
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Summer 2020

Secure blockchains for cyber-physical systems Secure blockchains for cyber-physical systems

Matthew Edward Wagner

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Wagner, Matthew Edward, "Secure blockchains for cyber-physical systems" (2020). Doctoral
Dissertations. 2924.
https://scholarsmine.mst.edu/doctoral_dissertations/2924

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2924&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2924&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2924?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2924&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

SECURE BLOCKCHAINS FOR CYBER-PHYSICAL SYSTEMS

by

MATTHEW EDWARD WAGNER

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2020

Approved by

Bruce McMillin, Advisor
Sanjay Madria

George Markowsky
Siddhardh Nadendla

Jonathan Kimball

Copyright 2020

MATTHEW EDWARD WAGNER

All Rights Reserved

ABSTRACT

iii

Blockchains are a data structure used to perform state agreement in a distributed

system across an entire network. One unique trait of blockchains is the lack of a centralized

trusted third-party to control the system. This prevents a corrupted trusted third party

from being able to control the entire blockchain. All nodes can reach agreement in an

untrusted network where nodes do not need to trust one another to believe the accuracy

of the information stored. Two main issues occur when trying to apply this technology to

other applications: verifiability and scalability. In previous blockchain architectures, there

is no way to validate off-chain data i.e. sensor reading. Some have purposed the use of a

trusted third-party. Unfortunately, using a trusted third-party undoes a main advantage of

blockchains and allows corruption to become a concerning possibility. Other challenges to

applying blockchains to cyber-physical systems include keeping a single ledger up-to-date

in real-time. The drawbacks of Bitcoin, a popular application of blockchains, have been

very well documented in terms of speed.

The main purpose of this work is to address the verifiability and scalability issues

of blockchains for cyber-physical systems. It proposes a solution that expands the appli

cation of blockchains to cyber-physical systems while maintaining the benefits. If the use

of blockchains is to be expanded to off-chain data, they need to have the capability to

securely encapsulate the physical world in a verifiable way. The following is a list of major

contributions by the work: 1) propose a framework for verifying physical transactions in a

blockchain, 2) propose a method to increase scalability and allow the use of blockchains in

a disconnected network, 3) propose a truncation mechanism for cyber-physical transactions

that allow for real-time speed. With these three contributions, this work introduces some

additional ideas to blockchains and expands their applications.

iv

ACKNOWLEDGMENTS

I would like to thank Aaryn for sticking with me through my graduate degree. Things

haven’t always been easy for us during my studies, but in the end, everything worked out.

Without your support, I am not sure things would have gone as well as they did. Thanks for

being my rock.

I would like to thank Professor Bruce McMillin for recruiting me to Missouri

University of Science and Technology and being my advisor. He allowed me great freedom

to find a topic that was truly interesting to me and gave me space and opportunities to

perform research.

I would like to thank Coach Grooms for his mentorship and friendship during my

time at Missouri S&T.

I would like to thank all the friends I made in Rolla. Whether in the lab, in the pool,

or just in the classroom you all helped me enjoy my time at Missouri S&T.

This work was supported in part by the Missouri University of Science and Tech

nology’s Chancellor’s Distinguished Fellowship and grants from the US National Science

Foundation under awards CNS-1505610 and CNS-183747. That support was greatly ap

preciated and allowed me the freedom to pursue topics of interest.

v

TABLE OF CONTENTS

Page

ABSTRACT.. iii

ACKNOWLEDGMENTS... iv

LIST OF ILLUSTRATIONS.. ix

LIST OF TABLES... x

NOMENCLATURE... xi

SECTION

1. INTRODUCTION.. 1

2. BACKGROUND.. 4

2.1. CPS .. 4

2.2. VANETS... 5

2.3. BLOCKCHAINS.. 10

2.3.1. Transactions.. 10

2.3.2. Scripts... 10

2.3.3. Hash Chain... 11

2.3.4. Consensus Mechanism ... 11

2.3.5. Decentralized Network... 12

2.3.6. Properties of Blockchains.. 12

2.3.7. Smart Contracts... 13

2.4. DIGITAL SIGNATURES ... 14

vi

2.4.1. Key Generation... 14

2.4.2. Signing.. 15

2.4.3. Verification .. 15

2.5. M SD N D ... 15

3. PROBLEM STATEMENT.. 17

3.1. CYBER-ONLY TRANSACTIONS ... 17

3.2. A SYSTEM-WIDE LEDGER IN A DISCONNECTED NETWORK............. 18

3.3. REAL-TIME TRANSACTION REQUIRMENTS.. 18

3.4. NO REGISTRATION FOR PARTICIPANTS.. 19

3.5. 51% ATTACK IN P O W .. 20

4. LITERATURE REVIEW .. 25

4.1. VANETS... 25

4.1.1. Security for VANETs.. 25

4.1.2. Reputation Systems for VANETs.. 26

4.2. BLOCKCHAINS.. 28

4.2.1. Security of Blockchains... 28

4.2.1.1. Network level attacks... 28

4.2.1.2. Mining pool attacks .. 30

4.2.2. Applications of Blockchains... 31

4.2.3. Alternative Consensus Mechanism .. 33

5. FORMAL VERIFICATION OF CYBER-PHYSICAL BLOCKCHAIN TRANS
ACTIONS IN VANETS ... 35

5.1. TRANSACTIONS ... 35

5.2. BLOCKCHAIN MANAGEMENT... 37

5.3. CERTIFICATE AUTHORITY 38

5.4. SECURITY THREAT M ODEL... 39

5.5. PROPOSED SCH EM E... 40

5.5.1. Car Registration .. 44

5.5.2. Platoon Block Creation... 45

5.5.3. Platoon Jo in .. 48

5.5.4. Intra Platoon Communication.. 49

5.5.5. Platoon Leave... 50

5.5.6. Trust Scores.. 51

5.5.7. System Audit.. 53

5.6. SECURITY ANALYSIS.. 53

5.7. FORMAL MODEL VERIFICATION.. 56

5.7.1. Invariants.. 57

5.7.2. SPIN Results.. 61

5.8. TIME ANALYSIS... 62

5.9. SIMULATION RESULTS... 64

6. EFFICIENT BLOCKCHAIN AUTHENTICATION SCHEME FOR VANETS 68

6.1. PROPOSED SCH EM E... 68

6.1.1. Vehicle Registration Protocol.. 69

6.1.2. Block Creation Protocol... 70

6.1.3. Platoon Join Protocol.. 72

6.1.4. Intra Platoon Communication Protocol.. 73

6.1.5. Platoon Leave Protocol... 74

6.2. SECURITY PR O O F.. 75

6.3. COMPLEXITY ANALYSIS .. 89

6.3.1. Car Registration Pro toco l.. 90

6.3.2. Join Platoon Protocol.. 90

vii

6.3.3. Block Creation Protocol... 91

6.3.4. Platoon Leave Protocol... 91

7. CONCLUSION AND FUTURE DIRECTIONS... 93

APPENDICES

A. SPIN MODEL CHECKER C O D E.. 96

B. SPIN MODEL CHECKER RESULTS.. 120

REFERENCES.. 143

VITA... 149

viii

ix

LIST OF ILLUSTRATIONS

Figure Page

2.1. VANET Basic Architecture... 6

2.2. Platoon Exam ple... 7

5.1. The blockchains of platoon vehicles before and after a join maneuver.................. 37

5.2. Command Transaction Example.. 42

5.3. Evaluation Transaction Exam ple.. 43

5.4. Join Transaction Example... 43

5.5. Car Registration Protocol... 44

5.6. Genesis Block Example.. 46

5.7. Platoon Block Creation Protocol.. 46

5.8. Platoon Join Protocol ... 48

5.9. Intra Platoon Communication P ro tocol... 51

5.10. Platoon Leave Protocol .. 52

5.11. Speed per Proof-of-Work Difficulty... 66

5.12. Certificate T im e .. 66

5.13. Joining Speed per Number of Blocks .. 67

6.1. Vehicle Registration Protocol.. 68

6.2. Block Creation Protocol .. 70

6.3. Platoon Join Protocol ... 72

6.4. Intra Platoon Communication P ro tocol... 73

6.5. Platoon Leave Protocol .. 75

6.6. Cyber Only Blockchain Information Flow Diagram... 81

6.7. Physical Only Blockchain Information Flow Diagram .. 85

6.8. Cyber Physical Blockchain Information Flow Diagram.. 88

x

LIST OF TABLES

Table Page

3.1. Mining Hardware... 22

3.2. 51% Attack Cost ... 24

5.1. Table of Symbols... 58

5.2. SPIN Swarm Results for Invariants ... 60

5.3. Real-Time Cost of Platoon M aneuvers... 64

6.1. Table of Symbols for MSDND P ro o f ... 80

xi

NOMENCLATURE

Symbol Description

BGP Border Gateway Protocol

BTC Bitcoin

CA Certificate Authority

CPS Cyber-Physical System

CPU Central Processing Unit

CRL Certificate Revocation List

DFS Depth-first Search

DOS Denial of Service

GPU Graphics Processing Unit

IRC Inter-Roadside Communication

IVC Inter-Vehicle Communication

LTL Linear Temporal Logic

MSDND Multi Security Domain Non-Deductiblility

PKI Public Key Infrastructure

PoB Proof-of-Burn

PoE Proof-of-Event

PoS Proof-of-Stake

xil

PoW Proof-of-Work

RSU Road-Side Unit

USD U.S. Dollars

USDOT United States Department of Transportation

VANET Vehicular Ad-hoc Network

VRC Vehicle-to-Roadside Communication

1. INTRODUCTION

Since the roll-out of Bitcoin, blockchains have seen attention in the national limelight

(Nakamoto et al., 2008). This technology has been touted as revolutionary. It creates a

ledger that is immutable where users do not have to trust any other users but can still reach

an agreement. In a blockchain, everything is verifiable and users cannot lie about the data

they have published. All of these attributes make blockchains an attractive technology to

use to increase the resiliency of different systems. Many authors have attempted to apply

blockchains to a wide variety of different applications including banking, land management,

critical infrastructures, and many more.

Critical infrastructures include telecommunications, electrical power systems, gas

and oil systems, banking and finance, water supply systems, emergency services, and

transportation systems (Moteff et al., 2003). These systems are essential for everyday

living. In recent years, they have become targets for cyber-attacks (Wagner and Schweitzer,

2016). Currently, these attacks have been limited to systems with large cyber-component

or central control systems such as the supervisory control and data acquisition systems

that manage electrical power systems. However, it is only a matter of time before these

attacks expand to other critical infrastructures including those proposed to manage national

transportation systems.

With autonomous vehicles on the rise, national transportation systems are primed to

become a key target for cyber-attackers. This becomes increasingly true with the large push

for vehicular ad-hoc networks which help increase efficiency in our national transportation

system resulting in large cost savings. However, many attempts to apply this technology to

cyber-physical systems have largely failed to maintain the key principles of blockchains.

2

This dissertation proposes a solution to maintain the verifiability of off-chain data

that is generated by cyber-physical systems, in particular vehicular ad-hoc networks. Off-

chain data is data generated outside of the blockchain environment but stored within the

blockchain. These can be sensor readings, transactions, and more. Since the data is

generated off-chain, Bitcoin and other blockchains do not propose a way to verify this data.

If the data in a blockchain is not verified, users must implicitly trust each other on the

correctness, removing a key tenet of the technology.

This dissertation is organized as follows. Section 2 presents background information

on technologies mentioned in this work including cyber-physical systems, vehicular ad-hoc

networks, blockchains, digital signatures, and multi-security domain non-deductibility. The

specific problems solved by this work are defined in Section 3. A literature review of related

work is found in Section 4. Two schemes are proposed in Section 5 and Section 6 that

maintain the verifiability of off-chain data for VANETs. These are the main contributions

of this dissertation.

Section 5 includes a formal proof of the proposed communication protocol. Linear

temporal logic (LTL) invariants are used in conjunction with a model of the proposed

protocols created using the SPIN model checker to formally verify the scheme. This

verification is used to show that the cyber portion of the proposed system behaves correctly.

Section 6 includes proofs using MSDND and formal logic to strengthen the argument

that the proposed protocols behave correctly. These proofs show that the inclusion of

physical attestation at the individual vehicle level allows for the vehicles to determine if other

vehicles are behaving correctly. Thus, the input into the communication protocols is correct.

The proofs contained in both sections work together to show that these proposed protocols

generate a formally verified blockchain containing off-chain data. a key contribution of this

work.

3

Additionally, Section 6 proposes some alteration to the communication protocols

that solve the issues encountered from the scheme presented in Section 5. The conclusion

and possible future research areas can be found in Section 7.

4

2. BACKGROUND

This dissertation focuses on addressing issues that occur when blockchains are

extended to applications that involve the physical world. These include applications that

involve the storage of information generated outside of the blockchain. In this section,

some background knowledge on topics used in this work is presented. The main areas

that are used and discussed throughout this dissertation are cyber-physical systems (CPSs),

vehicular ad-hoc networks (VANETs), blockchains, digital signatures, and multi security

domain non-deductiblility (MSDND).

2.1. CPS

CPSs are the integration of embedded computers with physical processes (Lee,

2008). These systems involve both cyber and physical components and information flow

between them. There are a variety of different CPSs from airplanes to smart thermostats.

However, the primary CPS discussed in this paper is the autonomous vehicle architecture.

An autonomous vehicle can be viewed as a CPS due to both the driving software and the

physical movements of the car. The software takes sensor readings from the physical world

as input. It then uses these sensor readings to determine what actions it needs to take. The

software then conveys these commands to devices that control the physical actions of the

vehicles, i.e. the brakes, accelerator, driving wheel, etc. This, in turn, creates a feedback

loop affecting the sensor readings.

CPSs are unique due to the increased attack and defense vectors present. In a CPS,

an attack can occur on either the physical or cyber part of the system. In an autonomous

vehicle, either the software or the sensors can be manipulated. If the sensors are forced to

give incorrect information, then the software can be tricked to thinking something different is

5

happening. Thus, the software can be tricked to perform a potentially dangerous maneuver.

Likewise, the software can be attacked directly and forced to perform a potentially dangerous

maneuver. However, additional defense mechanisms can be put into place.

For CPS, the additional defense mechanism is physical attestation. Physical attesta

tion is the concept of using the physical properties of a system to determine the ground truth

(Roth and McMillin, 2013). In autonomous vehicles, physical attestation can be used by

evaluating equations for velocity and distance to determine if sensors are behaving correctly.

The idea is that if an attack is occurring on a sensor, i.e. the sensor for distance traveled,

then a vehicle can use both speed and time to detect this attack. The main concept of

physical attestation is to increase the difficulty of an attack on a CPS to occur. If an attacker

can fabricate multiple sensor readings, then they are still able to accomplish their goal. One

major drawback of physical attestation is that it is not easily transferable between systems.

Every application has a unique physical system and possible constraints. Thus, much work

must be completed for every CPS.

2.2. VANETS

A VANET is a system where vehicles set up a local ad-hoc network and communicate

with one another for a specific purpose (Zeadally et al., 2012) (Elsadig and Fadlalla, 2016)

(Hartenstein and Laberteaux, 2008). It can be seen as a natural evolution of mobile ad-hoc

networks where the mobile nodes are vehicles and have low resources while stationary

nodes are infrastructure components and have high resources. Many different applications

for VANETs have been proposed in the literature. The purpose of these applications ranges

from entertainment and highway system efficiency to driving specific applications. The

application of a particular VANET affects what its requirements are. The main type of

applications this paper centers around is driving-based applications. Two main examples

are pre-crash alerting and roadway efficiency (Hartenstein and Laberteaux, 2008). Pre-

6

Figure 2.1. VANET Basic Architecture

crash alerting is when a vehicle alerts others that a crash has occurred behind them on the

road so that they have increased time to reduce their speed and avoid an accident. Roadway

efficiency involves cars working together to perform merging and tailgating maneuvers.

Currently, VANETs consist of basic architecture and several different communi

cation paths as seen in Figure 2.1. In this network, there are several entities: vehicles,

road-side units (RSUs), base stations, and any infrastructure entities that are needed for

the given application. These infrastructure entities can include a certificate authority (CA),

cloud servers and more to store passwords, user information, etc. The purpose of RSUs is

to act as a component that has more computational resources and can act as a third-party

between vehicles. Base stations act as a fast communication path between RSUs and the

online entities. In the architecture, RSUs are built along all of the roadways. They can

communicate with the base stations and any other infrastructure entities quickly due to the

assumption that there is a wired connection running between them.

7

Platoon Leader

Figure 2.2. Platoon Example

One major drawback of the traditional architecture for VANETs is that RSUs are

costly to set-up everywhere vehicles could be present. This dissertation considers an

alternate architecture where no RSUs exist and there is minimum interaction with any

infrastructure components. This model is more consistent with the traditional mobile

ad-hoc network model (Goyal et al., 2011).

In VANETs there are three main communication paths: inter-vehicle communication

(IVC), vehicle-to-roadside communication (VRC), and inter-roadside communication (IRC)

(Zeadally et al., 2012). IVC occurs within a platoon when vehicles interact for a particular

application. A platoon consists of a leader and members that are vehicles located closely

together and moving in the same direction on a roadway. In a platoon, the leader issues

commands to the rest of the platoon which are followed (Jia et al., 2015). An example of

a platoon can be seen in Figure 2.2. VRC occurs when vehicles communicate with RSUs.

IVC occurs when RSUs communicate with one another or with any additional infrastructure

components such as a user information database. However, this work primarily uses IVC

due to the assumption that setting up RSUs would be too costly in practice.

8

As of now, many different solutions have been presented to implement security in

VANETs. Most proposed solutions rely on RSUs and other infrastructure components and

present some variations of a public key infrastructure (PKI) (Zeadally et al., 2012). A PKI

is a system used to distribute, use, store, and revoke digital certificates. These systems

primarily focus on applying public-key encryption.

One major issue with using PKIs is the required infrastructure and trusted third-party

needs to be consistently communicating with the nodes in the system. The CA is in charge

of managing the users in the system by certifying and revoking users. A list of revoked users

is stored in a Certificate Revocation List (CRL). This list must be updated for all participants

every time a revocation occurs. As previously stated, the main issue with this approach is

communication with the RSUs, which are costly to create. Thus, without the RSUs and

the other infrastructure entities, the whole system struggles to remain updated when new

vehicles are removed since this information must be broadcast network-wide. So, a PKI is

not practical due to this cost.

To substantiate this claim, a rough cost estimate for an RSU infrastructure for the

United States of America is calculated to show the motivation for its removal in the proposed

work. In (Wright et al., 2014), they built sample RSUs at multiple locations and calculated

the full costs for creation and maintenance. The estimated cost to set-up an RSU is $51,600

each while the upkeep is between $1,950 and $3,050 per year. The study also states that it

takes approximately fifty-five RSUs to cover four square miles. The United States consists

of 3,535,948.12 square miles of land between all fifty states and the District of Columbia

(Bureau, 2009). To calculate the cost of creating and maintaining the infrastructure for a

VANET, the number of RSUs required is needed first. This is done by dividing the total

square miles of the United States by four and multiplying it by fifty-five as per the study.

3,535,948.12 * 55
4

$48,619,286.65 (2.1)

9

This number is rounded to the nearest integer since you can not have half an RSU.

To figure out the total installation cost, the number of RSUs is multiplied by the cost per

RSU to get:

48,619,287 * $51,600 = $2,508,755,191,140 (2.2)

Lastly, to calculate the maintenance cost of the VANET, multiply the number of

RSUs by the annual estimated maintenance cost.

48,619,287 * $2,500 = $121,548,217,500 (2.3)

With an initial cost of $2.5 trillion, a VANET architecture would be impractical to

deploy. On top of the start-up cost, the yearly maintenance cost for an RSU infrastructure

is approximately $121.5 billion per year which does not include the cost to maintain the

backend servers, software, etc. These estimates are an upper bound on the cost for deploying

RSUs since there are large swaths of land that have no roadways and would not require

RSUs. However, there has been work that shows that a full network of RSUs that covers

all roadways and is interconnected via land-line results in a tremendous improvement in

terms of connectivity and message dissemination compared to the modest improvements by

a sparse set of disconnected RSUs (Reis et al., 2013). Thus, the RSU infrastructure needs

to cover a significant portion of the total square miles of the United States for a VANET to

be deployed universally.

With 2.3 million crashes a year, the proposed cost-saving of implementing a VANET

system is $202 billion in costs in crash prevention alone (Wright et al., 2014). This does

not include savings due to decreased emissions or fuel consumption which would surely

decrease due to other proposed VANET applications. Even though this could save the United

States $80.5 billion per year, it would take over 31 years before it reached a point where

they were financially benefitting from the system. Regardless of the cost savings, the study

10

mentions that the majority of the funding for such a roadway system would have to come

from states and third-parties that want to create VANET applications. They specifically

mention that the overall funding would be difficult to raise at the time of the study. However,

the need for this VANET system and related applications is real. The prohibitive cost of

this system and the complex process of funding it serves as motivation for this work and the

proposed architecture which removes RSUs.

2.3. BLOCKCHAINS

Blockchains have seen rising interest in different fields since its creation in 2008

by Satoshi Nakamoto. This technology was first used with the creation of Bitcoin (BTC).

It has since seen expanded use as a state agreement mechanism and a computationally

immutable ledger in a wide variety of different cryptocurrencies and other applications.

This technology consists of a few major components: transactions, scripts, a hash chain,

a consensus mechanism, and a decentralized network. These parts are described in more

detail for the BTC blockchain.

2.3.1. Transactions. The blockchain consists of a ledger of transactions. Every

transaction consists of a set of inputs, a set of outputs, a digital signature, and a script

that is used to validate the transaction. Transactions can be changed to contain any data

as long as they are secured by a digital signature. The digital signature allows users to

verify the transactions and support non-repudiation as a property in the system. In BTC,

the transactions contain a list of digital addresses as input and output. The amount of coin

being transferred too and from each of the accounts is included.

2.3.2. Scripts. For every input and output for a transaction, there is a script that is

attached to the input or output (Tschorsch and Scheuermann, 2016) (Bonneau et al., 2015).

These scripts are an essential yet powerful building block for blockchains that let users

understand how to interrupt and verify transactions. In BTC, they implement a non-Turing

complete stack-based language. There is a common script that is used for most transactions

11

called the Pay-to-PubKeyHash. However, depending on the mining node other types of

scripts can be accepted and published. The Pay-to-PubKeyHash is made of up of scriptSig

and a scriptPubKey. The scriptSig is the input arguments for the script. It consists of sigX

and pubKeyX or the signature and public key of person X who is sending the currency.

The scriptPubKey is the set of operations that are to be performed to verify and unlock

the transaction. For the Pay-to-PubKeyHash the scriptPubKey is OP_DUP, OP_HASH160,

pubKeyHash, OP_EQUALVERIFY, OP_CHECKSIG. OP_DUP duplicates the most recent

entry on the stack. The OP_HASH160 hashes the most recent entry twice, which should

generate the address of the receiver, and pushes it onto the stack. The pubKeyHash is simply

the receiver’s address on the stack. The OP_EQUALVERIFY verifies the equality of the

two topmost stack entries and raises an error if they differ. Lastly, OP_CHECKSIG checks

the input signature against the public key and pushes true onto the stack if they match.

With this building block users can create a wide variety of different scripts such as m-of-n

multi-signature transactions which require m valid out of n possible signatures to redeem

a transaction. However, other cryptocurrencies such as Ethereum provide a much greater

variety of scripts that can be used for smart contracts (Christidis and Devetsikiotis, 2016).

2.3.3. H ash Chain. In BTC, the hash of the previous block is included in the

current block. This creates a chain of hashes that signify the order of events and implement

a logical timestamp server (Nakamoto et al., 2008). This allows the system to maintain

synchronization across the entire network without a trusted third-party.

2.3.4. Consensus Mechanism. This is the process used to create new blocks and

reach consensus. These blocks represent the agreed state of the system. In BTC, Proof-

of-Work (PoW) is used. To publish a new block using PoW, a user increments a nonce in

the block until the block’s hash is less than some predefined number. The time it takes

to complete this process increases exponentially as the difficulty of the problem increases.

However, the result can be calculated in constant time by executing a single hash. Thus,

the outcome is that any change in the previous blocks requires the change of the hash of

12

that block and any blocks that come after it, creating a computationally immutable order of

events. Since a range of answers is allowed and all nodes in the network are racing to find

it, multiple nodes can produce a correct answer at the same time, results in a phenomenon

called forking. Forking is where multiple correct blocks were created at the same time and

forwarded across the network, creating a conflict in the order of events.

2.3.5. Decentralized Network. The BTC network consists of a large network of

nodes that are all competing to create the next block to receive a reward. Nodes are allowed

to join and leave any time. There are several policies in place to resolve issues from the

concurrent nature of the system since every node should eventually have the same blockchain

to verify new transactions. In BTC, the longest hash chain takes over as the agreed-upon

series of events. This policy helps prevent forking, which is the event of multiple blocks

being generated at the same time due to the range of different acceptable solutions that can

be generated during the PoW process.

In Bitcoin, transactions are used to transfer currency between accounts. This cur

rency is generated by using your computing power to find the correct PoW which leads to a

publishable block of transactions. These blocks are then chained together by including the

hash of the previous block in this current block. This creates a timeline of transactions that

are used to avoid users sending a coin to two different addresses, called the double-spending

issue.

2.3.6. Properties of Blockchains. Blockchain has three fundamental attributes that

should be present in any other application of the technology: immutability, verifiability,

and non-repudiation. Immutability is upheld in Bitcoin through the use of PoW. In general,

Bitcoin is considered immutable due to the computational power it would require to regen

erate every block after a change is made in a previous block due to the PoW mechanism.

However, it is only computationally immutable since there is a possibility someone with

enough computation power could outpace the entire Bitcoin network and determine the

order of transactions as desired.

13

Verifiability can be broken down into two different areas: the order of events and

the data. In Bitcoin, the order of events is ensured via the hash chain and the immutability

property listed before. Any user can check that the order of events is correct by simply

verifying the entire hash chain up until the current block. Data is verified via calculating

the current balance of a sender’s account and checking that it is greater than or equal to the

amount they are sending to someone else.

Non-repudiation means that users cannot lie about what they entered into the

blockchain. This is guaranteed through the use of digital signatures. Once a transac

tion is stored using that user’s digital signature, they will be unable to deny that they sent the

transaction since only they should have access to the keys required to make the signature.

2.3.7. Sm art Contracts. As mentioned previously, one major development that

has occurred since the invention of blockchains has been smart contracts. Smart contracts

are scripts that are executable by the blockchain. The idea of smart contracts has been

heavily implemented and developed on a cryptocurrency named Ethereum. The suggested

use of smart contracts has been for deploying any real-world contract on a blockchain.

This can allow for business dealings, homeownership, and even gambling to occur on a

blockchain (Buterin etal., 2014).

Currently, many different applications of blockchains have been proposed. These in

clude digital identity providers, online voting systems, decentralized storage, public notary,

managing music royalties, document proof-of-existence, distributed Domain Name Server,

distributed PKI, and many more (Pilkington, 2016)(Crosby et al., 2016). All of these appli

cations share one common requirement: a distributed, untrusted networked without a trust

centralized authority. Without these attributes, no applications need to use a blockchain

and will benefit from storing information in traditional ways such as a database.

14

2.4. DIGITAL SIGNATURES

In the proposed scheme, both asymmetric digital signatures and multi-digital signa

tures schemes are used. An asymmetric digital signature scheme is a scheme where there

exist some public and private key owned by a signer. The signer can sign a message using

their private key that can be verified using their public key. The proposed protocols do not

specify an asymmetric digital signature scheme. Thus any scheme, such as the Elliptical

Curve Digital Signature Algorithm, can be used (Johnson et al., 2001).

To generalize how these schemes work, the digital signature scheme has some key

generation function, signing function, and verification function. The key generation function

is: (Keypubiic, K eyPrivate) ^ K eyG en (X) where K eyPubiic is the public key, K eyPrivate is

the private key, and K eyG en (X) is the key generation algorithm given some set of inputs X .

The signing function is M ' ^ S ign (K eyPrivate, M) where M ' is the signed messaged and

Sign (K eyPrivate, M) is the signature creation function given an input private key K eyPrivate

and a message M . The verification function is O utput ^ Ve r i f y (K eyPublic, M ') where

O utput is either accept or reject and the verification algorithm V e r i f y (K eyPublic, M ') with

and input key K eyPublic and signed message M '.

A multi-digital signature scheme is a protocol that allows a group of signers to

produce a short, joint signature on some common message. This message can be verified

using the group public key that is generated when signing the message (Maxwell et al.,

2018). This paper uses Schnorr multi-signature. An adaptation of the scheme is presented

in section 6.1 as part of the proposed protocols.

In (Maxwell et al., 2018), there are three steps: key generation, signing, and verifi

cation. This paper presents the scheme adapted to our model. To see the original scheme,

please refer to the original paper.

2.4.1. Key Generation. Each signer generates a random private key * ^ Zp . Each

signer computes the corresponding public key X = gx .

15

2.4.2. Signing. Let X 1 and x 1 be the public and private key of a specific vehicle,

let m be the message to sign, let X2,.. . ,X n be the public keys of all the other vehicles in

the platoon, and let L = X \,...X n be the multi-set of all public keys involved in the block

creation process.

For i e 1, ...,n , each vehicle computes at = Hagg (L , X t). The aggregated public key

for the platoon is X = nn=1 Xa1.

Next, each platoon member generates a random r1 ^ Zp, computes R 1 = gri, and

t1 = Hcom (R 1~).

Each platoon member sends t 1 to all other members of the platoon.

Once it gets t2, . . . , tn from the other platoon members, it sends R 1. Once it gets

R2, ...,R n it checks that tt = Hcom(Rt) for all i e 2, ...,n.

If not true abort, else compute R = nn=1 Rt, c = Hsig (X , R , m),, s1 = r1 +

ca 1X1 modp.

The vehicle sends s1 to all other platoon members. Once it gets s2,...sn from platoon

members, it computes s = £ n=1 s 1modp and the signature is a = (R, s) .

2.4.3. Verification. Given a multi-set of public keys L = X 1, ..., Xn, a message m,

and a signature a = (R, s) , the new platoon compute at = Hagg(L, X t) for each i e 1,..., n,

XX = nn=1 X * , c = Hslg (X , R , m) .

The new platoon accepts the certification if Gs = R Y [rl=1 X*1 c = R X c.

2.5. MSDND

MSDND is a method created for evaluating the information flow across in a system

to formally analyze the trust in cyber-physical systems using modal logic (Howser and

McMillin, 2014). The formal definition of MSDND is given below.

MSDND(ES): e W h [(sx V s^)]A - (sx A s^)

A[w |= (ZVX (w) A (W))]

16

This can be simplified to the following definition based on basic Boolean logic and

the definition of exclusive-or.

MSDND(ES): 3w e W h [(sx ® sy)]

a [w |= (^vX(w) a ^ vy (w))]

In the expression, V (w) and vy (w)) refer to valuation functions on the state variables

sx and sy accordingly. It is important to note that if a system or information flow path is

MSDND secure, then it is vulnerable to a Stuxnet-like attack in a model that is trying to

maintain high integrity. However, if it is MSDND secure, then the architecture is secure

under a privacy model.

The proofs presented in this dissertation use a shorthand for MSDND proofs created

in (Palaniswamy and McMillin, 2018). The theorem IBT\,2Val states that entity two

sent information to entity one, entity one believes that Val is true, entity one trusts the

information sent by entity two, and that entity one believes v a l is correct. This command

is used to show information flow across an information flow model.

MSDND proofs are presented in Section 6.2 to show the security of the proposed

schemes. They are used to show that a cyber-only or physical-only blockchain is insecure

in the face of these attacks and that the cyber-physical blockchain presented in the paper is

secure to the same attacks.

17

3. PROBLEM STATEMENT

Securing VANETs using blockchains, in contrast to using it for a cryptocurrency,

raises five main problems. These problems include cyber-only transactions, a system-wide

ledger in a disconnected network, real-time requirements for transactions, and the lack

of registration for participants and are discussed in more detail in the following subsec

tions. These problems stem from issues with verifiability and scalability when adapting

blockchains to other applications. The solution proposed in this dissertation addresses all

of these issues.

3.1. CYBER-ONLY TRANSACTIONS

In BTC, several mechanisms exist to verify that the cyber transactions have occurred

and that the receiving party is not cheated. These mechanisms ensure properties such as

verifiability and non-repudiation. In the current architecture adopted by BTC and other

cryptocurrencies, any off-chain aspect of the transaction is not guaranteed.

Let’s take the example of Alice trading BTCs to Bob in exchange for U.S. Dollars

(USD). In this example, Alice could send the BTC to Bob, Bob could verify that the BTC

has been received, then refuse to send Alice the USD. Similarly, Bob could send Alice the

USD, and Alice could refuse to pay Bob the BTC once she receives the USD. The off-chain

aspects of these transactions aren’t managed by the blockchain. Instead, the users must rely

on a trusted third party to ensure the transaction has taken place.

The lack of verification mechanisms for any off-chain aspects of the transactions

becomes a significant issue when trying to apply blockchains to CPS. For example, in a

VANET, vehicles need to be able to physically verify traffic or driving messages from other

vehicles. The ground truth in a CPS is that actions occurring in the physical domain of

the system. Blockchains require some way to verify off-chain information and verify the

18

ground truth. Additionally, in a platoon setting, vehicles need to be able to verify that other

vehicles followed instructions. Attempts have been made to apply blockchains to other

CPS. These attempts are further discussed in Section 4. The inability to verify any off-chain

data contained in transactions and determine the ground truth of CPSs is a major issue with

blockchains. However, it is solved in this dissertation by leveraging platoons in a VANET

to capture the ground truth of local vehicles.

3.2. A SYSTEM-WIDE LEDGER IN A DISCONNECTED NETW ORK

This dissertation focuses on a VANET system leveraging platoons with little reliance

on RSUs and other infrastructure components. The overall architecture of a VANET can

be viewed as a disconnected graph where partitions of nodes have no connection with

others outside their partition for long, perhaps indefinite, periods. Vehicles can easily

connect with other vehicles nearby or those within their platoon but they may have difficulty

connecting with vehicles in different cities. This architecture proposed a major challenge to

blockchains as compared to BTC where every node is required to eventually maintain the

same blockchain since future transactions must be verified using previous transactions.

In a VANET simply maintaining the blockchain across the entire network would

become an issue without a heavy reliance on an expensive RSU infrastructure. A solution

involving local consensus is proposed to solve this issue.

3.3. REAL-TIM E TRANSACTION REQUIRMENTS

The transaction throughput of Bitcoin is between 3.3 and 7 transactions per second

with an average block creation time of 10 minutes (Kiayias and Panagiotakos, 2015). This is

due to the difficulty of the PoW hash puzzle. In VANETS, transactions need to be processed

quickly, in real-time due to the speed of the physical driving actions.

19

For example, assume every vehicle in a platoon generates a transaction for every other

vehicle every time a maneuver is performed. This would create hundreds of transactions

every minute. Additionally, malicious or malfunctioning vehicles need to be revoked

promptly to avoid accidents and save lives. Thus, by applying BTC architecture, logging

these transactions with physical-based time restraints are impractical due to the increased

throughput and overall speed requirements. In its current form, blockchains struggle to

achieve the speed required by vehicular driving applications. This dissertation proposes a

different consensus mechanism to address this issue.

