internet. In such 

a framework, the decisions made by workers can be broadly classified into three types:

• Pick tasks that suit according to their preferences.

• Make executive decisions in completing the task.

• Decide a stopping time beyond which the agent temporarily quits from the crowd

sourcing platform.
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Current literature focuses on extensively analyzing the first type of decisions using various 

models, such as utility maximization and satisficing [46]. These studies have led to the 

design of many recommender systems for crowdsourcing platforms [3, 4, 5, 48, 49]. The 

second type of decision is analyzed by evaluating the performance quality of the workers 

[50]. However, there is very little work on how/when a crowd worker decides to stop 

working temporarily on the crowdsourcing platform. Therefore, in our work, we model 

agents’ decisions about their stopping times using discounted satisficing heuristic on a 

sequential multi-arm bandit framework to model human factors in workers’ decisions. 

For simplicity and tractability, we focus only on investigating stopping times by ignoring 

the first two types of decision processes. By predicting the stopping time, we plan to 

design personalized recommendation systems for crowdsourcing platforms and effective 

interventions to help workers work on content moderation tasks, thereby attempting to 

decrease the PTSD problems.

In the remaining sections, we use the crowdsourcing platform and crowd workers as 

an application domain to develop and validate learning algorithms to estimate parameters 

in our proposed discounted satisficing heuristic, and predict agent stopping time.
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3. DISCOUNTING SATISFICING TO MODEL AND PREDICT CROWD
WORKERS’ STOPPING TIME

3.1. NOTATIONS AND DEFINITIONS

Consider a crowdsourcing P  where a worker W  chooses one of the tasks from a 

set C = {1, • • • , N }. Assume that the worker evaluates each of these tasks based on a set of 

attributes M  = {1, • • • , m}. In other words, if the worker W  chooses the ith task at time 

k e T , then he/she observes a multi-attribute utility

J eM

where ay is the weight given to the j th attribute in M , and xi,j,k e R+ denotes the

Definition 1. An agent is said to exhibit discounted satisficing heuristic, if there exists two 

numbers A e R+ and S  e (0,1] such that the stopping time t* is given by

(3.1)

instantaneous reward (single-attribute utility) for choosing the ith task at time k e T  with 

respect to the j th attribute in M . In this thesis, we ignore the rationality behind the crowd 

worker’s decision to choose ith task, since our goal is to predict his/her stopping time. Let

(3.2)

denote the total accumulated utility at crowd worker W  after t time periods.

t * = minimize \ t  e T  | Ut = (3.3)
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Figure 3.1. Sequential decision-making strategy of a crowdworker exhibiting Discounted 
Satisficing Heuristic

In the above definition 1, the parameter A represents the total utility desired by the 

worker W  before the commencement of their work-day on platform P . On the other hand, 

the parameter S  captures the worker’s discounting behavior over time due to the increasing 

weariness levels. Figure 3.1 shows the flowchart of the sequential decision-making strategy 

employed by a crowd worker using discounted satisficing heuristic at a discrete-time unit. 

At every decision time, the worker is presented with a set of recommended tasks by the 

crowdsourcing platform, which are then carefully examined before picking a choice. The 

worker executes the task depending on his cognitive capacity and submits the task to the task
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producer and receives payment for successful submission. He/She then decides whether 

to continue working on the platform or quit by comparing the accumulated utility with the 

discounted threshold. It is evident from discounted satisficing heuristic that the stopping 

time of the crowd worker depends on his/her intrinsic parameters like threshold/discontent 

levels/weights they assign to each attribute (A,fi, a). However, in reality, getting satisfied 

is an involuntary process, and humans are unaware of the parameters’ exact values. Hence, 

the model parameters need to be estimated before predicting the stopping time.

In this thesis, we develop algorithms that first estimates the values of the model 

parameters and use the estimated values to predict the stopping time of the crowd worker 

using a discounted satisficing heuristic.

3.2. LEARNING ALGORITHMS TO PREDICT STOPPING TIME

From Definition 1, the stopping time is associated with a system of multivariate 

non-linear inequalities based on the sequence of decisions employed until stopping time t*. 

So, estimating all the parameters in one step, and predicting the stopping time is not easy. 

Hence, we started our study with a trivial case that assumed the utility function of the crowd 

worker as a single attributed function and later extended it to multi-attribute with known 

weights and unknown weights. We developed algorithms to predict the crowd worker’s 

stopping time W , and below subsections cover the in-depth details.

