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a b s t r a c t

Magnetic particles and droplets have been used in a wide range applications including 

biomedicine, biological analysis and chemical reaction. The manipulation of magnetic 

microparticles or microdroplets in microscale fluid environments is one of the most critical 

processes in the systems and platforms based on microfluidic technology. The conventional 

methods are based on magnetic forces to manipulate magnetic particles or droplets in a 

viscous fluid.

In contrast to conventional magnetic separation method, several recent experimental 

and theoretical studies have demonstrated a different way to manipulate magnetic non

spherical particles by using a uniform magnetic field in the microchannel. However, the 

fundamental mechanism behind this method is not fully understood. In this research, we 

aims to use numerical and experimental methods to explore and investigate manipulation of 

microparticles and microdroplets in the microfluidics by using a uniform magnetic field. In 

the first part, rotational dynamics of elliptical particles in a simple shear flow is numerically 

investigated; then, lateral migration of elliptical particles in a plane Poiseuille flow is 

numerically investigated; The third part compares the rotational dynamics of paramagnetic 

and ferromagnetic elliptical particles particles in a simple shear flow; in the fourth part, 

particle-particle interactions and relative motions of a pair of magnetic elliptical particles in a 

quiescent flow are numerically investigated; magnetic separation of magnetic microdroplets 

by the uniform magnetic field is proposed in the fifth part.

The methods demonstrated in this research not only develop numerical and experi

mental way to understand the fundamental transport properties of magnetic particles and 

droplets in microscale fluid environments, but also provide a simple and efficient method for 

the separation of microdroplets in microfluidic device, which can impact biomedical and 

bio-medicine technologies.
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section

i . i n t r o d u c t i o n

Magnetic particles have been used in a vast number of applications including 

biomedicine (Pankhurst et al., 2003), biological analysis, and chemical catalysis (Gijs et al., 

2009; Pamme, 2012). The separation of magnetic microparticles and nanoparticles in 

microscale fluid environments is one of the most important processes in the systems and 

platforms based on microfluidic technology (Pamme, 2006, 2012). A magnetic field is a 

powerful tool to separate magnetic particles or magnetically labelled cells, antigens, and 

enzymes (Gijs, 2004; Pamme, 2006; Suwa and Watarai, 2011). Most magnetic separation 

methods are based on magnetophoresis, which manipulates magnetic particles in a viscous 

fluid by using magnetic forces. To generate the magnetic force, it requires both magnetic 

particles and a spatially non-uniform field (magnetic field gradient) (Pamme, 2006). There 

are two different types of magnetophoresis: one is called negative magnetophoresis -  

manipulating diamagnetic particles in a magnetic fluid such as ferrofluids (Bucak et al., 

2011; Winkleman et al., 2007; Zhou et al., 2016; Zhou and Xuan, 2016); the other one is 

called positive magnetophoresis -  separating paramagnetic or ferromagnetic particles in a 

non-magnetic fluid such as water (Chen et al., 2015; Zborowski et al., 1999).

In contrast to conventional magnetophoresis, several recent experimental and the

oretical studies (Matsunaga et al., 2017a,b; Zhou et al., 2017a,b) have demonstrated a 

different way to manipulate magnetic non-spherical particles by a uniform magnetic field 

in the microchannel. The uniform magnetic field does not generate a magnetic force, but 

instead generates non-zero magnetic torques due to the non-spherical particle shape. When 

coupled with particle-wall hydrodynamic interaction (Gavze and Shapiro, 1997; Leal, 1980), 

the uniform magnetic field alters the rotational dynamics of non-spherical particles, and
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consequently controls the lateral migration of particles. Experiments preformed by Zhou et 

al. (Zhou et al., 2017a,b) have demonstrated that a weak uniform magnetic field can separate 

paramagnetic particles in a microchannel pressure-driven flow. The magnetic torque broke 

the symmetry of the particle rotation. Due to the particle-wall hydrodynamic interaction, 

the particles migrated laterally towards or away from the wall depending on the direction of 

magnetic field. Matsunaga et al. (Matsunaga et al., 2017a,b) proposed a far-field theory and 

used the boundary element method to demonstrate that a strong uniform magnetic field can 

separate the ferromagnetic particles in both simple shear flow near the wall and Poiseuille 

flow between two walls. In this method, ferromagnetic particles are pinned at steady angles 

and the lateral migration results from particle-wall hydrodynamic interactions as well.

Due to its importance to science and engineering, the dynamics of non-spherical 

particles in flows have been a subject of extensive theoretical, numerical and experimental 

investigations. For example, the pioneering work includes Jeffery’s theory (Jeffery, 1922) 

and experimental studies by Mason’s group (Goldsmith and Mason, 1961; Trevelyan and 

Mason, 1951). With the advancement of computing capabilities, numerical simulations 

have been increasingly employed to study the motion of both spherical and non-spherical 

particles in a variety of shear flows, including plane Couette and Poiseuille flows. Feng et 

al. (Feng et al., 1994) reported a direction numerical simulation (DNS) based on the finite 

element method (FEM) to study the lateral migration of the neutrally and non-neutrally 

buoyant circular particle in plane Couette and Poiseuille flows. The simulation results agree 

qualitatively with the results of perturbation theories and experimental data. Gavze and 

Shapiro (Gavze and Shapiro, 1997) used a boundary integral equation method to investigate 

the effect of particle shape on forces and velocities acting on the particle near the wall 

in a shear flow. Pan’s group proposed a distributed Lagrange-multiplier-based fictitious 

domain method (DLM) to investigate the motion of multiple neutrally buoyant circular 

cylinders and elliptical cylinders in shear flow (Huang et al., 2015; Pan et al., 2013) and 

plane Poiseuille flow (Chen et al., 2012; Pan and Glowinski, 2002). Yang et al. (Yang
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et al., 2005) reported two methods, the arbitrary Lagrangian-Eulerian (ALE) method and 

the distributed Lagrange-multiplier-based fictitious domain method (DLM), to study the 

migration of a single neutrally buoyant rigid sphere in tube Poiseuille flow. Ai et al. (Ai 

et al., 2009b) investigated some key factors on pressure-driven transport of particles in a 

symmetric converging-diverging microchannel by the ALE finite-element method. Lee et al. 

(Lee et al., 2009a,b) used the same method as Gavze and Shapiro (Gavze and Shapiro, 1997) 

to study the particle transport behaviour with different size, shape and material properties in 

the plane Couette flow.

In addition to a single magnetic particle, high density magnetic microparticles or 

nanoparticles immersed in non-magnetic fluid tend to form chains, clusters or columns 

under an external magnetic field. The suspension consisting of high density magnetic 

microparticles or nanoparticles is called as magnetorheological fluids (MRFs) (De Vicente 

et al., 2011). The MRFs are smart materials which show various rheological properties, 

such as yield stress and apparent viscosity. The values of these rheological properties are 

increased to several orders of magnitude under the appropriately applied magnetic field. 

Due to their remarkable properties and the quick response to the magnetic field, MRFs 

are the good candidates for a vast number of industrial and medical applications, such as 

magnetorheological rotor damper, brakes, clutches, valves and cancer therapeutic (Bica 

et al., 2013; Rabinow, 1948; Sheng et al., 1999). Recently, the experimental (Anupama 

et al., 2018; Bell et al., 2008, 2007; Bombard et al., 2014; de Vicente et al., 2010; Dong 

et al., 2015; Jiang et al., 2011; Lopez-Lopez et al., 2009, 2007; Morillas et al., 2015; Ngatu 

et al., 2008; Sedlacik et al., 2013) and theoretical (Bossis et al., 2015; De Vicente et al., 

2009; Kuzhir et al., 2009) investigations reported that the MRFs with non-spherical particles 

have stronger magnetorheological properties and better sedimentation stability compared to 

those with spherical particles.
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Furthermore, droplet microfluidics has emerged as a powerful technology on a 

lab-on-a-chip platform for high-throughput screening of chemical and biological assays (Du 

et al., 2016; Guo et al., 2012; Shembekar et al., 2016). Dispersed in a continuous phase, 

individual droplets often encapsulate chemical or biological samples (e.g., cells, DNA, 

proteins, and bacteria), serve as miniaturized reactors, and allow biological and chemical 

reactions inside individual micro-droplets (Shang et al., 2017). The large surface to volume 

ratio leads to significantly enhanced mass and heat transfer and bio-/chemical reactions. 

Moreover, the high-throughput nature enables a vast number of assays in parallel, thereby 

drastically improving accuracy of the results. Manipulation, e.g., sorting, of the droplets 

based on their contents or properties is a often a critical step in the chemical or biological 

assay. Droplets can be sorted by passive or active methods. Passive methods are based on 

hydrodynamic features, such as geometry and fluid properties, to manipulation the droplets 

(Bowman et al., 2012; Hatch et al., 2013; Kadivar et al., 2013; Tan et al., 2004, 2008; 

Tan and Lee, 2005). For passive methods to be effective, a complex geometry is usually 

employed or a particular fluid such as viscoelastic fluid is used as a buffer, which places 

some limitations on lab-on-a-chip applications. Active methods employ external fields (Xi 

et al., 2017), such as electric (Agresti et al., 2010; Ahn et al., 2009, 2011, 2006; de Ruiter 

et al., 2014; Eastburn et al., 2015; Guo et al., 2010; Link et al., 2006; Niu et al., 2007; 

Rao et al., 2015a,b; Sciambi and Abate, 2014, 2015), acoustic (Lee et al., 2012; Leibacher 

et al., 2015; Li et al., 2013; Nam et al., 2012; Petersson et al., 2005; Schmid et al., 2014), 

or magnetic forces (Brouzes et al., 2015; Kim et al., 2014; Li et al., 2016; Lombardi and 

Dittrich, 2011; Nguyen et al., 2006; Surenjav et al., 2009; Teste et al., 2015; Zhang et al., 

2011, 2009), to manipulate droplets. Among the various active methods, magnetic methods 

have several distinctive advantages such as low or no heat generation, simple implementation 

and contactless control, and thus, have received increasing attention over the last few years 

(Huang et al., 2017).
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The objective of this doctoral research is to explore and investigate manipulation of 

microparticles and microdroplets in the microfluidics by using a uniform magnetic field. This 

approach will have many advantages over the traditional force-based techniques, including 

simple implementation, feasibility of scaling up, and large reach distance. Specifically, 

I develop direct numerical models and use experiments to understand the fundamental 

transport properties of particles and droplets, thus enabling novel applications, e.g., efficient 

magnetic separation methods, which can impact biomedical and bio-medicine technologies.
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2. o r g a n i z a t i o n  o f  d i s s e r t a t i o n

In this study, many technical developments have been achieved. Due to the page 

limit, only five major developments are presented in this dissertation. The first four papers 

are based on numerical simulations to investigate dynamics of magnetic microparticles, 

while the fifth paper is based on experimental method to study lateral migration of magnetic 

microdroplets. Specifically, Paper I focuses on rotational dynamics of elliptical particles 

in a simple shear flow. Paper II studies lateral migration of elliptical particles in a plane 

Poiseuille flow. Paper III compares translational and rotational dynamics of paramagnetic 

and ferromagnetic elliptical particles in both simple shear and pressure-driven flows. Paper 

IV investigates particle-particle interactions and relative motions of a pair of magnetic 

elliptical particles in a quiescent flow. Paper V proposes a novel method to magnetically 

separate magnetic droplets from non-magnetic droplets by using a uniform magnetic field.

All five papers share a same research topic: manipulation of microparticles and 

microdroplets by using a uniform magnetic field, while each of them has a different focus.

Paper I presents direct numerical simulation to investigate the rotational dynamics of 

elliptical particles in a simple shear flow under the uniform magnetic field. The present of 

magnetic field breaks the symmetry of particle rotation and alters the period of rotation. The 

effects of direction and strength of magnetic field, and aspect ratio of particle on particle 

rotation are numerically investigated.

Based on findings in Paper I, the lateral migration of elliptical paramagnetic particles 

in a plane Poiseuille flow is investigated in Paper II. The particle shown to exhibit negligible 

lateral migration in the absence of a magnetic field. When the magnetic field is applied, the 

particle migrates laterally. The effects of direction and strength of magnetic field on the 

direction and velocity of particle lateral migration are numerically studied. By investigating 

a wide range of parameters, our direct numerical simulations yield a comprehensive
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understanding of the particle migration mechanism. An empirical scaling relationship is 

proposed to relate the lateral migration distance to the asymmetry of the rotational velocity 

and lateral oscillation amplitude.

Paper III compares the rotational dynamics of paramagnetic and ferromagnetic 

elliptical particles in a simple shear flow. The results shown that paramagnetic and 

ferromagnetic particles exhibit markedly different rotational dynamics under a uniform 

magnetic field, which are in good agree with theoretical predication. The numerical 

investigation further reveals drastically different lateral migration behaviors of paramagnetic 

and ferromagnetic particles in a wall bounded simple shear flow under a uniform magnetic 

field. These two kinds of particles can thus be separated by combining a shear flow 

and a uniform magnetic field. We also study the lateral migration of paramagnetic and 

ferromagnetic particles in a pressure-driven flow (a more practical flow configuration in 

microfluidics), and observe similar lateral migration behaviors. These findings demonstrate 

a simple but useful way to manipulate non-spherical microparticles in microfluidic devices.

To understand the fundamental mechanism of particle-particle interactions of a 

pair of magnetic non-spherical particles, Paper IV proposes a fluid-structure interaction 

model with a full consideration of particle-fluid-magnetic field interaction. The results 

show that the particles spend much more time for the global reorientation than for the local 

magneto-orientation. The effects of initial particle position and aspect ratio on relative 

motion of particles are numerically investigated. The particle-particle interactions and 

relative motions of a pair of elliptical particles in this study provide insights on the particle 

alignment and chaining processes under uniform magnetic fields, which are closely related 

to the response of magneto-rheological fluids to magnetic fields.

In addition to numerical works, a simple and effective mechanism that can achieve

the separation of magnetic droplets in microfluidic flow under a uniform magnetic field

is demonstrated. In this method, the combination of the uniform magnetic field and the
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pressure-driven flow in a microchannel lends to the lateral migration of magnetic droplets. 

Using high-speed imaging and numerical methods, the effects of magnetic field strength and 

direction, and interfacial tension on the lateral migration of droplets are investigated.
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a b s t r a c t

Jeffery’s theory describes the periodic rotation of ellipsoidal particles in a simple 

shear flow at vanishing Reynolds number limit. In this paper, we present direct numerical 

simulations, implemented by using the arbitrary Lagrangian-Eulerian (ALE) method, to 

study the motion of ellipsoidal paramagnetic particles in a simple shear flow subjected to a 

uniform magnetic field. We investigated the effect of several parameters, including magnetic 

field strength, direction of magnetic field, and particle aspect ratio, on rotation period and 

asymmetry of particle rotation. Without a magnetic field, the simulation results are in good 

agreement with Jeffery’s theory. When a magnetic field is applied perpendicular to the flow 

direction, the rotational period became longer, and the magnetic field breaks the symmetry 

of rotational motion of the ellipsoidal particle. As the magnetic field strength increases

mailto:wancheng@mst.edu
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to a large enough value, the particle could not perform a complete rotation and reaches a 

steady angle. With other different directions of the magnetic field, the period of rotation and 

asymmetry of the angular dynamics is also modified.

Keywords: microfluidics; magnetic field; microparticle; Jeffory orbits

i . i n t r o d u c t i o n

Non-spherical microparticles are widely encountered in industrial, environmental 

and biological fluids: for example wood fibers in the paper-making industry (Alava and 

Niskanen, 2006), suspensions in complex fluids (Larson, 1999), and various micron-sized 

biological objects (Young, 2006). In biology and bioengineering, shape is one of the most 

important physical attributes of biological relevant particles (Mitragotri and Lahann, 2009; 

Young, 2006). It plays an important role in various applications of biomedicine and biology, 

such as diagnosis of diseases (Anstey et al., 2009), drug delivery (Champion et al., 2007) and 

cell synchronization (Valero et al., 2011). Because biological particles are often suspended 

in fluid environments, it is critical to understand the fundamental transport behaviors of 

non-spherical particles suspended in fluids. Over the last few decades there have been 

comprehensive theoretical and experimental investigations about the motion of ellipsoidal 

particle in a simple shear flow (Jeffery, 1922; Leal, 1980; Saffman, 1956; Taylor, 1923).

Jeffery firstly studies the motion of ellipsoidal particle immersed in a simple shear 

viscous flow (Jeffery, 1922). The periodic motion of particle is so called Jeffery orbits. The 

rotation period of a prolate spheroid with an aspect ratio AR (major semi-axis length/minor 

semi-axis length) in a simple shear flow U = (yy, 0, 0) is given by

Y(AR + 1/ AR)'
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The angle between the particle’s major axis and the z-axis, 6, and the angle between the 

y-axis and xy-projection of the particle axis, <p, are shown in Figure 1, which are given by

C • AR
tan6 = - ,

^ jA R c o h p  + sin^p

tancp = ARtan(2n  ̂ ),

where C is the orbit constant determined by the initial orientation of the particle. For C = to 

(6 = 90°), the particle just rotates in xy-plane, which means that <p only depends on the 

particle aspect ratio and the flow shear rate.

z

Figure 1. Schematic of an ellipsoidal particle in a simple shear flow.

In this paper, a 2D fluid-structure interaction (FSI) model is created to study the 

effect of magnetic field and particle aspect ratio on the period of rotation and symmetry 

of ellipsoidal paramagnetic particles. The paper is organized as follows. In Section 2, 

the simulation method, including mathematical model, COMSOL setting and material 

properties, is presented. In Section 3, we first compare the rotational period obtained from 

the simulation to Jeffery’s theory. Then we present the results and discussion about the 

effect of the strength and direction of magnetic field and particle aspect ratio on particle. In 

Section 4, the main conclusions of this study are summarized.
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2. s i m u l a t i o n  m e t h o d

2.1. m a t h e m a t i c a l  m o d e l

We consider an ellipsoidal particle immersed in a simple shear viscous flow in a 

Newtonian fluid with density p f  and dynamic viscosity nf  as shown in Figure 2. The center 

of the particle, coinciding with the origin of Cartesian coordinate system, is located in the 

center of a square computational domain. The particle aspect ratio is AR = a/b, where a 

and b are the major and minor semi-axis lengths of particles, respectively. The length of the 

computational domain is L . The rotation angle of particle is defined as <p between the major 

axis of the particle and y axis. The shear flow is u = jy ,  where j  is the shear rate of flow. A 

uniform magnetic field, H q, is imposed at an arbitrary direction, denoted by a.

Figure 2. An ellipsoidal particle suspended in a simple shear flow and under a magnetic
field H q, which is directed at an angle a.

a

L
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The Jeffery orbits are obtained with the assumption of Stokes flow, i.e., zero Reynolds 

number and no fluid inertia. Therefore, the flow field, u, is governed by the continuity 

equation and Stokes equation:

v  • u = 0; (1)

d u T
P p = v  • [ - p i  + n f  (vu  + (vu)  )], (2)

where p  is the pressure. To have a simple shear flow, the velocities of top and bottom walls 

are set to have the same magnitude but opposite directions. The periodic flow conditions are 

set to the left and right boundaries of the computational domain. No-slip condition is set on 

the particle surface, so the fluid velocities on the particle surface are given as:

u = Up + mp x  (x s -  Xp ), (3)

where Up  and mp  are the translational and rotational velocities of particle, respectively. x s 

and x p  are the position vectors of the surface and the center of the particle. The hydrodynamic 

force and torque acting on the particle are expressed as:

Fh = J (t h  • n )dS, (4)

Th = J  [t h  x (Xs -  Xp ) • n]dS, (5)

where

t h  = - p i  + n f  (v u + (v u)T)

is the hydrodynamic stress tensor on the surface of particle.

The governing equations of the uniform magnetic field are given as:

H  = - W m, (6)
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V • H  = 0, (7)

where Vm is the magnetic potential. The magnetic potential difference to generate the 

magnetic field is set on the top and bottom wall. Magnetic insulation boundary condition is 

applied on the left and the right boundaries of the computational domain. Since the magnetic 

field is uniform, the force acting on the particle is zero. The magnetic torque acting on 

particle is expressed as:

Tm = V0Vp Xp R ~ X H, (8)

where H -  and H are the magnetic fields inside and outside the particle, respectively, x p is 

the magnetic susceptibility of the particle, ^ 0 is the magnetic permeability of the vacuum, 

and Vp  is the volume of particle. The translation and rotation of particle are governed by 

Newton’s second law and Euler’s equation:

d Up
m p-

dt
= Fh, (9)

I p ~ T  = T h + Tm, (10)dt

where mp and Ip are the mass and the moment of inertia of the particle. The angular velocity 

of particle mp = m h + m m is the angular velocity produced by hydrodynamic torque and 

m m is the angular velocity produced by magnetic torque. At each time step, the position of 

center Cp (t ) = (Xp, Yp) and orientation <pp(t) = <p(t) of the particle are expressed as:

C p ( t ) =  Cp

(Pp(t) =  *Pp

(0) + f
0

(0) + f
0

Up(s)ds,

wp(s)ds,

(11)

(12)

where Cp(0) and <pp(0) are the initial position and orientation of the particle.
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Figure 3. Magnetic field around the particle under the uniform magnetic field of H0 = 3000
A/m at p = 45°.

2.2. COM OL SETTINGS

To calculate the magnetic torque acting on the particle, the magnetic field around 

the ellipsoidal particle is first computed by the AC/DC module in COMSOL Multiphysics 

software. Figure 3 shows the magnetic field around the particle in the computational domain 

under the magnetic field of H0 = 3000 A/m, directed at a = 0°. Stationary Solver with 

Parametric Sweep analysis are used to calculate the magnetic field inside and outside of 

the particle at different rotation angle p. Due to the symmetry of ellipsoidal particle, the 

simulation was conducted at p from -90° to 90° with an angle step of 1°.