3.4. NO REGISTRATION FOR PARTICIPANTS

Nodes in BTC are allowed to join and leave the network at any time. There is no CA

which registers or keeps track of users. Instead, a peer-to-peer system is used to maintain

the network. This occurs due to the nature of the architecture and the fact that there are no

negatives to new users participating in the system as long as they follow the rules. Users are

told to create a new account for every transaction to increase their privacy. This increases

the throughput of nodes joining and leaving the system.

There are many negative impacts of a public blockchain when applied to a CPS.

Malicious nodes could claim to be multiple different users and perform a Sybil attack

(Elsadig and Fadlalla, 2016). A Sybil attack is when a user pretended to be multiple

entities at once. Additionally, in a VANET there is an extensive number of laws and safety

regulations to keep users safe in the physical system. In these systems, there is a great need

for a CA to verify that physically the nodes are following the rules initially and at various

time intervals. A CA is introduced in the proposed solution to solve this problem.

20

3.5. 51% ATTACK IN POW

The 51% attack occurs when one node or a group of nodes works together to have

51% of the network’s mining hash rate, hence the name. This attack can only occur in

blockchains that use the PoW or equivalent consensus protocols. With the majority of the

hash rate, the miner or group of miners can control any new blocks that get created. This

means they can decide what transactions go through. With this power, they can require a

specific transaction fee or refuse to publish a transaction. Thus, wealth will be generated

through the collection of fees on top of their ability to decide who can do what. They

can also revert previous blocks and cause double-spending of coins by publishing a block

then republishing different transactions. This attack allows the attacker to become the sole

governor of the entire blockchain.

The 51% attack is long thought of as being impossible to perform on BTC due

to the high computational requirements required. For this reason, there have been many

suggested applications from maintaining currencies for a nation to managing land titles and

property deeds via smart contracts. This is especially important for developing countries

where corruption is often rampant. So, let us take an example where a country implemented

a BTC-based blockchain to maintain a CPS required to maintain a national infrastructure.

A different country may want to attack this system as a means of crippling that country.

In the past, there have been a wide range of cryptocurrencies smaller than BTC that

have been attacked in this way. This includes Ethereum, the 2nd largest cryptocurrency in

terms of market capitalization at $26,089,510,029 as of 06/06/2019. The most recent one

of these attacks occurred in January of 2019 (Rodgers, 2019). This is easier for smaller

cryptocurrencies because the attack only needs 51% of the total hash rate of the network.

This value is based on the number of people participating in the PoW process and adding to

the total hash rate. Thus, the more people competing to gain the reward from creating the

block, the harder it is to get a 51% attack. This is why many people still believe BTC to be

safe due to the number of users participating. To put it in perspective, the highest recorded

21

daily average hash rate for Bitcoin Cash was 8.3299 EH/s (quintillion hashes per second)

while Bitcoin’s was 61.866256 EH/s. Bitcoin Cash is the 4th largest cryptocurrency in

terms of market capitalization. BTC’s hash rate has 750% of the amount of Bitcoin Cash’s

hash rate.

To participate in PoW mining, a node needs to be able to solve the mathematically

hard problem and generate hashes. In terms of hardware, graphics processing units (GPUs)

are better for mining BTC than central processing units (CPUs). CPUs can be thought of

as the manager of your computer while GPUs are the laborer. Likewise, dedicated mining

hardware, like Bitmain’s Antminers, is better than GPUs. These devices are specifically

designed to generate hashes. They often have just enough memory to perform the computa

tions required. CPUs are measured on H/s (hashes per second), GPUs are measured on MH/s

(million hashes per second), and dedicated mining hardware is measured on TH/s(trillion

hashes per second). This means that supercomputers such as the Summit and Sierra in the

United States don’t have the computation power to perform this attack on Bitcoin since they

only have GPUs and CPUs.

However, dedicated mining hardware must be specifically designed for different

mathematical problems. When the mathematical problem changes, these devices don’t

work. For example, Ethereum uses the Ethash hash function for its mathematical problem.

To solve this problem, significantly more memory is required than the problem used to mine

BTC. Thus, Bitmain’s Antminers do not work for this cryptocurrency. In this case, GPUs

are the preferred hardware for mining since they have the appropriate amount of memory.

This is also the case for other hash algorithms that are used.

The best hardware option for the algorithms used for some of the top ten biggest

cryptocurrencies (CoinMarketCap, 2019) was found to determine the cost of the attack.

There is currently no standard for calculating the hash rate of the hardware. Instead, users

have participated in mining and reported the speeds. Three cost-effective hardware solution

for three different hash algorithms was gathered. Table 3.1 shows the gathered information.

22

Table 3.1. Mining Hardware

Name Type Hash Function Speed Cost
Antminer S9j (Alibaba.com, 2019) Dedicated SHA-256 14.5 TH/s $379.00

Radeon V11 (Hanson and Uy, 2020) GPU Ethash 100 MH/s $680.00
Antminer L3++ (Value, 2019) Dedicated Scrypt 596 MH/s $379.98

The first step to calculate the cost of the 51% attack is determining how much hash

rate the attacker needs to have. Since they will need a majority after the attack starts, it

can be assumed they will be adding 51% additional hash rate to the network. The hash

rates for the cryptocurrencies we will be comparing can be seen in Table 3.2 (BitInfoCharts,

2019a,b,c; Blockchain.com, 2019; BuriedOne, 2019). To determine the required hash rate

for the attack, we use the following equation.

requiredhashrate = —---- 49----------highesthashrate

Next, the number of hardware components required to get to that hash rate needs to

be calculated (rounded up to the nearest device).
7 x i - requiredhashrate

num bero f deVlCes = ^a teo /dev ice

Lastly, the cost of that many hardware components is calculated.

c o s to f a ttack = num bero fdevicesxcosto fthedevice

Even though the cost of the hardware component alone does not encompass the

complete cost of the hardware nor the cost of running the attack, it is a good metric to

determine the feasibility of the attack. As seen in Table 3.2, it only costs $1,683,058,273

in hardware to perform the 51% attack on BTC. With a cost of under two billion dollars,

most countries could afford to perform this attack. Many private corporations could also

do this. The table also confirms the belief that smaller cryptocurrencies are even cheaper to

attack. This is significant for any new blockchains that may be created. They will be more

vulnerable until they gain a significant pool of users contributing to mining.

23

Overall, this shows the serious threat a 51% attack has on BTC-based blockchains.

Using the same architecture for anything highly-valuable puts those things at risk.

Altering the consensus mechanism could make a blockchain completely resilient to

the 51% attack by removing the race to solve the puzzle that the attack relies on. One such

example is the Proof-of-Stake (PoS) consensus mechanism that is set to be adopted by the

Ethereum cryptocurrency this year. PoS no longer relies on miners to solve mathematically

hard problems to be able to create the next block. Instead, PoS attributes the number of

blocks a user can mine to the amount of stake they have in the system (Bentov et al., 2016).

The philosophy here is that a user with more stake, a blockchain is more likely to behave

appropriately since their stake could be at risk if they do not. This results in the more stake

you have, the more blocks you can write, and the more power you have over others in the

system. However, it opens itself up to different attacks, but one that may be impossible for

another nation to pull off without buying a majority of the stake in the blockchain. This

dissertation utilizes an alternative consensus mechanism to solve this problem.

Table 3.2. 51% Attack Cost

Name Market Cap Highest Hash Rate Hash Function # of Devices 51% Attack Cost
Bitcoin $141,863,353,114 61.866256 EH/s SHA-256 4,440,787 $1,683,058,273

Ethereum $26,634,147,840 295,911.9974 GH/s Ethash 3,079,901 $2,094,336,760
Bitcoin Cash $7,049,828,808 8.3299 EH/s SHA-256 597,924 $226,613,196

Litecoin $6,520,122,343 370.5707 TH/s Scrypt 647,141 $245,900,637.18
Bitcoin SV $4,043,291,830 4.374 EH/s SHA-256 313,968 $118,993,872

K>
4^

25

4. LITERATURE REVIEW

This section discusses previous work done in the area of VANETs and blockchains.

In particular, past proposed security solutions for VANETs, proposed reputation systems for

VANETs, the security of blockchains, proposed enhancements of blockchains, and proposed

uses for blockchains are presented.

4.1. VANETS

A significant amount of research has been done on VANETs. Many proposed solu

tions attempt to secure VANETs in some aspect or another. Additionally, some reputation-

based systems have been created. However, they tend to fail short when compared with the

solution proposed in this work. This dissertation details how many solutions suffer from a

reliance on infrastructure components when trying to secure VANETs.

4.1.1. Security for VANETs. Security is an important topic for any architecture.

This is especially true in VANETs where malicious actions can cost the lives of the users.

A variety of different papers have proposed solutions to solve different security concerns in

VANETs. All of the solutions discussed here revolve around key management.

Key management involves managing digital signature and encryption keys and

revoking users from the entire system if they misbehave or deemed malicious. Generally,

this relies on a trust third party to manage all of this activity. The trusted third party

is assumed to be good. This architecture is used in (Alexiou et al., 2013; Kamat et al.,

2006; Singh et al., 2015; Squicciarini et al., 2011; Studer et al., 2009; Walker, 2017; Xie

et al., 2016). All of these proposed schemes attempt to uphold some security attributes

from authentication and privacy preservation in (Singh et al., 2015) to authentication,

authorization, and accountability in (Alexiou et al., 2013). The main goal that ties these

papers together is the goal of private communication, authentication, and accountability.

26

This means that these schemes want to keep communication between vehicles private, only

allow a certain vehicle to communicate via forcing them to authenticate and hold vehicles

accountable to what they say to other vehicles.

A major problem with all of these different solutions that want to perform key

management is the reliance on a trusted third party. For example, (Singh et al., 2015)

suggests deploying RSUs to every intersection to handle the volume of messages across an

entire city. Likewise, (Alexiou et al., 2013) suggests the use of pseudonyms and a CRL.

Even the United States Department of Transportation (USDOT) has created proposed a

sample VANET architecture to serve as a PKI and manage a CRL. In all of these solutions

maintaining a CRL would require massive resources to constantly monitoring of all traffic

across the entire network and broadcast the information of revoked users. Some other

solutions, such as (Kamat et al., 2006), attempt to maintain privacy for vehicles identity-

based cryptography for the same privacy. However, accountability is maintained by a trust

third party in the form of RSUs who are the only ones who can link vehicles to their

past transactions. Our proposed solution allows authentication, accountability, and private

communication without any reliance on an infrastructure component such as an RSU outside

of the initialization of the system. Without costly RSUs, all of these systems cannot operate.

4.1.2. Reputation Systems for VANETs. Another approach to securing VANETs

is reputation-based systems. Rather than determining what information is correct or incor

rect at any given time, reputation systems allow vehicles to learn what sources can be trusted

while applying their ground truth to the given information. Multiple different reputation

systems have been proposed for VANETs. All of these proposed schemes determine the

ground truth of the system and determine whether a message was valid and thus the vehicle

that sent it trustworthy. In (Gurung et al., 2013), the scheme examines content similarity,

content conflict, and route similarity between messages to determine the trustworthiness of

the content of a message. Similarly, in (Jaimes et al., 2016) the scheme relies on RSUs

entirely to valid messages. The validation method most similar to ours is the one found

27

in (Chen et al., 2013). In their work, other vehicles generate feedback messages about a

vehicle’s message. Thus, the system grades a vehicle’s trustworthiness on the feedback

from other vehicles. This method is better than both (Gurung et al., 2013) and (Jaimes

et al., 2016) since the infrastructure alone has no way to learn the ground truth of the

system. RSUs don’t have sensors to evaluate a system and message similarity could be

faked via many malicious vehicles reporting incorrect information. However, none of these

validation methods from previous works take things far enough. In our solution, a vehicle’s

trustworthiness is graded based on all of its actions and messages, not just what they say

they do. This is an important distinction since the vehicle can claim to be good and doing

the correct thing while simultaneously behaving erroneously and maliciously.

All three of the previously proposed schemes rely heavily on infrastructure compo

nents to do the majority of the work. In (Gurung et al., 2013) and (Jaimes et al., 2016),

the messages are compared and evaluated by an infrastructure component. In (Chen et al.,

2013) vehicles are evaluated by one-another but the feedback is aggregated and trust is re

warded by an infrastructure component. This heavy reliance on infrastructure components

such as RSUs and evaluation servers is a major drawback compared with the approach

proposed in this work. The approaches proposed in this dissertation do not require any third

party outside of the initial set-up of the system. Thus, it would benefit from huge savings

if it were to be deployed compared to these other approaches. Additionally, the proposed

approach doesn’t suffer from sparse RSUs and evaluations generated by the infrastructure

components. In the previously proposed solutions, such sparse RSUs would allow vehicles

to behave maliciously until their certification has been revoked. In the proposed solution,

this isn't an issue since trust is generated and can be taken away by the platoon of vehicles

itself.

Now that previous work done in VANETs has been discussed, relevant work done

in blockchains is presented.

28

4.2. BLOCKCHAINS

The research area of blockchains has only been around since it was started in 2009.

However, a great deal of work has already been done. In particular, many researchers have

examined the security of the data structure while others have looked at ways to use it for

new applications. However, this technology has thus far failed to encapsulate the physical

world in a verifiable way. Some suggest leaving the verification of the physical world to a

trusted third party. However, when a trusted third party is included, nodes have to take them

at their word which opens the door to corruption by the trusted entity. Even if it is assumed

that the trusted third party isn't lying, the nodes have no way to verify their information

which counteracts the idea behind a trustless distributed network.

4.2.1. Security of Blockchains. Many researchers have examined a variety of

different attacks on BTC and other blockchains. These can be broken into network-level

attacks and attacks on and by mining pools.

4.2.1.1. Network level attacks. Network-level attacks focus on attacking the net

work of BTC and other cryptocurrencies. Currently, BTC uses standard networking pro

cedures, such as the Border Gateway Protocol (BGP) and an anti-DOS protection protocol.

BGP is the standard routing protocol that regulates how traffic is forwarded on the Internet.

Within BGP users are allowed to claim packets that should go to a certain prefix. The BTC

anti-DOS protection protocol implements a reputation-based system where each node keeps

a penalty score for every other BTC peer. Whenever a malformed message is sent to the

node the peer's penalty score is increased until it receives a twenty-four-hour timeout. Both

of these systems have been shown to have weaknesses in BTC.

The BGP protocol was maliciously used to perform a partitioning in (Apostolaki

et al., 2017). The goal of the partitioning attack is to completely disconnect a set of nodes

from the network. This essentially requires the attack to divert and cut all the connections

between the set of nodes and the rest of the BTC network. The effect is that both sides of the

BTC network believe their blockchain and their view is the correct one. So they continue

29

mining and increasing the length of their blockchain. However, once the two parts become

connected again they realize that only one view is correct, essentially wasting the work of

the other part whose blockchain doesn’t become the main chain. (Apostolaki et al., 2017)

notes that this attack can become an interception attack if they allow one path to go through

between the two sets of nodes. They found that a real BGP hijack performed against their

nodes only takes two minutes to divert BTC traffic and that it would only take 39 prefixes

to isolate 50% of the overall mining power in BTC.

BTC’s native DOS protection scheme was also abused in (Apostolaki et al., 2017;

Biryukov and Pustogarov, 2015; Gervais et al., 2015). All of these works show that DOS

protection can be used to perform a delaying attack on the BTC network. The delay attack

leverages the fact that GETDATA and BLOCK messages are not protected against tampering

within the BTC network. Within the protocol, the GETDATA message is used to asks for

blocks from other nodes while the BLOCK message is used to send a block to another node.

Additionally, nodes are required to wait twenty minutes between requests to ask another

node for a block. So, intercepting these messages and then corrupting them allows for a

node to delay the propagation of a new block to another node by up to twenty minutes.

This was shown for regular networks in (Apostolaki et al., 2017; Gervais et al., 2015) and

specifically for the TOR network in (Biryukov and Pustogarov, 2015).

One major benefit of the solution proposed in this dissertation is that network-level

attacks aren’t an issue. In the proposed scheme, vehicles are assumed to be within a platoon.

The proposed solution requires that vehicles be physically present within a platoon. This

produces the assumption that all vehicles will be within a one-hop broadcast distance. Thus,

there won’t be any forwarding of messages, and all vehicles within a platoon will be able

to communicate directly with one another. So, no partitioning or delaying attacks can be

achieved since there won’t be any forwarding of blocks.

30

4.2.I.2. Mining pool attacks. Within BTC and other cryptocurrencies, it is com

mon practice for miners to work together to validate new blocks, forming mining pools.

These pools work together to solve the proof of work puzzles and share the profits among

themselves. Mining pools are contrary to the idea of a "One CPU, One Vote" system since

multiple parties can pool their money to have control of the system. (Eyal, 2015) discussed

the mining pool in-depth. The only time mining pools have been subject to criticism is when

a mining pool GHash.IO reached the 50% mining power threshold in June 2014 which is

the theoretical amount of computing power one user would need to have majority control of

the blockchain. Since then no mining pools have attempted to increase their mining power

to the system threshold.

(Eyal, 2015) presents a game theory approach to mining pools. In this game, mining

pools have two options, attacking or agreeing not to attack. Attacking in the scenario refers

to the block withholding attack where a miner sends only partial proof of works to the pool

manager and discards full proofs of work. The partial proofs of work allow the miner to stay

in the pool without actually helping mine new blocks. In return, they have also rewarded

a portion of the reward. For this game, the authors found that the best long term goal is

to agree not to attack while the best short term goal is to attack other mining pools. This

is a similar scenario to the classical Prisoners Dilemma game. They found that currently,

mining pools do not attack one another since it decreases their own earnings potential and

reduces the overall mining potential of the whole system since there is an overall decrease

in mining power. From their work, they determined that since most mining pools are open

to the public there is relatively little way to protect against these attacks other than by

monitoring the rates at which all the miners are giving the pool manager full proof of work.

They suggest one workaround would be to require miners to pay an entry fee to join the

pool.

31

However, mining pools and attacks on mining pools are not an issue for the proposed

scheme. In the proposed scheme, the PoW algorithm is not used. No reward is given for

creating new blocks or creating transactions. Instead, these operations are a requirement to

participate in a platoon and the entire system as a whole. Refusing to create a new block

for your platoon will result in a lower trust value and possibly access to limited maneuvers

within a platoon. With this shift in the consensus algorithm away from POW, the proposed

scheme isn’t vulnerable to these attacks.

4.2.2. Applications of Blockchains. Many different applications have already been

proposed for blockchains. Some of these blockchain applications are for VANETs. However,

all of the applications suffer from the problems previously stated in Section 3.

In (Sanseverino etal., 2017), the authors present a distributed solution for recording

energy transactions between producers and consumers in a transactive energy management

system. In this application, users can sell energy between themselves and to back to large

scale producers, i.e. a utility company. The author was able to successfully detail how

these transactions could be recorded on a blockchain. However, the authors admit that

their model fails to capture the entire physical aspect of the energy transactions and the

subsequent effects of any energy transactions on the entire system. Their particular solution

suffers from cyber-only transactions that fail to represent the physical world in a verifiable

way.

Multiple different papers have proposed applications that involve VANETs (Dorri

et al., 2017; Leiding et al., 2016; Lu et al., 2018; Roy and Madria, 2020; Singh and Kim,

2018; Xie et al., 2019; Yuan and Wang, 2016). All of these papers propose solutions

to secure VANETs with blockchains and management vehicles across the entire system.

Additionally, they all involve a global blockchain for the entire network. These authors also

rely heavily on costly infrastructure components such as RSUs and infrastructure entities

such as called Overlay Block Managers. These approaches all fall victim to the real-time

transaction requirements, a disconnected network, and cyber-only transactions that were

32

discussed in Section 3. These papers assume that the RSUs and other trusted components

will be able to verify transactions. This is an incorrect assumption since they give no way

for these entities to know the ground truth of the system. In a VANET, a transaction about

road conditions at one location cannot necessarily be tied to vehicles next transaction in

terms of verifiability. This is due to the randomness at which accidents, traffic, etc can

occur on the roadways. So, taking that verifiability approach for VANETs cannot work.

The solution proposed in this dissertation doesn’t suffer from any of these issues.

Instead, it was specifically designed to address them. In the proposed system, vehicles

use their sensors to verify the ground truth. There is no reliance on any infrastructure

components with platoons managing a branching blockchain network themselves. This

concept also addresses the need to maintain a blockchain across an entire network.

Other papers propose solutions that apply blockchains to different parts of VANETs

outside of the normal driving applications (Gao et al., 2018; Sharma et al., 2017). The

authors of (Sharma et al., 2017) present a resource discovery and sharing framework for

VANETs and smart cities. On the other hand, (Gao et al., 2018) presents a privacy

preserving vehicle-to-grid payment mechanism for electric vehicle charging. Both of these

papers address a less time-sensitive application. Additionally, for these applications, it

makes sense that a city-wide blockchain is maintained. However, they don’t address security

in VANETs.

In (Roy and Madria, 2020), Roy et. al. proposed a scheme to secure VANETs

for traffic management applications. They applied blockchains to allow vehicles to share

information about traffic events to reduce congestion and improve roadway efficiency. The

scheme is designed to handle a majority of malicious nodes. However, they rely heavily on

RSUs similarly to other security approaches for VANETs.

The authors of (Singh and Kim, 2017) presented a reward-based intelligent vehicle

communication that allows for authorized organizations to access the reputations of vehicles

based on their past behavior. They present the idea of proof of driving which is a method for

33

verifying and validating the vehicles involved in VANET communication. However, they

fail to explain what proof of driving is and why it will be an effective method for reaching

consensus. However, all vehicles need to access a vehicle's driving history rather than just

authorized organizations. If vehicles are going to interact and cooperate for a dangerous

maneuver then they need to be able to have some way to prove that they are trustworthy. The

proposed system takes a similar approach but uses their past behaviors as a token to join

any need platoons and take full advantage of the different driving maneuvers in VANETs,

i.e. tailgating.

4.2.3. Alternative Consensus Mechanism. BTC’s property of "one CPU, one

vote" restricts the number of votes a user has to the amount of money they can spend to buy

computing power. However, they don’t necessarily restrict a Sybil attack completely. A

Sybil attack is when a user creates multiple fake identities. For example, a large corporation,

government, or wealthy individual can leverage their money and resources to mount a Sybil

attack and take over BTC by creating numerous nodes that all belong to the same entity.

This could lead to a complete collapse in the cryptocurrency or any that have the same

foundation as BTC. Multiple different mechanisms have been proposed to try to counter the

issues faced by BTC’s PoW consensus mechanism (Borge etal., 2017; Wang etal., 2018).

However, each of these new solutions has its issues.

In (Borge et al., 2017) they present Proof-of-Personhood as a way to overcome the

"one CPU, one vote" concept. Instead, they use a "one person, one vote" system. Proof-

of-Personhood is a mechanism that binds physical entities to virtual identities in a way

that enables accountability while preserving anonymity. Their idea is to link virtual and

physical identities in a real-world gathering while preserving user anonymity. However,

a key issue for this protocol is that it is suggested for a permissionless cryptocurrency,

i.e. anyone can join. In their system, the certification event and CA are both subject to

attacks. Additionally, if there is a CA, even if it is a group of the users, then this makes

it a permissioned blockchain in a sense since only certain users are allowed to mine, and

34

thus control the entire blockchain. This method may be a good idea for purpose large-scale

government-backed cryptocurrencies in the future but as of now, it seems like a poor method

for permissionless cryptocurrencies.

Another consensus protocol called Proof-of-Burn (PoB) was presented in (Wang

et al., 2018). In PoB, the right to mine a block and receive the mining reward is determined

by the node who is willing to burn the more coin. Burning coins means that they are sent to

an inaccessible address. Thus, once they are sent to that address they are no longer able to

be used in the entire system. However, the main critique of this approach is that it benefits

those who already have a large number of coins and can continue burning their coins to get

permission to get create new blocks and determine the transactions on the blockchain.

A similar approach to PoB is PoS (Wang et al., 2018). This approach works by

deciding the miner for the next block based on the percentage of the entire net worth a

single entity owns. This means that if one entity owns 50% of the stake in the network then

they will get to mine 50% of the blocks. This approach suffers from the same criticisms of

PoB in that it benefits those users who are already wealthy. Both PoB and PoS are a step

away from the "one CPU, one vote" envisioned by Bitcoin’s creators.

The proof-of-event (PoE) consensus algorithms proposed to validate traffic events in

a VANET (Yang et al., 2019). This algorithm is run by RSUs and collects state information

from passing vehicles. Once a threshold value is hit, the event is claim as true and broadcast

to the rest of the VANET. All valid traffic events are published to a blockchain with the

proof used to validate them.

The algorithm proposed in this dissertation overcomes these issues faced by other

consensus mechanisms for permissionless blockchains. In the proposed solution, vehicles

are subdivided into a smaller group that needs to reach consensus - platoons. Since a

platoon is limited in size, it can accommodate normal byzantine fault-tolerant consensus

mechanisms without a huge impact on the time requirement (Castro et al., 1999). Thus, it

takes a "one vehicle, one vote" approach to consensus.

35

5. FORM AL VERIFICATION OF CYBER-PHYSICAL BLOCKCHAIN
TRANSACTIONS IN VANETS

The proposed architecture differs from BTC’s blockchain architecture in an attempt

to solve the problems mentioned in the previous section. To apply blockchains to a real-time

VANET in a disconnected network with a large degree of node mobility, some of the basic

components of BTC’s blockchain are altered. This architecture proposes a fundamental

change to transactions and blockchain management as well as the addition of a CA. These

proposed changes address the issues of verifiability and scalability when expanding the

applications of blockchains.

5.1. TRANSACTIONS

Transactions in the proposed architecture are drastically different than BTC and

other blockchains. In this system, transactions no longer transfer coins between users. They

contain evaluations of the physical actions of other users, i.e. did the other user follow the

guidelines of the system and any commands that were issued to them? The transactions are

a cyber representation of the physical view of vehicles. This change drastically alters the

verification process of the transactions. There is no way to verify transactions in the long

term outside of verifying those who created the transaction. Instead, transactions must be

verified by other users who witness the same physical actions, i.e. vehicles in a platoon in

a VANET.

For example, during a lane-changing maneuver in a VANET, the vehicle making

space for the merging vehicle needs to verify its size, speed, and any changes ahead in

the roadway. Additionally, the vehicle needs to check that a vehicle is next to them trying

to merge and that they are not under a bogus information attack. Even though some of

this information can be collected from other sources, these vehicles need to verify it for

36

themselves. This means that their sensors are important to be able to sense what is going

on around them and allows these vehicles to verify other’s maneuvers. It is important to

note that without an initial verification of the sensors by the CA, a vehicle could be running

around blind which might risk the entire system. Thus, although the CA may not be central

to day-to-day communication, it is required to extend some initial trust to vehicles before

they have a history for other vehicles to rely on.

In the proposed system, the platoon leader of individual platoons is charged with

issuing driving commands to the platoon. An example is when a platoon leader issues a

slow down command to their platoon. All of the vehicles within the platoon then create

evaluation transactions that denote what their sensors saw other vehicles do i.e did the

other vehicles follow the command or is there something wrong with the vehicle? The

amalgamation of these evaluations serves as a cyber verification of the physical system.

Additionally, since vehicles are required to be within a platoon to create new blocks for their

blockchain, a majority of a platoon must agree to cheat the system. But, if a vehicle does

this often then the CA should have the ability to notice this and revoke the vehicle.

In terms of trust dynamics, a good evaluation can be seen as depreciating in the

long term since future users cannot verify the transaction in the longer term. However, the

proposed system requires users to create new blocks to be able to continue to participate.

This solves the issue of the ability to forget which is mentioned in the next section.

Another interesting change is that transactions do not need previous transactions to

validate future transactions. This leads us to the possibility of truncating our transactions

and blockchain which Bitcoin cannot do since it needs to keep the records of any addresses

that still have coins no matter where they are within a blockchain. Additionally, this change

allows us to alter the storage of data across the entire network which results in our solution

to the scalability issue mentioned in the next section.

The purposed cyber-physical transactions are a good first step to extending the

property of data verification to other applications.

37

(a) The blockchains of vehicles 1, 2, and 3
before a platoon join is complete.

(b) The blockchains of vehicles 1, 2, and 3
after a platoon join is complete.

Figure 5.1. The blockchains of platoon vehicles before and after a join maneuver.

5.2. BLOCKCHAIN MANAGEMENT

In previous blockchain architectures, every user is required to possess the entire

blockchain due to the need to validate all future transactions based on previous transactions.

However, now that we have removed that need, the proposed solution opens itself up to a

realm of different possibilities. In a VANET, users only need to know what the users in

their platoon have done in the past. A vehicle in one section of the network doesn't care

what other vehicles are doing in another section since their physical actions do not impact

that vehicle. This allows us to create the cyber-physically partitioned blockchain. In the

proposed architecture, every user only logs the transactions and blocks that it can verify. For

example, a vehicle will only maintain the transactions and blocks that a platoon it is apart

of has generated. Blocks in this application signify an agreed-upon state for the platoon.

This log of transactions serves as a certificate of that vehicle’s integrity when it joins a new

platoon.

An example of this difference can be seen in Figure 5.1a and Figure 5.1b. These

two images show a sample representation of the blockchains of different vehicles. Figure

5.1a shows the blockchains of vehicle 1,2,3 before vehicle 3 joins a platoon that consists

of vehicles 1 and 2. Figure 5.1b shows all 3 blockchains after the platoon join has been

38

completed. Vehicles from different platoons will contain different information in their

blockchain. However, once they are in the same platoon their blockchains will contain the

same information during this time. When a vehicle decides to leave a platoon, a split will

occur in the overall view of the network and the vehicles will once again maintain different

blockchains.

The authors argue that this merging and splitting of blockchains makes sense due to

the data verifiability property of the proposed scheme. Like Bitcoin, the users in this scheme

only hold onto data they can verify. Since they are not physically present in other platoons,

they are unable to verify the data they generate. This leads to the short-term verification

nature of the transactions and the need for the CA to provide an initial certificate of trust.

Additionally, vehicles are required to generate new blocks to continue to operate in a system.

One issue with this approach is a user's ability to forget. This means that the other vehicles

in a platoon cannot force that vehicle to store the block in memory. This issue is address by

requiring users to generate new blocks based on the distance traveled. With this stipulation,

a bad actor will suffer the same consequences whether they choose not to store a block or

behave badly.

This proposed scheme uses this new blockchain management architecture to address

the scalability issue when trying to apply blockchains to VANETs. It steps away from

requiring a single global ledger and leaves us with the task of requiring separate platoons

to meet real-time requirements when agreeing on the state of the platoon.

5.3. CERTIFICATE AUTHORITY

Another proposed change to Bitcoin's architecture is the addition of a CA. This

drastically changes the semantics of the system as it transitions from a permissionless

blockchain to a permissioned blockchain (Xu et al., 2017). The CA performs two major

actions: registering users and auditing the system.

39

As previously mentioned, in Bitcoin there are no negatives to not registering and

verifying users since the system is self-governing and there is no need to link it to the

physical world. Additionally, Bitcoin is purposefully designed to limit the impact of any

single user by relying on the PoW mechanism and taking the "one CPU, one vote" approach.

However, in CPSs, there is a need to link the cyber to the physical and verify that things

are what they say they are and meet any laws of the physical system. This takes the form

of a registered key pair that is used to sign all evaluation transactions generated by and of

a particular vehicle. Although this generates a privacy concern, other vehicles need to be

able to verify the identity of a vehicle when they present their blockchains for verification.

If a vehicle generates a new key pair for every platoon, this task becomes impossible.

Another important aspect of registering is that the CA is initially certifying the

integrity of the vehicles that register. Thus, other vehicles can trust that the certified vehicle

will behave appropriately and can participate in the system. If vehicles were not registered

then every vehicle would be required to initially assume that every other vehicle is hostile.

This would result in a decreased initial efficiency of the system.

Secondly, the auditing function is a very important aspect of the proposed architec

ture since every user ends up with a different blockchain. Thus, an entity with the ability

to see the bigger picture is important when protecting the system against different attacks.

Even though the CA is not actively present in communications between vehicles, we can

leverage its authority to identify anomalies and inappropriate actions. For example, it is as

sumed the CA can perform anomaly detection across all vehicles’ blockchains to determine

if a group of bad actors comes together to falsify a good history.

5.4. SECURITY THREAT MODEL

In the proposed architecture, there is a CA and a network of vehicles. In our security

analysis, we assume that the CA is trusted while the network of vehicles is untrusted. This

means that the CA will follow all protocols and not attempt to leak any information or

40

cheat. On the other hand, this dissertation assumes that the vehicle has the capacity to try to

cheat the system or gain additional information. They have the ability to attempt to disrupt

the system with their physical actions or false messages. This can take the form of an

impersonation attack, message tampering, and even a bogus information attack. However,

it is assumed that there is a bounded number of bad actors and that not all vehicles in the

system are bad actors. In Section 5.6 some attacks are explored on the proposed scheme.

Now that the proposed architecture changes have been presented, a scheme for

preserving security VANETs in the absence of RSUs is presented.

5.5. PROPOSED SCHEM E

The proposed scheme applies the previously mentioned changes to overcome ver

ifiability and scalability issues in VANETs. Both Sections 4.1 and 4.2 were published

in (Wagner and McMillin, 2018). The goal of this scheme is for all vehicles to verify

the integrity of one another without the need to constantly communicate with any sort of

infrastructure. Vehicles within the system are split into two separate groups:

• Normal vehicles are vehicles with a trust value above a specified threshold. These

vehicles operate normally within the system and are allowed to take part in risky

maneuvers such as tailgating or bumper-to-bumper merging.

• Restricted vehicles are vehicles with a trust value below a specified threshold. These

vehicles are allowed to be active within the system but have reduced capabilities.

For example, they are not allowed to evaluate other vehicles or send commands to

the platoon. However, they are allowed to receive and act on a specific subset of

the commands and be evaluated by other vehicles. For example, they can perform a

slow down maneuver but are not allowed to participate in a tailgate maneuver. This

allows the vehicle a path to rebuild trust and reverify their integrity within the system

without needing to recertify with the CA.

41

In the proposed scheme is it difficult for vehicles to determine whether a vehicle has

been offline or has purposefully deleted parts of their blockchain. Thus, vehicles should

be required to constantly update their blockchain to continue to prove their integrity. So,

in the proposed scheme vehicles that do not have a new block in a certain distance traveled

are also put on restricted status. An edge case could occur where it would be difficult for

a platoon to tell the difference between a vehicle that has simply sat offline at a location

for multiple days from a vehicle that is purposefully forgetting blocks. To overcome this

issue, a secure Odometer or GPS is assumed to be used that tells the platoon the distance

traveled since its last block was generated. The approach of using a trusted component was

suggested in (Guette and Bryce, 2008). However, this work only uses a trusted component

to reinforce our approach and solve a few issues rather than trusting it completely for our

entire scheme like in previous work.

Additionally, since anything can happen on the road, it is difficult for a platoon to

tell whether a vehicle is an adversary that is trying to penetrate and attack the system or just

a vehicle that is having some technical difficulties. For example, if a vehicle gets dirt on

some of their sensors and begins giving bad evaluations of other vehicles in the platoon even

though other vehicles are giving good evaluations, the platoon may not be able to tell what

is wrong with that vehicle. Thus, by allowing them to partially participate in the system

without revoking them, it allows them to fix the problem without needing to communicate

with the CA. This is an integrity solution rather than a security solution. If this were a

security solution, any vehicle that makes a mistake should be revoked from interacting with

other vehicles and treated as a malicious user.

