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ABSTRACT

Many authors have encouraged the use of modular 
programming techniques in software development. In fact, 
there is almost total agreement within industrial and 
academic circles that modularity is a desirable feature of 
any software package. Unfortunately, the desirability of 
modular design is almost always voiced without support from 
experimental evidence.

This paper consists of an experiment comparing the 
resource consumption of programmers based on the modularity 
practices employed during the design and programming phases 
of software development. The experiment tests the 
effectiveness of modularity in reducing psychological 
complexity of software.

The results of the research show that in some cases 
there is indeed a difference in resource consumption between 
the modularity practices tested. However, the stated 
benefits of modularity did not carry over to the design and 
programming phases of software development. The use of 
modularity seemed, in fact, to increase development costs 
in some cases.
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I . INTRODUCTION

Modular design of software is widely accepted as being 
beneficial to both the programmer and the software product. 
That is, by employing modular design techniques, it is 
assumed that the programmer should be able to more easily 
complete a programming task and should create a more 
maintainable program than if modular design were not used.

This paper describes an experiment which was performed 
during the Spring 1983 semester. The experiment was 
designed to test the relationship of modular program design 
techniques to the development costs incurred during the 
design and programming phases of software development. The 
experiment will directly test the effects of modularity on 
the effort needed to complete a programming task. It should 
also be noted that software maintainability is enhanced by 
modularity, and therefore this research relates to both the 
initial programming and maintenance phases of the software 
life cycle.

In the remainder of this paper, the experiment is 
presented. Section II describes the literature related to 
the performed experiment. In Section III, the experiment is 
detailed, and the statistical methods used for analysis of 
the data are discussed. The analyses are summarized in 
Section IV, and then interpreted in Section V. Finally, in 
Section VI, the research is summarized and suggestions are 
made for further related study.
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A. PSYCHOLOGICAL JUSTIFICATION FOR MODULARITY
It is quite rare to find complete agreement on tech

niques employed in software engineering. Modular design is 
one such technique, however. Almost no one questions the 
necessity of modular design of large software systems. The 
justification for the use of modularity is generally based 
upon the premise that modularity minimizes the "psycholog
ical complexity" of a software package. This complexity is 
assumed important in both the design of new software and the 
modification of existing software. A minimum psychological 
complexity of program would in some way correspond to the 
maximum modifiability of the program.

There is a theory within psychology that humans can 
only manage a small number of intellectual tasks at one time 
[1]. This number is usually claimed to be seven, plus or 
minus two tasks (or sometimes, mental discriminations).
This "magic number seven" is well known in the literature. 
Since programming is, more than anything else, a thought 
process, Frost [1] states that programming should be 
viewed as an intellectual management task and should be 
subject to the same research methods as are applied in the 
field of psychology. There are in fact several references 
[2j,[3j,[4j which are surveys of the considerations of 
applying experimentation on cognitive behavior to the field 
of computer science. References [5],[6], and [7] are

II. REVIEW OF THE LITERATURE
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examples of such experimentation.
Following the example of these authors, the experiment 

described in this paper was designed and executed. The 
underlying ideas within the tested hypothesis are related to 
the ability of programmers to program quickly and 
efficiently, as controlled by the methods of program design.

B. MODULARITY, MODIFIABILITY, AND SOFTWARE MAINTENANCE
Though the motive of this research is to study the 

behavior of individuals in designing and programming new 
software, one of the primary reasons that modularity is 
encouraged does not directly concern itself with the ability 
of programmers to create a new software package efficiently. 
Rather, the concern is in creating a modifiable and 
maintainable program. This maintainability is achieved 
through the use of a restricted set of programming 
techniques affecting control flow and data flow. Modular 
design in control flow is achieved through the use of 
subroutines and functions. Modularity in data flow is 
achieved through the exclusion of global variables and 
common (external) data areas. Estimates vary, but it has 
been said that much, if not most, of the cost of software 
development is due to maintenance considerations [2]. So, 
if these assumptions are correct, there is a powerful 
inducement towards modular design from a purely economic 
standpoint.

This modularity is thoroughly ingrained within all the
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popular design methodologies [8],[9],[10],[11]. In fact, 
the work of Myers [11] treats the ideas of control and data 
flow modularity in great detail. He uses the terms module 
strength and module coupling for the respective degrees of 
modularity. Levels of quality for each type of modularity 
are identified and discussed.

This work is unique among the above methodologies as 
Myers has attempted to quantify the degree of modularity 
that is achieved in a software package. Through these 
measures it is then possible to make broad judgements of the 
quality of a software package by inspecting the attributes 
of strength and coupling. It is very important to recognize 
that there are two unique types of modularity. Control-flow 
and data-flow modularity may not impact the programmer (or 
the software produced) to the same degree. Later in this 
paper, these two types of modularity will be separately 
tested to ascertain their respective impacts.

