
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 May 1984

An Experimental Study of the Effects of Modularity on Resource An Experimental Study of the Effects of Modularity on Resource

Consumption in Software Development Consumption in Software Development

Alan D. Christiansen

Arlan R. Dekock
Missouri University of Science and Technology, adekock@mst.edu

John Bruce Prater
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Christiansen, Alan D.; Dekock, Arlan R.; and Prater, John Bruce, "An Experimental Study of the Effects of
Modularity on Resource Consumption in Software Development" (1984). Computer Science Technical
Reports. 58.
https://scholarsmine.mst.edu/comsci_techreports/58

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/352884815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/58?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

AN EXPERIMENTAL STUDY OF THE EFFECTS
OF MODULARITY ON RESOURCE CONSUMPTION

IN SOFTWARE DEVELOPMENT

*Alan D. Christiansen , Arlan R. DeKock,
and John B. Prater

CSc-84-3

Department of Computer Science
University of Missouri-Rolla

Rolla, MO 65401 (314)-341-4491

*This report is substantially the M.S. thesis of
the first author, completed May, 1984.

ABSTRACT

Many authors have encouraged the use of modular
programming techniques in software development. In fact,
there is almost total agreement within industrial and
academic circles that modularity is a desirable feature of
any software package. Unfortunately, the desirability of
modular design is almost always voiced without support from
experimental evidence.

This paper consists of an experiment comparing the
resource consumption of programmers based on the modularity
practices employed during the design and programming phases
of software development. The experiment tests the
effectiveness of modularity in reducing psychological
complexity of software.

The results of the research show that in some cases
there is indeed a difference in resource consumption between
the modularity practices tested. However, the stated
benefits of modularity did not carry over to the design and
programming phases of software development. The use of
modularity seemed, in fact, to increase development costs
in some cases.

Ill

ACKNOWLEDGEMENT

The authors wish to express their gratitude to all
those who contributed to this paper. Dr. V. A. Samaranayake
of the UMR Mathematics Department provided many helpful
criticisms of the statistical analyses used in the experi
ment. Also, thanks are extended to all the experimental
subjects. The interest, good humor, and flexibility shown
by these students is greatly appreciated.

XV

TABLE OF CONTENTS

Page
ABSTRACT... ii
ACKNOWLEDGEMENT....................................... iii
LIST OF FIGURES....................................... v
LIST OF TABLES... vi

I. INTRODUCTION.................................. 1
II. REVIEW OF THE LITERATURE...................... 2

A. PSYCHOLOGICAL JUSTIFICATION FOR
MODULARITY.............................. 2

B. MODULARITY, MODIFIABILITY, AND
SOFTWARE MAINTENANCE.................... 3

III. THE EXPERIMENT................................ 5
A. DESIGN.................................. 6
B. SUBJECTS................................ 13
C. PROCEDURES.............................. 14
D. ANALYSIS METHODS........................ 19

IV. EXPERIMENTAL RESULTS.......................... 22
V. DISCUSSION.................................... 43

A. INTERPRETATION OF RESULTS............... 43
B. SIGNIFICANCE OF RESULTS................. 45

VI. CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS... 51
BIBLIOGRAPHY 53

V

Figure Page
1. Modular/Local Treatment Instructions............. 8
2. Non-modular/Global Treatment Instructions........ 9
3. Modular/Global Treatment Instructions............ 10
4. Treatment Order.................................. 16
5• Survey Completed after Each Programming

As s ignment....................................... 17
6. Survey Completed at End of Experiment............. 47

LIST OF FIGURES

VI

Table Page
I. OVERALL DESCRIPTIVE STATISTICS FOR METRICS.... 23
II. RESOURCE CONSUMPTION MEAN VALUES FOR

INDIVIDUAL CELLS............................... 24
III. SUMMARY OF ANOVA FOR METRIC ESTRUNS........... 28
IV. SUMMARY OF ANOVA FOR METRIC RUNSWOSYN......... 29
V. SUMMARY OF ANOVA FOR METRIC ACTRUNS........... 30
VI. SUMMARY OF ANOVA FOR METRIC HOURS.............. 31

VII. SUMMARY OF ANOVA FOR METRIC DESIGNHRS......... 32
VIII. SUMMARY OF ANOVA FOR METRIC DEBUGHRS.......... 3 3

IX. SUMMARY OF ANOVA FOR METRIC HRSWOCK........... 34
X. SUMMARY OF ANOVA FOR METRIC EXSTMTS........... 35
XI. SUMMARY OF ANOVA FOR METRIC LINES.............. 36

XII. SUMMARY OF ANOVA FOR METRIC MINUTES........... 3 7
XIII. SUMMARY OF ANOVA FOR METRIC COST............... 38
XIV. SUMMARIES OF LINEAR CONTRASTS................... 39
XV. SUMMARIES OF LEAST SQUARES DIFFERENCE TESTS.... 40

XVI. RESULTS OF FINAL SURVEY OF ATTITUDES........... 48

LIST OF TABLES

1

I . INTRODUCTION

Modular design of software is widely accepted as being
beneficial to both the programmer and the software product.
That is, by employing modular design techniques, it is
assumed that the programmer should be able to more easily
complete a programming task and should create a more
maintainable program than if modular design were not used.

This paper describes an experiment which was performed
during the Spring 1983 semester. The experiment was
designed to test the relationship of modular program design
techniques to the development costs incurred during the
design and programming phases of software development. The
experiment will directly test the effects of modularity on
the effort needed to complete a programming task. It should
also be noted that software maintainability is enhanced by
modularity, and therefore this research relates to both the
initial programming and maintenance phases of the software
life cycle.