3.2.1. Single Attribute Utility. JIn this setting, we attempt to predict the stopping 

time of the crowdworker(W) in a simple scenario, where we assumed that he/she evaluates 

the tasks based on only one attribute (m = 1; a 1 = 1) and hence the utility observed by 

him/her for choosing ith task at time k e f  is equal to the instantaneous reward obtained for 

the single attribute (ui,k = vi,k). In such a scenario, the stopping time of the crowdworker 

using discounted satisficing heuristic is defined as below:

xThis work has been presented as a work-in-progress poster at HCOMP’2019 [51]
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t* = minimize jt e T  | Ut = ^  x*,t > fi1 (3.4)
i=1

where xi,t is the immediate reward observed by the crowd worker W  for executing ith 

task at time k e T  with respect to the single attribute that he/she takes into consideration 

while evaluating the task. Assuming the utilities of the tasks are perfectly observable, a 

given stopping time t* is associated with a sequence of non-linear inequalities based on the 

sequence of stopping decisions made by the worker according to Definition 1.

fii-1A > Ui, V i = 1, ••• ,t* -  1,
(3.5)

and fit 1A < Ut*

The above system of non-linear inequalities can be linearized by applying logarithms 

on both sides to obtain a polytope described by the following system of linear inequalities:

(i -  1) log fi + log A > log Ui, V i = 1, ••• , t  * -  1, 

and (t* -  1) log fi + log A < log Ut*
(3.6)

A natural way to compute the parameter estimates (A, fi) is to consider the centroid 

of the above polytope as a candidate solution. However, the above polytope is not necessarily 

compact, making it impossible to employ this method in general. Therefore, we assume the 

polytope to be compact via imposing limits on fi, i.e.

0 < fiL < fi < fiv <  1, (3.7)

where fiL,fiU can be justified as prior knowledge about the worker W . This estimate can 

be further improved via observing worker’s decisions over multiple iterations2. Figure 3.2 

depicts the pictorial representation of the convex/compact polytope formed by the system 

of linear inequalities associated with the stopping time(t*).

2For example; each iteration could represent a sequence of decisions made by the worker over a single day.
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Figure 3.2. Convex/Compact Solution Polytope

Let D n = (d 1 ,d2, ■ ■ ■ ,dn) denote the worker’s decisions over n iterations, where 

dj = {ui,i, Ui,2, ■ ■ ■ , Ui j j } contains the sequence of utilities obtained by worker W  until 

he/she stops at time 7)  in the j th iteration, for any j  = 1, ■ ■ ■ , n . Since each data tuple dj 

produces a compact polytope (denoted as Rj ) from Equations (3.6) and (3.7), we obtain a 

reduced polytope R = R1 n ■ ■ ■ n Rn from the intersection of the polytopes obtained from n 

iterations, which can be efficiently computed using Sutherland-Hodgman Algorithm [52].
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We evaluated our proposed algorithm on simulation data (details presented in Section 

4), where we observed that the algorithm performs better when fi>  0.5 and unable to predict 

stopping time accurately in case of lower S  values (S < 0.5). This can be attributed to the 

fact that the dynamic thresholds of the workers with lower S  values generally deteriorate at 

a much faster rate, thereby revealing very little about the model parameters in their choices. 

Besides, we have noticed deteriorated performance in the presence of small values of A, 

which can be justified with similar reasons, as stated above, in the case of small values 

of yS. Hence, we need an algorithm to accurately predict the stopping time, even in the 

presence of little information about the worker. Similarly, results on real data showed only 

26% accuracy when the utilities defined as immediate rewards obtained by the workers 

(more details presented in Section 4). However, in practice, people’s utility functions are 

known to constitute preferences across multiple attributes. Hence, in the remaining sections, 

we assumed that the worker’s utility function is a multi-attribute function and developed 

algorithms that can accurately predict stopping time even in the presence of less information 

about the worker.

3.2.2. Multi Attribute Utility with Known Weights. As discussed in the previous 

section, people evaluate the alternatives available to him/her over multiple attributes and then 

make a decision. For instance, people usually consider price, quality, quantity, and product 

reviews before deciding to buy a product on an e-commerce platform. This evaluation to 

make a decision becomes more complicated with the increase in the number of attributes 

taken into consideration while evaluating a choice and draining out more energy from the 

human. If the person has to make a sequence of such decisions, then he/she will experience 

decision fatigue and avoids deciding. Hence, predicting the human agent’s stopping time 

in the presence of a large number of attributes can help avoid the decision avoidance 

stage. Hence, in this section, we try to model the utility function of the crowdworker as a 

multi-attribute function and develop algorithms to predict his/her stopping time.
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Mathematically, let the utility of the crowd worker to be a linear combination of 

single-attribute utilities as shown below.

t

UiJt = Z  Z  akXl’k -  $ ( 3 . 8 )
i= 1 k eM

where the weights {a k}keM are known. Assuming that the workers preferences over M 

task attributes and the rewards associated with each of them are perfectly observable, the 

stopping time t* can be modelled as

t* = minimize {t e T  \ Ui,t -  fit-1A and a  is known} , (3.9)

As the weights allocated to each attribute and the immediate reward associated with 

them are perfectly observable, the above modeling of stopping time leads to a system of 

bi-variate(d, yS) non-linear inequalities associated with each decision until stopping time as 

mentioned in Equation 3.10.

Ui, t< S t~1A, i e {1, ••• , t * -  1}

and U1,t* < ySt*-1A.
(3.10)

We propose below three algorithms to predict the stopping time in case of such a 

multi-attribute utility function along with estimating the model parameters d,yS.