Finally, it should be noted that the ideas of mini
mizing psychological complexity of software and maximizing 
maintainability of software are completely compatible. In 
fact, when the complexity of software is decreased, the 
understandability of that software is increased, and there
fore modification tasks should be more easily completed.
It can then be argued that the research described in 
following sections is also related to aspects of software 
development past the design and programming phases.
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Following standard methods of experimentation on 
cognitive behavior, a null hypothesis was formed. This null 
hypothesis (Hq ) is the negation of the hypothesis of 
interest, and various statistical tests can be used to 
determine whether the null hypothesis may be rejected. If 
Hq is rejected, then the alternative hypothesis (H-̂ ) must be 
accepted, as H-̂ is the logical negation of Hq . For this 
experiment, the null and alternative hypotheses may be 
stated as:

Hq : "There is no difference in resource consumption
levels of programmers due to modularity practice 
employed by the programmers."

H-̂ : "There is a difference in resource consumption
levels of programmers due to modularity practice 
employed by the programmers."

In testing whether Hq should be accepted or rejected, a way 
of numerically measuring "resource consumption" is needed if 
the statistical methods mentioned above are to be used. In 
fact, several metrics (measures) were chosen, and each was 
individually tested. These metrics are described later in 
this section along with the details of the experiment. By 
separately considering each metric, the null hypothesis is

III. THE EXPERIMENT
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interpreted in slightly differing ways. In a sense, there 
is a separate null hypothesis for each metric employed in 
the experiment.

It is also necessary to select a confidence level for 
accepting or rejecting Hq based on the statistics. One 
arbitrary but usual choice is to select a 95% confidence 
level, which means that on average, 5% of the inferences 
made from the statistics will be incorrect. Another way 
of saying this is that the statistical tests will be made at 
the .05 level of significance. Again, this numerical value 
is typical of that chosen for similar experiments, but is 
arbitrary, and is based on how often, on average, an incor
rect inference will be allowed to be made.

A. DESIGN
The experimental design chosen was a 3 x 3 Latin 

square arrangement with each cell assigned more than one 
observation. The Latin square was blocked by program number 
(there were three programming assignments) and group assign
ment (the participating students were initially assigned 
randomly into one of three arbitrary groups). During the 
remainder of this paper, these blocks will be designated as

programs 1, 2, and 3 and groups A, B, and C. The as s i gnme n t

of programmers to groups helped to facilitate the a s s k j i  i in e n t

of individuals to treatments during the exper iment Because

of the random nature of the group assignment, no effect was 
expected due to this grouping. However, it should be noted



that all programmers did not follow the same order of 
applied treatments. Therefore, an ordering effect, if 
present, would be confounded with any effect of the above 
grouping.

The independent variable in the experiment was modular 
ity practice. At some time during the experiment, each of 
the programmers followed each of the three practices for a 
programming assignment. The three methodologies were desig 
nated ML, NG, and MG corresponding to Modular design with 
Local variables, Non-modular design with Global variables, 
and Modular design with Global variables. (The remaining 
possible practice, Non-modular design with Local variables, 
or NL, is not distinct from NG under the instructions given 
and was not employed.) See figures 1, 2, and 3 for the 
instructions given to the programmers for each modularity 
practice.

The model referred to above as a Latin square is 
described by:

Rijkl = U + P± + Gj + Mk + Lijk + eijkl

where
R^jk  ̂= observed value of resource consumption

U = grand mean value of resource consumption

= effect of program i
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INSTRUCTIONS FOR TREATMENT ML

For this program, you are to observe the following 
general guidelines:

1) Construct your program as a set of modules. You
should create one procedure for each sub-task which 
you can identify as part of the program solution.
As a general rule, try to structure your program so 
that no procedure has more than about twenty 
executable statements.

2) Limit the scope of variables within your program so 
that all communication of values between procedures 
is by parameter list. No variables are to be 
accessed except as local within a procedure or as 
explicitly passed arguments to the procedure.

Except for the above restrictions, you may construct 
your program in any way you deem appropriate.

Figure 1: Modular/Local Treatment Instructions
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INSTRUCTIONS FOR TREATMENT NG

For this program, you are to observe the following 
general guidelines:

1) If possible, you are to write your program as one 
procedure only. If you do use more than one 
procedure, you should use as few procedures as 
possible.

2) You must declare all of your variables within the 
main procedure. No declarations of variables will 
be allowed inside procedures other than the 
"OPTIONS(MAIN)."

Except for the above restrictions, you may construct 
your program in any way you deem appropriate.

Figure 2: Non-modular/Global Treatment Instructions
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INSTRUCTIONS FOR TREATMENT MG

For this program, you are to observe the following 
general guidelines:

1) Construct your program as a set of modules. You
should create one procedure for each sub-task which 
you can identify as part of the program solution.
As a general rule, try to structure your program so 
that no procedure has more than about twenty 
executable statements.

2) You must declare all of your variables within the 
main procedure. No declarations of variables will 
be allowed inside procedures other than the 
"OPTIONS(MAIN)."