Creeping Flow component is used to compute the flow field around the ellipsoidal 

particle. The top and bottom walls are set as moving wall condition with velocities at 1.5 

mm/s and -1.5 mm/s respectively. Hence, the corresponding shear rate is 200 s-1 . The
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H0(4)=3000 Time=0.02 Surface: Velocity magnitude (m/s)

0 50 100 150

Figure 4. Velocity field in a simple shear flow at a shear rate of j  = 200s 1

left and right boundaries are set as periodic flow conditions with zero pressure difference. 

No-slip boundary condition is set on the surface of particle, so the particle wall is set as a 

moving wall with fluid velocity of u as defined in Equation 3.

The translational and rotational motion of the particle is determined by solving 

ordinary differential equations (ODEs) in Global ODEs and DAEs component. Equation 

9-12 are used in Global Equations to calculate translational and rotational velocities, and the 

position and orientation of the particle at each time step.

Moving Mesh component is used to describe the deforming mesh at the particle-fluid 

boundaries. Automatic Remeshing is enabled to re-initialize the mesh when the mesh quality 

below a threshold value, in this case, 0.2.
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Figure 5. Comparison of the period between Jeffery’s theory and the FEM simulation.

2.3. MATERIAL PROPERTIES

In this study, the fluid and particles in the simulations are water and polystyrene 

particles respectively. The density and dynamic viscosity of water are 1000 kg/m3 and 

1.002x10-3 Pa-s respectively. The magnetic susceptibilities of fluid and particle are 0 and 

0.26 respectively. The density of particle is 1100 kg/m3. The particles used in the simulation 

have varying aspect ratios, but have the same volume, which is equivalent to a 7 um-diameter 

sphere.

3. r e s u l t s  a n d  d i s c u s s i o n

3.1. v a l id a t io n  o f  n u m e r i c a l  m e t h o d

We first compare the results of our simulation to Jeffery’s theory. Figure 5 shows 

the period of rotation of Jeffery’s theory and our simulation for particle aspect ratio AR 

= 4 without an applied magnetic field. The theoretical period of Jeffery orbit is 0.06675 

s; the period in this simulation is 0.0670 s. The relative error is 0.37%, suggesting that
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Figure 6. The effect of magnetic field strength H0 (A/m) on the rotation period and 
asymmetry of the particle rotation. The magnetic field is applied at angle strength (a = 0°).

this simulation has a remarkable agreement with the theory. Therefore, this simulation 

method has been validated to be sufficiently accurate to study the periodic rotation of particle 

immersed in the simple shear flow.

3.2. t h e  e f f e c t  o f  m a g n e t i c  f i e l d  s t r e n g t h

In this section, we investigate the effect of magnetic field strength on the period and 

asymmetry of rotation of particle for aspect ratio AR = 4. Figure 6a shows that the angle of 

rotation, <p, corresponding to rotation time, t , with different magnetic field strength at the 

direction a  = 0°. It is shown that the rotation period increases with increasing magnetic 

field strength. Interestingly, as the magnetic field strength increases to a large enough value, 

the particle could not perform a complete rotation and reaches a steady angle. In this case, 

when the magnetic field strength is 5000 A/m, the rotation angle stays at 63.28°. Figure 6b 

shows that that the angle of rotation, <p, corresponding to the dimensionless rotation time, 

t/T, with different magnetic field strength at the direction a = 0°, where T is the rotation 

period obtained in Figure 6a. We defined a ratio parameter t  = T\/T  to characterize the 

symmetry and asymmetry of particle rotation as shown in Figure 6b, where T\ is the time 

the particle rotating from <p = 0° to <p = 90°. So the time the particle rotation from <p = 90°
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to p = 180°, T2 = T -  T1. When magnetic field strength is 0 A/m, the curve is axisymmetric 

to (t/T, p) = (0.5, 90°), where t  = 0.5. It is consistent with Jeffery’s theory. However, when 

magnetic field strength is 1000 A/m, the symmetry is broken, and t  > 0.5. As the magnetic 

field strength increases, t  become larger and larger, which means the asymmetry of rotation 

becomes more pronounced.

Figure 7. Illustration of particle rotation in the combined flow and magnetic fields.
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The rotation behavior of the particle during one period in the combined flow and 

magnetic fields at a = 0° is illustrated in Figure 7a. Without the magnetic field applied, 

only the hydrodynamic torque acts on the particle and rotates in the clockwise direction. 

When the magnetic field is applied at a = 0°, the angular velocity produced by magnetic 

torque, wm, rotates in counterclockwise direction from <p = 0° to <p = 90°, which is the 

opposite to the angular velocity produced by hydrodynamic torque, ; while wm rotates 

in clockwise direction from <p = 90° to <p = 180°, which is the same as . Therefore, the 

particle will rotate slower, and spend more time from <p = 0° to <p = 90°, while less time 

from <p = 90° to <p = 180°, that is, T1 > T2. That is the reason why t > 0.5 when a magnetic 

field is applied. The larger the magnetic field strength, the larger t . When the magnetic field 

strength increases to a large enough value, wm will be equal to in a certain angle between 

<p = 0° and <p = 90° and the particle will stop rotating. For magnetic field directed at other 

directions, the effect is illustrated in Figure 7b-d, and will be discussed further in the next 

section.

3.3. THE EFFECT OF THE DIRECTION OF MAGNETIC FIELD

In this section, the effect of the direction of magnetic field on the period and 

asymmetry of rotation of particle for aspect ratio AR = 4 is investigated. Figure 8a shows 

that the angle of rotation corresponding to rotation time with different direction of magnetic 

field at strength H0 = 2000 A/m. The results show that the period of rotation at a = 45° 

become longer than the period at a = 0°, while the period of rotation at a = 135° become 

shorter than the period at a = 0°. The periods of rotation are almost the same at a = 90° 

and a = 0°. The angle of rotation corresponding to the dimensionless time with different 

direction of magnetic field at strength H0 = 2000 A/m is shown in Figure 8b. As we can see, 

t > 0.5 when a = 0°, while t < 0.5 when a = 90°. t = 0.5 when a = 45° and 135°. The 

rotation behaviors of one period in the combined flow and magnetic fields at the different 

direction are shown in Figure 7. As we discussed before, the particle spend more time from
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Figure 8. The effect of the direction of magnetic field at a fixed strength (H0 = 2000 A/m) 
on the rotational period and asymmetry of particle rotation.

p = 0° to p = 90°, while less time from (p = 90° to (p = 180° at a  = 0°. For a  = 90°, wm and 

have the same direction from p = 0° to p = 90°, while have the opposite direction from p 

= 90° to p = 180° shown in Figure 7b. It means that the particle spends less time from p = 

0° to p = 90°, while more time from p = 90° to p = 180° at a = 0°, that is, T1 < T2 and t  < 

0.5. For a = 45°,mm and have the same direction from p = 0° to p = 45° and p = 135° 

to p = 180°, while have the opposite direction from p = 45° to p = 135° shown in Figure 

7c. Due the symmetry of flow field and particle, the time spending from p = 0° to p = 45° 

and p = 135° to p = 180° are equal. At the same time, the time spending from p = 45° to 

p = 90° and p = 90° to p = 135° are equal. So T1 = T2 and t  = 0.5. The similar reason can 

explain the rotation behavior at a  = 135° shown in Figure 7d.

3.4. t h e  e f f e c t  o f  p a r t i c l e  a s p e c t  r a t i o

In this section, we study the effect of particle aspect ratio on the period and asymmetry 

of rotation of particle. Figure 9a shows that the angle of rotation corresponding to rotation 

time with different particle aspect ratio at H0 = 2000 A/m and a = 0°. As particle aspect 

ratio increases, the period of rotation increases, agreeing well with the trend predicted by 

Jeffery’s theory. Figure 9b shows the angle of rotation corresponding to the dimensionless
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Figure 9. The effect of particle aspect ratio on the rotational period and asymmetry of 
particle rotation at (H0 = 2000A/m, a = 0°).

time with different particle aspect ratio at H0 = 2000 A/m and a = 0°. It is shown that t  is 

always larger than 0.5 for different particle aspect ratio, which is consistent with what we 

discussed before. When aspect ratio increases, there is a slight increase for t , which means 

that particle aspect ratio has only a marginal effect on the asymmetry of rotation of particle.

4. c o n c l u s i o n s

The motion of ellipsoidal particles in a simple shear flow subjected to a uniform 

magnetic field is numerically investigated by a multiphysics model that couples magnetic 

field, flow field and rigid body motions. The magnetic field strength has a significant effect 

on the period and asymmetry of rotation of particle. As the magnetic field strength increases, 

the rotation period of particle increases and the asymmetry of rotation becomes more 

pronounced. When the magnetic field strength increases to a large enough value, the particle 

could not perform a complete rotation and reaches a steady angle. Further, the direction of 

magnetic field modifies both the period and asymmetry of rotation of particle. Placed at 45°, 

the direction of magnetic field shortens the period of rotation, while at 135° it increases the 

period. The symmetry of particle rotation is preserved for magnetic fields placed at 45° and 

135°. The magnetic field, when directed at 0° and 90°, causes the asymmetry of rotation.



23

For particle aspect ratio, the results show that it changes the period of rotation of particle, 

which is consistent with Jeffery’s theory, but has a subtle effect on the asymmetry of particle 

rotation.
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a b s t r a c t

This work reports numerical investigation of lateral migration of a paramagnetic 

microparticle of an elliptic shape in a plane Poiseuille flow of a Newtonian fluid under a 

uniform magnetic field by direct numerical simulation (DNS). A finite element method 

(FEM) based on the arbitrary Lagrangian-Eulerian (ALE) approach is used to study the 

effects of strength and direction of the magnetic field, particle-wall separation distance 

and particle shape on the lateral migration. The particle is shown to exhibit negligible 

lateral migration in the absence of a magnetic field. When the magnetic field is applied, the 

particle migrates laterally. The migration direction depends on the direction of the external 

magnetic field, which controls the symmetry property of the particle rotational velocity. The 

magnitude of net lateral migration velocity over a n cycle is increased with the magnetic 

field strength when the particle is able to execute complete rotations, expect for a  = 45° and 

135°. By investigating a wide range of parameters, our direct numerical simulations yield a 

comprehensive understanding of the particle migration mechanism. Based on the numerical 

data, an empirical scaling relationship is proposed to relate the lateral migration distance
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to the asymmetry of the rotational velocity and lateral oscillation amplitude. The scaling 

relationship provides useful guidelines on design of devices to manipulate nonspherical 

micro-particles, which have important applications in lab-on-a-chip technology, biology and 

biomedical engineering.

Keywords: microparticles; magnetic field; direct numerical simulation; particle separation

i . i n t r o d u c t i o n

For decades, magnetic fields have been widely used to separate microscale and 

nanoscale magnetic particles suspended in fluids in various industrial, biological and 

biomedical applications, such as mineral purification (Yavuz et al., 2009), cell separation 

(Hejazian et al., 2015), and targeted drug delivery (Arruebo et al., 2007). The underlying 

principle in these applications is magnetophoresis -  the motion of particles due to magnetic 

forces. The generation of magnetic forces requires both a magnetic particle and a spatially 

non-uniform magnetic field (or non-zero magnetic field gradients) (Pamme, 2006).

Recent experiments have demonstrated a non-conventional strategy to manipulate 

magnetic particles by combining a magnetic torque, non-spherical shapes and shear flows 

(Zhou et al., 2017a,b). Different from traditional techniques based on forces, this torque- 

based method only requires a uniform magnetic field. As a result, there is no magnetic 

force, and thus, the method may be better described as “force-free magnetophoresis". Here, 

the lateral migration of non-spherical particles stems from the coupling of the magnetic 

field, flow field and particle-wall hydrodynamic interactions. While earlier experiments 

provide the first observations of this unique phenomenon, it remains difficult to conduct 

well-controlled experimental studies. On the other hand, numerical simulations are powerful 

tools to carry out systematic investigations to gain insights on various factors that influence 

the particle transport behaviours.
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Due to its importance to science and engineering, the dynamics of non-spherical 

particles in flows have been a subject of extensive theoretical, numerical and experimental 

investigations. For example, the pioneering work includes Jeffery’s theory (Jeffery, 1922) 

and experimental studies by Mason’s group (Goldsmith and Mason, 1961; Trevelyan and 

Mason, 1951). With the advancement of computing capabilities, numerical simulations 

have been increasingly employed to study the motion of both spherical and non-spherical 

particles in a variety of shear flows, including plane Couette and Poiseuille flows. Feng et 

al. (Feng et al., 1994) reported a direction numerical simulation (DNS) based on the finite 

element method (FEM) to study the lateral migration of the neutrally and non-neutrally 

buoyant circular particle in plane Couette and Poiseuille flows. The simulation results agree 

qualitatively with the results of perturbation theories and experimental data. Gavze and 

Shapiro (Gavze and Shapiro, 1997) used a boundary integral equation method to investigate 

the effect of particle shape on forces and velocities acting on the particle near the wall 

in a shear flow. Pan’s group proposed a distributed Lagrange-multiplier-based fictitious 

domain method (DLM) to investigate the motion of multiple neutrally buoyant circular 

cylinders and elliptical cylinders in shear flow (Huang et al., 2015; Pan et al., 2013) and 

plane Poiseuille flow (Chen et al., 2012; Pan and Glowinski, 2002). Yang et al. (Yang 

et al., 2005) reported two methods, the arbitrary Lagrangian-Eulerian (ALE) method and 

the distributed Lagrange-multiplier-based fictitious domain method (DLM), to study the 

migration of a single neutrally buoyant rigid sphere in tube Poiseuille flow. Ai et al. (Ai 

et al., 2009b) investigated some key factors on pressure-driven transport of particles in a 

symmetric converging-diverging microchannel by the ALE finite-element method. Lee et al. 

(Lee et al., 2009a,b) used the same method as Gavze and Shapiro (Gavze and Shapiro, 1997) 

to study the particle transport behaviour with different size, shape and material properties in 

the plane Couette flow.
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Motions of magnetic particles have been numerically investigated due to their close 

relevance to biomedical separations (Gijs et al., 2009) and magnetically assisted drug delivery 

(Martinez et al., 2013). Smistrup et al. (Smistrup et al., 2005) used numerical simulations 

to study magnetic separation of magnetic beads in the microchannel under the magnetic 

field of microfabricated electro-magnets. Their simulation results agree qualitatively with 

the experimental data. Sinha et al. (Sinha et al., 2007) numerically investigated the 

motion of magnetic microbeads in the microchannel under a non-uniform magnetic field. 

More recently, shape-dependent drag force and magnetization are exploited to separate 

non-magnetic particles and biological cells in a ferrofluid (Chen et al., 2017; Zhou and 

Xuan, 2016). In prior works, the particles are often treated as point masses while the effect 

of hydrodynamic interactions resulting from particle shape and finite size are not directly 

considered.

Our previous work focused experimentally on lateral migration when the particle is 

undergoing rotational motion (Zhou et al., 2017a,b). The work by Matsunaga et al. is mainly 

concerned lateral migration that occurred when particle is not rotating (Matsunaga et al., 

2017a,b). The work by Cao et al. numerically studied the rotation and lateral migration 

of particles for both scenarios including weak and strong field strengths (Cao et al., 2018). 

The present work studies the effects of strength and direction of the magnetic field strength, 

initial particle position, particle aspect ratio, and particularly proposes a scaling relationship 

between the symmetry properties of the particle’s rotational velocity, and the magnitude of 

lateral oscillation in the absence of a magnetic field. By implementing an ALE method in the 

COMSOL FEM solver, our direct numerical simulations couple and simultaneously solve 

the flow field, magnetic field, and particle motions. The magnetic torque, hydrodynamic 

torque as well as hydrodynamic force are computed and used to determine the translational 

and rotational motions of the particle via Newton’s second law and Euler’s law. After 

validating the numerical model with Jeffery’s theory, systematic numerical simulations are
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carried out to understand the roles of key factors, including the strength and direction of 

the magnetic field, particle aspect ratio, and initial particle-wall separation distance, on the 

lateral migration of the particle.

2. s i m u l a t i o n  m e t h o d

2.1. m a t h e m a t i c a l  m o d e l

We consider a prolate elliptical particle immersed in a plane Poiseuille flow of an 

incompressible Newtonian fluid with density p f  and dynamic viscosity nf  as shown in 

Figure 1. The computational domain, O, is surrounded by the boundary, ABCD, and particle 

surface, r .  The width and length of the computational domain are W and L, respectively. 

The particle aspect ratio is AR = a/b, where a and b are the major and minor semi-axis 

lengths of the particle, respectively. The particle-wall separation distance, yp, is defined 

as the vertical distance between the particle center and the x axis. The orientation of the 

particle, <p, is defined as the angle between the major axis of the particle and positive y axis. 

A uniform magnetic field, H o, is imposed at an arbitrary direction, denoted by a, as shown 

in Figure 1.

The flow field, u , is governed by the continuity equation and Navier-Stokes (NS) 

equations for an incompressible and Newtonian flow:

V- u = 0, (1)

= -V p  + V • n f (vu  + (V u f)  , (2)p f
du
~dt

+ (u • V) u

where p is the pressure and t is the time.
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L

Figure 1. Schematic view of the numerical model of an elliptical particle suspended in a 
plane Poiseuille flow under the influence of a uniform magnetic field H o. The fluid and 

particle domains are Q and r ,  respectively. The orientation angle of the particle is denoted 
by <p. The particle-wall separation distance is denoted by yp.

To obtain a fully developed laminar flow profile, the laminar inflow is at the inlet AC. 

The zero normal pressure condition is set to the outlet BD. No-slip condition is applied on 

channel walls AB and CD. No-slip condition also applies on the particle surface, so the fluid 

velocities on the particle surface are given as:

u = Up + mp x (xs -  Xp), (3)

where Up and mp are translational and rotational velocities of particle, respectively. xs and 

xp are the position vectors of the surface and the center of the particle. The hydrodynamic 

force and torque acting on the particle are expressed as:

Fh = J  (rh • n)dS, (4)

Th = J (T h  x  (xs -  Xp) • n)dS, (5)

where Th = nf  (Vu + (Vu)r ) is the hydrodynamic stress tensor.
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The governing equations of the magnetic field are given as:

V x H — 0, (6)

<1 a ii o (7)

where H and B are the magnetic field strength and the magnetic flux density, respectively. 

To obtain a uniform magnetic field, the magnetic scalar potential difference is set to AB and 

CD. A zero magnetic potential Vm = 0 is set to AB and a magnetic potential Vm = Vm0 is set 

to CD. The magnetic insulation condition is set at AC and BD. Since the magnetic field is 

uniform and the particle is paramagnetic, the force acting on the particle is zero. Assuming 

the magnetic particle is homogeneous, isotropic, and linearly magnetizable, the magnetic 

torque acting on particle is expressed as (Stratton, 2007):

Tm — H0VpXpH x  Ho, (8)

where H -  and H 0 are the magnetic fields inside and outside the particle, respectively, x p is 

the magnetic susceptibility of the particle, ^ 0 is the magnetic permeability of the vacuum, 

and Vp is the volume of particle.

The translation and rotation of the particle are governed by Newton’s second law and 

Euler's equation:
d Up

Fh

d p
Ip~dT — T h + Tm,

(9)

(10)

where mp and Ip are the mass and the moment of inertia of the particle. Since the particle 

rotation is in the xy plane, only the z-component of o p, Th and Tm are necessary to calculate 

the rotational velocity, and o p — mpk .
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The position of center Cp(t) = (xp, yp) and orientation pp of particle are given by:

Cp(t) = Cp(0) + /* Up(s)ds, 
J 0

(11)

pp(t) = pp(0) + / mp(s)ds, 
0

(12)

where Cp(0) and pp(0) are the initial position and orientation of the particle.

The position and orientation of the particle will affect the magnetic and flow fields 

around the particle, and successively alter the magnetic torque and hydrodynamic force and 

torque acting on the particle. Therefore, we use direct numerical simulation (DNS) based on 

the finite element method (FEM) and arbitrary Lagrangian-Eulerian(ALE) method to account 

such coupling among the particle, fluid flow, and magnetic fields. Similar method has been 

successfully achieved by Hu et al. (Hu et al., 2001) and Ai et al (Ai et al., 2009a,b; Ai and 

Qian, 2010; Ai et al., 2014). Numerical models are implemented by using a commercial 

FEM solver COMSOL Multiphysics. First, we use the stationary solver for parametric sweep 

analysis to simulate the magnetic field inside and outside of the particle, and calculate the 

magnetic torque acting on the particle. Then, a two-way coupling fluid-particle interaction 

model is solved by using a time-dependent solver, where the magnetic torque is imported 

into the model as a variable. Quadratic triangular elements are generated in the simulations. 

Fine mesh around the particle and finer mesh around the tip of the particle are created to 

accurately calculate the hydrodynamic force and torque acting on the particle.

2.2. m a t e r i a l  p r o p e r t i e s  u s e d  i n  s i m u l a t i o n s

In this study, the fluid and particles in the simulations are water and magnetite-doped 

polystyrene particle, respectively. The density and dynamic viscosity of water are 1000 kg/m3 

and 1.002 x 10-3 Pa-s, respectively. The magnetic susceptibility of particle is x p = 0.26 

according to previous studies (Zhou et al., 2017a,b), whereas the fluid is a non-magnetic
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fluid. The density of the particle is 1100 kg/m3. The particles used in the simulation have 

varying aspect ratios, but all have the same volume, which is equal to the volume of a 7 

um-diameter circular particle. The width and length of the computational domain are W = 

800 um and L = 50 um, respectively. Inlet flow velocity is 2.5 mm/s, so Re = 0.125.