• Online Learning Based on Bounds (OL-BB)

• Batch Learning using Quadratic Programming (BL-QP)

• Online Learning using Quadratic Programming (OL-QP)

3.2.2.I. Online learning based on bounds (OL-BB). The algorithm leverages 

the fact that every decision employed by worker W  until stopping time t* on a particular 

iteration/day establish either a lower/upper bound on the discounted threshold fipA, p e
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{1, • • • , t* -  1} in terms of the utility observed. Using the two decision times with most 

tightly bounded discounted thresholds, it estimates the model parameters and consequently 

predicts the stopping time.

More formally explaining the algorithm, let dj = {Ui,1, ••• Ui,t]} denote the worker’s 

utilities for the decisions employed over j th iteration, where Ui,t = (xi,1,t, • • • xi,M,t) sequence 

of instantaneous rewards observed by the worker W  with respect to M  attributes for 

executing ith task. The system of bi-variate non-linear inequalities associated with each 

decision until stopping time (t*) establishes a range to the discounted threshold as shown in 

the Equation (3.11). Let (Max, Min) e R+ be any two integers, then

Ui,t < ySt 1A < Max, t e {1, 1}
v*-1 (3.11)

and Min < f i j  A > Uif *

Let e , f  be the the decision times where we observe tighter bounds on the discounted 

threshold using the system of inequations as specified in the Equation (3.11). Using the 

bounds at the the decision times e, f , the model parameter values (A,fi) are estimated as 

below:

mean(Uie,M ax ) \ e  ̂
mean(Ui j ,Miri))

(3.12)

The prediction can be poor during the initial iterations, but can be improved by 

observing workers’ decisions over multiple iterations. Let Bounds = {i : (ai,b i) | Vi e 

(0, max{t*, • • • , t *})} be the set of bounds at each decision time over j  iterations. When a
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new iteration is made (dj+1 ), the bounds on discounted threshold are updated, as below:

Ui,t < fit- 1A < Max  , if t e {1, • • • , t*+1 -  1} and t £ Bounds

max {at,Ui t} < fit-1A< Max  , if t e {1, ••• , T +  -  1} and t e Bounds

Min < fit*+1 A < Ui,t*+i , if t*+1 £ Bounds

Min < p t*+1 A< min{bt*+i,Ui,t*+i} , if t*+1 e Bounds
7+1 ’7+1 (3.13)

With each iteration, this online learning algorithm updates bounds on S pA,p e 

{0, • • • ,max{11, • • • ,t*}}, where j  being the current iteration using the above Equation 

(3.13) and uses the final calculated bounds to estimate model parameters. Algorithm 1 

describes the proposed online algorithm to predict the stopping time by estimating the 

model parameters.

Using this algorithm, we were able to predict the stopping time accurately in the case 

of higher and lower S  values on the simulated data (details in Section 4). However, in the 

presence of lower S  values, the algorithm fails to accurately estimate the S  parameter value. 

We propose another algorithm to predict the stopping time in the presence of multi-attribute 

utility function with known weights.

3.2.2.2. Batch learning using quadratic programming (BL-QP). As discussed 

in the previous section, the stopping time (t*) is associated with a system of bivariate 

non-linear inequations that can be transformed into a system of bivariate linear inequations 

using log-linearization. Now that we have a linear system, we formulated the prediction 

problem as a quadratic program [53] to minimize the gap between the discounted threshold 

of the worker and the accumulated utility observed at each decision time until stopping time. 

The optimal solution of the minimization problem is considered as the estimated values of 

model parameters (A,$). While estimating the model parameters, this algorithm ingests 

all the training data available about the worker at a time to estimate the parameter values
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Algorithm 1 Online learning based on bounds (OL-BB)
1:
2:
3:
4:

5:

6:
7:
8:
9:

10:
11:
12:

13:
14:
15:
16:
17:

18:
19:

20:

21:

22:

procedure OL-BB (dj+i ) > dj+i being current iterations’ data
Required: Max ^  Very Large Integer 
Required: Min ^  Very Small Integer 
Required: Bounds ^  {i : (ai,b i) | Vi e (0,m ax(t*, • • • ,t*)}
> (ai, bi) be the lower&upper bounds of p lA at each decision time until the current 

iteration
procedure OL-BB(dy+1)

for every k e dj+1 do 
if k == len (dj+1) then

if k e Keys (Bounds) then 
bk ^  min(bk, Ui,k)

else
Bounds [k ] ^  (M in,Ui,k)

else
if k e Keys (Bounds) then 

ak ^  m ax(ak,Ui,k)
else

d i f f
avg <

P ^  

X<r-

Bounds[k] ^  (Ui^k,Max)
^  {i : bi -  ai | Vi e K eys(Bounds)}

— {i : (bi + ai)/2  | Vi e K eys(Bounds)} 
/ avg[e] \ e--
\a v g [f ] /
Ue
Pe

> Assuming e , f  are the decision times with tighter bounds

return A, P

and hence called batch learning algorithm. Using estimated values and the stopping time 

Equation (3.9), the stopping time t* is predicted. Problem (P1) shows the minimization 

problem that is used to predict the stopping time.