Except for the above restrictions, you may construct 
your program in any way you deem appropriate.

Figure 3: Modular/Global Treatment Instructions
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Gj = effect of grouping j

Mk = effect of modularity practice k

L̂ j-̂  = the "lack of fit" or "residual" of the model 
the pooled effects of the interactions of P̂ , 
Gj, and Mk

= experimental error for individual defined by 
program i, grouping j, modularity practice k, 
and observation 1

The program and group effects are assumed to be random 
effects, while the modularity effect is assumed to be a 
fixed effect. The Latin square design assumes that all 
variation in observed values of resource consumption from 
the overall mean is due to the effects of three factors 
(program, group, and modularity practice). However, there 
are assumed to be no interaction effects due to combinations 
of these main effects (program x group, program x modu
larity, group x modularity, program x group x modularity). 
The lack of fit term above represents the pooled effect of 
these interactions (if present). If shown to be statistic
ally significant, this effect would cast doubt on the 
adequacy of the Latin square design.

The experimental error e^jk  ̂ is assumed to be normally 
distributed with a mean value of zero. Also, since U gives 
the overall mean value of resource consumption, it must be
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the case that

and

pi + p2 + p3 = °

ga + gb + Gc = 0
mml + mng + mmg 0

That is, the effects are perturbations to the overall mean.
Finally, it should be noted that the experiment was 

constructed according to a Latin square design for several 
pragmatic reasons:

- The Latin square design is well known. The methods of 
experimentation and analysis for the Latin square have 
been used often successfully, particularly in agri
cultural experiments.

- This design allowed a minimal amount of disruption of 
the course in which the experiment was performed. The 
cyclic progression of the programmers through the three 
modularity practices seemed to give them a feeling of 
"fairness" -- that everyone would eventually have the 
same advantages and disadvantages.

- The Latin square allowed some measure of control over 
learning effects within the experiment, as the experi
mental subjects did not all receive the three modular
ity treatments in the same order. However, the design
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did not allow control over the so called "order 
effects" of the applied treatments -- those effects 
caused by the differing treatment orders between 
groups.

B. SUBJECTS
The experimental subjects were enrolled in the course 

Computer Science 253, Data Structures and Logic. They were 
generally junior level computer science majors plus a few 
semi-experienced programmers from other academic 
departments. Following Schneiderman [2], the level of 
proficiency of the experimental subjects can be classified 
by the following scheme:

EXPERIENCE
CLASSIFICATION

NAIVE
NOVICE

INTERMEDIATE
EXPERT

EXPERIENCE LEVEL 
no programming experience 
less than one year of experience 
1 to 3 years of experience 
more than 3 years of experience

According to this classification scheme, the study described 
herein employed intermediate programmers.

Though each member of the experiment was enrolled in 
Computer Science 253, not every member of the class 
participated. At the beginning of the semester in which
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the experiment was performed, class members were asked to 
participate and were given a description of the experiment 
to be undertaken. Participation was not required and a 
subject could choose to leave the experiment at any time. 
Each class member completed the same assignments, but data 
was collected concerning the activities of the participating 
programmers. In general, it seemed as though the subjects 
did not feel inconvenienced by the experimental procedures. 
The subjects were quite cooperative, and it is believed that 
the data collected was a good indication of the actual 
behavior of the subjects.

C. PROCEDURES
Three programming assignments were selected to be used 

in the experiment, and were typical of the assignments 
encountered in an undergraduate data structures course.
(The assignments involved (1) infix to postfix conversion of 
expressions, (2) insertion and deletion of records into a 
binary tree structure, and (3) best-first search of a 
weighted graph structure.) All assignments were completed 
using the PL/l programming language. The assignments 
were of varying difficulty, with an overall average of 126 
lines of code (not including comments) produced by the 
experimental subjects. Further descriptive statistics will 
be given in Section IV.

Again, Schneiderman provides a classification scheme 
which can be used to describe the assignments employed in
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the experiment:

PROGRAM SIZE 
CLASSIFICATION LINES OF CODE

SMALL less than 100 lines of code
MEDIUM 100 to 1000 lines of code
LARGE 1000 to 10,000 lines of code

VERY LARGE more than 10,000 lines of code

So, the experiment can be said to have used intermediate 
programmers working on small to medium programs.

It is assumed that the method of design, or modularity 
practice, is an indicator of the cognitive behavior of the 
programmers. That is, by placing constraints on the way 
programs are designed, constraints are placed on the way 
programmers think. Figure 4 shows the order of treatment 
assignments (constraints) employed in the experiment.

The dependent variable in the experiment was resource 
consumption, and several metrics were used as indicators of 
human and machine costs in software development. In 
general, there were three main sources of experimental data:

- After each programming assignment, the programmers 
completed a survey which questioned them about their 
activities during the completion of the program 
assignment. (See figure 5.)