In the proposed scheme there are three different types of transactions: evaluation

transactions, command transactions, and join transactions. A command transaction is used

to send commands to the platoon as well as store these commands. This transaction includes

a signature, timestamp, and command. A sample command transaction can be seen in Figure

42

5.2. This transaction type is used when determining whether a platoon leader is a bad actor.

This command transaction is referenced in the evaluation transaction and can be used to

note that a platoon leader issued an invalid or inappropriate command.

An evaluation transaction is used to send evaluations of other's physical actions

based on a command transaction. It includes the evaluator's signature, the trust score, a

timestamp, the evaluated vehicle ID, and the evaluated command as seen in Figure 5.3. The

evaluated command is just the command that the evaluator is basing its score on. Including

this information can help with auditing by allowing the CA to denote specific issues with

vehicles if they fail to follow a specific command. Lastly, a join transaction is used to

transcribe a platoon join event. The join transaction includes the joining vehicle’s certificate,

a hash of their blockchain, a time stamp, and the joining platoon’s leader. An example of

a join transaction can be seen in Figure 5.4. It serves as a cyber representation that the

physical action of joining the platoon was successful and met the relevant requirements such

as being within a certain distance of the platoon. The join transactions allow a continued

hash chain when a vehicle joins a new platoon since their blockchain’s hash is now in their

next block in the form of a transaction instead of in the header, unlike Bitcoin. This allows

the vehicles to uphold the verifiability of the order of events like Bitcoin’s blockchain. Note

that including the hash of the blockchain allows the CA to determine if the vehicle is deleting

part of their history when they perform a system audit.

{
'sender': 'http://localhost:5002',
'command': 'Platoon Slow Down',
'signature':
b'B\\a\xcb\x87m\x9f;\xc0\xfa\xl6\n\xc2\xee\xb7\xfe[F\xac\xe6\xff\x82\x81\x8d\x8d\xcd~\x
17l\xad\xbd\xafr\xefU)#x\xe2S | YN\x9c\tS_\xb8\xa6Ec\x8d\x06BI\x9c8\xbd\xf4\xlc\xl2! L\x
80e\xbb;~c\xef\xd9\xe7a\x03l$O\x0e\xbeE\x91\x01\x02\xc7H\x85$?:n\x9b;QU,\x81\x04\xe
f\x03u\xe4e\xla\xd7\x0c\x8b\xe8\xc5\xe5\xab@\x8c\x854T\xf7\x9fc\xeaRg\x9a'\xbe\xe9\x
960'
}

Figure 5.2. Command Transaction Example

http://localhost:5002'

43

{
'sender': 'http://localhost:5002',
'recipient': 'http://localhost:5001',
'amount': 1,
'time_stamp': 1528725844.8794222,
'evaluated_command': 'Platoon Slow Down',
'signature1:
b"y\xe8\xla\xc3\xbc\xaa\x8f\xcdr\xelD\xd3\xl5J\xd2\xf7\xb9(\xda\xcb&\x91\xa9\xd7\xfd\
xd0\xdd\xd4\x7f=a\xl6\x0fc\xcd\xd8\xee\xfa\xal\xaa\xf3\xd4\x84\xfc\xc6vQ\x96\xe4P\xd8
\xe7U\x8d\x88/Z\xe4\x9c\xd8\x9b\xa5l\x8b\x89A$n?\x9e\xad\xc4\xd6\x97\xfd\x9f\xc21\xe
eW\x08\xle\x92\xe7\xde5\xd0f\xe2\xf9Z\xe9\xdb\xfbb\x81\xlf\xl2_\x81\xd2\xf6\x8eW'd,
\xd8\xl0y\xac\xea\xeb_\xf3\x95]\x0c\xbbf\xce4\x06\xf0\xbdn\xe5v"
}

Figure 5.3. Evaluation Transaction Example

{
'index': 1,
'timestamp': 1528724787.226061,
'certification':
'cnZgcO723BBN7NraXKD9vmh8kpYCmLlUSY58aGOVcZd4zfoA/tcX6w50zHEX0f+xiOyCLfYE/R
m3\nQ+FlwiTHclWm4ICFJdHgM2vXy00faGvOshlJAf80OArTlJO0k6njPs0luLH8IRNi41TFfUi5Q
XUg\nxVRPWVuOjLwSHIendBY=\n',
'id':
'65537,105011103280049177247190213638684924399463129624304870169963744971299
036681864338003882322412552850405437825868249341459955129020221455859936972
296901379952697408286814062346058184518220702938079154867819953444712929540
469924050484257113547524250534872488239155675031046516027306111260338722249
258536815717127'
}

Figure 5.4. Join Transaction Example

http://localhost:5002'
http://localhost:5001'

44

The scheme is split up into five different protocols: Car Registration, Block Creation,

Join Platoon, Inner Platoon, and Leave Platoon. These protocols make up the basis for how

the vehicles interact within a VANET. They are presented in the following subsections and

verified in a later section. Additionally, how the CA performs System Auditing is briefly

mentioned.

5.5.1. C ar Registration. As previously discussed, registration is imperative to

VANETs. The physical side of a vehicle needs to be verified before it can be allowed to

participate in the system. Every vehicle must complete this protocol to receive a valid

certificate and thus participate in the system. The key pair and genesis block, which is the

first block in that vehicle's blockchain received, is then used in the rest of the system. Note

that like all other transactions that go on a vehicle's blockchain, the genesis block that is

created is a cyber certification of the physical readiness of the vehicle. A brief overview

of the Car Registration Protocol can be seen in Figure 5.5. The Car Registration protocol

works as follows:

1. The vehicle owner contacts the CA and meets them at a designated location. For

example, this could be a Department of Motor Vehicles office or an automobile shop.

Figure 5.5. Car Registration Protocol

45

2. The vehicle owner gives the CA their private identification information as well as the

car’s identification information.

3. The CA verifies the vehicle’s safety and roadworthiness as well as the owner’s identity.

Additionally, the CA can request taxes on the vehicle or for the owner to complete

any other processes they wish.

4. If the information is valid and the vehicle meets all safety requirements then the CA

creates a genesis block which includes a certification from the CA. Additionally, they

create a public and private key pair so that the vehicle can sign their transactions.

5. The CA sends the key pair and the genesis block to the vehicle.

6 . The vehicle and the CA both log the information received.

In the genesis block, the certificate is generated using the RSA digital signature

scheme (Infomation Technology Laboratory and Technology, 2013). Here, the CA encrypts

the public key of the vehicle, hashes it, then encrypts it with their private key. Note that any

digital signature scheme can be used here. We assume that all vehicles have the CA’s public

key since all vehicles must get a genesis block from the CA to participate in the system.

Thus, all vehicles should be able to verify the certificate of other vehicles. This scheme

assumes that other vehicles can’t recreate a CA certificate, thus creating their genesis block

and certification.

An example of a genesis block can be seen in Figure 5.6. This block includes the

certificate of the vehicle, the public key of the vehicle, the timestamp, and the block index.

5.5.2. Platoon Block Creation. This scheme relies on the integrity validation from

the platoon join protocol to speed-up block creation. In particular, the scheme saves time

and energy by making the platoon leader randomly select a platoon member to create a

new block. No hash puzzle is solved since there is no benefit to creating a new block thus

no need to compete for its creation. In this protocol, the platoon leader has to select a

46

{
'index': 1,
'timestamp': 1528724787.226061,
'certification':
'cnZgcO723BBN7NraXKD9vmh8kpYCmHUSY58aGOVcZd4zfoA/tcX6w50zHEX0f+xiOyCLfYE/R
m3\nQ+FlwiTHclWm4ICFJdHgM2vXyOOfaGvOshlJAf800ArTlJOOk6njPsOluLH8IRNi41TFfUi5Q
XUg\nxVRPWVuOjLwSHIendBY=\n',
'id':
'65537,105011103280049177247190213638684924399463129624304870169963744971299
036681864338003882322412552850405437825868249341459955129020221455859936972
296901379952697408286814062346058184518220702938079154867819953444712929540
469924050484257113547524250534872488239155675031046516027306111260338722249
258536815717127'
}

Figure 5.6. Genesis Block Example

Figure 5.7. Platoon Block Creation Protocol

47

platoon member to create a block for the platoon. Once the block is created, it is sent back

to the platoon leader, verified, then broadcast to the rest of the platoon. In the case of a

failure to create a new block, a transaction is instead broadcast to the platoon and another

member selected. The authors argue that this is acceptable due to the private nature of the

blockchain. Vehicles are verified when they join a platoon and are constantly checked for

their continued membership. Thus, their physical action of joining and participating in a

platoon gives a vehicle permission to create new blocks. An overview of the Platoon Block

Creation protocol can be seen in Figure 5.7.

1. The platoon leader randomly selects a platoon member that does not have a restricted

status to create the next block of the platoon.

2. The platoon leader sends a Create New Block message to that member.

3. The chosen vehicle receives the C reate New Block message and calculates the new

hash.

4. When the vehicle generates the hash, it sends the nonce and the block to the platoon

leader.

5. The platoon leader verifies the block.

6 . (a) If no issues are found it sends a New Block message to the entire platoon with

the Proof-of-Work attached.

(b) If the block isn’t correct, the platoon leader randomly selects a different vehicle

and restarts the process. Additionally, a transaction noting the failure is created

and sent to the platoon.

48

Figure 5.8. Platoon Join Protocol

This protocol is run as a state agreement protocol. Additionally, it serves as a token

to prove that all of these physical maneuvers and the related transactions were physically

verified by other users. The other vehicles are required to verify the block on receipt. Once

a block is published, it can be used to show a vehicle’s trustworthiness when they try to join

another platoon.

5.5.3. Platoon Join. The Platoon Join protocol is run whenever a vehicle tries to

join a platoon. The vehicle must be within the sensor range of the platoon to join the

platoon so that the other vehicles can verify the physical process of joining a platoon. This

is another example of using the physical properties of the application to verify the cyber

transactions. The protocol works as follows:

1. A requesting vehicle sends a Request to Join message which includes their identifi

cation number and their generator block to the platoon leader.

2. The leader of the platoon receives the Request to Join message and verifies that the

genesis block is valid. In particular, they check that the certificate in the generator

block is valid and that the genesis block hasn’t passed its expiration date. Additionally,

the platoon leader verifies that the requesting vehicle is within its sensor range.

3. (a) If the genesis block is valid, the platoon leader sends a Request for Blockchain

message.

49

(b) If the genesis block is not valid the platoon leader replies with a Request

Denied message. Additionally, the platoon leader publishes a request denied

transaction to the rest of the platoon that includes the identification information

and the certificate of the requestor.

4. The requesting vehicle receives the Request for Blockchain message. They send

their entire blockchain to the platoon leader.

5. The platoon leader then verifies the blockchain by validating the hash chain. Addition

ally, they calculate the vehicle's trust score by amalgamating the previous transactions

that belong to the joining vehicle within their blockchain.

6 . (a) If the vehicle’s trust score is above the trust threshold then all vehicles are sent

a Accept to Platoon message by the platoon leader. Additionally, the joining

vehicle is sent the current state of the platoon. This includes any unpublished

transactions as well as the last platoon block.

(b) If the vehicle’s trust score is below the trust threshold then the vehicle is allowed

into the platoon on a restricted basis and all vehicles are sent a Accept to Platoon

Restricted message by the platoon leader. They publish these messages to the

platoon’s chain.

7. If the vehicle’s trust value is higher than the current platoon leader’s trust value then

they send a Elect Leader message to the entire platoon along with that vehicle’s ID.

The vehicle then hands over the platoon leadership to that vehicle.

5.5.4. In tra Platoon Communication. The Intra Platoon Communication protocol

is run whenever a command is issued or at regular intervals to verify that the vehicles within

the platoon are behaving correctly. An overview of this protocol can be seen in Figure 5.9.

This protocol works as follows:

1. The platoon leader issues a command to the whole platoon.

50

2. Every vehicle verifies that the command is valid and won’t put them in danger. Then

the platoon attempts to follow the command.

3. Every vehicle in the platoon uses its external sensors to examine the other cars in the

platoon to determine if they followed the command.

4. Every vehicle then creates a transaction evaluating the vehicles within their sensor

range on their ability to follow the command.

5. The vehicle will send this to all of their platoon members.

6. After a certain time or after a certain event, such as a platoon join, the Platoon Block

Creation protocol is run by the platoon leader.

7. After the protocol completes, for any vehicles that go below the trust threshold the

platoon leader sends a P u t X on Restricted Status message to the entire platoon

as well as a transaction noting that the vehicle was given restricted status and stops

receiving transactions from the vehicle.

8. If there is a higher trust score the Platoon leader every vehicle broadcasts an "Elect

Leader" along with the vehicle’s ID whose trust value is highest.

In this protocol, we give the individual vehicles a decent amount of autonomy when

receiving commands from the platoon leader. This along with how each vehicle reacts to

different commands and who is allowed to give commands to the platoon should be studied

further in the future.

5.5.5. Platoon Leave. The Platoon Leave protocol is run every time a platoon

member wants to leave the platoon. A diagram representing the order of actions taken in

the Platoon Leave protocol is shown in Figure 5.10. The protocol works as follows:

1. A vehicle wants to leave the platoon. It sends a Request to Leave message to the

platoon leader.

51

coo
4-*_ro
D.

1) Command

7) Put X on
Restricted
Status

*
8) Elect_Leader

*

Platoon Leader Platoon Member
1) Command

2) Verify(Command)
and Attempt to Follow

2) Verify(Command)
and Attempt to Follow

3) Evaluation(Platoon) 3) Evaluation(Platoon)
4) Create Transaction 4) Create Transactions

5) Broadcast Transactions 5) Broadcast Transactions
6) Run Block Creation

7) Put X on Restricted Status

8) Elect Leader

Figure 5.9. Intra Platoon Communication Protocol

2. The platoon leader sends an Acknowledge message to the leaving vehicle.

3. Once the vehicle has left the sensor range of the platoon, the platoon leader and other

platoon members then send a transaction to the platoon noting that the vehicle is no

longer within their sensor range.

4. The leaving vehicle deletes the unpublished transactions from its history.

An interesting note of this protocol is that it is resilient in the face of dropped

messages. If either the Request to Leave message or Acknowledge message gets dropped

then, due to the physical nature of the system, the platoon will know that the platoon member

has left the platoon. However, the platoon will note that something didn't happen correctly

when they make evaluation transactions. This is a major benefit of physically verifying the

physical actions within the platoon.

5.5.6. Trust Scores. Whenever a maneuver is performed by the platoon, an evalua

tion is created that signifies the ability for a vehicle to properly obey commands. Evaluations

can grade either cyber or physical portion of a vehicle. The cyber evaluations include the

ability to properly communicate with the rest of the platoon, the ability to create a correct

new block, and the overall ability to follow commands of the platoon. The physical evalua-

52

tion grade the physical actions of a vehicle. This includes their acceleration, deacceleration,

speed, turning ability, and ability to perform general maneuvers such as a platoon join and

leave. Scores will be a value of one or zero. One denoted that the vehicle behaved according

to the rules of the system whereas a zero denotes a bad action. The overall trust score of a

vehicle is calculated using the equation shown below. Here N is the number of scores in

their blockchain, St is the evaluation of the vehicle, Be is the current block, and Bs is the

block of evaluation S. Thus, the overall trust score is:

y N sk
Zjk=1 (Be-Bs+1)2 (5 1)

The trust score of a vehicle is a sum of their overall history performing in the system.

The value of evaluations degrades exponentially over time. Thus, the system will value the

most recent evaluations more than older evaluations. The final trust score is the average

of all of these sums. This trust score calculation was modeled off the work done in (Duan

and Chow, 2018). To join a platoon, a vehicle needs to be above a threshold of 0.98. This

threshold allows vehicles to recover their trust score and continue to participate in the system

in the face of a general fault. For example, if a vehicle has a sensor that has a fault but

recovers, then the vehicle can continue to participate without being put on restricted status

53

5.5.7. System Audit. Over time the CA needs to audit the system to ensure that

vehicles are not deleting parts of their history, creating false history within a platoon of

other malicious vehicles, etc. To ensure that these actions are not happening they need to

have to ability to audit the system. To audit the system, the CA just needs to collect all of

the vehicle's blockchains up until the current time that they need to verify. We assume that

they can do this on command, in the case of an emergency, or whenever a vehicle needs to

get recertified, in case of periodic inspections of the physical vehicles. Then, the CA can

piece individual blockchains together to generate the view of the entire network to verify

that everything is working correctly. Since multiple vehicles will have the same blocks as

the other vehicles within a platoon, it should be relatively easy for a CA to match all of the

blockchains together to be able to track vehicles and their behaviors throughout the system.

Once history from many vehicles is pieced together, the CA just needs to find anomalies or

other issues.

5.6. SECURITY ANALYSIS

This dissertation proposes a method for vehicles to verify one another's integrity

without the constant assistance of a third party. Many attacks have already been proposed

in VANETs. These include bogus information injections, denial of service, impersonation,

Sybil attacks, message suspension, message tampering, location faking, and more (Zeadally

et al., 2012) (Qu et al., 2015). However, due to the proposed scheme’s focus on integrity

verification, only bogus information injections are covered.

A bogus information injection occurs when a vehicle sends other vehicles incorrect

information. This can either be something as small as an incorrect trust score or as large as a

false command, i.e. an emergency brake alert. This type of attack can be done maliciously

or accidentally. In the proposed scheme, such an attack is mitigated via the sensing of

off-chain actions by vehicles within a platoon.

54

In the Platoon Join protocol, a vehicle could attempt a bogus information injection

by trying to join a platoon without being near the platoon. The attacking vehicle would

send the Request to Join message to the platoon initiating the protocol. However, Step 2

in the protocol requires the attacking vehicle to be in the sensing range of the platoon for

the protocol to continue. Thus, the Join Platoon request would be rejected by the platoon

since the joining vehicle is within the sensing range.

A similar scenario occurs in the Leave Platoon protocol if an attacking vehicle tells

the platoon they are leaving the platoon and then doesn’t leave. In this protocol, Step 3 only

occurs once the vehicle has left the sensor range of the platoon. This means that the vehicle

cannot leave the platoon unless they physically leave the platoon’s sensor range. The attack

in this scenario would not succeed.

In the Intra Platoon Communication protocol, there are several places for a bogus

information injection by an attacking vehicle. In this protocol, the platoon leader could

issue an invalid command in Step 1, a vehicle can issue an incorrect trust evaluation in Step

4, and the platoon leader could put a good vehicle on restricted status in Step 7. Due to Step

2, the vehicles verify any commands from the platoon leader. This means that the vehicle

makes sure the command will not harm the vehicle. For example, if the platoon leader tells

the platoon to turn left off a cliff, the vehicle will use their sensing equipment to note that the

action would result in a dangerous outcome and not complete the command, mitigating the

attack. In Step 4, if a single vehicle issues an incorrect trust evaluation, the trust evaluation

will be out-weighed by the rest of the platoon. This results in the attack having little to

no effect on the evaluated vehicle’s score. Lastly, if the platoon leader attempts to put a

good vehicle in restricted status the rest of the platoon will be able to verify the status via

their blockchain. Thus, since all of their actions are already recorded on the blockchain, the

rest of the platoon will know that the vehicle should not be on restricted status. From that

point, they could elect a new platoon leader and note the acts of the old platoon leader via

publishing negative evaluation transactions.

55

A denial of service (DOS) attack occurs when an action is taken that prevents the

system from moving forward, essentially freezing it in its current state. In the proposed

scheme, a denial of service attack can result from many different actions. For example, the

platoon leader could refuse to initiate any protocols. If this were to occur, the platoon could

simply elect a new platoon leader and evaluate the platoon leader accordingly. Another

approach could be to remove the platoon leader entirely from the platoon and create a

scheme where the vehicles vote on actions.

An impersonation attack occurs when one user pretends that they are another user.

However, the proposed scheme is secure against this attack. It mentions the assumption

that only the CA can create genesis blocks and a valid certification. This would prevent

any attacker from being able to forge another vehicle's signature. Another approach could

be for a vehicle owner to register multiple vehicles and transfer identity information among

them. This can be considered a Sybil attack. However, due to the detection of the physical

presence of a joining vehicle, an owner could only use one vehicle's credentials at a time.

Additionally, the secure GPS would alert the platoon if the certification was outdated based

on the distance the current vehicle has traveled. If an attacker tried to switch their credentials

between different vehicles, the platoon would be alerted by the secure GPS. Thus, the attack

would fail.

Message suspension is when a vehicle refuses to forward a message or vehicles

refuse to communicate with one another. In the proposed scheme, the biggest concern is

when a vehicle join or vehicle leave message is sent to the platoon that it is propagated to

the rest of the platoon. In the case of the vehicle join, eventually, the vehicle should merge

with the platoon which would result in multiple vehicles receiving the message, mitigating

the attack. Additionally, basic platoon restrictions, such as all vehicles needing to be within

one-hop broadcast range, could help mitigate this problem. On the other hand, the vehicle

leave protocol mitigates the message suspension attack. As long as the vehicles sense that

a vehicle has left the platoon the protocol can complete.

56

Message tampering is when a vehicle changes another vehicle’s message when

it forwards it to another part of the platoon. Due to the way transactions are created,

message tampering is impossible. Thanks to the digital signatures implemented by Bitcoin’s

blockchain that is also implemented here, this attack cannot occur without a vehicle first

stealing another vehicle’s private information. However, even though the vehicles are

untrusted we can safely assume they will not give out their private information. Thus, this

type of attack is mitigated by the proposed system.

In the proposed protocol, the sensing capabilities of the platoon and each vehicle

allow the entire scheme to be secure again bogus information attacks. These bogus informa

tion attacks are mitigated by the protocol. In the next section, the inherent traits and security

properties of the protocols are turned into invariants of the system. These invariants are then

formally verified. Thus, the security of our system against these ad hoc bogus information

attacks are formally verified.

5.7. FORM AL MODEL VERIFICATION 1

To show the correctness of the proposed communication model, we performed

system verification with the SPIN model checker. This section is in the submitted journal

version of this work. This tool works by thoroughly checking the states that are generated

from a distributed system design. (Holzmann, 2004) The user first constructs a verification

model that has all the required system properties. In general, this will be abstracted

from the true mathematical/complex operations that occur in the actual design. Next, the

user generates a list of neverclaims which are representations of invariants for the model.

Invariants are properties that must hold for the entire system life-cycle and are represented

xThis section was part of a journal paper submitted to the International Journal of Critical Infrastructure
Protection (IJCIP).

57

using LTL. SPIN then system states that are generated from the verification model against

the neverclaims and returns an error if there exists a state where the neverclaims became

false.

One issue with model checking is the existence of the state explosion problem.

This is the exponential increase in the number of states due to an increase in the number

of global state variables and possible branches in each process in a concurrent system.

(Clarke et al., 2011) To overcome this obstacle, three things were done. First, the presented

communication protocols were split into three protocols instead of one entire procedure;

the join protocol, the leave protocol, and the intra-communication protocol. The Promela

code created for all three protocols can be found in Appendix A. The intra-communication

protocol consists of the Intra Platoon Communication protocol and the Block Creation

protocol. Next, the complexity of the verification model was reduced by removing any

complex computations and instead abstracting these ideas to state variables. For example,

the model does not contain a blockchain or and blocks. Instead, these ideas were abstracted

to state variables representing the fitness of individual vehicles. Lastly, the Swarm mode

in SPIN was used. (Holzmann et al., 2010) The Swarm mode of SPIN uses the ideas of

parallelism and search diversity to try to solve the state explosion problem. In particular, it

performs a range of different search methods to run many small verification jobs in parallel

in a partial state-space search.(Holzmann et al., 2010) They argue that by checking many

different areas of the search space, it is highly likely that a majority of the errors can be

found without a full state-space search. Now that we have introduced the methodology of

the formal model verification, we present our work.

5.7.1. Invariants. The invariants we generated reflect what should happen within

the communication protocols and the physical actions within them. However, it does not

cover what vehicles should look for in terms of correct or incorrect actions. For example,

the invariants mention that a vehicle should be present to join a platoon. But, it fails to

mention what a vehicle should look for when evaluating other vehicles for a particular

58

Table 5.1. Table of Symbols

Symbol Definition
□ the LTL always operator
♦ the LTL eventually operator
- , A , V the boolean negation, and, or logical operator
u the temporal strong until operator

the boolean logical implication operatory
the boolean logical equivalence operator

Bm A bad maneuver was performed by a vehicle.
BRjoin /'B^ Leave A vehicle broadcasts a requst to join or leave
INp A vehicle is in a platoon.

Cp / Cn
A vehicle has either a recent positive or negative recertifica
tion block.

Phy A vehicle is physically present within the platoon.
BC A block creation event is performed by the platoon.

Pj /P jr/P i
A vehicle joins, joining on restricted status, or leaves the
platoon.

GPS A vehicle’s secure GPS reports a valid answer.
command A vehicle issues a command to the platoon.
evaluate A vehicle creates an evaluation of a platoon member.

action. Instead, the readers should see (Kanteti, 2017) for work regarding the physical

invariants within the platoon. A list of symbols used for our LTL invariants can be seen in

Table 5.1. The 11 invariants that were created are now presented in LTL and written format.

The Promela code for the invariants used by SPIN can be found in Appendix B.

Invariant 1: □ ((Bm A IN P) ^ 0Cn)

It is always true that if a vehicle makes a bad maneuver and is in a platoon then eventually

the car will receive a negative certification block.

Invariant 2: □ ((-B m A INP) U BC ^ CP

It's always true that if a vehicle does not make a bad maneuver and is in a platoon until a

block creation event then eventually it will receive a positive recertification block.

59

Invariant 3: □ ((Phy A Cp A B R j0in A G PS) ^ Pj

It is always true that if a vehicle is physically present, possesses a positive recertification,

requests to join a platoon, and produces a correct GPS result then it will be allowed to join

the platoon.

Invariant 4: □ ((Phy A Cn A BRJoin A GPS) ^ P jr

It is always true that if a vehicle is physically present, has a negative recertification, requests

to join a platoon, and produces a correct GPS result then it will be allowed to join the

platoon.

Invariant 5: □ (Pj ^ Pj U (Cn V BRLeave)

It’s always true that if a vehicle joins a platoon, then it will be apart of that platoon until it

receives a negative recertification or broadcasts a request to leave the platoon.

Invariant 6 : □ (Pjr ^ Pjr U (Cp V BRLeave)

It's always true that if a vehicle joins a platoon on restricted status, then it will be apart of

that platoon on restricted status until it receives a positive recertification or broadcasts a

request to leave the platoon.

In v arian t? : □ (Pj V P jr ^ ♦ BC)

It's always true that if a vehicle joins a platoon or joins a platoon on restricted status then

eventually it should receive a new block.

Invariant 8 : □ (BC ^ Cn V Cp)

It’s always true that a blockchain creation event implies that a vehicle will receive a positive

or negative recertification block.

Invariant 9: □ ((Pj V Pjr) ^ (- BRjoin U Pi))

It's always true that if a vehicle joins a platoon or joins a platoon on restricted status then it

cannot request to join another platoon until it leaves the current platoon.

Invariant 10: □ (Cn ^ —(command V evaluate))

It’s always true that if a vehicle has a negative recertification then it cannot issue a command

or evaluate a platoon member.

60

Table 5.2. SPIN Swarm Results for Invariants

38 Spin Verification Runs
Invariant 1 3 11

Protocol Intra Platoon Join Platoon Leave Platoon
State-
Vector

808 - 816 956 792

Depth
Reached

127 - 853 127 - 1302 127 - 557

States
Stored

170 - 33,886,973 2,885 - 39,937,254 2,080 - 18,682,676

States
Matched

61 -48,881,998 3,564- 53,011,589 1,676- 9,791,978

Transitions 231 - 82,768,971 6,449 - 90,965,306 3,756- 9,791,978
Atomic
Steps

115 - 21,379,071 215,446 - 144,614,480 8,302 - 17,836,212

Invariant 11: □ (Pi ^ (- Phy A BRLeave))

It’s always true that if a vehicle leaves the platoon then it is not physically present within

the platoon and it broadcasts a request to leave the platoon.

These protocols attempt to describe some behavior that should be expected within

a platoon. Invariant 1 and 2 describe the cases that should result in a positive or negative

recertification block. Invariants 3 and 4 present the platoon join conditions for both restricted

and normal status vehicles. Invariant 5 and 6 present the requirements to continue being a

part of a platoon in a given status. Invariant 7 hints at the idea that whenever a vehicle joins

a platoon they should be staying long enough to participate in a blockchain creation event.

Invariant 8 simply means that if a vehicle participates in a blockchain creation event then

they should receive a new negative or positive recertification. Invariant 9 pushes the idea

that vehicles should not be able to join more than one platoon at a time, which is provable by

their blockchain. Invariant 10 ensures vehicles on restricted status only do certain actions.

Invariant 11 shows the conditions for leaving a platoon. All of these invariants were coded

with SPIN and verified via the SWARM method.

61

5.7.2. SPIN Results. The communication protocol was split into three different

sections: platoon join, intra-platoon communication, and platoon leave protocols. The

Intra platoon communication included the steps for the block creation protocol. This

division of protocols was done to deal with the state explosion problem. Additionally, each

invariant was then applied to the relevant section of the protocol. Invariants 1, 2, 5, 6 , 7, 8 ,

9, and 10 were tested over the intra-platoon communication protocol. Lastly, Invariant 11

was tested over the leave protocol. Table 5.2 shows the results of applying one invariant to

each protocol. The values are approximately the same for each protocol regardless of which

invariant is applied to it.

Swarm created 38 different state-space searches all with different parameters for

each run. The state-vector size was between varied depending on which protocol was tested

The state-vector size is the required memory to describe a single global system state. For

each search, a report is created that includes the depth reached, states stored, states matched,

transitions, atomic steps, and errors found. The errors refer to the invalidation of the model

under the given neverclaim. For all of our invariants, no errors were generated. The depth

reached is the longest depth-first search path. The states stored are the number of unique

global system states. The number of states matches is the number of times a search returned

to a previously visited state in the search tree. The transitions are the number of transitions

that were explored in the search and can serve as a representation of the amount of work

done to complete a given state-space search. Lastly, atomic steps are the number of steps

that were carried out as part of an atomic sequence. In Spin, an atomic sequence is a series

of steps that are performed as one step.

Swarm has twelve different types of searches it performs. These include four base

searches: basic depth-first search (DFS), reversed process ordering DFS, reversed transition

ordering DFS, reversed process ordering, and transition ordering DFS. Additionally, there

is a randomized version and bounded context switching version of the four base searches.

The number of different state space searches generated, which was 38, results from the

62

number of CPUs available and the amount of time available. For the model verification, a

VM that has 4 CPUs and 16GB of RAM was used. Thus, 3 CPUs and 1 hour were allotted

for each run. In Table 5.2, the runs with the smallest amount of depth and states happen to

be the randomly generated runs.

The complete SPIN results can be found in Appendix B. Now that the communication

protocol was proven correct under the given invariants, the results of a simulation are

presented.

5.8. TIM E ANALYSIS

In this section, the time cost of the protocols is compared to the cost if RSUs were

included in the process. Additionally, it is verified that the protocols meet the real-time

requirements for the physical maneuvers of the platoon. According to (Amoozadeh et al.,

2015), the cost of different platoon maneuvers can be seen in Table 5.3. Let M be the

amount of data in a message divided by the bandwidth of the channel, S be the time for a

vehicle to check it’s sensors, B be the time to send an entire block of a vehicle’s blockchain,

K be the time to verify that a block is correct and calculate a trust score for a block, and H

be the number of blocks in the entire history of a vehicle. Thus, the cost for Platoon Join

protocol is:

2 M + HB + HK + S (5.2)

The cost of the Platoon Leave protocol is:

2 M + S (5.3)

No other protocols are analyzed since they are not time dependant on a platoon

maneuver. It is assumed that the VANET is using a 5.9 GHz channel to communicate as

stated in IEEE 802.11a and 11p (Hartenstein and Laberteaux, 2008). Additionally, it is

63

assumed that the transaction size is 500 Bytes as suggested by (Wiki, 2019) and the header

size is 80 Bytes (Reference, 2019). These are both standard transaction sizes based on the

current Bitcoin architecture. This dissertation assumes that a normal message is 1000 Bytes

and that a platoon will only contain 10 vehicles. It is assumed that the time it takes to verify

a single block is .0047s or 4.7ms.

To show that the proposed protocols satisfy real-time requirements, it must be shown

that the Join Platoon protocol can be completed in the time it takes for the merge platoon

maneuver while the Leave Platoon protocol can be completed in the time it takes for a leader

to leave. The merge platoon maneuver was selected since a vehicle joining a platoon of

size n vehicles can be seen as a platoon of size 1 merging with a platoon of size n. For the

Platoon Leave protocol, the leader leave maneuver is chosen since it is the lowest acceptable

time requirement.

16 > 2M + H B + H K + S (5.4)

After factoring out H and moving everything to the left-hand size, the following is

left:

16 - 2 M - S
> H (5.5)

By plugging in all of the numbers from the aforementioned assumptions, the follow

ing is returned. Note that the channel speed is replaced with the theoretical channel speed

rather than the real one. However, this is acceptable due to the definition of less than.

16 2j 103
5.9x106

5080
5.9x106 + 0.0047

> H (5.6)

64

Table 5.3. Real-Time Cost of Platoon Maneuvers

Maneuver Approximate Time (Seconds)
Merge 16
Split 4

Leader Leave 4
Last Follower Leave 4

Middle Follower Leave 8

By assuming some arbitrary value for S, i.e. 0.5, H must be less than 2788 blocks

to meet the time criteria for the merge maneuver. Thus, as long as a vehicle gets recertified

every 2788 blocks, it will be able to meet real-time requirements. To verify that the Platoon

Leave protocol meets real-time requirements, the following is found assuming the same

arbitrary value for S:

2x 103
4 > 2M + S = ---------- + 0.5 = .5004 (5.7)

5.9v106

Thus, the protocol meets real-time requirements for both the Platoon Join and

Platoon Leave protocols. Since those are the only two protocols constrained by platoon

maneuvers, the entire proposed system meets real-time requirements.

5.9. SIMULATION RESULTS

A simulation of the cyber components of the proposed algorithm was created on a

Dell Precision M4400, with 4.00 GB of RAM and an Intel Core 2 Extreme CPU Q9300,

using Python.

The PoW puzzle was implemented to verify that a high difficulty factor cannot be

used in the proposed solution. Figure 5.11 presents the time taken to solve the PoW puzzle

based on a given difficulty. Based on the data, the time it takes to complete the puzzle

is exponential to the difficulty factor. Just with a difficulty of six leading zeroes, it takes

approximately 200 seconds to calculate the answer. Since actions within a VANET happen

65

in a matter of seconds if not faster, this speed is unacceptable. On a normal roadway,

vehicles could join and leave a platoon in less than 200 seconds. This would result in no

updated history for this time which could lead to cheating. However, our scheme does not

encounter this issue since any hash value is accepted for a given block. Instead, it relies on

the broadcast time for messages.

To create a certificate the RSA library was used which implements RSA Digital

Signatures, RSA Key Generation, and RSA Encryption/Decryption. This code used 1024

bit RSA key size. Ten trials were run and the results were plotted in Figure 5.12. As shown

in Figure 5.12, the time it takes for the certificate authority to generate a new key pair as

well as create a certificate can vary from less than .5 seconds to almost 6 seconds. However,

since they are being done when the vehicle is being certified by the CA and there is a

physical vehicle check associated with the operation there are no time constraints. Thus,

the times are acceptable.

The Join Platoon protocol was also simulated. Figure 5.13 shows the results of the

implementation. With a block size of 100 transactions, the time it took to complete the

protocol was tested. Based on the results, the time it takes to complete the protocol is linear

to the number of blocks that need to be verified. This is since every transaction is checked

to see if it is evaluating the joining vehicle and then the results are added together if it is.

