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ABSTRACT

Nl-based superalloy is considered as a good candidate due to its excellent 

resistance to elevated temperature deformation for long term period application. 

Understanding the deformation and failure mechanisms of Ni-Based superalloys is very 

helpful for providing design guidelines for processing Ni-based superalloys.

Experimental characterization indicates that the deformation mechanisms of Ni based 

superalloy is strongly microstructure dependent. Besides, damage transform from the 

void nucleation to the macro cracks by voids growth leading to the failure of the Ni-based 

superalloys are also showing strong microstructure sensitivity. Therefore, this work 

focuses on the prediction and comprehension of the deformation and void growth 

behavior in Ni based superalloy at different working conditions via crystal plasticity 

finite element modeling and simulation.

Physically based crystal plasticity frameworks were developed for newly Ni- 

based superalloy Haynes 282. It was found that dislocation shearing through the 

precipitates were acting as the main contributor to the strength of Haynes 282 at room 

temperature and 8150C. Our analysis of the creeping behavior of Haynes 282 exhibited 

that resistance of general climb replaced by the resistance induced by the deposited climb 

dislocation density. In addition, in the study of void growth behavior, our simulation 

results demonstrated that as the main loading axis perpendicular to the grain boundary 

(GB), voids grow more slowly on tilt GBs in bicrystals than those in single and bicrystals 

with twist GBs. And tilt GBs would promote the void grow into irregular shape.
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1. INTRODUCTION

1.1. REQUIREMENTS OF TURBINE ENGINES

Gas turbines acting as one of the most important components in aircraft grain 

thrust by transforming chemical oil energy into acceleration power. A schematic 

illustration of the composition of turbine engine is shown in Figure 1.1 [1]. The 

compressed air generated from the compressor will be streamed into the combustion area, 

where it will be mixed with the fuel and ignited. The generating hot gas will be guided 

toward through a turbine, which extracts the mechanical work required to drive the 

compressor from the momentum change by accelerating the incoming air into an 

expressively higher velocity [2].

Figure 1.1. Cross section of a gas turbine engine [1].



Based on the prerequisites of these harsh working conditions, the selected 

materials need to possess desirable characteristics and capabilities to withstand higher 

pressure and temperature for long time period. Otherwise, the failure of components 

would occur that would cause tragic consequences. For example, Figure 1.2 displays a 

General Electrics CFM56 turbofan engine, which failed shortly after taking off in 

October, 2000. The failure was attributed to the segment loss of the turbine blades 

induced by the cracks propagation under the fatigue stress [2]. Painful apperception 

learned from these tragic circumstances emphasize that the performance and the 

reliability of the turbine engine relies profoundly upon the materials properties.

2

Figure 1.2. Images of failed turbo engine occurring in service [2].



What’s more, over the past few decades, aircraft engines is growing the demand for the 

higher operating conditions driven by the efficiency increase and cost reduction. The 

development of the turbine entry temperature and the corresponding fuel consumption in

3
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Figure 1.3. Evolution of the turbine entry temperature and the corresponding fuel 
consumption of engines since 1970 [3].

recent year are exhibited in Figure 1.3 [3]. As a consequence, the need of capability of 

materials to survive at more extreme conditions is budding.

1.2. DEFORMATION MECHAMISMS OF NI-BASED SUPERALLOYS

Ni-based superalloys are mainly consisting of two phases: face-centered cubic 

(FCC) y  matrix and y ' precipitates. The y  matrix is comprised of Ni, Cr and other 

alloying elements while the y' phase is a coherent, ordered Ni3Al inter-metallic of L12 

crystal structure and performs as distribution of precipitates as shown in Figure 1.4 [4, 5].



The y  matrix is noted by the black arrow, displaying the channel of the matrix, and the 

phase with gray color represents the y ' phase.

4

Figure 1.4. Images of the y-y' structure. (a) y-y' microstructure of CMSX-4 single crystal. 
(b) lattice crystal structure of FCC y matrix (left) and L12 y' precipitate (right) [4, 5].
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Although the coherent interface between the y  matrix and the y' precipitates, the 

lattice misfit still retained due to the slightly difference crystal structure among the y — y' 

microstructure. The strain filed resulting from the lattice parameters misfit reinforce the 

strength by hindering the dislocation motion. Figure 1.5 exhibits the coherency strain 

owing to a lattice misfit between two different phases [6]. A key parameter is used to 

characterize the lattice misfit of an alloy shown as below [7]:

5 = ,-(aY' -aY)
ay'+aY (1)

therein, av< and av are representing lattice parameters of y' and y  phase, respectively.

Figure 1.5. Schematic of the coherency strain owing to the lattice misfit of phase a and
phase b [6].

Moreover, in most contemporary Ni-based single crystal superalloys, the volume 

fraction of the y' phase is about 70%, for example, like CMSX-4 [8]. However, some 

other Ni-based superalloys are only poessing small amount precipitation phase. In



contrast, early generation alloys such as Nimonic 90 is having about 20%-25% 

precipitation phase [9] and recent newly developed Ni-based superalloy Haynes 282 is 

maintaining approximate less than 20% volume fraction of y ' segment as shown in 

Figure 1.6 [10, 11].

6

Figure 1.6. Dark field TEM images of Haynes 282 showing the fine spherical y'
precipitates [11].

Various volume fraction will stimulate different deformation mechanisms induced 

by the different dislocation behavior, resulting from the dissimilar y — y' microstructure, 

such as channel width, particle morphology and so on.

In addition to the y — y' microstructure, some Ni-based superalloys would also 

contain a secondary y' phase with size much smaller than the primary y', and the other 

phases such as 5, carbides and borides forming during the casting manufacturing process 

[7]. For instance, in polycrystalline Ni-based superalloys like IN718 as shown in Figure



1.7 [12], it is strengthened by the body-centered tetragonal (BCT) y"  — Ni3(Al,Ti) and 

FCC y ' — Ni3(Nb) precipitates. Intermediate heat treatment will promote the nucleation 

of 5 phase on the GB see Figure 1.8 [13]. The 5 phase can stabilize and strengthen the GB 

by preventing the GB sliding. Then large y ' and y"  phases within the grain can balance 

the strength between GB and grains to improve the durability, ductility, and long-term 

high temperature stability [14, 15].

7

Figure 1.7. Dark field TEM micrograph of IN718 showing the spherical y from oblate y
phases as agglomerated in the center [12].
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Figure 1.8. Micrograph of o-phase nucleated on the GB [13].

Heat treatment has significantly influence on the performance of Ni-based 

superalloys as it controls the microstructural intelligence of Ni-based superalloys, 

including the distribution and morphology of constituent phases [10]. Figure 1.9 displays 

a standard heat treatment for Haynes 282, involving a 2-step aging process. In detail, the 

solution annealing treatment, at 1135°C for 20 min, aims to dissolve precipitates such as 

carbides and y ', and is kept short enough to avoid grain growth [16]. Water quench 

ensures the fast cooling rate to preserve the supersaturated solid solution structure of the 

alloy. The following 2-step aging aims for the optimum precipitation of GB carbides and 

fine y ' particles, increasing the strength and creep resistance [10, 16]. Figure 1.10 

displays the microstructure of Haynes 282 after the standard heat treatment, which

contains precipitation of Cr-rich M23C6 and Mo-rich M6C carbides at GB improve the
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creep strength and stability of the GB. And the pretty uniform distribution the y' particles 

help the material sustaining high strength for long term, high temperature deformation.

Figure 1.9. Standard 2-step aging heat treatment of Haynes 282 [16].

Figure 1.10. Microstructures of the Haynes 282 subjected to the standard 2-step heat 
treatment. (a) OM micrograph showing the grain size and traces of the rolling direction, 
(b) SEM images displaying homogeneous precipitation of M23 C6 and M6C carbides at 
GB, (c) Dark field TEM image of fine spherical y' particles, (d) SADP showing y  matrix 

spots and superlattice pattern of the y' phase [16].



Before the failure of Ni-based superalloys, plastic deformation is mainly carried 

by the dislocation. Dislocations are gliding mainly in the matrix and will be interacted 

with other dislocations stored in the matrix. When the mobile dislocations meet some 

other held dislocations, the mobile dislocations will be hindered until the resolved shear 

stress (RSS) is large enough to overcome the resistance. As a consequence, more and 

more mobile dislocations will be pinned by the pioneer fixed dislocations, forming 

dislocation networks to further hamper gliding dislocations, until the RSS applied onto 

dislocations is larger than the critical resolved shear stress (CRSS), thereafter, 

dislocations will become transportable. In addition to the dislocations pinned by other 

dislocations, dislocations can also be stuck by other obstacles, like y' precipitate. Due to 

the difference of the hardness between the y  and y' phases, dislocations motion is easily 

blocked inducing obvious accumulation of dislocations in the vicinity of y and y' 

interface. Both ways can help to increase the strength of Ni-based superalloys, as it need 

larger RSS to overcome the increased CRSS to accommodate the plastic deformation.

When dislocations interact with y ' precipitates, they can either shear through the 

precipitates or looping around the precipitates [2]. The criterion on picking one or the 

other is dependent upon the size and volume fraction of the y ' precipitate. In general, 

when precipitates are having small size, high volume fraction, and low anti-phase 

boundary (APB) energy, dislocations shearing through the particles are preferred [2]. It is 

well acknowledged that single a /2  < 110 > {111} dislocation in matrix cannot glide 

through the y' phase. Instead, dislocations shear through the precipitates must be in pairs 

with the formation of an APB, which has been demonstrated by TEM observation as 

shown in Figure 1.11 [2]. In detail, the first dislocation brings an APB when entering the

10



precipitates, and the second dislocation eliminates it, thereupon providing a resistance 

that need to be overcome when shearing occurring. In dislocations shearing through the 

y ' particles, two situations are conceivable formed, noted as the weak and strong pair­

coupling as shown in Figure 1.12 [17]. Generally, in the weak pair-coupling, it is 

considered that the leading dislocation has fully sheared the particles between two partial 

dislocations. In contrast, in the strong pair-coupling, the leading dislocation only partially 

sheared through the particles between two partial dislocations [17]. The critical hindrance 

of dislocation pairs shearing through the precipitates in Ni-based superalloys can be 

evaluated as result of the force balance between the repulsion force between the two 

partial dislocations and the force from the APB. The balance is dictated mathematically 

as [17-19]:

11

TpbA1 + FpairA1 Yapb î 0 (2)

TpbA2 FpairA2 + Yapb 2̂ 0 (3)

where rp is the applied shear stress, A1 and A2 are the lengths of the leading and trailing 

dislocations driving particle cutting, respectively. Fpair is the dislocation pair force per 

unit length; and Yapb is the APB energy. l1 and l2 are the segment lengths of dislocation 

pairs.

Experimental characterization also has observed that the dislocation bypassed 

precipitates leaving dislocation loops around the y ' particles. When the particle size is 

large enough, the volume fraction of the 7 ' is relatively low, and the APB energy is high, 

dislocations looping around the 7 ' particles during the deformation is favored. An 

empirical Orowan equation is used for evaluating the stress required for bowing a
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dislocation between precipitates is dependent on the y' particles size and the interspacing 

of the y' particles [6]

—^Orowan = ~

where G is the shear modulus of the matrix, b is the Burgers vector and X is the 

interspacing distance of the precipitates.