In the remainder of this paper, the experiment is
presented. Section II describes the literature related to
the performed experiment. In Section III, the experiment is
detailed, and the statistical methods used for analysis of
the data are discussed. The analyses are summarized in
Section IV, and then interpreted in Section V. Finally, in
Section VI, the research is summarized and suggestions are
made for further related study.

2

A. PSYCHOLOGICAL JUSTIFICATION FOR MODULARITY
It is quite rare to find complete agreement on tech

niques employed in software engineering. Modular design is
one such technique, however. Almost no one questions the
necessity of modular design of large software systems. The
justification for the use of modularity is generally based
upon the premise that modularity minimizes the "psycholog
ical complexity" of a software package. This complexity is
assumed important in both the design of new software and the
modification of existing software. A minimum psychological
complexity of program would in some way correspond to the
maximum modifiability of the program.

There is a theory within psychology that humans can
only manage a small number of intellectual tasks at one time
[1]. This number is usually claimed to be seven, plus or
minus two tasks (or sometimes, mental discriminations).
This "magic number seven" is well known in the literature.
Since programming is, more than anything else, a thought
process, Frost [1] states that programming should be
viewed as an intellectual management task and should be
subject to the same research methods as are applied in the
field of psychology. There are in fact several references
[2j,[3j,[4j which are surveys of the considerations of
applying experimentation on cognitive behavior to the field
of computer science. References [5],[6], and [7] are

II. REVIEW OF THE LITERATURE

3

examples of such experimentation.
Following the example of these authors, the experiment

described in this paper was designed and executed. The
underlying ideas within the tested hypothesis are related to
the ability of programmers to program quickly and
efficiently, as controlled by the methods of program design.

B. MODULARITY, MODIFIABILITY, AND SOFTWARE MAINTENANCE
Though the motive of this research is to study the

behavior of individuals in designing and programming new
software, one of the primary reasons that modularity is
encouraged does not directly concern itself with the ability
of programmers to create a new software package efficiently.
Rather, the concern is in creating a modifiable and
maintainable program. This maintainability is achieved
through the use of a restricted set of programming
techniques affecting control flow and data flow. Modular
design in control flow is achieved through the use of
subroutines and functions. Modularity in data flow is
achieved through the exclusion of global variables and
common (external) data areas. Estimates vary, but it has
been said that much, if not most, of the cost of software
development is due to maintenance considerations [2]. So,
if these assumptions are correct, there is a powerful
inducement towards modular design from a purely economic
standpoint.

This modularity is thoroughly ingrained within all the

4

popular design methodologies [8],[9],[10],[11]. In fact,
the work of Myers [11] treats the ideas of control and data
flow modularity in great detail. He uses the terms module
strength and module coupling for the respective degrees of
modularity. Levels of quality for each type of modularity
are identified and discussed.

This work is unique among the above methodologies as
Myers has attempted to quantify the degree of modularity
that is achieved in a software package. Through these
measures it is then possible to make broad judgements of the
quality of a software package by inspecting the attributes
of strength and coupling. It is very important to recognize
that there are two unique types of modularity. Control-flow
and data-flow modularity may not impact the programmer (or
the software produced) to the same degree. Later in this
paper, these two types of modularity will be separately
tested to ascertain their respective impacts.

Finally, it should be noted that the ideas of mini
mizing psychological complexity of software and maximizing
maintainability of software are completely compatible. In
fact, when the complexity of software is decreased, the
understandability of that software is increased, and there
fore modification tasks should be more easily completed.
It can then be argued that the research described in
following sections is also related to aspects of software
development past the design and programming phases.

5

Following standard methods of experimentation on
cognitive behavior, a null hypothesis was formed. This null
hypothesis (Hq) is the negation of the hypothesis of
interest, and various statistical tests can be used to
determine whether the null hypothesis may be rejected. If
Hq is rejected, then the alternative hypothesis (H-̂) must be
accepted, as H-̂ is the logical negation of Hq . For this
experiment, the null and alternative hypotheses may be
stated as:

Hq : "There is no difference in resource consumption
levels of programmers due to modularity practice
employed by the programmers."

H-̂ : "There is a difference in resource consumption
levels of programmers due to modularity practice
employed by the programmers."

In testing whether Hq should be accepted or rejected, a way
of numerically measuring "resource consumption" is needed if
the statistical methods mentioned above are to be used. In
fact, several metrics (measures) were chosen, and each was
individually tested. These metrics are described later in
this section along with the details of the experiment. By
separately considering each metric, the null hypothesis is

III. THE EXPERIMENT

6

interpreted in slightly differing ways. In a sense, there
is a separate null hypothesis for each metric employed in
the experiment.

It is also necessary to select a confidence level for
accepting or rejecting Hq based on the statistics. One
arbitrary but usual choice is to select a 95% confidence
level, which means that on average, 5% of the inferences
made from the statistics will be incorrect. Another way
of saying this is that the statistical tests will be made at
the .05 level of significance. Again, this numerical value
is typical of that chosen for similar experiments, but is
arbitrary, and is based on how often, on average, an incor
rect inference will be allowed to be made.

A. DESIGN
The experimental design chosen was a 3 x 3 Latin

square arrangement with each cell assigned more than one
observation. The Latin square was blocked by program number
(there were three programming assignments) and group assign
ment (the participating students were initially assigned
randomly into one of three arbitrary groups). During the
remainder of this paper, these blocks will be designated as

programs 1, 2, and 3 and groups A, B, and C. The as s i gnme n t

of programmers to groups helped to facilitate the a s s k j i i in e n t

of individuals to treatments during the exper iment Because

of the random nature of the group assignment, no effect was
expected due to this grouping. However, it should be noted

that all programmers did not follow the same order of
applied treatments. Therefore, an ordering effect, if
present, would be confounded with any effect of the above
grouping.