- The final listing of the program (the one turned in to
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ORDER OF APPLIED TREATMENTS

GROUP: A B c
PROGRAM
NUMBER

1 ML NG MG
2 NG MG ML
3 MG ML NG

Figure 4: Treatment Order
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SURVEY

1) Approximately how many hours did you spend on the
assignment just completed? ___________

2) Of this time, how many hours did you spend on the design
of the program? ____________

3) How many hours did you spend on coding and keying the
program? ____________

4) How many hours did you spend on debugging the program?

5) Estimate the number of runs you think you made in the
course of completing this program. ____________

6) Estimate the number of runs you think you made before
all syntax errors were removed. ____________

7) For this particular programming assignment and the group 
to which you were assigned, what was the most difficult 
problem that you faced?

8) Additional comments and/or complaints:

Acct. No.
Name _____
Date _____
Assignment

Figure 5: Survey Completed after Each Programming 
Assignment
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be graded) was retained. Several of the employed 
metrics were based on data taken directly from program 
printouts.

- When each program was submitted to the computer for 
execution, the submission was unobtrusively monitored 
and the time of submission and user number was recorded. 
In this way, the number of total runs for a particular 
user for each programming assignment was obtained.

The metrics employed in the experiment were:

ESTRUNS

RUNSWOSYN

ACTRUNS

HOURS

DESIGNHRS

DEBUGHRS

HRSWOCK

Estimated number of program submissions, as 
given by the programmers on the survey 
following each program.
Estimated number of submissions made by the 
programmer after syntax errors were removed. 
The data for this metric was calculated by 
subtracting the number of runs estimated to 
result in syntax errors from ESTRUNS above.
The number of program submissions counted by 
the system for a particular user during the 
time frame allocated to a particular pro
gramming assignment.
Estimated total number of hours to complete 
the programming assignment, as taken from 
the survey.
Estimated hours spent on design of the 
program, as taken from the survey.
Estimated hours spent on debugging the 
program, as taken from the survey.
Estimated hours devoted to the assignment 
less the hours devoted to coding and 
keying the source code, as taken from the 
survey.
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EXSTMTS The number of statements executed by the 
computer in running the programmer's final 
version of the program. This information 
was taken from the program listing turned 
in at the end of the assignment.

LINES The number of PL/l statements (not includ
ing comments) in the final version of the 
program, as taken from the final listing of 
the program text.

MINUTES The number of hundredths of minutes of CPU 
time used by the final version of the program 
in execution, as given by the final program 
listing.

COST The estimated job cost (compile and go) of the 
final version of the program in cents, as 
given by the operating system and printed on 
the final program listing.

Each metric was analyzed independently according to the 
methods described in the next subsection.

D. ANALYSIS METHODS
It has been shown previously by McNicholl [12] that 

resource consumption of individuals in software development 
is not normally distributed, but rather follows a log-normal 
distribution. This distribution also fit the data obtained 
by the authors of this paper. For this reason, before 
analyzing the collected data, the natural logarithm of each 
observation was calculated. Performing this transformation 
causes the transformed data to follow a normal distribution 
and allows an analysis of variance to be performed.

An analysis of variance was performed for each of the 
eleven metrics according to standard methods [13]. After
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showing statistically significant differences in the main 
effects (program, grouping, modularity), the method of least 
squares differences was employed to establish differences 
between individual modularity practices (ML vs. NG, ML vs. 
MG, NG vs. MG).

Also, two linear contrasts (comparisons) were 
performed, grouping modularity practice in terms of control- 
flow modularity (ML,MG vs. NG) and data-flow modularity (ML 
vs. MG,NG). In the first comparison, the modular control- 
flow practices are grouped together and contrasted with the 
non-modular control-flow practice. The second comparison 
tests differences between the uses of global and local 
variables. In each case, one type of modularity is ignored 
while the other is tested. Implicit in this procedure is 
the assumption that there are no interaction effects between 
the two types of modularity. But this is an assumption 
only. The experiment does not allow the two types of 
modularity to be analyzed independently. The usual descrip
tive statistics were also calculated, and are given in 
section IV, along with the results of the above mentioned 
tests.

It should be noted that in calculating the above 
statistics, not every raw observation was used. There were 
two conditions under which data was censored or modified:

If the final version of a program was not correct
(as judged by program output only) then all data
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for that individual on that programming assignment 
was censored. Only data arising from a successfully 
completed assignment was used in the calculation of 
the above statistics.

In a few instances, individuals who correctly 
completed an assignment gave invalid or nonsensical 
responses to survey questions. It is believed that 
these invalid answers were due to misunderstandings 
of the survey questions. These invalid responses 
caused resource consumption values to be negative or 
zero. As it is impossible to complete an assignment 
with negative or zero effort, the observations were 
replaced and the modified data was used in the 
statistical analyses. If an observation was less 
than or equal to zero, it was replaced by the 
smallest observed feasible value reported by any 
individual.