(4)

Figure 1.11. TEM images showing that dislocations shear through the y' phase in pairs. 
(a) dark field micrograph of sheared particles in Nimonic 105; (b) pair of edge 

dislocations in Nimonic PE16 [2].

Due to the presence of different elemental additions sitting on the lattice sites of 

both y  and y ' phases, the crystal lattice is distorted around the substitutional solute atom 

[6].As a consequence, the distortions induced by the solid solutes make them interact 

with dislocations, making dislocations hard to move. Solid solution strengthening has 

pronounced influence on the strength of Ni-based superalloys, as some Ni-based



superalloys are having large volume fraction of alloying elements, and is strongly 

dependent on the chemical composition of the material [2].

13

Figure 1.12. Schematic of the dislocation pairs configurations in the case of (a) weak 
pair-coupling and (b) strong pair-coupling [17].

1.3. THE CREEP BEHAVIOR OF NI-BASED SUPERALLOYS

During the service of turbine, it is subjected to a relatively lower stress but uphold 

for a long-term period during service. The loading stress is smaller than the yield strength 

of the materials. However, the plastic strain is accumulated over time, inducing failure of 

the turbine. Therefore, the creeping behavior of Ni-based superalloys determine the 

service life of the turbine engine. Creep is a time-dependent process, at constant stress 

and temperature [20]. Its period is usually consisting of three stages: primary, secondary, 

and tertiary as shown in Figure 1.13. During the primary stage, the creep strain rate is 

decreasing induced by the increase of the creep resistance during the deformation. For 

secondary creep, the creep rate reaches to a minimum value, as a result from the balance 

between the competing processes of straining hardening and recovery. Experimental 

characterization has observed that dislocations glide and climb are occurring during this



time and mainly within the y matrix [21]. It has been demonstrated that dislocation not 

only accumulate in the y phase, but also deposited at the interface of y — y' as displayed 

in Figure 1.14 [21]. After transiting from secondary stage to tertiary stage, the creep 

strain starts to increase tremendously. In this period, damage begins to accumulate in the 

form of crack and voids. First, the voids are preferred to nucleate around the inclusions or 

the second phase, where it has large stress concentration. Next, the voids will start grow 

under the external loading condition. It is found that the local stress state around the voids 

has significant influence on the growth behavior of the voids [22]. Under loading, voids 

grow fast and coalesce with other neighbor voids, at the end forming the macroscopic 

cracks and fracture in the material. Consequently, the creep rate accelerates and quickens 

the materials to failure as shown in Figure 1.15 [23].

14

Figure 1.13. Creeping strain curve as the creeping time.
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Figure 1.14. Deformed specimen showing the deposited dislocation at the y-y' interface
[21].

Figure 1.15. Crack propagation in the SRR99 superalloy during deformation [23].
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1.4. RESEARCH OBJECTIVES

To design new advanced Ni-based superalloys with expected mechanical 

properties, the underlying deformation mechanisms must be fully understood. However, 

the slow progression of the experimental process, especially visually monitoring the long­

term period deformation evolution makes it exhaustive and time-consuming. In recent 

decades, modeling approach are widely acknowledged as a powerful tool to establish the 

relationship between the microstructure-properties and the performance of the materials. 

Therefore, developing more reliable and comprehensive model that would be able to 

predict the mechanical performance of Ni-based superalloys is demanded to provide 

design guidelines for processing Ni-based superalloys with desired mechanical 

properties.
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2. CRYSTAL PLASTICITY FINITE ELEMENT METHOD

Crystal plasticity finite element method (CPFEM), as a powerful technique 

bridging the macroscopic behavior of materials with the fundamental deformation 

mechanisms at the micro scale level, attracts a lot of attention in various application areas 

recently. Its applications are so broad that includes phase transformation, texture 

evolution, nanoindentation, pillar test, recrystallization and creep, damage, and fatigue, 

etc [24-26]. CPFEM allows the users to incorporate different constitute models dependent 

on their mechanisms including their interactions to study the size-dependent mechanical 

behavior. The output various of quantities from CPFEM can be compared with the finds 

of experiments in a very detailed manner.

In CPFEM theory, the total deformation gradient tensor F is multiplicatively 

decomposed as shown in Figure 2.1 into an elastic part Fe, which includes the crystal 

lattice distortion and local rigid rotations and a plastic part Fp [7]:

F = VeF*, F* = ReFp (5)

The elastic component Fe is further decomposed into the symmetric left elastic stretch 

tensor Ve and the rotation tensor Re. During the plastic deformation, the major source of 

the plastic deformation is carried by the movement of dislocations. As the lattice retains 

its shape, the plastic part of the velocity gradient can be calculated based on its slip 

direction and slip plane normal associated to the lattice [27]. Consequently, the 

decomposition of the gradient induces two intermediate configurations denoted as 5  and 

B between the initial undeformed configuration (B0) and the current deformed 

configuration (B), as shown in Figure 2.1 [28]. Configuration B is defined by plastic
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distorting the crystal lattice (Fp) and B is produced by further elastically rotation (Re)

[28]. The constitutive model is developed based on the configuration B , which is 

obtained by freeing the elastic stretch from the deformed crystal B.

Figure 2.1. Graphic of elastic-plastic decomposition in crystal plasticity theory [28].

The constitutive model expressed with respect to the intermediate configuration El

can be summarized here [29]: 

v v
Kinematics: d = ee + Dp, ee = ee + eeSle - Sleee (6)

w = - skew(eeee) + h e + <WP, h e = ReReT (7)

Elasticity: x = <Ce: ee (8)
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Plasticity: Dp = ReDpReT = £«=i f asym(Za) (9)

W p = ReWpReT = Yl^=1f askew(Za) (10)

j a = 0 ( r a) (11)

xa = r: sym(Za) = r: Za (12)

where d and w  are the deformation rate and the rate of spin tensor, ee is the elastic

v _ _
strain, ee is the gradient rate of the elastic strain. Dp and Sle are the deformation rate and

the elastically lattice spin, respectively. Wp is the plastic part of the spin tensor. Dp and

Wp are the rate of deformation and spin tensors without rotation, T is the 2nd Piola-

Kirchhoff stress, (  is a fourth-order anisotropic crystal elasticity tensor. y a is the shear

strain rate in slip system a, Za represents the Schmid tensor of slip system a, and xa is

the applied shear stress in slip system a [29].
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ABSTRACT

Mechanical behavior of Ni-based superalloys is heavily dependent upon the 

microstructure state, calling for mesoscale model to study the relationship between the 

underlying microstructure and macroscopic performance. In this work, we employ crystal 

plasticity finite element method (CPFEM) to explore the deformation mechanisms of 

Hanyes 282 during short-term and long-term tests. Haynes 282 is a newly developed Ni- 

based superalloy, containing relatively low volume fraction (< 20%) of spherical y' 

precipitate phase. A dislocation-density based model is developed to describe the tensile 

and the creep behavior. Dislocation-particle interaction is incorporated of either Orowan 

looping or shearing through the y'  precipitates at tensile condition. At creep condition, 

glide-climb combined dislocation behavior is integrated. A novel climb model based on 

deposited climb dislocation density is proposed in this work, accounting for the 

accumulation of the dislocation during the climb process. Predicted tensile stress-strain at



various temperature levels and creep strain responses at different stress levels and 

temperature levels are showing good agreement with corresponding experimental results. 

Analysis of the results indicates that dislocation shearing through the y'  precipitates is 

acting as the main contributor to the strength of Haynes 282 at both room temperature 

(RT) and elevated temperature. Both relatively larger stress and higher temperature are 

promoting the dislocation climb process over the y' precipitates during the creeping, 

inducing higher deposited climb dislocation density.

Keywords: Crystal Plasticity, Dislocations, Strength, Finite element model

1. INTRODUCTION
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Ni based superalloy are widely considered as the appropriate candidates for the 

application under ultra-supercritical condition, such as gas turbines in aerospace and 

steam generating power stations, due to their excellent performance at the extreme harsh 

working conditions [1]. Such superior mechanical properties are essentially contributed 

from y' phase which act as the distribution of the precipitations within the y matrix and 

also the carbide phase nucleate at the grain boundary (GB). Thence studies of Ni based 

superalloy has got a lot of attractions over decades. Reed et al. research [1] has a great 

contribution to the development of Ni based superalloys, not only addressing the physical 

metallurgy of Ni based superalloys including the strengthening effects and the defects 

evolutions during the deformation but also providing guidelines for its various 

applications like turbine blade and turbine discs. Computational tools are also playing 

important roles in understanding and designing Ni based superalloys. Ghosh et al. [2]
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developed a homogenized, activation energy-based crystal plasticity model incorporating 

characteristic parameters of the subgrain scale y-y' morphology to account for the 

subgrain microstructure. Reed et al. [3] proposed a model of the yield strength of Ni 

based superalloys based on chemical composition with using CALPHAD. Rabbe et al. [4] 

took advantage of dislocation dynamics method studying the importance of the 

dislocation glide and climb of high temperature and low stress creep of Ni based 

superalloy. Ali et al. [5] determined the role of coherency loss on rafting of superalloys 

by considering the internal misfit under high temperature low stress creep conditions with 

using phase-field crystal plasticity simulations.

Even though the understanding of Ni-based superalloys is more and more 

comprehensive based on a number of studies have been performed on various aspects of 

Ni based superalloys, the demand of increasing efficiency drives the development of 

newly Ni based superalloy to satisfy higher temperature and pressure, and harsher 

working conditions [6]. Haynes 282 is one of the promising candidates combining long 

term creep strength, corrosion resistance and thermal stability at high temperature [7].

The conventional heat treatment of this alloy is solution annealing for 1h in between 

1121°C and 1149 °C then followed by a two-step aging at 1010 °C/2 h/AC and 

788 °C/8 h/AC [8]. The conventional heat treatment produces fine spherical y' 

precipitates and also promotes homogeneous carbide particles nucleate on GB [8].

Similar with most Ni-based superalloys, the mechanical properties of Haynes 282 are 

associated with the operative deformation mechanisms which is strongly dependent on 

the state of the microstructure. Therefore, understanding the mechanical behavior and the 

corresponding deformation mechanisms is imperative.
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A number of investigations of Haynes 282 from various aspects have been 

performed. For example, the influence of heat treatment has been drawn attention as it 

controls the microstructural constituents, distribution and morphology of constituent 

phases [8, 9]. Joseph et al. [9] noticed that the introduction of a solution treatment at 1120 

°C would cause the grain growth, and carbides precipitated during the 788°C aging rather 

than during the 1010 °C aging, forming coarser y' and interconnected carbides. The 

coarser y'  significantly reduced the strength and the interconnected carbides caused a 

50% reduction in the ductility. Shin [8] compared the conventional heat treatment with an 

alternative more economical,1-step aging treatment (800°C/4h) and found that the 1-step 

aging could also promoted approximately 20% of fine spherical y' precipitates with a 

slightly smaller size.