The independent variable in the experiment was modular
ity practice. At some time during the experiment, each of
the programmers followed each of the three practices for a
programming assignment. The three methodologies were desig
nated ML, NG, and MG corresponding to Modular design with
Local variables, Non-modular design with Global variables,
and Modular design with Global variables. (The remaining
possible practice, Non-modular design with Local variables,
or NL, is not distinct from NG under the instructions given
and was not employed.) See figures 1, 2, and 3 for the
instructions given to the programmers for each modularity
practice.

The model referred to above as a Latin square is
described by:

Rijkl = U + P± + Gj + Mk + Lijk + eijkl

where
R^jk ̂= observed value of resource consumption

U = grand mean value of resource consumption

= effect of program i

8

INSTRUCTIONS FOR TREATMENT ML

For this program, you are to observe the following
general guidelines:

1) Construct your program as a set of modules. You
should create one procedure for each sub-task which
you can identify as part of the program solution.
As a general rule, try to structure your program so
that no procedure has more than about twenty
executable statements.

2) Limit the scope of variables within your program so
that all communication of values between procedures
is by parameter list. No variables are to be
accessed except as local within a procedure or as
explicitly passed arguments to the procedure.

Except for the above restrictions, you may construct
your program in any way you deem appropriate.

Figure 1: Modular/Local Treatment Instructions

9

INSTRUCTIONS FOR TREATMENT NG

For this program, you are to observe the following
general guidelines:

1) If possible, you are to write your program as one
procedure only. If you do use more than one
procedure, you should use as few procedures as
possible.

2) You must declare all of your variables within the
main procedure. No declarations of variables will
be allowed inside procedures other than the
"OPTIONS(MAIN)."

Except for the above restrictions, you may construct
your program in any way you deem appropriate.

Figure 2: Non-modular/Global Treatment Instructions

10

INSTRUCTIONS FOR TREATMENT MG

For this program, you are to observe the following
general guidelines:

1) Construct your program as a set of modules. You
should create one procedure for each sub-task which
you can identify as part of the program solution.
As a general rule, try to structure your program so
that no procedure has more than about twenty
executable statements.

2) You must declare all of your variables within the
main procedure. No declarations of variables will
be allowed inside procedures other than the
"OPTIONS(MAIN)."

Except for the above restrictions, you may construct
your program in any way you deem appropriate.

Figure 3: Modular/Global Treatment Instructions

11

Gj = effect of grouping j

Mk = effect of modularity practice k

L̂ j-̂ = the "lack of fit" or "residual" of the model
the pooled effects of the interactions of P̂ ,
Gj, and Mk

= experimental error for individual defined by
program i, grouping j, modularity practice k,
and observation 1

The program and group effects are assumed to be random
effects, while the modularity effect is assumed to be a
fixed effect. The Latin square design assumes that all
variation in observed values of resource consumption from
the overall mean is due to the effects of three factors
(program, group, and modularity practice). However, there
are assumed to be no interaction effects due to combinations
of these main effects (program x group, program x modu
larity, group x modularity, program x group x modularity).
The lack of fit term above represents the pooled effect of
these interactions (if present). If shown to be statistic
ally significant, this effect would cast doubt on the
adequacy of the Latin square design.

The experimental error e^jk ̂ is assumed to be normally
distributed with a mean value of zero. Also, since U gives
the overall mean value of resource consumption, it must be

12

the case that

and

pi + p2 + p3 = °

ga + gb + Gc = 0
mml + mng + mmg 0

That is, the effects are perturbations to the overall mean.
Finally, it should be noted that the experiment was

constructed according to a Latin square design for several
pragmatic reasons:

- The Latin square design is well known. The methods of
experimentation and analysis for the Latin square have
been used often successfully, particularly in agri
cultural experiments.

- This design allowed a minimal amount of disruption of
the course in which the experiment was performed. The
cyclic progression of the programmers through the three
modularity practices seemed to give them a feeling of
"fairness" -- that everyone would eventually have the
same advantages and disadvantages.

- The Latin square allowed some measure of control over
learning effects within the experiment, as the experi
mental subjects did not all receive the three modular
ity treatments in the same order. However, the design

13

did not allow control over the so called "order
effects" of the applied treatments -- those effects
caused by the differing treatment orders between
groups.

B. SUBJECTS
The experimental subjects were enrolled in the course

Computer Science 253, Data Structures and Logic. They were
generally junior level computer science majors plus a few
semi-experienced programmers from other academic
departments. Following Schneiderman [2], the level of
proficiency of the experimental subjects can be classified
by the following scheme:

EXPERIENCE
CLASSIFICATION

NAIVE
NOVICE

INTERMEDIATE
EXPERT

EXPERIENCE LEVEL
no programming experience
less than one year of experience
1 to 3 years of experience
more than 3 years of experience

According to this classification scheme, the study described
herein employed intermediate programmers.

Though each member of the experiment was enrolled in
Computer Science 253, not every member of the class
participated. At the beginning of the semester in which

14

the experiment was performed, class members were asked to
participate and were given a description of the experiment
to be undertaken. Participation was not required and a
subject could choose to leave the experiment at any time.
Each class member completed the same assignments, but data
was collected concerning the activities of the participating
programmers. In general, it seemed as though the subjects
did not feel inconvenienced by the experimental procedures.
The subjects were quite cooperative, and it is believed that
the data collected was a good indication of the actual
behavior of the subjects.

C. PROCEDURES
Three programming assignments were selected to be used

in the experiment, and were typical of the assignments
encountered in an undergraduate data structures course.
(The assignments involved (1) infix to postfix conversion of
expressions, (2) insertion and deletion of records into a
binary tree structure, and (3) best-first search of a
weighted graph structure.) All assignments were completed
using the PL/l programming language. The assignments
were of varying difficulty, with an overall average of 126
lines of code (not including comments) produced by the
experimental subjects. Further descriptive statistics will
be given in Section IV.