Table 1. Six meshes for grid independence analysis

Domain elements Boundary 
elements on 

particle surface
Mesh 1 6184 56
Mesh 2 7794 68
Mesh 3 8281 92
Mesh 4 11608 116
Mesh 5 12359 152
Mesh 6 13079 184

2.3. g r i d  i n d e p e n d e n c e  a n a l y s is

Grid independence analysis is presented to determine the appropriate meshes for 

a fast and accurate numerical simulation.The results of six different meshes in a plane 

Poiseuille flow in the absence of the magnetic field are shown in Table 1 and Figure 2. As 

can be seen, the numerical results are good enough when the domain element number is 

larger than 11,600 and the boundary element number on the particle surface is larger than 

120. So in the paper, we used about 12,000 elements in the computational domain Q in 

Figure 1, and about 150 elements on the particle surface r ,  which could give reasonably 

accurate results.
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Figure 2. Grid independence analysis: particle orientation as a function of time, for AR = 4,
yp0 = 12 jum

3. r e s u l t s  a n d  d i s c u s s i o n

3.1. v a l id a t io n  o f  n u m e r i c a l  m e t h o d

To validate our numerical method, we first compare the results of our simulation 

to Jeffery’s theory, which describes the periodic rotation of an axisymmetric ellipsoidal 

particle in a simple shear flow (Jeffery, 1922). The period of the particle rotating from 0° to 

360° is TJ = 2n / j ( AR + 1 / AR), where j  is the shear rate. Due to the fore-aft symmetry of 

the particle, here we define TJ as the period of rotation from 0° to 180°, i.e., TJ = TJ /2. 

Figure 3 shows the particle rotation predicted by Jeffery’s theory and our simulation for a 

particle having AR = 4 in a simple shear flow with shear rate y = 200 s-1 in the absence of a 

magnetic field. The theoretical value of TJ from the Jeffery theory is 0.0668 s, while the 

period obtained in our FEM simulation is 0.0670 s. The relative error is 0.37%, suggesting 

that the simulation has a remarkable agreement with the theory. Therefore, this simulation 

method has been validated to be sufficiently accurate to study the periodic rotation of particle

in this work.
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Figure 3. Comparison between the FEM simulation and Jeffery’s theory on particle rotation.

3.2. p a r t i c l e  m o t i o n  w i t h o u t  a  m a g n e t i c  f i e l d

In this section, we investigate the effect of particle aspect ratio, AR, and its initial 

particle-wall separation distance, yp0, on particle motion without a magnetic field. Figure 4 

shows the trajectory of an elliptical particle with AR = 4 initially located at ypo = 12 um. As 

can be seen, the particle oscillate away from the wall in the first half period (from 0° to 90°) 

and towards the wall in the second half period (from 90° to 180°), but there is a negligible 

net lateral migration. We define the difference between the maximum and minimum values 

of the oscillatory motion in the y direction as the amplitude, A, as shown in Figure 4(a), and 

define the period as the time spent by the particle to rotate from 0° to 180°, T0, as shown in 

Figure 4(b).

The orientation of the particle, <p, as a function of the dimensionless time, t/T0, over 

a period is shown in Figure 4(c). As can be seen, the particle has a symmetry of rotation with 

respect to <p = 90°. The rotational velocity due to the shear flow is symmetric about <p = 90°
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as shown in Figure 4(d), meaning that the particle spends the same amount of time in the 

first and second half periods. The presence of the wall induces particle-wall hydrodynamic 

interaction which causes the oscillatory motion of the elliptical particle. However, due to 

the equal time the particle spends in the first and second half rotational period, the lateral 

distance of the particle moving upwards and moving downwards are equal. Thus, there is no 

net lateral migration.

(a)

Xp  ( / m i )

0 0.03 0.06 0.09

*00
0.12 0.15

-O-
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45
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Figure 4. Translation and rotation of the particle without a magnetic field. The particle 
(AR = 4) is initially located at ypo=12 ^m. (a) Trajectory of the particle over a rotation of 
180°, with A denoting the amplitude of oscillatory motion. (b) The particle-wall separation 
distance over one period T0. (c) The evolution of orientation angle, <p with the dimensionless 

time t/T0. (d) The rotational velocity versus <p.
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Figure 5. The effects of initial position yp0 and particle aspect ratio AR on transport of 
elliptical particles without a magnetic field. (a) The effect ypo on the lateral particle-wall 
separation: yp0 = 12 um (solid line), 14 um (dash line) and 16 um (dash-dot line). The 
particle has a particle aspect ratio AR = 4. (b) The effect of particle aspect ratio on the 

lateral particle-wall separation distance: AR = 4 (solid line), AR = 3 (dash line), and AR = 2 
(dash-dot line). The particles are initially located at yp0 = 12 um. (c) Dependence of 

amplitude of the oscillatory motion, A on yp0. (d) The dimensionless period To/TyJ varies 
with dimensionless distance yp0/a, for AR = 4 (circle), 3 (triangle), and 2 (rectangle). TyJis 
the period of Jeffery’s orbit calculated by using the shear rate at the position of the particle

centroid.

The lateral migration of the elliptical particle for three initial particle-wall separation 

distances yp0, and different aspect ratio AR, are shown in Figure 5(a)(b). In Figure 5(a), 

as yp0 is increased from 12 um  to 16 um, the period of rotation becomes longer, and the 

amplitude A becomes smaller for a fixed AR. As AR is decreased from 4 to 2, the period of 

rotation becomes shorter, and the amplitude A becomes smaller for a fixed yp0 (Figure 5(b)). 

For example, at yp0 = 12 um, the period of rotation T0 = 0.1295 s and the amplitude A = 

0.6547 um for AR = 4; T0 = 0.0844 s and A = 0.3137 um for AR = 3; T0 = 0.0556 s and A =
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0.0841 jum for AR = 2. Further, the net lateral migration is almost zero, regardless of its 

initial particle-wall separation distance and aspect ratio. It is consistent with our previous 

experimental observation (Zhou et al., 2017b).

The amplitude and period of the oscillatory motion for different yp0 and different AR 

are shown in Figure 5(c)(d). As can be seen, for a fixed AR, the curve becomes steeper when 

the particle approaches to the wall (i.e., ypo is decreased). The slope of curve becomes larger 

when the particle shape becomes more non-spherical (AR is increased). Figure 5(d) shows 

the dimensionless period of rotation, T0/TyJ , varying with the dimensionless particle-wall 

separation distance, yp0/a, TJ is the period of Jeffery’s orbit calculated by using the shear 

rate at the position of the particle centroid and a is the semi-major axis of the particle, 

respectively. As can be seen in Figure 5(d), the dimensionless time, T0/TJ  , is larger than 1 

for the all results. As yp0/a  is increased, T0/TyJ is decreased first and then is increased for a 

constant AR. Further, the decreasing rate in first part and the increasing rate in the second 

part of T0/TyJ become steeper as AR increases from 2 to 4.

The effect of yp0 and AR on A and TJ in Figure 5(c)(d) can be explained as 

follows. When the particle is transported in the channel flow, the wall induces particle-wall 

hydrodynamic interactions and increases resistance on the rotation of particle (Gavze and 

Shapiro, 1997; Hsu and Ganatos, 1994). The smaller the particle-wall separation (yp0 

varying from 16 um to 12 um) is, the more prominent the particle-wall interaction is. The 

amplitude (A) thus increases with decreasing yp0 i.e., increased hydrodynamic interactions, 

as shown in Figure 5(c)). On the other hand, the particle aspect ratio represents the degree of 

deviation from the spherical particle. A larger particle aspect ratio induces more prominent 

particle-wall interaction than a spherical particle (AR = 1). The increasing resistance on 

the rotation of particle causes the particle spending longer time than that in the absence of 

the wall. Therefore, the particle-wall separation distance and particle aspect ratio are two 

important factors affecting the oscillatory motion of the particle in the microchannel.



39

3.3. p a r t i c l e  m o t i o n  i n  a  m a g n e t i c  f i e l d

3.3.1. M agnetic Field a t a = 0°. In this section, we investigate the effect of 

magnetic fields with the direction a = 0° on the lateral migration of the particle. The particle 

with AR = 4 is initially placed at yp0 = 12 ^m. The magnetic field of H0 = 3000 A/m is 

imposed at the direction of a = 0°. Figure 6(a)(b) shows the particle orientation angle 

and the lateral migration as a function of time. For convenience of discussion, we define a 

dimensionless parameter, t , as the ratio of the time that the particle rotates from 0° to 90° 

to the entire period of the particle rotation as shown in Figure 6(a). Here, The period of 

particle rotation is defined the same as in Section 3.2. To distinguish the period of rotation 

from Section 3.2, we use T as the period of rotation when the magnetic field is applied. 

As can be seen in Figure 6(a), when H0 = 0, t  = 0.5 and the curve is anti-symmetric to 

(0.5,90°); when the magnetic field strength H0 = 3000 A/m, t  > 0.5 and the curve is no 

longer anti-symmetric to (0.5,90°). Thus, we can use the dimensionless parameter t  to 

characterize the symmetry and asymmetry property of the particle’s rotation. Second, we 

define the net lateral migration of the particle, Ayp, as the difference between the position of 

particle centroid at <p = 0° and at <p = 180° in the y direction as shown in Figure 6(b). As 

can be seen, when a magnetic field is applied at a = 0°, Ayp > 0, meaning that the particle 

moves away from the channel wall over a period.

The influence of the perpendicular magnetic field can be explained as follows. In 

the absence of a magnetic field, the hydrodynamic torque causes the rotational motion of 

the particle. The corresponding rotational velocity is shown as the dashed line in Figure 

6(c). As we discussed before, there is a negligible net migration due to the symmetry of the 

particle rotational velocity. When a magnetic field is applied at a = 0°, the total rotational 

velocity, mp = + mm, is asymmetric with respect to <p = 90° , shown as the solid line in

Figure 6(c). The rotational velocity due to the magnetic field, mm, and the rotational velocity 

due to the hydrodynamic torque, have opposite directions when the particle orientation <p 

is between 0° to 90°; mm and mh have the same direction when 90° < <p < 180°. As a result,
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the particle spends more time in the first half period than in the second half period, causing 

the asymmetry of the particle rotational velocity. The asymmetric particle rotation further 

leads to a broken symmetry of the particle’s lateral oscillation motion, via hydrodynamic 

interactions (Gavze and Shapiro, 1997). Consequently, the particle spends more time moving 

upwards than moving downwards, and exhibits a net lateral migration away from the wall, as 

shown in Figure 6(b).

Figure 6. Transport of the particle when the magnetic field is applied perpendicular to the 
flow direction, i.e., a = 0°. The particle (AR = 4) is initially located at yp0 = 12 um. (a) The 
orientation angle, <p versus dimensionless time t /T . A dimensionless time parameter t  is 

defined as the ratio of the time for the particle rotating from 0° to 90° to the period of 
rotation, T . (b) The particle-wall separation distance, yp0 as a function of time (H0 = 3000 
A/m, a = 0°). Ayp denotes the net lateral migration of the particle over one period. (c) The 

rotational velocity mp versus 0: H0 = 0 A/m (dash line), and 3000 A/m (solid line). The 
symmetry of particle rotational velocity mp about <p = 90° is broken, and t  > 0.5.
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Figure 7. The effect of magnetic field strength on particle transport, with AR = 4, yp0 = 12 
um, and a = 0°. (a) <p versus time t over a period: H0 = 0 (plus symbol), 1000 A/m (solid 
line), 2000 A/m (dash line), 3000 A/m(dash-dot line) and 4000 A/m (dot line). (b) t  varies 
with the magnetic field strength H0. (c) The net migration of particle yp -  yp0 over a period: 
H0 = 0 (solid symbol), 1000 A/m (circle symbol), 2000 A/m (square symbol), 3000 A/m 

(triangle symbol) and 4000 A/m (plus symbol). (d) The average vertical migration velocity 
Uv varies with the magnetic field strength H0.

We investigate the effect of the magnetic field strength on the particle rotation and 

lateral migration. Figure 7(a) shows the orientation of the particle, <p, with time, t , in one 

period for different magnetic field strengths. As can be seen, when the magnetic field is 

applied, the period of rotation becomes longer as compared to that without a magnetic field 

(H0 = 0). From Figure 7(a), we can see that the period of rotation, T, is increased as the 

magnetic field strength is increased from H0 = 1000 A/m to 3000 A/m. In this case, there 

are two factors affecting the period of rotation. One is the magnetic field. In the simple 

shear flow, as the magnetic field strength is increased, the period of rotation is increased 

when a  = 0° (Zhang and Wang, 2017). The other factor is the decreased shear rate as the 

particle moved toward the center. The magnetic field caused that the particle migrated
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toward the center, where the shear rate is decreased. Thus, the magnetic field coupled with 

the nonlinear shear rate induced the increase of period of the rotation. Figure 7(b) shows 

the dependence of dimensionless parameter, t , on the magnetic field strength. When the 

magnetic field strength is applied, t  > 0.5, meaning that the symmetry of particle rotation is 

broken. As the magnetic field strength increases, t  increases, meaning that the asymmetry 

of the particle rotation becomes more pronounced. This asymmetry of particle rotation, 

combined with oscillatory motion, causes the net lateral migration. Figure 7(c) shows the 

net migration of particle, Ayp, as a function of time, t , in one period for different magnetic 

field strengths. Because a  = 0°, the particle moves upwards, and the net lateral migration, 

Ayp, increases with the increase of the magnetic field strength.

To characterize the net lateral migration, we define an average vertical migration 

velocity, Uv = Ayp/T , which is the net lateral migration over the rotational period of the 

particle. The average vertical velocity, Uv, for different magnetic field strengths are shown 

in Figure 7(d). As can be seen, the vertical velocity increases when the magnetic field 

strength increases from 0 to 3000 A/m. This means that the particle moves upwards faster 

as the magnetic field increases. Further, as can be seen in Figure 7(a) and (d), when the 

magnetic field strength is 4000 A/m, the particle could not perform a complete rotation but 

continuously moved upwards. The reason for the impeded rotation is because of the dynamic 

balances between the hydrodynamic and magnetic torques. Due to the parabolic velocity 

profile of the Poiseuille flow, the shear rate becomes smaller closer to the channel center. As 

a result, the particle orientation continuously decreases as the particle moves towards the 

channel center.

3.3.2. M agnetic Field a t a = 90°. In this section, we investigate the effect of 

magnetic fields with the direction a  = 90° on the lateral migration of the elliptical particle. 

The particle with AR = 4 is initially located at yp0 = 12 um. The magnetic field with a 

strength of 3000 A/m is imposed at the direction of 90°. The orientation and the lateral 

migration varying with time are shown in Figure 8. When the magnetic field is applied at



43

a = 90°, t  < 0.5 and Ayp < 0, as we can see in Figure 8(a) and (b). The reason can be 

similarly explained for the case of a = 0°. Here, the magnetic rotational velocity, , and 

the hydrodynamic rotational velocity, mh, have the same direction in the first half period 

and opposite directions in the second half period of rotation. The total rotational velocity, 

mp, is asymmetric with respect to <p = 90°, shown as the solid line in Figure 8(c). The 

particle spends less time to move upwards in the first half period than the second half period. 

Therefore, the symmetry of the particle rotation is broken and there is a net lateral migration 

over one period.

Figure 8. Transport of the particle when the magnetic field is applied parallel to the flow 
direction, i.e., a = 90°. The particle (AR = 4) is initially located at yp0 = 12 um. (a) <p 

varies with dimensionless time t /T . (b) variation of the particle-wall separation distance 
with time, and (c) the total rotational velocity mp varies with <p for H0 = 0 A/m (dash line)

and 3000 A/m (solid line).
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Figure 9. The effect of magnetic field strength on particle transport, with AR = 4, yp0 = 12 
um, and a = 90°. (a) <p versus t over a period for H0 = 0 (plus symbol), 1000 A/m (solid 

line), 2000 A/m (dash line), 3000 A/m (dash-dot) and 4000 A/m (dot); (b) t  versus H0; (c) 
The lateral migration of particle yp -  yp0 with time t over a period for H0 = 0 (solid line), 
1000 A/m (circle symbol), 2000 A/m (square symbol), 3000 A/m (triangle symbol) and 
4000 A/m (plus symbol); (d) The vertical velocity Uv versus magnetic field strength H0.

For different magnetic field strength, as the magnetic field strength increases, the 

period of rotation becomes longer as shown in Figure 9(a). It is the same as the case of 

a = 0°. When the magnetic field strength is 4000 A/m, the particle could not perform 

a complete rotation as well. The difference between cases of a = 0° and a = 90° is the 

impeded orientation: the maximum orientation is larger than 90° when a = 90°, whereas 

the maximum orientation is smaller than 90° when a = 0°. Figure 9(b) shows the variation 

of t  with different magnetic field strengths. As we can see, t  < 0.5 and becomes smaller 

with an increase of the magnetic field strength, meaning the asymmetry of rotation becomes 

more pronounced. The lateral migration for different magnetic field strength, and the 

average vertical velocity, Uv, are shown in Figure 9(c) and (d), respectively. As the magnetic
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field strength is increased, the particle moves downwards quicker. Interestingly, when the 

magnetic field strength is 4000 A/m, the rate of the lateral migration becomes slower than H 

= 3000 A/m as shown in the line with plus symbol in Figure 9(c).

3“

0 0.03 0.06 0.09 0.12
t(s)

1000 2000 3000 4000
H0 (A/m)

Figure 10. Effect of the magnetic field when it is applied at a = 135°. The particle (AR = 4) 
is initially located at yp0 = 12 um. (a) wp versus <p for H0 = 0 (dash) and 3000 A/m (solid). 
(b) <p versus t over a period for H0 = 0 (plus), 1000 A/m (solid), 2000 A/m (dash), 3000 A/m 
(dash-dot) and 4000 A/m (dot). (c) The dimensionless parameter t  as a function of H0. (d) 
The migration of particle yp -  yp0 with time t over a period for H0 = 0 (solid), 1000 A/m 

(circle), 2000 A/m (rectangle), 3000 A/m (triangle) and 4000 A/m (plus). (e) Dependence 
of lateral migration velocity Uv on magnetic field strength H0.
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3.3.3. M agnetic Field a t a = 135°. In this section, we investigate the effect of 

magnetic fields with a = 135° on the lateral migration of the elliptical particle. When the 

magnetic field is imposed at a = 135°, the total rotational velocity, Mp, is symmetric to 

<p = 90° as shown in Figure 10(a). For four different magnetic field strengths, the orientation 

varying with time is shown in Figure 10(b). As the magnetic field strength is increased, the 

period of rotation becomes shorter, which is different from the results when the magnetic field 

is imposed at a = 0° and 90°. But the particle preserves the symmetry of rotational velocity 

as can be seen in Figure 10(c): t  « 0.5 for these four magnetic field strengths. The lateral 

migration for different magnetic field strengths is shown in Figure 10(d). The oscillatory 

amplitude is decreased with increasing the magnetic field strength, which is different from 

the results when the magnetic field is imposed at a = 0° and 90°. Such a decrease of 

oscillation is due to the decrease of the rotational velocity, and translation-and-rotation 

coupling. There is no net migration as can be seen in Figure 10(e). Uv « 0 for these four 

magnetic field strengths that have been investigated.

3.3.4. M agnetic Field a t a = 45°. In this section, we investigate the effect of 

magnetic fields applied at a = 45° on the lateral migration of the elliptical particle. When 

the magnetic field is imposed at a = 45°, the total rotational velocity, mp, is symmetric to 

<p = 90° as shown in Figure 11(a). When H0 = 1000 A/m, t  « 0.5 and Uv « 0 , meaning 

that the particle’s rotation velocity is symmetric about <p = 90° and there is no net lateral 

migration. However, when the magnetic field strength is equal or larger than 2000 A/m, 

the particle could not complete a full rotation, but continuously moves upwards as shown 

in Figure 11(b) and (c). The lateral motion is due to the particle being pinned at a steady 

angle (Matsunaga et al., 2017a). As the magnetic field strength is increased, the maximum 

orientation becomes smaller and the lateral migration becomes faster.
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Figure 11. Effect of the magnetic field when it is applied at a = 45°. The particle (AR = 4) 
is initially located at yp0 = 12  um. (a) The total rotational velocity mp versus <p for H0 = 0 
(dash) and 3000 A/m (solid). (b) <p versus time t over a period for H0 = 0 (plus), 1000 A/m 
(solid), 2000 A/m (dash), 3000 A/m (dash-dot) and 4000 A/m (dot). (c) The migration of 

particle yp -  yp0 as a function of t for H0 = 0 (solid), 1000 A/m (circle), 2000 A/m 
(rectangle), 3000 A/m (triangle) and 4000 A/m (plus).

3.3.5. Effects of Particle Shape and the Wall. As we discussed in Section 3.2, 

the particle-wall separation distance and particle aspect ratio are two important factors on 

the oscillatory motion of the particle. In this section, we investigate the effect of these 

two factors on particle lateral migration with a magnetic field. Here, the magnetic field 

strength H0 = 2000 A/m is applied at a = 0°. The dimensionless parameter, t , and the 

average vertical velocity, Uv, for three different particle aspect ratios are shown in Figure 

12(a1) and (a2). As the particle aspect ratio is increased, both t  and Uv increase. The 

particle aspect ratio represents the degree of deviation from the spherical particle. As the 

particle shape deviates more from the spherical particle, the asymmetry of particle rotation
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becomes more pronounced, and the particle moves up faster. Therefore, particle aspect ratio 

is an essential factor on particle lateral migration when a magnetic field is applied. Figure 

12(b1) and (b2) show the results when the particle is released at different initial particle-wall 

separation distances. t  is increased but Uv is decreased as yp0 is increased from 10 u m to 16 

u m. As the particle is at a larger distance away from the wall, the asymmetry of particle 

rotation becomes more pronounced. However, the particle moves up slower, due to the small 

amplitude A.