Based on this data, the protocol will take more time the longer a vehicle is participating.

This results in the protocol eventually being to slow for a VANET. However, due to change

in the way transactions or created and verified truncation or other time-saving operations

could become viable.

The simulation results show the Platoon Join protocol has scalability issues in terms

of the time it takes to join a platoon. The main issue is the time it takes to transmit an

entire blockchain then verify it. PoW is shown to be an unacceptable consensus method

66

Proof-of-Work Difficulty [Leading Zeroes Required]

Figure 5.11. Speed per Proof-of-Work Difficulty

ty}

O

GO
tD
E£

1 2 3 4 5 6 7
Trial Number

8 9 10

4

Figure 5.12. Certificate Time

67

Number of Blocks

Figure 5.13. Joining Speed per Number of Blocks

for a real-time system such as a VANET. In the proposed system, there is no benefit from

being the vehicle to produce the next block. Thus, the cost of using PoW as a consensus

mechanism has no advantage.

68

6 . EFFICIEN T BLOCKCHAIN AUTHENTICATION SCHEM E FOR VANETS

To solve the issues faced with using PoW as a consensus mechanism and the

scalability issues of the previously proposed Join Platoon protocol some alterations were

made. Due to the low number of nodes in a platoon compared to the network of Bitcoin,

a consensus mechanism using the Schnorr Multi-Signature coupled with an algorithm

designed to reach consensus in the presence of partially synchronous byzantine faults is

proposed to solve these issues. A truncated history is used to join new platoons instead

of the entire blockchain. Both of these changes are proven secure and show to reduce the

resource requirements of the protocols.

6.1. PROPOSED SCHEME

This section presents the protocols used by participants in the VANET. In particular,

vehicle registration, platoon join, block creation, intra platoon communication, and platoon

leave protocols are presented. The only protocol where the CA or any infrastructure

component is present is the vehicle registration protocol.

Figure 6.1. Vehicle Registration Protocol

69

6.1.1. Vehicle Registration Protocol. The proposed system uses private blockchains.

This means that all users must be registered with a CA to participate. This is a standard

requirement for VANETs since it is what you will currently find in transportation infrastruc

tures in most countries. The CA is charged with inspecting the vehicle, requesting any fees

or taxes, and creating a certification for the vehicle. This certification allows the vehicle

to begin participating in the VANET and take advantage of the cost-saving opportunities it

provides and can be considered the genesis block of the vehicle's blockchain. The Vehicle

Registration Protocol is outlined in Figure 6.1 and works as follows.

1. First, the vehicle arrives at a registration station owned by the CA. This will take the

form of a Department of Motor Vehicle office or Licensed Mechanic who can verify the

physical properties of the vehicle.

2. The vehicle then generates an ECDSA Public/Private Key Pair. This key pair is used to

sign transactions containing evaluations of other vehicle’s actions while a part of a platoon.

The vehicle will also generate a Schnorr Multi-Signature Public/Private Key Pair. This

signature is used during the creation of new certification blocks for vehicles leaving the

platoon and during the intra platoon communication protocol.

3. The vehicle sends the owner’s identification, its identification, and both public keys to

the CA.

4. The CA will verify the identification, checking that both the vehicle and owner are valid.

5. The CA will then create a genesis block containing the vehicle’s id, both public keys,

and a signed certificate from the CA.

6 . Both the CA and the vehicle will log this information. The CA keeps it so that it can

penalize the vehicle and vehicle owner as needed.

70

Figure 6.2. Block Creation Protocol

Once this protocol is complete, the vehicle is free to join its first platoon and benefit from

the cost-saving applications of the VANET. It will not need to register again unless it gets

kicked out of the platoon for possessing a "bad" block.

In the proposed system, a "good" block simply denotes a vehicle that has behaved

correctly while a "bad" block indicates a vehicle that has not. The definition of correctness

is explained in Section 6 .2 .

6.1.2. Block Creation Protocol. Blocks are generated whenever there is a change

in the state of the platoon. This protocol is adapted from the Schnorr Multi-Signature

scheme and applied to a platoon. It must be carried out and a platoon signature created

for a vehicle when they want to leave the platoon to be allowed to join another platoon. If

a vehicle does not possess a valid block when they leave, they will not be able to join any

future platoons. The block generated by the protocol serves as certification showing that

the vehicle behaved correctly while a part of the platoon according to all cyber and physical

actions performed by the vehicle. An outline of the protocol is seen in Figure 6.2 and works

as follows.

71

1. The platoon leader indicates to the platoon that they will begin the block creation protocol

via broadcasting a signed message.

2. For i e 1 ,...,n , every vehicle in the platoon then computes ai = Hagg(L ,X i). The

aggregated public key for the platoon is then X = nn=1 X f 1. Each platoon member also

generates a random rj ^ Zp , computes Rj = grJ, and tj = Hcom (R j).

3. Each platoon member broadcasts tj to all other members of the platoon.

4. The platoon waits until it receives all t from every platoon member.

5. Once every platoon member gets t2, ..., tn from the other platoon members, it broadcasts

Rj to the entire platoon.

6 . The platoon waits until it receives all R from every platoon member.

7. Once it gets R2, ..., Rn it checks that ti = Hcom(Ri) for all i e 2, ...,n.

8 . If it is not true, the platoon aborts the computation and creates a transaction evaluating

the faulty vehicle. Otherwise, every vehicle in the platoon computes R = n ’n=1 R i, c =

Hsig (X , R, m),, Sj = rj + cajXjmodp.

9. Every vehicle in the platoon sends s 1 to all other platoon members.

10. Once the all vehicles in the platoon receive s2,...sn from the platoon members, it

computes s = Xn=1 s1 modp and the signature for the message is a = (R, s).

To ensure that consensus on the values broadcast at steps 3, 5, and 9, Algorithm

2 is applied from (Dwork et al., 1988) which is used to reach consensus in the face of

Byzantine faults under partially synchronous communication and synchronous processors

when authentication is present. In the proposed protocol, the digital signature is used when

sending messages. Additionally, a secure GPS is located within each car that is used for

navigation. It is used to synchronize the processors of all the vehicles in the platoon.

72

6.1.3. Platoon Join Protocol. Whenever a vehicle attempts to join a platoon, its

last certification block must be verified by the platoon it is attempting to join. When a

vehicle joins a platoon, its secure GPS reports the total distance it has traveled. The platoon

is trusting that the previous platoon behaved correctly and gave the vehicle the appropriate

designation of "good" or "bad". The correctness of this assumption is proven in Section

6.2. To understand how this protocol works, an outline is given in Figure 6.3 and described

below.

1. The vehicles sends a request to join message with includes its genesis block and the

certification block from its last platoon.

2. The platoon will verify that the vehicle is valid by validating the genesis block and the

certification from the CA. Additionally, it will verify that the vehicle is physically present

within the sensor range of the platoon.

3. If it is valid, it will continue to validate the certification block as follows: given a multi

set of public keys L = X1,..., Xn, a message m, and a signature a = (R, s), the new platoon

compute ai = Hagg(L ,X i) for each i e 1, ...,n , X = nn=i X f!', c = Hsig(X , R ,m). It will

73

Figure 6.4. Intra Platoon Communication Protocol

then accept the certification if Gs = R \ \ ni=l X “{c = R X C. Otherwise, it will simply reject

the vehicle from participating in the platoon. The platoon leader will then tell the platoon

whether or not to accept the requesting vehicle.

6.1.4. In tra Platoon Communication Protocol. Every time a command is issued

by the platoon leader, this protocol is run to disseminate transactions and detect faults by

vehicles within the platoon. A brief outline of this protocol is given in Figure 6.4 and

described below.

1. The platoon leader issuing a command to the platoon.

2. Every vehicle within the platoon then receives the command, verifies that it is from the

platoon leader, and attempts to follow the command assuming that the result will not end in

a bad state.

3. As the platoon members are following the command, they monitor one another according

to the invariants of the system. Once the platoon maneuver is complete, every vehicle creates

transactions for every other vehicle in the platoon.

74

4. Every vehicle in the platoon broadcasts its transactions to the other vehicles within the

platoon.

5. The platoon will run the block creation protocol to reach a consensus on the actions of

the vehicles within the platoon.

6 . If any vehicles behaved inappropriately during the maneuver, they are deemed untrust

worthy and kicked from the platoon.

7. If the platoon leader is kicked, a new platoon leader is elected from the remaining

vehicles.

6.1.5. Platoon Leave Protocol. To leave the platoon, a vehicle must receive a

certification block from the platoon. Otherwise, it will not be allowed to join any future

platoons. A brief description of this protocol can be seen is Figure 6.5. Once the vehicle

leaves the platoon, it will use the last signed leave-platoon request to join the next platoon.

An outline of the protocol is given below.

1. The vehicle broadcasts a message to the entire platoon that it is leaving the platoon.

2. The platoon leader then initiates the platoon block creation protocol to sign a message

indicating that the platoon received the leave platoon request.

3. The platoon leader waits until the protocol is complete.

4. Once the platoon leader receives the signature, it sends an acknowledge message to the

leaving vehicle.

5. The platoon leader then waits while the leaving vehicle leaves the platoon and is a safe

distance away so that it cannot interfere with the platoon maneuvers.

6 . The platoon leader sends the signed message to the leaving vehicle.

75

6.2. SECURITY PROOF

To formally prove the security of the proposed scheme, several different theorems

about this work are proven. First, a list of seven different assumptions that are assumed in

the model is given. After those are presented, some basic definitions of the proposed system

are laid-out. Lastly, several theorems that show the strength of the protocols are proven.

Assumption 1. The CA that generates the certificates for the vehicles is a trusted entity and

will not reveal any information about a vehicle V to an attacker A.

Assumption 2. A vehicle V will not reveal its private signing information.

Assumption 3. There are a limited number o f attackers A where N > 3 A + 1. N is the

number o f vehicles in a platoon. This assumption is based on previous work discussing the

maximum number o f attackers to reach consensus under partial synchronicity in the face o f

the byzantine faults with authentication. This number o f attacks is based on (Dwork et al.,

1988).

Assumption 4. There is a tamper-proof GPS.

Assumption 5. There is a bounded distance D b that a vehicle can drive without receiving

a new certification block before it will no longer be allowed to join a platoon.

76

Assumption 6 . A vehicle V can only be a part o f one platoon at a time.

Assumption 7. For every action that is in the blockchain, there must be a certifiable action,

either cyber or physical, that is evaluated by the platoon.

Throughout this section, correctness refers to a vehicle’s actions both in the cyber

and physical domains of the vehicle. This works’ description of correctness follows directly

from Assumption 7.

Definition 1. A vehicle is behaving correctly if it passes the evaluation and certification of

its actions by other vehicles within the platoon that will be stored in its blockchain.

The description of correctness is purposefully left vague to avoid requiring in-depth

and lengthy proofs. Based on the aforementioned assumptions, the proposed scheme can

be described with the following definitions. The description of a platoon in a VANET, the

requirements to join a platoon is given, and the result of leaving a platoon is given.

Definition 2. Platoon P is a group of N vehicles that drive in the proximity of one another

and cooperate for some particular application where N is bounded. The vehicles within the

platoon carry out the proposed communication protocols as needed when vehicles join or

leave and whenever a physical action is carried out by the platoon.

Definition 3. To join platoon P, vehicle V must possess a valid certification block Cy, be

moving in the same direction as the platoon, and by physically sensible by the platoon.

Definition 4. Whenever a vehicle V leaves platoon P, it will receive a valid certification

block Cy that will denote whether it is behaving correctly based on Definition 1.

Now that the proposed scheme and protocols have been defined in terms of the system

and the base assumptions of the been discussed, the security proof begins by proving several

base theorems about the proposed system.

Theorem 6.2.1. A vehicle V can only be a part o f one block creation event at a time.

77

Proof. Theorem 6.2.1 is proven by contradiction. Assume that V created two blocks at the

same time. Blocks are generated by joining a platoon and subsequently leaving the same

platoon (Definition 4) or by participating in a platoon maneuver as denoted in Section 6.1.

Thus, V would have had to join two platoons and participated in a maneuver within both or

subsequently left both. To join a platoon, a vehicle must have a valid certification block that

shows that they behave correctly and must be physically a part of that platoon (Definition

3). Since V cannot be two places at once, it cannot be a part of two separate platoons. Thus,

it cannot create two blocks during a single period and Theorem 1 is proven. □

Theorem 6.2.2. A vehicle V will not be able to change the contents o f their certification

block Cy when they are not a part o f a platoon.

Proof. Theorem 6.2.2 is proven by contradiction. Assume that vehicle V was able to

change their certification block Cy when they were not a part of a platoon. To change Cy

two cases could have happened. First, V could have reverted to a previous certification

block. Secondly, V could have changed the contents of Cy .

Case 1: Assume the first case where V reverted to a previous certification block. To

begin, assume that V has traveled more than the bounded distance D b since receiving the

previous certification block. In this case, the certification block would contain GPS reading

D o . No GPS can be falsified due to Assumption 4. Given the current GPS reading D c ,

D c - D o > D b, thus it will not be able to join a platoon due to Assumption 5

Secondly, assume that V has traveled less than D b since receiving the previous

certification block. Since it has traveled less than D b, the vehicle has either not moved

since leaving the last platoon or it could be moving. Given its current GPS reading D c and

the GPS reading contained within the certification block D o that D c - D o < D b . If it was

not moving V would be unable to participate in a platoon since the traffic would be moving

and a V is required to be moving with the platoon and be physically sensible by the platoon

to join (Definition 5.8). Thus, V would be unable to use Cy to participate in any platoon

when it cannot join due to the physical constraints of the platoon-join requirements. Thus,

78

V would be unable to use the previous certification block to participate due to Assumption

5. If V was moving, then it will have a period before it travels D B until the previous

certification block is invalid. Thus, V will eventually be caught using a false certification

block and not be allowed to join a platoon.

Case 2: Assume the second case where V changed the contents of Cy . If V changed

the contents of Cy then V would have to possess the private signing information of all

vehicles in the prior platoon that was used to create Cy or a fork was created in the platoon’s

blockchain. However, a vehicle will not reveal it's private signing information due to

Assumption 2. Furthermore, it cannot create two blocks simultaneously due to Theorem

6.2.1. Thus, they could not have changed the contents of Cy .

Since V could not use a previous certification block and could not have changed the

contents of Cy, the assumption that V was able to change their certification block Cy is

incorrect. This proves theorem 6.2.2. □

Theorem 6.2.3. A vehicle V will always have a valid certification block Cy whenever it

attempts to join a platoon.

Proof. Theorem 6.2.3 will be proven by induction. First, the proof begins with the base

case. Let us prove that a vehicle V will have a valid certification block Cy when it attempts

to join its first platoon, P\. In this case, its last certification block will have been created

by the CA. Due to Assumption 1, this certification block is valid. Additionally, based

on Theorem 6.2.2, V was unable to change Cy . Since the vehicle has received a valid

certification block from the CA and was unable to change it, V will join P\ with a vehicle

certification block. Thus, V will be allowed to join the platoon if Cy says V has behaved

correctly or will be denied if it says V has behaved incorrectly.

Next, the inductive case is proven. Assume that V has a valid certification block Cy

holds whenever V joined Pn . Let us prove that V has also has a valid certification block Cy

when V tries to join PN+1. Before can join P^+ i, it must leave P n due to theorem 6.2.1 and

Assumption 6 . When V leaves the platoon P n , it will create a secure certification block for

79

V. If there are X vehicles in the platoon not including V, then it follows that there are only

up to Y attackers where Y < X based on Assumption 3. In the block creation algorithm,

vehicles exchange evaluations of other vehicles with one-another and the majority score for

any vehicle is taken as the cumulative value. Thus, when the cumulative trust value for a

vehicle is calculated, the output will follow the answer created by the honest portion of the

platoon since the number of honest vehicle H since H = X - Y thus H >= ^X. This results

in V receiving a valid certification block when they leave the platoon.

Due to theorem 6.2.2, V cannot alter Cy after it leaves Pn . Thus, V will use Cy to

join P n +1. When V attempts joining Pn +1 using Cy it will be allowed to join the platoon

if Cy says V has behaved correctly or will be denied if it says V has behaved incorrectly.

Since theorem 6.2.3 holds when V joins P1 and it was shown that if Cy is valid

when V joins P n then Cy will be valid when it attempts to join P n +1, theorem 6.2.3 is

proven. □

Theorem 6.2.4. The “cyber-physical ” blocks that are created in the form o f certification

blocks encapsulate both the cyber and physical domains.

Proof. Theorem 6.2.4 is proven by contradiction. Assume that the certification blocks do

not encapsulate both the cyber and physical domains. This means that it can either not

encapsulate the cyber system or not encapsulate the physical system. Assumption 7 says

that for every transaction in the blockchain that evaluates a vehicle V, it will be the cyber

representation of some action by V. These actions can fall into two categories: cyber and

physical. Cyber actions are the actions that V takes as part of the system that does not result

in direct physical action. This includes evaluating other vehicles, making actions of other

vehicles, and simply replying to messages from the platoon within a specified time-bound.

Physical actions are any action that V takes that result in physical action by V. These

include braking, accelerating, and turning. Thus, by Assumption 7, the blockchain will

include both cyber and physical actions since they are both verifiable actions. □

80

Table 6.1. Table of Symbols for MSDND Proof

Symbol Definition
CP The consensus protocol of the platoon

LB2 The local blockchain of vehicle 2
VC1/VC2 The vehicle controller of vehicle 1 or vehicle 2 respectively

VO2 The physical vehicle operations of vehicle 2
CC1/CC2 The cyber communications of vehicle 1 or vehicle 2 respectively

S1 The sensor unit of vehicle 1
FP 2 The future platoon of vehicle 2

Now that some basic properties of the proposed protocol have been proven, some

theorems describing the benefit of the proposed approach to evaluating both the physical

and cyber portions of the system, instead of one or the other, are presented and proven.

These proofs use MSDND to show the security of the approach. In MSDND, IBT12Val is

a macro used to describe the information flow from one entity to another in a system model

(Palaniswamy and McMillin, 2018). It means that entity 2 reported to entity 1 the value

Val is true and entity 1 believes entity 2.

In a physical-only blockchain, there is no information flow path from VO2 to S 1 as

seen in Figure 6 .6 . A table of shorthand notations used for this and the following proofs

can be seen in Table 6.1. Let $ 1 be the statement "Vehicle 2 is maneuvering correctly".

Let ip2 be the statement "Vehicle 2 is communicating correctly with other vehicles". The

definition of correctness comes from Definition 1. Either ip1 or —(p1 must be true at all

times. Similarly, either ip2 or ~np2 must be true at all times. Finally, <p = ip1 A ip2 means that

the vehicle is behaving correctly. In this system, repeated evaluations of other vehicles that

are noted in the local blockchain are used by future platoons to evaluate the trustworthiness

of a vehicle. Thus, there is an information flow path from the consensus protocol of the

platoon to the local blockchain of a vehicle and a path from the local blockchain of a vehicle

to any future platoons of that vehicle.

81

Figure 6 .6 . Cyber Only Blockchain Information Flow Diagram

Theorem 6.2.5. A cyber-only blockchain is not MSDND secure under an attack on the

cyber communications o f a vehicle.

Proof. Assume that in a cyber-only blockchain, some function f exists to determine whether

^ 2 is true or false that is owned by CP. This follows from Assumption 7. In the model,

assume that CP will always be honest due to the bounded number of attackers in Assumption

3.

1. - ^ 2 = true; Vehicle 2 is not sending correct cyber communications.

2. w 1= VVC2 (w) = true; VC2 observes that they are communicating correctly.

3. IBTCCl VClip2; VC2 lies to CC2 and tells it that the cyber communicating are correct.

4. w = V ^ 2 (w) = true; CC2 observes that the cyber communications from V2 are correct.

5. IBTCCl,CC2ip2; CC2 sends the correct cyber communications to CCi.

6 . w = V ^ 1 (w) = true; CC1 observes that V2 sent the correct cyber communications.

7. IBTVCl,CClip2; CC1 tells VC1 that V2 sent the correct cyber communications.

82

8 . w 1= VVCl (w) = true; VC\ observes that V2 sent62789-= the correct cyber communica

tions.

9. IBTCP,VCltp2; VC1 tells CP that V2 sent the correct cyber communications.

10. w = VC2P(w) = true; CP observes that V2 sent the correct cyber communications.

1 1 . —ip2 ^ - f ; since ~np2 = true then function - f = true.

12. IBTCPj -ip2; f tells CP that V2 sent the incorrect cyber communications.

13. w = V -£ (w) = true; CP has now deduced that V2 sent the incorrect cyber communi

cations.

14. w = VCP(w) = true = ^ w = V—̂ (w) = true; since a valuation function exists at

CP to evaluate <̂2 it follows that there also exists a valuation function at FP2 to evaluate

P2.

15. IBTLB2,CP—ip2; CP tells LB2 that V2 sent the incorrect cyber communications.

16. w = V—B (w) = true; LB2 observes that V2 sent the incorrect cyber communications.

17. IBTFP2,LB2—ip2; LB2 tells F P 2 that V2 sent the incorrect cyber communications.

18. w = V—;P22 (w) = true; F P 2 observes that V2 sent the incorrect cyber communications.

19. — MSDND(ES): 3w e W h [(^ 2 ® — ̂ 2)] A [w |= (3VP/ 2 (w))]

F P 2 has a valuation of ^ 2 . Therefore, the cyber action readings are not MSDND

secure to F P 2 . This means F P 2 will know the truth behind whether V2 was behaving

correctly on a cyber level in prior platoons. □

Theorem 6.2.6. A cyber-only blockchain is MSDND secure under an attack on the physical

maneuvers o f a vehicle.

Proof. 1. — <̂ i = true ; The vehicle 2 is not maneuvering correctly.

83

2. w 1= Vpp2 (w) = fa lse ; VC2 observes that vehicle 2 is not maneuvering correctly.

3. IBTCC2,VC2p 1; VC2 lies to CC2 and tells it that vehicle 2 is maneuvering correctly.

4. w = Vpp2 (w) = true; CC2 observes that the vehicle 2 is maneuvering correctly.

5. IBTCCl,CC2(pi; CC2 tells CCi that vehicle 2 is maneuvering correctly

6 . w = Vpp1 (w) = true; CC1 observes that vehicle 2 is maneuvering correctly.

7. IBTVCl,CClp 1; CC1 tells VC1 that vehicle 2 is maneuvering correctly.

8 . w = Vp1C1 (w) = true; VC1 observes that vehicle 2 is maneuvering correctly.

9. IBTCP,VC1 p 1; VC1 tells CP that vehicle 2 is maneuvering correctly.

10. w = Vp1P(w) = true; CP observes that vehicle 2 is maneuvering correctly.

11. IBTiB2,CPp 1; CP tells LB2 that vehicle 2 is maneuvering correctly.

1 2 . w = Vp^2 (w) = true; LB2 observes that vehicle 2 is maneuvering correctly.

13. IBTPP2,PB2p 1; LB2 tells F P 2 that vehicle 2 is maneuvering correctly.

14. w = VpP2 (w) = true; F P 2 observes that vehicle 2 is maneuvering correctly.

15. MSDND(ES): 3w e W h [(p 1 ® -.pO] A [w |= C3VpP(w))]

This proof follows similarly to the last except for the valuation function f. Thus,

F P 2 believes the false physical action reading reported by LB2. Therefore, the physical

action readings are MSDND secure to F P 2. This means F P 2 will not know the truth behind

whether V2 was behaving correctly on a physical level in prior platoons. □

Lem m a 6.2.6.I. Since CP is the only entity with an information flow to LB2 and LB2 is

the only entity with information flow to F P 2 it follows that if there exists a world such that

w = V—pp2 (w) = true = ^ w = V—p 2 (w) = true.

84

Proof. This lemma follows from the fact that LB2 cannot change its history since it is a

read-only ledger belonging to V2. Thus, since LB2 cannot be malicious, it follows that it

will pass on the same information that it receives from CP. Thus, if CP has a valuation

function that can evaluate the truth of <p2, then so does FP2. □

Lem m a 6.2.6.2. F P 2 will receive the correct information regardless o f whether V1 is

malicious or not.

Proof. Since the number of attackers in bounded by Assumption 3, CP will always have a

valuation function that satisfies both the adapted IC1 and IC2. Thus, it will reach the correct

valuation regardless of the presence of a bounded number of malicious vehicles. □

Corollary 6.2.6.I. It follows that in a cyber-only blockchain, that the physical actions

o f vehicle 2 can be successfully altered while the cyber actions o f vehicle 2 cannot be

successfully altered to deceive the future platoon o f vehicle 2.

Proof. Both state variables <p1 and <̂ 2 are independent of one another. This means that a

vehicle can behave incorrectly on either the cyber level or physical level without forcing

incorrect actions at the other level. □

This proof shows the inherent weakness of a cyber-only blockchain applied to a

cyber-physical system. If a future platoon can be deceived about what a vehicle’s actions

were in past platoons then it is insecure since it cannot fully trust the joining vehicle. Now,

a proof is presented proving the security of a physical-only blockchain in the proposed

architecture. In a physical-only blockchain, there is no information flow path from CC2 to

CCi as seen in Figure 6.7.

Theorem 6.2.7. A physical-only blockchain is not MSDND secure under an attack on the

physical level o f the system.

85

Consensus
Protocol

T

SDV3

I

SDV1

Vehicle
Controller 1

<------- •* Sensors 1 < [---------------- i -i Vehicle
Operations 2

* ------- ►
Vehicle

Controller 2

s

Xs
*

N Comm. : Comm. ✓

Channel 1 Channel 2

Local Blockchain
SDV2

Figure 6.7. Physical Only Blockchain Information Flow Diagram

Proof. Assume that in a cyber-only blockchain, some function f exists to determine whether

p i is true or false that is owned by CP. This follows from Assumption 7. In the model,

it is assumed that CP will always be honest due to the bounded number of attackers in

Assumption 3.

1. —p i = true ; The V2 is not maneuvering correctly.

2. w 1= Vp̂ 2 (w) = fa lse ; VC2 observes that V2 is not maneuvering correctly.

3. IBTVo2,VC2pi; VO2 lies to VO2 and tells it that V2 is maneuvering correctly.

4. w = V™ 2 (w) = true; VO2 observes that the V2 is maneuvering correctly.

5. IBTSi,VOi p i ; VO2 tells S i that V2 is maneuvering correctly.

6 . w = VpJ (w) = true; S i observes that V2 is maneuvering correctly.

7. IBTVCi Ŝip i ; S i tells VCi that V2 is maneuvering correctly.

8 . w = VpiCi (w) = true; VCi observes that V2 is maneuvering correctly.

86

9. IBTcp,vci p o VCi tells CP that V2 is maneuvering correctly.

10. w 1= VpCP(w) = true; CP observes that V2 is maneuvering correctly.

1 1 . - p 1 ^ - f ; since - p 1 = true then function - f = true.

12. IBTCPj - p 1; f tells CP that V2 is maneuvering incorrectly.

13. w = VCP (w) = true; CP has now deduced that V2 is maneuvering correctly.

14. w = V-pP (w) = true = ^ w = V-p2 (w) = true; since a valuation function exists at

CP to evaluate p 1 it follows that there also exists a valuation function at FP2 to evaluate

p1 .

15. IBTLB2,CPp 1; CP tells LB2 that V2 is maneuvering correctly.

16. w = Vpp2 (w) = true; LB2 observes that V2 is maneuvering correctly.

17. IBTFPl LBlp 1; LB2 tells F P 2 that V2 is maneuvering correctly.

18. w = VpP2 (w) = true; F P 2 observes that V2 is maneuvering correctly.

19. - MSDND(ES): 3w e W h [(p 1 ® - p 1)] A [w |= (3Vp1P(w))]

F P 2 has a valuation of p 2 . Therefore, the physical action readings are not MSDND secure

to F P 2 . This means F P 2 will know the truth behind whether V2 was behaving correctly on

a physical level in prior platoons. □

Theorem 6.2.8. A physical-only blockchain is MSDND secure under an attack on the

cyber-level o f the system.

Proof. 1. - p 2 = true;Vehicle 2 is not sending the correct cyber communications

2. w = VpV2C2 (w) = true; VC2 observes that they are communicating correctly.

3. IBTVo2,VC2p 2; VC2 lies to VO2 and tells it that the cyber communicating are correct.

87

4. w 1= V̂ 02 (w) = tru e ; V 0 2 observes that the cyber communications from vehicle 2 are

correct.

5. IBTsly 0 lip2; V 0 2 sends the correct cyber communications to S1.

6 . w = V̂ 1 (w) = true; Si observes that vehicle 2 sent the correct cyber communications.

7. IBTVCi,Siip2; S1 tells VC1 that vehicle 2 sent the correct cyber communications.

8 . w = V^l (w) = true; S1 observes that vehicle 2 sent the correct cyber communications.

9. IBTCP VClip2; VC1 tells CP that vehicle 2 sent the correct cyber communications.

10. w = VC2P(w) = true; CP observes that vehicle 2 sent the correct cyber communications.

11. IBTLB2,cp <̂2 ; CP tells LB2 that vehicle 2 sent the correct cyber communications.

12. w = V^f2 (w) = true; LB2 observes that vehicle 2 sent the correct cyber communica

tions.

13. IBTFP2,LB2ip2; LB2 tells FP2 that vehicle 2 sent the correct cyber communications.

14. w = V ^ 2 (w) = true; F P 2 observes that vehicle 2 sent the correct cyber communica

tions.

15. MSDND(ES): 3w e W h [(^ 2 © - ^ 2)] A [w |= (IV ^ / 2 (w))]

This proof follows similarly to the last except for the valuation function f. F P 2 does

not have a valuation of <̂2. Therefore, the cyber action readings are MSDND secure to FP2.

This means F P 2 will not know the truth behind whether vehicle 2 was behaving correctly

on a cyber level in prior platoons. □

Lem m a 6.2.8.I. Since CP is the only entity with an information flow to LB 2 and LB 2 is

the only entity with information flow to FP2 it follows that if there exists a world such that

w = V -^ (w) = true = ^ w = V-^ 2 (w) = true.

88

Consensus
Protocol

T

SDV3

I

SDV1

Vehicle
Controller 1

< --------------•* Sensors 1
1
1

«r
i i

Vehicle
Operations 2

« --------------►
Vehicle

Controller 2

s

i
i

X
s

*

N Comm. i i
i Comm. **

Channel 1 i
i

i
i

Channel 2

Local Blockchain
SDV2

Figure 6 .8 . Cyber Physical Blockchain Information Flow Diagram

Corollary 6.2.8.I. It follows that in a physical-only blockchain, that the cyber actions o f

vehicle 2 can be successfully altered while the physical actions o f vehicle 2 cannot be

successfully altered to deceive the future platoon o f vehicle 2.

Proof. See corollary 6.2.6.1 for a similar proof. □

Theorem 6.2.9. A cyber-physical blockchain is not MSDND secure to either a cyber or

physical level attack.

This model is similar to Figure 6.7 and Figure 6 .6 except that there is an information

flow path from VO2 to S1 and CC2 to CCi as seen in Figure 6 .8 .

Proof. Assume that in a cyber-physical blockchain, some function f lf1 exists to determine

whether y 1 is true or false that is owned by CP and some function f (f2 exists to determine

whether ip2 is true or false that is owned by CP. This follows from Assumption 7. In the

model, it is assumed that CP will always be honest due to the bounded number of attacker in

Assumption 3. Thus, since CP is the only entity with an information flow to LB2 and LB2

is the only entity with information flow to FP2 it follows that if there exists a world such

89

that w 1= V-£ (w) = true w = V—f:2 (w) = true and w = V-£2 (w) = true w =

V—J2 (w) = true. It follows from Theorem 4.7 and Theorem 4.8 that in a cyber-physical

blockchain, neither cyber or physical actions of vehicle 2 can be successfully altered in

order to deceive the future platoon of vehicle 2 . □

Lem m a 6.2.9.I. A blockchain is only secure against an attack if it has a verification

mechanism for attacks coming from that component in the system.

This lemma shows the inherent weakness in many previous approaches to applying

blockchains to cyber-physical systems.

6.3. COM PLEXITY ANALYSIS

In the previous section, it was shown that their solution met the real-time require

ments of a VANET. In the previous approach, a vehicle’s entire blockchain was transmitted

so that it could be verified. Thus, it would eventually take too long and force the vehicles

to re-certify with the CA. The proposed scheme outperforms prior work and also meets the

same real-time requirements due to the fact it takes advantage of a group digital signature.

This signature allows for all vehicles in the platoon to agree on a single block. Thus, only

a single block is required to join the next platoon, saving considerable time. Thus, to

demonstrate that this work meets the same requirements, an asymptotic complexity analysis

comparing the two algorithms is performed. The Car Registration Protocol is excluded

from the comparison since it does not have a real-time requirement; it can take as long as it

takes for the car to be physically inspected. The Intra-Platoon Communication protocol is

also excluded due to the similarities between both approaches.

For this analysis, assume that hash calculation, generation of a random number,

and basic math operations such as multiplication, division, addition, and subtraction take

constant time. Let E be the time to perform exponentiation. Let M be the amount of data

in a message divided by the bandwidth of the channel, S be the time for a vehicle to check

90

it’s sensors, B be the time to send an entire block of a vehicle’s blockchain, K be the time

to verify that a block is correct and calculate a trust score for a block, H be the number of

blocks in the entire history of a vehicle, and T be the time to create a new transaction.

6.3.1. C ar Registration Protocol. Although a specific digital signature scheme

method was not mentioned, we will assume that the scheme used ECDSA. The Car Regis

tration Protocol is not bounded by any real-time requirements since no physical maneuvers

happen during this protocol.

CRegistration n e w = GenSchnorr + G cHe CDSA + © M + Ve r i f y + CV €Q,t€Block + Log

CRegistration n e w = ©(1)+ E

6.3.2. Join Platoon Protocol. In the past approach, the entire blockchain of a ve

hicle was broadcast to the platoon it is requesting to join to be verified. Thus, the limiting

factor of the old approach was that every vehicle must get recertified with the CA to receive

a new blockchain once they receive enough block to exceed the real-time threshold. The

proposed approach does not require the transmission of the entire blockchain. Instead, a

joining vehicle simply needs to send its secure truncated block to the joining platoon.

Previous Method: CJoin = 2M + HB + H K + S = ©(H (B + K)) + ©(1)

Proposed Method: CJoin = 2M + B + K + S = © (1)

Since all of the variables in the asymptotic complexity for the proposed method are

constant, the asymptotic complexity is ©(1). This faster than the previous message which

is bounded asymptotically by the length of the history of a vehicle.

91

6.3.3. Block Creation Protocol. In the previous approach, a platoon leader se

lected a member of the platoon to use the PoW consensus mechanism so generate a block

for the platoon. The purpose was the save the resources of the majority of the platoon while

not giving too much control over the platoon blockchain to the leader. In the proposed

approach, all of the vehicles participate to generate a single group signature. This allows

the entire platoon to verify the integrity of the block before it is published. In the proposed

protocol, three different sets of messages are broadcast to the entire platoon. Every time

this occurs, the approach from (Dwork et al., 1988) is taken to reach consensus. Algorithm

2 from (Dwork et al., 1988) is used since the protocol can assume processors with bounded

drift due to the secure GPS units located in each vehicle. Thus, consensus on each of these

messages can be achieved in 3 (4NO + A + 4 0) where N is the number of vehicles in the

platoon, O is the upper bound on relative processor speed, and A is the upper bound on

message delivery time which is equal to M .