Let x = [logA logP s ^  ••• s1t(t1)* s2y ••• snytn)*]r  denote the vector 

of unknown model parameters where sij represents slack variables used to convert the 

inequality associated with j th decision on ith iteration into an equation. The slack variables
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also capture any variations in the assumed utility function. If we define

1 0 -1 0 ................... • 0 log U1,1

1 1 0 -1  • • • • • • • • 0 log U1,2

: 0

1 t\ - 1 0 • • • 1 • • • • • 0 , and b = log U1,t*

1 0 0 0 • • • -1  • • 0 log U2 ,1

1 t * -  1ln 1 0 0 ................... • 1 log Un,t*

then the goal is to minimize the distance between discounted threshold values and utility 

obtained at each decision over multiple iterations

r \

minimize || Ax -  b ||2

subject to 1. 0 < [ 1 , 0 , ]rx < to

2. -  to < [0 ,1 ,0f*+—+f*]rx < 0

3. {Si,j > 0 | V i e {1, • • • , n} and j  e {t*v  • • • , t*}}

The constraints impose limits on model parameters and the slack variables to restrict 

the acceptable solution space to positive quadrant(refer Definition 1).

A > 0 0 < log A < t o

S  e (0,1) = ^  - t o  < logyS < 0
(3.14)

The above formed problem (P1) is a standard quadratic program which can be 

solved using interior-point algorithms [53]. Interior-point algorithms converts the original 

minimization problem with linear inequality constraints into an unconstrained optimiza

tion problem using a barrier function that includes inequality constraints in the objective 

function as a penalizing term. Barrier function is a continuous function whose value on
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a point increases to infinity as the point approaches the boundary of the feasible region 

of an optimization problem. The two most common types of barrier functions are inverse 

barrier functions and logarithmic barrier functions. Now that the problem becomes an 

unconstrained optimization problem and techniques like gradient descent can be used to 

compute the optimal solution. The near optimal solution x = [log A, log fS,s{,\, ••• , s^ t* ]T 

for Problem (P1) is calculated using interior-point algorithms as mentioned earlier. The 

solution describes the estimated values of model parameters and using the estimated values 

(A,fS) and the stopping time Equation (3.9), the stopping time t* is predicted.

Simulation results (as explained in Section 4) show that the model estimates stopping 

time accurately in both the cases of lower and higher S  values. However, similar to the 

previous algorithm, this algorithm fails to estimate the S  parameter values accurately when 

S  < 0.5.

Another disadvantage using this algorithm is that it is a batch learning algorithm ie., 

estimates the model parameters’ values using the entire training data at once. However, in 

reality, the worker’s decision data over multiple iterations are available in sequential order 

and the proposed algorithm cannot accommodate the patterns in the new iterations’ data 

on-the-fly. It has to be retrained on the entire data (old+new) to accommodate new patterns. 

This thought has made us design below online learning algorithm to predict the stopping 

time in the presence of multi-attribute utility value with known weights.

3.2.2.3. Online learning using quadratic programming (OL-QP). The previ

ously proposed batch learning algorithm assumes that the workers’ decisions over multiple 

iterations are available before train the model. However, in the real world, data might be 

observed on-the-fly, and the model should be able to accommodate the new data in its’ 

structure. Online algorithms are the most commonly used techniques in machine learning 

in such scenarios. Hence we propose an online learning algorithm that ingests workers’ 

decision data of only one iteration at a time and predicts the stopping time and estimating 

the model parameters.
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This online learning algorithm uses regularized convex programming technique to 

predict the stopping time whose objective is to minimize the regularized regret that measures 

the distance between the utilities observed at the worker and the discounted threshold in 

the current iteration. To apply this technique, first the non-linear system of inequalities 

associated with each decision on a particular iteration is converted into linear equations by 

log-linearizing and adding slack variables {si,1, • • • si,t*}, where i is the current iteration.

L etx i = [log A, logyS, si,i, • • • , si,t*] be the vector representing the model parameters 

in the ith iteration. If we define

1 0 -1  . . .  • • 0 log Ui,1

Ai =
1 1 0 -1  • • 0

, bi =
log Ui,2

1 t * - 1 0 ••• • • 1 log Ui,t*

1 0  ••• 0

0
/  =

1 ••• 0

, and

0 0  ••• 1

and let Ri be the regret observed while estimating the parameters in the ith iteration,

Ri = ||AiXi -  bi\\l (3.15)

then the goal of the algorithm is to minimize the regret observed over the iteration,
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minimize Ri + ^ ||x , -  x ,— ||2X z
subject to 1. 0 < [1 ,0 ,0,*]Tx , < to

1 (P2)
2. [0 ,1 ,0,*]Tx , < 0

3. [0 ,0 ,li]Tx , > 0,*T

where t* is the stopping time of the current iteration, and ^ is the tuning parameter for 

regularization to penalize the model for overfitting. The above formed problem (P2) is 

a standard quadratic program which can be solved using interior-point algorithms [53] 

which is very similar to the procedure described while presenting batch learning algorithm 

proposed earlier. The near optimal solution of this problem is considered as the values of 

model parameters in the current iteration and the estimated values are updated as a weighted 

sum of model parameter values from the previous iteration and current iteration. Algorithm 

2 describes the step-by-step procedure.