Figure 12. Dependence of (a1) t  and (a2) Uv on particle aspect ratio AR, with the particle is 
initially located at ypo = 12 um. Dependence of (b1) t  and (b2) Uv on initial particle-wall 

separation distances yp0 when the particle aspect ratio is AR = 4. The magnetic field 
strength H0 = 2000 A/m is applied at a = 0°.
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3.4. l a t e r a l  m i g r a t i o n  m e c h a n i s m

From previous analysis, we can see that the net lateral migration of the particle 

depends on the lateral oscillation and the asymmetric rotation. The particle lateral oscillation 

depends on the particle shape (aspect ratio AR) and the proximity to the wall (initial 

particle-wall separation distance ypo). The larger deviation from the spherical shape and the 

closer to the wall are, the more pronounced particle-wall hydrodynamic interaction is (Gavze 

and Shapiro, 1997). The degree of particle-wall hydrodynamic interaction is characterized 

by the amplitude A for a fixed particle aspect ratio. The asymmetric rotation of the particle 

depends on the non-zero magnetic torque acting on the particle, which in turn depends on 

the field direction and magnitude. The direction of the magnetic field controls the nature 

of the asymmetry and thus the direction of the net lateral migration. When t  > 0.5, the 

particle move upwards; when t  < 0.5, the particle move downwards. The strength of the 

magnetic field controls the speed of the lateral migration. The more t  deviates from 0.5, the 

larger the migration speed is. In other words, the direction of the magnetic field determines 

whether t  -  0.5 is positive or negative, and the strength of the magnetic field determines 

the absolute value of t  -  0.5. Therefore, we use (t  -  0.5) to characterize the asymmetric 

rotation of the particle. Based on the above analysis, we propose a scaling relationship, 

Ayp <x (t  -  0.5)A for all particle aspect ratios investigated, AR = 2, 3, 4. As shown in 

Figure 13, the numerical results and the linear fitted curves are shown as symbols and lines 

respectively. The agreement between the fitted curves and numerical results confirms the 

scaling relationships. Our numerical results suggest that it is reasonably applicable when 

|t  -  0 .51 < 0.2 from Figure 13. However, due to the complex particle-wall hydrodynamic 

interactions, it is difficult to obtain a quantitative expression relating Ayp to A and (t  -  0.5). 

In this work, the linear scaling is fitted very well when |t  -  0.51 < 0.2, which can provide a 

useful guideline on the effective design for other researchers.
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Figure 13. The scaling relationship between Ayp/A  and (t -  0.5) for AR = 2(a), 3(b) and 
4(c). The circle, square, triangle and star stands for numerical results of yp0 = 10 gm, 12 

gm, 14 gm and 16 um, respectively. The solid lines are the fitting results.

4. c o n c l u s i o n s

In this paper, we developed a multi-physics numerical model based on direct numerical 

simulations to investigate the lateral migration of a paramagnetic elliptical particle in a 

plane Poiseuille flow under a uniform magnetic field. When the magnetic field is absent, 

there is a negligible net lateral migration of the particle. When the magnetic field is present, 

the particle migrates laterally. The direction of the magnetic field controls the asymmetric 

rotation of the particle and the direction of the net lateral migration. The strength of the 

magnetic field controls the speed of the net lateral migration. We also investigated the effects 

of particle aspect ratio and initial particle-wall separation distance, on the lateral migration 

behaviors of the particles. Based on these findings, we explained the lateral migration
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mechanism and proposed a scaling relationship which can provide a guideline on effective 

design of microfluidic devices to manipulate non-spherical micro-particles and biological 

cells.
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a b s t r a c t

We study the rotational dynamics of magnetic prolate elliptical particles in a simple 

shear flow subjected to a uniform magnetic field, by using direct numerical simulations 

based on the finite element method (FEM). Focusing on paramagnetic and ferromagnetic 

particles, we investigate the effects of the magnetic field strength and direction on their 

rotational dynamics. In the weak field regime (below a critical field strength), the particles 

are able to perform complete rotations, and the symmetry property of particle rotational 

speed are influenced by the direction and strength of the magnetic field. In the strong field 

regime (above a critical strength), the particles are pinned at steady angles. The steady angle 

depends on both the direction and strength of the magnetic field. Our results show that 

paramagnetic and ferromagnetic particles exhibit markedly different rotational dynamics in 

a uniform magnetic field. The numerical findings are in good agreement with theoretical 

prediction. Our numerical investigation further reveals drastically different lateral migration 

behaviors of paramagnetic and ferromagnetic particles in a wall bounded simple shear flow 

under a uniform magnetic field. These two kinds of particles can thus be separated by

mailto:wancheng@mst.edu
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combining a shear flow and a uniform magnetic field. We also study the lateral migration 

of paramagnetic and ferromagnetic particles in a pressure-driven flow (a more practical 

flow configuration in microfluidics), and observe similar lateral migration behaviors. These 

findings demonstrate a simple but useful way to manipulate non-spherical microparticles in 

microfluidic devices.

Keywords: microfluidics; particle separation; magnetic particles; rotational dynamics; 

lateral migration

i . i n t r o d u c t i o n

Magnetic particles have been used in a vast number of applications including 

biomedicine (Pankhurst et al., 2003), biological analysis, and chemical catalysis (Gijs et al., 

2009; Pamme, 2012). The separation of magnetic microparticles and nanoparticles in 

microscale fluid environments is one of the most important processes in the systems and 

platforms based on microfluidic technology (Pamme, 2006, 2012). A magnetic field is a 

powerful tool to separate magnetic particles or magnetically labelled cells, antigens, and 

enzymes (Gijs, 2004; Pamme, 2006; Suwa and Watarai, 2011). Most magnetic separation 

methods are based on magnetophoresis, which manipulates magnetic particles in a viscous 

fluid by using magnetic forces. To generate the magnetic force, it requires both magnetic 

particles and a spatially non-uniform field (magnetic field gradient) (Pamme, 2006). There 

are two different types of magnetophoresis: one is called negative magnetophoresis -  

manipulating diamagnetic particles in a magnetic fluid such as ferrofluids (Bucak et al., 

2011; Winkleman et al., 2007; Zhou et al., 2016; Zhou and Xuan, 2016); the other one is 

called positive magnetophoresis -  separating paramagnetic or ferromagnetic particles in a 

non-magnetic fluid such as water (Chen et al., 2015; Zborowski et al., 1999).

In contrast to conventional magnetophoresis, several recent experimental, numerical, 

and theoretical studies (Cao et al., 2018; Matsunaga et al., 2017a,b; Zhang and Wang, 2018; 

Zhou et al., 2017a,b) have demonstrated a different way to manipulate magnetic non-spherical
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particles by a uniform magnetic field in the microchannel. The uniform magnetic field does 

not generate a magnetic force, but instead generates non-zero magnetic torques due to the 

non-spherical particle shape. When coupled with particle-wall hydrodynamic interaction 

(Gavze and Shapiro, 1997; Leal, 1980), the uniform magnetic field alters the rotational 

dynamics of non-spherical particles, and consequently controls the lateral migration of 

particles. Experiments preformed by Zhou et al. (Zhou et al., 2017a,b) have demonstrated 

that a weak uniform magnetic field can separate paramagnetic particles in a microchannel 

pressure-driven flow. The magnetic torque broke the symmetry of the particle rotation. Due 

to the particle-wall hydrodynamic interaction, the particles migrated laterally towards or 

away from the wall depending on the direction of magnetic field. By using the finite element 

method (FEM), Cao et al. (Cao et al., 2018) and Zhang et al. (Zhang and Wang, 2018) 

investigated the effect of several parameters, such as the strength and direction of the magnetic 

field, particle aspect ratio, and flow rate, on the lateral migration of the paramagnetic particles 

in microchannels. In another study, Matsunaga et al. (Matsunaga et al., 2017a,b) proposed a 

far-field theory and used the boundary element method to demonstrate that a strong uniform 

magnetic field can separate the ferromagnetic particles in both simple shear flow near the 

wall and Poiseuille flow between two walls. In this method, ferromagnetic particles are 

pinned at steady angles and the lateral migration results from particle-wall hydrodynamic 

interactions as well.

Previous investigations have either studied the lateral migration of paramagnetic 

particles under a weak magnetic field (Cao et al., 2018; Zhang and Wang, 2018; Zhou et al., 

2017a,b) or ferromagnetic particles under a strong magnetic field (Matsunaga et al., 2017a,b). 

A comprehensive understanding on the difference of the lateral migration mechanism between 

the paramagnetic and ferromagnetic particles under both the weak and strong magnetic fields 

is absent. In our previous theoretical work (Sobecki et al., 2018), we theoretically analyzed 

the difference of particle rotational dynamics between the paramagnetic and ferromagnetic 

particles in a simple shear flow under a magnetic field. However, due to the inherent
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complexity of particle dynamics in bounded flows, systematic theoretical analysis is difficult. 

In this work, we systematically investigate the rotational dynamics of both paramagnetic 

and ferromagnetic elliptical particles under a uniform magnetic field in simple shear and 

bounded flows by using direct numerical simulations. Our results suggest that the difference 

in magnetic properties leads to markedly different rotational dynamics as well as lateral 

migration. Based on these insights, we demonstrate feasible ways to separate these two 

kinds of magnetic particles in a pressure-driven flow configuration, which are commonly 

used in practical applications such as microfluidic devices.

This paper is organized as follows. Section 2 presents the numerical method including 

mathematical modeling, material parameters used in the simulation, and validation of the 

numerical method. Section 3 presents a brief theoretical analysis for comparing the numerical 

and theoretical results in following sections. Section 4 and 5 numerically investigate the 

rotational dynamics of paramagnetic and ferromagnetic particles in a simple shear flow 

under weak and strong magnetic fields, and compare the numerical and theoretical results. 

Based on the discussion in Section 4 and 5, Section 6 studies the lateral migration of 

paramagnetic and ferromagnetic particles in a simple shear flow near the wall. Finally, 

in Section 7, the simulation for the lateral migration of paramagnetic and ferromagnetic 

particles in a microchannel pressure-driven flow under both a weak and strong magnetic 

fields is preformed to demonstrate particle separation in more practical flows.

2. n u m e r i c a l  m e t h o d

2.1. m a t h e m a t i c a l  m o d e l

We consider a rigid prolate elliptical particle suspended in a simple shear flow as 

shown in Figure 1. The computational domain, Q, is bounded by the boundary, ABCD, 

and particle surface, r .  The width and length of the computational domain are W and L , 

respectively. The center of the particle is set to be the center of the computational domain.
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The particle aspect ratio is rp = a/b, where a and b are the major and minor semi-axis lengths 

of particles, respectively. The orientation angle of the particle, <p, is the angle between the 

major axis of the particle and the positive y axis. The background flow is a simple shear 

flow, where the velocity um = jy e x is imposed, with j  being the shear rate. A uniform 

magnetic field, H 0, is applied at an arbitrary direction, denoted by a. The fluid is assumed

/ / ^ “/ H / /

Figure 1. Schematic of the numerical model of an elliptical particle suspended in a simple 
shear flow under a uniform magnetic field H0. The fluid domain and particle surface are Q 

and r ,  respectively. The orientation angle of the particle is denoted by <p.

to be incompressible, Newtonian, and non-magnetic. The transient flow field is governed by 

the continuity equation and Navier-Stokes equation:

V • u  = 0, (1)
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= -V p  + v  • nf  (vu  + (Vu)T) , (2)

where u is the velocity vector, p f  and nf are the density and dynamic viscosity of the fluid, 

respectively, p  is the pressure, and t is the time.

To impose simple shear, the velocities at the top (AB) and bottom (CD) walls are set 

to be ± 2yWex respectively. The boundaries AC and BD are set to periodic flow conditions. 

With the no-slip condition applied on the particle surface, the fluid velocities on the particle 

surface r  are expressed as:

u = Up + Wp X (Xs — Xp), (3)

where Up and wp are the translational and rotational velocities of particle, respectively, xs and 

xp are the position vectors of the surface and the center of the particle. The hydrodynamic 

force and torque acting on the particle are:

Fh = J  (Th • n)dr ,  (4)

L h = J  (Th X (xs -  Xp) • n )d r, (5)

is the hydrodynamic stress tensor on the particle surface r .  

governed by the static Maxwell equations:

where Th = nf (Vu + (Vu)T) 

The magnetic field is

p f
du
~3t

+ (u • V) u

V X H = 0, (6)

<1 a ii o (7)

where H and B are the magnetic field and the magnetic flux density, respectively. To impose 

a uniform magnetic field, a magnetic scalar potential difference is set across boundaries AB 

and CD, with a zero magnetic potential Vm = 0 on AB and a magnetic potential Vm = Vmo on 

CD. Magnetic insulation condition is applied on boundaries AC and BD.
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Assuming that the particle is homogeneous and isotropic in magnetic properties, 

the magnetic force acting on the particle, due to a uniform magnetic field, is zero (Stratton, 

2007). The magnetic torque acting on a magnetic particle is expressed as (Stratton, 2007):

Lm = Vo(m x H o), (8)

where m is the magnetic moment of the particle, and v 0 is the magnetic permeability of the 

vacuum.

For two-dimensional elliptical particles, the rotational motion is in the x -y  plane, 

thus = wpez, Lh = Lhez, and Lm = Lmez. The translation and rotation of particles are 

governed by Newton’s second law and Euler’s equation:

mp
d Up 
dt = F a, (9)

dwp
Ip~dT — Lh + Lm, (10)

where mp and Ip are the mass and the moment of inertia of the particle, respectively.

The position of the particle center xp(t) = (xp, yp) and the orientation 0 of the particle 

are expressed as:

Xp(t) = Xp(0) + /* Up(t')dt', (11)
Jo

<p(t) = 0(0) + f  up(t')dt', (12)
Jo

where xp(0) and 0(0) are the initial position and orientation of the particle.

The dynamic motions of the particle, the flow field, and the magnetic field are 

coupled via Equations (3)-(5) and (8)-(10). We use direct numerical simulation (DNS) based 

on FEM and arbitrary Lagrangian-Eulerian(ALE) method to simultaneously calculate the 

flow field and particle motion. Similar methodologies have been successfully used by Hu et 

al. (Hu et al., 2001) and Ai et al. (Ai et al., 2009a,b; Ai and Qian, 2010; Ai et al., 2014).
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The numerical model is implemented and solved with a commercial FEM solver (COMSOL 

Multiphysics). First, we use a stationary solver to calculate the magnetic field inside and 

outside of the particle and compute the magnetic torque acting on the particle. Then, the 

two-way coupling of fluid-particle interaction model is solved by using a time-dependent 

solver and by importing the previously determined magnetic torque. The deformation of 

the computational domain is solved with the Moving Mesh interface based on the ALE 

algorithm. The meshes of fluid domain are free to deform, while the particle domain are 

determined by its trajectory and orientation. As the mesh deforms, the mesh quality is 

decreased. When the quality value is decreased to 0.2, the re-meshing process initiates. 

Similar modeling strategy has been successfully carried out in our previous work (Zhang 

and Wang, 2018) and other work e.g., Cao et al (Cao et al., 2018). Quadratic triangular 

elements are employed in this simulation. A fine mesh around the particle and a finer mesh 

around the tip of the particle are created to accurately calculate the hydrodynamic force and 

torque acting on the particle. The total number of elements was about 7,000 in the fluid 

domain Q, and about 130 elements were used to discretize the particle surface r .

2.2. MATERIAL PROPERTIES

In this numerical study, water is used as the nonmagnetic fluid ( x f  = 0), which has a 

density p f  = 1000 kg/m3 and a dynamic viscosity n f = 1 x 10-3 Pa-s. The shear rate of 

the flow is kept constant, such that j  = 200 s -1 . The particle is assumed to be polystyrene 

particles containing magnetic nanoparticles, similar to those used in earlier experiments 

(Zhou et al., 2017a,b), which could be either paramagnetic or ferromagnetic particles. The 

density of the particle is pp = 1100 kg/m3. Here, the particle motion is in the x -y plane and 

the inertia effect is negligible, thus the density difference between the particle and fluid has 

negligible effect on the particle dynamics. The equivalent diameter of the particle used in 

this simulation is d = 7 pm  and the particle aspect ratio rp = 4, thus the major and minor
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semi-axis lengths of particles are a = 7 um  and b = 1.75 um. We consider two kinds of 

magnetic particles: paramagnetic particles with x p = 0.26 and ferromagnetic particle with 

permanent magnetization M 0 = 2000A/m.

2.3. VALIDATION OF NUMERICAL METHOD

In this section, we present validation of the numerical method by comparing the 

results with Jeffery’s theory, which describes the periodic rotation of an axisymmetric 

ellipsoidal particle in a simple shear unbounded flow (Jeffery, 1922). Without a magnetic 

field, the ferromagnetic and paramagnetic particles behave the same way. Here, the width 

and length of the computational domain are W = L = 150 um, which will also be used in 

the simulations in Section 4 and 5. The confinement effects the walls are negligible due 

to the large computational domain relative to the particle size. The period of the particle 

rotation, TJ , is defined as the time taken by the particle to rotate from <p = 0° to <p = 360°, 

and TJ = 2n /y (rp + 1/rp) (Jeffery, 1922). Due to the fore-aft symmetry of the particle, we 

define TJ as the time taken for rotation from 0° to 180°, i.e., TJ = TJ /2. Note that for ease 

of visualizing results, we use both ‘degree’ and ‘radian’ as units for angles in the remaining 

sections of this paper.

Figure 2 compares the time evolution of particle orientation angle predicted by 

Jeffery’s theory and our simulation for a particle with rp = 4 in a simple shear flow (y = 

200 s -1). The theoretical value of TJ from Jeffery’s theory is 0.0668 s, while the period 

obtained in our FEM simulation is 0.0670 s. The relative error is 0.3%, suggesting that the 

simulation has excellent agreement with the theory. Therefore, this simulation method has 

been validated to be sufficiently accurate to study the dynamics of the particle in a simple

shear flow.
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Figure 2. Comparison between the FEM simulation and Jeffery’s theory for particle aspect
ratio rp = 4 and the shear rate j  = 200s-1 .

Table 1. Four meshes for grid independence analysis

Domain elements Boundary elements on 
particle surface

Mesh 1 3734 48
Mesh 2 4812 76
Mesh 3 6952 124
Mesh 4 7548 148

2.4. g r i d  i n d e p e n d e n c e  a n a l y s is

We perform grid independence analysis to determine the appropriate meshes for 

cost-effective numerical simulations without comprising accuracy. The results for four 

different meshes in a simple shear flow in the absence of the magnetic field are shown in 

Table 1 and Figure 3. As can be seen, the convergence of numerical results is considered 

sufficient when the domain element number is larger than 6,952 and the boundary element
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number on the particle surface is larger than 124. In this work, we use about 7500 elements 

in the computational domain Q in Figure 1, and about 150 elements on the particle surface 

r ,  which give reasonably accurate results.

t(s)
Figure 3. Grid independence analysis: particle orientation p as a function of time t for 

particle aspect ratio rp = 4 and the shear rate j  = 200s-1 .

3. t h e o r e t i c a l  a n a l y s is

In this section, we briefly present the theoretical analysis pertaining to the rotational 

dynamics of paramagnetic and ferromagnetic particles. We also define relevant dimensionless 

parameters as well as physical quantities to characterize the rotational behaviors.

Assuming a small particle Reynolds number, (i.e., Rep = ppd2y /n f  ^  1, justified 

by typical microfluidic experimental conditions), the particle inertia is negligible and the 

particle motion is quasi-steady, similar to the previous studies (Allan and Mason, 1962;
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Chaffey and Mason, 1964; Okagawa et al., 1974). Equation (10) is then reduced to:

Lh + Lm — 0. (13)

Under the assumption of Stokes flow, the hydrodynamic torque in the xy plane acting 

on an ellipsoidal particle in a simple shear flow with a shear rate j  is (Jeffery, 1922; Okagawa 

etal., 1974):

Lh
8n n /a3(rp + 1) rp -  1 cos(2^) . y
3rp(Dxx + Dyy) rp + 1 2 ^  2

mp), (14)

where mp — d<p/dt is the particle rotational speed, Dxx — 1 -  A and Dyy — A/2 are the

ellipsoidal demagnetizing factors, and A — rP rp cos 1(rp)
rp-1 (rP-1)3/2

— _£ . for a prolate ellipsoid (Okagawa

et al., 1974). When the magnetic field is absent, we obtain the rotational speed due to the 

hydrodynamic torque only:

mh
rp cos(<p)2 + sin2(<p)

rp2 + 1
(15)

which is the Jeffery equation.

When subjected to an external magnetic field, a magnetic moment is induced in a 

paramagnetic particle, thus resulting a magnetic torque. According to previous works (Shine 

and Armstrong, 1987; Zhou et al., 2017a,b), the torque experienced by the paramagnetic

particle is

Lmp -V»
doXpHo(Dyy -  Dxx) sin(2(^ -  a ))

2(XpDxx + 1)( XPDyy + 1)
(16)

where Vp is the volume of the particle. Substituting Equations (14) and (16) into Equation 

(13), the total particle rotational speed is obtained:

mp —
d(p
dt

rp cos(<p)2 + sin2(<p) -  Sp sin(2(<p -  a))

rp + 1
f , (17)
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where

sp =
VoXpH0(rpDxx + Dyy)(Dyy -  Dxx)

(18)
4 jr]f (1 + XpDxx )(1 + XpDyy)

The dimensionless parameter Sp measures the relative strength between the magnetic and 

hydrodynamic effects on a paramagnetic particle (Zhou et al., 2017a,b).

For a ferromagnetic particle, it is assumed that the magnetization of the particle, M0 

(its magnitude denoted by M0) is parallel to the particle’s major axis. The magnetic moment 

of the particle m = VpM0 = VpM0(sin(f), cos(f), 0). Thus, Equation (8) can be written as 

L mf  = jU0Vp(M0 x H 0) = Lmf  ez, with the magnitude of the torque (Shine and Armstrong, 

1987),

Lmf = - H0VpM0H0 sin(f -  a). (19)

We obtain the total rotational speed of a ferromagnetic particle in a simple shear flow 

(Sobecki et al., 2018):

" p dt
d f  rp cos(f )2 + sin2(f)  -  S f sin ( f  -  a)

------------- y,
rp + 1

(20)

where

S f =
d0 M0 H0(rp D xx + Dy y )

2n f  y
(21)

is a dimensionless parameter that measures the relative strength between the magnetic and 

hydrodynamic effects on a ferromagnetic particle.

As can be seen in equations (17) and (20), the particle rotational behaviour depends 

on the direction of magnetic field a  and the parameters Sp or S f . When Sp or S f is increased 

to a large enough value, the particle rotation is impeded. In our previous work (Zhou et al., 

2017b), we defined Scr as the critical value of S for the existence of real solutions to wp = 0. 