Previous Method: CBlock = 3M + 20(1)

Proposed Method: CBiock = M + E (N + 1) + 0 (1) + 9 (4N 0 + A + 4 0) = 10M +

E (N + 1) + 0 (1)

Since O is negligible, the cost of the proposed method can be reduced. Thus, the

cost of the proposed protocol slower than the previous approach.

6.3.4. Platoon Leave Protocol. In the proposed work, a vehicle must request to

leave the platoon and wait for the platoon to create a new block for the vehicle before it is

allowed to leave. Previously, the vehicle only needed to request to leave and wait for an

acknowledgment before beginning the process.

92

Previous Method: CLeave = 2M + S

Proposed Method: CLeave = 2M + S + (10M + E (N + 1) + 0 (1))

Thus, the proposed method is increased by the amount of time it takes to create a

block. Since the M values are negligible as seen in the previous section, the cost of the

protocol is dominated by the value for S. Thus, the proposed protocol is slowed by a cost

of N + 1 exponentiation operations. Since the size of the platoons is bounded, the costs of

both approaches are comparable.

93

7. CONCLUSION AND FUTURE DIRECTIONS

This dissertation presented a secure blockchain authentication scheme for VANETs

that uses private blockchains representing the history of a vehicle and is used as a token

to join future platoons. An efficient version of the algorithm that uses the Schnorr digital

signature scheme to create a group signature that is signed by the entire platoon is also

presented. This scheme was proven to be secure under a bounded number of attackers. The

consensus mechanism presented uses basic Byzantine fault-tolerant algorithms to reach

an agreement by the platoon during the block creation algorithm. This scheme provides

significant cost savings over other solutions by reducing infrastructure components and

removing all requirements of RSUs. Additionally, it was shown to meet real-time speed

requirements via a complexity analysis comparison between the proposed protocols and

previous protocols that were proven to meet real-time requirements.

This dissertation also showed the need for verification mechanisms when applying

blockchains to cyber-physical systems. Without these, some level of trust must be assumed

between users, contradicting a primary goal of blockchains. The verification mechanism

presented in this dissertation was the use of other vehicles' sensors within a platoon to

determine if a vehicle's actions are correct or incorrect. This approach leveraged the

redundancy of sensor readings within a platoon to compare similar readings to determine

vehicle behavior.

The authentication scheme solves the five problems outlines in Section 3. This

dissertation allows the storage of physical-level data through the use of redundant data

sources. Multiple sources of data, each with the knowledge of the ground truth, are

then compared with one-another and majority consensus is reached. This allows for the

verification of all information stored within the blockchain, maintaining a key benefit of

blockchain technology.

94

The proposed solution solves the speed issues related to a system-wide ledger and

the consensus mechanism by changing the general architecture of the blockchain. Instead

of reaching consensus on a global level, local consensus on the platoon level is reached.

Blocks are created, verified, and stored locally and used as a proof of behavior to join the

next platoon. The added benefit of this approach is the cost savings caused by the removal

of RSUs from the VANET architecture. A new consensus mechanism is introduced that

leverages Schnorr digital signatures to remove the inherent risk of the 51% attack and further

address real-time requirements by reaching consensus in a deterministic time compared to

the probabilistic approach taken by past solutions.

Lastly, a CA is added to the system to handle initial registration for participants and

extend an initial amount of trust to a vehicle. This removes the ability of an adversary

to perform a Sybil attack while addressing the basic safety regulations in place for many

cyber-physical systems.

Future research topics should include alternate verification methods for real-world

data in blockchains, additional applications where blockchains can be leveraged to secure

real-world data, future generalized approaches that allow a standard method for securing

real-world data in blockchains, and performing experiments of this proposed approach on a

real-time VANET system.

One potential alternate verification mechanism for real-world data is applying

physical-level invariants within a blockchain to verify data. A significant amount of

work has been done to apply physical-level invariants to increase the security in cyber

physical systems (Roth, 2015). These physical-level invariants could potentially be coded

into a blockchain and forcibly used via smart contracts to automatically verify transac

tions. Significant research in the ability to meet real-time criteria must accompany any new

approaches.

95

Applications of blockchains to secure cyber-physical invariants could be expanded

to any applications where different entities must come together to complete some tasks. This

includes transactive energy management, VANETS, supply-chain management, and indus

trial processes that could potentially be applications that could leverage from blockchains.

The work presented in this dissertation solved how to secure real-world data for one

application: VANETs. However, this proposed approach may not apply to all cyber-physical

systems. Most systems do not have redundancy in sensor reading that is inherent to the

system. Thus, future work should include work towards a generalized approach for securing

this data. The required traits and properties for these approaches should also be detailed.

This dissertation proved that the proposed verification mechanism met real-time

requirements with complexity analysis and sample mathematical calculations. However,

this approach and any future approaches like it need to be implemented on a real system

and be evaluated to ensure that they meet real-time requirements. This is important for any

cyber-physical system to prove that the methods do not result in loss of property, money, or

life.

APPENDIX A.

SPIN MODEL CHECKER CODE

97

The Promela code used to verify the three stages of the a vehicle and their relationship

with a platoon: Joining, Intra-Communication, and Leaving.

1. PLATOON JO IN PROM ELA CODE

/ * D e f i n e a v e h i c l e d a t a s t r u c t u r e . * /

t y p e d e f v e h S t r u c t {

chan mChanne l = [30] o f { mt y p e , b y t e , b o o l } ;

b y t e i d ;

b o o l p o s R e c e r t ;

b o o l v a l V e h F l a g ;

b o o l i n P l a t F l a g ;

s h o r t p l a t D i s t ;

b o o l GP SOut pu t ;

b o o l b r J o i n ;

b o o l p l a t L e a d e r ;

b o o l r e s t r i c t e d S t a t u s ;

};

mt ype = { A c c e p t , R e j e c t , R e q u e s t J o i n , R e q u e s t B l o c k , B l o c k C h a i n , B l o c k C h a i n V e r i f y , G P S R e q u e s t , G P S R e p l y ,

I n Ra n g e , A c c e p t R e s t r i c t e d };

/*---*/

/ * T h e s e a r e " g l o b a l " v a r i a b l e s . * /

/*---*/

b y t e p l a t o o n S c o r e [1 0] ;

b y t e p l a t o o n C r e a t e d = 0;

b o o l v a l i d Co mma n d = t r u e ;

b o o l b l o c k C r e a t i o n E v e n t = f a l s e ;

b y t e d o n e V e h i c l e s = 0;

b y t e n u m V e h i c l e s = 0;

b y t e t o t V e h i c l e s = 5;

b y t e j o i n V e h i c l e s = 4;

b y t e n u m P l a t o o n = 0; / * T h i s i s t h e t o t a l o f number o f v e h i c l e s t h a t s h o u l d be p r e s e n t i n t h i s r u n . * /

v e h S t r u c t a l l V e h i c l e s [6] ;

/*-- */

/*-- */

/ * S e t up t h e i n i t i a l s t a t e o f t h e s i m u l a t i o n * /

/*-- */

i n i t

{

a t o m i c {

/ * T h i s i s t h e l i s t o f i n i t i a l s y s t e m s t a t e s f o r e v e r y v e h i c l e * /

a l l V e h i c l e s [0] . i d = 0;

a l l V e h i c l e s [0] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [0] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [0] . p l a t D i s t = 0;

a l l V e h i c l e s [0] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [0] . p l a t L e a d e r = t r u e ;

98

a l l V e h i c l e s [0] . i n P l a t F l a g = t r u e ;

a l l V e h i c l e s [0] . b r J o i n = t r u e ;

a l l V e h i c l e s [0] . r e s t r i c t e d S t a t u s = f a l s e ;

n u m P l a t o o n + + ;

p r i n t f (" V e h i c l e %d i s i n t he p l a t o o n \ n " , 0) ;

n u m V e h i c l e s + + ;

a l l V e h i c l e s [1] . i d = 1;

a l l V e h i c l e s [1] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [1] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [1] . p l a t D i s t = 0;

a l l V e h i c l e s [1] . G P S O u t p u t = t r u e ;

a l l V e h i c l e s [1] . p l a t L e a d e r = f a l s e ;

a l l V e h i c l e s [1] . i n P l a t F l a g = f a l s e ;

a l l V e h i c l e s [1] . b r J o i n = f a l s e ;

a l l V e h i c l e s [1] . r e s t r i c t e d S t a t u s = f a l s e ;

p r i n t f (" V e h i c l e %d i s NOT i n t h e p l a t o o n \ n " , 1) ;

n u m V e h i c l e s + + ;

a l l V e h i c l e s [2] . i d = 2;

a l l V e h i c l e s [2] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [2] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [2] . p l a t D i s t = 0;

a l l V e h i c l e s [2] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [2] . p l a t L e a d e r = f a l s e ;

a l l V e h i c l e s [2] . i n P l a t F l a g = f a l s e ;

a l l V e h i c l e s [2] . b r J o i n = f a l s e ;

a l l V e h i c l e s [2] . r e s t r i c t e d S t a t u s = f a l s e ;

p r i n t f (" V e h i c l e %d i s NOT i n t h e p l a t o o n \ n " , 2) ;

n u m V e h i c l e s + + ;

a l l V e h i c l e s [3] . i d = 3;

a l l V e h i c l e s [3] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [3] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [3] . p l a t D i s t = 0;

a l l V e h i c l e s [3] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [3] . p l a t L e a d e r = f a l s e ;

a l l V e h i c l e s [3] . i n P l a t F l a g = f a l s e ;

a l l V e h i c l e s [3] . b r J o i n = f a l s e ;

a l l V e h i c l e s [3] . r e s t r i c t e d S t a t u s = f a l s e ;

p r i n t f (" V e h i c l e %d i s NOT i n t h e p l a t o o n \ n " , 3) ;

n u m V e h i c l e s + + ;

a l l V e h i c l e s [4] . i d = 4;

a l l V e h i c l e s [4] . p o s R e c e r t = f a l s e ;

a l l V e h i c l e s [4] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [4] . p l a t D i s t = 0;

a l l V e h i c l e s [4] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [4] . p l a t L e a d e r = f a l s e ;

a l l V e h i c l e s [4] . i n P l a t F l a g = f a l s e ;

a l l V e h i c l e s [4] . b r J o i n = f a l s e ;

a l l V e h i c l e s [4] . r e s t r i c t e d S t a t u s = f a l s e ;

p r i n t f (" V e h i c l e %d i s NOT i n t h e p l a t o o n \ n " , 4) ;

n u m V e h i c l e s + + ;

}

99

r u n p l a t V e h i c l e (O) ;

b y t e c o u n t e r = 1;

do

:: c o u n t e r <= j o i n V e h i c l e s - > r un v e h i c l e (c o u n t e r); c o u n t e r = c o u n t e r + 1;

od

}

/*-- */

/*-- */

/ * B r o a d c a s t Me s s a g e P r o t o c o l */

/*-- */

i n l i n e b r o a d c a s t (me s s a g e , i d , f l a g)

{

p r i n t f (" S e n d i n g s %e , %d, %d \ n " , me s s a g e , i d , f l a g);

b y t e t emp _ c h a n = 0;

do

: : (t emp _ c h a n < n u m V e h i c l e s) - >

i f

:: (t e m p _ c h a n ! = i n p u t _ i d) - >

i f

:: ((m e s s a g e == R e q u e s t B l o c k | | me s s a g e == R e j e c t | | me s s a g e == Ac c e p t | | me s s a g e == GP S Re q u e s t)

&& a l l V e h i c l e s [t e m p _ c h a n] . i n P l a t F l a g == f a l s e) - >

/ / p r i n t f (" t emp _ c h a n : %d, m e s s a g e : %e , i d : %d, f l a g : % d \ n " , t e mp _ c h a n , me s s a g e , i d , f l a g);

a l l V e h i c l e s [t emp _ c h a n] . m C h a n n e l ! me s s a g e , i d , f l a g ;

p r i n t f (" V % d s e n t %e ,V%od to V%d\ n" , i n p u t _ i d , mes s a g e , i d , t e mp _ c h a n);

/ / p r i n t f (" L % d \ n " , l e n (a l l V e h i c l e s [t e m p _ c h a n] . m C h a n n e l)) ;

t em p _ c h a n + + ;

:: ((m e s s a g e == R e q u e s t J o i n | | me s s a g e == B l o c k C h a i n | | me s s a g e == GPSRepl y)

&& a l l V e h i c l es [t emp _ c h a n] . p l a t L e a d e r == t r u e) - >

/ / p r i n t f (" t emp _ c h a n : %d, m e s s a g e : %e , i d : %d, f l a g : % d \ n " , t e mp _ c h a n , me s s a g e , i d , f l a g);

a l l V e h i c l e s [t emp _ c h a n] . m C h a n n e l ! me s s a g e , i d , f l a g ;

p r i n t f ("V%d s e n t %e ,V%od to V%d\ n" , i n p u t _ i d , mes s a g e , i d , t e mp _ c h a n);

/ / p r i n t f (" L % d \ n " , l e n (a l l V e h i c l e s [t e m p _ c h a n] . m C h a n n e l)) ;

t em p _ c h a n + + ;

: : e l s e - > t e mp _ c h a n + + ;

fi

: : (t e mp _ c h a n = = i n p u t _ i d) - > t e mp _ c h a n + + ;

f i

e l s e - > b r e a k ;

od ;

}

/*--- */

/ * J o i n P l a t o o n P r o t o c o l */

/*--- */

i n l i n e j o i n P l a t o o n ()

{

b y t e t e m p _ i d ;

/ * B r o a d c a s t a r e q u e s t t o j o i n t h e p l a t o o n . * /

a t o m i c { b r o a d c a s t (R e q u e s t J o i n , i n p u t _ i d , t r u e) ;}

a l l V e h i c l e s [i n p u t _ i d] . b r J o i n = t r u e ;

100

/ * Wa i t u n t i l you r e c e i v e a R e q u e s t B l o c k or a R e j e c t Me s s a g e * /

do

:: a l l V e h i c l e s [i n p u t _ i d] . mCha nne l ? <ms g , i d , f l a g > - >

i f

:: (i d == i n p u t _ i d && msg == R e q u e s t B l o c k) - >

a t o m i c { a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g

p r i n t f (" m s g i s R e q u e s t B l o c k , i d i s %d, a nd f l a g i s % d \ n " , i n p u t _ i d , f l a g);

b r e a k ;}

/ * : : (i d == i n p u t _ i d && msg == R e j e c t) - >

a t o m i c { a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g ;

g o t o d o n e } * /

:: (i d != i n p u t _ i d) - >

a t o m i c { p r i n t f ("V%d Re mo v i n g , msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d);

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g }

: : e l s e - >

a t o mi c {

i f

:: a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g - >

p r i n t f (" V % d Re mo v i n g , msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d);

:: l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) = = 0

- > p r i n t f (" E r r o r , V%d, msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d)

fi

}

f i

:: (l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) == 0) - > p r i n t f (" V % d W a i t i n g R B \ n " , i n p u t _ i d)

od

/ * B r o a d c a s t y o u r b l o c k c h a i n as we l l as y o u r " r e c e r t i f i c a t i o n */

a t o m i c { b r o a d c a s t (B l o c k Ch a i n , i n p u t _ i d , a l l V e h i c l e s [i n p u t _ i d] . p o s R e c e r t) ;}

/ * W a i t u n t i l you r e c e i v e an A c c e p t or GPS M e s s a g e * /

do

:: a l l V e h i c l e s [i n p u t _ i d] . mCha nne l ? <ms g , i d , f l a g > - >

i f

:: (i d == i n p u t _ i d && msg == GP S Re q u e s t) - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g

p r i n t f (" m s g i s GP S Re q u e s t , i d i s %d, a nd f l a g i s % d \ n " , i n p u t _ i d , f l a g);

b r e a k ;

}

/ * : : (i d == i n p u t _ i d && msg == R e j e c t) - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g ;

g o t o done

} */

:: (i d != i n p u t _ i d) - >

a t o mi c {

p r i n t f (" V % d Re mo v i n g , msg i s %e i d i s %d \ n " , i n p u t _ i d , msg, i d);

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g

}

: : e l s e - >

a t o mi c {

i f

:: a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g - >

p r i n t f (" V % d Re mo v i n g , msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d);

:: l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) = = 0

101

—> p r i n t f (" E r r o r , V%d, msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d)

fi

}

f i

:: l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) = = 0 —> p r i n t f ("V%d W a i t i n g GP S R\ n " , i n p u t _ i d)

od

/ * B r o a d c a s t y o u r GPS o u t p u t to t h e p l a t o o n */

a t o m i c { b r o a d c a s t (GPSRepl y , i n p u t _ i d , a l l V e h i c l e s [i n p u t _ i d] . G P S O u t p u t);}

/ * Wa i t u n t i l you a r e a c c e p t e d or A c c e p t R e s t r i c t e d f rom t he p l a t o o n */

do

:: a l l V e h i c l e s [i n p u t _ i d] . mCha nne l ? <ms g , i d , f l a g > —>

i f

:: (i d == i n p u t _ i d && msg == A c c e p t) —>

a t o m i c { a l l V e h i c l e s [i n p u t _ i d] . m C h a n n e l ? m s g , i d , f l a g

p r i n t f (" m s g i s A c c e p t , i d i s %d, and f l a g i s %d \ n " , i n p u t _ i d , f l a g);

b r e a k ; }

:: (i d == i n p u t _ i d && msg == A c c e p t R e s t r i c t e d) —>

a t o m i c { a l l V e h i c l e s [i n p u t _ i d] . m C h a n n e l ? m s g , i d , f l a g

p r i n t f (" m s g i s A c c e p t , i d i s %d, and f l a g i s %d \ n " , i n p u t _ i d , f l a g);

a l l V e h i c l e s [i n p u t _ i d] . r e s t r i c t e d S t a t u s = t r u e ;

b r e a k ; }

/ * : : (i d == i n p u t _ i d && msg == R e j e c t) —>

a t o m i c { a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g ;

g o t o d o n e } * /

:: (i d != i n p u t _ i d) —>

a t o m i c { p r i n t f ("V%d Re mo v i n g , msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d);

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g }

: : e l s e —>

a t o mi c {

i f

:: a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g — >

p r i n t f (" V % d Re mo v i n g , msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d);

:: l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) = = 0

—> p r i n t f (" E r r o r , V%d, msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d)

f i }

f i

: : l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) = = 0 —> p r i n t f ("V%d W a i t i n g ACCEPT\ n" , i n p u t _ i d)

od

*/

*/

/ * S e t t h i s v e h i c l e s i n P l a t F l a g to t r u e a nd p r i n t a s t a t m e n t . * /

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g = t r u e ;

n u m P l a t o o n + + ;

p r i n t f (" V e h i c l e %d has j o i n t h e p l a t o o n . \ n " , i d)

}

}

/*——

/ * I n —P l a t o o n Car P r o t o c o l * /

/*——

p r o c t y p e p l a t V e h i c l e (i n t i n p u t _ i d)

{

b y t e i d ;

b o o l f l a g ;

mt y p e msg ;

102

do

:: a l l V e h i c l e s [i n p u t _ i d] . mCha nne l ? <ms g , i d , f l a g > - >

i f

:: (msg == R e q u e s t J o i n) - >

a t o m i c {

a l l V e h i c l e s [i n p u t _ i d] . m C h a n n e l ? R e q u e s t J o i n , i d , f l a g ;

p r i n t f (" V % d , msg i s R e q u e s t J o i n , i d i s %d, a nd f l a g i s % d \ n " , i n p u t _ i d , i d , f l a g)

i f

:: (a l l V e h i c l e s [i d] . p l a t D i s t == 0 && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e)

- > a t o m i c { b r o a d c a s t (R e q u e s t B l o c k , i d , t r u e) ;}

:: (a l l V e h i c l e s [i d] . p l a t D i s t != 0 && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e)

- > a t o m i c { b r o a d c a s t (R e j e c t , i d , t r u e) ; }

: : e l s e

fi

}

/ * Check i f you h a v e a b l o c k c h a i n m e s s a g e i n y o u r c h a n n e l * /

: : (msg == B l o c k C h a i n) - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . m C h a n n e l ? B l o c k C h a i n , i d , f l a g

p r i n t f (" m s g i s B l oc k Ch a i n , i d i s %d, a nd f l a g i s %d, %d, % d \ n " , i d , f l a g , a l l V e h i c l e s [i d] . p l a t D i s t ,

a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g)

i f

:: (a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e) - > a t o m i c { b r o a d c a s t (GP SRe que s t , i d , t r u e) ;}

/ / : : (f l a g ! = t r u e && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e) - >

a t o m i c { b r o a d c a s t (R e j e c t , i d , t r u e) ;}

: : e l s e

fi

}

/ * Check i f you h a v e a GPSRepl y i n y o u r c h a n n e l */

:: (msg == GPSRepl y) - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? GP SRe p l y , i d , f l a g ;

p r i n t f ("V%d, msg i s GP SRe p l y , i d i s %d, a nd f l a g i s % d \ n " , i n p u t _ i d , i d , f l a g);

i f

:: (f l a g = = t r u e && a l l V e h i c l e s [i d] . G P S O u t p u t = = t r u e && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e) - >

a t o m i c { b r o a d c a s t (Ac c e p t , i d , t r u e) ;}

:: ((f l a g ! = t r u e | | a l l V e h i c l e s [i d] . GP S Ou t p u t ! = t r u e) && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e) - >

a t o m i c { b r o a d c a s t (A c c e p t R e s t r i c t e d , i d , t r u e) ; }

: : e l s e

fi

}

: : e l s e - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g ;

p r i n t f (" Me s s a g e D e l e t e d : V: %d M;%e , I D : %d \ n " , i n p u t _ i d , msg, i d);

}

f i

/ * I f t h e n u mb er o f l i v e p r o c e s s e s i s e q u a l t o t h e n u mb er o f v e h i c l e i n t he p l a t o o n t h e n e x i t */

: : (n u m V e h i c l e s == n u m P l a t o o n) - > b r e a k ;

/ / : : (l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) == 0 && !(n u m V e h i c l e s == n u m P l a t o o n)) - >

/ / p r i n t f (" Emp t y Ch a n n e l f o r V%d. Nu mP l a t : %d, n u m V e h i c l e s : %d, v e h l f l a g : %d, v e h 2 f l a g : %d, v e h 3 f l a g : %d,

v e h 4 f l a g : % d \ n " , i n p u t _ i d , n u mP l a t o o n , n u m V ehi c l e s , a l l V e h i c l e s [0] . i n P l a t F l a g , a l l V e h i c l e s [1] . i n P l a t F l a g ,

a l l V e h i c l e s [2] . i n P l a t F l a g , a l l V e h i c l e s [3] . i n P l a t F l a g);

od

103

d o n e V e h i c l e s + + ;

d o n e :

p r i n t f (" V e h i c l e %d i s done . \ n " , i n p u t _ i d);

}

/*--- */

/ * Car P r o t o c o l * /

/*--- */

p r o c t y p e v e h i c l e (i n t i n p u t _ i d)

{

b y t e i d ;

b o o l f l a g ;

mt y p e msg;

do

/ * Check i f t h e v e h i c l e i s i n t h e p l a t o o n . I f n o t t h e n t r y t o j o i n */

:: (a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == f a l s e) - > j o i n P l a t o o n () ; a l l V e h i c l e s [i n p u t _ i d] . b r J o i n = t r u e ;

/ * N e e d t o add s t e p wh e r e p l a t o o n v e h i c l e s c o mm u n i c a t e i f t h e y s ee a v e h i c l e * /

/ * Check i f you h a v e a R e q u e s t J o i n me s s a g e i n t h e me s s a g e c h a n n e l * /

: : a l l V e h i c l e s [i n p u t _ i d] . mCha nne l ? <ms g , i d , f l a g > - >

i f

: : (msg == R e q u e s t J o i n) - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . m C h a n n e l ? R e q u e s t J o i n , i d , f l a g ;

p r i n t f ("V%d, msg i s R e q u e s t J o i n , i d i s %d, a nd f l a g i s % d \ n " , i n p u t _ i d , i d , f l a g)

i f

:: (a l l V e h i c l e s [i d] . p l a t D i s t == 0 && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e)

- > a t o m i c { b r o a d c a s t (R e q u e s t B l o c k , i d , t r u e) ;}

:: (a l l V e h i c l e s [i d] . p l a t D i s t != 0 && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e)

- > a t o m i c { b r o a d c a s t (R e j e c t , i d , t r u e) ; }

: : e l s e

f i }

/ * Check i f you h a v e a b l o c k c h a i n m e s s a g e i n y o u r c h a n n e l * /

: : (msg == B l o c k C h a i n) - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . m C h a n n e l ? B l o c k C h a i n , i d , f l a g

p r i n t f (" m s g i s B l oc k Ch a i n , i d i s %d, a nd f l a g i s %d, %d, % d \ n " , i d , f l a g , a l l V e h i c l e s [i d] . p l a t D i s t ,

a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g)

i f

:: (a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e) - > a t o m i c { b r o a d c a s t (GP SRe que s t , i d , t r u e) ;}

/ / : : (f l a g ! = t r u e && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e) - > a t o m i c { b r o a d c a s t (R e j e c t , i d , t r u e) ;}

: : e l s e

f i }

/ * Check i f you h a v e a GPSRepl y i n y o u r c h a n n e l */

:: (msg == GPSRepl y) - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? GP SRe p l y , i d , f l a g

p r i n t f ("V%d, msg i s GP SRe p l y , i d i s %d, a nd f l a g i s % d \ n " , i n p u t _ i d , i d , f l a g)

i f

:: (f l a g = = t r u e && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e) - > a t o m i c { b r o a d c a s t (A c c e p t , i d , t r u e) ;}

:: (f l a g ! = t r u e && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e) - > a t o m i c { b r o a d c a s t (A c c e p t R e s t r i c t e d , i d , t r u e) ;}

: : e l s e

fi

}

e l s e - >

104

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g ;

p r i n t f (" Me s s a g e D e l e t e d : V: %d M;%e , I D : %d \ n " , i n p u t _ i d , msg, i d);

}

f i

/ * I f t h e n u mb er o f l i v e p r o c e s s e s i s e q u a l t o t h e n u mb er o f v e h i c l e i n t he p l a t o o n t h e n e x i t */

:: (n u m V e h i c l e s == n u m P l a t o o n) - > b r e a k ;

:: (l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) == 0 && !(n u m V e h i c l e s == n u m P l a t o o n) && !(a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == f a l s e)) - >

p r i n t f (" Emp t y Ch a n n e l f o r V%d. Nu mPl a t : %d, n u m V e h i c l e s : %d, v e h l f l a g : %d, v e h 2 f l a g : %d, v e h 3 f l a g : %d,

v e h 4 f l a g : % d \ n " , i n p u t _ i d , n u mP l a t o o n , n u m Ve h i c l e s , a l l V e h i c l e s [0] . i n P l a t F l a g , a l l V e h i c l e s [1] . i n P l a t F l a g ,

a l l V e h i c l e s [2] . i n P l a t F l a g , a l l V e h i c l e s [3] . i n P l a t F l a g) ;

od

d o n e V e h i c l e s + + ;

do

:: (t o t V e h i c l e s == d o n e V e h i c l e s) - > b r e a k ;

od

done :

p r i n t f (" V e h i c l e %d i s done . \ n " , i n p u t _ i d);

}

/*--

/*--

/ * T h e s e a r e t h e v e r i f i c a t i o n v a r i a b l e s . * /

/*-----------

d e f i n e phy1 (a l l V e h i c l e s [0] . p l a t D i s t == 0)

d e f i n e cp1 (a l l V e h i c l e s [0] . p o s R e c e r t == t r u e)

d e f i n e br1 (a l l V e h i c l e s [0] . b r J o i n == t r u e)

d e f i n e gps1 (a l l V e h i c l e s [0] . GPSOut put == t r u e)

d e f i n e p j i (a l l V e h i c l e s [0] . i n P l a t F l a g == t r u e)

d e f i n e rs1 (a l l V e h i c l e s [0] . r e s t r i c t e d S t a t u s = = t r u e)

d e f i n e phy2 (a l l V e h i c l e s [1] . p l a t D i s t == 0)

d e f i n e cp2 (a l l V e h i c l e s [1] . p o s R e c e r t == t r u e)

d e f i n e br2 (a l l V e h i c l e s [1] . b r J o i n == t r u e)

d e f i n e gps2 (a l l V e h i c l e s [1] . GPSOut put == t r u e)

d e f i n e pj 2 (a l l V e h i c l e s [1] . i n P l a t F l a g == t r u e)

d e f i n e r s2 (a l l V e h i c l e s [1] . r e s t r i c t e d S t a t u s = = t r u e)

d e f i n e phy3 (a l l V e h i c l e s [2] . p l a t D i s t == 0)

d e f i n e cp3 (a l l V e h i c l e s [2] . p o s R e c e r t == t r u e)

d e f i n e br3 (a l l V e h i c l e s [2] . b r J o i n == t r u e)

d e f i n e gps3 (a l l V e h i c l e s [2] . GPSOut put == t r u e)

d e f i n e pj 3 (a l l V e h i c l e s [2] . i n P l a t F l a g == t r u e)

d e f i n e r s3 (a l l V e h i c l e s [2] . r e s t r i c t e d S t a t u s = = t r u e)

d e f i n e phy4 (a l l V e h i c l e s [3] . p l a t D i s t == 0)

d e f i n e cp4 (a l l V e h i c l e s [3] . p o s R e c e r t == t r u e)

d e f i n e br4 (a l l V e h i c l e s [3] . b r J o i n == t r u e)

d e f i n e gps4 (a l l V e h i c l e s [3] . GPSOut put == t r u e)

d e f i n e pj 4 (a l l V e h i c l e s [3] . i n P l a t F l a g == t r u e)

d e f i n e r s4 (a l l V e h i c l e s [3] . r e s t r i c t e d S t a t u s = = t r u e)

d e f i n e phy5 (a l l V e h i c l e s [4] . p l a t D i s t == 0)

*/
*/

*/

105

d e f i n e cp5 (a l l V e h i c l e s [4] . p o s R e c e r t == t r u e)

d e f i n e b r 5 (a l l V e h i c l e s [4] . b r J o i n == t r u e)

d e f i n e gps5 (a l l V e h i c l e s [4] . GPSOut pu t == t r u e)

d e f i n e p j 5 (a l l V e h i c l e s [4] . i n P l a t F l a g == t r u e)

d e f i n e r s 5 (a l l V e h i c l e s [4] . r e s t r i c t e d S t a t u s = = t r u e)

/*--*/

2. PLATOON INTRA-COMMUNICATION PROM ELA CODE

/ * D e f i n e a v e h i c l e d a t a s t r u c t u r e . * /

t y p e d e f v e h S t r u c t {

chan mChanne l = [30] o f { mt y p e , b y t e , b o o l } ; / *A Ch a n n e l whi c h h o l d s 16 m e s s a g e s o f whi ch c o n s i s t o f two b y t e f i e l d s . * /

b y t e i d ;

b y t e t r a n s a c t i o n s R e c e i v e d = 0;

b o o l p o s R e c e r t ;

b o o l v a l V e h F l a g ;

b o o l i n P l a t F l a g ;

s h o r t p l a t D i s t ;

b o o l GP SOut pu t ;

b o o l b r J o i n ;

b o o l p l a t L e a d e r ;

b o o l f o l l o wC o mm a n d ;

b o o l r e s t r i c t e d S t a t u s ;

b o o l n e wBl o c k ;

};

mt ype = { Ac c e p t , R e j e c t , Command, E v a l u a t e , T r a n s a c t i o n , C r e a t e B l o c k , B l o c k } ;

/*--- */

/ * T h e s e a r e " g l o b a l " v a r i a b l e s . * /

/*--- */

b y t e p l a t o o n S c o r e [1 0] ;

b y t e p l a t o o n C r e a t e d = 0;

b o o l v a l i d Co mma n d = t r u e ;

b o o l b l o c k C r e a t i o n E v e n t = f a l s e ;

b y t e r e c e i v e d B l o c k = 0;

b y t e pe r f o r me d Co mma n d = 0;

b y t e d o n e V e h i c l e s = 0;

b y t e n u m V e h i c l e s = 0;

b y t e t o t V e h i c l e s = 5;

b y t e j o i n V e h i c l e s = 4;

b y t e n u m P l a t o o n = 0; / * T h i s i s t h e t o t a l o f number o f v e h i c l e s t h a t s h o u l d be p r e s e n t i n t h i s r u n . * /

v e h S t r u c t a l l V e h i c l e s [6] ;

/*-- */

/*-- */

/ * S e t up t h e i n i t i a l s t a t e o f t h e s i m u l a t i o n * /

/*-- */

i n i t

{

a t o m i c {

/ * T h i s i s t h e l i s t o f i n i t i a l s y s t e m s t a t e s f o r e v e r y v e h i c l e * /

106

a l l V e h i c l e s [0] . i d = 0;

a l l V e h i c l e s [0] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [0] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [0] . p l a t D i s t = 0;

a l l V e h i c l e s [0] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [0] . p l a t L e a d e r = t r u e ;

a l l V e h i c l e s [0] . i n P l a t F l a g = t r u e ;

a l l V e h i c l e s [0] . b r J o i n = t r u e ;

a l l V e h i c l e s [0] . f o l l o w C o m m a n d = t r u e ;

a l l V e h i c l e s [0] . r e s t r i c t e d S t a t u s = f a l s e ;

n u m P l a t o o n + + ;

p r i n t f (" V e h i c l e %d i s i n t he p l a t o o n \ n " , 0) ;

n u m V e h i c l e s + + ;

a l l V e h i c l e s [1] . i d = 1;

a l l V e h i c l e s [1] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [1] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [1] . p l a t D i s t = 0;

a l l V e h i c l e s [1] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [1] . p l a t L e a d e r = f a l s e ;

a l l V e h i c l e s [1] . i n P l a t F l a g = t r u e ;

a l l V e h i c l e s [1] . b r J o i n = t r u e ;

a l l V e h i c l e s [1] . f o l l o w C o m m a n d = t r u e ;

a l l V e h i c l e s [1] . r e s t r i c t e d S t a t u s = f a l s e ;

p r i n t f (" V e h i c l e %d i s i n t he p l a t o o n \ n " , 1) ;

n u m V e h i c l e s + + ;

n u m P l a t o o n + + ;

a l l V e h i c l e s [2] . i d = 2;

a l l V e h i c l e s [2] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [2] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [2] . p l a t D i s t = 0;

a l l V e h i c l e s [2] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [2] . p l a t L e a d e r = f a l s e ;

a l l V e h i c l e s [2] . i n P l a t F l a g = t r u e ;

a l l V e h i c l e s [2] . b r J o i n = t r u e ;

a l l V e h i c l e s [2] . f o l l o w C o m m a n d = t r u e ;

a l l V e h i c l e s [2] . r e s t r i c t e d S t a t u s = f a l s e ;

p r i n t f (" V e h i c l e %d i s i n t he p l a t o o n \ n " , 2) ;

n u m V e h i c l e s + + ;

n u m P l a t o o n + + ;

a l l V e h i c l e s [3] . i d = 3;

a l l V e h i c l e s [3] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [3] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [3] . p l a t D i s t = 0;

a l l V e h i c l e s [3] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [3] . p l a t L e a d e r = f a l s e ;

a l l V e h i c l e s [3] . i n P l a t F l a g = t r u e ;

a l l V e h i c l e s [3] . b r J o i n = t r u e ;

a l l V e h i c l e s [3] . f o l l o w C o m m a n d = f a l s e ;

a l l V e h i c l e s [3] . r e s t r i c t e d S t a t u s = f a l s e ;

p r i n t f (" V e h i c l e %d i s i n t he p l a t o o n \ n " , 3) ;

n u m V e h i c l e s + + ;

n u m P l a t o o n + + ;