Algorithm 2 Online Learning using Qudratic Programming (OL-QP)
1: procedure OL-QP(dy+1)
2: Required: Xi and S
3: X,S  — Solve Problem (P2) using di
4: Xi+1 —— 6 * Xi + (1 — 6) * X,
5: ySi+1 — 6 * S  + (1 — 6) * yS,
6: return Af+1 , S + 1

> dj+1 — set of utilities in current iteration 
> Estimates from previous iteration 

> Estimate current parameters
> Update rule for model parameter X
> Update rule for model parameter S

Results show that the proposed algorithm has a similar performance in predicting the 

stopping time to that of the other two algorithms that we described earlier in this section(OL- 

BB, BL-QP). It estimates the stopping time accurately; however fails to estimate both the 

X, S  parameters in case of lesser S  < 0.5 values(detailed analysis presented in Section 4).

3.2.3. Multi-Attribute Utility with Unknown Weights. Previously proposed al

gorithms in the thesis are based on the assumption that the weights allocated to each attribute 

taken to consideration while evaluating a task are known. In contradiction, workers gener

ally have a preference order over the attributes. They are unaware of the exact weights that
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they allocate to each attribute, and hence this information is not readily available for the 

algorithm to proceed with prediction. When the weights associated with each attribute is 

unknown, the stopping time t* is modeled, as shown in Equation (3.16).

= minimize {t e T  | Ut = E E  ®kxi,k — p  A}
i= 1 k eM

(3.16)

From the above equation, it is clear that the stopping time is associated with a system 

of non-linear multivariate inequations corresponding to each decision until stopping time.

akxi,k < J3f 1A, t e {1, ••• t * -  1}
i=1 keM

t*
and E E  «kx;,k — P  1A

(3.17)

i=1 keM

The problem of estimating the model parameters in such a non-linear multivariate 

environment can quickly become an ill-posed problem if the number of attributes is higher 

than the number of tasks the worker executes in an iteration, thereby making the designing 

of the algorithm more difficult. Hence we propose a batch learning algorithm that uses 

alternating minimization techniques(BL-AM) to estimate the model parameters.

From Equation (3.16), the stopping time is dependent on multiple variables(d,yS, a ) 

that need to be estimated before predicting the stopping time. The problem of estimating 

model parameters forms a quadratic program where our goal is to minimize the root-mean- 

squared-error of the predicted stopping time observed over the entire training data.

arg min A (A, p, a ) =
A,p,a

E ( E ( t *  -  ' h 2
k =1

(P3)

Optimizing over multiple variables jointly makes the problem intractable and dif

ficult to compute. One way to handle this optimization problem is to combine all the 

unknowns into a single variable x = (a,fi, a) and directly applying standard iterative al

gorithms like gradient descent. An alternative approach to solving such problems is to
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adapt alternating minimization technique, which sequentially optimizes one variable while 

keeping the others constant. Compared to standard algorithms, alternating minimization 

algorithms are easy to implement because subproblems are easy to handle, can give a 

closed-form solution, and has a better convergence rate. Hence, we use this technique to 

design an algorithm to predict the stopping time. The algorithm we propose formulates the 

main optimization problem (P3) as a series of two subproblems. The first subproblem as

sumes that the weights of the attributes are known and estimates the threshold and discount 

factor values. The second problem keeps the threshold and discount factor as constants 

and estimates the weights of the attributes using interior-point algorithms. This alternating 

procedure of estimating parameter values is repeated multiple times until a convergence in 

the root-mean-squared error of the predicted stopping time is observed. Summarizing the 

proposed algorithm as: starting at the arbitrary initial point where all the attributes had 

equal weightage(a0); for k > 1, iteratively compute

Ak,Sk e argmin A (A,S, a  k- 1 )
A,SeR+

a  k e argmin A (Ak,fik, a)
aeR™

(P4)

The two minimization problems specified in the Problem (P4) are solved using solu

tions approaches available to solve quadratic programs. The first subproblem is equivalent 

to the problem we formulated in the Section 3.2.2, where we assumed the utility of the 

crowdworker as a multi-attribute utility with known weights. We use one of the algorithms 

that we proposed earlier(Section 3.2.2.2) to solve this subproblem. The second subproblem, 

where values of f3, A are assumed to be known, the stopping time(t*) is associated with a 

system of linear inequalities with the weights as unknowns. The linear inequalities, when 

transformed into linear equations using slack variables, the optimization problem to learn 

the weights associated with each attribute, is a standard quadratic program. An near approx

imate solution is calculated using interior-point algorithms [53]. The quadratic program is 

mathematically formulated as shown in Problem P5.
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Let x = [a\, • • • , a m, 5i,i, • • • , s«,tn] be the vector representing the model param- 

eters(weights) and the slack variables added to transform the linear inequation to linear 

equations. If we define

*1,1,1 • • *1,1,M 1 •• • 0 A

J3A
tl ti

z  * 1 ^  • • 'y j *1,i,M 0 •• • -1  ••• • • 0
A = i=1 i=1 , b = J3tl-1A

*2,1,1 • • *2,1,M 0 •• • ••• 1 • • 0
A

tnl tn
'y  ̂*n,i,1 • ’ ^  j *n,i,M 0 •• • -1 J3ttn-1A

. /=1 i=1 L J

our goal is to minimize the distance between the observed utilities and the discounted 

threshold,

r\
minimize ||Ax -  b ||2x z

s.t 1 . [1 m , 0tj+-+tn]x = i (P5)