Tensile deformation of Haynes 282 has been the focus of many recent studies. 

Zhang et al. [7] studied the tensile properties of Haynes 282 at various temperature from 

room temperature (RT) to 800 °C, and found that the yield strength remains almost 

unchanged up to 600 °C. Characterized sample displayed that the dominant deformation 

mechanisms transit from dislocation shearing through the precipitates to dislocation 

Orowan looping around the precipitates. Besides, Shin et al. [8] proved that different 

cooling rate has great influence on the tensile strength of Haynes 282 as it controls the 

critical particle size for the transition between the shearing and bypassing mode.

Long-term period creeping tests has been conducted by Song et al. [10] at 700 °C 

and 750°C. Coarsening of the y' particles have been detected during the creep at both 

temperatures. Moreover, dislocation shearing through the precipitates then replaced by 

looping around the precipitates during the creep at relatively large applied stress level
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were characterized. In contrast, at relatively low applied stress and high temperature, the 

dominate deformation mechanism became into dislocation gliding combined with 

dislocation climbing and forming dislocation network in the interface of y/ y'  phase.

Even though the insights gained via experimental characterization technique, the 

origin of the temperature effect and the relationship between the microstructure and 

properties is not well understood. And also, it is really exhausting and low efficient to 

record the microstructure evolution during a long-term test through experimental 

approach. Computational method provides an alternative method to study the mechanical 

behavior of Haynes 282 in a detailed fashion, however, only few works have been 

conducted in the past. Therein, Wang et al. [11] combined a FFT-based elasto- 

viscoplasticity model with a phase-field (PF) model to study plastic deformation of 

Haynes 282 to account for the non-uniform distribution of the y'  phase. PF was used to 

attain the microstructure after different heat treatment process and obtain a spatial details 

of y'  microstructure instead of using empirical formula to estimate the inter-particle 

spacing. Nevertheless, the complexity of the microstructure evolution and the analysis of 

its relationship with the corresponding deformation mechanisms were missing.

In the present study, a physical based crystal plasticity framework is proposed to 

study the plastic deformation of Haynes 282. Crystal plasticity finite element (CPFE) 

models have served as powerful models for establishing the microstructure-property 

relationship and bridging the microscale property evolution with the macroscopic 

mechanical performance [12-15]. We apply it to both the tensile and creep tests at 

different temperature and applied stress levels to examine the effect of temperature and 

stress on the interaction between the dislocation and the y'  precipitates and also explore
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the origin of the evolution deformation mechanisms. The developed constitutive model 

incorporates most of the deformation mechanisms that have been characterized via 

experimental observation, whilst the transition of the deformation mechanisms is taken 

into account based on the critical activating stress to quantify the relationship between the 

deformation mode and the strength of Haynes 282 at various temperatures. We 

demonstrate that the calculations achieve agreement with the experimental tensile stress- 

strain curve and creep-strain curve at different temperature and applied stress levels.

2. MODELING APPROACH

2.1. CONSTITUTIVE LAW

Take advantage of the CPFE method which is based on the solution of stress 

equilibrium and strain compatibility, a rate-dependent elasto-viscoplastic constitutive 

model accounting for elastic and plastic deformation of crystals and the underlying 

kinematic relations developed by Marin et al. [16] is modified to accommodate a 

microstructure-based constitutive model in this work. The Lp is the plastic velocity 

gradient is calculated by:

N
Lp = ^  yas a 0  m a (1)

a=1

where N  is total number of slip systems in a single crystal, y a is the shear strain rate of 

slip system a, s a and m a are the slip direction and slip plane normal of slip system a, 

respectively, and s a 0  m a defines the Schmid tensor.



Haynes 282 shows significant sensitivity to its microstructure. Different y' 

volume fraction, varies y'  precipitates size will possess contrasts level of strength and 

creep behavior, and also temperature will induce different interaction behavior between 

dislocations and dislocations, and dislocations and y' precipitates. In the next sections, 

different microstructure-based models will be discussed.
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2.2. TENSILE CONDITION

2.2.1. Dislocation Interaction in the Matrix. Due to the relatively smaller 

volume fraction of y' precipitates of Haynes 282, plasticity is only active inside the y 

matrix whereas the y'  phase is considered as rigid and behaves elastically in the present 

study. It has been shown experimentally on a variety of Ni-base superalloy that 

dislocation is the dominant carrier during plastic deformation. To account for varies type 

of dislocation interaction in the y matrix during the deformation, the forest dislocation 

density is calculated based on the thermodynamics of dislocation storage, which 

accumulates under straining as the difference between dislocation generation and removal 

rates [17]:

dPfor   dPgen,for
dy dy

dparem,for
dy = k1 Pafor k2(i, T)pf0r (2)

where, Pgenj or is the trapped forest dislocation density and Prem,for is the removed part 

in slip system a either as defects or by recovery, respectively. The parameter k 1 is a 

coefficient for statistical trapping of mobile dislocations and k2 is a coefficient for 

removal of trapped dislocations. The latter is a function of temperature and strain rate and

related to k 1 via:
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k2 j b  ( kT / £ \ \
T1 = Y \ 1 ~ 7 ^ b ^ l n \ T ) )

(3)

where k is the Boltzmann constant, g is an effective activation enthalpy, T is the 

temperature, xD is a drag stress, £ is the applied strain rate and r is a characteristic rate 

that is related to the number of attempts to overcome barriers to slip [18].

Due to the strain gradient induced by the mechanical incompatibility near the 

interface of y-y' and in the vicinity of grain boundaries, GND has been assessed in 

previous work by Birosca et al. [19]. To consider this effect, the evolution of the GND 

density is calculated by the formula derived by Ma et al. [20]:

f f c s = 7 l|Vx x ( y “F j n “)|| (4)

where the nabla operator Vx is defined as the derivative with respect to the reference 

coordinate, and F j is the irreversible plastic strain. During the calculation, p%ND, is 

decomposed into three groups: one group of screw dislocations with tangent vector 

parallel to the slip direction, d“, the other two groups of edge dislocations with tangent 

vectors parallel to na and t a, respectively, and can be obtained by:

PZnds = 1/MVx x (y“Fp n “)j • d“ (5)

= 1/MVx x (y“F j n “)] • t “ (6)

PcwDen = 1 /b[Vx x  (y“F j n “)] • na (7)

Finally, the change of GNDs, p%ND is calculated by:

(pGWD)2 = (pGWDs)2 + (pGWDet) 2 + (P GNDen) 2 (8)
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The slip resistance encountered by gliding dislocation can be calculated according 

by Taylor strain hardening law:

TP = XGb J p “or + Pgnd (9)

2.2.2. Inter-particle Spacing. For both creep and tensile deformations, the 

inter-particle spacing, Ap, is a crucial microstructure parameter [2, 21, 22]. Most strength 

models of Ni-based superalloys are described as a function of Ap. To acquire an 

appropriate Ap, varies models have been developed, most of them assumed that the 

spacing between particles are simply the distance between the centers of particles in their 

work. In these studies, dislocations gliding planes are assumed to across the center plane 

of precipitates, which is too coincidence to happen in the real deformation process. Thus, 

a 3D to 2D conversion model is needed to get a precise magnitude of Ap. In present 

study, we employ a dimension reduction procedure developed by Topuz [23] which has 

been proposed together with a 2D dislocation dynamics and has been successfully in 

predicting tensile response of materials under varies conditions. Here we only briefly 

introduce this dimension reduction procedure, for more detail, readers are referred to 

[23]. Assuming there are N precipitates with average radius of R inside a representative 

cubic volume of edge size W, the corresponding volume fraction can be obtained by:

P3D= 4 N n f y 3 (10)

If m discs generated by slicing are present on a square with edge size of W, the fraction 

of total discs area are:

R2D tP2D=mn(— )2 (11)



The relation between R and R2D is determined by integrating the slicing step over the 

sphere:
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R2D CRsinOdO = - Rn J0 n (12)

After performing infinite slices, the equivalent fraction between area fraction and the 

volume fraction can be expected:

P-d = P3D

After derivation, the number of discs in 2D can be expressed:

(13)

m =
4 o -NR3 
3____

WR2D2 (14)

With the geometric relation of precipitates and square, one can easily obtain:

Ar +2R2D= l k

Finally, the mean spacing of the y' precipitates Ap can be expressed:

(15)

Ap = 1.64 rp( l £ - 1 ) (16)

where rp is the radius of the precipitates, and fp is the volume fraction of y'  phase.

2.2.3. Effective Obstacle Spacing. During the deformation of Hayne 282, the 

plastic strain is mainly carried by the mobile dislocation. Mobile dislocations are resisted 

by interior structure in the y matrix including dislocation structure and y' precipitates, 

and are supposed to travel a mean free path Aê f  before it is trapped or annihilated [17, 

24]. As the development of various competing means trapping dislocation, Aê f  is 

determined by the evolution of multiple obstacles including forest dislocation spacing, 

GND spacing, and the spacing of y' precipitates. To account for a multiple obstacles type 

interacts with moving dislocations, an effective obstacle spacing is developed [25]:
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1   _  Pfor | PcND | Pp (17)^eff ^for ĈND ^p

where fif0r, pGND and fip are constants relate to the spacing of forest dislocation, spacing 

of GND, and spacing of y' precipitates, respectively.

2.2.4. Precipitation Shearing Model. It is well identified that y'  shearing is 

one of the main contributors to the strength of Ni-based superalloy, the effect of the y' 

shearing strength of Haynes 282 must be considered. The subject of y'  shearing has been 

studied for a long time, including of effect of y'  particle size, shape and volume fraction 

on the shearing strength. In present study, we employed a unimodal model developed by 

Galindo-Nava et al. [26], which combined the shearing mechanism controlled by weak or 

strong pair-coupling into a single equation.

The strength from shearing y'  precipitates can be calculated:

Tâ  = Yapb  ̂ i1 shear 2b A+d (18)

where yAPB is the anti-phase boundary energy of the y' phase, b is the Burgers vector, l is 

average the segment length of the leading dislocation acting in the cutting of a particle, A 

is the average effective length between the obstacles by leading dislocation. The average 

length of the leading dislocation cutting the precipitates l can be obtain by:

l =
d i f  d < dj
(d2 — (d — dm)2) 1/2 i f  d >  dr (19)

where dm is the critical particle size at the transition from weak to strong pair coupling, 

which can be calculated as:

dm = Pb2
Yapb

(20)
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The average effective length between the obstacles A can be defined as:

1
A = max [A, L — 1} = max { 2T 2 * L,L — 1} (21)dYAPB

where A is the Friedel sampling length, which represents the mean distance between 

particles encountered by a bowing dislocation along its length [9]. T = 0.5^b 2 is the 

dislocation line tension, and L is the mean spacing of the particles.