107

a l l V e h i c l e s [4] . i d = 4;

a l l V e h i c l e s [4] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [4] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [4] . p l a t D i s t = 0;

a l l V e h i c l e s [4] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [4] . p l a t L e a d e r = f a l s e ;

a l l V e h i c l e s [4] . i n P l a t F l a g = t r u e ;

a l l V e h i c l e s [4] . b r J o i n = t r u e ;

a l l V e h i c l e s [4] . f o l l o w C o m m a n d = t r u e ;

a l l V e h i c l e s [4] . r e s t r i c t e d S t a t u s = f a l s e ;

p r i n t f (" V e h i c l e %d i s i n t he p l a t o o n \ n " , 4) ;

n u m V e h i c l e s + + ;

n u m P l a t o o n + + ;

}

r u n p l a t V e h i c l e (0) ;

b y t e c o u n t e r = 1;

do

:: c o u n t e r <= j o i n V e h i c l e s - > r un v e h i c l e (c o u n t e r); c o u n t e r = c o u n t e r + 1;

od

}

/*-- */

/*-- */

/ * B r o a d c a s t Me s s a g e P r o t o c o l */

/*-- */

i n l i n e b r o a d c a s t (me s s a g e , i d , f l a g)

{

p r i n t f (" S e n d i n g s %e , %d, %d \ n " , me s s a g e , i d , f l a g);

b y t e t emp _ c h a n = 0;

do

: : (t emp _ c h a n < n u m V e h i c l e s) - >

i f

:: (t e m p _ c h a n ! = i n p u t _ i d) - >

i f

:: ((m e s s a g e == Command | | m e s s a g e == E v a l u a t e | | me s s a g e == C r e a t e B l o c k | | m e s s a g e ==

T r a n s a c t i o n | | me s s a g e == B l o c k) && a l l V e h i c l e s [t e m p _ c h a n] . p l a t L e a d e r == f a l s e) - >

/ / p r i n t f (" t emp _ c h a n : %d, m e s s a g e : %e , i d : %d, f l a g : % d \ n " , t e mp _ c h a n , me s s a g e , i d , f l a g);

a l l V e h i c l e s [t emp _ c h a n] . m C h a n n e l ! me s s a g e , i d , f l a g ;

p r i n t f ("V%d s e n t %e ,V%d to V%d\ n" , i n p u t _ i d , mes s a g e , i d , t e mp _ c h a n);

/ / p r i n t f (" L % d \ n " , l e n (a l l V e h i c l e s [t e m p _ c h a n] . m C h a n n e l)) ;

t em p _ c h a n + + ;

: : ((m e s s a g e == R e j e c t | | m e s s a g e == T r a n s a c t i o n | | me s s a g e == B l o c k)

&& a l l V e h i c l e s [t e m p _ c h a n] . p l a t L e a d e r == t r u e) - >

/ / p r i n t f (" t emp _ c h a n : %d, m e s s a g e : %e , i d : %d, f l a g : % d \ n " , t e mp _ c h a n , me s s a g e , i d , f l a g);

a l l V e h i c l e s [t emp _ c h a n] . m C h a n n e l ! me s s a g e , i d , f l a g ;

p r i n t f ("V%d s e n t %e ,V%d to V%d\ n" , i n p u t _ i d , mes s a g e , i d , t e mp _ c h a n);

/ / p r i n t f (" L % d \ n " , l e n (a l l V e h i c l e s [t e m p _ c h a n] . m C h a n n e l)) ;

t em p _ c h a n + + ;

: : e l s e - > t e mp _ c h a n + + ;

fi

: : (t e mp _ c h a n = = i n p u t _ i d) - > t e mp _ c h a n + + ;

f i

e l s e - > b r e a k ;

108

o d ;

}

/*---

/ * E v a l u a t e Me s s a g e P r o t o c o l */

/*---

i n l i n e e v a l u a t e P l a t o o n ()

{

b y t e t emp _ i d _ 2 = 0;

do

(t e m p _ i d _ 2 < n u m V e h i c l e s && a l l V e h i c l e s [t e m p _ i d _ 2] . f o l l owComma nd ==

p l a t o o n S c o r e [t e m p _ i d _ 2] = p l a t o o n S c o r e [t e m p _ i d _ 2] + 1; t emp _ i d _ 2 =

(t emp _ i d _ 2 < n u m V e h i c l e s && a l l V e h i c l e s [t e mp _ i d _ 2] . f o l l owComma nd ==

p l a t o o n S c o r e [t e m p _ i d _ 2] = p l a t o o n S c o r e [t e m p _ i d _ 2] - 1; t emp _ i d _ 2 =

e l s e - > b r e a k ;

t r u e) - >

t e m p _ i d _ 2 +

f a l s e) - >

t e m p _ i d _ 2 +

1;

1;

od ;

a t o m i c { b r o a d c a s t (T r a n s a c t i o n , i n p u t _ i d , t r u e) ; } ;

*/

*/

}

/*--- */

/ * I n t r a P l a t o o n P r o t o c o l */

/*--- */

i n l i n e i n t r a P l a t o o n ()

{

b y t e t e m p _ i d ;

/ * B r o a d c a s t a command t o t h e p l a t o o n . * /

a t o m i c { b r o a d c a s t (Command, i n p u t _ i d , t r u e) ;

a l l V e h i c l e s [i n p u t _ i d] . f o l l o wC o mm a n d = t r u e ;

p e r f o r me d Co mman d ++; }

/ * Wa i t u n t i l you r e c e i v e a R e j e c t Me s s a g e or a l l v e h i c l e s f o l l o w t h e command. * /

do

:: a l l V e h i c l e s [i n p u t _ i d] . mCha nne l ? <ms g , i d , f l a g > - >

i f

:: (i d == i n p u t _ i d && msg == R e j e c t) - >

a t o m i c { a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g ;

g o t o done}

:: (i d != i n p u t _ i d) - >

a t o m i c { p r i n t f ("V%d Re mo v i n g , msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d);

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g }

: : e l s e - >

a t o mi c {

i f

:: a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g - >

p r i n t f (" V % d Re mo v i n g , msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d);

:: l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) = = 0

- > p r i n t f (" E r r o r , V%d, msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d)

fi

}

f i

: : pe r f o r me d Co mma n d == n u m V e h i c l e s - > b r e a k ;

:: (l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) == 0 && pe r f o r me d Co mma n d != n u m V e h i c l e s)

- > p r i n t f ("V%d W a i t i n g f o r p l a t o o n t o p e r f o r m t he c o mm a n d . \ n " , i n p u t _ i d)

od

109

/ * B r o a d c a s t an E v a l u a t e command to t he e n t i r e p l a t o o n . * /

a t o m i c { b r o a d c a s t (E v a l u a t e , i n p u t _ i d , a l l V e h i c l e s [i n p u t _ i d] . p o s R e c e r t) ; }

/ * E v a l u a t e t h e r e s t o f t he P l a t o o n */

e v a l u a t e P l a t o o n () ;

a l l V e h i c l e s [i n p u t _ i d] . t r a n s a c t i o n s R e c e i v e d = a l l V e h i c l e s [i n p u t _ i d] . t r a n s a c t i o n s R e c e i v e d + 1;

/ * Wa i t u n t i l you r e c e i v e an T r a n a s c t i o n Me s s a g e * /

do

:: a l l V e h i c l e s [i n p u t _ i d] . mCha nne l ? <ms g , i d , f l a g > - >

i f

: : (msg == T r a n s a c t i o n) - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g

p r i n t f (" m s g i s T r a n s a c t i o n , i d i s %d, a nd f l a g i s % d \ n " , i n p u t _ i d , f l a g);

a l l V e h i c l e s [i n p u t _ i d] . t r a n s a c t i o n s R e c e i v e d = a l l V e h i c l e s [i n p u t _ i d] . t r a n s a c t i o n s R e c e i v e d + 1;

}

: : e l s e - >

a t o mi c {

i f

:: a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g - >

p r i n t f (" V % d Re mo v i n g , msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d);

:: l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) = = 0

- > p r i n t f (" E r r o r , V%d, msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d)

fi

}

f i

:: a l l V e h i c l e s [i n p u t _ i d] . t r a n s a c t i o n s R e c e i v e d == n u m V e h i c l e s - > b r e a k ;

:: l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) = = 0 - > p r i n t f ("V%d W a i t i n g T r a n s a c t i o n s \ n" , i n p u t _ i d)

od

/ * B r o a d c a s t a B l o c k C r e a t i o n r e q u e s t to a p l a t o o n memb e r * /

b y t e b l o c k C r e a t i o n I d ;

i f

: : b l o c k C r e a t i o n I d = 1 ;

:: b l o c k C r e a t i o n I d = 2;

:: b l o c k C r e a t i o n I d = 3;

:: b l o c k C r e a t i o n I d = 4;

fi

b l o c k C r e a t i o n E v e n t = t r u e ;

a t o m i c { b r o a d c a s t (C r e a t e B l o c k , b l o c k C r e a t i o n I d , a l l V e h i c l e s [i n p u t _ i d] . G P S O u t p u t) ;}

/ * W a i t u n t i l you r e c i e v e a b l o c k b a c k * /

do

:: a l l V e h i c l e s [i n p u t _ i d] . mCha nne l ? <ms g , i d , f l a g > - >

i f

:: (i d == i n p u t _ i d && msg == B l o c k && f l a g == t r u e) - >

a t o m i c { a l l V e h i c l e s [i n p u t _ i d] . m C h a n n e l ? m s g , i d , f l a g

p r i n t f (" m s g i s a goo d B l o c k , i d i s %d, a nd f l a g i s % d \ n " , i n p u t _ i d , f l a g);

r e c e i v e d B l o c k = r e c e i v e d B l o c k + 1 ;

b r e a k ; }

:: (i d == i n p u t _ i d && msg == B l o c k && f l a g == f a l s e) - >

i f

b l o c k C r e a t i o n I d 1;

110

:: b l o c k C r e a t i o n I d = 2;

:: b l o c k C r e a t i o n I d = 3;

:: b l o c k C r e a t i o n I d = 4;

fi

a t o m i c { b r o a d c a s t (C r e a t e B l o c k , b l o c k C r e a t i o n I d , a l l V e h i c l e s [i n p u t _ i d] . G P S O u t p u t) ;}

p r i n t f (" m s g i s a b a d B l o c k , i d i s %d, a nd f l a g i s % d \ n " , i n p u t _ i d , f l a g);

:: (i d != i n p u t _ i d) - >

a t o m i c { p r i n t f ("V%d Re mo v i n g , msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d);

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g }

: : e l s e - >

a t o mi c {

i f

:: a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g - >

p r i n t f (" V % d Re mo v i n g , msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d);

:: l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) = = 0

- > p r i n t f (" E r r o r , V%d, msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d)

f i }

f i

: : l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) = = 0 - > p r i n t f ("V%d W a i t i n g B l o c k \ n " , i n p u t _ i d)

od

*/

*/

/ * L a s t l y , b r o a d c a s t t he new b l o c k to t he p l a t o o n . * /

b r o a d c a s t (B l o c k , 1 0 , t r u e) ;

}

/*---

/ * I n - P l a t o o n Car P r o t o c o l */

/*---

p r o c t y p e p l a t V e h i c l e (i n t i n p u t _ i d)

{

b y t e i d ;

b o o l f l a g ;

mt y p e msg ;

a l l V e h i c l e s [i n p u t _ i d] . p l a t L e a d e r = = t r u e - > i n t r a P l a t o o n () ;

d o n e V e h i c l e s + + ;

done :

p r i n t f (" V e h i c l e %d i s done . \ n " , i n p u t _ i d);

}

*/

*/

/ * Car P r o t o c o l * /

p r o c t y p e v e h i c l e (i n t i n p u t _ i d)

{

/*

/*

b y t e i d ;

b o o l f l a g ;

mt y p e msg ;

do

/ * Check i f you h a v e a R e q u e s t J o i n me s s a g e i n t h e me s s a g e c h a n n e l * /

: : a l l V e h i c l e s [i n p u t _ i d] . mCha nne l ? <ms g , i d , f l a g > - >

i f

/ * Check i f t he m e s s a g e i s a command. I f i t i s v a l i d , p e r f o r m i t . O t h e r w i s e , r e j e c t i t . * /

111

:: (msg == Command && i d == 0) - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . mChanne l ?Command, i d , f l a g ;

p r i n t f ("V%d, msg i s Command, i d i s %d, a nd f l a g i s % d \ n " , i n p u t _ i d , i d , f l a g)

i f

:: (v a l i d Co mma n d == t r u e && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e)

- > pe r f o r me d Co mma n d + + ;

:: (v a l i d Co mma n d == f a l s e && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e)

- > a t o m i c { b r o a d c a s t (R e j e c t , i d , f a l s e) ; }

: : e l s e

fi

}

/ * Check i f you h a v e a E v a l u a t e m e s s a g e i n y o u r c h a n n e l * /

:: (msg == E v a l u a t e && i d == 0) - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . m C h a n n e l ? E v a l u a t e , i d , f l a g

p r i n t f (" ms g i s E v a l u a t e , i d i s %d, a nd f l a g i s %d, %d, % d \ n " ,

i d , f l a g , a l l V e h i c l e s [i d] . p l a t D i s t , a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g)

e v a l u a t e P l a t o o n () ;

}

/ * Check i f you h a v e a T r a n s a c t i o n i n y o u r c h a n n e l */

:: (msg == T r a n s a c t i o n && i d == i n p u t _ i d) - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g

p r i n t f (" m s g i s T r a n s a c t i o n , i d i s %d, a nd f l a g i s % d \ n " , i n p u t _ i d , f l a g);

a l l V e h i c l e s [i n p u t _ i d] . t r a n s a c t i o n s R e c e i v e d = a l l V e h i c l e s [i n p u t _ i d] . t r a n s a c t i o n s R e c e i v e d + 1;

}

/ * I f i t i s a c r e a t e b l o c k e v e n t , r e a s s i g n t he p l a t o o n s r e c e r t i f i c a t i o n s * /

(msg == C r e a t e B l o c k && i d == i n p u t _ i d) - >

a t o m i c {

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g

/ * go t h r o u g h a l l o f t he e v a l u a t i o n s o f t he p l a t o o n and g a t h e r t h e i r s c o r e s . * /

b y t e c o u n t e r = 0;

do

:: p l a t o o n S c o r e [c o u n t e r] <= 0 && c o u n t e r < n u m V e h i c l e s

- > a l l V e h i c l e s [c o u n t e r] . p o s R e c e r t = f a l s e ;

c o u n t e r + + ;

:: p l a t o o n S c o r e [c o u n t e r] > 0 && c o u n t e r < n u m V e h i c l e s

- > a l l V e h i c l e s [c o u n t e r] . p o s R e c e r t = t r u e ;

c o u n t e r + + ;

: : e l s e - > b r e a k ;

od

/ * B r o a d c a s t t h e new b l o c k * /

b r o a d c a s t (B l o c k , 0 , t r u e);

}

(msg == B l o c k && i d == 10) - >

a t o m i c { r e c e i v e d B l o c k + + ;

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g

p r i n t f (" N e w B l o c k R e c e i v e d , V%d i s w a i t i n g . \ n " , i n p u t _ i d , f l a g);

b r e a k ; }

e l s e - >

a t o mi c {

112

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g ;

p r i n t f (" Me s s a g e D e l e t e d : V: %d M%oe , I D : %d \ n " , i n p u t _ i d , msg, i d);

}

f i

:: (l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) == 0 && !(n u m V e h i c l e s == n u m P l a t o o n)

&& !(a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == f a l s e)) - >

p r i n t f (" Emp t y Ch a n n e l f o r V%d. Nu mPl a t : %d, n u m V e h i c l e s : %d, v e h 1 f l a g : %d, v e h 2 f l a g : %d, v e h 3 f l a g : %d,

v e h 4 f l a g : % d \ n " , i n p u t _ i d , n u mP l a t o o n , n u m Ve h i c l e s , a l l V e h i c l e s [0] . i n P l a t F l a g , a l l V e h i c l e s [1] . i n P l a t F l a g ,

a l l V e h i c l e s [2] . i n P l a t F l a g , a l l V e h i c l e s [3] . i n P l a t F l a g) ;

od

d o n e V e h i c l e s + + ;

do

:: (t o t V e h i c l e s == d o n e V e h i c l e s) - > b r e a k ;

od

done :

p r i n t f (" V e h i c l e %d i s done . \ n " , i n p u t _ i d);

}

*/

*/

*/

d e f i n e phy1 (a l l V e h i c l e s [0] . p l a t D i s t == 0)

d e f i n e cp1 (a l l V e h i c l e s [0] . p o s R e c e r t == t r u e)

d e f i n e br1 (a l l V e h i c l e s [0] . b r J o i n == t r u e)

d e f i n e gps1 (a l l V e h i c l e s [0] . GPSOut put == t r u e)

d e f i n e pj1 (a l l V e h i c l e s [0] . i n P l a t F l a g == t r u e)

d e f i n e bm1 (a l l V e h i c l e s [0] . f o l l owComma nd == f a l s e)

d e f i n e nb1 (a l l V e h i c l e s [0] . n e w B l o c k == t r u e)

d e f i n e phy2 (a l l V e h i c l e s [1] . p l a t D i s t == 0)

d e f i n e cp2 (a l l V e h i c l e s [1] . p o s R e c e r t == t r u e)

d e f i n e br2 (a l l V e h i c l e s [1] . b r J o i n == t r u e)

d e f i n e gps2 (a l l V e h i c l e s [1] . GPSOut put == t r u e)

d e f i n e pj 2 (a l l V e h i c l e s [1] . i n P l a t F l a g == t r u e)

d e f i n e bm2 (a l l V e h i c l e s [1] . f o l l owComma nd == f a l s e)

d e f i n e nb2 (a l l V e h i c l e s [1] . n e w B l o c k == t r u e)

d e f i n e phy3 (a l l V e h i c l e s [2] . p l a t D i s t == 0)

d e f i n e cp3 (a l l V e h i c l e s [2] . p o s R e c e r t == t r u e)

d e f i n e br3 (a l l V e h i c l e s [2] . b r J o i n == t r u e)

d e f i n e gps3 (a l l V e h i c l e s [2] . GPSOut put == t r u e)

d e f i n e pj 3 (a l l V e h i c l e s [2] . i n P l a t F l a g == t r u e)

d e f i n e bm3 (a l l V e h i c l e s [2] . f o l l owComma nd == f a l s e)

d e f i n e nb3 (a l l V e h i c l e s [2] . n e w B l o c k == t r u e)

d e f i n e phy4 (a l l V e h i c l e s [3] . p l a t D i s t == 0)

d e f i n e cp4 (a l l V e h i c l e s [3] . p o s R e c e r t == t r u e)

d e f i n e br4 (a l l V e h i c l e s [3] . b r J o i n == t r u e)

d e f i n e gps4 (a l l V e h i c l e s [3] . GPSOut put == t r u e)

d e f i n e pj 4 (a l l V e h i c l e s [3] . i n P l a t F l a g == t r u e)

/*---

/*---

/ * T h e s e a r e t h e v e r i f i c a t i o n v a r i a b l e s . * /

/*---

d e f i n e bc (b l o c k C r e a t i o n E v e n t == t r u e)

113

d e f i n e bm4 (a l l V e h i c l e s [3] . f o l l owComma nd == f a l s e)

d e f i n e nb4 (a l l V e h i c l e s [3] . n e wBl o c k == t r u e)

d e f i n e phy5 (a l l V e h i c l e s [4] . p l a t D i s t == 0)

d e f i n e cp5 (a l l V e h i c l e s [4] . p o s R e c e r t == t r u e)

d e f i n e b r 5 (a l l V e h i c l e s [4] . b r J o i n == t r u e)

d e f i n e gps5 (a l l V e h i c l e s [4] . GPSOut pu t == t r u e)

d e f i n e p j 5 (a l l V e h i c l e s [4] . i n P l a t F l a g == t r u e)

d e f i n e bm5 (a l l V e h i c l e s [4] . f o l l owComma nd == f a l s e)

d e f i n e nb5 (a l l V e h i c l e s [4] . n e wBl o c k == t r u e)

/*--*/

3. PLATOON LEAVE PROEM LA CODE

/ * D e f i n e a v e h i c l e d a t a s t r u c t u r e . * /

t y p e d e f v e h S t r u c t {

chan mChanne l = [30] o f { mt y p e , b y t e , b o o l } ;

b y t e i d ;

b o o l p o s R e c e r t ;

b o o l v a l V e h F l a g ;

b o o l i n P l a t F l a g ;

s h o r t p l a t D i s t ;

b o o l GP S Ou t p u t ;

b o o l b r J o i n ;

b o o l p l a t L e a d e r ;

b o o l r e s t r i c t e d S t a t u s

};

mt ype = { Ac c e p t , R e j e c t , R e q u e s t L e a v e , I n Ra n g e } ;

/*--- */

/ * T h e s e a r e " g l o b a l " v a r i a b l e s . * /

/*--- */

b y t e p l a t o o n S c o r e [1 0] ;

b y t e p l a t o o n C r e a t e d = 0;

b o o l v a l i d Co mma n d = t r u e ;

b o o l b l o c k C r e a t i o n E v e n t = f a l s e ;

b y t e d o n e V e h i c l e s = 0;

b y t e n u m V e h i c l e s = 0;

b y t e t o t V e h i c l e s = 5;

b y t e l e a v e V e h i c l e s = 4;

b y t e n u m P l a t o o n = 0; / * T h i s i s t he t o t a l o f n u mb er o f v e h i c l e s t h a t s h o u l d be p r e s e n t i n t h i s r u n . * /

v e h S t r u c t a l l V e h i c l e s [6] ;

/*-- */

/*-- */

/ * S e t up t h e i n i t i a l s t a t e o f t h e s i m u l a t i o n * /

/*-- */

i n i t

{

a t o m i c {

/ * T h i s i s t h e l i s t o f i n i t i a l s y s t e m s t a t e s f o r e v e r y v e h i c l e * /

114

a l l V e h i c l e s [0] . i d = 0;

a l l V e h i c l e s [0] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [0] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [0] . p l a t D i s t = 0;

a l l V e h i c l e s [0] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [0] . p l a t L e a d e r = t r u e ;

a l l V e h i c l e s [0] . i n P l a t F l a g = t r u e ;

a l l V e h i c l e s [0] . b r J o i n = t r u e ;

a l l V e h i c l e s [0] . r e s t r i c t e d S t a t u s = f a l s e ;

p r i n t f (" V e h i c l e %d i s i n t he p l a t o o n \ n " , 0) ;

n u m V e h i c l e s + + ;

n u m P l a t o o n + + ;

a l l V e h i c l e s [1] . i d = 1;

a l l V e h i c l e s [1] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [1] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [1] . p l a t D i s t = 0;

a l l V e h i c l e s [1] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [1] . p l a t L e a d e r = f a l s e ;

a l l V e h i c l e s [1] . i n P l a t F l a g = t r u e ;

a l l V e h i c l e s [1] . b r J o i n = t r u e ;

a l l V e h i c l e s [1] . r e s t r i c t e d S t a t u s = f a l s e ;

p r i n t f (" V e h i c l e %d i s i n t he p l a t o o n \ n " , 1) ;

n u m V e h i c l e s + + ;

n u m P l a t o o n + + ;

a l l V e h i c l e s [2] . i d = 2;

a l l V e h i c l e s [2] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [2] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [2] . p l a t D i s t = 0;

a l l V e h i c l e s [2] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [2] . p l a t L e a d e r = f a l s e ;

a l l V e h i c l e s [2] . i n P l a t F l a g = t r u e ;

a l l V e h i c l e s [2] . b r J o i n = t r u e ;

a l l V e h i c l e s [2] . r e s t r i c t e d S t a t u s = f a l s e ;

p r i n t f (" V e h i c l e %d i s i n t he p l a t o o n \ n " , 2) ;

n u m V e h i c l e s + + ;

n u m P l a t o o n + + ;

a l l V e h i c l e s [3] . i d = 3;

a l l V e h i c l e s [3] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [3] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [3] . p l a t D i s t = 0;

a l l V e h i c l e s [3] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [3] . p l a t L e a d e r = f a l s e ;

a l l V e h i c l e s [3] . i n P l a t F l a g = t r u e ;

a l l V e h i c l e s [3] . b r J o i n = t r u e ;

a l l V e h i c l e s [3] . r e s t r i c t e d S t a t u s = f a l s e ;

p r i n t f (" V e h i c l e %d i s i n t he p l a t o o n \ n " , 3) ;

n u m V e h i c l e s + + ;

n u m P l a t o o n + + ;

a l l V e h i c l e s [4] . i d = 4;

a l l V e h i c l e s [4] . p o s R e c e r t = t r u e ;

a l l V e h i c l e s [4] . v a l V e h F l a g = t r u e ;

a l l V e h i c l e s [4] . p l a t D i s t = 0;

115

a l l V e h i c l e s [4] . GPSOut pu t = t r u e ;

a l l V e h i c l e s [4] . p l a t L e a d e r = f a l s e ;

a l l V e h i c l e s [4] . i n P l a t F l a g = t r u e ;

a l l V e h i c l e s [4] . b r J o i n = t r u e ;

a l l V e h i c l e s [4] . r e s t r i c t e d S t a t u s = f a l s e ;

p r i n t f (" V e h i c l e %d i s i n t he p l a t o o n \ n " , 4) ;

n u m V e h i c l e s + + ;

n u m P l a t o o n + + ;

}

r u n p l a t V e h i c l e (0) ;

b y t e c o u n t e r = 1;

do

:: c o u n t e r <= l e a v e V e h i c l e s - > r un v e h i c l e (c o u n t e r); c o u n t e r = c o u n t e r + 1;

od

}

/*-- */

/*-- */

/ * B r o a d c a s t Me s s a g e P r o t o c o l */

/*-- */

i n l i n e b r o a d c a s t (me s s a g e , i d , f l a g)

{

p r i n t f (" S e n d i n g s %e , %d, %d \ n " , me s s a g e , i d , f l a g);

b y t e t emp _ c h a n = 0;

do

: : (t emp _ c h a n < n u m V e h i c l e s) - >

i f

:: (t e m p _ c h a n ! = i n p u t _ i d) - >

i f

:: ((m e s s a g e == R e j e c t | | m e s s a g e == A c c e p t) && a l l V e h i c l e s [t e m p _ c h a n] . i n P l a t F l a g == t r u e) - >

/ / p r i n t f (" t emp _ c h a n : %d, m e s s a g e : %e , i d : %d, f l a g : % d \ n " , t e mp _ c h a n , me s s a g e , i d , f l a g);

a l l V e h i c l e s [t emp _ c h a n] . m C h a n n e l ! me s s a g e , i d , f l a g ;

p r i n t f ("V%d s e n t %e ,V%d to V%d\ n" , i n p u t _ i d , mes s a g e , i d , t e mp _ c h a n);

/ / p r i n t f (" L % d \ n " , l e n (a l l V e h i c l e s [t e m p _ c h a n] . m C h a n n e l)) ;

t em p _ c h a n + + ;

:: ((m e s s a g e == R e q u e s t L e a v e) && a l l V e h i c l e s [t e m p _ c h a n] . p l a t L e a d e r == t r u e) - >

/ / p r i n t f (" t emp _ c h a n : %d, m e s s a g e : %e , i d : %d, f l a g : % d \ n " , t e mp _ c h a n , me s s a g e , i d , f l a g);

a l l V e h i c l e s [t emp _ c h a n] . m C h a n n e l ! me s s a g e , i d , f l a g ;

p r i n t f ("V%d s e n t %e ,V%od to V%d\ n" , i n p u t _ i d , mes s a g e , i d , t e mp _ c h a n);

/ / p r i n t f (" L % d \ n " , l e n (a l l V e h i c l e s [t e m p _ c h a n] . m C h a n n e l)) ;

t em p _ c h a n + + ;

: : e l s e - > t e mp _ c h a n + + ;

fi

: : (t e mp _ c h a n = = i n p u t _ i d) - > t e mp _ c h a n + + ;

f i

e l s e - > b r e a k ;

od ;

}

/*--- */

/ * Le a v e P l a t o o n P r o t o c o l */

/*--- */

116

i n l i n e l e a v e P l a t o o n ()

{

b y t e t e m p _ i d ;

/ * B r o a d c a s t a r e q u e s t t o l e a v e t h e p l a t o o n . * /

a t o m i c { b r o a d c a s t (R e q u e s t L e a v e , i n p u t _ i d , t r u e) ;}

/ * Wa i t u n t i l you r e c e i v e an A c c e p t or a R e j e c t Me s s a g e * /

do

:: a l l V e h i c l e s [i n p u t _ i d] . mCha nne l ? <ms g , i d , f l a g > - >

i f

: : (i d == i n p u t _ i d && msg == A c c e p t) - >

a t o m i c { a l l V e h i c l e s [i n p u t _ i d] . m C h a n n e l ? m s g , i d , f l a g

p r i n t f (" m s g i s A c c e p t , i d i s %d, and f l a g i s %d \ n " , i n p u t _ i d , f l a g);

b r e a k ; }

: : (i d == i n p u t _ i d && msg == R e j e c t) - >

a t o m i c { a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g ;

g o t o done}

:: (i d ! = i n p u t _ i d) - >

a t o m i c { p r i n t f ("V%d Re mo v i n g , msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d);

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g }

: : e l s e - >

a t o mi c {

i f

:: a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g - >

p r i n t f (" V % d Re mo v i n g , msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d);

:: l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) = = 0

- > p r i n t f (" E r r o r , V%d, msg i s %e i d i s %d \ n " , i n p u t _ i d , ms g , i d)

fi

}

f i

:: (l e n (a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l) == 0) - > p r i n t f (" V % d W a i t i n g R B \ n " , i n p u t _ i d)

od

/ * S e t t h i s v e h i c l e s i n P l a t F l a g to f a l s e a nd p r i n t a s t a t m e n t . * /

a t o mi c {

/ * S e t p l a t D i s t to 1 n o t i n g t h a t t he v e h i c l e h a s moved away f r o m t h e p l a t o o n . */

a l l V e h i c l e s [i n p u t _ i d] . p l a t D i s t = 1 ;

*/

*/

a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g = f a l s e ;

n u m P l a t o o n - - ;

p r i n t f (" V e h i c l e %d has l e f t t h e p l a t o o n . \ n " , i d)

}

}

/*--

/ * I n - P l a t o o n Car P r o t o c o l * /

/*--

p r o c t y p e p l a t V e h i c l e (i n t i n p u t _ i d)

{

b y t e i d ;

b o o l f l a g ;

mt y p e msg ;

do

117

: : a l l V e h i c l e s [i n p u t _ i d] . mCha nne l ? <ms g , i d , f l a g > - >

i f

:: (msg == R e q u e s t L e a v e) - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . m C h a n n e l ? R e q u e s t L e a v e , i d , f l a g ;

p r i n t f (" V % d , msg i s R e q u e s t L e a v e , i d i s %d, a nd f l a g i s % d \ n " , i n p u t _ i d , i d , f l a g)

i f

:: (a l l V e h i c l e s [i d] . p l a t D i s t == 0 && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e)

- > a t o m i c { b r o a d c a s t (Ac c e p t , i d , t r u e) ;}

:: (a l l V e h i c l e s [i d] . p l a t D i s t != 0 && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e)

- > a t o m i c { b r o a d c a s t (R e j e c t , i d , t r u e) ; }

: : e l s e

fi

}

: : e l s e - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g ;

p r i n t f (" Me s s a g e D e l e t e d : V: %d M%oe , I D : %d \ n " , i n p u t _ i d , msg, i d);

}

f i

/ * I f t h e n u mb er o f l i v e p r o c e s s e s i s e q u a l t o t h e n u mb er o f v e h i c l e i n t he p l a t o o n t h e n e x i t */

: : (n u m P l a t o o n == 1) - > b r e a k ;

od

d o n e V e h i c l e s + + ;

done :

p r i n t f (" V e h i c l e %d i s done . \ n " , i n p u t _ i d);

}

*/

*/

b o o l l e a v e F l a g ;

i f

:: l e a v e F l a g = t r u e ;

/ * :: l e a v e F l a g = f a l s e ; * /

fi

/*--

/ * Car P r o t o c o l * /

/*--

p r o c t y p e v e h i c l e (i n t i n p u t _ i d)

{

b y t e i d ;

b o o l f l a g ;

mt y p e msg ;

do

/ * Check i f t h e v e h i c l e i s i n t h e p l a t o o n . I f so t h e n t r y t o l e a v e */

:: (l e a v e F l a g == t r u e) - > l e a v e P l a t o o n () ; b r e a k ;

/ * N e e d t o add s t e p wh e r e p l a t o o n v e h i c l e s c o mm u n i c a t e i f t h e y s ee a v e h i c l e * /

/ * Check i f you h a v e a R e q u e s t L e a v e me s s a g e i n t h e me s s a g e c h a n n e l * /

: : a l l V e h i c l e s [i n p u t _ i d] . mCha nne l ? <ms g , i d , f l a g > - >

i f

: : (msg == R e q u e s t L e a v e) - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . m C h a n n e l ? R e q u e s t L e a v e , i d , f l a g ;

p r i n t f ("V%d, msg i s R e q u e s t L e a v e i d i s %d, a nd f l a g i s % d \ n " , i n p u t _ i d , i d , f l a g)

i f

118

:: (a l l V e h i c l e s [i d] . p l a t D i s t == 0 && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e)

- > a t o m i c { b r o a d c a s t (Ac c e p t , i d , t r u e) ;}

:: (a l l V e h i c l e s [i d] . p l a t D i s t != 0 && a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == t r u e)

- > a t o m i c { b r o a d c a s t (R e j e c t , i d , t r u e) ; }

: : e l s e

f i }

: : e l s e - >

a t o mi c {

a l l V e h i c l e s [i n p u t _ i d] . mCh a n n e l ? ms g , i d , f l a g ;

p r i n t f (" Me s s a g e D e l e t e d : V: %d M%oe , I D : %d \ n " , i n p u t _ i d , msg, i d);

}

f i

/ * I f t h e n u mb er o f l i v e p r o c e s s e s i s e q u a l t o t h e n u mb er o f v e h i c l e i n t he p l a t o o n t h e n e x i t */

/ * :: (n u m V e h i c l e s == n u m P l a t o o n) - > b r e a k ; * /

: : (l e n (a l l V e h i c l e s [i n p u t _ i d] . m C h a n n e l) == 0

&& !(n u m V e h i c l e s == n u m P l a t o o n) && !(a l l V e h i c l e s [i n p u t _ i d] . i n P l a t F l a g == f a l s e)) - >

p r i n t f (" Emp t y Ch a n n e l f o r V%d. Nu mPl a t : %d, n u m V e h i c l e s : %d, v e h 1 f l a g : %d, v e h 2 f l a g : %d, v e h 3 f l a g : %d,

v e h 4 f l a g : % d \ n " , i n p u t _ i d , n u mP l a t o o n , n u m Ve h i c l e s , a l l V e h i c l e s [0] . i n P l a t F l a g , a l l V e h i c l e s [1] . i n P l a t F l a g ,

a l l V e h i c l e s [2] . i n P l a t F l a g , a l l V e h i c l e s [3] . i n P l a t F l a g) ;

od

d o n e V e h i c l e s + + ;

do

:: (t o t V e h i c l e s == d o n e V e h i c l e s) - > b r e a k ;

od

done :

p r i n t f (" V e h i c l e %d i s done . \ n " , i n p u t _ i d);

}

/*---

/*---

/ * T h e s e a r e t h e v e r i f i c a t i o n v a r i a b l e s . * /

/*-----------

d e f i n e phy1 (a l l V e h i c l e s [0] . p l a t D i s t == 0)

d e f i n e cp1 (a l l V e h i c l e s [0] . p o s R e c e r t == t r u e)

d e f i n e br1 (a l l V e h i c l e s [0] . b r J o i n == t r u e)

d e f i n e gps1 (a l l V e h i c l e s [0] . GPSOut put == t r u e)

d e f i n e pj1 (a l l V e h i c l e s [0] . i n P l a t F l a g == t r u e)

d e f i n e phy2 (a l l V e h i c l e s [1] . p l a t D i s t == 0)

d e f i n e cp2 (a l l V e h i c l e s [1] . p o s R e c e r t == t r u e)

d e f i n e br2 (a l l V e h i c l e s [1] . b r J o i n == t r u e)

d e f i n e gps2 (a l l V e h i c l e s [1] . GPSOut put == t r u e)

d e f i n e pj 2 (a l l V e h i c l e s [1] . i n P l a t F l a g == t r u e)

d e f i n e phy3 (a l l V e h i c l e s [2] . p l a t D i s t == 0)

d e f i n e cp3 (a l l V e h i c l e s [2] . p o s R e c e r t == t r u e)

d e f i n e br3 (a l l V e h i c l e s [2] . b r J o i n == t r u e)

d e f i n e gps3 (a l l V e h i c l e s [2] . GPSOut put == t r u e)

d e f i n e pj 3 (a l l V e h i c l e s [2] . i n P l a t F l a g == t r u e)

d e f i n e phy4 (a l l V e h i c l e s [3] . p l a t D i s t == 0)

d e f i n e cp4 (a l l V e h i c l e s [3] . p o s R e c e r t == t r u e)

d e f i n e br4 (a l l V e h i c l e s [3] . b r J o i n == t r u e)

*/

*/

*/

119

d e f i n e

d e f i n e

d e f i n e

d e f i n e

d e f i n e

d e f i n e

d e f i n e

/*-----------

gps4 (a l l V e h i c l e s [3] . GPSOut pu t == t r u e)

p j 4 (a l l V e h i c l e s [3] . i n P l a t F l a g == t r u e)

phy5 (a l l V e h i c l e s [4] . p l a t D i s t == 0)

cp5 (a l l V e h i c l e s [4] . p o s R e c e r t == t r u e)

b r 5 (a l l V e h i c l e s [4] . b r J o i n == t r u e)

gps5 (a l l V e h i c l e s [4] . GPSOut pu t == t r u e)

p j 5 (a l l V e h i c l e s [4] . i n P l a t F l a g == t r u e)

---*/

APPENDIX B.