Problems of this second type only occurred in metrics using 
program submissions or hours spent by the programmer as 
effort indicators. For program submissions, the replacement 
value used was 1. For any question asking for a number of 
hours as a response, the value used was 0.25. Both of the 
above criteria were checked (and values modified or deleted) 
before the logarithmic transformation was applied.
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IV. EXPERIMENTAL RESULTS

This section presents the results of the statistical 
tests mentioned in Section III. Table I gives overall 
descriptive statistics for the eleven resource consumption 
metrics. In Table II, descriptive statistics for the 
metrics are given for individual cells in the experimental 
layout. The values reported in Tables I and II have not 
been logarithmically transformed. However, some data values 
were modified according to the rules of the previous section 
before the means were calculated.

Following these tables, the summaries of the analyses 
of variance for the transformed data are given in Tables III 
through XIII. Note that the F values are given for both 
transformed (Ffc) and untransformed (Fu) data. The Fu values 
are provided for reference only, and represent the F values 
that would be obtained if the raw observations were assumed 
to be normally distributed. For those metrics which showed 
significance at the .05 level, the results of the linear 
contrasts described in Section III are summarized in Table 
XIV. And lastly, for those same metrics, the results of the 
least squares difference tests are given in Table XV.
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TABLE I

OVERALL DESCRIPTIVE STATISTICS FOR METRICS

Metric N

ESTRUNS 142
RUNSWOSYN 142
ACTRUNS 142
HOURS 142
DESIGNHRS 142
DEBUGHRS 142
HRSWOCK 142
EXSTMTS 142
LINES 142
MINUTES 142

142

Raw Score Standard 
Mean Deviation

18.73 12.96
13.35 11.73
21.56 15.21
18.49 12.76
4.78 4.10
7.64 8.21
14.61 11.54

1689.10 1896.11
125.65 51.36
17.95 7.52
13.27 5.01

Min. Max.

4.00 65.00
1.00 58.00
1.00 95.00
3.00 75.00
0.25 30.00
0.25 60.00
1.25 66.00

221.00 16418.00
58.00 348.00
8.00 54.00
6.00COST 34.00



24

TABLE II

RESOURCE CONSUMPTION MEAN VALUES FOR INDIVIDUAL CELLS

Metric
gram
ber

Modularity
Practice

Raw Score 
Mean

1 ML 23.64
1 NG 20.38
1 MG 28.64
2 ML 21.22
2 NG 13.00
2 MG 13.06
3 ML 17.86
3 NG 22.80
3 MG 12.00

1 ML 17.14
1 NG 16.23
1 MG 20.86
2 ML 13.17
2 NG 8.82
2 MG 9.41
3 ML 14.21
3 NG 15.60
3 MG 8.53

1 ML 28.43
1 NG 27.54
1 MG 27.86
2 ML 22.28
2 NG 16.77
2 MG 15.71
3 ML 27.64
3 NG 16.20
3 MG 16.53

ESTRUNS

RUNSWOSYN

ACTRUNS
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TABLE II (continued)

RESOURCE CONSUMPTION MEAN VALUES FOR INDIVIDUAL CELLS

Program Modularity Raw Score
Metric Number Practice Mean

HOURS

DESIGNHRS

1 ML 33.79
1 NG 18.35
1 MG 24.96
2 ML 19.50
2 NG 11.73
2 MG 11.18
3 ML 22.00
3 NG 17.60
3 MG 12.93

1 ML 7 ..791 NG 3 ., 791 MG 7 ..64
2 ML 5 ..39
2 NG 3 ..02
2 MG 2 ..76
3 ML 4.. 52
3 NG 5 ..10
3 MG 4..23

1 ML 12 ,. 501 NG 6 ,.621 MG 10 .. 14

2 ML 8,.69
2 NG 4..73
2 MG 4 .32
3 ML 12 . 18
3 NG 6.42
3 MG 5. 38

DEBUGHRS
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RESOURCE

Metric

HRSWOCK

EXSTMTS

TABLE II (continued)

CONSUMPTION MEAN VALUES FOR INDIVIDUAL CELLS

Program Modularity Raw Score
Number Practice Mean

1 ML 26.34
1 NG 14.79
1 MG 20.14
2 ML 14.97
2 NG 8.93
2 MG 8.44
3 ML 18.39
3 NG 13.83
3 MG 10.48

1 ML 3675
1 NG 2469
1 MG 4159
2 ML 491
2 NG 375
2 MG 430
3 ML 1711
3 NG 1801
3 MG 1514

1 ML 187.6
1 NG 137.4
1 MG 200 . 2
2 ML 101.6
2 NG 9 j . 6
2 MG 101.8
3 ML 13 3.6
3 NG 92.2
3 MG 117.1

LINES
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TABLE II (continued)