2.2.5. Orowan Bypassing Model. Apart from shearing through the y' 

precipitates, looping around the precipitates has also been experimentally during the 

deformation. Previous studies have demonstrated that the content of the dislocation loops 

increases significantly as the temperature increase. The critical stress needed for Orowan 

looping decrease quickly with increasing temperature. Once the critical stress for Orowan 

looping is less than the stress for shearing the precipitates, the transition of the 

deformation mechanism is altered. The required stress for Orowan looping to prevail can 

be calculated based on particle size r and volume fraction fp [8]:

= _0i a * ! n f )  (22)‘■Orowan Ap (22)

where G, b are shear modulus, Burgers vector as defined before, and v  is Poisson ratio.

Ap is the mean spacing of the particles.

2.2.6. Solid Solution Strengthening. Similar to most other Ni based 

superalloy, Haynes 282 contains many other different elements may sitting on the lattice 

sites of both the y and y'  phases. Distorted crystal lattice can be expected due to the 

misfit between the additions and the major element. And the induced strain fields interact 

with dislocation thereby further impeding the motions of dislocations increase the
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strength. Felthman [27] proposed a model for calculated the solid solution strengthening 

based on alloying elements in materials given by [28, 29]:

/ i \ 2
°SS = ( 1 -  /p) E i (a*q2) ]1/2 (23)

where q  and at are the concentration and strengthening constant for element i. The 

values of q  and at are determined with the calculation of the equilibrium composition by 

Thermo-Calc based on the minimization of the Gibbs free energy of the system. And the 

composition of each element are listed in Table 1.

Table 1. Solid solution strengthening coefficients for different elements and 
concentration of solute elements in the matrix of Haynes 282.

Alloy element Concentration

(at)

Strengthening Constant 

(MPa/at%)

Al 0.98 225

Co 12.02 39.4

Cr 25.70 337

Fe 1.87 153

Mn 0.47 448

Mo 4.65 1015

Ti 0.35 775



2.2.7. Tensile Shear Rate. To account for the rate effects and temperature, in 

this work, we calculate shear strain for each slip system with using Orowan equation:
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Ya = Pmabva (24)

where pma is the mobile dislocation density on slip system a, b is burger’s vector, v a is 

the average dislocation glide velocity:

v a = Ae //% e x p  (-^psm h (25)

where kB is the Boltzmann constant, T is the absolute temperature. Aef f a is the jump 

width of slip system a. v0 is the attach frequency, Qs is the activation energy for 

dislocation slip, V is the activation volume, and can be obtained as:

V = b2Aaef f  (26)

The average dislocation glide velocity v a is dependent of the effective 

stress teff = % — %'. t is the shear stress acting on the dislocation and t' is the resistance 

stress, which is the summation of all the strengthening mechanism:

T = Tp + Tss + Min Orowan, tShear} (27)

The operative mechanism between Orowan loop and precipitates shearing is determined 

to be the one with smaller strength at instantaneous moment during the deformation.

By incorporating the strengthening mechanism described above into our model to 

simulate the tensile tests, the constitutive equation for the shear rate in y matrix on slip 

system a can be written as:

Ysiip =
0,
PmbAaeffVo exp ■) sinh sign(r a),

M < r' 
M > r' (28)
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2.3. CREEP CONDITIONS

Experimental characterization of crept Haynes 282 samples have demonstrated 

that the dominant deformation mechanisms of sample crept at low stress and high 

temperature level is dislocation gliding combined with dislocation climbing. Specifically, 

dislocation networks accumulated near the interface of y y' alter the direction of 

dislocation and promote the dislocation to climb over the y' particles. Nevertheless, the 

climbing process is much longer compared with the process of dislocation gliding in the 

matrix. Wherefore, escaping rate from the y' particles via climb is considered as the rate­

controlling mechanism during this combined glide-climb process.

2.3.1. Climb Model. During the climbing process, the dislocation will be hiking 

onto the interface of y' particles by vacancy diffusion and forming a stable configuration 

under the action of its line tension. From previous studies, the stable dislocation profile is 

strongly dependent on the stress level. Wherein, two different climb modes were proposed 

to evaluate the stable contour, ie., local climb and general climb. For local climb, the 

dislocation line is confined closely to the particle interface with sharp bending corners, 

which is a preferred configuration at high applied stress. It has been evaluated by [30] that 

the stress required for stable local climb is as high as Orowan looping stress. Whereby, at 

an intermediate applied stress below the Orowan stress, the local climb is an energetically 

unstable process and therefore a “strictly” local climb process does not occur. In contrast, 

general climb occurs at relative low stress level with a lower strain rate, which permits 

vacancy diffusion to relax the dislocation profile to leave the particle interface, forming a 

smooth curve [30, 31]. Based on the minimum energy, the critical stress by forming 

equilibrium dislocation line can be obtained according to [30]:
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?rc _  V*rp (29)^Orowan 2*Xy

And n < 1 is a spatial-distribution parameter to account for the local variance.

Quek [32] observed the loss of interface coherency around a misfitting inclusion 

during deformation with using dislocation dynamics method, and pointed out that the 

embedded particles could provide a barrier to dislocation motion as the cost of the 

interface coherency. In other words, climbed dislocations will be deposited on the 

particles inducing a “local dislocation network” creating resistance for the further motion 

of dislocation. To consider this hindrance, we developed a novel model to account for the 

looped dislocation via climb which impede the further dislocation climb.

The total climb dislocation density in the microstructure can be calculated based 

on the definition:

Pclimb = ^totalf^total (30)

where Ltotai is the total climb dislocation length, and Vtotai is the total climb dislocation 

occupied volume. Since the climb dislocation are all around the interface of the 

precipitates, the total volume can be given as:

^total =
NpVp

f (31)

where Np is the number of the y' particles and Vp is the volume fraction per spherical

4 oparticle and Vp = - n r p . For Ltotai, it can be calculated as defined:

Ltotai = Np * Nf f  * 2nrp (32)

where Nff is the product of the number of the attached dislocation via climb and the 

length fraction account for the dislocation loops not on the center plane of particles. In



our model, we assign Nff is an accumulated shear strain dependent parameter, which 

increase proportional to the accumulated shear strain:
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dya = k? (33)

where k3 is a fitting parameter. Finally, the evolution of the climb dislocation density 

bypassing the y' particles during the deformation can be shown:

Pclimb
_  3

2 *rp2 (34)

2.3.2. y'  Precipitates Coarsening. The coarsening of y' precipitates has been 

detected in Crept Haynes 282 samples [10], which plays a really important role in 

determine the creeping life. Thus, it is necessary to consider the size change of y' 

precipitates due to the coarsening. The long term y' coarsening evolution can be 

described by the cubic law [33]:

D3( t ) - D 03(t0) = K ( T ) ( t - t 0) (35)

where D and D0 are diameter of y' precipitates at time t and t0, respectively. And K(T) 

is temperature dependent rate constant and can be calculated in the Arrhenius form:

K = Koexp ( - £ )  (36)
Kdl

where Q = 313.2k]/mol  is the activation energy, and K0 = 7.15 x 10- 14m3/sec is the 

pre-exponential factor of Haynes 282.

2.3.3. Climb Controlled Shear Rate. During climbing process, absorption and 

emission of vacancies from dislocations results in the formation of jogs which propagate 

along the dislocation lines leading to dislocation climb along the surface of the particles 

[1]. Wherefore, we employed a dislocation density combined with job density based 

model by [11] to reflect the climb bypass as the controlled shear rate as:
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Yclimb a f  n  ■ u \(Ta—Tclimba')b2Pmfv -^ cjogDs * sinh [-------— ------L

( 0,

] * sign(ra),

|T| < Tcnmfr 

^  > Tclimb

(37)

where fp is the volume fraction of the y' phase, Xp is the average inter-particle spacing 

and rp is the average time-dependent particle radius. Cjog is the dislocation line jog 

density, Ds = 7.7 X 10-14exp (———) is the bulk diffusivity. The dislocation line jogksT

density is given by [30]:

cjoa = ~ ~  exp (—— - (38)109 aJ0g kBTJ V ’

where Qjog is the formation energy and aJog is the jog segment length which equals ^

with vm being the atomic volume, and d is the interplanar spacing of slip planes. And the 

total resistance of climb in slip system a can be given as:

^climb = Trc + P-Gbjpclimba (39)

2.4. MODEL CALIBRATION

The constitutive formulations are written as a user-defined material (UMAT) 

subroutine and implemented into Abaqus software. The simulation model is meshed with 

10 X 10 X 10 elements and mesh type is C3D8R as shown in Figure 1. Period boundary 

conditions (PBC) are imposed onto the model. The dislocation density model for both 

tensile and creep conditions during plastic deformation are calibrated by comparing both 

the stress-strain curve and creep strain curve with experimental results.
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Figure 1. Schematic of the initial finite element mesh.

For tensile condition, the simulated results of Haynes 282 at room temperature 

(RT), 815°C with applied constant strain rate i  = 1 X 10- 4s -1 along X direction, which 

is the same test condition as the experiment [11]. For the creep condition, the simulated 

creep tests are conducted under 7600C and 788° C with different loading stress. From 

Figure 2, we can see that our model are in good agreement with the experiment results, 

the materials parameters used in our model are listed in Table 2.
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Figure 2. (a) Comparison between simulated and experimental tensile stress-strain curve 
at RT and 815 °C with an applied shear strain rate of 1 X 10-4 s-1(b) Comparison between 
simulated and experimental creep curves subjected to different tensile stress 190MPa, 

241MPa, 310Mpa at 760°C. (c) Comparison between simulated and experimental creep 
curves subjected to different tensile stress 186MPa, 241MPa at 788C.

Table 2. Parameters of dislocation-density based CPFE model for tensile and creep
behavior of Haynes 282.

Symbol Value Meaning

Qslip 3.7 X 10-i9  J Activation energy for slip

Qjog 1.60218 X 10-i9  J Jog formation energy

fp 0.11 Volume fraction

Vo 7.8 X 1011 Attack frequency

Qv 4.1 X 10-19 J Bulk diffusion energy

V 0.65 Spatial-distribution parameter

ki 3.0 X 109 m-1 Coefficient for statistical trapping of mobile 

dislocations

X 0.15 Dislocation interaction factor
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Table 2. Parameters of dislocation-density based CPFE model for tensile and creep
behavior of Haynes 282. (cont.)

F 1.0 Climb dislocation interaction factor

b 2.54 X 10-10nm Magnitude of Burger's vector

9 5.0 X 10-2 Effective activation enthalpy

3300 MPa Drag stress

r 1.0 X 107 s-1 Characteristic rate

Yapb 0.18 J Anti-phase boundary energy

Pfor 0.01 Constant relate to the spacing of forest

dislocation

Pgnd 1.0 Constant relate to the spacing of GND

Pp 0.55 Constant relate to the spacing of precipitates

3. RESULTS AND DISCUSSION

3.1. EFFECT OF TEMPERATURE ON TENSILE PERFORMANCE OF 
HAYNES 282

From the stress strain curve as shown in Figure 2a, we could observe that the flow 

stress of Haynes 282 is decreasing with temperature increase, as the flow stress at RT is 

larger than that of 815 °C. And also, the strain hardening rate of Haynes 282 at RT is 

relatively larger compared with that of 815 °C, illustrating the temperature sensitivity of 

the strengthening mechanisms like many other Ni-based superalloy. Further, the 

difference of the flow stress at various temperature levels are increasing with the strain
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level. Figure 3 displays the comparison of the flow stress at strain level of 0.05, between 

the prediction and experiment results. The predicted flow stress is in good agreement 

with the experiment measurements at different temperature levels. The flow stress at RT 

is about 905 MPa and greater than that at 815 °C with value of 710 MPa. To further 

investigate the effect of temperature, Figure 4 shows the contribution of each different 

strengthening terms at different temperatures at the same strain level, we can find that 

most strengthening terms are decreased as temperature raised from RT to 815 C. 