SPIN MODEL CHECKER RESULTS

121

The input neverclaims and the output results from each run are listed here.

1. INVARIANT 1

n e v e r { / * <>(((bm1 && pj 1) && [] cp1) | | ((bm2 && pj 2) && [] c p 2) | | ((bm3 && pj 3) && [] cp3)

| | ((bm4 && pj 4) && [] c p 4) | | ((bm5 && pj 5) && [] c p 5)) * /

T 0 _ i n i t :

do

:: ((bm5 && p j 5) && (c p 5) && (((b m 2 && p j 2)) | | ((((b m 3 && p j 3)) | | ((((b m 4 && p j 4)) | | ((bm5 && pj 5)))))))

&& (((b m1 && p j 1)) | | ((((bm2 && pj 2)) | | ((((b m 3 && p j 3)) | | ((((b m 4 && p j 4))

11 ((bm5 && p j 5)))))))))) - > g o t o a c c e p t _ S 8

:: ((bm4 && pj 4) && (c p 4) && (((bm2 && pj 2)) | | ((((b m 3 && p j 3))

| | ((((bm4 && pj 4)) | | ((bm5 && pj 5))))))) & & (((bm1 && p j 1)) | | ((((b m 2 && p j 2)) | | ((((b m 3 && p j 3))

| | ((((bm4 && pj 4)) | | ((bm5 && pj 5)))))))))) - > g o t o a c c e p t _ S 1 3

:: ((bm3 && pj 3) && (c p 3) && (((bm1 && pj 1)) | | ((((b m 2 && p j 2)) | | ((((b m 3 && p j 3)) | | ((((b m 4 && p j 4))

11 ((bm5 && p j 5)))))))))) - > g o t o a c c e p t _ S 1 8

:: ((bm2 && p j 2) && (c p 2)) - > g o t o a c c e p t _ S 2 3

:: ((bm1 && pj 1) && (c p 1)) - > g o t o a c c e p t _ S 2 8

: : (1) - > g o t o T 0 _ i n i t

o d ;

a c c e p t _ S 8 :

do

: : ((cp5)) - > g o t o a c c e p t _ S 8

od ;

a c c e p t _ S 1 3 :

do

: : ((cp4)) - > g o t o a c c e p t _ S 1 3

od ;

a c c e p t _ S 1 8 :

do

: : ((cp3)) - > g o t o a c c e p t _ S 1 8

od ;

a c c e p t _ S 2 3 :

do

: : ((cp2)) - > g o t o a c c e p t _ S 2 3

od ;

a c c e p t _ S 2 8 :

do

: : ((cp1)) - > g o t o a c c e p t _ S 2 8

od ;

}

122

Table 1. Results of SWARM Run with Invariant 1

State-Vector (bytes) Depth Reached States, Stored States, Matched Transitions Atomic Steps
816 753 204,456 28,413 232,869 96,415
816 725 243,886 36,332 280,218 102,936
808 735 28,381,118 38,064,635 66,445,753 12,814,668
808 729 30,575,598 41,628,799 72,204,397 13,935,548
816 127 170 61 231 115
816 127 171 65 236 116
808 127 598 632 1,230 362
808 127 676 777 1,453 411
816 753 191,892 28,091 219,983 93,636
816 725 189,763 29,578 219,341 90,567
808 725 2,183,192 3,151,575 5,334,767 1,076,571
808 729 582,218 848,611 1,430,829 280,930
816 753 45,593 7,912 53,505 29,672
816 725 243,742 36,322 280,064 102,931
808 751 30,783,886 43,674,842 74,458,728 15,912,275
808 729 24,976,745 32,844,658 57,821,403 10,447,175
808 847 29,291,801 39,621,779 68,913,580 15,361,838
816 127 171 65 236 116
808 127 674 711 1,385 401
808 127 597 602 1,199 358
808 847 17,972,675 26,314,383 44,287,058 11,849,226
816 725 212,117 32,513 244,630 94,837
808 743 4,463,935 6,497,292 10,961,227 2,336,744
808 743 4,463,935 6,497,292 10,961,227 2,336,744
808 813 636,057 952,454 1,588,511 416,629
816 725 41,486 6,990 48,476 24,977
816 747 183,383 24,031 207,414 98,344
808 737 30,467,168 41,334,789 71,801,957 13,637,976
808 853 33,886,973 48,881,998 82,768,971 21,379,071
808 729 23,777,078 31,012,443 54,789,521 9,309,718
816 127 170 61 231 115
808 127 654 690 1,344 406
808 127 614 594 1,208 365
808 729 16,075,896 22,989,194 39,065,090 8,251,318
816 747 142,540 19,738 162,278 77,083
808 731 2,110,392 3,030,938 5,141,330 988,954
808 853 1,224,382 1,825,033 3,049,415 840,614
808 729 293,910 428,211 722,121 134,435

123

n e v e r

II

T 0 _ i n i t

T 0 _ S 8 :

T 0 _ S 1 3 :

T 0 _ S 1 8 :

T 0 _ S 2 3 :

T0_S28 :

a c c e p t _

2. INVARIANT 2

{ / * <>((((! b m1 && p j l) U b c) && ! c p 1) | | (((! b m 2 && p j 2) U b c) && ! c p 2) | | (((! b m 3 && p j 3) U b c) && ! cp3)

(((! b m 4 && p j 4) U b c) && ! c p 4) | | (((! b m 5 && p j 5) U b c) && ! c p 5)) */

do

:: a t o m i c { (((! ((c p 5)) && (b c) && ((! ((c p 1))) | | (((! ((c p 2))) | | (((! ((c p 3))) | | (((! ((c p 4)))

| | (! ((cp5))))))))))) | | (((! ((c p 1)) && (b c)) | | (((! ((c p 2)) && (b c)) | | (((! ((c p 3)) && (b c))

| | (! ((c p 4)) && (b c)))))))))) - > a s s e r t (! (((! ((c p 5)) && (b c) && ((! ((c p 1)))

| | (((! ((cp2))) | | (((! ((cp3))) | | (((! ((c p 4))) | | (! ((c p 5))))))))))) | | (((! ((c p 1)) && (b c))

| | (((! ((c p 2)) && (b c)) | | (((! ((c p 3)) && (b c)) | | (! ((c p 4)) && (b c))))))))))) }

((! bm5 && pj 5) && ! ((c p 5))) - > go t o T0_ S8

((! bm4 && pj 4) && ! ((cp4))) - > go t o T0_ S13

((! bm3 && pj 3) && ! ((cp3))) - > go t o T0_ S18

((! bm2 && pj 2) && ! ((cp2))) - > go t o T0_ S23

((! bm1 && pj 1) && ! ((c p 1))) - > go t o T0_ S28

(1) - > g o t o T0 _ i n i t

o d ;

do

:: a t o m i c { ((b c)) - > a s s e r t (! ((b c))) }

:: ((! bm5 && p j 5)) - > g o t o T0_S8

od ;

do

:: a t o m i c { ((b c)) - > a s s e r t (! ((b c))) }

:: ((! bm4 && pj 4)) - > g o t o T0_S13

od ;

do

:: a t o m i c { ((b c)) - > a s s e r t (! ((b c))) }

:: ((! bm3 && p j 3)) - > g o t o T0_S18

od ;

do

:: a t o m i c { ((b c)) - > a s s e r t (! ((b c))) }

:: ((! bm2 && p j 2)) - > g o t o T0_S23

od ;

do

:: a t o m i c { ((b c)) - > a s s e r t (! ((b c))) }

:: ((! bm1 && p j 1)) - > g o t o T0_S28

od ;

a l l :

s k i p

}

124

Table 2. Results of SWARM Run with Invariant 2

State-Vector (bytes) Depth Reached States, Stored States, Matched Transitions Atomic Steps
816 753 206,234 28,852 235,086 96,858
816 725 243,886 36,332 280,218 102,936
808 735 27,835,093 37,204,258 65,039,351 11,859,718
808 729 30,142,487 40,900,190 71,042,677 13,487,221
816 127 170 61 231 115
816 127 171 65 236 116
808 127 598 632 1,230 362
808 127 676 777 1,453 411
816 753 194,212 28,409 222,621 94,950
816 725 185,115 28,336 213,451 88,537
808 731 2,040,773 2,907,532 4,948,305 923,998
808 729 564,765 818,463 1,383,228 254,014
816 753 51,945 9,576 61,521 37,536
816 725 243,752 36,314 280,066 102,932
808 749 31,322,410 44,573,391 75,895,801 16,748,527
808 729 25,007,268 32,921,095 57,928,363 10,347,399
808 847 29,126,813 39,274,580 68,401,393 15,032,858
816 127 171 65 236 116
808 127 674 711 1,385 401
808 127 597 602 1,199 358
808 851 17,971,120 26,335,139 44,306,259 12,212,903
816 725 214,758 32,977 247,735 97,961
808 743 4,407,125 6,397,217 10,804,342 2,301,951
808 725 1,122,424 1,627,964 2,750,388 544,426
808 813 628,355 935,005 1,563,360 385,539
816 725 42,449 7,330 49,779 26,317
816 747 183,383 24,031 207,414 98,344
808 737 30,817,322 41,965,956 72,783,278 14,163,782
808 853 34,269,927 49,543,720 83,813,647 21,927,472
808 729 25,481,552 33,934,582 59,416,134 11,325,940
816 127 170 61 231 115
808 127 654 690 1,344 406
808 127 614 594 1,208 365
808 729 15,836,338 22,547,093 38,383,431 8,236,033
816 747 155,747 21,849 177,596 86,278
808 735 2,202,870 3,190,277 5,393,147 1,126,535
808 853 1,226,534 1,822,242 3,048,776 757,909
808 729 275,013 395,867 670,880 129,934

125

3. INVARIANT 3

n e v e r { / * <>((phy1 && cp1 && br1 && g p s l) && [] ! pj1) | | <> ((p h y 2 && cp2 && br2 && g p s 2) && [] ! pj 2)

| | < > ((p h y 3 && cp3 && br 3 && g p s 3) && [] ! pj 3) | | < > ((p h y 4 && cp4 && br 4 && g p s 4) && [] ! p j 4)

| | < > ((p h y 5 && cp5 && br 5 && g p s 5) && [] ! p j 5) */

T 0 _ i n i t :

do

(! ((pj 5)) && (p hy5 && cp5

(! ((pj 4)) && (p hy4 && cp4

(! ((p j 3)) && (phy3 && cp3

(! ((pj 2)) && (phy2 && cp2

(! ((pj 1)) && (phy1 && cp1

(1) - > g o t o T 0 _ i n i t

&& br5 && gps5)) - > g oto

&& br4 && gps4)) - > g oto

&& br3 && gps3)) - > g oto

&& br2 && gps2)) - > g oto

&& br1 && gps1)) - > g oto

a c c e p t _ S 8

a c c e p t _ S 1 3

a c c e p t _ S 1 8

a c c e p t _ S 2 3

a c c e p t _ S 2 8

o d ;

a c c e p t _ S 8 :

do

:: (! ((p j 5))) - > g o t o a c c e p t _ S 8

od ;

a c c e p t _ S 1 3 :

do

: : (! ((p j 4))) - > g o t o a c c e p t _ S 1 3

od ;

a c c e p t _ S 1 8 :

do

:: (! ((p j 3))) - > g o t o a c c e p t _ S 1 8

od ;

a c c e p t _ S 2 3 :

do

: : (! ((p j 2))) - > g o t o a c c e p t _ S 2 3

od ;

a c c e p t _ S 2 8 :

do

:: (! ((pj 1))) - > g o t o a c c e p t _ S 2 8

od ;

}

126

Table 3. Results of SWARM Run with Invariant 3

State-Vector (bytes) Depth Reached States, Stored States, Matched Transitions Atomic Steps
956 1,138 9,407,613 2,605,501 12,013,114 16,721,202
956 1,180 15,931,527 4,796,155 20,727,682 28,524,062
956 1,130 31,072,620 44,609,830 75,682,450 103,898,130
956 1,327 32,506,261 34,476,889 66,983,150 95,934,178
956 127 2,885 3,564 6,449 15,446
956 127 2,885 3,564 6,449 15,446
956 127 49,448 120,648 170,096 403,034
956 127 43,017 115,763 158,780 333,208
956 1,104 2,643,587 742,722 3,386,309 5,010,876
956 1,180 1,420,217 495,914 1,916,131 2,974,509
956 1,244 2,550,553 4,019,147 6,569,700 9,014,614
956 1,153 575,849 655,519 1,231,368 2,019,326
956 1,031 113,101 39,316 152,417 302,237
956 1,181 15,894,979 5,208,079 21,103,058 30,021,955
956 1,069 38,273,826 48,202,085 86,475,911 132,513,320
956 1,164 27,399,258 38,946,941 66,346,199 88,671,629
956 1,127 31,230,776 33,488,785 64,719,561 95,536,521
956 127 2,885 3,564 6,449 15,446
956 127 52,533 139,862 192,395 500,244
956 127 49,335 118,934 168,269 412,105
956 1,126 19,871,272 24,300,504 44,171,776 71,387,587
956 1,180 2,567,632 826,050 3,393,682 5,078,494
956 1,054 5,075,833 6,623,264 11,699,097 18,677,308
956 1,169 1,309,111 2,092,639 340,175 5,067,027
956 1,126 655,810 803,853 1,459,663 2,642,956
956 1,176 104,757 36,255 141,012 239,438
956 1,130 16,366,132 4,015,239 20,381,371 26,160,139
956 1,066 36,267,229 53,011,589 89,278,818 124,954,250
956 1,108 39,937,254 51,028,052 90,965,306 144,614,480
956 1,354 27,215,165 27,932,574 55,147,739 78,728,448
956 127 2,885 3,564 6,449 15,446
956 127 56,594 151,298 207,892 553,279
956 127 65,821 166,900 232,721 516,105
956 1,302 18,726,949 23,783,120 42,510,069 64,571,102
956 1,078 1,415,716 433,747 1,849,463 2,782,185
956 1,068 2,534,406 3,674,176 6,208,582 9,603,547
956 1,108 1,278,095 1,533,759 2,811,854 4,840,861
956 1,175 266,354 296,347 562,701 913,173

127

/ * s p i n - f ’ < >((phy1 && ! cp1 && br1 && g p s l) && [] ! p j r l) 11 < >((phy2 && ! cp2 && br 2 && gps2) && [] ! p j r 2)

| | < > ((p h y 3 && !cp3 && br3 && g p s 3) && [] ! p j r 3) | | <>((p h y 4 && !cp4 && br 4 && g p s 4) && [] ! p j r 4)

| | < > ((p h y 5 && !cp5 && br5 && g p s 5) && [] ! p j r 5) ’ */

n e v e r { / * < >((phy1 && ! cp1 && br1 && g p s 1) && [] ! p j r 1) | | < >((phy2 && ! cp2 && br2 && gps2) && [] ! p j r 2)

| | < > ((p h y 3 && !cp3 && br3 && g p s 3)

| | < > ((p h y 5 && !cp5 && br5 && g p s 5)

T 0 _ i n i t :

do

:: (! ((pj r 5)) && (p hy5 && ! cp5

:: (! ((p j r 4)) && (p hy4 && ! cp4

:: (! ((pj r 3)) && (p hy3 && ! cp3

:: (! ((p j r 2)) && (p hy2 && ! cp2

:: (! ((pj r 1)) && (phy1 && ! cp1

: : (1) - > g o t o T 0 _ i n i t

o d ;

a c c e p t _ S 8 :

do

:: (! ((p j r 5))) - > g o t o a c c e p t _ S 8

od ;

a c c e p t _ S 1 3 :

do

:: (! ((p j r 4))) - > g o t o a c c e p t _ S 1 3

od ;

a c c e p t _ S 1 8 :

do

:: (! ((p j r 3))) - > g o t o a c c e p t _ S 1 8

od ;

a c c e p t _ S 2 3 :

do

:: (! ((p j r 2))) - > g o t o a c c e p t _ S 2 3

od ;

a c c e p t _ S 2 8 :

do

:: (! ((pj r1))) - > g o t o a c c e p t _ S 2 8

od ;

4. INVARIANT 4

&& [] ! pj r3) | | <>((p h y 4 && !cp4 && br 4 && g p s 4) && [] ! p j r 4)

&& [] ! p j r 5) */

&& br5 && gps5)) - > go t o a c c e p t _ S 8

&& br4 && gps4)) - > go t o a c c e p t _ S 1 3

&& br3 && gps3)) - > go t o a c c e p t _ S 1 8

&& br2 && gps2)) - > go t o a c c e p t _ S 2 3

&& br1 && gps1)) - > go t o a c c e p t _ S 2 8

}

128

Table 4. Results of SWARM Run with Invariant 4

State-Vector (bytes) Depth Reached States, Stored States, Matched Transitions Atomic Steps
956 1,141 10,218,064 7,207,217 17,425,281 27,310,073
956 1,233 15,559,424 5,548,570 21,107,994 20,408,911
956 1,175 31,880,045 54,827,844 86,707,889 63,217,105
956 1,332 32,254,401 94,124,619 126,379,020 148,953,090
956 127 1,711 1,556 3,267 7,410
956 127 1,711 1,556 3,267 7,410
956 127 25,490 48,420 73,910 184,383
956 127 23,837 48,239 72,076 149,404
956 1,116 2,747,971 2,002,195 4,750,166 7,473,328
956 1,233 1,285,067 502,562 1,787,629 1,658,695
956 1,281 2,544,452 4,505,703 7,050,155 5,848,261
956 1,263 577,641 1,622,202 2,199,843 2,654,252
956 1,066 101,205 76,090 177,295 323,158
956 1,233 14,776,948 5,284,942 20,061,890 19,924,264
956 1,179 39,750,370 113,580,300 153,330,680 197,395,510
956 1,170 27,522,286 46,747,016 74,269,302 43,800,791
956 1,533 31,565,179 91,500,946 123,066,120 150,650,430
956 127 1,711 1,556 3,267 7,410
956 127 27,404 58,181 85,585 265,846
956 127 26,640 50,761 77,401 191,002
956 1,533 20,437,157 59,495,185 79,932,342 100,470,560
956 1,235 2,675,951 1,043,583 3,719,534 3,959,385
956 1 ,1 2 2 5,216,659 10,081,655 15,298,314 17,734,810
956 1,183 1,317,947 2,441,155 3,759,102 2,968,017
956 1,533 676,576 1,889,386 2,565,962 3,466,116
956 1,233 105,177 40,697 145,874 199,468
956 1,116 16,038,915 12,197,944 28,236,859 40,411,013
956 1,132 36,521,300 66,481,238 103,002,540 71,224,071
956 1,515 41,073,948 117,936,830 159,010,780 211,184,030
956 1,357 25,689,990 74,486,647 100,176,640 110,045,800
956 127 1,711 1,556 3,267 7,410
956 127 29,068 60,370 89,438 288,188
956 127 35,182 64,282 99,464 231,623
956 1,337 18,452,374 54,591,848 73,044,222 85,265,369
956 1,087 1,481,761 1,072,906 2,554,667 3,913,248
956 1,141 2,655,055 4,908,177 7,563,232 6,707,586
956 1,515 1,335,918 3,900,147 5,236,065 6,433,955
956 1,281 310,844 896,289 1,207,133 1,697,366

129

5. INVARIANT 5

n e v e r { / * <>(! (p j 1 - > pj1 U ! c p 1) | | ! (p j 2 - > p j 2 U ! c p 2) | |

II !(p j 5 - > pj 5 U ! cp5)) * /

T 0 _ i n i t :

do

((cp5) && (p j 5)) - > go t o

((c p 4) && (pj 4)) - > go t o

((cp3) && (p j 3)) - > go t o

((cp2) && (p j 2)) - > go t o

((cp1) && (pj 1)) - > go t o

(1) - > g o t o T 0 _ i n i t

a c c e p t _ S 8

a c c e p t _ S 1 3

a c c e p t _ S 1 8

a c c e p t _ S 2 3

a c c e p t _ S 2 8

o d ;

a c c e p t _ S 8 :

do

! (pj 3 - > pj 3 U ! c p 3) | |

((c p 5)) - > g o t o a c c e p t _ S 8

a t o m i c { (! ((p j 5)) && (c p 5)) - > a s s e r t (! (! ((pj 5)) && (c p 5))) }

od ;

a c c e p t _ S 13 :

do

! (pj4 - > pj 4 U ! cp4)

: : ((cp4)) - > g o t o a c c e p t _ S 1 3

:: a t o m i c { (! ((p j 4)) && (c p 4)) - > a s s e r t (! (! ((pj 4)) && (c p 4))) }

od ;

a c c e p t _ S 18 :

do

: : ((cp3)) - > g o t o a c c e p t _ S 1 8

:: a t o m i c { (! ((p j 3)) && (c p 3)) - > a s s e r t (! (! ((pj 3)) && (c p 3))) }

od ;

a c c e p t _ S 2 3 :

do

: : ((cp2)) - > g o t o a c c e p t _ S 2 3

:: a t o m i c { (! ((p j 2)) && (c p 2)) - > a s s e r t (! (! ((pj 2)) && (c p 2))) }

od ;

a c c e p t _ S 2 8 :

do

: : ((cp1)) - > g o t o a c c e p t _ S 2 8

:: a t o m i c { (! ((p j 1)) && (c p 1)) - > a s s e r t (! (! ((pj 1)) && (c p 1))) }

od ;

a c c e p t _ a l l :

s k i p

}

130

Table 5. Results of SWARM Run with Invariant 5

State-Vector (bytes) Depth Reached States, Stored States, Matched Transitions Atomic Steps
816 753 1,274,385 1,069,459 2,343,844 1,031,633
816 725 1,464,240 1,572,176 3,036,416 1,132,014
808 735 27,430,912 36,443,322 63,874,234 11,418,194
808 729 30,093,469 40,888,082 70,981,551 13,343,598
816 127 1 ,0 1 0 1,346 2,356 1,115
816 127 1,016 1,395 2,411 1,126
808 127 3,632 8,253 11,885 3,476
808 127 4,046 9,692 13,738 3,661
816 753 643,829 102,184 746,013 353,400
816 725 173,924 26,551 200,475 79,501
808 727 2,250,438 3,269,106 5,519,544 1,126,388
808 729 588,910 862,431 1,451,341 293,054
816 753 42,562 7,282 49,844 26,891
816 725 1,463,937 1,539,085 3,003,022 1,130,723
808 749 29,984,968 42,215,632 72,200,600 14,807,840
808 729 25,302,028 33,464,744 58,766,772 10,583,126
808 847 29,711,279 40,313,547 70,024,826 15,439,919
816 127 1,016 1,395 2,411 1,126
808 127 3,981 8,967 12,948 3,592
808 127 3,644 8,279 11,923 3,303
808 851 17,779,821 25,916,686 43,696,507 11,481,513
816 729 897,549 432,836 1,330,385 64,7491
808 751 4,125,277 5,909,633 10,034,910 2,011,409
808 725 1,092,430 1,574,674 2,667,104 527,033
808 831 634,698 947,352 1,582,050 457,491
816 725 48,018 8,551 56,569 32,222
816 747 1,102,390 1,153,447 2,255,837 1,081,634
808 737 30,408,873 41,197,518 71,606,391 13,758,782
808 853 33,917,412 48,926,678 82,844,090 21,441,380
808 729 25,177,692 33,340,322 58,518,014 10,608,701
816 127 1 ,0 1 0 1,346 2,356 1,115
808 127 3,957 8,964 12,921 3,634
808 127 3,674 8,284 11,958 3,365
808 729 15,986,358 22,791,193 38,777,551 8,165,701
816 751 407,955 62,411 470,366 254,840
808 727 2,233,412 3,243,600 5,477,012 1,115,197
808 853 1,235,031 1,843,224 3,078,255 838,848
808 729 287,163 416,905 704,068 129,898

131

6. INVARIANT 6

/ * s p i n - f ’ <>((p j r l && (! p j r 1 V (c p l && ! br 1))) | | (p j r 2 && (! p j r 2 V (c p 2 && ! b r 2))) | | (p j r 3 &&

(! p j r 3 V (cp3 && ! b r 3))) | | (p j r 4 && (! p j r 4 V (cp4 && ! b r 4))) | | (p j r 5 && (! p j r 5 V (c p 5 && ! br5)))) ’ * /

{ / * <>((pj r 1 && (! pj r 1 V (cp 1 && ! b r 1))) | | (p j r 2 && (! p j r 2 V (cp2 && ! b r 2)))

| | (p j r 3 && (! p j r 3 V (cp3 && ! b r 3))) | | (p j r 4 && (

| | (p j r 5 && (! p j r 5 V (cp5 && ! b r 5)))) * /

i n i t

do

: : ((cp5 && ! b r 5) && (p j r 5)) - > go t o a c c e p t _ S 8

: : ((cp4 && ! b r 4) && (p j r 4)) - > go t o a c c e p t _ S 1 3

: : ((cp3 && ! b r 3) && (p j r 3)) - > go t o a c c e p t _ S 1 8

: : ((cp2 && ! b r 2) && (p j r 2)) - > go t o a c c e p t _ S 2 3

: : ((cp1 && ! b r 1) && (pj r 1)) - > go t o a c c e p t _ S 2 8

(1) - > g o t o T 0 _ i n i t

o d ;

a c c e p t _ S 8 :

((c p 5 && ! b r 5)) - > g o t o a c c e p t _ S 8

a t o m i c { (! ((p j r 5)) && (c p 5 && ! b r 5)) - > a s s e r t (! (! ((pj r 5)) && (cp5 && ! b r 5))) }

od ;

a c c e p t _ S 13 :

do

((c p 4 && ! b r 4)) - > g o t o a c c e p t _ S 1 3

a t o m i c { (! ((p j r 4)) && (cp4 && ! b r 4)) - > a s s e r t (! (! ((p j r 4)) && (cp4 && ! b r 4))) }

od ;

a c c e p t _ S 18 :

do

((c p 3 && ! b r 3)) - > g o t o a c c e p t _ S 1 8

a t o m i c { (! ((p j r 3)) && (c p 3 && ! b r 3)) - > a s s e r t (! (! ((pj r3)) && (cp3 && ! b r 3))) }

od ;

a c c e p t _ S 2 3 :

do

((c p 2 && ! b r 2)) - > g o t o a c c e p t _ S 2 3

a t o m i c { (! ((p j r 2)) && (cp2 && ! b r 2)) - > a s s e r t (! (! ((p j r 2)) && (cp2 && ! b r 2))) }

od ;

a c c e p t _ S 2 8 :

do

((c p 1 && ! b r 1)) - > g o t o a c c e p t _ S 2 8

a t o m i c { (! ((p j r 1)) && (cp1 && ! b r 1)) - > a s s e r t (! (! ((p j r 1)) && (cp1 && ! b r 1))) }

od ;

a c c e p t _ a l l :

s k i p

do

}

132

Table 6. Results of SWARM Run with Invariant 6

State-Vector (bytes) Depth Reached States, Stored States, Matched Transitions Atomic Steps
816 753 204,456 28,413 232,869 96,415
816 725 243,886 36,332 280,218 102,936
808 735 28,381,118 38,064,635 66,445,753 12,814,668
808 729 30,575,598 41,628,799 72,204,397 13,935,548
816 127 170 61 231 115
816 127 171 65 236 116
808 127 598 632 1,230 362
808 127 676 777 1,453 411
816 753 191,892 28,091 219,983 93,636
816 725 189,763 29,578 219,341 90,567
808 725 2,183,192 3,151,575 5,334,767 1,076,571
808 729 582,218 848,611 1,430,829 280,930
816 753 45,593 7,912 53,505 29,672
816 725 243,742 36,322 280,064 102,931
808 751 30,783,886 43,674,842 74,458,728 15,912,275
808 729 24,976,745 32,844,658 57,821,403 10,447,175
808 847 29,291,801 39,621,779 68,913,580 15,361,838
816 127 171 65 236 116
808 127 674 711 1,385 401
808 127 597 602 1,199 358
808 847 17,972,675 26,314,383 44,287,058 11,849,226
816 725 212,117 32,513 244,630 94,837
808 743 4,463,935 6,497,292 10,961,227 2,336,744
808 725 1,117,658 1,619,542 2,737,200 520,850
808 813 636,057 952,454 1,588,511 416,629
816 725 41,486 6,990 48,476 24,977
816 747 183,383 24,031 207,414 98,344
808 737 30,467,168 41,334,789 71,801,957 13,637,976
808 853 33,886,973 48,881,998 82,768,971 21,379,071
808 729 23,777,078 31,012,443 54,789,521 9,309,718
816 127 170 61 231 115
808 127 654 690 1,344 406
808 127 614 594 1,208 365
808 729 16,075,896 22,989,194 39,065,090 8,251,318
816 747 142,540 19,738 162,278 77,083
808 731 2,110,392 3,030,938 5,141,330 988,954
808 853 1,224,382 1,825,033 3,049,415 840,614
808 729 293,910 428,211 722,121 134,435

133

7. INVARIANT 7

/ * s p i n - f >(((p j l II P j r 1) && [] ! nb1) | | ((p j 2 | | p j r 2) & & [] ! n b 2) | | ((p j 3 | | p j r 3) & & [] ! n b 3)

II ((p j 4 | | p j r 4) && [] ! nb4) | | ((pj 5 | | p j r 5) & & [] ! n b 5)) ' * /

{ / * <>(((pj1 | | p j r 1) && []! n b 1) | | ((p j 2 | | p j r 2) && [] ! n b 2) | | ((p j 3 | | p j r 3) && [] ! n b 3)

| | ((p j 4 | | p j r 4) && [] ! nb4) | | ((pj 5 | | p j r 5) && [] ! n b 5)) * /

(! ((n b 5)) && (p j 5 | | p j r 5)) - > go t o a c c e p t _ S 8

(! ((n b 4)) && (p j 4 | | p j r 4)) - > go t o a c c e p t _ S 1 3

(! ((n b 3)) && (p j 3 | | p j r 3)) - > go t o a c c e p t _ S 1 8

(! ((n b 2)) && (p j 2 | | p j r 2)) - > go t o a c c e p t _ S 2 3

(! ((nb1)) && (p j 1 | |

(1) - > g o t o T 0 _ i n i t

p j r 1)) - > go t o a c c e p t _ S 2 8

o d ;

a c c e p t _ S 8 :

do

od ;

a c c e p t _ S 13 :

do

(! ((n b 5))) - > g o t o a c c e p t _ S 8

(! ((n b 4))) - > g o t o a c c e p t _ S 1 3

od ;

a c c e p t _ S 18 :

do

od ;

a c c e p t _ S 2 3 :

do

od ;

a c c e p t _ S 2 8 :

do

(! ((n b 3))) - > g o t o a c c e p t _ S 1 8

(! ((n b 2))) - > g o t o a c c e p t _ S 2 3

(! ((n b 1))) - > g o t o a c c e p t _ S 2 8

od ;

T 0 i n i t

do

}

134

Table 7. Results of SWARM Run with Invariant 7

State-Vector (bytes) Depth Reached States, Stored States, Matched Transitions Atomic Steps
816 753 1,116,427 936,131 2,052,558 1,022,076
816 725 1,263,187 1,314,700 2,577,887 1,112,634
808 712 27,797,605 35,532,631 63,330,236 12,902,621
808 700 30,204,975 39,504,081 69,709,056 14,215,258
816 127 1 ,0 1 0 1,346 2,356 1,115
816 127 1,016 1,395 2,411 1,126
808 127 3,632 8,253 11,885 3,476
808 127 4,046 9,692 13,738 3,661
816 724 341,015 48,650 389,665 179,352
816 696 284,434 42,712 327,146 151,229
808 700 2,359,063 3,266,542 5,625,605 1,381,344
808 700 576,152 774,053 1,350,205 276,787
816 724 49,018 8,622 57,640 33,596
816 725 1,265,548 1,291,277 2,556,825 1,112,106
808 596 25,672,493 36,579,298 62,251,791 34,045,296
808 700 24,750,687 31,076,926 55,827,613 10,890,658
808 820 29,713,006 38,896,014 68,609,020 16,742,644
816 127 1,016 1,395 2,411 1,126
808 127 3,981 8,967 12,948 3,592
808 127 3,644 8,279 11,923 3,303
808 820 17,683,950 24,934,412 42,618,362 11,990,964
816 700 475,556 71,686 547,242 243,440
808 716 4,229,425 5,758,692 9,988,117 2,281,402
808 704 1,131,222 1,531,036 2,662,258 625,161
808 790 611,954 873,998 1,485,952 353,098
816 696 56,446 10,766 67,212 43,120
816 747 968,283 990,557 1,958,840 1,070,151
808 578 27,264,717 37,658,936 64,923,653 34,830,403
808 824 33,551,519 46,785,044 80,336,563 21,464,601
808 700 23,174,232 28,856,972 52,031,204 9,339,704
816 127 1 ,0 1 0 1,346 2,356 1,115
808 127 3,957 8,964 12,921 3,634
808 127 3,674 8,284 11,958 3,365
808 700 14,366,058 19,298,375 33,664,433 6,806,685
816 720 239,374 33,017 272,391 140,727
808 704 2,274,409 3,131,654 5,406,063 1,212,087
808 824 1,235,328 1,766,064 3,001,392 873,162
808 704 301,929 408,549 710,478 139,172