When S > Scr, the particle is impeded at a certain steady angle f s, and we define this field 

as the strong magnetic field. When S < Scr, the particle is able to perform full rotations, so
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we define this field as the weak magnetic field. For simplicity of notation, in the following 

sections, we use S to represent either Sp for paramagnetic particles or Sf for ferromagnetic 

particles.

The critical relative strength, Scr, can be calculated from the Equation (17) for 

paramagnetic particles and the Equation (20) for ferromagnetic particles. The values of Scr 

for rp = 4 is shown in Table 2 for various magnetic field directions (a) (Sobecki et al., 2018).

In the weak field regime, to better compare the difference between paramagnetic and 

ferromagnetic particles, we define the period of rotation as the time taken by the particle to 

rotate from 0 to 2n (or 360°) as T = Ti + T2 with:

T =
d(p
mp

Ti
d(p
mp

T2
d(p
mp

(22)

In our previous work (Zhou et al., 2017b), due to n(180°) period of the paramagnetic particle, 

we defined a ratio parameter,

Ti r /2 d i i  r  d i
J 0 mp I J 0 mp

(23)

to characterize the symmetry property of the paramagnetic particle rotation. However, the 

ferromagnetic particle rotates periodically with a period of 2n (or 360°), thus we define an 

additional ratio parameter:

T2
d l
mp

(24)

We use the average of t1 and t2 as t to characterize the overall symmetry property of the 

particle rotation, that is,
= Ti + T2 
= 2

(25)

As can be seen, for the paramagnetic particle, t1 = t2 = t .
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Table 2. The critical strength, Scr, calculated for paramagnetic and ferromagnentic particles 
with rp = 4, and different a  (Sobecki et al., 2018).

a(°) 0 45 90 135 180 225 270 315
Paramagnetic 4 1 4 16 4 1 4 16
Ferromagnetic 1 1.38 7.75 1.38 1 1.38 7.75 1.38

In the following sections, we will investigate the difference of rotational dynamics 

between paramagnetic and ferromagnetic particles by using systematic numerical simulations 

under both weak and strong magnetic fields. Specifically, we will study the effect of magnetic 

field on the period of rotation, symmetry properties of the particle rotation, and impeded 

angles. In addition, the numerical and theoretical results are compared and discussed.

4. w e a k  m a g n e t i c  f i e l d

We will focus on the rotational dynamics of paramagnetic and ferromagnetic particles 

in the presence of a weak magnetic field (S < Scr). In this regime, both particles are able to 

perform complete rotations. However, the magnetic field will affect their rotation differently 

because the the magnetic torques have different dependence on the parameter (<p -  a ) as in 

Equations (16) and (19).

4.1. p a r a m a g n e t i c  p a r t i c l e s

First, we discuss the rotational dynamics of paramagnetic particle in a weak magnetic 

field. The rotational motion of the paramagnetic magnetic particle with rp = 4 when the 

magnetic field is applied perpendicular to the flow direction (a  = 0°) is shown in Figure 

4. Figure 4(a) shows the time evolution of orientation angle of the particle, <p, with time 

t when the relative strength S is increased from 0 to 5.04. As can be seen, the period of 

rotation increases with an increasing S. With S « 5.04, the particle is impeded at a steady 

angle <ps = 61.56°. The numerical results are in quantitative agreement with the prediction
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(Scr = 4) from our previous theory (Zhou et al., 2017b). We study the dimensionless 

parameters t1 and t2 in Figure 4(b) and (c). The numerical results show that t1 = t2 = t for 

the paramagnetic particle, independent of the magnetic strength S < Scr, which is consistent 

with the theoretical results in Section 3. Thus, we only discuss t in the remaining of this 

section.

0 0.06 0.12 0.18 0.24
t(s)

Figure 4. Rotation of the paramagnetic magnetic particle (rp = 4) when the magnetic field is 
applied perpendicular to the flow direction (a = 0°). (a) The times evolution of orientation 
angle, <p; (b) The evolution of orientation angle, <p, with the dimensionless time, t/T); (c) 

The evolution of orientation angle, <p, with the dimensionless time, t /T2. T1 and T2 denote 
times taken by the particle to rotate from 0° to 180° and from 180° to 360°, respectively.

The effect of the magnetic field on the period of rotation is shown in Figure 5. To 

better illustrate this effect, the dimensionless period is defined by normalizing T with the 

Jeffery period TJ . We investigate four different directions of the magnetic field. At each 

direction, the dimensionless period changing with magnetic field strength S is studied. The
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symbols represent the numerical results and the solid lines are the theoretical predictions from 

Equation (22). We observe that the dimensionless period, T /T J , increases monotonically 

with an increase of S when the magnetic field is applied at a = 0°(a), a = 45°(b), and 

a = 90°(c). When the magnetic field is applied at a = 135°(d), the dimensionless 

period, T /T J , decreases first, and then increases. Furthermore, these numerical results are 

in quantitative agreement with those when the paramagnetic particle is transported in a 

pressure-driven flow (Zhang and Wang, 2018). Additionally, the numerical results are in a 

very good agreement with the theoretical prediction.

S S

Figure 5. The dimensionless period, T/TJ, varies with the dimensionless magnetic field
strength, S when the magnetic field is applied at a = 0°(a), a = 45°(b), a = 90° (c) and

a = 135°(d) for the paramagnetic particle.
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Figure 6 shows the dimensionless parameter, t , as a function of S when the magnetic 

field is applied at a = 0°, a = 45°, a = 90° and a = 135°. When the field is applied at 

a = 0° and 90°, as can be seen in Figure 6 (a) and (c), t deviates further from 0.5 as S 

is increased, meaning the asymmetry of the particle rotation becomes more pronounced. 

Interestingly, when the magnetic field is applied at a = 45° and 135° as can be seen in Figure 

6 (b) and (d), t is always equal to 0.5, independent of the strength S, meaning the particle 

rotation is always symmetric with respect to <p = 90° and 270°. The numerical simulation 

results have a remarkable agreement with the theoretical results.

S

2
s

0.7  

0.6 

h  0 .5 1

(b)

-------Theoretical
+  Numerical

0.2 0.4 0.6 0.8
S

Figure 6. The dimensionless parameter, t , varies with the dimensionless magnetic field
strength, S when the magnetic field is applied at a = 0°(a), a = 45°(b), a = 90° (c) and

a = 135°(d) for the paramagnetic particle.
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4.2. f e r r o m a g n e t i c  p a r t i c l e s

We now look at the rotational dynamics of a ferromagnetic particle under the weak 

magnetic field regime. Because the rotation of ferromagnetic particle has a period of 2n 

(or 360°) in <p, we perform simulations with the magnetic field applied at a  = 0°, 45°, 90°, 

135°, 180°, 225°, 270° and 315°. Figure 7 shows the dimensionless period, T /T J , changing 

with the dimensionless magnetic field strength, S, when the magnetic field is applied at 

these eight angles. As we can see, the dimensionless period of rotation, T /T J , increases 

monotonically with an increase of S at all directions of the magnetic field, which is different 

from the phenomena observed in Figure 6 for paramagnetic particles. When the magnetic 

field is applied at 135°, T /T J is decreased first and then increased monnotonically with 

increasing S for a paramagnetic particle, but for a ferromagnetic particle, T /T J is increased 

with increasing S. The numerical simulation results show remarkable agreement with the 

theoretical results.

The dimensionless parameter, t , depends on the direction of the magnetic field, a, 

and field strength, S, as shown shown in Figure 8. As can be seen from Figure 8(a) and (e), 

when the magnetic field is applied at a = 0° and 180° , t1 = t2 = t = 0.5 as S is increased, 

which is different from the paramagnetic particle in Section 4.1 where t1 = t2 = t > 0.5 

and increases with increasing S. Note that paramagnetic particles behave the same when the 

magnetic field is applied at a = 180° and a = 0°. When the magnetic field is applied at 

a = 90° as shown in Figure 8(c), t1 < 0.5, t2 > 0.5, and both deviate more from 0.5 with 

increasing S, but t remains 0.5. Similar results are observed when the magnetic field is 

applied at a = 270° as shown in Figure 8(g). In this case, t1 > 0.5, t2 < 0.5, and t = 0.5 

for all values of S. These results are different from the paramagnetic particle in Section 4.1 

where t1 = t2 = t < 0.5 and are decreased with increasing S.
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Figure 7. The dimensionless period, T/ TJ, varies with the dimensionless magnetic field 
strength, S, when the magnetic field is applied at a = 0°(a), a = 45°(b), a = 90°(c), 

a = 135°(d), a = 180°(e), a = 225°(f), a = 270°(g) and a = 315°(h) for the ferromagnetic
particle.
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Figure 8. The dimensionless parameter, t , varies with the dimensionless magnetic field 
strength,^, when the magnetic field is applied at a = 0°(a), a = 45°(b), a = 90°(c), 

a = 135°(d), a = 180°(e), a = 225°(f), a = 270°(g) and a = 315°(h) for ferromagnetic
particle.
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When the magnetic field is applied at a = 45°, t  < 0.5, t2 > 0.5, and t < 0.5; 

When the magnetic field is applied at a = 135°, ti < 0.5, t2 > 0.5, but t > 0.5; When the 

magnetic field is applied at a = 225°, t1 > 0.5, t2 < 0.5, and t < 0.5; When the magnetic 

field is applied at a  = 315°, t1 > 0.5, t2 < 0.5, but t > 0.5. These three parameters deviate 

further away from 0.5 with increasing S when the magnetic field is applied at a  = 45°, 135°, 

225° and 315°, which are different from the paramagnetic particle in Section 4.1, where 

t1 = t2 = t = 0.5 in the weak field regime.

5. s t r o n g  m a g n e t i c  f i e l d

As we explained earlier, the particle could not have a full rotation when the magnetic 

field strength is increased to a certain value. So, in this section, we will focus on the 

impeded steady angles of paramagnetic and ferromagnetic particles in the presence of a

strong magnetic field.

5.1. p a r a m a g n e t i c  p a r t i c l e s

We first examine the rotational dynamics of a paramagnetic particle under a strong 

magnetic field. Figure 9 shows the evolution of particle orientation angle, <p with time, t , 

and the corresponding impeded angles for different magnetic field strengths and directions. 

As can be seen, for a fixed magnetic field direction, when the relative strength S is increased, 

the impeded angle, <ps, is decreased; for a fixed relative strength, when the magnetic field 

direction is increased, the impeded angle is increased as can be seen in Figure 9(a2), 

(b2), (c2) and (d2). For example, when S = 30, (ps = 14.95° for a  = 0°; (ps = 51.43° 

for a  = 45°; (ps = 90.93° for a  = 90°; (ps = 146.09° for a  = 135°. Recall that S is a 

parameter to characterize the relative strength between the magnetic and hydrodynamic 

effects on a magnetic particle. A larger S means the magnetic effect is more pronounced 

than hydrodynamic effect, and the major axis of the particle becomes more aligned to the
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magnetic field direction. The theoretical impeded angle, determined from equation (17) for 

S range from 10 to 40 (20 to 40 for a = 135° due to Scr = 16), are shown as solid lines in 

Figure 9(a2), (b2), (c2) and (d2). The numerical results of the impeded angles are in close 

agreement with the theoretical prediction.
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Figure 9. The time evolution of orientation angle, <p, and the stable orientation angle, (ps as a
function of S, when the magnetic field is applied at a = 0°(a), a = 45°(b), a = 90°(c) and

a = 135°(d) for the paramagnetic particle.
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5.2. f e r r o m a g n e t i c  p a r t i c l e s

Here, we will discuss the rotational dynamics of a ferromagnetic particle (rp = 4) 

under the strong magnetic field. Figure 10 shows the time evolution of orientation angle, <p, 

and the corresponding impeded angles for different relative strengths and different magnetic 

field directions. The dependence of <ps on S and a  is similar to that of paramagnetic particles. 

For a fixed magnetic field direction, when the relative strength S is increased, the impeded 

angle, <ps, is decreased; for a fixed relative strength, when the magnetic field direction is 

increased, the impeded angle is increased. For example, when S = 30, <ps = 25.76° for 

a = 0°; (ps = 55.85° for a = 45°; (ps = 91.82° for a = 90°; (ps = 163.70° for a = 135°. The 

impeded angle, computed from the equation (17) for S range from 10 to 40, are shown as 

solid lines in Figure 10 (a2), (b2), (c2) and (d2), suggesting good agreement between the 

numerical results and theoretical prediction.

However, compared with the results of paramagnetic particle shown in Figure 9, 

the impeded angles of ferromagnetic particles is always larger than those of paramagnetic 

particles when they are subjected to the same relative strengths(S) and magnetic field 

direction (a). For example, when S = 20 and a = 0°, <ps = 22.00° for the paramagnetic 

particle, while <ps = 34.15° for the ferromagnetic particle.

6. p a r t i c l e  l a t e r a l  m i g r a t i o n  i n  a  s i m p l e  s h e a r  f l o w  n e a r
t h e  w a l l

The results presented in the previous sections have illustrated many differences of 

rotational dynamics between paramagnetic and ferromagnetic particles when they are sub

jected a uniform magnetic field, where the wall effects can be neglected. Prior investigations 

have shown lateral migration in wall-bounded shear flows for either paramagnetic particles 

in a weak magnetic field (Cao et al., 2018; Zhang and Wang, 2018; Zhou et al., 2017a,b), or 

ferromagnetic particles in a strong magnetic field (Matsunaga et al., 2017a,b). However,
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systemic studies on the lateral migration of paramagnetic and ferromagnetic particles under 

the weak and strong magnetic field are absent. Therefore, in this section, we will use 

numerical simulations to study the lateral migration of the two different particles in a simple 

shear flow near the wall.

0.02 0.04
t{s)

0.06 0.08

t(s)

0.02  0.04  0.06  0.08
t(s)

Figure 10. The time evolution of orientation angle, p, and the stable orientation angle, ps, as
a function of S, when the magnetic field is applied at a = 0°(a), a = 45°(b), a = 90°(c) and

a = 135°(d) for the ferromagnetic particle.
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in a simple shear flow near the wall and in a plane Poiseuille flow in a microchannel under 
the influence of a uniform magnetic field H o . The fluid and particle domains are Q and r ,  

respectively. The orientation angle of the particle is denoted by <p. The particle-wall
separation distance is denoted by yp.

The numerical model of an elliptical particle suspended in a simple shear flow near 

the wall is shown in Figure 11(a). In this model, the velocity of the bottom wall is kept at 

zero, while the velocity of the top wall is at a constant velocity yWex. The length of the 

channel L = 900 um. The width of the channel W is set to 100 um. To investigate the effect 

of the wall, the particle is initially placed at a particle-wall separation distance yp0 = 10 um. 

The effect of the other wall is negligible due to the large separation distance. Our previous 

numerical study (Zhang and Wang, 2018) indicated that the inertia effect (Re = 0.125) can 

cause a small net lateral migration in the absence of magnetic field. Thus, to avoid the
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inertia effect, the viscosity of the fluid is set to 0.1 Pa-s and the shear rate is set to j  = 80 s-1, 

resulting in a small Reynolds number (Re = 0.008 «  1). This way, the effect of magnetic 

field is isolated in order to study its influence on particle migration. The other parameters 

are the same as before.

6.i . w e a k  m a g n e t i c  f i e l d

As we have discussed in Section 4, the symmetry property (characterized by t) of 

particle’s rotational velocity depends on the magnetic properties of the particle, and the 

direction of the magnetic field. Specifically, for paramagnetic particles, t > 0.5 when the 

magnetic field is applied at 0°, and t < 0.5 for paramagnetic particles when the magnetic 

field is applied at 90°, while for ferromagnetic particles, t = 0.5 when the magnetic field is 

applied at 0°, 90°, 180° and 270°. Second, for paramagnetic particles, t = 0.5 when the 

magnetic field is applied at 45° and 135°, while for ferromagnetic particles, t < 0.5 when 

the magnetic field is applied at 45° and 225°, and t > 0.5 when the magnetic field is applied 

at 135° and 315°. We will discuss those two cases separately to understand their lateral 

migration.

First, let us discuss about the lateral migration of paramagnetic and ferromagnetic 

particles when the magnetic field is applied at 0°, 90°, 180° and 270°. Due to a periodicity 

of n(180°) in <p for paramagnetic particles, the results for a = 0° and 180°, a = 90° and 

270° are the same, so we only need to perform simulations for a = 0° and a = 90°. Figure 

12 shows that the lateral migration with time over a 2n (or 360°) period for paramagnetic and 

ferromagnetic particles when the magnetic field of S = 0.67 is applied at 0°, 90°, 180° and 

270°. As can be seen in Figure 12(a) for the paramagnetic particle, the net lateral migration 

is away from the wall when a = 0°, and towards the wall when a = 90°. However, for the 

ferromagnetic particle as shown in Figure 12(b), there are negligible net lateral migrations
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Figure 12. Transport of the magnetic particles (rp = 4) near the wall under a weak magnetic 
field. (a) The lateral position of the paramagnetic particle, (yp -  yp0), over a period; (b) The 

lateral position of the ferromagnetic particle, (yp -  yp0), over a period.

when the magnetic field is applied at a = 0°, 90°, 180° and 270°. Therefore, we can separate 

paramagnetic and ferromagnetic particles by using a simple shear flow near the wall when a 

weak magnetic field is applied at 0°, 90°, 180° and 270°.

Next, we examine lateral migration of paramagnetic and ferromagnetic particles 

when a  = 45°, 135°, 225° and 315°. We only carry out simulations when a = 45° and 135° 

for paramagnetic particles. Figure 13 shows that the lateral migration changes with time 

over a 2n (or 360°) period for paramagnetic and ferromagnetic particles when a magnetic 

field of strength S = 0.67 is applied at a  = 45°, 135°, 225° and 315°. As can be seen in



82

Figure 13(a), for the paramagnetic particle, there are no net lateral migrations when a = 45°, 

or 135°. However, for the ferromagnetic particle as shown in Figure 13(b), there is a positive 

net lateral migration when a = 135° or 225°, and a negative net lateral migration when the 

magnetic field is applied at a = 45° and 315°. Therefore, we can separate the paramagnetic 

and ferromagnetic particles in a simple shear flow near the wall when the weak magnetic 

field is applied at 45°, 135°, 225° and 315°. But the net lateral migration over a period is 

smaller than the first case.

'  0  0.1  0.2  0.3  0.4  0.5  0.6  0.7
t(s)

Figure 13. Transport of the magnetic particles (rp = 4) near the wall under a weak magnetic 
field. (a) The lateral position of the paramagnetic particle, (yp -  yp0), over a period; (b) The 

lateral position of the ferromagnetic particle, (yp -  yp0), over a period.

For the paramagnetic particle in a weak magnetic field, our numerical results are 

consistent with findings of several previous studies (Cao et al., 2018; Zhang and Wang, 2018; 

Zhou et al., 2017b): the particle moves away from the wall when t > 0.5; the particle moves
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downwards when t < 0.5; no net lateral migration when t = 0.5. This numerical study 

further confirms same results for the ferromagnetic particle in a weak magnetic field: the 

particle will move upwards when t > 0.5; the particle will move downwards when t < 0.5; 

no net lateral migration when t = 0.5.

6.2. STRONG MAGNETIC FIELD

As we have discussed in Section 5, the impeded angles of the paramagnetic and 

ferromagnetic particles are different for the same S and a . Thus, we carry out simulations for 

the paramagnetic and ferromagnetic particles to understand the effect of a strong magnetic 

field on lateral migration, as shown in Figure 14. When a strong magnetic field is applied at 

a = 0°, the time evolution of orientation angle <p and the lateral migration, (yp -  yp0), of 

paramagnetic (red line) and ferromagnetic (black line) particles are shown in Figure 14(a) 

and (b). For both particles, a moderate strength S = 1 0  (solid line) and a large strength 

S = 40 (dash line), the impeded angles and lateral migration are different. But the difference 

of the impeded angles for S = 40 is more significant than those for S = 10. The net lateral 

migration between paramagnetic and ferromagnetic particles also shows marked difference 

for S = 40. This comparison suggests that it would be advantageous to use stronger field 

strength to separate the paramagnetic and ferromagnetic particles when the magnetic field is 

applied at a = 0°.

Figure 14(c) and (d) shows the evolution of orientation angle <p and the lateral 

migration, (yp -  yp0), of paramagnetic (red line) and ferromagnetic (black line) particles 

when a strong magnetic field is applied at a = 90°. In this case, there is a larger difference of 

both impeded angle and lateral migration for S = 10 (solid line) than for S = 40 (dash line). 

This finding suggests that a moderate field strength (S = 10) can result in better separation 

between the paramagnetic and ferromagnetic particles than a stronger field (S = 40) if the 

magnetic field is perpendicular to the flow, i.e., a = 90°.
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-------- Ferromagnetic S=10 -------- Paramagnetic S=10
-  -  Ferromagnetic S=40 —  —  Paramagnetic S=40

t(s) t(s)

t(s) t(s)

Figure 14. Transport of the magnetic particle (rp = 4) near the wall under a strong magnetic 
field.(a) The evolution of orientation angle <p and (b) the lateral position of the paramagnetic 
(red) and ferromagnetic (black) particles (yp -  yp0) vary with the time t when the magnetic 
field is applied at 0°; (c) The evolution of orientation angle <p and (d) the lateral migration, 

(yp -  yp0), of paramagnetic(red) and ferromagnetic(black) particles vary with the time t
when the magnetic field is applied at 90°.