2. x > 0

The constraints restrict the solution space to positive quadrant since weight asso

ciated with every attribute and the slack variables are always positive and sum of the all 

the weights is equal to one. The above problem (P5) is in a standard quadratic problem 

form which can be solved using interior-point algorithms [53]. The near optimal solution 

of this problem calculated using interior-point algorithm using barrier function technique 

is considered as the estimated values of the model parameters. Using the estimated values 

and discounted satisficing heuristic, stopping time(t*) is predicted. Algorithm 3 gives a 

step-by-step procedure of the proposed alternating minimization algorithm.
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Algorithm 3 Batch Learning using Alternating Minimization(BL-AM)
1
2

3

4
5
6
7
8

9

10

procedure BL-AM (D)
Required: Training Data D  ■

Initialize &

[di , • • • , dfi\

\\M \y ’ iimii
while Convergence on regret(R) is not seen do 

X,fi ^  Solve Problem (P1) using D , &
& ^  Solve Problem (P5) using D , X,/? 
for every dj e D  do

t* ^  Calculate stopping time using Equation (3.16) for dj

R ^  Calculate root-mean-squared error of regret 
return X,j3, &

> M  being the set of attributes

Simulation results (as discussed in Section 4) reveal that the proposed algorithm 

could predict the values of stopping time accurately in case of both lower and higher p  values. 

However, it fails to estimate the values of p  parameter accurately in case of lower p  < 0.5 

values due to the presence of little information about the worker. This behavior is consistent 

in all the algorithms that we proposed in this thesis. Nevertheless, the predicted stopping 

time converges to the true value inspite of the fact that the model parameter(beta) converge 

to biased estimate. This raised the question, "Is there a unique discounted satisficing model 

that admits a stopping time?". In the following theorem, we analyze this question and prove 

that two unique models(X,P &) can result in same stopping time decision, and hence there 

is no unique discounted satisficing model.

Theorem 1. There is no unique discounted satisficing model (X,p, &) that admits the same 

stopping time t* exhibited by a given crowd-worker W  when presented with a fixed set of 

task rewards X .

Proof. To prove that the theorem’s claim is true, consider the following two discounted 

satisficing models:

Model 1: Xi = 1000; pi = 0.1; a u  = 0.5; a = 0.5

Model 2: X2  = 10; p 2 = 0.9; a 2 ,i = 0.3; a 2 ,2  = 0.7
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Figure 3.3. Counter-Example: Decisions employed by the Agent

In other words, the agent following Models 1 and 2 experience utilities

respectively, where (x^t,x2,t) represents attribute-wise rewards for a given task performed 

at time t .

Figure 3.3 shows the decisions computed based on the above two discounted satis

ficing models in a choice experiment with fixed reward values

X = [[2 ,4], [4,6], [6, 8], [8,10], [10,12], •••].

The above two pairs of model parameters result in the same stopping time (t* = 3). □

In other words, even though our proposed algorithms fail to estimate the model 

parameters values accurately in the presence of little information about the worker, they can 

be used to predict their stopping time decisions accurately.
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4. VALIDATION

In this Section, we will see the error performance of the algorithms presented in 

Section 3 on simulation data and real data. We describe the simulation environment setup, 

real experiments conducted to collect the data and also present the web platform developed 

to collect real data in the case of multiple attributes.

4.1. SINGLE ATTRIBUTE UTILITY

In this subsection, as described in Section 3.2.1, we assume the worker’s utility as a 

single attribute value. Below we present the experimental setup, data collection, and error 

performance of the proposed algorithm on simulation data and real data.

Figure 4.1. Error performance in predicting stopping time t* and estimating A,fS when 
A = 100,(5 = 0.85
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Figure 4.2. Error performance in predicting stopping time t* and estimating X ,J3 when 
A = 100, yS = 0.35

4.1.1. Validation on Simulation Data. In our simulation experiment, we assume 

that four tasks (arms) are available at the worker with equal probability, where the kth task 

produces a y-distributed reward with the shape parameter (a  = 2) and scale parameter 

(S = 4). Letting f3L = 0.05 and fiu = 1 in our first proposed algorithm, we run several 

Monte-Carlo simulations of the experiment to compute the normalized average error of 

the predicted stopping time and estimated model parameters. In the simulation results, 

we found that the estimation error of our algorithm converges to zero consistently only 

when S  > 0.5. We illustrate this observation graphically using two examples both with a 

fixed A = 100, where the Figure 4.1 demonstrates the convergence of estimation error to 

zero when S  = 0.85, while the Figure 4.2 demonstrates the fact that estimation error does 

not converge to zero when S  = 0.35. This can be attributed to the fact that the dynamic
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thresholds of the agents with lower y8 values generally deteriorate at a much faster rate, 

thereby revealing very little about the model parameters in their choices. Also, we have 

noticed deteriorated performance in the presence of small values of A, which can also be 

justified with similar reasons as stated above, in the case of small values of y8. However, 

both the Figures 4.1,4.2 show that the error while predicting stopping time converges to 

zero in both the cases.