Especially for the Orowan stress, which is decreasing from about 372.8 MPa to 280.9 

MPa. In contrast, the shearing stress and solid solute stress are not displaying tremendous 

drop as increasing temperature. Due to the short period of the tensile test, the sample will 

not be expecting any significant change of its composition at various temperature, 

resulting in the almost the same solid solute stress at both RT and 815 C. For shearing 

stress, at both RT and 815 C, it has smaller value compared with Orowan stress, 

implying shearing stress is performing as the dominant mechanisms during the 

interaction between dislocation and precipitates. Besides, shearing stress at 815 C is still 

maintained at a relatively equivalent level as at RT, which is consistent as demonstrated 

from previous studies saying that shearing stress is acting as the main contributor to the 

strengthening of Ni-based superalloys during deformation [1]. Strain hardening induced 

by forest dislocation density is falling from 45.27 MPa to 29.84 MPa as the temperature

increase from RT to 815 C.



42

Figure 3. Comparison of the flow stress at strain level of 0.05 between RT and 815 °C.

Figure 4. Distribution of the contribution of different strengthening mechanisms at RT
and 815 C .



The evolution of the dislocation density with strain is shown in Figure 5, 

displaying strong temperature. Larger amount of forest dislocation are accumulated in the 

matrix during deformation at RT than that of 815 °C illustrated in Figure 5(a), as thermal 

energy can help the pinned dislocation segments to overcome their energy barrier 

allowing rest of dislocations to bow out [18]. Mobile dislocation density, following the 

principle of maximum plastic dissipation during the plastic deformation, scales with the 

immobile dislocation density and displayed in Figure 5(b).
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Figure 5. Evolution of the (a) forest dislocation density and (b) mobile dislocation density
at RT and 815 °C.

3.2. DOMINANCE OF EFFECTIVE SPACING

Under such a condition with the development of various dislocation density in the 

matrix, transition among the interior structure acting as the dominant hindrances can be 

expected. To record the development of the dominant mechanisms determining the 

effective spacing of obstacles, the surface plot of the evolution of the effective spacing



are shown in Figure 6. As the deformation process, the increment of GND and forest 

dislocation density are contributed from the strain incompatible across the grains and the 

interaction of dislocations, respectively. By scrutinizing the trend of the surface, the 

surface is declining as the development of forest dislocation density and GND. That said, 

the effective spacing is decreasing as the process of plastic deformation. And the 

reduction amount due to the forest dislocation density is larger than that of GND. As the 

value of forest dislocation density is much larger compared with GND due to the relative 

tiny strain gradient across grains in Ni-based superalloy compared with other composites 

like heterogeneous structures, which has large amount of GND as the combination of 

different grain size level [13, 14]. Therefore, the amount of forest dislocation density is 

expected to have relatively larger influence in determining the effective spacing of 

obstacles during the deformation process. Briefly, the spacing of the precipitates particles 

is acting as the main obstacles to the dislocation motion due to the small amount of 

dislocation density stored in the matrix at the beginning of the plastic deformation. Later 

on, large amount of dislocation accumulated in the matrix generated by the interaction of 

dislocations as the plastic deformation evolves, constructing various substructures and 

diminishing the spacing of the obstacles for dislocation motion. Temperature level is not 

showing significant influence on the development of effective spacing as comparing 

Figure 6(a), (b) and Figure 6(c), (d). Effective spacing at RT is smaller than that of 815 

°C, as the forest dislocation density is larger at low temperature level as shown in Figure
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5(a).
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Figure 6. Evolution of the effective spacing with various competing obstacle spacing 
during the tensile deformation at (a), (b) RT and (c), (d) 815 °C.

3.3. EFFECT OF y'  PRECIPITATES SIZE

Heat treatment from previous studies has been demonstrated that has significant 

influence on the tensile properties due to the different microstructure. However, little 

variance of heat treatment will result in a lot of change of microstructural constituents, 

including the size of particles, precipitates volume fraction, and interconnected carbides. 

With the advantage of CPFE, which allows our model to quantitatively investigate the 

effect of different factors. Particle size is one of the most important factors that 

tremendously influencing the tensile properties of Haynes 282. In our study, we compare 

the tensile properties of Haynes 282 with two different particle size 15nm and 25nm. 

Figure 7 (a) shows the stress strain curve at RT and 815 °C for both particle size. At 815 

°C, the stress strain curve of 25nm is higher than that of 15nm, illustrating particle with
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size of 25nm is taking higher flow stress compared with particle with size of 15nm. To 

further inspect the change of the flow stress as increasing the particle size, the 

components of CRSS are compared, including the shearing stress and the stress caused by 

the development of dislocation density as shown in Table 3.

Figure 7. Stress-strain curve of Haynes 282 at RT and 815 C. (a) The effect of 
precipitates size of 15nm and 25nm, (b) The effect of volume fraction of precipitate

phase of 11% and 20%.

Table 3. Values of shearing stress and forest dislocation density induced stress with the 
effective spacing at different temperature for multiple precipitate size.

^shear (MPa) f̂orest (MPa) ! e //(nm)

15nm, RT 150.30 133.95 73.03

15nm, 815 °C 151.34 80.10 76.80

25nm, RT 157.38 126.28 124.5

25nm, 815 C 157.36 52.28 124.9
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We can find that the increment of shearing stress as the increasing of particle size 

is the main contributor to the higher strength of particle size of 25nm. In contrast, the 

stress strain curve is having the conversely trend at RT. The stress with particle size of 

15nm is larger than that of 25nm. Similarly, we compare the components stress of CRSS 

at RT, the shearing stress of larger particle size is larger than that of smaller particles, 

which is consistent with the observation at 815 °C. Based on this, we can predict that it 

must be some other particle size dependent term that has more influence on tensile stress 

than the component stress of CRSS at RT level. We investigate the effect spacing of 

obstacles at both particle size and found that the effective spacing with particle size of 25 

nm is much larger than that of 15nm. The larger the effective stress, the larger of the 

equivalent reference shear strain rate will be, which will induce the decrease of the flow 

stress, and resulting in the lower stress strain curve of 25nm particles.

3.4. EFFECT OF y'  VOLUME FRACTION

Another important feature that has substantial influence on the tensile property is 

the volume fraction of the y' phase (add references here). As the y' volume fraction is 

typically below 20% for Haynes 282. Figure 7(b) shows the stress strain curve taking 

11% and 20% volume fraction of y' phase at RT and 815 °C. As noted in the Figure 7(b), 

the higher stress is exhibited on the one taking larger amount of y' phase for both RT and 

815 °C temperature level. High volume fraction of y' will induce larger critical stress for 

shearing through the precipitates. Furthermore, the extent of the increment of the flow 

stress is higher for RT than 815 °C when increasing the volume fraction.
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3.5. CREEP BEHAVIOR

The creep tests have been conducted under different loading and temperature 

conditions as shown in Figure 2(b) and (c). Experimental creep curve shows increasing 

creep rate, which is likely caused by the microstructure damages such as voids nucleated 

on the grain boundaries (GB). In present study, we focus on the correlation between the 

creep strain and the y/y'microstructure evolution. The creep strain is increasing with the 

time at all different stresses and temperature levels. The creeping curves display a fast 

creep rate at the beginning of the creep time, and then decrease to a certain constant creep 

rate as demonstrated by a linear increase with time. Two different stages with different 

creep rate are representing the primary and secondary creep stage, respectively, with the 

period of the primary creep stage is much shorter than that of secondary creep. Various 

loading are applied during the creep tests, including 190 MPa, 241 MPa, and 310 MPa at 

760 °C and 186 MPa and 241 MPa at 788 °C. At both temperatures, it can be found that 

higher stress level would cause faster creep rate resulting in larger creep strain during the 

same period. These phenomenon are consistent with the observation from most of 

previous studies that the primary creep strain increases with the applied stress and gives 

way to secondary creep eventually after the knee of the creep curve [1]. Larger stress will 

trigger the slip systems as the resolves shear stress (RSS) is larger than CRSS, dislocation 

motion will be stimulated to carry plastic deformation as the form of creep strain. On the 

other side, at the same stress level, higher temperature will promote the creep strain 

accumulation due to the promotion of the thermally activated processes.
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3.6. CLIMB CONTRIBUTION DURING CREEP

In Section 2.3.1, it has been introduced that the climb resistance in our study is 

consists of the critical stress forming general climb and the stress generated by the 

deposited climb dislocation density on the coherent particles. To examine the 

contribution of each process to the climb during the creep process, the evolution of the 

climb dislocation density gives an outlook to comprehend, which is plotted as revealed in 

Figure 8. In Figure 8, the climb dislocation density with and without precipitates 

coarsening are revealed and combined with the evolution of the particle size as the creep 

time at both 760 °C and 788 °C. At both temperature levels, the climb dislocation density 

presents a fast growing during the beginning of the creep stage. Since during this short 

period, the climb dislocation density is low, and the resistance of the climb is mainly 

contributed via general climb. As the climb dislocation density is increased, the resistance 

from the deposited climb dislocation density is raising, inducing the slowing down of the 

growing of the climb dislocation density. At each temperature, stress is showing a strong 

influence on the accumulation of the climb dislocation density, higher stress will promote 

larger climb dislocation density deposited on the particles. In other words, higher applied 

stress will facilitate the dislocation to overcome the precipitates via climb, which proves 

the well acknowledged fact that the main driving force of the climb is the applied stress 

from another perspective. Besides, at about equivalent applied stress levels, higher 

temperature reveals larger amount of climb dislocation density and also exhibits higher 

increasing rate of the climb dislocation density after the knee of the curve. This 

phenomenon can be attributed to the fact that thermally activation process would benefit

the dislocation climb over the obstacles.
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Figure 8. Evolution of deposited climb dislocation density with and without considering 
particle coarsening at (a) 760 °C and (b) 788 °C.