7. p a r t i c l e  l a t e r a l  m i g r a t i o n  i n  a  p l a n e  p o i s e u i l l e  f l o w  i n  a
M i c r o Ch a n n e l

While the previous findings are obtained for particles suspended in simple shear 

flows (constant shear rate), we expect that they are qualitatively valid for Poiseulle flows, 

which are the predominant form of flow in practical applications. In this section, we study 

particle lateral migration in a plane Poiseuille flow in a microchannel. The numerical model 

is shown in Figure 11(b). The width and length of the channel are W = 50 um and L = 1200 

U m, respectively. The initial particle-wall separation distance is yp0 = 12  um. Water is the
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most commonly used fluid medium, thus we use water as the fluid in this simulation. The 

average inlet flow velocity is 2.5 mm/s, resulting Reynolds number Re = 0.125. As we have

t(s) t(s)

t(s) t(s)

Figure 15. Transport of the magnetic particle (rp = 4) in a plane Poiseuille flow in a 
microchannel when the magnetic field is applied at 0°(a)(c) and 90°(b)(d). S = 0.48 for (a) 
and (b); S = 40 for (c); S = 12 for (d). The red line represents for the paramagnetic particle 

and the black line for the ferromagnetic particle.

discussed in Section 6, the separation is possible when the magnetic field is applied at 0° 

and 90°. Here, we perform simulations when the magnetic field is applied at a  = 0° and 90°. 

With a weak magnetic field applied, the particle lateral migration in the plane Poiseuille flow 

in the microchannel are shown in Figure 15(a) and (b). As can be seen, the trajectories of 

paramagnetic particle (red line in Figure 15) and ferromagnetic particle (black line in Figure 

15) are qualitatively similar to those in a simple shear flow near a wall (Figure 11(b)).
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When a strong field is used, previous discussions have indicated better separation 

performance when the magnetic field is applied at a = 0°; while for a moderate relative 

strength (still must be larger than Scr), the field applied at a = 90° leads to a better separation. 

This finding is confirmed by numerical simulations for S = 40 with a = 0° and S = 12 

with a = 90°, as shown in Figure 15(c). Note that the parabolic velocity profile does affect 

the critical strength, and S = 12 is used to impede particle rotation. Nevertheless, the 

conclusions from simple shear flows apply qualitatively to pressure driven flows in a channel.

8. c o n c l u s i o n

In this work, we developed a multi-physics numerical model to investigate the 

rotational dynamics of paramagnetic and ferromagnetic particles that have elliptical shape, 

in a simple shear flow and under a uniform magnetic field. We investigated the effects 

of strength and direction of the magnetic field on rotational dynamics of paramagnetic 

and ferromagnetic particles. The results show that the symmetry of rotational velocity is 

modified by the magnetic field. When the magnetic field strength increases to a large enough 

value (the critical magnetic field strength), the particle rotation is impeded. In a weak field 

regime (below the critical magnetic field), the particle complete a full rotation, and the 

symmetrical property of particle rotations depend on the direction of the magnetic field. 

For the same strength and direction of the magnetic field, paramagnetic and ferromagnetic 

particles exhibit different asymmetric rotational behaviors. In the strong field (above the 

critical strength), the particles are pinned at their respected steady angles, which depend 

on the direction of magnetic field. The steady angles of paramagnetic and ferromagnetic 

particles are different for the same magnetic field strength and direction. The numerical 

results have very good agreement with that of theoretical analysis.

Based on the findings of the particle rotational dynamics, the lateral migration of 

paramagnetic and ferromagnetic elliptical particles in a simple shear flow near the wall 

is investigated. The results show that the paramagnetic and ferromagnetic particles have
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different lateral migration motions for the same flow and magnetic conditions. Thus, we 

can separate these two kinds of particles in a simple shear flow under the magnetic field. 

Finally, the lateral migration of paramagnetic and ferromagnetic particles in a pressure-driven 

channel flow is investigated. Paramagnetic and ferromagnetic particles in pressure-drive 

flows behave qualitatively similar to those in simple shear flows, suggesting a useful strategy 

to manipulate non-spherical micro-particles in the microfluidic devices.
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a b s t r a c t

Under a uniform magnetic field, magnetic particles tend to form chains, clusters or 

columns due to particle-particle interactions between the particles. The magnetic particles 

with non-spherical shape dispersed in liquid medium show different rheological properties. 

However, there is a lack of fundamental mechanism of the particle-particle interactions 

of non-spherical particles under the uniform magnetic field. In this work, we numerically 

investigate the particle-particle interactions and relative motions of a pair of paramagnetic 

elliptical particles by using direct numerical simulations to create two-dimensional models 

that resolve the magnetic and flow fields around the finite sized particles. The modeling is 

based on the finite element method and arbitrary Lagrangian-Eulerian approach with a full 

consideration of particle-fluid-magnetic field interaction. The effects of initial position and 

aspect ratio of the particles are investigated. The results show that the particles spend much 

more time for the global reorientation than for the local magneto-orientation. Larger initial

mailto:wancheng@mst.edu
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relative angles and distances, and larger aspect ratios tend to require more time to form a 

stable chain. The particle-particle interactions and relative motion of a pair of elliptical 

particles in this study provide insights on the particle alignment and chaining processes under 

uniform magnetic fields, which are closely related to the response of magneto-rheological 

fluids to magnetic fields.

Keywords: microfluidics, magnetic field, particle interactions, elliptical particles, direction 

numerical simulation

i . i n t r o d u c t i o n

Due to their significant advantages, magnetic particles have been using in various 

applications, which includes chemical, biomedical, biological and industrial fields (Gijs, 

2004; Gijs et al., 2009; Jamshaid et al., 2016). Under an external magnetic field, magnetic 

microparticles or nanoparticles immersed in non-magnetic fluid tend to form chains, 

clusters or columns due to the particle-particle interaction between the particles. The 

suspension consisting of high density magnetic microparticles or nanoparticles is called as 

magnetorheological fluids (MRFs) (De Vicente et al., 2011). The MRFs are smart materials 

which show various rheological properties, such as yield stress and apparent viscosity. The 

values of these rheological properties are increased to several orders of magnitude under 

the appropriately applied magnetic field. Due to their remarkable properties and the quick 

response to the magnetic field, MRFs are the good candidates for a vast number of industrial 

and medical applications, such as magnetorheological rotor damper, brakes, clutches, valves 

and cancer therapeutic (Bica et al., 2013; Rabinow, 1948; Sheng et al., 1999). In addition, 

magnetic particles have been also used in a wide number of microfluidic applications since 

it is easy and wireless manipulated by the external magnetic field. Cell separation is one of 

most important areas benefiting from those applications (Hejazian et al., 2015). The cells 

digested with magnetic nanoparticles or attaching magnetic microparticles to the cell surface 

could easily be manipulated by the magnetic field (Gijs et al., 2009).



92

A pair of magnetic particles suspended in a quiescent fluid is a basic model 

to investigate the particle-particle interactions in particle suspensions. There are many 

numerical investigations on the motion of magnetic spherical particles under the magnetic 

field. The particle-based numerical method are the most popular one, which is based 

on point-dipole approximation and stokes drag law (Melle and Martin, 2003; Petousis 

et al., 2007; Stuart et al., 2011). The particle is modeled as a dipole point and the dipole- 

dipole model is applied to study the particle-particle interactions between the particles. 

However, the particle-particle interactions due to the hydrodynamic and magnetic effects are 

neglected in this method, which may result in the quantitatively inaccurate or even erroneous 

results. More precise models are introduced to investigate the field-induced coupling and 

hydrodynamic interactions between the particles. Keaveny and Maxey (Keaveny and Maxey, 

2008) reported a dipole model including the locally higher-order multipoles to resolve the 

near-field magnetic interactions between two paramagnetic particles. To consider both 

hydrodynamic and magnetic interactions between the particles, Gao et al. (Gao et al., 2012) 

reported a particle-based numerical scheme by using magnetic dipole moments and extended 

forms of the Oseen-Burgers tensor to study the dynamics of magnetic particle chains in a 

viscous fluid under the rotating magnetic field. Their numerical results are qualitatively and 

quantitatively in agreement with the results obtained from video-microscopy experiments. 

Kang et al. (Kang et al., 2013, 2008) presented a direct numerical simulation model 

based on finite element method(FEM) and fictitious domain method to solve both two-and 

three-dimensional flow problems with paramagnetic particles in a non-magnetic fluid under 

both uniform and rotating magnetic field. The magnetic force acting on the particles are 

computed through the divergence of Maxwell stress tensor, and works as a body force applied 

to the momentum equation. Suh and Kang (Kang and Suh, 2011; Suh and Kang, 2011) 

introduced a direct numerical simulation model based on immersed-boundary finite volume 

method to solve two-dimensional motion of paramagnetic particles in a viscous fluid under



93

the uniform magnetic field. They have the similar particle trajectories of two magnetic 

particles under the uniform magnetic field as two-dimensional simulations in Kang’s paper 

(Kang et al., 2008).

In regard to the practical application, the complex shapes are also one of the most 

important properties of the magnetic particles. Recently, the experimental (Anupama et al., 

2018; Bell et al., 2008, 2007; Bombard etal., 2014; de Vicente et al., 2010; Dong et al., 2015; 

Jiang et al., 2011; Lopez-Lopez et al., 2009, 2007; Morillas et al., 2015; Ngatu et al., 2008; 

Sedlacik et al., 2013) and theoretical (Bossis et al., 2015; De Vicente et al., 2009; Kuzhir 

et al., 2009) investigations reported that the MRFs with non-spherical particles have stronger 

magnetorheological properties and better sedimentation stability compared to those with 

spherical particles. Thus, it is urgent need of an better understanding of the particle-particle 

interactions and motion behaviors of non-spherical particles under the magnetic field. Even 

though previous numerical methods have been successfully applied to magnetic spherical 

particles, there has been limited simulations on two non-spherical particles. Recently, 

Abbas and Bossis (Abbas and Bossis, 2017) numerically and theoretically investigated the 

dynamics of two ellipsoidal ferromagnetic particles under the externally alternating magnetic 

field. They reported that two ellipsoidal ferromagnetic particles repelled with each other 

due to hydrodynamic interactions under the alternating magnetic field. Despite lots of 

experimental studies on non-spherical particles, there has little work been done to study 

the basic particle-particle interactions of magnetic non-spherical particles under a uniform 

magnetic field.

In this study, we developed a transient multi-physics numerical model to investigate 

the particle-particle interactions and relative motions of a pair of paramagnetic elliptical 

particles under an uniform magnetic field. Numerical simulations will be performed by 

direct numerical simulation(DNS) based on finite element method and arbitrary Lagrangian- 

Eulerian(ALE) approach. The fluid field, magnetic field and particle motion are coupled 

and solved by using moving mesh based on ALE approach. For computational efficiency,
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we have chosen to use two-dimensional(2D) simulations in order to study a wide range of 

parameters (i.e., magnetic field direction, initial particle-particle distance, and particle aspect 

ratio). Prior studies have shown that 2D numerical simulations are able to qualitatively 

capture the characteristics of the motion of a pair of spherical particles (Ai and Qian, 2010; 

Ai etal., 2014; Kang and Suh, 2011; Kang etal., 2013, 2008; Suh and Kang, 2011). Here, 

we have also validated the numerical model with previous studies in Section 3.1 (motion of 

a pair of circular particles) and 3.2 (motion of a single elliptical particle).

2. n u m e r i c a l  m e t h o d

2.1. m a t h e m a t i c a l  m o d e l

We consider a pair of identical rigid prolate elliptical particles immersed in a 

quiescent fluid in a square with a length of L as shown in Figure 1. Q represents the entire 

computational domain, which includes fluid and two particle domains. r  and r 2 are the 

particle surfaces of those two particles. The center of the square is set as the origin of the 

Cartesian coordinate system. Two particles are set as axis-symmetric to the center of the 

square with the center-to-center distance of d and the relative angle of 0 with respect to 

the positive x-axis. The major and minor semi-axis lengths of the particles are a and b, so 

the particle aspect ratio is defined as rp = a/b. The orientation angle of the particle, a, 

is defined as the angle between the major axis of the particle and the positive x-axis. A 

uniform magnetic field, H 0, is applied at the positive x direction.

The fluid is considered as an incompressible, Newtonian, and non-magnetic with 

the constant density of p f , dynamic viscosity of nf  and magnetic susceptibility of x f . The 

particles are paramagnetic with magnetic susceptibility of x p. The transient flow field, u , in 

the fluid domain is governed by the continuity equation and Navier-Stokes equation:

V • u  = 0, (1)
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= -V p  + v  • nf  (vu  + (V u f)  , (2)

where p  and t are the pressure and the time, respectively. The open boundary conditions 

are set on boundaries ABCD, so that the fluid can both enter and leave the computational 

domain though boundaries. Here, the normal stress is zero on boundaries ABCD.

P f
du
~3t

+ (u • V) u

A B

Figure 1. Schematic of Numerical Model of two elliptical particles suspended in a quiescent 
flow under the influence of a uniform magnetic field.

The particle surface is assumed as the no-slip condition, so the fluid velocities on the 

particle surface r 1 and r 2 are expressed as:

u i = Upi + topi X (Xsi — Xpi), (3)

where i = 1 and 2 representing the first and second particle. Upi and topi are the transnational 

and rotational velocities of the ith particle , respectively. xsi and xpi are the position vectors 

of the surface and the center of the ith particle, respectively.
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The hydrodynamic stress tensor on the particle surface r ,  are:

Thi = n f Vu, + (Vu, ) . (4)

Thus, the hydrodynamic force and torque acting on the particle are expressed as:

F h i= / (Thi • ■
)d r (5)

Lhi ~ f (Thi x (Xsi x p ) ' n ) d r ' (6)

The magnetic field in the entire domain Q is governed by the static Maxwell equations:

v  x H = 0, (7)

<1 a ii o (8)

where H and B are the magnetic field and the magnetic flux density, respectively. The 

constitutive equation describing the relationship between magnetic field and magnetic flux 

density is B = j H, where j  is the magnetic permeability of a linear isotropic material. The 

relationship between magnetic permeability and magnetic susceptibility is j  = j o(1 + X), 

where j o = 4n x 10-7 H/m is the magnetic permeability in vacuum.

The uniform magnetic field is applied by setting a magnetic scalar potential difference 

between boundaries AC and BD. A magnetic potential Vm = Vm0 and a zero magnetic potential 

Vm = 0 are set on boundaries AC and BD, respectively. The magnetic potential and magnetic 

field are related by H = -VVm. The boundaries AB and CD are set as magnetic insulation 

condition.

The magnetic force and torque acting on the particles are expressed as (Stratton,

2007):

(9)
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Lm / (Tmi ^  ( \si X„i) • n)d r i (10)

where Tmi = ju(HH  -  ^H 2I) is the Maxwell stress tensor on the ith particle surface r i, 

H2 = H • H, I is the identity tensor.

The x-y  plane is the plane of the rotational motion for the two-dimensional elliptical

particles, thus mpi = mpiez, L hi = Lhiez, and Lmi = Lmiez. The Newton’s second law and

Euler’s equation are used to describe the translation and rotation of the particles, which are 

governed by:
pi

mpi dt = Fhi + Fmi’ (11)

d ̂ p̂
Ipi d t = Lhi + Lmi’ (12)

where mpi and Ipi are the mass and the moment of inertia of the ith particle, respectively. 

The particle trajectories of the ith particle are calculated by:

xpi(t) = xpi(0) + /* Upi(t')dt', (13)
J 0

a ( t ) = a (0) + [  wpi(t')dt', (14)
0

where xpi(t) = (xpi, ypi) is the position of the ith particle center; ai (t) is the orientation angle 

of the ith particle. Due to the axis-symmetric property, a\ and a2 have the same values. 

Thus, in the following discussion, a  is used to represent both orientation angles.

The coupling of the particle motions, the flow field, and the magnetic field is through 

Equations (3)- (6) and (9)-(12). The direct numerical simulation (DNS) based on finite 

element method(FEM) and arbitrary Lagrangian-Eulerian(ALE) approach is used to calculate 

the magnetic field, flow field and particle motion at the same time. In the previous researches, 

Hu et al. (Hu et al., 2001), Ai et al. (Ai et al., 2009a,b; Ai and Qian, 2010; Ai et al., 

2014) and previous simulations (Zhang et al., 2018; Zhang and Wang, 2018) employed 

the similar methodologies successfully applying to fluid-solid systems. The commercial
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FEM solver -  COMSOL Multiphysics is used to implement and solve the numerical model. 

The two-way coupling of particle-fluid-magnetic interaction model is solved by using a 

time-dependent solver through the ALE method, which solves the magnetic field in the entire 

domain, the fluid field in a Eulerian(deformed) frame, and tracks the particle motion in a 

Lagrangian(undeformed) frame at the same time. The moving meshing interface is used to 

track the deformation of the fluid domain where the meshes are free to deform. The meshes 

of particle domain are fixed which is determined by their trajectories and orientations. As 

the mesh deforms, the mesh distortion is increased. When the distortion value is increased 

to 0.3, the re-meshing process initiates. In this simulation, we used quadratic triangular 

elements in the entire domain. To accurately calculate the hydrodynamic force and torque, 

as well as magnetic force and torque acting on the particle, fine meshes are applied around 

the particle surfaces and finer meshes are applied around the tips of the particles. The total 

number of elements was about 16,000 in the entire domain and about 120 elements on each 

particle surface to obtain stable and mesh-independent results.

2.2. MATERIAL PROPERTIES

In this numerical study, water is used as the nonmagnetic fluid ( x f  = 0). The density 

and dynamic viscosity of the water are p f  = 1000 kg/m3 and nf = 1 x 10-3 Pa-s in the room 

temperature, respectively. The particle is assumed to be polystyrene paramagnetic particles 

containing magnetic nanoparticles, similar to those used in previous experiments (Zhou 

et al., 2017a,b). The density and magnetic susceptibility of the particle are pp = 1100 kg/m3 

and x P = 0.26, respectively. The equivalent radius of the particle used in this simulation is 

R0 = 3.5 pm  and the side length of the square domain is L = 50R0, which is large enough 

for this work according to Ref (Ai et al., 2014). The magnetic field strength is H0 = 10,000

A/m.
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3. r e s u l t s  a n d  d i s c u s s i o n

3.1. p a r t i c l e  i n t e r a c t i o n  o f  a  p a i r  o f  c i r c u l a r  p a r t i c l e s

In this section, as a validation of the numerical model, we compare the simulation 

results from our numerical model to the results from references for particle interaction of a 

pair of circular particles. When two circular particles suspended in the quiescent flow under 

a uniform magnetic field, the net forces acting on the particles have the equal magnitude but 

opposite directions. The directions of those two forces generated by magnetic interactions 

are changed with time except for the cases where the center-to-center line of the particles 

is perpendicular or parallel to the magnetic field. In these cases, the magnetic interaction 

between those two particles under the uniform magnetic field could be either attractive or 

repulsive, which depends on the center-to-center angle 6. According to the simulation results 

from Ref. (Kang et al., 2008), the critical angle 6c is approximately 45°, i.e. the magnetic 

force is attractive when 6 < 45°, while it is repulsive when 6 > 45°.

x* t*

Figure 2. (a) Trajectories of the centers of the two circular particles under the uniform 
magnetic field at the five initial relative angles 60 = 0°, 60 = 20°, 60 = 45°, 60 = 80° and 
6o = 90°; (b) The dimensionless center-to-center distance, d *, varies with dimensionless 
time, t*. The dash line is a circle of radius 4 where initial positions of the particles are

located.
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To compare our simulation results with results in Ref. (Kang et al., 2008), we 

investigate the same initial positions, i.e. the constant initial center-to-center distance 

d0 = 4R0 for the initial relative angle 60 = 0°, 20°, 45°, 80° and 90°. Here, particle position 

and center-to-center distance is dimensionless by the particle equivalent radius, R0, i.e. 

x * = x / R0, y* = y /R 0 and d * = d /R 0. The dimensionless time is defined as t* = t/Tm. 

For a linear magnetization of the particle we considered in this work, Tm = nf  / ( ju ^ f f l ) )  

is referred to as the magnetoviscous time constant (Shine and Armstrong, 1987), which 

represents a characteristic time to measure the relative effect between viscous and magnetic 

stresses. Figure 2 shows the dimensionless particle trajectories and center-to-center distance 

of a pair of circular particles under the uniform magnetic field for different initial relative 

angles when dimensionless initial center-to-center distance d0* = 4. As we can see, the 

trajectories of the particles for Q0 = 0°, 20°, 45°, 80° and 90° in Figure 2a are the similar as 

in Ref. (Kang et al., 2008). The two particles are aligned with the magnetic field regardless 

of the initial relative angle, Q0, except for the case of Q0 = 90°. When Q0 = 90°, the two 

particle move away from each other. However, these positions are highly unstable. If there 

was a small disturbance acting on the particles, the two particles will also be aligned to the 

direction of magnetic field for the initial relative angle of 90°. From Figure 2b, we can see 

that the dimensionless distance, d *, decreases monotonously with dimensionless time, t*, 

when Q0 = 0°. It means that the two particles attract with each other and move towards with 

each other. As Q0 increases, the decreasing rate becomes slower, meaning that the attractive 

force between two particles becomes weaker. When Q0 = 80°, d* increases first and then 

decreases with dimensionless time, t*, meaning that two particles first repulse with each 

other and then attract with each other. When Q0 = 45°, d* increases monotonously with 

t*, meaning that there are just attractive forces between the particles. These findings are 

also the same as in Ref. (Kang et al., 2008). Therefore, this simulation method has been 

validated to be sufficiently accurate to study the dynamics of a pair of paramagnetic particles 

under the uniform magnetic field.
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3.2. m a g n e t o -o r i e n t a t i o n  o f  a  s i n g l e  p r o l a t e  e l l i p t i c a l  p a r t i 
c l e

In this section, we investigate the local magneto-orientation of a single prolate 

elliptical paramagnetic particle under a uniform magnetic field. Uniform magnetic fields 

are frequently used to align paramagnetic or ferromagnetic materials in the liquid medium. 

Assuming the magnetic susceptibility of the particle is homogeneous, the particle can also 

undergo magnetic orientation if its shape is anisotropic (Yamaguchi et al., 2006). The 

induced magnetic moment of the particle depends on both magnetic susceptibility and particle 

shape. When a magnetic particle is place in a uniform magnetic field, the demagnetizing 

field is induced. As a result, the particle with isotropic magnetic susceptibility tends to 

be aligned to its major axis parallel to the magnetic field where the magnetic energy is 

minimum(Figure 3a). When its major axis is perpendicular to the magnetic field, the particle 

is in an equilibrium state, but is unstable. Once there is a small disturbance, the particle 

tends to reorient itself to the direction where its major axis parallel to the magnetic field. s

Figure 3. (a) A diagram of the magneto-orientation process for rp = 3 when the magnetic 
field is directed left to right; (b) The self-orientation angle of a single prolate elliptical 

particle, a  as a function of dimensionless time, t*, for different aspect ratios.
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Figure 3b shows the simulation result of the orientation angle of the particle, a, of a 

single elliptical particle varying with the dimensionless time, t* for different aspect ratio, 

where the initial angle between the major axis of the particle and the magnetic field a0 = 85°. 