4.1.2. Validation on Real Data. To validate our algorithm on real-data, we have 

designed an ANDROID application, where an agent can play a multi-armed bandit game(4 

bandits). Figure 4.3 shows an impression of the game developed. Each bandit, when 

selected, generates a uniformly distributed random reward within the support mentioned as 

in Table 4.1.

Figure 4.3. Multi-Armed Bandit ANDROID application
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Table 4.1. Reward Distribution of Bandits

Bandit Reward Distribution
1 U(1,20)
2 U(1,30)
3 U(1,40)
4 U(1,50)

We conducted a simple lab experiment where we asked players to play the ANDROID 

game which allows them to select a bandit to receive a random reward and can decide when 

they wanted to stop. They are informed that they will receive all the money won by them 

until the time they decide to stop. Also, we made sure that players are unaware of the 

bandits' reward distribution and do not discuss with each other while playing the game to 

avoid biases on the bandits.

Based on preliminary data collected using this application, our algorithm predicts the 

workers’ stopping time with 26% accuracy if the utilities are defined as immediate rewards. 

However, in practice, people’s utility functions are known to constitute preferences across 

multiple attributes. This motivated us to model the utility function as a multi-attribute 

function. The results are presented in the further sections.

4.2. MULTI-ATTRIBUTE UTILITY

In this Section, we will evaluate the algorithms proposed in Section 3.2 on data 

collected from simulation experiments. We present the experimental setup and the error 

performance details of our proposed algorithms.

4.2.1. Simulation Results for OL-BB, BL-QP, OL-QP Algorithms (Known 

Weights). To validate the algorithms proposed (in Section 3.2.2), when the utility of 

the crowd worker is a multi-attribute value with known weights, we designed a simulation 

experiment, where we assumed four tasks are available at the crowd worker W  with equal 

probability. Each, when selected, produces m y -distributed random rewards with shape
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Figure 4.4. Error performance while predicting stopping time t* when A = 100; S  = 
0.85; a 1 = 0.15; a2 = 0.85

Figure 4.5. Error performance while estimating model parameter A when A = 100, S  = 
0.85; a1 = 0.15; a2 = 0.85
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Figure 4.6. Error performance while estimating model parameter /? when A = 100, fi = 
0.85; ai = 0.15; a2 = 0.85

Figure 4.7. Error performance while predicting stopping time t* when A = 100, fi = 
0.35; a i  = 0.15; a2 = 0.85
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Figure 4.8. Error performance while estimating model parameter A when A = 100,$ = 
0.35; a 1 = 0.15; a2 = 0.85

Figure 4.9. Error performance while estimating model parameter $  when A = 100, S  = 
0.35; a 1 = 0.15; a2 = 0.85
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parameter (a  = 2) and scale parameter (S = 4) corresponding to m attributes of the task. 

We also assume that the worker evaluates each task based on two (m = 2) attributes with 

known weights a i  = 0.15, a 2 = 0.85 respectively. The regularization tuning parameter 

used in online learning algorithm (OL-QP) is assumed to be ^ = 1000. Assuming that the 

worker’s model parameters are A = 100, yS = 0.85 in the first case and A = 100;yS = 0.35 in 

the second case, we ran several Monte-Carlo simulations of the proposed three algorithms 

and estimated model parameters A,yS. Using the estimated model parameters and stopping 

time Equation (3.9), we predicted the stopping time t* of the crowdworker.

In the simulation results, we observed that average normalized error of the predicted 

stopping time using all the three proposed algorithms converges to zero consistently. This 

can be seen in the Figure 4.4 and Figure 4.7. When yS > 0.5, we can see that all the three 

algorithms estimates the model parameters accurately and error converges to zero (shown 

in Figure 4.5 and Figure 4.6). Although, we can see convergence in the estimation error 

when yS < 0.5 (shown in Figure 4.9 and 4.8), the error is quite high when compared to the 

former case. Nevertheless, this does not have any effect on the prediction of stopping time. 

From the Figure 4.7, it is evident that all the three algorithms perform well in predicting 

stopping time in the case of (yS < 0.5) even though the yS estimation error is high.

4.2.2. Simulation Results for BL-AM Algorithm (Unknown W eights). In order 

to validate the algorithms proposed in Section 3.2.3 when the utility function is multi

attribute function with unknown weights, we designed a simulation experiment, where we 

assumed that 4 tasks are available at the crowd worker W  with equal probability. Each task, 

when selected, produces m y-distributed random rewards with shape parameter (a  = 2) 

and scale parameter (S = 4) corresponding to m attributes of the task. We also assume 

that the worker evaluates each task based on two (m = 2) attributes with unknown weights. 