Again, Schneiderman provides a classification scheme
which can be used to describe the assignments employed in

15

the experiment:

PROGRAM SIZE
CLASSIFICATION LINES OF CODE

SMALL less than 100 lines of code
MEDIUM 100 to 1000 lines of code
LARGE 1000 to 10,000 lines of code

VERY LARGE more than 10,000 lines of code

So, the experiment can be said to have used intermediate
programmers working on small to medium programs.

It is assumed that the method of design, or modularity
practice, is an indicator of the cognitive behavior of the
programmers. That is, by placing constraints on the way
programs are designed, constraints are placed on the way
programmers think. Figure 4 shows the order of treatment
assignments (constraints) employed in the experiment.

The dependent variable in the experiment was resource
consumption, and several metrics were used as indicators of
human and machine costs in software development. In
general, there were three main sources of experimental data:

- After each programming assignment, the programmers
completed a survey which questioned them about their
activities during the completion of the program
assignment. (See figure 5.)

- The final listing of the program (the one turned in to

16

ORDER OF APPLIED TREATMENTS

GROUP: A B c
PROGRAM
NUMBER

1 ML NG MG
2 NG MG ML
3 MG ML NG

Figure 4: Treatment Order

17

SURVEY

1) Approximately how many hours did you spend on the
assignment just completed? ___________

2) Of this time, how many hours did you spend on the design
of the program? ____________

3) How many hours did you spend on coding and keying the
program? ____________

4) How many hours did you spend on debugging the program?

5) Estimate the number of runs you think you made in the
course of completing this program. ____________

6) Estimate the number of runs you think you made before
all syntax errors were removed. ____________

7) For this particular programming assignment and the group
to which you were assigned, what was the most difficult
problem that you faced?

8) Additional comments and/or complaints:

Acct. No.
Name _____
Date _____
Assignment

Figure 5: Survey Completed after Each Programming
Assignment

18

be graded) was retained. Several of the employed
metrics were based on data taken directly from program
printouts.

- When each program was submitted to the computer for
execution, the submission was unobtrusively monitored
and the time of submission and user number was recorded.
In this way, the number of total runs for a particular
user for each programming assignment was obtained.

The metrics employed in the experiment were:

ESTRUNS

RUNSWOSYN

ACTRUNS

HOURS

DESIGNHRS

DEBUGHRS

HRSWOCK

Estimated number of program submissions, as
given by the programmers on the survey
following each program.
Estimated number of submissions made by the
programmer after syntax errors were removed.
The data for this metric was calculated by
subtracting the number of runs estimated to
result in syntax errors from ESTRUNS above.
The number of program submissions counted by
the system for a particular user during the
time frame allocated to a particular pro
gramming assignment.
Estimated total number of hours to complete
the programming assignment, as taken from
the survey.
Estimated hours spent on design of the
program, as taken from the survey.
Estimated hours spent on debugging the
program, as taken from the survey.
Estimated hours devoted to the assignment
less the hours devoted to coding and
keying the source code, as taken from the
survey.

19

EXSTMTS The number of statements executed by the
computer in running the programmer's final
version of the program. This information
was taken from the program listing turned
in at the end of the assignment.

LINES The number of PL/l statements (not includ
ing comments) in the final version of the
program, as taken from the final listing of
the program text.

MINUTES The number of hundredths of minutes of CPU
time used by the final version of the program
in execution, as given by the final program
listing.

COST The estimated job cost (compile and go) of the
final version of the program in cents, as
given by the operating system and printed on
the final program listing.

Each metric was analyzed independently according to the
methods described in the next subsection.

D. ANALYSIS METHODS
It has been shown previously by McNicholl [12] that

resource consumption of individuals in software development
is not normally distributed, but rather follows a log-normal
distribution. This distribution also fit the data obtained
by the authors of this paper. For this reason, before
analyzing the collected data, the natural logarithm of each
observation was calculated. Performing this transformation
causes the transformed data to follow a normal distribution
and allows an analysis of variance to be performed.

An analysis of variance was performed for each of the
eleven metrics according to standard methods [13]. After

20

showing statistically significant differences in the main
effects (program, grouping, modularity), the method of least
squares differences was employed to establish differences
between individual modularity practices (ML vs. NG, ML vs.
MG, NG vs. MG).

Also, two linear contrasts (comparisons) were
performed, grouping modularity practice in terms of control-
flow modularity (ML,MG vs. NG) and data-flow modularity (ML
vs. MG,NG). In the first comparison, the modular control-
flow practices are grouped together and contrasted with the
non-modular control-flow practice. The second comparison
tests differences between the uses of global and local
variables. In each case, one type of modularity is ignored
while the other is tested. Implicit in this procedure is
the assumption that there are no interaction effects between
the two types of modularity. But this is an assumption
only. The experiment does not allow the two types of
modularity to be analyzed independently. The usual descrip
tive statistics were also calculated, and are given in
section IV, along with the results of the above mentioned
tests.

It should be noted that in calculating the above
statistics, not every raw observation was used. There were
two conditions under which data was censored or modified:

If the final version of a program was not correct
(as judged by program output only) then all data

21

for that individual on that programming assignment
was censored. Only data arising from a successfully
completed assignment was used in the calculation of
the above statistics.