RESOURCE CONSUMPTION MEAN VALUES FOR INDIVIDUAL CELLS

Program Modularity Raw Score
Metric Number Practice Mean

MINUTES

COST

1 ML 18.50
1 NG 19.33
1 MG 16.21
2 ML 19.28
2 NG 16.95
2 MG 17.35
3 ML 19.86
3 NG 18.40
3 MG 16.13

1 ML 18.79
1 NG 10.77
1 MG 16.36
2 ML 14.33
2 NG 10.95
2 MG 11.71
3 ML 17.29
3 NG 9.20
3 MG 11.60
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TABLE III

SUMMARY OF ANOVA FOR METRIC ESTRUNS

Source of 
Variation ss df MS Ft Fu

Program 4.951 2 2.476 7.11* 6.08
Group 2.953 2 1.477 4.24* 6 . 1 0

Modularity 0.738 2 0.369 1.06 0.48
Residual 0.291 2 0.145 0.40 0.67
Error 46.309 133 0.348

Total 55.497 141

* Significant at .05 level
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TABLE IV

SUMMARY OF ANOVA FOR METRIC RUNSWOSYN

Source of
Variation SS df MS Ft Fu

Program 6.357 2 3.178 3.83* 5.42
Group 1.887 2 0.943 1.14 2.41
Modularity 0.825 2 0.412 0.50 0.33
Residual 0.399 2 0 . 2 0 0 0.24 0.37
Error 110.498 133 0.831

Total 1 2 0 . 1 2 0 141

* Significant at .05 level
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TABLE V

SUMMARY OF ANOVA FOR METRIC ACTRUNS

Source of
Variation SS df MS Ft Fu

Program 4.541 2 2.271 5.35* 5.54
Group 0.108 2 0-054 0.13 0.50
Modularity 2.564 2 1.282 3.02 2.58
Residual 0.198 2 0.099 0.23 0 . 8 6

Error 56.416 133 0.424

Total 64.089 141

* Significant at •05 level
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TABLE VI

SUMMARY OF ANOVA FOR METRIC HOURS

Source of 
Variation SS df MS Ft Fu

Program 9.836 2 4.918 15.10* 13.03
Group 1.457 2 0.729 2.24 1 . 15
Modularity 5.527 2 2.764 8.48* 9.91
Residual 0.342 2 0.171 0.52 1.47
Error 43.327 133 0.326

Total 61.245 141

* Significant at .05 level
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TABLE VII

SUMMARY OF ANOVA FOR METRIC DESIGNHRS

Source of
Variation SS df MS Ft Fu

*Program 6.978 2 3.489 5.97 5.84
Group 6.761 2 3.381 5.78* 4.23
Modularity 3.702 2 1.851 3.17* 2.93
Residual 0.547 2 0.273 0.47 0.49
Error 77.776 133 0.585

Total 96.874 141

* Significant at .05 level
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TABLE VIII

SUMMARY OF ANOVA FOR METRIC DEBUGHRS

Source of 
Variation SS df MS Ft Fu

Program 7.999 2 4.000 4.19* 2.85
Group 1.559 2 0.780 0.82 0.16
Modularity 8.961 2 4.481 4.69* 5.88
Residual 0.113 2 0.056 0.06 0.85
Error 127.094 133 0.956

Total 147.093 141

*Significant at .05 level
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TABLE IX

SUMMARY OF ANOVA FOR METRIC HRSWOCK

Source of 
Variation SS df MS Ft Fu

Program 11.287 2 5.643 11.65* 10.09
Group 1.549 2 0.775 1.60 0.61
Modularity 5.296 2 2.648 *5.47 7.10
Residual 0.234 2 0.117 0.24 0.95
Error 64.433 133 0.484

Total 83.774 141

*Significant at .05 level
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TABLE X

SUMMARY OF ANOVA FOR METRIC EXSTMTS

Source of 
Variation SS df MS Ft Fu

Program 1 0 1 . 8 8 8 2 50.944 331.42* 53.22
Group 0.466 2 0.233 1.51 2 . 1 1

Modularity 0.907 2 0.454 2.95 1.60
Residual 0.566 2 0.283 1.84 2.25
Error 20.444 133 0.154

Total 126.165 141

* Significant at .05 level
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TABLE XI

SUMMARY OF ANOVA FOR METRIC LINES

Source of 
Variation SS df MS Ft Fu

Program 7.312 2 3.656 61.29* 54.67
Group 0.032 2 0.016 0.27 0.70
Modularity 1.732 2 0 . 8 6 6 14.52* 12.44
Residual 0.480 2 0.240 4.03* 5.10
Error 7.934 133 0.060

Total 17.587 141

* Significant at .05 level
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TABLE XII

SUMMARY OF ANOVA FOR METRIC MINUTES

Source of
Variation SS df MS Ft Fu

Program 0.093 2

Group 0.218 2

Modularity 0.445 2

Residual 0 . 0 1 0 2

Error 21.949 133

Total 22.713 141

0.047 0.28 0.02

0.109 0.66 0.55
0 . 2 2 2 1.35 1.40
0.005 0.03 0.07
0.165
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TABLE XIII