To compare the effect of aspect ratio on the particle rotation, the relaxation time is defined 

as the time required for the particle rotating from initial angle to the orientation angle a  

falling below 1% of its initial angle. From the figure 3b, we can see the effect of aspect 

ratio, rp, on the dimensionless relaxation time, t*. For a circular particle, there is no net 

magnetic torque acting on the particle under a uniform magnetic field, so the relaxation 

time is considered as infinite. For a nearly circular particle, we can except it has a larger 

relaxation time due to a smaller torque acting on the particle. From the figure 3b, we can see 

that the relaxation time of the particle with aspect ratio rp = 1.5 is the longest among these 

seven cases. The relaxation time is reduced when rp increases from 1.5 to 3 as shown in the 

solid line in Figure 3b. We also can see that the minimum relaxation time is achieved when 

rp = 3 among those seven cases. As the aspect ratio continues to increase, the relaxation 

time is increased as shown in the dash line in Figure 3b. Those results have quantitative 

agreement with the theory from Ref. (Shine and Armstrong, 1987), where the relaxation 

time is first decreased and then increased as the aspect ratio is increased.

3.3. t w o  p a r t i c l e s : c o m b i n e d  m a g n e t o -o r i e n t a t i o n  a n d  g l o b a l  
r e o r i e n t a t i o n

In this section, we investigate the interaction of two particles for different orientation 

angle, a. Initially, two particles with rp = 2 areplaceat (x*, y*) = [±2.2cos(80°), ±2.2sin(80°)] 

under an external magnetic field H0 = 10,000 A/m along the x axis, i.e. d** = 2.2 and Q0 = 80°. 

Figure 4 shows particle trajectories and orientation angle as a function of dimensionless 

time for three different initial orientation angle. To see the combination effect of the local
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magneto-orientation and global reorientation and how it influences the particle interactions, 

we compare the relaxation time spending for the magneto-orientation to the relaxation time 

for the global reorientation.

Figure 4. The orientation angle of the particle, a, and particle trajectory as a function of 
dimensionless time, t*, for three initial orientation angle a0 = 80°(a), 90°(b) and 110°(c). 

The initial position of the particles are d* = 2.2 and 60 = 80°.
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As can be seen, for initial orientation angle 60 = 80°, the particles first have a 

clockwise local magneto-orientation from 80° to 0°, and then spend most of time for the 

global reorientation. Specifically, in this case, the local magneto-orientation is completed 

by t* = 125, while the global reorientation requires about t* = 642. There is a similar 

results for Q0 = 100°, but the particles have an anticlockwise local orientation and spend 

longer time in global reorientation than Q0 = 80°. The particles require t* = 133 to 

complete the local magneto-orientation, while require t* = 1553 to complete the global 

reorientation. In a special case when Q0 = 90°, there is just local magneto-orientation as 

shown in Figure 4(b). Thus, we can see that those two particles will spend much less time in 

the local magneto-orientation than global reorientation with the arbitrary initial orientation 

angle except for Q0 = 90° where there is just local magneto-orientation. Since the global 

reorientation of the particles is what we are most interested in, it is reasonable to assume the 

particles have already completed the local magneto-orientation process and just simulate the 

global reorientation process for particles of different conditions.

3.4. TWO PARTICLES: P A R A L L E L S  = 0°) OR P E R P E N D IC U L A R ^ = 90°) TO
m a g n e t i c  f i e l d

First, we consider the cases when the center-to-center line of two particles is 

parallel(00 = 0°) or perpendicular(00 = 90°) to the magnetic field when the initial orientation 

angle a0 = 0°. Figure 5 shows the magnetic field around the two particles when the magnetic 

field is applied at x direction. We can see that the magnetic field around those two particles 

is symmetric to each other. This symmetric field leads to the magnetic force that is attractive 

(60 = 0°) or repulsive (60 = 90°) while no magnetic torque is acting on the particles, so 

there is no global reorientation for those two particles. When Q0 = 0°, the region between 

the particles has a strong magnetic field, resulting in the total mutual magnetic force which 

drives the particles toward each other along the center-to-center line. When Q0 = 90°, 

the region between the particles has a weak magnetic field, resulting in the total mutual
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magnetic force which drives the particles away from each other along the center-to-center 

line. These findings are similar to the circular particles in Section 3.1. However, It’s worth 

mentioning that the particles are even more unstable for elliptical particles than circular 

particles when d0 = 90°. Even a small disturbance could lead to the particles deviating from 

the perpendicular position.

H(A/m)
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|  1.15 

1.1 
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|  1

J  0.95
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Figure 5. Magnetic field around two particles when the initial relative angle is 0° (a) and
90° (b).

3.5. TWO PARTICLES: GLOBAL REORIENTATION AT ARBITRARY INITIAL
p o s i t i o n  (0° < e 0 < 90°)

Generally, the initial orientation of two particles is a arbitrary angle other than 

two critical angles we mentioned before. Thus, it is more practical to understand the 

particle-particle interaction and relative motion of two arbitrarily oriented particles.

The global reorientation of two elliptical particle with aspect ratio rp = 2 when 

a0 = 0° are shown in Figure 6. Initially, the particles are placed at (x*, y*) = [±2.4cos(80°), 

±2.4sm(80°)], i.e. d* = 2.4 and 60 = 80°. At the starting position (i.e. t* = 0), the magnetic

field around the particles is asymmetric to either x axis or y axis, but axisymmetric to the 

midpoint of center-to-center line. Specifically, it generates a weaker magnetic field between 

the particles than outside of the particles, resulting in net repulsive magnetic forces and net
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torques acting on the particles. However, the magnetic field is axisymmetric to the midpoint 

of center-to-center line of the particles, so those forces and torques have the equal magnitude 

but opposite direction, which causes the particles moving away from each other in both 

vertical and horizontal direction. As the particles move, the vertical force become weaker. 

When the particles move to the position at t* = 242, the vertical magnetic force becomes 

zero, just remain horizontal force, where the center-to-center distance in y direction reaches 

the maximum. As the particles continue to move, the asymmetry magnetic field between 

the particles causes the vertical magnetic forces to attractive, while the horizontal forces 

stay repulsive, where the vertically attractive forces become weaker and the horizontally 

repulsive forces become stronger. When the particles move to the position at t* = 762, 

the horizontal forces become zero, just remain vertical forces, where the center-to-center 

distance in x direction reach the maximum. As the particles continue moving, the horizontal 

and vertical forces are both attractive, resulting in the particles moving towards each other. 

Finally, at t* = 1160, the particles touch with each other to form a stable chain with a small 

final global orientation angle 0f  = 0.20°. The corresponding velocity field demonstrated 

our analysis as shown in Figure(a3-d3).

To systematically investigate the global reorientation of two particles, the effect of 

some important factors on the particle-particle interaction will be studied in the following 

subsections.

3.5.1. The Effect of Initial Relative Angle Between Two Particles. First, we 

investigate the effect of initial relative angle between two particles, 0O, on the particle- 

particle interaction. Initially, the particles with aspect ratio rp = 2 are placed at (x*, y*) 

= [±2.4cos(00), ±2.4sin(0O)] for different initial center-to-center distance, 0O, as shown as 

cross dots in Figure 7(a). As can be seen Figure 7(a) and (b), the particles spend more time 

for the whole process, and particle trajectory becomes longer as 00 increases from 20° to

80°.
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Figure 6. Global reorientation of two elliptical particles with rp = 2, = 2.4 and d0 = 80°
for different time(a1-d1), where the magnetic field is applied left to right. The straight and 
curve vectors represents magnetic force Fm and torque Tm, respectively. The corresponding 
magnetic and velocity fields around the particles are shown as (a2-d2) and (a3-d3) on the

right side.

We can see from Figure 7(b) that, when the initial orientation angle d0 = 80° and 

60°, the dimensionless center-to-center distance , d *, first increases and then decreases with 

dimensionless time, t*; when d0 = 20°, d * decreases with t*. These findings are similar to 

circular particles discussed in Section 3.1. However, When 80 = 40°, the dimensionless 

distance varying with dimensionless time has the similar result as 80 = 80° and 60°: d * first 

increases and then decreases with t*. It means that the critical angle, dc, of the elliptical
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Figure 7. The effect of initial relative orientation angle between the particles on the 
particle-particle interaction. (a) Trajectories of particle centers, (b) center-to-center distance 
varying with dimensionless time, (c) the relative angle between the particles varying with 
dimensionless time, (d) the orientation angle of the particles varying with dimensionless 

time when rp = 2 and d0 = 2.4. The cross and star dots represent the starting point and the
ending point, respectively.

particles with rp = 2 is smaller than 40°, which is different from the critical angle of circular 

particles. In addition, as Q0 increases, the increasing and decreasing rates become steeper 

and the maximum d* become larger. For a fixed relative orientation angle 6, it decreases 

monotonously with time shown in Figure 7(c). The final global orientation angle when 

the particles touch are 6f  = 0.54°, 0.51°, 0.35° and 0.20° for 60 = 20°, 40°, 60° and 80°, 

respectively. So we can see it becomes smaller as the initial orientation angle becomes 

larger. There is a similar results for the final particle orientation angle: it becomes smaller 

as 60 becomes larger. From Figure 7(d), we can see that the particle orientation angle
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changes drastically. As time elapses, it increases first and then decreases. When it reaches 

a minimum, it increases and then decreases again until the particles touch. There are two 

increasing-and-decreasing circles, which are due to the change of direction of magnetic 

torque.

--------- d *= 1 .1  ---------- d *= 1 .5_____ 0_________ 0

(a)
F ^ j)

( C ^
__ 1___1___i_J_

- 2 - 1 . 5 - 1  - 0 .5  0 0 .5  1 1 .5 2
x*

do=2-0 ---------do=2 4 ----------do=30

t*

t*

Figure 8. The effect of initial center-to-center distance on the particle-particle interaction. 
(a) Trajectories of particle centers, (b) center-to-center distance varying with dimensionless 
time, (c) the relative angle between the particles varying with dimensionless time, (d) the 

orientation angle of the particles varying with dimensionless time when rp = 2 and Q0 = 80°. 
The cross and star dots represent the starting point and the ending point, respectively.

3.5.2. The Effect of Initial Center-to-Center Distance. Then, we investigate the 

effect of initial center-to-center distance between two particles, d*, on the particle-particle 

interaction. Initially, the particles with aspect ratio rp = 2 are placed at (x*, y*) = 

[±dQcos(80°), ±dQsin(80°)] when initial center-to-center distance, d*, varies from 1.1 to
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3.0 as shown as cross dots in Figure 8(a). As can be seen from Figure 8(a) and (b), the 

particles spend more time for the whole process and particle trajectory becomes longer when 

increases from 1.1 to 3.0. There is a similar result for as we discussed in Section 

3.5.1: it first increases and then decreases with t* when = 1.5, 2.0, 2.4 or 3.0. The 

result is different for d0* = 1.1: it increases monotonously with t*. The particle orientation 

angle varying with time shown as black line in Figure 8(b) demonstrates that the magnetic 

torque has much more influence on the particle-particle interaction when the two particles 

are so closer. In addition, the change rule for d0 = 1.1 is also different: it has just one 

increasing-and-decreasing circle, while other relative distances have the similar results as 

in Section 3.5.1: two increasing-and-decreasing circles happens. For the final relative 

orientation angle shown in Figure 8(c), it becomes smaller as the initial center-to-center 

distance becomes larger. Specifically, 6f  = 4.04°, 0.80°, 0.24°, 0.20° and 0.06° for d0 = 1.1,

1.5, 2.0, 2.4 and 3.0, respectively. From Figure 8(d), the final particle rotation angle becomes 

smaller as as the initial center-to-center distance becomes larger.

3.5.3. The Effect of Particle Aspect Ratio. Here, we investigate the effect of 

particle aspect ratio, rp, on the particle-particle interaction. To compare the effect of rp on 

the particle-particle interaction, the particle trajectories and the center-to-center distance are 

dimensionless by its major semi-axis length a, where a = yrp * R0. Figure 9(a) and (b) show 

the particle trajectories and particle center-to-center distance for rp = 1,2 and 3. We can see 

that, as rp becomes larger, the particle trajectory becomes longer and the particles spend 

more time for the whole process. W hat’s more, the maximum of d * becomes larger and 

the overall increasing rate from beginning to the maximum becomes smaller as rp becomes 

larger. For the final relative orientation angle and particle orientation angle shown in Figure 

9(c) and (d), they become larger as the initial orientation angle becomes larger. Specifically, 

6f  = 0°, 0.06°, 0.30°, and a f  = 0°, 0.09°, 0.22° for rp = 1, 2, 3, respectively.
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r=1 -------- rp=2 -------- r=3

t* t*

Figure 9. The effect of particle aspect ratio on the particle-particle interaction. (a) 
Trajectories of particle centers, (b) center-to-center distance varying with dimensionless 
time, (c) the relative angle between the particles varying with dimensionless time, (d) the 

orientation angle of the particles varying with dimensionless time when = 2.4 and 
G0 = 80°. The cross and star dots represent the starting point and the ending point,

respectively.

4. c o n c l u s i o n

The two-dimensional models of particle-particle interactions and relative motions of 

a pair of paramagnetic particles of elliptical shapes are numerically investigated using the 

direct numerical simulations based on the finite element method and arbitrary Lagrangian- 

Eulerian approach. The numerical modeling considers the particle-fluid-magnetic field 

interaction. By validating against previous numerical solutions for circular particles, our 

numerical model was shown to be able to accurately describe the dynamics of a pair of 

paramagnetic non-spherical particles under the uniform magnetic field. The rotational
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dynamics of a single elliptical paramagnetic particle is first investigated. The simulation 

results are in qualitative agreement with the theory of Shine and Armstrong (Shine and 

Armstrong, 1987). By investigating the effect of the particle initial orientation angle on the 

local and global magneto-orientation of a pair of elliptical particles, it shows that the local 

orientation process is much faster than the global orientation. According to this finding, 

we focused our simulations on the relative motion of a pair of particles when the initial 

orientation angle is 0° (i.e. the initial major axis is parallel to the magnetic field). Based 

on this model, we investigated the influence of the initial relative angle and distance of 

the particles, aspect ratio on the particle-particle interactions and relative motions of two 

particles. The results show that the particles of larger initial relative angles and distances 

need more time to form a stable chain and smaller final particle and global relative orientation 

angles. For a larger particle aspect ratio, more time is required to form a chain, and the final 

particle and global relative orientation angles are larger. Therefore, this work provides useful 

information for the fundamental particle-particle interactions mechanism in the magnetic 

particle suspensions under a uniform magnetic field.
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a b s t r a c t

Manipulation of droplets based on physical properties (e.g., size, interfacial tension, 

electrical, and mechanical properties) is a critical step in droplet microfluidics. Manipulations 

based on magnetic fields have several benefits compared to other active methods. While 

traditional magnetic manipulations require spatially inhomogeneous fields to apply forces, 

the fast spatial decay of magnetic field strength from the source make these techniques 

difficult to scale up. In this work, we report the observation of lateral migration of ferrofluid 

(or magnetic) droplets under the combined action of a uniform magnetic field and a pressure- 

driven flow in a microchannel. While the uniform magnetic field exerts negligible net force 

on the droplet, the Maxwell stresses deform the droplet into elongated shapes and modulate 

the orientation relative to the fluid flow. Hydrodynamic interactions between the droplets

mailto:wancheng@mst.edu
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and the channel walls results in a directional lateral migration. We experimentally study 

the effects of field strength and direction, and interfacial tension, and use analytical and 

numerical modeling to understand the lateral migration mechanism.

Keywords: convection

i . i n t r o d u c t i o n

Droplet microfluidics has emerged as a powerful technology on lab-on-a-chip 

platforms for high-throughput screening of chemical and biological assays (Du et al., 2016; 

Guo et al., 2012; Shembekar et al., 2016). Dispersed in a continuous phase, individual 

droplets often encapsulate chemical or biological samples (e.g., cells, DNA, proteins, and 

bacteria), serve as miniaturized reactors, and allow biological and chemical reactions inside 

individual micro-droplets (Shang et al., 2017). The large surface to volume ratio leads to 

significantly enhanced mass and heat transfer and bio-/chemical reactions. Furthermore, 

the high-throughput nature enables a vast number of assays in parallel, thereby drastically 

improving accuracy of the results.

Manipulation, e.g., sorting, of the droplets based on their contents or properties is a 

often a critical step in a chemical or biological assay. Droplets can be sorted by passive or 

active methods. Passive methods are based on hydrodynamic features, such as geometry 

and fluid properties, to manipulation the droplets (Bowman et al., 2012; Hatch et al., 2013; 

Kadivar et al., 2013; Tan et al., 2004, 2008; Tan and Lee, 2005). For passive methods to be 

effective, a complex geometry is usually employed or a particular fluid such as viscoelastic 

fluid is used as a buffer, which places some limitations on lab-on-a-chip applications. Active 

methods employ external fields (Xi et al., 2017), such as electric (Agresti et al., 2010; Ahn 

et al., 2009, 2011, 2006; de Ruiter et al., 2014; Eastburn et al., 2015; Guo et al., 2010; 

Link et al., 2006; Niu et al., 2007; Rao et al., 2015a,b; Sciambi and Abate, 2014, 2015), 

acoustic (Lee et al., 2012; Leibacher et al., 2015; Li et al., 2013; Nam et al., 2012; Petersson 

et al., 2005; Schmid et al., 2014), or magnetic forces (Brouzes et al., 2015; Kim et al., 2014;
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Li et al., 2016; Lombardi and Dittrich, 2011; Nguyen et al., 2006; Surenjav et al., 2009; 

Teste et al., 2015; Zhang et al., 2011, 2009), to manipulate droplets. Among the various 

active methods, magnetic methods have several distinctive advantages such as low or no 

heat generation, simple implementation and contactless control, and thus, have received 

increasing attention over the last few years (Huang et al., 2017).

Ferrofluids are colloidal suspensions consisting of superparamagnetic nanoparticles. 

Magnetic particles in a ferrofluid commonly have a size of around 10 nm and are coated 

with surfactant to stabilize and prevent agglomeration. Due to their ability to be controlled 

by external magnetic fields, ferrofluids have been widely used in applications of mechanical 

and biomedical fields (Gao et al., 2009; Neuberger et al., 2005; Torres-Diaz and Rinaldi, 

2014). Some typical applications of ferrofluids in mircofluidics include microvalves (Oh and 

Ahn, 2006), micropumps (Laser and Santiago, 2004), magnetic drug targeting (Lubbe et al., 

2001) and magnetic separations of cells (Hejazian et al., 2015). More recently in droplet 

microfluidics, ferrofluid droplets have been used to encapsulate cells for culturing and sorting 

(Sung et al., 2017) purposes, owing to their bio-compability and ease of manipulation with 

magnetic fields.

Traditional magnetic manipulation of ferrofluid droplets mainly relies on magnetic 

forces acting on the droplets. Assuming small field variations over the droplet volume 

Vp, the magnetic force is (Inglis et al., 2006) Fm = ^ 0Vp[(Mp -  M f) • V]H, where ^ 0 is 

the magnetic permeability of vacuum, H is the magnetic field, and Mp, M f denote the 

magnetization of the droplet and fluid respectively. Selective manipulation of droplets 

is possible based on the susceptibility contrast between the droplet and the surrounding 

phase, and droplet size (or volume). A number of groups have utilized the magnetic force 

approach for various applications, including sorting of microalgae encapsulated in ferrofluid 

droplets (Sung et al., 2017), on-chip manipulation of ferrofluid droplets in water (Zhang 

et al., 2009) or water droplets in ferrofluid (Zhang et al., 2011), and selective distribution of 

water-in-magnetic-fluid droplets in curved channels (Kim et al., 2014). However, due to
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the fast decay of magnetic fields with distance from the source (Stratton, 2007), magnetic 

sources need to be placed in proximity to the droplets in order to exert sufficient influence 

on droplets. Often permanent magnets have to be placed nearby microfluidic channels (Kim 

et al., 2014; Sung et al., 2017; Zhang et al., 2011, 2009), further making the scaling up of 

magnetic manipulation difficult.

In this work, we propose and demonstrate a simple and novel droplet manipulation 

technique by using a uniform magnetic field. In this method, while the uniform magnetic 

field does not directly exert magnetic forces on the droplets, it modulates the deformation 

of micro-droplets, which consequently leads to a net lift force and lateral migrations of 

droplets in shear flows. We explain the cross-stream migration using a hydrodynamic theory 

involving the interaction of the deformed droplet’s stresslet field with the walls of the channel. 

We then also use numerical simulations, based on the level-set method, to better understand 

the magnetic and flow fields around the droplets and confirm the migration mechanism.