Assuming that the worker’s model parameters are (A = 100,yS = 0.85) in the first case 

and (A = 100; yS = 0.35) in the second case, we ran several Monte-Carlo simulations of
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Figure 4.10. Error performance in predicting stopping time t* and estimating A,fi, & when 
A = 100, S  = 0.35; a 1 = 0.15; a 2 = 0.85

the proposed algorithm and estimated model parameters (A,/?). Using the estimated model 

parameters and stopping time Equation (3.16), we predicted the stopping time (t*) of the 

crowd worker.

From the Figures 4.10 and 4.11, it is evident that the proposed batch learning 

algorithm predicts the stopping time accurately. When S  > 0.5, we can see that the 

estimation error with respect to model parameters (A,S, &) is converging to zero as the 

number of iterations increase (shown in Figure 4.10). However, in the case of S  < 0.5, 

we observe that the estimation error concerning S  parameter is quite high compared to
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Figure 4.11. Convergence of error incase of multi-attribute utility with unknown 
weights(4 = 100; S  = 0.35; a 1 = 0.15; a2 = 0.85)

the former case. However, we observed that this error does not have much impact on the 

prediction of stopping time. Figure 4.11 shows that the normalized error of the prediction 

stopping time is converging to zero as the number of iterations increases.

4.3. CROWDSOURCING PLATFORM DEVELOPMENT

In order to validate our proposed algorithms in the case of multi-attribute utility on 

real-data, we need a platform that can give us information about the rewards associated with 

the task’s multiple attributes. Existing platforms like Amazon MTurk or Crowd Flower 

does not provide this information due to privacy concerns. Hence, we developed a web 

application in our lab that replicates a crowdsourcing platform and captures information
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about other attributes of the task apart from monetary rewards. This platform allows the 

crowd workers to create a profile for themselves, perform micro-tasks, and earn money for 

the executed tasks. It supports three types of tasks, such as (i) Handwriting Recognition, 

where the digit in the image has to be labeled (ii) Image Labeling, where the object in the 

image has to be identified and labeled and (iii) Content Moderation, where tweets need to 

labeled as sensitive/insensitive. Figures 4.12 and 4.13 shows sample task selection in the 

developed application.

Figure 4.12. Crowdsourcing Platform: Sample type of task selection

Once the worker chooses the type of task he/she wants to execute, they are presented 

with a list of tasks available along with the details like expected time to complete the task, 

skills required, the monetary reward he/she receives after the successful completion of 

the task and the employer information. The worker can thoroughly examine the available 

tasks and then choose one to execute. We have created the tasks using publicly available 

datasets such as the MNIST handwriting recognition dataset(60000 Images), Fruits 360 

dataset(67692 Images), and Hate-speech dataset from the white supremacy forum(10,568 

sentences) [54]. Figures 4.15,4.14,4.16 shows the sample tasks for each type.



42
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Knowledge on
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• colors
• shapes

ABCjZompany kgFJ487gEQ Labeling the image 0.53 5.3

Knowledge on
• English Language
• Fruits
• colors
• shapes

^ 3

123_Company IzMCSlOmWX Labeling the image 0.38 11.64

Knowledge on
• English Language
• Fruits Select

Figure 4.13. Crowdsourcing Platform: Sample task selection for execution

Figure 4.14. Crowdsourcing Platform: Sample Image Labeling task

The process of data collection using this developed web application is still under 

process, and the performance of the proposed algorithms on the real data is yet to be 

evaluated.
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Crowdsourcing Platform Hello, '3H2jscU
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< <  Back
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Figure 4.15. Crowdsourcing Platform: Sample Handwriting Recognition task

Figure 4.16. Crowdsourcing Platform: Sample Content Moderation task
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5. CONCLUSION AND FUTURE WORK

In summary, we have proposed a novel heuristic called Discounted Satisficing to 

model stopping time of the human agent during sequential decision-making. Algorithms 

were presented to predict the stopping time of the agent exhibiting discounted satisficing 

heuristic and their performance on simulation data was also shown. The crowdsourcing 

platform designed to capture rewards with respect to multiple attributes of the executed task 

was also presented. Although our algorithms fails to estimate model parameters accurately 

in the case of human agents with greater discontent levels; it predicts stopping accurately. 

This led us to prove that two human agents with different preference order over attributes, 

thresholds and discontent levels can have same stopping time in the presence of fixed set of 

rewards.

Our next step is to collect real decisions of human agents using the developed web 

application and analyze our algorithms' performance on the real data. In addition, we 

would also like to extend our work by relaxing some of our assumptions such as immediate 

rewards of the tasks are perfectly observable, and agents always experience a diminishing 

threshold, especially since the above assumptions may not hold during every sequential 

decision-making situation in reality. We would also like to extend our model to settings 

where people adjust their threshold levels on-the-fly because of sudden surprise in the 

dynamic feedback from their instantaneous decisions.
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