SUMMARY OF ANOVA FOR METRIC COST

Source of 
Variation SS df MS Ft Fu

Program 1.026 2 0.513 7.06* 7.06
Group 0.034 2 0.017 0.23 0.25
Modularity 5.037 2 2.519 34.65* 29.71
Residual 0.758 2 0.379 *5.21 4.99
Error 9.668 133 0.073

Total 16.288 141

* Significant at .05 level
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TABLE XIV

SUMMARIES OF LINEAR CONTRASTS

Metric Contrast SS df Ft Fu

HOURS NG, MG vs . ML 5.526 1 16.96* 19.77*
ML, MG vs . NG 1.283 1 3.94* 5.88*

DESIGNHRS NG, MG vs . ML 3.036 1 5.19* 4.51*+
ML, MG vs. NG 2.474 1 4.23* ★ _L4.25 +

DEBUGHRS NG, MG vs • ML 8.909 1 *9.32 ★11.54
ML, MG vs . NG 2.817 1 2.95 4.36*

HRSWOCK NG, MG vs . ML 5.295 1 10.93* 14.13*
ML, MG vs. NG 1.259 1 2.60 4.43*

Significant at .05 level

+Analysis of variance did not show DESIGNHRS 
significant at .05 level under assumption of 
normal distribution of raw data.
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TABLE XV

SUMMARIES OF LEAST SQUARES DIFFERENCE TESTS

Least
Metric Treatment

Squares
Mean

Probability 
LSMEAN(I)

of hypothesis 
= LSMEAN(J )

ML NG MG
HOURS ML 3.023 —

NG 2.609 .001 —

MG 2.595 .001 •909 --

DESIGNHRS ML 1.494 —

NG 1.096 .013 —

MG 1.261 .148 •300 --

DEBUGHRS ML 1.962 —

NG 1.402 .007 —

MG 1.442 . 012 •843 --

HR3WOCK ML 2.725 —

NG 2.313 .005 —

MG 2.303 .005 9 4 4 --
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The results described by the preceding tables can be 
summarized as:

- In several cases, the program factor showed up as 
significant.

- Also, some metrics showed significant differences 
due to grouping.

- Only two metrics (LINES and COST) showed significance 
in the residual terms.

- Four of the remaining metrics showed significant 
differences in resource consumption due to modularity 
practice. These were the metrics HOURS, DESIGNHRS, 
DEBUGHRS, and HRSWOCK.

- For these four metrics, the results of the linear 
contrasts show that every contrast was significant 
except for ML,MG vs. NG on metrics DEBUGHRS and 
HRSWOCK.

- Table XV indicates significant differences between 
modularity treatments ML and NG on each of the four 
metrics and shows significant differences between 
ML and MG on each metric but DESIGNHRS. None of 
the four metrics showed significant differences
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between treatments NG and MG.

The following section discusses the importance of these 
results as they relate to software development.
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V. DISCUSSION

A, INTERPRETATION OF RESULTS
In several of the analyses of variance, the program 

factor shows significant differences between programming 
assignments. However, this result is not important to the 
research undertaken, as it only shows that some assignments 
were more difficult than others. Also, there were 
significant differences due to the group factor in several 
cases. Again, it should be noted that the group factor is 
confounded with any order effects that may be present. As 
it seems unlikely that ordering effects would occur, the 
differences seem to be due to differences in programmer 
skill levels between the groups. Some groups had more 
proficient programmers than others, and this led to lower 
resource consumption values. Fortunately, the group factor 
is controlled for in the experimental design, and does not 
affect the results obtained.

The residual term shows significance in metrics LINES 
and COST, indicating that important interactions between the 
factors program number, grouping, and modularity practice 
are present. As the Latin square design is inadequate in 
these cases, the results obtained for the main effects are 
somewhat suspect. In fact, given that interactions are 
present, the error term used in the analysis of variance is 
incorrect. Further analysis of these metrics would require 
that the analysis of variance be repeated, using the
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residual term as the error term. However, it was decided 
that the metrics LINES and COST should be excluded from 
further analysis, since the Latin square model is not fully 
appropriate in these cases.

Only four of the remaining nine metrics showed signifi
cant differences due to modularity. These four were HOURS, 
DESIGNHRS, DEBUGHRS, and HRSWOCK. It should be noted that 
all of the data for these metrics was obtained from the 
survey. These metrics are somewhat related to each other, 
as each is an estimate of time spent on a portion of the 
assignment. The results show that the amount of time spent 
on the programming assignments (as estimated by the program
mers) did vary between the three treatments.