Figure 9 demonstrations the pie charts of each component of the total resistance 

of climbing at different applied stress and temperatures levels. Left column are 

representing the critical stress for each component at 10 hours, which is assumed to be 

the transition of the primary stage to secondary, and the right column are corresponding 

the critical stress of each component at 400 hour. By comparing the left column pie charts 

with those on right column, we can see the slice of deposited dislocation network (yellow 

color) are having increasing ratio from 10 hour to 400 hour, illustrating the increasing of 

the climb dislocation density, namely, the increasing of the climb activities. What’s more, 

larger applied stress is found to have higher ratio of the deposited dislocation network at 

both creep time of 10 hour and 400 hour, demonstrating that larger applies stress will 

promote the climb activities compared with those at lower stress level. Likewise, at the 

equivalent stress level, 788 °C is unveiling higher ratio of deposited network than 760 °C, 

indicating that higher temperature is another important feature that could help to increase 

the climb happenings.
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Deposited Network

Figure 9. Pie charts displaying each component to the total climb resistance at different 
stage during creep, with General Climb (blue color) and Deposited Dislocation Network 

(yellow color) at (a) 760 °C and (b) 788 °C.
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3.7. EFFECT OF PARTICLES COARSENING

y' coarsening has been widely characterized in crept sample of Haynes 282 [10]. 

Figure 10 compares the creep curves with and without particles coarsening at different 

temperature and applied stress levels. Samples without coarsening are showing smaller 

creep strain than those cases with particle coarsening. In other words, particles coarsening 

can relax the climb resistance during creeping process, as those cases are presenting 

higher creep strain. And the difference between them are getting larger especially after 

the knee of the curve. In addition, Figure 8 displays that the climb dislocation density of 

sample with precipitates coarsening is higher than that of precipitates without coarsening, 

illustrating that coarsening of precipitates can slow down the climb resistance, and 

promoting the accumulation of the deposited climb dislocation density.

Figure 10. Creep strain curve of Haynes 282 with precipitates coarsening (solid lines) and 
without precipitates coarsening (dash lines) at 760 °C and (b) 788 °C.
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What’s more, it is proved that temperature is playing important role in the 

coarsening of particles, as the particles radius at 788 °C is about 20nm, which is larger 

than the radius at 760 °C of 17.3nm. Therefore, at the same applied stress level, 

dislocation climb is relatively easier at higher temperature, which can be proved that 

under 241MPa stress loading, the climb dislocation density at 788 °C is higher than that at 

760°C.

4. CONCLUSIONS

In summary, we present a crystal plasticity finite element model for Haynes 282 

that account for both the tensile and creeping behavior at different conditions by 

developing a physical dislocation-density based model. We show that the predicted 

stress-strain curves at different temperature and creep strain-time curve at various stress 

and temperature levels agree well with the experimental measurement. In the tensile 

deformation, most deformation mechanisms are incorporated to embody the real 

microstructure evolution based on the preset transition of the dominant deformation 

mechanisms. Moreover, a novel deposited dislocation based model is developed 

combined with the general climb model for the creeping process. Our results indicate that 

relatively higher stress and higher temperature will promote the climb process inducing 

larger climb dislocation density accumulated onto the y' precipitates. This work benefits 

understanding of the fundamental deformation observed in Hanyes 282 during the tensile 

and creep tests, and whilst the model can efficiently predict the performance under



various working conditions and assist the optimize process of developing Ni-based 

superalloys.
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ABSTRACT

In this work, we explore the effect of misorientation angles of crystal orientations 

between two grains along the grain boundary (GB) on void growth behavior in 

polycrystalline Ni-based superalloys by using a crystal plasticity finite element method. 

Quantitative analysis is conducted to study the coupled roles of the crystal orientation and 

stress triaxiality in void growth in bicrystals. Based on our simulation results, we find 

that, as the main loading axis perpendicular to the GB, voids grow slower on tilt GBs in 

bicrystals than those in single crystal and bicrystal samples with twist GBs. While the 

void growth in single crystal and bicrystal samples with twist GBs exhibited almost the 

same rate and increased with the stress triaxiality levels. The interaction between two
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crystals bonded with the GB alert the effective Schmid Factors (SFs) in each crystal that 

results in asymmetric distribution of the equivalent plastic strain around the void and 

induces distinct irregular shaped voids during deformation.

Keywords: Crystal plasticity; Superalloy; Void growth; Crystallographic orientation

1. INTRODUCTION

Polycrystalline Ni-based superalloys are widely used in power generation 

turbines, due to their good formability, balanced high temperature corrosion and fatigue 

resistance [1]. In polycrystalline Ni-based superalloys, the small precipitates on grain 

boundary (GB) can stabilize and strengthen the GB to prevent the GB sliding during the 

service, and large precipitated phases within the grain can balance the strengths between 

grain boundaries and grains to improve the durability, ductility, and long-term high 

temperature stability [2, 3]. However, precipitations on the GB may act as the hotspots 

for void nucleation in polycrystalline Ni-based superalloy under external loading due to 

the high stress concentration at the interface between the hard precipitates and the matrix 

[4]. Generally, the damage and failure of polycrystalline Ni-based superalloys typically 

exhibit well-defined three-stage behaviors [5]: the nucleation of voids around the 

inclusions or the second phase particles, void growth and coalescence under external 

loading, which leads to the initiation of macroscopic cracks and fracture in the material. 

Thus, understanding the void behavior, especially on GBs, is critical for processing those 

alloys with desired mechanical properties for multiple applications.
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Numerous efforts have been put in place to develop predictive model for the void 

growth and coalescence in ductile materials. The pioneering work by Rice and Tracey [6] 

revealed the important role of stress triaxiality in the void growth and they also developed 

the R-T model for spherical void embedded in an infinite solid. In order to consider the 

interaction between adjacent voids, Gurson proposed the plastic potential of the rigid- 

perfectly plastic material with voids based on a cell model, and developed a more 

sophisticated constitutive relationship between the macroscopic flow behavior and 

remote stress fields [7]. To better understand the stress and strain distributions around 

voids during the growth and coalescence, Tvergaard and Needleman carried out finite 

element analysis (FEA) employing the modified Gurson’s constitutive relationship and 

reproduced the cup-cone fracture in a round tensile specimen [8]. Following the original 

2-D FEA works by Tvergaard and Needleman, an axisymmetric cylindrical model was 

developed to explore the real 3-D void growth under various combinations of triaxial 

loadings [8]. After that, more accurate body centered cubic model and cubic primitive 

model were used on analyzing the damage by void growth in ductile materials [9]. In 

general, the axisymmetric cylindrical model predicts a larger deformation in the solid 

with voids that a lower value of the material failure stress than cubic cell models. 

Although various modifications have been made to the foregoing models, there are still 

considerable mismatches between predicted and experimental results [10, 11].

To accurately predict the damage process of ductile materials under complex 

loading history, the characteristics of microstructural changes and the anisotropic 

properties of materials need to be considered. Crystal plasticity finite element model 

(CPFEM) has been used in recent studies to explore the mechanisms of void growth and



coalescence in ductile metals, as it is a full-field model that considers the anisotropy of 

materials and various microstructure features relevant to the plastic deformation in 

crystalline materials. With this advantage, CPFEM has been employed since long time 

ago based on its exceptional capacities dealing with the void growth behavior in single 

crystals [12, 13]. Shu et al. [14] studied the void growth in a single crystal under uniaxial 

and biaxial strain fields by using an elasto-viscoplastic strain gradient crystal plasticity 

formulation. They found that small voids are less susceptible to growth than large voids, 

which is consistent with the results from the study by Tvergaard and Niordson [15]. Wen 

et al. [16] explored the void size effects on the yield surfaces in metallic materials based 

on the extended the Gurson’s model with the Taylor dislocation theory. Their modeling 

results revealed that the influence of the void on the stress-strain curves gradually 

becomes significant as the initial void volume fraction increase. Orsini and Zikry [17] 

analyzed the void growth in FCC copper single crystals by using a rate-dependent crystal 

plasticity model and claimed that the lattice rotation and slip mainly concentrated in the 

regions between the voids for only one crystal orientation. Portirniche et al. [18] probed 

the effects of crystal orientation on the void growth and coalescence in FCC single 

crystals under uniaxial and biaxial loading by using 2D CPFE analysis. They 

demonstrated that in the case of uniaxial tension, the void growth strongly depends on the 

angle between the crystal orientation and the direction of the stretching axis, while the 

influence from crystal orientations is negligible for the void coalescence. Under the 

biaxial tension, the void growth and coalescence did not depend on the crystal orientation 

but the stress triaxiality in FCC single crystals. Yu et al. [19] explored the void growth in 

Ni-based single crystal superalloys under monotonically increasing loading. Their results
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illustrated that low stress triaxiality promotes the change of the void shape, while high 

stress triaxiality mainly induces the void expansion. Although, numerous studies have 

shown that the crystal orientation and stress triaxiality may affect the void growth in 

single crystalline materials, there is little information available in the literature regarding 

the void growth on GBs and it is still unclear how the GB affect the void growth on GBs 

and whether the existing micro-mechanical model derived from the single crystalline 

materials can rationally predict the void growth on GBs.

In this study, we perform CPFE calculations to explore the effect of GB types 

(both tilt and twist) and GB misorientation angles (low to high) on the void growth on the 

GBs in polycrystalline Ni-based superalloys and also quantify the relationships between 

the stress triaxiality and void growth in polycrystalline Ni-based superalloys.

2. METHODOLOGY
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A crystal elasto-viscoplastic model and the corresponding integration scheme is 

used in this study [20]. In this model, the kinematics of crystal deformation is based on 

the multiplicative decomposition of the deformation gradient F:

F = FeFP (1)

where Fe and Fp are the elastic and plastic gradients, respectively. The plastic component 

evolves as:

FP = LpFp (2)

LP is the velocity gradient, which accounts for the plastic deformation generated by the 

plastic shear strain rate on different slip systems:
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Lp = T1Na=1Ya ban a (3)

where ba and n a are the slip direction and slip plane normal on slip system a, f a is the 

shear strain rate on slip system a, and N  is the total number of slip systems in the 

crystalline material. The corresponding shear strain rate in slip system a is calculated 

with the power-law equation:

Ya = Yo sgn(ra) (4)

where f 0 is a reference shear strain rate, xa and t“ are resolved shear stress (RSS) and 

shear resistance for the plastic flow in the slip system a, respectively, and m is the strain 

rate sensitivity exponent.

In our model, we employ the Voce-hardening law to calculate the evolution of the shear 

resistance for each slip system [21],

= I .phap \Y(P)\ (5)

where hap is the strain hardening modulus, and can be expressed as:

bap = Rafih (6)

qap are the interaction coefficients that represent the effect of the hardening between 

different slip systems, and h is the self-hardening modulus. The evolution of the self­

hardening modulus is formulated as [22]:

h(Ya) = h s + \ h o - h s + exp ^  (7)L ~s 0̂ -I

h0 is the initial hardening modulus, x0 is the initial yield shear stress, xs is the saturation 

yields shear stress, hs is the saturation hardening modulus at large strains, and Ya is the 

acculated shear strain in all slip systems, given by:
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Ya = f ) l a l Y (a)ldt  (8)

The crystal plasticity constitutive equations are written as a user-defined material 

(UMAT) and implemented into Abaqus CAE. As Inconel 718 with an FCC structure is 

one of the most common polycrystalline Ni-based superalloys with high operating 

temperature and low cost, we adopt the modeling parameters for Inconel 718 which were 

calibrated and validated by Cruzado et al. [21] in our calculations and listed in Table. 1.

Table 1. Parameters used in CPFE model for IN718.