2. e x p e r i m e n t

Figure1(a) shows the microfluidic chip placed in a uniform magnetic field with 

strength H0 and direction a , which is generated by a Halbach array (Raich and Blumler, 

2004). The microfluidic chip was fabricated with polydimethylsiloxane (PDMS) using a 

previously reported soft-lithography method (Zhang et al., 2015). The width, depth and 

length of main microchannel are wc = 800 ^m, dc = 70 ^m, and L « 13,000 ^m  as shown in 

Figure 1(b). Three different sets of Halbach arrays were designed to generate the uniform 

magnetic fields, which consisted of 20 cuboid permanent 0.25” x 0.25” x 0.25”, 0.25” x 

0.25” x 0.5” or 0.25” x 0.25” x 1” magnets (K&J Magnetics, Inc.). The details of the design 

and test of the uniform magnetic field can be seen in the ESI of the previous reported work 

(Zhou et al., 2017). The magnitudes of these magnetic fields within the central region were 

measured as H0 « 18,000, 35,000 and 60,000 A/m by a gaussmeter. The droplet is generated 

by a flow-focusing configuration at the upstream, as shown in Figure 1(b). Water-based
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Figure 1. (a) Photo of the microfluidic chip located in a uniform magnetic field. (b) 
Schematic showing the dimensions of the microchannel.

ferrofluid (EMG 304, Ferrotec Corp.) is the dispersed phase, with the density p f  = 1.24x103 

kg/m3, viscosity nf = 5 x10-3 Pa-s and an initial magnetic susceptibility (i.e. at small 

field strength) x f  = 5.03. Olive oil is used as the continuous phase and buffer fluid, with a 

density p o = 0.92x103 kg/m3, a viscosity no = 78 x10-3 Pa-s, and a magnetic susceptibility 

Xo ~ 0. Three different olive oil solutions were prepared by adding 0.125% wt, 0.25% wt, 

0.375% wt of surfactant SPAN 80 (Sigma-Aldrich, USA) to vary the interfaical tension. The 

corresponding oil-ferrofluid interfacial tensions were measured as 5.86 ± 0.19, 4.31 ± 0.22 

and 2.52 ± 0.22 mN/m using the pendant droplet method (Daerr and Mogne, 2016). Three 

syringe pumps (KDS Scientific) were used to control the flow rates of the inlets. The flow 

rates of the dispersed phase (i.e., ferrofluid), continuous phase and buffer flow are Q1 = 0.15 

yuL/min, Q2 = 4 yuL/min and Q3 = 6 yuL/min. At these flow rates, the mean fluid speed is 

U « 3 mm/s and the corresponding Reynolds number in the main channel is Re « 0.028. 

The trajectories of the ferrofluid droplets were recorded through an inverted microscope
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(IX73, Olympus) with a high-speed CCD camera (Phantom Miro M310, Vision Research). 

Custom MATLAB codes were written to analyze the centroid position and shape (including 

deformation and orientation) of the droplets from the recorded videos.

3. r e s u l t s  a n d  d i s c u s s i o n

3.1. e f f e c t  o f  d i r e c t i o n  o f  m a g n e t i c  f i e l d

Figure 2 shows the images of droplets at the inlet and outlet and the corresponding 

probability distributions of droplet centroid in the y direction. In this experiment, the 

oil-ferrofluid interfacial tension a  = 4.31 ± 0.22 mN/m. The average radius of undeformed 

droplet is R0 = 60.76 um. The droplets are generated upstream and enter along the centerline 

of the channel. As can be seen in Figure 2(a1)-(a3), there is a negligible deformation and 

almost zero net lateral migration in the cross-stream direction (i.e., y direction) when no 

magnetic field is applied (H0 = 0). Since the Reynolds number is small (Re « 0.028 «  1), 

inertial effects are negligible. According to previous theoretical (Chan and Leal, 1979) and 

numerical (Mortazavi and Tryggvason, 2000) investigations, when the droplet is initially 

placed at the center-line of a channel flow in the absence of a magnetic field, the droplets 

will move only in the axial direction (i.e., x direction) for viscosity ratio between dispersed 

and continuous phases A < 0.5 or A > 10. In this work, A = n f h o  = 0.064 < 0.5, and 

indeed the droplets moving stably along the axial direction in Figure 2(a1)-(a3).

In the presence of a magnetic field, the droplet is deformed by the combination of 

shear and magnetic fields, the latter producing Maxwell stresses. The deformation due to 

shear is quantified by the capillary number Ca = uno/(a w c), while the deformation due to 

the magnetic field (assuming a linearly magnetizable material) is quantified by the magnetic 

bond number Bom = u 0H R 0/(2 a ). In our experiments, Ca « 5 • 10-3 and Bom « 7, 

suggesting that the deformation due to the magnetic field greatly dominates that due to shear.
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Figure 2. Images at the inlet and outlet, and the corresponding probability density function 
(PDF) of the centroid of the ferrofluid droplet in the y direction. (a1-a3) without a applied 
magnetic field (Ho = 0 A/m); (b1-b3) H0 « 60,000 A/m, and a  = 0o; (c1-c3) H0 « 60,000 
A/m, and a  = 45o; (d1-d3) Ho « 60,000 A/m, and a  = 90o; and (e1-e3) Ho « 60,000 A/m, 
a = 135o. The flow rates are Q1 = 0.15 yuL/min, Q2 = 4.0 yuL/min and Q3 = 6.0 yuL/min for 

all the experiments. The oil-ferrofluid interfacial tension a  = 4.31 ± 0.22 mN/m.

Indeed, this is borne out experimentally: when a uniform magnetic field (H0 « 

60,000 A/m) is applied at various directions, as shown in Figure 2(b)-(e), the droplets 

become elongated in the direction of magnetic field independent of their position across
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the channel width. Further, the direction of the magnetic field controls the direction of 

the cross-stream migration. When the magnetic field is parallel to the flow direction (i.e., 

a = 0°) as shown in Figure 2(b1)-(b3), the droplets deform into an ellipsoidal shape with 

theirs major axis parallel to the flow direction, and there is only a slight net lateral migration 

in the cross-stream direction, which might be attributed to imperfection of the experimental 

conditions. As a  increases to 45° as shown in Figure 2(c1)-(c3), a similar deformed shape 

is observed and the elongation axis is aligned to 45°, which results in the droplet migrating 

towards the upper channel wall. The average distance of the cross-stream migration between 

inlet and outlet is measured to be 181.16 um. When a  increases to 90° as shown in Figure 

2(c1)-(c3), the elongation axis is perpendicular to the flow direction, and there is a slight net 

lateral migration in the cross-stream direction (again might be due to imperfect control of the 

experiments). At an inclination angle a = 135° shown in Figure 2(e1)-(e3), the elongation 

axis is aligned to 135°, which results in the droplets migrating towards the lower wall. The 

average distance of the cross-stream migration between the inlet and outlet is -182.17 um.

60
2/Gum)

Figure 3. Comparison of the cross-stream migration of a droplet close to the lower wall 
between the theoretical prediction and experiment. (a) vertical position of the particle (y) as 
a function of time. (b) cross-stream velocity (vy) a function of y. Here the magnetic field is 

applied at a = 135°, and D « 0.156. Note that the channel width is 300 um.
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3.2. CROSS-STREAM M IGRATION MECHANISM

The cross-stream migration of the droplet can be understood by considering hydro

dynamic interactions between the droplet and the upper and lower walls of the channel. It is 

well known for droplets in shear flow alone, the stresslet field around the deformed droplet, 

by hydrodynamic interactions with nearby boundaries, can result in a cross-stream migration 

of the droplet (Smart and Leighton Jr, 1989). A key observation is that the component of the 

stresslet responsible for lateral migration depends on the inclination of the droplet’s long 

axis relative to the flow. In our experiments, the droplet’s orientation is set largely by the 

magnetic field, independent of the flow.

We estimate the cross-stream migration velocity by modeling the droplet as a rigid 

particle with fixed orientation angle « a  relative to the horizontal axis. Although this approx

imation neglects the influence of the interior flow of the droplet, it typically result in small 

errors for deformation due to shear alone (Aggarwal and Sarkar, 2007; Chan and Leal, 1979; 

Taylor, 1934). The stresslet of the droplet can then be approximated using the relations of (Kim 

and Karrila, 2013) for rigid ellipsoids. Next, we recognize that in the present experiments the 

droplet is centered between the channel walls in the depth direction, and therefore experiences 

shear gradients primarily in the width (y) direction. We introduce the Taylor deformation 

parameter D = , where L and B are the semi-major and semi-minor axes, respectively, of

the droplet; note that 0 < D < 1. Then, the yy component of the hydrodynamic stresslet is 

Syy = nonL3dyux j | | X M -  5ZM -  2YHj sin2a  -  | | X M -  |Y m + 12Z Mj s in 4 a j , where

X M, ZM, ZM and YH are known functions of the deformation D (see Table 3.4 of (Kim 

and Karrila, 2013)). The term proportional to sin 4 a  is numerically much smaller than the 

term proportional to sin 2a for the deformations measured in experiments, and is therefore 

neglected in the following. Accounting only for the first reflection of the stresslet with the 

upper and lower walls (y = 0, y = wc), the cross-stream migration velocity of a droplet 

whose center is at a position yd »  R0 is (Matsunaga et al., 2017; Smart and Leighton Jr,
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Note that (1b) is obtained as the leading term of a Taylor expansion of the (1a) for small 

deformations, although it remains accurate to within 10% even at D = 0.5. We note that to 

evaluate (1), we use the velocity field for a channel with a rectangular cross-section evaluated 

at the plane of symmetry in the z direction.

The theoretical prediction (1b) quantitatively reproduces the direction of the vertical 

drift observed in the experiments: the droplet drifts towards the upper wall (y = wc) for 

a  in the first and third quadrants, and towards the lower wall (y = 0) for a  in the second 

and fourth quadrants. Figure 3 shows the comparison between the theory and experiment 

when a droplet was under a magnetic field at a = 135° and migrated towards the lower wall. 

Note that ux is determined using the results for a rectangular channel (Mortensen et al., 

2005) and D in (1) is obtained from experimental measurements. According to the theory, 

the symmetry plane y = 0 is an unstable fixed point of the trajectory, so the droplet can 

drift across it. This behavior is similar to recent theoretical predictions for the migration 

of droplets in Poiseuille flow under uniform electric fields (Mandal et al., 2016). Both the 

cases of magnetic and electric field are in contrast with the case of a droplet drifting due to 

deformation by shear alone, where the axis of the droplet follows the elongational axis of the 

local velocity gradient, which causes the droplet to migrate towards the centerline y = w/2, 

which in this case is a stable fixed point of the migration dynamics when A < 0.5 or A > 10 

(Chan and Leal, 1979).

To further confirm the cross-stream migration mechanism of the droplet, a two

dimensional (2D) numerical model was developed to investigate the ferrofluid droplet 

transport in the channel. By using commercial a finite element method solver (COMSOL



127

(a1) (a2)

/
/
/
/
/
/

(b2)

(a3)

Figure 4. (a) Comparison of droplet trajectory between the experiments and simulation (a1), 
and numerical results of the magnetic field (a2) and velocity field (a3) for ferrofluid droplets 
when a  = 45°.(b) Comparison of droplet trajectory between the experiments and numerical 
simulation (b1), and numerical results of the magnetic field (b2) and velocity field (b3) for 

ferrofluid droplets when a  = 90°. The magnetic field strength H0 = 60000 A/m and the 
oil-ferrofluid interfacial tension a  = 4.31 ± 0.22 mN/m.

Multiphysics), the numerical model employed the level-set method, and coupled the magnetic 

and flow fields. Briefly, the magnetic field is first determined by solving the magnetostatic 

equation, and the magnetic force term is then coupled to the Navier-Stokes equation. More 

details of the numerical modeling is available from our previous work (Hassan etal., 2018). 

The magnetic field with strength of 60000 A/m and direction of 45° or 90° was used in the 

simulations.

Figure 4(a1) shows a comparison of experimental and numerical results when the 

magnetic field is applied at a  = 45°. As we can see, the numerical results are in good 

agreement with the experiment. The magnetic field and velocity field around the droplet are 

shown in Figure 4(a2) and (a3). The magnetic force acting on the droplet is approximately
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zero for an ellipsoidal droplet placed in a uniform field (Stratton, 2007), which is supported 

by numerical simulation of the magnetic field distribution (Figure 4(a2)). The presence 

of magnetic fields leads to the generation of Maxwell stresses at the interface between 

ferrofluid and olive oil, which cause the deformation of the droplet. Further, the direction 

of elongation (i.e., major axis) is aligned to the direction of magnetic field. As a result of 

the ellipsoidal shape and relative orientation of the droplet, the velocity profile around the 

droplet is asymmetric to the flow direction, as shown in Figure 4(a3). This asymmetric 

orientation of the deformed droplet with respect to the flow direction results in cross-stream 

migration towards the upper wall. Note at a = 135°, the droplet will move towards the lower 

wall.

When applied at 90° to the flow direction, the magnetic field causes the droplet to 

deform into an ellipsoidal shape and the elongation direction is perpendicular to the flow 

direction. However, the velocity profile around the droplet is symmetric about the channel’s 

centerline as can be seen in Figure 4(b). Similarly, for a = 0°, the droplet will be elongated 

parallel to the flow direction, and no cross-stream migration will take place either due to 

symmetric flow field around the droplet. In both cases, the stresslet of the droplet is zero 

and therefore there are negligible hydrodynamic interactions with the walls.

3.3. e f f e c t s  o f  m a g n e t i c  f i e l d  s t r e n g t h , i n t e r f a c i a l  t e n s i o n  
a n d  f l o w  r a t e

As discussed earlier, the cross-stream migration depends on the deformation and 

relative orientation, which are expected to depend on the properties of the fluids, flow field 

and magnetic field. In a quiescent flow field, the deformation is related to the magnetic 

field strength, interfacial tension, and droplet size (Afkhami et al., 2010). The droplet 

size depends on the flow rates used. So here, we focus on the effect of magnetic field 

strength, interfacial tension and flow rates on the drop migration by examining the case with 

a magnetic field applied at 45°, as shown in Figure 5(a,b). We used the Taylor deformation
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Figure 5. The effect of magnetic field strength, interfacial tension and flow rates on droplet 
migration. (a) Taylor deformation parameter, D, and the net lateral migration, Ay, vary with 
magnetic field strength, H0, when a  = 4.31 ± 0.22 mN/m. (b) Taylor deformation parameter, 

D, and the net lateral migration, Ay, vary with interfacial tension, a, when H0 « 18000 
A/m. (c) Taylor deformation parameter, D, the net lateral migration, Ay, and equivalent 
sphere radius, R0, vary with flow rate, Q2, when H0 « 35000 A/m.The magnetic field is

applied at a  = 45°.

parameter D to characterize the droplet deformation. From Figure 5(a1), D increases with 

an increasing magnetic field, meaning the elongation of ferrofluid droplet increases. The 

larger deformation causes the a larger net lateral migration of droplet as shown in Figure



130

(a1)

Inlet
H0 = 0 A/m
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Figure 6. The separation of ferrofluid and water droplets by a uniform magnetic field. (a) 
Both ferrofluid and water droplets flow into the sub-microchannel 3 without a magnetic 

field; (b) The ferrofluid droplets flow into the sub-micrcahannel 1 when H0 « 60000 A/m, 
a  = 135°; (c) The ferrofluid droplets flow into the sub-micrcahannel 2 when H0 « 60000 

A/m, a = 115°. The oil-ferrofluid interfacial tension a  = 2.52 ± 0.22 mN/m.

5(a2). Figure 5(b) shows the effect of oil-ferrofluid interfacial tension on the drop migration

when magnetic field with H0 = 18000 A/m is applied at 45°. As can be seen, D increases

as the oil-ferrofluid interfacial tension decreases, resulting in the increasing the net lateral
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migration of drop. By adjusting the flow rate Q2, the droplet size can be changed. As can be 

seen in Figure 5(c2), equivalent sphere radius, R0, decreases with an increasing magnetic 

field, resulting in the decreasing deformation and net lateral migration of drop.

Therefore, we can see that the magnetic field strength, interfacial tension and droplet 

size are three important factors for the migration of droplet. The droplet deformation 

measured in the experiments is much smaller than those predicted by existing theory 

(Afkhami et al., 2010) for a ferrofluid droplet in an unbounded fluid, which could attributed 

to the confinement effect of the droplet.

3.4. s e p a r a t i o n  o f  f e r r o f l u i d  a n d  w a t e r  d r o p l e t s

The deformation-dependent migration under a uniform magnetic field can be used 

for selectively separating droplets that exhibit different deformations, which could be due to 

differences in size, interfacial tension, or magnetic properties. As an illustration, Figure 6 

shows the separation of ferrofluid droplets from water droplets by a uniform magnetic field. 

In this experiment, the ferrofluid and water droplets are all generated at the center of the 

channel. The oil-ferrofluid interfacial tension a  = 2.52 ± 0.22 mN/m. Without an applied 

magnetic field, both ferrofluid and water droplets flow into the center sub-microchannel 

3 and there is no separation, as can be seen in Figure 6(a). When the magnetic field (H0 

= 60000 A/m) is applied at 135°, the water droplets remained at a similar initial position 

flowing into sub-microchannel 3, while the ferrofluid droplets moved to the lower wall and 

flow into the sub-microchannel 1. Thus, complete separation is achieved. This magnetic 

manipulation is also tunable due to the easy control of the direction of the magnetic field. 

When the magnetic field is set at 115°, the ferrofluid droplets can be diverted to flow into 

sub-microchannel 2.
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4. c o n c l u s i o n s

In summary, we have demonstrated a unique approach to manipulate droplet migration 

in microfluidics by using a uniform magnetic field. In contrast to conventional magnetic 

manipulations, the current approach does not induce direct magnetic forces on the droplets. 

Instead, the Maxwell stresses arise at the droplet interface due to a change of magnetic 

susceptibility across the droplet interface, and consequently deform the droplet and affect its 

relative orientation to the flow. Due to the deformed shape and inclined angle to the shear 

flow, the droplet interacts hydrodynamically with the channel walls, and migrates in the 

cross-stream direction. We experimentally investigated various parameters that influence the 

droplet migration, including magnetic field strength, magnetic field direction and interfacial 

tension. It is found that the lateral migration speed increases with the droplet deformation, 

which in turn increases with the field strength and decreases with the interfacial tension. 

The magnetic field direction, on the other hand, controls the orientation of the drop and the 

direction of the lateral migration. The direction and speed of the lateral migration are well 

described by hydrodynamic theory that accounts for interactions of the droplet’s stresslet 

flow with the walls of the channel. We have also developed two-dimensional numerical 

model that predicts the lateral migration and confirmed negligible magnetic force.

In comparison to conventional magnetic separation, the uniform magnetic field 

technique is simple to implement and is favorable for high-throughput parallelization. 

Multiple microfluidic channels can be conveniently integrated onto a single chip while being 

subjected to the same uniform magnetic field. The demonstrated technique thus provides a 

general mechanism for separation of micro-droplets, and has great potential for biological 

and biomedical applications that require sorting of droplets by their size, interfacial tension, 

or magnetic properties.
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s e c t i o n

3. s u m m a r y  a n d  c o n c l u s i o n s

This dissertation has developed numerical and experimental methods to manipulate 

microparticles and microdroplets in the microfluidics by using a uniform magnetic field. 

This approach have many advantages over the traditional force-based techniques, including 

simple implementation, feasibility of scaling up, and large reach distance.

First, the fundamental mechanism of rotational dynamics of elliptical particles in a 

simple shear flow under a uniform magnetic field was fully numerically investigated. The 

numerical simulations revealed that the rotation of particle depends on the direction and 

strength of magnetic field, where the direction controls the symmetry of rotation and the 

strength controls the period of rotation and the degree of asymmetry of rotation.

Second, the lateral migration mechanism of elliptical paramagnetic particles in a 

plane Poiseuille flow under a uniform magnetic field was numerically investigated. The 

particle shown to exhibit negligible lateral migration in the absence of a magnetic field, 

while it migrates laterally in the presence of a magnetic field. The migration direction 

depends on the direction of magnetic field, which controls the symmetric property of the 

particle rotational velocity. The magnitude of lateral migration velocity over a n cycle 

increases with the magnetic field strength. By investigating a wide range of parameters, our 

direct numerical simulations yield a comprehensive understanding of the particle migration 

mechanism. An empirical scaling relationship is proposed to relate the lateral migration 

distance to the asymmetry of the rotational velocity and lateral oscillation amplitude.

Third, the comparison of rotational dynamics between paramagnetic and ferromag

netic elliptical particles in a simple shear flow under a uniform magnetic field was numerically 

investigated. In a weak field regime (below the critical magnetic field), the particle complete
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a full rotation, and the symmetrical property of particle rotations depend on the direction of 

the magnetic field. For the same strength and direction of the magnetic field, paramagnetic 

and ferromagnetic particles exhibit different asymmetric rotational behaviors. In the strong 

field (above the critical strength), the particles are pinned at their respected steady angles, 

which depend on the direction of magnetic field. The steady angles of paramagnetic and 

ferromagnetic particles are different for the same magnetic field strength and direction. 

The numerical results have very good agreement with that of theoretical analysis. Based 

on these findings, the simulations on lateral migration of paramagnetic and ferromagnetic 

elliptical particles in a pressure-drive flow shown that these two kinds of particles can be 

separated, which suggested a useful strategy to manipulate non-spherical micro-particles in 

the microfluidic devices.

Fourth, the fundamental mechanism of the particle-particle interactions and relative 

motions of a pair of paramagnetic elliptical particles in a quiescent flow were numerically 

investigated. Numerical simulations revealed that the particles spend much more time 

for the global reorientation than for the local magneto-orientation. For a larger particle 

aspect ratio, more time is required to form a chain, and the final particle and global relative 

orientation angles are larger. Therefore, this work provides useful information for the 

fundamental particle-particle interactions mechanism in the magnetic particle suspensions 

under a uniform magnetic field.

Last, a unique approach to manipulate droplet migration in microfluidic devise 

by using a uniform magnetic field were proposed. This approach does not induce direct 

magnetic forces on the droplets, instead, the Maxwell stresses arise at the droplet interface 

due to a change of magnetic susceptibility across the droplet interface, and consequently 

deform the droplet and affect its relative orientation to the flow. Due to the deformed shape 

and inclined angle to the shear flow, the droplet interacts hydrodynamically with the channel 

walls, and migrates in the cross-stream direction. In comparison to conventional magnetic 

separation, the uniform magnetic field technique is simple to implement and is favorable
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for high-throughput parallelization. Multiple microfluidic channels can be conveniently 

integrated onto a single chip while being subjected to the same uniform magnetic field. The 

demonstrated technique thus provides a general mechanism for separation of micro-droplets, 

and has great potential for biological and biomedical applications that require sorting of 

droplets by their size, interfacial tension, or magnetic properties.
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