In a few instances, individuals who correctly
completed an assignment gave invalid or nonsensical
responses to survey questions. It is believed that
these invalid answers were due to misunderstandings
of the survey questions. These invalid responses
caused resource consumption values to be negative or
zero. As it is impossible to complete an assignment
with negative or zero effort, the observations were
replaced and the modified data was used in the
statistical analyses. If an observation was less
than or equal to zero, it was replaced by the
smallest observed feasible value reported by any
individual.

Problems of this second type only occurred in metrics using
program submissions or hours spent by the programmer as
effort indicators. For program submissions, the replacement
value used was 1. For any question asking for a number of
hours as a response, the value used was 0.25. Both of the
above criteria were checked (and values modified or deleted)
before the logarithmic transformation was applied.

22

IV. EXPERIMENTAL RESULTS

This section presents the results of the statistical
tests mentioned in Section III. Table I gives overall
descriptive statistics for the eleven resource consumption
metrics. In Table II, descriptive statistics for the
metrics are given for individual cells in the experimental
layout. The values reported in Tables I and II have not
been logarithmically transformed. However, some data values
were modified according to the rules of the previous section
before the means were calculated.

Following these tables, the summaries of the analyses
of variance for the transformed data are given in Tables III
through XIII. Note that the F values are given for both
transformed (Ffc) and untransformed (Fu) data. The Fu values
are provided for reference only, and represent the F values
that would be obtained if the raw observations were assumed
to be normally distributed. For those metrics which showed
significance at the .05 level, the results of the linear
contrasts described in Section III are summarized in Table
XIV. And lastly, for those same metrics, the results of the
least squares difference tests are given in Table XV.

23

TABLE I

OVERALL DESCRIPTIVE STATISTICS FOR METRICS

Metric N

ESTRUNS 142
RUNSWOSYN 142
ACTRUNS 142
HOURS 142
DESIGNHRS 142
DEBUGHRS 142
HRSWOCK 142
EXSTMTS 142
LINES 142
MINUTES 142

142

Raw Score Standard
Mean Deviation

18.73 12.96
13.35 11.73
21.56 15.21
18.49 12.76
4.78 4.10
7.64 8.21
14.61 11.54

1689.10 1896.11
125.65 51.36
17.95 7.52
13.27 5.01

Min. Max.

4.00 65.00
1.00 58.00
1.00 95.00
3.00 75.00
0.25 30.00
0.25 60.00
1.25 66.00

221.00 16418.00
58.00 348.00
8.00 54.00
6.00COST 34.00

24

TABLE II

RESOURCE CONSUMPTION MEAN VALUES FOR INDIVIDUAL CELLS

Metric
gram
ber

Modularity
Practice

Raw Score
Mean

1 ML 23.64
1 NG 20.38
1 MG 28.64
2 ML 21.22
2 NG 13.00
2 MG 13.06
3 ML 17.86
3 NG 22.80
3 MG 12.00

1 ML 17.14
1 NG 16.23
1 MG 20.86
2 ML 13.17
2 NG 8.82
2 MG 9.41
3 ML 14.21
3 NG 15.60
3 MG 8.53

1 ML 28.43
1 NG 27.54
1 MG 27.86
2 ML 22.28
2 NG 16.77
2 MG 15.71
3 ML 27.64
3 NG 16.20
3 MG 16.53

ESTRUNS

RUNSWOSYN

ACTRUNS

25

TABLE II (continued)

RESOURCE CONSUMPTION MEAN VALUES FOR INDIVIDUAL CELLS

Program Modularity Raw Score
Metric Number Practice Mean

HOURS

DESIGNHRS

1 ML 33.79
1 NG 18.35
1 MG 24.96
2 ML 19.50
2 NG 11.73
2 MG 11.18
3 ML 22.00
3 NG 17.60
3 MG 12.93

1 ML 7 ..791 NG 3 ., 791 MG 7 ..64
2 ML 5 ..39
2 NG 3 ..02
2 MG 2 ..76
3 ML 4.. 52
3 NG 5 ..10
3 MG 4..23

1 ML 12 ,. 501 NG 6 ,.621 MG 10 .. 14

2 ML 8,.69
2 NG 4..73
2 MG 4 .32
3 ML 12 . 18
3 NG 6.42
3 MG 5. 38

DEBUGHRS

26

RESOURCE

Metric

HRSWOCK

EXSTMTS

TABLE II (continued)

CONSUMPTION MEAN VALUES FOR INDIVIDUAL CELLS

Program Modularity Raw Score
Number Practice Mean

1 ML 26.34
1 NG 14.79
1 MG 20.14
2 ML 14.97
2 NG 8.93
2 MG 8.44
3 ML 18.39
3 NG 13.83
3 MG 10.48

1 ML 3675
1 NG 2469
1 MG 4159
2 ML 491
2 NG 375
2 MG 430
3 ML 1711
3 NG 1801
3 MG 1514

1 ML 187.6
1 NG 137.4
1 MG 200 . 2
2 ML 101.6
2 NG 9 j . 6
2 MG 101.8
3 ML 13 3.6
3 NG 92.2
3 MG 117.1

LINES

27

TABLE II (continued)

RESOURCE CONSUMPTION MEAN VALUES FOR INDIVIDUAL CELLS

Program Modularity Raw Score
Metric Number Practice Mean

MINUTES

COST

1 ML 18.50
1 NG 19.33
1 MG 16.21
2 ML 19.28
2 NG 16.95
2 MG 17.35
3 ML 19.86
3 NG 18.40
3 MG 16.13

1 ML 18.79
1 NG 10.77
1 MG 16.36
2 ML 14.33
2 NG 10.95
2 MG 11.71
3 ML 17.29
3 NG 9.20
3 MG 11.60

23

TABLE III

SUMMARY OF ANOVA FOR METRIC ESTRUNS

Source of
Variation ss df MS Ft Fu

Program 4.951 2 2.476 7.11* 6.08
Group 2.953 2 1.477 4.24* 6 . 1 0

Modularity 0.738 2 0.369 1.06 0.48
Residual 0.291 2 0.145 0.40 0.67
Error 46.309 133 0.348