C11 C12 C44 T0 h0 hs

(GPa) (GPa) (GPa) (MPa) (MPa) (GPa) (GPa) Qap

259.6 179 109.6 465.5 598.5 6.0 0.3 1

In this study, we use a cube model to represent the unit cell and the void is set at 

the center of the unit cell as shown in Figure 1. The total number of elements in the 

model is 6128 elements and an eight-node brick finite element with reduced integration 

(C3D8R) is used. Similar model and mesh have also been used to study the void growth 

in single crystal samples in recent CPFE work [23]. The length of each side is set equal to 

1 and the initial void radius is 0.13365 that makes the initial void volume fraction, fo, 

equal to 0.01. Under the external loading, the central point on each surface can only move 

in the normal direction. Meanwhile, all six surfaces are constrained to remain flat using 

MPC (multi-point constraints), i.e. the displacement of a surface is coupled with a master
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node which controls the slave nodes on the surface. Therefore, there is no shear on each 

surface, and the displacement on along each axis can be represented as:

Li — L10 + Ui, L2 — L20 + ^ 2,^3 — ^30 + ^3 

The macro-strain of the cell model along each axis is

Ei — ln ( - ^ ) , £2 — ln ( ^ ) , Ei — ln (-^) 

And the macro-equivalent strain is calculated by

(9)

(10)

E , —§ J ( E i ~  E2 ) 2 + (E2 -  E3 ) 2 + (E3 -  Ei)2 (11)

The overall stresses are imposed onto each surface, and in order to maintain a constant 

stress triaxilaity in each calculation, the ratio of axial normal stress imposed on each 

surface is set to be a constant during the deformation,

£2 — P2Z I  £3 — P3^1 (12)

where p2 and p3 are both constants. The macroscopic effect stress£e, and the 

macroscopic hydrostatic stress, £h  are given by

£e — ^ V (£ 1  -  £ 2 )2+(£2 -  £ 3 )2+(£3 -  £ 1 )2 (13)

£h  — “ (£1 + £2 + £3) (14)

The stress triaxiality, T, is then calculated as following

j  _  £h _  _____—(1+p2+p3)______
£e V(1-P2)2+(P2- P3)2+(P3-1)2

(15)



In order to systematically analyze how the stress triaxilaity affect the void growth on 

GBs, four different stress triaxilaity are used in our calculations: 0.33, 0.5, 1.0 and 2.0.
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Figure 1. The initial finite element mesh for void growth calculations (a) the whole 
model, (b) cross-section of the meshed sample with the void at the center of the 

simulation box (Two different colors represent two different crystallographic
orientations.).

To create twist and tilt GBs in our calculations, we assign Crystal 1 (the original 

crystal) in the bicrystal sample with the [001] orientation, and then create Crystal 2 by 

rotating Crystal 1 along the X-axis and Z-axis for the twist and tilt GBs, respectively.

Two different rotation angles, 15° and 45°, are used to create low angle and high angle 

GBs, which normally possess low and high GB energies and affect the material properties 

of metals significantly [24]. The main loading direction is along x-axis, which is 

perpendicular to the GB.
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3. RESULTS AND DISCUSSION

3.1. VOID GROWTH IN SINGLE CRYSTALS

Figure 2 (a) shows the growth of the void volume fraction in single crystal 

samples versus macroscopic equivalent strain at different stress triaxiality levels. The 

growth of the void volume fraction is defined as f / / 0 [25], where f  is the porosity which 

is taken as the difference between the instantaneous cell volume and the total elemental 

volume in its instantaneous configuration. As a result, stress triaxiality prompts to an 

amplification of void growth rate with increasing strain level, which is consistent with the 

theory proposed by Rice and Tracey [6]. Figure 2 (b)-(e) exhibit the deformed void 

shapes in single crystal samples at Ee = 0.2. It can be noticed that the shape of deformed 

voids strongly depends on the magnitude of the stress triaxiality. At lower stress 

triaxiality level, the void is mainly elongated along the main loading axis with much 

larger deformation than other lateral directions, inducing the elongated olive shaped voids 

as depicted in Figure 2 (b) and (c). Despite the void is driven to stretch along the main 

loading axis at intermediate and high stress triaxiality levels, the ratio of the long to short 

axes of the void is reduced compared with those for lower stress triaxiality level at the 

same macro-equivalent strain, as shown in Figure 2 (d) and (e). Our simulation results for 

single crystal samples are consistent with the results from previous studies [19, 26-28] 

that larger stress triaxiality levels will promote the void growth along all the tree loading 

axis that induces the deformed voids almost stay spherical (see Figure 2 (e)).
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3.2. VOID GRIWTH ON GBS IN BICRYSTALS

To study the effect of GBs on the void growth, we compare the void 

growth, f / f 0, in bicrystal and single crystal samples as shown in Figure 3. For all cases, 

the void volume fraction increase with the macro-equivalent strain ( Ee). In addition, 

higher stress triaxialities induced larger void growth at the same macro-equivalent strain 

for cases with the same GB type. The void growth curves for voids in bicrystal samples 

with twist GBs almost overlap with the curves for pure single crystals, although the void 

grew slightly faster in samples with twist 45° GBs than those with twist 15°. Compared 

with twist GBs, the voids on tilt GBs exhibit relative slow growth rate. Among the five 

different cases, the void on the tilt 45° GBs grew the smallest amount at the macro­

equivalent strain Ee = 0.2.

Figure 2. (a) Evolution of the void volume fraction f f  versus macro-equivalent strain for 
void in single crystal under different stress triaxiality levels, T. Distribution of equivalent 
plastic strain around the void in single crystal samples at Ee = 0.2 under (b) T = 0.33, (c)

T = 0.5, (d) T = 1.0 and (b) T = 2.0.

To make quantitative comparison of the void growth in single crystal and 

bicrystal samples, we plot the ratio of the difference between the void volume fractions of
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bicrystal and single crystal to the void volume fraction of single crystal at Ee = 0.2 as 

shown in Figure 4. It is clear that twist and tilt GBs exhibit opposite effects on the void 

growth, i.e. the twist GBs promote the void growth, while the tilt GBs inhibit the void 

growth, as the ratios are all positive and negative for bicrystals with twist and tilt GBs, 

respectively. Furthermore, the increment of the stress triaxiality amplified those effects, 

as the ratios possess the largest values at T = 2.0 for all four different bicrystals.

Figure 3. Evolution of the void volume fractionff versus macro-equivalent strain for 
void in single crystal and in bicrystal at different stress triaxiality level: (a) T = 0.33, (c)

T = 0.5, (d) T = 1.0 and (b) T = 2.0.
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Figure 4. The ratio of the difference between the void volume fractions in bicrystal, 
Fbicrystai, and single crystal, Vsingle crystal, to the void volume fraction of single crystal at

Ee = 0.2.

3.3. PLASTIC DEFORMATION OF BICRYSTALS WITH VOIDS

3.3.1. Accumulated Shear Strain on Slip Systems. In order to explore the void 

expansion behavior on GB in bicrystals, further analysis is provided here by scrutinizing 

the accumulated shear strain of each slip system in both single crystal and bicrystals. 

Figure 5 presents the accumulated shear strain on each slip system in Crystal 1 versus the 

nominal Schmid Factor (SF) for each slip system at Ee = 0.2 with various stress 

triaxiality levels. The nominal SF on each slip system in Crystal 1 is evaluated by using 

the macro-stress field and initial orientation of each element. Figure 5 illustrates that, the 

accumulated shear strains are generally large on those slip systems with higher Schmid 

Factors (SFs). Specifically, at T=0.33, there are eight slip systems among the twelve slip 

systems generating accumulated shear strain under external applied loading whose 

nominal SFs are all equal to 0.408, and the accumulate shear strain amount on those eight



slip systems are almost the same equal to 0.125, while there were no plastic shear strain 

on the other four slip systems with SFs equal to 0. At higher stress triaxiality level T=2.0, 

larger amount of accumulated shear strain are still accumulated at the slip systems with 

higher nominal SFs. However, the difference on the accumulated shear strain on the slip 

systems with low and high SFs has been diminished.
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Figure 5. Accumulated shear strain of each slip system versus normal Schmid Factor at 
Ee = 0.2 for different stress triaxiality level: (a) T = 0.33, (c) T = 0.5, (d) T = 1.0 and (b)

T = 2.0.

Moreover, in Figure 5, it can also be noticed that the amount of accumulated shear 

strain on each slip system in Crystal 1 bonded with twist GBs is almost the same as that 

on the corresponding slip system in single crystal samples. Consequently, the void
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growth in bicrystal with twist GBs is almost identical to that in the single crystal sample 

as shown in Figure 3. In contrast, the accumulated shear strain of Crystal 1 in bicrystal 

with tilt GBs displays a totally different trend. For instance, at T=0.33, only four out of 

the eight slip systems with the highest nominal SFs (0.408) provide a certain amount of 

accumulated shear strain in Crystal 1 bonded with tilt 45° GBs, while there was almost no 

shear strain accumulating on the other eight slip systems including those four with the 

highest nominal SFs (0.408). Since only four slip systems are clearly active during the 

deformation in Crystal 1 bonded with tilt 45° GBs, the magnitude of the accumulated 

shear strain on those four slip systems are about 65% higher than those on eight active 

slips in the single crystal sample. Although the eight slip systems with the highest 

nominal SFs (0.408) were all activated during the deformation in Crystal 1 bonded with 

tilt 15° GBs, the amount of the plastic strain on those slip systems is different between 

each other. The magnitude of the accumulated shear strain on four of them is higher than 

that in the single crystal sample, while the other four slip systems experienced much less 

shear strain than those in the single crystal sample. Similar phenomena also occurred for 

other stress triaxiality levels, as significant difference of the shear strain were built up on 

slip systems with the same nominal SFs. Furthermore, with the stress triaxiality levels 

increases, the magnitude of accumulated shear strain on the four slip systems (A-D) with 

initial zero SFs raises in all five cases, and even higher than the accumulated shear strain 

on some of the slip systems (E-H) with highest nominal SFs at T = 2.0 as shown in 

Figure 5 (d).

3.3.2. Lattice Rotation During Void Growth. As stress triaxiality levels 

increasing, the loading mode changes from uniaxial tension for T = 0.33 to multiaxial
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tension for T > 0.33. Multiaxial tension may generate highly unsymmetrical slip events in 

twelve slip systems and cause the lattice rotation during the deformation [29]. Figure 6 

presents the distributions of the misorientation angle of each element in the single crystal 

sample along the main loading axis at Ee = 0.2. We can see that the misorientation 

distribution is getting broader as the stress triaxiality level rises from 0.33 to 2.0. It 

indicates higher stress triaxiality levels can induce larger lattice rotations. As a 

consequence of the lattice rotation, the effective SF on each slip system may change. Slip 

directions with lower SFs may rotate to a direction with higher SFs that promotes plastic 

strain of the whole sample to satisfy the external applied load. Therefore, slip systems 

with lower nominal SFs may still provide shear strain during the deformation at high 

stress triaxiality levels as shown in Figure 5 for single crystal samples.