135

/ * s p i n

n e v e r

T 0 _ i n i t

a c c e p t _

}

- f ’ <>((n b l && ! b c) | | (nb1 && ! b c) | | (n b l && ! b c) | | (n b l && ! b c) | | (n b l && ! b c)) ’ * /

{ / * <>((nb1 && ! b c) | | (nb1 && ! b c) | | (nb1 && ! b c) | | (nb1 && ! b c) | | (nb1 && ! b c)) */

8. INVARIANTS

do

:: a t o m i c { (((nb1 && ! b c) | | (nb1 && ! b c) | | (nb1 && ! b c) | | (nb1 && ! b c) | | (nb1 && ! b c)))

- > a s s e r t (! (((nb1 && ! b c) | | (nb1 && ! b c) | | (nb1 && ! b c) | | (nb1 && ! b c)

11 (nb1 && ! b c)))) }

: : (1) - > g o t o T 0 _ i n i t

o d ;

a l l :

s k i p

136

Table 8. Results of SWARM Run with Invariant 8

State-Vector (bytes) Depth Reached States, Stored States, Matched Transitions Atomic Steps
816 753 204,939 28,889 233,828 96,895
816 725 243,886 36,332 280,218 102,936
808 739 27,505,430 36,583,677 64,089,107 11,675,708
808 729 30,921,101 42,190,526 73,111,627 14,510,660
816 127 170 61 231 115
816 127 171 65 236 116
808 127 598 632 1,230 362
808 127 676 777 1,453 411
816 753 140,265 19,997 160,262 64,091
816 725 155,408 23,541 178,949 70,940
808 727 2,162,448 3,115,806 5,278,254 1,018,411
808 729 538,809 774,334 1,313,143 234,872
816 753 45,533 8,238 53,771 31,020
816 725 243,853 36,322 280,175 102,914
808 749 30,455,657 43,050,727 73,506,384 15,303,546
808 729 24,990,344 32,828,963 57,819,307 10,201,987
808 847 29,160,278 39,280,399 68,440,677 14,622,920
816 127 171 65 236 116
808 127 674 711 1,385 401
808 127 597 602 1,199 358
808 847 17,755,394 25,842,837 43,598,231 11,208,394
816 725 212,659 32,381 245,040 94,685
808 759 4,333,691 6,261,263 10,594,954 2,188,190
808 725 1,120,969 1,623,742 2,744,711 545,256
808 819 625,606 932,878 1,558,484 408,906
816 725 47,229 8,474 55,703 30,309
816 747 183,383 24,031 207,414 98,344
808 737 30,776,081 41,863,200 72,639,281 13,939,558
808 853 33,617,258 48,366,502 81,983,760 20,451,865
808 729 25,161,891 33,381,888 58,543,779 10,788,141
816 127 170 61 231 115
808 127 654 690 1,344 406
808 127 614 594 1,208 365
808 729 16,162,016 23,121,266 39,283,282 8,350,128
816 747 162,974 22,883 185,857 90,083
808 729 2,243,229 3,266,434 5,509,663 1,189,533
808 853 1,217,636 1,810,031 3,027,667 830,502
808 729 305,856 450,791 756,647 160,549

137

9. INVARIANT 9

/ * s p i n - f • <>(((p j l | | p j r l) && (b r l V ! p l 1)) | | ((p j 2 | | p j r 2) && (br2 V ! p l 2)) | | ((p j 3 | | p j r 3)

&& (b r 3 V ! p l 3)) | | ((p j 4 | | p j r 4) && (b r 4 V ! p l 4)) | | ((p j 5 | | p j r 5) && (b r 5 V ! p l 5))) ’ * /

n e v e r { / * <>(((pj 1 | | p j r 1) && (b r 1 V ! pl1)) | | ((pj 2 | | p j r 2) && (b r 2 V ! p l 2)) | | ((pj 3 | | p j r 3)

&& (b r 3 V ! p l 3)) | | ((p j 4 | | p j r 4) && (b r 4 V ! p l 4)) | | ((p j 5 | | pj r 5) && (b r 5 V ! p l 5))) */

T 0 _ i n i t :

do

(! ((p l 5)) && (p j 5 | | pj r 5)) - > g o t o a c c e p t _ S 8

a t o m i c { (((! ((pl1)) && (br1) && (pj 1 | | p j r 1)) | | (((! ((p l 2)) && (br2) && (pj 2 | | p j r 2)) | |

(((! ((pl 3)) && (b r 3) && (pj 3 | | p j r 3)) | | (((! ((p l 4)) && (b r 4) && (p j 4 | | p j r 4))

| | (! ((pl 5)) && (b r 5) && (pj 5 | | p j r 5)))))))))) - > a s s e r t (! (((! ((pl1)) && (br1) && (pj 1 | |

| | (((! ((p l 2)) && (br2) && (p j 2 | | p j r 2)) | | (((! ((p l 3)) && (b r 3) && (p j 3 | | p j r 3))

| | (((! ((p l 4)) && (b r 4) && (p j 4 | | p j r 4)) | | (! ((p l 5)) && (b r 5) && (p j 5 | | p j r 5)))))))))))

(! ((p l 4)) && (p j 4 | | p j r 4)) - > g o t o a c c e p t _ S 1 3

(! ((p l 3)) && (p j 3 | | p j r 3)) - > g o t o a c c e p t _ S 1 8

(! ((p l 2)) && (p j 2 | | p j r 2)) - > g o t o a c c e p t _ S 2 3

(! ((pl 1)) && (pj 1 11 p j r 1)) - > g o t o a c c e p t _ S 2 8

(1) - > g o t o T 0 _ i n i t

o d ;

a c c e p t _ S 8 :

do

(! ((p l 5)))

a t o m i c { (!

- > g o t o a c c e p t _ S 8

((p15)) && (b r 5)) -> a s s e r t (! (! ((p l 5)) && (b r 5))) }

od ;

a c c e p t _ S 13 :

do

(! ((p l 4))) - > g o t o a c c e p t _ S 1 3

:: a t o m i c { (! ((p l 4)) && (b r 4)) - > a s s e r t (! (!

od ;

a c c e p t _ S 18 :

do

: : (! ((p l 3))) - > g o t o a c c e p t _ S 1 8

:: a t o m i c { (! ((p l 3)) && (b r 3)) - > a s s e r t (! (!

od ;

a c c e p t _ S 2 3 :

do

: : (! ((p l 2))) - > g o t o a c c e p t _ S 2 3

:: a t o m i c { (! ((p l 2)) && (b r 2)) - > a s s e r t (! (!

od ;

a c c e p t _ S 2 8 :

do

:: (! ((pl1)))

: : a t o m i c { (!

od ;

a c c e p t _ a l l :

s k i p

((p l 4)) && (br4))) }

((p l 3)) && (br3))) }

((p l 2)) && (br2))) }

- > g o t o a c c e p t _ S 2 8

((p l 1)) && (br1)) - > a s s e r t (! (! ((pl1)) && (br1))) }

p j r 1))

}

}

138

Table 9. Results of SWARM Run with Invariant 9

State-Vector (bytes) Depth Reached States, Stored States, Matched Transitions Atomic Steps
816 728 1,077,426 985,856 2,063,282 1,447,158
816 700 1,170,621 1,328,235 2,498,856 1,622,113
808 714 29,207,074 40,660,942 69,868,016 15,573,240
808 704 30,335,723 42,423,723 72,759,446 15,730,707
816 127 1 ,0 1 0 1,346 2,356 1,115
816 127 1,016 1,395 2,411 1,126
808 127 3,666 8,336 1 2 ,0 0 2 3,308
808 127 4,046 9,692 13,738 3,661
816 728 530,862 94,605 625,467 440,033
816 704 434,879 81,187 516,066 378,013
808 702 2,121,392 3,163,588 5,284,980 963,881
808 704 610,282 933,175 1,543,457 304,884
816 728 42,373 8,128 50,501 40,806
816 700 1,171,979 1,312,078 2,484,057 1,616,475
808 734 30,711,975 44,830,511 75,542,486 17,207,627
808 704 25,681,104 35,310,828 60,991,932 12,915,444
808 822 29,946,142 41,978,643 71,924,785 17,902,743
816 127 1,016 1,395 2,411 1,126
808 127 3,907 8,791 12,698 3,499
808 127 3,545 7,733 11,278 3,176
808 826 18,315,380 27,639,395 45,954,775 12,306,180
816 702 553,931 105,720 659,651 455,540
808 722 4,528,594 6,810,295 11,338,889 2,316,875
808 702 1,163,965 1,769,539 2,933,504 560,815
808 798 617,175 948,765 1,565,940 329,662
816 708 60,419 12,988 73,407 64,962
816 722 912,863 995,392 1,908,255 1,397,736
808 712 30,537,285 42,654,330 73,191,615 15,780,654
808 828 34,392,902 51,159,710 85,552,612 22,123,435
808 704 25,462,663 34,906,570 60,369,233 12,874,215
816 127 1 ,0 1 0 1,346 2,356 1,115
808 127 3,978 8,968 12,946 3,655
808 127 3,674 8,284 11,958 3,365
808 704 14,577,557 21,100,918 35,678,475 7 ,4 7 4 ,5 3 4

816 722 388,526 65,470 453,996 339,177
808 714 2,208,872 3,319,485 5,528,357 1,068,086
808 828 1,245,536 1,922,889 3,168,425 754,519
808 704 293,584 444,361 737,945 127,730

139

10. INVARIANT 10

/ * s p i n - f ’ <>((! cp 1 && (commandl | | e v a l u a t e l)) | | (! cp2 && (command2 | | e v a l u a t e 2))

| | (! c p 3 && (command3 | | e v a l u a t e 3)) | | (! c p 4 && (command4 | | e v a l u a t e 4)) | | (! cp5 &&

(command5 | | e v a l u a t e 5))) ’ */

n e v e r { / * <>((! cp1 && (command1 | | e v a l u a t e 1)) | | (! c p 2 && (command2 | | e v a l u a t e 2)) | | (! c p 3 &&

(command3 | | e v a l u a t e 3)) | | (! cp4 && (command4 | | e v a l u a t e 4)) | | (! cp5 && (command5 | | e v a l u a t e 5))) */

T 0 _ i n i t :

do

:: a t o m i c { (((! c p 1 && (command1 | | e v a l u a t e 1)) | | (! c p 2 && (command2 | | e v a l u a t e 2))

| | (! cp3 && (command3 | | e v a l u a t e 3)) | | (! cp4 && (command4 | | e v a l u a t e 4)) | |

(! cp5 && (command5 | | e v a l u a t e 5))))

- > a s s e r t (! (((! c p 1 && (command1 | | e v a l u a t e 1)) | | (! cp2 && (command2 | | e v a l u a t e 2))

| | (! cp3 && (command3 | | e v a l u a t e 3)) | | (! cp4 && (command4 | | e v a l u a t e 4)) | |

(! cp5 && (command5 | | e v a l u a t e 5))))) }

: : (1) - > g o t o T 0 _ i n i t

o d ;

a c c e p t _ a l l :

s k i p

}

140

Table 10. Results of SWARM Run with Invariant 10

State-Vector (bytes) Depth Reached States, Stored States, Matched Transitions Atomic Steps
816 753 205,260 28,561 233,821 95,970
816 725 243,886 36,332 280,218 102,936
808 735 27,505,538 36,529,428 64,034,966 11,653,494
808 729 30,930,729 42,204,840 73,135,569 14,320,936
816 127 170 61 231 115
816 127 171 65 236 116
808 127 598 632 1,230 362
808 127 676 777 1,453 411
816 753 194,019 28,189 222,208 93,716
816 725 196,509 30,347 226,856 94,638
808 725 2,285,098 3,322,785 5,607,883 1,144,529
808 729 578,081 839,950 1,418,031 266,247
816 753 37,345 6,238 43,583 22,139
816 725 243,853 36,330 280,183 102,936
808 751 30,764,256 43,604,076 74,368,332 15,908,577
808 729 24,813,298 32,555,581 57,368,879 10,089,344
808 847 29,222,183 39,455,101 68,677,284 15,323,503
816 127 171 65 236 116
808 127 674 711 1,385 401
808 127 597 602 1,199 358
808 851 17,677,424 25,720,185 43,397,609 11,074,941
816 725 220,897 34,009 254,906 100,152
808 751 4,325,805 6,240,264 10,566,069 2,075,032
808 725 1,151,403 1,672,028 2,823,431 531,519
808 813 622,957 923,595 1,546,552 392,054
816 725 49,636 8,916 58,552 33,204
816 747 183,383 24,031 207,414 98,344
808 737 30,980,444 42,225,314 73,205,758 14,404,424
808 853 34,140,561 49,333,531 83,474,092 21,667,323
808 729 25,529,617 33,970,646 59,500,263 11,168,421
816 127 170 61 231 115
808 127 654 690 1,344 406
808 127 614 594 1,208 365
808 729 15,483,597 21,959,991 37,443,588 7,472,546
816 747 164,660 23,043 187,703 90,920
808 735 2,165,477 3,129,449 5,294,926 1,053,003
808 853 1,230,499 1,833,314 3,063,813 822,381
808 729 308,148 453,576 761,724 155,684

141

/ * s p i n

II

n e v e r

II

T 0 _ i n i t

a c c e p t .

}

11. INVARIANT 11

- f ’ <>((p l l && (p h y l | | ! b r l 1)) | | (p l 2 & & (p h y 2 | | ! b r l 2)) | | (p l 3 & & (p h y 3 | | ! b r l 3))

(p l 4 && (p h y 4 | | ! b r l 4)) | | (p l 5 & & (p h y 5 | | ! b r l 5))) ’ * /

{ / * <>((p l 1 && (phy1 | | ! b r l 1)) | | (p l 2 & & (p h y 2 | | ! b r l 2)) | | (p l 3 & & (p h y 3 | | ! b r l 3))

(p l 4 && (p h y 4 | | ! b r l 4)) | | (p l 5 & & (p h y 5 | | ! b r l 5))) * /

do

:: a t o m i c { (((p l 1 && (phy1 | | ! b r l 1)) | | (p l 2 && (p hy2 | | ! b r l 2)) | | (p l 3 && (p h y 3 | | ! b r l 3))

| | (p l 4 && (phy4 | | ! b r l 4)) | | (p l 5 && (p hy5 | | ! b r l 5)))) - > a s s e r t (! (((p l 1 && (phy1 | | ! b r l 1))

| | (p l 2 && (phy2 | | ! b r l 2)) | | (p l 3 & & (p h y 3 | | ! b r l 3)) | | (p l 4 & & (p h y 4 | | ! b r l 4))

| | (pl 5 && (phy5 | | ! b r l 5))))) }

: : (1) - > g o t o T 0 _ i n i t

o d ;

a l l :

s k i p

142

Table 11. Results of SWARM Run with Invariant 11

State-Vector (bytes) Depth Reached States, Stored States, Matched Transitions Atomic Steps
792 387 266,685 58,786 325,471 644,856
792 397 332,192 83,450 415,642 844,717
792 425 3,898,074 5,765,283 9,663,357 18,327,828
792 557 391,423 5,819,978 9,734,213 18,586,665
792 127 2,080 1,676 3,756 9,200
792 127 2,138 1,796 3,934 8,302
792 127 15,878 17,678 33,556 66,481
792 127 17,300 20,784 38,084 58,599
792 387 243,650 53,861 297,511 589,222
792 397 258,029 63,389 321,418 630,965
792 409 1,519,241 2,365,701 3,884,942 7,622,567
792 438 313,911 471,439 785,350 1,662,781
792 371 54,231 12,871 67,102 135,228
792 397 332,189 83,441 415,630 844,520
792 366 3,726,214 5,536,873 9,263,087 17,546,144
792 413 3,905,803 5,775,176 9,680,976 18,351,573
792 383 3,825,144 5,570,371 9,395,515 17,789,643
792 127 2,138 1,796 3,934 8,302
792 127 19,038 22,948 41,986 92,616
792 127 16,000 17,751 33,751 68,340
792 377 3,471,629 5,163,201 8,634,830 16,512,492
792 397 289,183 72,072 361,255 724,546
792 373 1,788,433 2,682,108 4,470,541 8,540,646
792 388 651,618 1,015,292 1,666,910 3,281,283
792 363 528,246 855,275 1,383,521 2,879,333
792 397 42,689 10,129 52,818 99,901
792 387 283,548 62,563 346,111 686,228
792 377 3,834,827 5,636,928 9,471,755 17,836,212
792 379 3,615,779 5,314,065 8,929,844 16,979,534
792 557 3,939,995 5,851,983 9,791,978 18,682,676
792 127 2,080 1,676 3,756 9,200
792 127 19,288 22,903 42,191 96,497
792 127 20,132 21,349 41,481 76,718
792 535 3,393,736 5,093,582 8,487,318 16,309,086
792 387 226,722 50,130 276,852 545,867
792 357 678,292 999,431 1,677,723 3,244,271
792 357 903,528 1,444,102 2,347,630 4,707,467
792 426 211,099 308,266 519,365 1,136,067

143

REFERENCES

Alexiou, N., Lagana, M., Gisdakis, S., Khodaei, M., and Papadimitratos, P., ‘Vespa:
Vehicular security and privacy-preserving architecture,’ in ‘Proceedings of the 2nd
ACM workshop on hot topics on wireless network security and privacy,’ ACM, 2013
pp. 19-24.

Alibaba.com, ‘Cost of Antminer S9j,’ https://www.alibaba.com/product-detail/Free-
shipping-Antminer-S9j-14-5TH_60765088857.html, 2019.

Amoozadeh, M., Deng, H., Chuah, C.-N., Zhang, H. M., and Ghosal, D., ‘Platoon man
agement with cooperative adaptive cruise control enabled by VANET,’ Vehicular
communications, 2015, 2(2), pp. 110-123.

Apostolaki, M., Zohar, A., and Vanbever, L., ‘Hijacking bitcoin: Routing attacks on cryp
tocurrencies,’ in ‘2017 IEEE Symposium on Security and Privacy (SP),’ IEEE, 2017
pp. 375-392.

Bentov, I., Gabizon, A., and Mizrahi, A., ‘Cryptocurrencies without proof of work,’ in
‘International Conference on Financial Cryptography and Data Security,’ Springer,
2016 pp. 142-157.

Biryukov, A. and Pustogarov, I., ‘Bitcoin over TOR isn’t a good idea,’ in ‘2015 IEEE
Symposium on Security and Privacy,’ IEEE, 2015 pp. 122-134.

BitInfoCharts, ‘Bitcoin Hashrate chart,’ https://bitinfocharts.com/comparison/bitcoin-
hashrate.html, 2019a, accessed: May, 2019.

BitInfoCharts, ‘Bitcoin SV Hashrate chart,’ https://bitinfocharts.com/comparison/bitcoin
sv-hashrate.html, 2019b, accessed: May, 2019.

BitInfoCharts, ‘Litecoin Hashrate chart,’ https://bitinfocharts.com/comparison/litecoin-
hashrate.html, 2019c, accessed: May, 2019.

Blockchain.com, ‘Total Hash Rate,’ http://www.blockchain.com/en/charts/hash-rate, 2019.

Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., and Felten, E. W., ‘Sok:
Research perspectives and challenges for bitcoin and cryptocurrencies,’ in ‘2015
IEEE Symposium on Security and Privacy,’ IEEE, 2015 pp. 104-121.

Borge, M., Kokoris-Kogias, E., Jovanovic, P , Gasser, L., Gailly, N., and Ford, B., ‘Proof-
of-personhood: Redemocratizing permissionless cryptocurrencies,’ in ‘2017 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW),’ IEEE,
2017 pp. 23-26.

Bureau, C., Statistical Abstract o f the United States 2010, Government Printing Office,
2009.

https://www.alibaba.com/product-detail/Free-shipping-Antminer-S9j-14-5TH_60765088857.html
https://www.alibaba.com/product-detail/Free-shipping-Antminer-S9j-14-5TH_60765088857.html
https://bitinfocharts.com/comparison/bitcoin-hashrate.html
https://bitinfocharts.com/comparison/bitcoin-hashrate.html
https://bitinfocharts.com/comparison/bitcoin
https://bitinfocharts.com/comparison/litecoin-hashrate.html
https://bitinfocharts.com/comparison/litecoin-hashrate.html
http://www.blockchain.com/en/charts/hash-rate

144

BuriedOne, ‘GPU Mining Hashrates,’ http://www.buriedone.com/gpu-hashrates, 2019.

Buterin, V. et al., ‘A next-generation smart contract and decentralized application platform,’
white paper, 2014.

Castro, M., Liskov, B., et al., ‘Practical Byzantine fault tolerance,’ in ‘OSDI,’ volume 99,
1999 pp. 173-186.

Chen, L., Lit, Q., Martin, K. M., and Ng, S.-L., ‘A privacy-aware reputation-based an
nouncement scheme for VANETs,’ in ‘2013 IEEE 5th International Symposium on
Wireless Vehicular Communications (WiVeC),’ IEEE, 2013 pp. 1-5.

Christidis, K. and Devetsikiotis, M., ‘Blockchains and smart contracts for the internet of
things,’ Ieee Access, 2016, 4, pp. 2292-2303.

Clarke, E. M., Klieber, W., Novacek, M., and Zuliani, P., ‘Model checking and the state ex
plosion problem,’ in ‘LASER Summer School on Software Engineering,’ Springer,
2011 pp. 1-30.

CoinMarketCap, ‘Cryptocurrency Market Capitalizations,’ https://coinmarketcap.com/,
2019.

Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V., et al., ‘Blockchain technology:
Beyond bitcoin,’ Applied Innovation, 2016, 2(6-10), p. 71.

Dorri, A., Steger, M., Kanhere, S. S., and Jurdak, R., ‘Blockchain: A distributed solution to
automotive security and privacy,’ IEEE Communications Magazine, 2017, 55(12),
pp. 119-125.

Duan, J. and Chow, M.-Y., ‘A resilient consensus-based distributed energy management
algorithm against data integrity attacks,’ IEEE Transactions on Smart Grid, 2018,
10(5), pp. 4729-4740.

Dwork, C., Lynch, N., and Stockmeyer, L., ‘Consensus in the presence of partial synchrony,’
Journal of the ACM (JACM), 1988, 35(2), pp. 288-323.

Elsadig, M. A. and Fadlalla, Y. A., ‘VANETs security issues and challenges: a survey,’
Indian Journal of Science and Technology, 2016, 9(28), pp. 1-8.

Eyal, I., ‘The miner’s dilemma,’ in ‘2015 IEEE Symposium on Security and Privacy,’ IEEE,
2015 pp. 89-103.

Gao, F., Zhu, L., Shen, M., Sharif, K., Wan, Z., and Ren, K., ‘A blockchain-based privacy
preserving payment mechanism for vehicle-to-grid networks,’ IEEE network, 2018,
32(6), pp. 184-192.

Gervais, A., Ritzdorf, H., Karame, G. O., and Capkun, S., ‘Tampering with the delivery
of blocks and transactions in bitcoin,’ in ‘Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,’ ACM, 2015 pp. 692-705.

http://www.buriedone.com/gpu-hashrates
https://coinmarketcap.com/

145

Goyal, P., Parmar, V., and Rishi, R., ‘MANET: vulnerabilities, challenges, attacks, applica
tion,’ IJCEM International Journal of Computational Engineering & Management,
2011, 11(2011), pp. 32-37.

Guette, G. and Bryce, C., ‘Using TPMS to secure vehicular ad-hoc networks (VANETs),’
in ‘IFIP International Workshop on Information Security Theory and Practices,’
Springer, 2008 pp. 106-116.

Gurung, S., Lin, D., Squicciarini, A., andBertino, E., ‘Information-oriented trustworthiness
evaluation in vehicular ad-hoc networks,’ in ‘International Conference on Network
and System Security,’ Springer, 2013 pp. 94-108.

Hanson, M. and Uy, M. R., ‘Best mining GPU 2020: the best graphics cards for mining Bit-
coin, Ethereum and more,’ http://www.techradar.com/news/best-mining-gpu, 2020.

Hartenstein, H. and Laberteaux, L., ‘A tutorial survey on vehicular ad hoc networks,’ IEEE
Communications magazine, 2008, 46(6), pp. 164-171.

Holzmann, G. J., The SPIN model checker: Primer and reference manual, volume 1003,
Addison-Wesley Reading, 2004.

Holzmann, G. J., Joshi, R., and Groce, A., ‘Swarm verification techniques,’ IEEE Transac
tions on Software Engineering, 2010, 37(6), pp. 845-857.

Howser, G. and McMillin, B., ‘A modal model of stuxnet attacks on cyber-physical systems:
A matter of trust,’ in ‘2014 Eighth International Conference on Software Security
and Reliability (SERE),’ IEEE, 2014 pp. 225-234.

Infomation Technology Laboratory, N. I. o. S. and Technology, ‘Federal Informa
tion Processing Standards Publication, Digitial Signature Standard (DSS),’
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf, 2013.

Jaimes, L. M. S., Ullah, K., anddos Santos Moreira, E., ‘ARS: anonymous reputation system
for vehicular ad hoc networks,’ in ‘2016 8 th IEEE Latin-American Conference on
Communications (LATINCOM),’ IEEE, 2016 pp. 1-6.

Jia, D., Lu, K., Wang, J., Zhang, X., and Shen, X., ‘A survey on platoon-based vehicular
cyber-physical systems,’ IEEE communications surveys & tutorials, 2015, 18(1),
pp. 263-284.

Johnson, D., Menezes, A., and Vanstone, S., ‘The elliptic curve digital signature algorithm
(ECDSA),’ International journal of information security, 2001, 1(1), pp. 36-63.

Kamat, P., Baliga, A., and Trappe, W., ‘An identity-based security framework for VANETs,’
in ‘Proceedings of the 3rd international workshop on Vehicular ad hoc networks,’
ACM, 2006 pp. 94-95.

Kanteti, U. G., ‘Multiple security domain model of a vehicle in an automated vehicle
system,’ 2017.

http://www.techradar.com/news/best-mining-gpu
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf

146

Kiayias, A. and Panagiotakos, G., ‘Speed-Security Tradeoffs in Blockchain Protocols.’
IACR Cryptology ePrint Archive, 2015, 2015, p. 1019.

Lee, E. A., ‘Cyber physical systems: Design challenges,’ in ‘2008 11th IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed Computing
(ISORC),’ IEEE, 2008 pp. 363-369.

Leiding, B., Memarmoshrefi, P., and Hogrefe, D., ‘Self-managed and blockchain-based
vehicular ad-hoc networks,’ in ‘Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Adjunct,’ ACM, 2016 pp.
137-140.

Lu, Z., Wang, Q., Qu, G., and Liu, Z., ‘Bars: a blockchain-based anonymous reputation sys
tem for trust management in VANETs,’ in ‘2018 17th IEEE International Conference
On Trust, Security And Privacy In Computing And Communications/12th IEEE
International Conference On Big Data Science And Engineering (TrustCom/Big-
DataSE),’ IEEE, 2018 pp. 98-103.

Maxwell, G., Poelstra, A., Seurin, Y., and Wuille, P., ‘Simple Schnorr multi-signatures with
applications to bitcoin,’ Designs, Codes and Cryptography, 2018, pp. 1-26.

Moteff, J., Copeland, C., and Fischer, J., ‘Critical infrastructures: What makes an infras
tructure critical?’ Library of Congress Washington DC Congressional Research
Service, 2003 .

Nakamoto, S. etal., ‘Bitcoin: A peer-to-peer electronic cash system,’ 2008.

Palaniswamy, P. and McMillin, B., ‘Cyber-physical security of an electric microgrid,’ in
‘2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing
(PRDC),’ IEEE, 2018 pp. 74-83.

Pilkington, M., ‘11 Blockchain technology: principles and applications,’ Research hand
book on digital transformations, 2016, 225.

Qu, F., Wu, Z., Wang, F.-Y., and Cho, W., ‘A security and privacy review of VANETs,’ IEEE
Transactions on Intelligent Transportation Systems, 2015, 16(6), pp. 2985-2996.

Reference, B. D., ‘Bitcoin Block Headers,’ https://bitcoin.org/en/developer-
reference#block-headers, 2019.

Reis, A. B., Sargento, S., Neves, F., and Tonguz, O. K., ‘Deploying roadside units in sparse
vehicular networks: What really works and what does not,’ IEEE transactions on
vehicular technology, 2013, 63(6), pp. 2794-2806.

Rodgers, T., ‘Ethereum Classic Price Roaring Just Weeks After 51% Attack,’
https://www.forbes.com/sites/tomrodgers1/2019/04/08/ethereum-classic-price-
roaring-just-weeks-after-51-attack/#7677748b6f7e, 2019.

https://bitcoin.org/en/developer-reference%23block-headers
https://bitcoin.org/en/developer-reference%23block-headers
https://www.forbes.com/sites/tomrodgers1/2019/04/08/ethereum-classic-price-roaring-just-weeks-after-51-attack/%237677748b6f7e
https://www.forbes.com/sites/tomrodgers1/2019/04/08/ethereum-classic-price-roaring-just-weeks-after-51-attack/%237677748b6f7e

147

Roth, T. and McMillin, B., ‘Physical attestation of cyber processes in the smart grid,’ in
‘International Workshop on Critical Information Infrastructures Security,’ Springer,
2013 pp. 96-107.

Roth, T. P., ‘Distributed state verification in the smart grid using physical attestation,’ 2015.

Roy, A. and Madria, S., ‘Distributed Incentive-Based Secured Traffic Monitoring in
VANETs,’ in ‘21st IEEE International Conference on Mobile Data Management,’
IEEE, 2020 .

Sanseverino, E. R., Di Silvestre, M. L., Gallo, P., Zizzo, G., and Ippolito, M., ‘The
blockchain in microgrids for transacting energy and attributing losses,’ in ‘2017
IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData),’ IEEE, 2017 pp. 925
930.

Sharma, P. K., Moon, S. Y., and Park, J. H., ‘Block-VN: A Distributed Blockchain Based
Vehicular Network Architecture in Smart City.’ JIPS, 2017, 13(1), pp. 184-195.

Singh, K., Saini, P., Rani, S., and Singh, A. K., ‘Authentication and privacy preserving
message transfer scheme for vehicular ad hoc networks (VANETs),’ in ‘Proceedings
of the 12th ACM International Conference on Computing Frontiers,’ ACM, 2015
p. 58.

Singh, M. and Kim, S., ‘Blockchain based intelligent vehicle data sharing framework,’
arXiv preprint arXiv:1708.09721, 2017.

Singh, M. and Kim, S., ‘Branch based blockchain technology in intelligent vehicle,’ Com
puter Networks, 2018,145, pp. 219-231.

Squicciarini, A., Lin, D., and Mancarella, A., ‘Paim: Peer-based automobile identity
management in vehicular ad-hoc network,’ in ‘2011 IEEE 35th Annual Computer
Software and Applications Conference,’ IEEE, 2011 pp. 263-272.

Studer, A., Shi, E., Bai, F., and Perrig, A., ‘TACKing together efficient authentication,
revocation, and privacy in VANETs,’ in ‘2009 6th Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks,’
IEEE, 2009 pp. 1-9.

Tschorsch, F. and Scheuermann, B., ‘Bitcoin and beyond: A technical survey on decentral
ized digital currencies,’ IEEE Communications Surveys & Tutorials, 2016, 18(3),
p p .2084-2123.

Value, A. M., ‘Bitmain Antminer L3 (596Mh) profitability: ASIC Miner Value,’
http://www.asicminervalue.com/miners/bitmain/antminer-l3-596mh, 2019.

Wagner, D. and Schweitzer, B., ‘The growing threat of cyber-attacks on critical infrastruc
ture,’ Huffington Post, 2016.

http://www.asicminervalue.com/miners/bitmain/antminer-l3-596mh

148

Wagner, M. and McMillin, B., ‘Cyber-Physical Transactions: A Method for Securing
VANETs with Blockchains,’ in ‘2018 IEEE 23rd Pacific Rim International Sym
posium on Dependable Computing (PRDC),’ 2018 pp. 64-73, doi:10.1109/PRDC.
2018.00017.

Walker, J., ‘Intelligent Transportation Systems - Security Credential Management System
(SCMS),’ http://www.its.dot.gov/resources/scms.htm, 2017.

Wang, W., Hoang, D. T., Xiong, Z., Niyato, D., Wang, P., Hu, P., and Wen, Y., ‘A survey
on consensus mechanisms and mining management in blockchain networks,’ arXiv
preprint arXiv:1805.02707, 2018, pp. 1-33.

Wiki, B., ‘Miner fees,’ https://en.bitcoin.it/wiki/Miner_fees, 2019.

Wright, James, Garrett, Kyle, J., Hill, Krueger, Gregory, Evans, H., J., Andrews, and et al.,
‘National Connected Vehicle Field Infrastructure Footprint Analysis,’ 2014.

Xie, L., Ding, Y., Yang, H., and Wang, X., ‘Blockchain-Based Secure and Trustworthy
Internet of Things in SDN-Enabled 5G-VANETs,’ IEEE Access, 2019,7, pp. 56656
56666.

Xie, Y., Wu, L., Zhang, Y., and Shen, J., ‘Efficient and secure authentication scheme with
conditional privacy-preserving for VANETs,’ Chinese Journal of Electronics, 2016,
25(5), pp. 950-956.

Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., and Rimba,
P., ‘A taxonomy of blockchain-based systems for architecture design,’ in ‘2017
IEEE International Conference on Software Architecture (ICSA),’ IEEE, 2017 pp.
243-252.

Yang, Y.-T., Chou, L.-D., Tseng, C.-W., Tseng, F.-H., and Liu, C.-C., ‘Blockchain-Based
Traffic Event Validation and Trust Verification for VANETs,’ IEEE Access, 2019, 7,
pp. 30868-30877.

Yuan, Y. and Wang, F.-Y., ‘Towards blockchain-based intelligent transportation systems,’
in ‘2016 IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC),’ IEEE, 2016 pp. 2663-2668.

Zeadally, S., Hunt, R., Chen, Y.-S., Irwin, A., and Hassan, A., ‘Vehicular ad hoc networks
(VANETs): status, results, and challenges,’ Telecommunication Systems, 2012,
50(4), pp. 217-241.

http://www.its.dot.gov/resources/scms.htm
https://en.bitcoin.it/wiki/Miner_fees

149

VITA

Matthew Edward Wagner was born in Dover, Delaware. He graduated from Linden-

wood University in St. Charles, Missouri in 2016 with a Bachelor of Science in Computer

Science and Mathematics with honors. Matthew received the Chancellors Distinguished

Fellowship to attend Missouri University of Science and Technology. During his time

at Missouri S&T, he taught one course on Algorithms and researched a variety of topics

including cyber-physical systems, blockchains, vehicular ad-hoc networks, security, and

privacy. He received his Master of Science degree in Computer Science in May 2019 and

his Doctor of Philosophy in Computer Science in August 2020 from Missouri University

of Science and Technology under Professor Bruce McMillin.

	Secure blockchains for cyber-physical systems
	Recommended Citation

	tmp.1601480882.pdf.9fQPL