Total 55.497 141

* Significant at .05 level

29

TABLE IV

SUMMARY OF ANOVA FOR METRIC RUNSWOSYN

Source of
Variation SS df MS Ft Fu

Program 6.357 2 3.178 3.83* 5.42
Group 1.887 2 0.943 1.14 2.41
Modularity 0.825 2 0.412 0.50 0.33
Residual 0.399 2 0 . 2 0 0 0.24 0.37
Error 110.498 133 0.831

Total 1 2 0 . 1 2 0 141

* Significant at .05 level

30

TABLE V

SUMMARY OF ANOVA FOR METRIC ACTRUNS

Source of
Variation SS df MS Ft Fu

Program 4.541 2 2.271 5.35* 5.54
Group 0.108 2 0-054 0.13 0.50
Modularity 2.564 2 1.282 3.02 2.58
Residual 0.198 2 0.099 0.23 0 . 8 6

Error 56.416 133 0.424

Total 64.089 141

* Significant at •05 level

31

TABLE VI

SUMMARY OF ANOVA FOR METRIC HOURS

Source of
Variation SS df MS Ft Fu

Program 9.836 2 4.918 15.10* 13.03
Group 1.457 2 0.729 2.24 1 . 15
Modularity 5.527 2 2.764 8.48* 9.91
Residual 0.342 2 0.171 0.52 1.47
Error 43.327 133 0.326

Total 61.245 141

* Significant at .05 level

32

TABLE VII

SUMMARY OF ANOVA FOR METRIC DESIGNHRS

Source of
Variation SS df MS Ft Fu

*Program 6.978 2 3.489 5.97 5.84
Group 6.761 2 3.381 5.78* 4.23
Modularity 3.702 2 1.851 3.17* 2.93
Residual 0.547 2 0.273 0.47 0.49
Error 77.776 133 0.585

Total 96.874 141

* Significant at .05 level

33

TABLE VIII

SUMMARY OF ANOVA FOR METRIC DEBUGHRS

Source of
Variation SS df MS Ft Fu

Program 7.999 2 4.000 4.19* 2.85
Group 1.559 2 0.780 0.82 0.16
Modularity 8.961 2 4.481 4.69* 5.88
Residual 0.113 2 0.056 0.06 0.85
Error 127.094 133 0.956

Total 147.093 141

*Significant at .05 level

34

TABLE IX

SUMMARY OF ANOVA FOR METRIC HRSWOCK

Source of
Variation SS df MS Ft Fu

Program 11.287 2 5.643 11.65* 10.09
Group 1.549 2 0.775 1.60 0.61
Modularity 5.296 2 2.648 *5.47 7.10
Residual 0.234 2 0.117 0.24 0.95
Error 64.433 133 0.484

Total 83.774 141

*Significant at .05 level

35

TABLE X

SUMMARY OF ANOVA FOR METRIC EXSTMTS

Source of
Variation SS df MS Ft Fu

Program 1 0 1 . 8 8 8 2 50.944 331.42* 53.22
Group 0.466 2 0.233 1.51 2 . 1 1

Modularity 0.907 2 0.454 2.95 1.60
Residual 0.566 2 0.283 1.84 2.25
Error 20.444 133 0.154

Total 126.165 141

* Significant at .05 level

36

TABLE XI

SUMMARY OF ANOVA FOR METRIC LINES

Source of
Variation SS df MS Ft Fu

Program 7.312 2 3.656 61.29* 54.67
Group 0.032 2 0.016 0.27 0.70
Modularity 1.732 2 0 . 8 6 6 14.52* 12.44
Residual 0.480 2 0.240 4.03* 5.10
Error 7.934 133 0.060

Total 17.587 141

* Significant at .05 level

37

TABLE XII

SUMMARY OF ANOVA FOR METRIC MINUTES

Source of
Variation SS df MS Ft Fu

Program 0.093 2

Group 0.218 2

Modularity 0.445 2

Residual 0 . 0 1 0 2

Error 21.949 133

Total 22.713 141

0.047 0.28 0.02

0.109 0.66 0.55
0 . 2 2 2 1.35 1.40
0.005 0.03 0.07
0.165

38

TABLE XIII

SUMMARY OF ANOVA FOR METRIC COST

Source of
Variation SS df MS Ft Fu

Program 1.026 2 0.513 7.06* 7.06
Group 0.034 2 0.017 0.23 0.25
Modularity 5.037 2 2.519 34.65* 29.71
Residual 0.758 2 0.379 *5.21 4.99
Error 9.668 133 0.073

Total 16.288 141

* Significant at .05 level

39

TABLE XIV

SUMMARIES OF LINEAR CONTRASTS

Metric Contrast SS df Ft Fu

HOURS NG, MG vs . ML 5.526 1 16.96* 19.77*
ML, MG vs . NG 1.283 1 3.94* 5.88*

DESIGNHRS NG, MG vs . ML 3.036 1 5.19* 4.51*+
ML, MG vs. NG 2.474 1 4.23* ★ _L4.25 +

DEBUGHRS NG, MG vs • ML 8.909 1 *9.32 ★11.54
ML, MG vs . NG 2.817 1 2.95 4.36*

HRSWOCK NG, MG vs . ML 5.295 1 10.93* 14.13*
ML, MG vs. NG 1.259 1 2.60 4.43*

Significant at .05 level

+Analysis of variance did not show DESIGNHRS
significant at .05 level under assumption of
normal distribution of raw data.