To exam whether this scenario can be applied to bicrystals, we compare the 

distributions of misorientation angles of Crystal 1 along the main loading axis at Ee = 0.2 

in bicrystal samples with T = 0.33 and 1.0 in Figure 6 (b) and (c). We can see that high 

stress triaxiality levels promote the lattice rotation, as the distribution for each case at T = 

1.0 is much wider than that at T = 0.33 and the maximum rotation angle for each case 

increases by 3 -  5 times from T = 0.33 to 1.0 as shown in Figure 6 (b) and (c). However, it 

is demonstrated that most elements in Crystal 1 only were rotated by a very small angle, as 

the peaks of the distributions in Figure 6 (b) and (c) locating between 0° and 5°, even for T 

= 1.0. Such small rotations cannot significantly change the values of SFs and affect the 

plastic deformation and accumulate shear strain on each slip system in the crystalline 

materials. Thus, based on the values of nominal SFs, it is hard to explain the huge 

difference on the accumulated shear strain between the slip systems E-H and I-L shown in
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Figure 5, all of which hold the highest nominal SFs among the twelve slip systems for 

different stress triaxiality levels.

Figure 6. Distribution of misorientation angles of elements at Ee = 0.2 in (a) single 
crystal samples, (b) bicrystal samples for T = 0.33 and (c) T = 1.0.
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3.3.3. Effective Schmid Factors. As the crystallographic orientations of the 

Crystal 1 and Crystal 2 in bicrystals are different, their mechanical responses to external 

loading will be dissimilar to each other [30]. With this, we can anticipate that the 

interaction between Crystal 1 and Crystal 2 will alter the local stress field within both of 

them and drive them away from the applied macro-stress status. As a result, the effective 

SFs on each slip system during the deformation in Crystal 1 may deviate from the 

nominal SFs and facilitate the plastic shear strain accumulating on slip systems with low 

SFs. With the advantage of the CPFE model, we obtained the effective SF on each slip 

system in Crystal 1 at Ee = 0.2 and plot them versus the nominal SF in Figure 7.

(a) (b)

A B C D E F G H I  J K L  A B C D E F G H I  J K L
Nominal Schmid Factor Nominal Schmid Factor

Figure 7. Effective Schmid Factors for each slip system versus normal Schmid Factors at 
Ee = 02  for (a) T = 0.33, (c) T = 0.5, (d) T = 1.0 and (b) T = 2.0.
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For all four different T values, the slip systems A-D with nominal SFs equal to 0 

possess effect SFs larger than 0, the values of which increased with stress triaxiality 

levels. In addition, the differences on nominal SFs between the slip systems with the 

lowest SFs and the highest SFs are about 0.408 and 0.068 for T = 0.33 and 2.0, 

respectively. These differences are much smaller in effective SFs with the values equal to 

about 0.35 to 0.03 for T = 0.33 and 2.0. For the slip systems E-H with the highest 

nominal SFs, their effective SFs are obviously decreased due to the interaction between 

the Crystal 1 and Crystal 2. This significant difference between nominal and effective 

SFs shown in Figure 7 explains the trend of the accumulated shear strain observed in 

Figure 5.

3.4. VOID SHAPE AND EQUIVALENT PLASTIC STRAIN DISTRIBUTION.

To probe the effect of GBs on the deformation of materials around the void, we 

compare the distribution of equivalent plastic strain at E_e=0.2 for T=0.33 and T=1 in 

Figure 8. We can notice that the spherical voids have been stretched along axis parallel to 

the main loading direction for all single crystal and bicrystal samples, as the voids grow 

faster along the main loading direction. The largest equivalent plastic strain always 

occurs near the mid-section along the main loading direction in each case, due to the high 

stress concentration around the void near the GB. However, in the bicrytals with tilt GBs, 

the largest equivalent plastic strains are less than those in bicrystals with twist GBs. 

Moreover, obvious uneven distribution of the equivalent plastic strain are displayed for 

bicrystal with tilt GBs, especially for the bicrystal with tilt 45° GB, resulting in the 

asymmetric deformed void shape on both side of GB. Additionally, the deformed void in



Crystal 1 has more expansion extent than that in Crystal 2, and larger stress triaxiality 

induced larger difference between Crystal 1 and Crystal 2, leading to an irregular shaped 

void. It is worth to mention that Crystal 1 with [001] orientation was selected as the 

target crystal for our analysis, as its crystallographic orientation is relative stable without 

significant lattice rotation during the plastic deformation [31], especially under multiaxial 

loading.
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T=1.0

Figure 8. Distribution of equivalent plastic strain around deformed voids at Ee = 0.2 for
(a) T = 0.33 and (b) T = 1.0.

With this useful feather, it is relative easy to make quantitative comparisons of the

lattice rotation and accumulated shear strain on Crystal 1 in single crystal and bicrystal



samples during the void growth. In addition, we assume the GBs in our model is highly 

intact without deboning and there is no crack or void nucleation on the GBs during the 

deformation. Under the influence of stress triaxiality, additional nucleation of nanovoids 

may occur on the interfaces, as observed by recent integrated computational and 

experimental study [32]. Thus, further works are needed to identify the critical condition 

for the void nucleation on the GBs, which is another important issue relevant to the 

deformation and damage of polycrystalline Ni-based superalloy [5]. Despite this shortage 

of our model, we nevertheless succeeded in identifying the role of GBs and grain-grain 

interaction on the void growth on different type of GBs with various misorientations.

4. CONCLUSIONS

In this study, we explored the effect of GBs on void growth behavior in 

polycrystalline Ni-based superalloys, and also identified the relationship between the 

stress triaxiality and void growth in both single crystal and bicrystals by using a crystal 

plasticity finite element method. Our CPFEM calculation results demonstrated that, voids 

grow slower on tilt GBs in bicrystals than those in single crystal and bicrystal samples 

with twist GBs, while the void growth in single crystal and bicrystal samples with twist 

GBs exhibited almost the same rate and increased with the stress triaxiality levels. In 

addition, void growth is accompanied with the lattice rotation, and higher stress triaxiality 

leads to larger lattice rotation. Based on our analysis, the interaction between two crystals 

bonded with the tilt GB alerted the effective SFs in each crystal that results in asymmetric 

distribution of the equivalent plastic strain around the void and induced distinct irregular
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shaped voids during deformation. This work benefits our understanding of the anisotropic 

void growth on GBs in polycrystalline Ni-based superalloys and can shed light on the 

role of crystal orientation mismatch in the damage of ductile polycrystalline materials.
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SECTION

3. CONCLUSIONS AND RECOMMENDATIONS 

3.1. CONCLUSIONS

In this study, the mechanical behavior of Ni-based superalloy is investigated with 

using Crystal Plasticity Finite Element Method (CPFEM) by evaluating the underlying 

deformation and damage process. With the advantage of CPFEM, the relationship 

between the microstructure state and the macroscopic mechanical performance can be 

associated, by investigating varies quantities based on the developed physical based 

models and comparing with the experiment measurements. As a consequence of this 

study, numerous significant conclusions are reportable.

In paper one, a dislocation-density based constitutive model is developed to 

investigate the deformation mechanisms during the tensile and creep test of Haynes 282. 

For tensile condition, most of the deformation mechanisms that have been demonstrated 

to have influence during the deformation are incorporated. The results of tensile test 

reveals that the strength of the Haynes 282 is heavily dependent on the temperature. 

Below a certain level of temperature, dislocation shearing through the precipitates is 

acting as the main contributor to the strength of Haynes 282. Increasing the temperature 

will alter the critical stress for the activation of dislocation shearing and also produce 

different dislocation density stored in the matrix inducing different strength at various 

temperatures. Benefit from CPFEM, the effect of precipitates size and volume fraction 

can be inspected. Analysis of the results at different precipitate size discloses that larger



precipitate size will increase the resistance of dislocation shearing through the 

precipitates and decrease the critical stress for dislocation looping around the precipitates. 

Larger volume fraction of y ' will also increase the strength of Haynes 282 at both room 

temperature (RT) and 815 °C, as the critical stress are increased required by various 

strengthen mechanisms. During the creeping process, a dislocation climb controlled shear 

rate model is established to study the creeping behavior at relatively small stress and high 

temperature levels. The creep results display that creep strain is increasing much faster at 

the beginning during the primary stage and slow down to a constant rate through the 

secondary stage. A novel climb model accounting for the accumulated dislocation density 

in the vicinity of the particles is developed in this study. It has been found that relatively 

higher stress and higher temperature will promote the dislocation climb over the y' 

particles, generating larger climb dislocation density. The dominant climb mechanisms 

transits from the dislocation general climb to the resistance of deposited dislocation 

network as the creep process.

In paper two, CPFEM is applied to study the effect of grain boundary (GB) on 

void growth behavior. Different types of GB are considered, including the twist GB and 

the tilt GB. The growth behavior of void on different type GBs in bicrystals are compared 

with the void in single crystal. Results show that larger stress triaxiality will induce larger 

growth of the voids, and the deformed void shape is strongly dependent on the stress 

triaxiality levels. In addition, voids on twist GB are almost showing the same growth 

performance as the voids in the single crystal. However, voids on tilt GBs will suppress 

the void growth due to much smaller volume fraction than those on twist GBs and single 

crystal. Shear strain accumulation of voids on tilt GBs are not following the traditional
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Schmid law which are calculated by the macroscopic stress state. Further investigation 

found that the effective Schmid factor has changed from its initial values as a result of the 

interaction between the two crystals. As a consequence, the void on tilt GBs will be 

deformed into an irregular unsymmetrical shape.

3.2. FUTURE WORKS

Developing newly advanced Ni-based superalloys is critical as the demanding of 

the superior requirement of the materials to satisfy more extreme conditions. CPFEM as a 

powerful computational technique is able to predict a variety of character of materials in 

a significantly efficient manner compared with experimental approach. In the future, 

CPFEM combined with Machine Learning (ML) can be a reliable method to optimize the 

materials in order to have superior properties. CPFEM can be used to predict the 

mechanical performance with different chemical composition, texture and precipitate size 

and volume fraction, and inhomogeneous distribution of the precipitates. A lot of data 

generated by CPFEM based on different initial conditions of Ni-based superalloy can 

then be trained and categorized with using ML. As a result, optimized data can be 

extracted and forecasted for processing Ni-based superalloys with expected properties.

In addition, in the present study of the void growth behavior on GBs, we assume 

that the void is nucleated on the GBs with a sphere shape to simplify the model and only 

focus on the effect of different type of GB on the void growth behavior. In fact, void 

shape nucleated on the GBs is strongly dependent on the surface energy and strain energy 

around the void. Also, there is always a second phase precipitate around the nucleated 

void. Reducing the local energy drives the evolution of the void and determine the void
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shape. Multiscale computational approach is a influential method, to determine some 

fundamental parameters that experiments could not reach. Like DFT, which is able to 

help to find the strain energy and surface energy near the carbide phase on GB. By setting 

up the criterion based on the calculation of DFT, CPFEM is able to predict the crack 

nucleation during the deformation.
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