40

TABLE XV

SUMMARIES OF LEAST SQUARES DIFFERENCE TESTS

Least
Metric Treatment

Squares
Mean

Probability
LSMEAN(I)

of hypothesis
= LSMEAN(J)

ML NG MG
HOURS ML 3.023 —

NG 2.609 .001 —

MG 2.595 .001 •909 --

DESIGNHRS ML 1.494 —

NG 1.096 .013 —

MG 1.261 .148 •300 --

DEBUGHRS ML 1.962 —

NG 1.402 .007 —

MG 1.442 . 012 •843 --

HR3WOCK ML 2.725 —

NG 2.313 .005 —

MG 2.303 .005 9 4 4 --

41

The results described by the preceding tables can be
summarized as:

- In several cases, the program factor showed up as
significant.

- Also, some metrics showed significant differences
due to grouping.

- Only two metrics (LINES and COST) showed significance
in the residual terms.

- Four of the remaining metrics showed significant
differences in resource consumption due to modularity
practice. These were the metrics HOURS, DESIGNHRS,
DEBUGHRS, and HRSWOCK.

- For these four metrics, the results of the linear
contrasts show that every contrast was significant
except for ML,MG vs. NG on metrics DEBUGHRS and
HRSWOCK.

- Table XV indicates significant differences between
modularity treatments ML and NG on each of the four
metrics and shows significant differences between
ML and MG on each metric but DESIGNHRS. None of
the four metrics showed significant differences

42

between treatments NG and MG.

The following section discusses the importance of these
results as they relate to software development.

43

V. DISCUSSION

A, INTERPRETATION OF RESULTS
In several of the analyses of variance, the program

factor shows significant differences between programming
assignments. However, this result is not important to the
research undertaken, as it only shows that some assignments
were more difficult than others. Also, there were
significant differences due to the group factor in several
cases. Again, it should be noted that the group factor is
confounded with any order effects that may be present. As
it seems unlikely that ordering effects would occur, the
differences seem to be due to differences in programmer
skill levels between the groups. Some groups had more
proficient programmers than others, and this led to lower
resource consumption values. Fortunately, the group factor
is controlled for in the experimental design, and does not
affect the results obtained.

The residual term shows significance in metrics LINES
and COST, indicating that important interactions between the
factors program number, grouping, and modularity practice
are present. As the Latin square design is inadequate in
these cases, the results obtained for the main effects are
somewhat suspect. In fact, given that interactions are
present, the error term used in the analysis of variance is
incorrect. Further analysis of these metrics would require
that the analysis of variance be repeated, using the

44

residual term as the error term. However, it was decided
that the metrics LINES and COST should be excluded from
further analysis, since the Latin square model is not fully
appropriate in these cases.

Only four of the remaining nine metrics showed signifi
cant differences due to modularity. These four were HOURS,
DESIGNHRS, DEBUGHRS, and HRSWOCK. It should be noted that
all of the data for these metrics was obtained from the
survey. These metrics are somewhat related to each other,
as each is an estimate of time spent on a portion of the
assignment. The results show that the amount of time spent
on the programming assignments (as estimated by the program
mers) did vary between the three treatments.

The contrast results (Table XIV) show that control-
flow modularity was significant for two metrics (HOURS,
DESIGNHRS), while all four metrics showed significant
differences due to data-flow modularity. By inspecting
Table II, it can be seen that treatment ML tends to give
much larger values than the other two treatments. There
fore, results of the control-flow contrast show that for
metrics HOURS and DESIGNHRS, the "more modular" treatments
are more expensive than the "less modular" treatment. Due
again to the much larger values due to treatment ML, the
data-flow modularity contrasts show for each of the four
metrics that the "more modular" approach (local variables
and parameter passing) is more expensive than the "less
modular" approach (global variables). For this experiment,

45

it seems that data-flow modularity is a more important
factor than control-flow modularity, at least in how
resource consumption is affected.

In general, Table XV shows that the significant differ
ences occur because of treatment ML being paired with one of
the other treatments. Significant differences between
treatments NG and MG did not show up in any of the four
metrics. These analyses tend to support the result that
data-flow modularity impacts resource consumption more
heavily than control-flow modularity.

B . SIGNIFICANCE OF RESULTS
As was mentioned previously, the desirability of

modular design is voiced by almost everyone. However, the
previously described experimental results indicate that
modularity does not always favorably impact resource
consumption. For the relatively small programs created
within the experiment, there was either no difference in
resource consumption between treatments, or increasing
modularity served to actually increase consumed resources.
This result is important as it establishes a baseline
result. However, extending these results to larger programs
may or may not be appropriate. Only further experimentation
can provide the "correct" answer. Some suggestions for
further research are made in the next section.

Metrics which showed significance due to modularity
practice were those which were obtained from the surveys

46

completed after each assignment. This information is some
what subjective, as it is the programmers' perceptions of
expended effort. None of the "objective" metrics (those
relying on system-generated information) showed significant
differences between modularity practices. Though somewhat
subjective information (answers to survey questions) has
been used as data in this experiment, the attitudes of the
participants of the experiment have not been directly taken
into account. Figure 6 shows a questionnaire that was given
to the participants at the conclusion of the experiment.
Table XVI summarizes the responses given in this final
survey. Remember that when this survey was filled out, each
participant had sampled each modularity practice. The
results of the survey indicate:

- MG was felt to be the easiest methodology.

- NG was felt to be the most difficult methodology.

- The subjects were initially most familiar with the
practices of treatment ML.

- Almost all participants (96%) felt that the experiment
was a useful educational tool.

47

After you have completed your exam, please answer the
following questions: (Those who did not participate in the
experiment need not respond.)

1) Which group seemed easiest to program in?
ML NG MG
(modular, (non-modular,
local vars) global vars)

(modular,
global vars)

2) Which group was most difficult to program in?
ML NG MG

3) Which group most closely corresponds
you prefer to program?

to the way in which

ML NG MG
4) Which group most

you were taught
closely corresponds

to program?
to the way in which

ML NG MG
5) Do you think that YOU learned anything from

participating in the experiment?
YES

COMMENTS
NO

*** PLEASE DO NOT PUT YOUR NAME ON THIS SURVEY ***

Figure 6 : Survey Completed at End of Experiment

48

TABLE XVI

RESULTS OF FINAL SURVEY OF ATTITUDES

Percentage of Respondents
No

Question ML NG MG Answer

1 18% 2 0% 62% 0%

2 38% 55% 7% 0%

3 31% 8 % 59% 2%

4 69% 8 % 2 1 % 2%

No
YES NO Answer

5 96% 3% 1%

49

These results indicate that:

- The programmers were initially somewhat familiar
with modular design techniques.

- Control-flow modularity was seen as a desirable
feature of a program, and to a lesser extent, data
flow modularity was also seen as desirable.

- Not only was a total lack of modularity (NG) seen
as undesirable, but it was also viewed as a practice
which led to difficulties in programming.

This last result is somewhat contradictory with respect to
the experimental results, as treatment NG often led to less
resources used than the other two practices.

Why did this disparity of results occur? It appears
that, regardless of the attitudes of the programmers, the
practices which required greater attention to detail
required more total effort. There appears to be a
substantial amount of effort that must be extended just to
create a "modular" program. The incorporation of parameter
passing within a program takes a certain amount of effort.
The use of parameters in PL/l requires additional
declarations of variables. The use of subroutines within
a program requires advance planning relating to what
subroutines should accomplish. Planning must also be done

50

to figure out the hierarchical structure of all routines
within the program. The various threads of control-flow
must all be linked together through the design process.

All of these techniques would serve to increase the
values obtained for resource consumption. If modularity is
to impact resource consumption in a favorable sense, the
effects of modularity on psychological complexity must
outweigh the baseline effort needed just to use the modular
design techniques. It appears that the programming
assignments used in this study were not substantial enough
for this to happen.

51

VI. CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS

In the previous sections of this paper, it has been
shown that for intermediate programmers and small to medium
sized programs the use of modular design techniques can in
fact increase software development costs. This result is
quite interesting, as modularity is very widely accepted as
a desirable, if not mandatory, feature of any software
system. The authors believe that modularity should be
present in large systems, as many have already stated. It
seems likely that in order to minimize psychological
complexity of very large programs, modularity in design is
necessary. So, an interesting question arises concerning
the size that a program must be before modularity contrib
utes to minimizing costs in the design and development
phases. Where is this "break-even" point in software system
design? In addition to this question, there are at least
three other experiments which could further illuminate the
relationship between modularity and resource consumption:

- The same experiment as the one described herein should
be replicated, using more substantial programming
assignments.

- The same experiment could be replicated, using number of
compile-time and run-time errors as metrics of resource
consumption.

52

- A similar experiment could be performed using a
factorial layout and treating control-flow and data
flow modularities as individual factors. This would
allow some insight to be gained regarding the inter
action effects of the two modularities, if any.

These experiments could be easily done in an academic
environment, but it seems impractical to expect that such
research could ever be done on "real-world" programs, as
industry has already been convinced that modular design is
necessary from a modifiability standpoint. It is unlikely
that any company would allow the development of a large,
monolithic software package, especially if modular design
were being employed in a separate and independent develop
ment group.

BIBLIOGRAPHY

1. Frost, David, "Psychology and Program Design,"
Datamation 21,5 (May 1975), 137-138.

2. Schneiderman, Ben, Software Psychology, Winthrop,
Cambridge, Massachusetts, 1980.

3. Weinberg, Gerald M., The Psychology of Computer
Programming, Van Nostrand Reinhold, New York, 1971.

4. Sheil, B. A., "The Psychological Study of Programming,"
ACM Computing Surveys 13,1 (March 1981), 101-120.

5. Schneiderman, Ben, "Exploratory Experiments in Program
mer Behavior," International Journal of Computer and
Information Sciences 5,2 (1976), 123-143.

6 . Love, Tom, "An Experimental Investigation of the Effect
of Program Structure on Program Understanding," ACM
SIGPLAN Notices 12,3 (March 1977), 105-113.

7. Basili, Victor R., and Robert W. Reiter, Jr., "A
Controlled Experiment Quantitatively Comparing Software
Development Approaches," IEEE Transactions on Software
Engineering SE-7,3 (May 1981), 299-320.

54

BIBLIOGRAPHY (continued)

8 . Wirth, Niklaus, "Program Development by Stepwise
Refinement," Communications of the ACM 14,4 (April
1971), 221-227.

9. Parnas, D. L., “On the Criteria to be Used in Decompos
ing Systems into Modules," Communications of the ACM
15,12 (December 1972), 1053-1058.

10. Jackson, M. A., Principles of Program Design, Academic
Press, New York, 1975.

11. Myers, Glenford J., Reliable Software through
Composite Design, Petrocelli, New York, 1975.

12. McNicholl, Daniel Gerard, Predictive Modeling of
Resource Consumption During the Programming Phase of
Software Development (Ph.D. Dissertation, University
of Missouri-Rolla, 1982).

13. Freund, Rudolf J., and Ramon C. Littell, SAS for Linear
Models: A Guide to the ANOVA and GLM Procedures, SAS
Institute Inc., Cary, North Carolina, 1981.

	An Experimental Study of the Effects of Modularity on Resource Consumption in Software Development
	Recommended Citation

	tmp.1601387742.pdf.dfMQ3