The contrast results (Table XIV) show that control- 
flow modularity was significant for two metrics (HOURS, 
DESIGNHRS), while all four metrics showed significant 
differences due to data-flow modularity. By inspecting 
Table II, it can be seen that treatment ML tends to give 
much larger values than the other two treatments. There
fore, results of the control-flow contrast show that for 
metrics HOURS and DESIGNHRS, the "more modular" treatments 
are more expensive than the "less modular" treatment. Due 
again to the much larger values due to treatment ML, the 
data-flow modularity contrasts show for each of the four 
metrics that the "more modular" approach (local variables 
and parameter passing) is more expensive than the "less 
modular" approach (global variables). For this experiment,
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it seems that data-flow modularity is a more important 
factor than control-flow modularity, at least in how 
resource consumption is affected.

In general, Table XV shows that the significant differ
ences occur because of treatment ML being paired with one of 
the other treatments. Significant differences between 
treatments NG and MG did not show up in any of the four 
metrics. These analyses tend to support the result that 
data-flow modularity impacts resource consumption more 
heavily than control-flow modularity.

B . SIGNIFICANCE OF RESULTS
As was mentioned previously, the desirability of 

modular design is voiced by almost everyone. However, the 
previously described experimental results indicate that 
modularity does not always favorably impact resource 
consumption. For the relatively small programs created 
within the experiment, there was either no difference in 
resource consumption between treatments, or increasing 
modularity served to actually increase consumed resources. 
This result is important as it establishes a baseline 
result. However, extending these results to larger programs 
may or may not be appropriate. Only further experimentation 
can provide the "correct" answer. Some suggestions for 
further research are made in the next section.

Metrics which showed significance due to modularity 
practice were those which were obtained from the surveys
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completed after each assignment. This information is some
what subjective, as it is the programmers' perceptions of 
expended effort. None of the "objective" metrics (those 
relying on system-generated information) showed significant 
differences between modularity practices. Though somewhat 
subjective information (answers to survey questions) has 
been used as data in this experiment, the attitudes of the 
participants of the experiment have not been directly taken 
into account. Figure 6 shows a questionnaire that was given 
to the participants at the conclusion of the experiment. 
Table XVI summarizes the responses given in this final 
survey. Remember that when this survey was filled out, each 
participant had sampled each modularity practice. The 
results of the survey indicate:

- MG was felt to be the easiest methodology.

- NG was felt to be the most difficult methodology.

- The subjects were initially most familiar with the 
practices of treatment ML.

- Almost all participants (96%) felt that the experiment 
was a useful educational tool.
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After you have completed your exam, please answer the 
following questions: (Those who did not participate in the
experiment need not respond.)

1) Which group seemed easiest to program in?
ML NG MG
(modular, (non-modular, 
local vars) global vars)

(modular,
global vars)

2 ) Which group was most difficult to program in?
ML NG MG

3) Which group most closely corresponds 
you prefer to program?

to the way in which

ML NG MG
4) Which group most 

you were taught
closely corresponds 

to program?
to the way in which

ML NG MG
5) Do you think that YOU learned anything from 

participating in the experiment?
YES

COMMENTS
NO

*** PLEASE DO NOT PUT YOUR NAME ON THIS SURVEY ***

Figure 6 : Survey Completed at End of Experiment
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TABLE XVI

RESULTS OF FINAL SURVEY OF ATTITUDES

Percentage of Respondents
No

Question ML NG MG Answer

1 18% 2 0% 62% 0%

2 38% 55% 7% 0%

3 31% 8 % 59% 2%

4 69% 8 % 2 1 % 2%

No
YES NO Answer

5 96% 3% 1%
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These results indicate that:

- The programmers were initially somewhat familiar 
with modular design techniques.

- Control-flow modularity was seen as a desirable 
feature of a program, and to a lesser extent, data
flow modularity was also seen as desirable.

- Not only was a total lack of modularity (NG) seen
as undesirable, but it was also viewed as a practice 
which led to difficulties in programming.

This last result is somewhat contradictory with respect to 
the experimental results, as treatment NG often led to less 
resources used than the other two practices.

Why did this disparity of results occur? It appears 
that, regardless of the attitudes of the programmers, the 
practices which required greater attention to detail 
required more total effort. There appears to be a 
substantial amount of effort that must be extended just to 
create a "modular" program. The incorporation of parameter 
passing within a program takes a certain amount of effort. 
The use of parameters in PL/l requires additional 
declarations of variables. The use of subroutines within 
a program requires advance planning relating to what 
subroutines should accomplish. Planning must also be done
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to figure out the hierarchical structure of all routines 
within the program. The various threads of control-flow 
must all be linked together through the design process.

All of these techniques would serve to increase the 
values obtained for resource consumption. If modularity is 
to impact resource consumption in a favorable sense, the 
effects of modularity on psychological complexity must 
outweigh the baseline effort needed just to use the modular 
design techniques. It appears that the programming 
assignments used in this study were not substantial enough 
for this to happen.



51

VI. CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS

In the previous sections of this paper, it has been 
shown that for intermediate programmers and small to medium 
sized programs the use of modular design techniques can in 
fact increase software development costs. This result is 
quite interesting, as modularity is very widely accepted as 
a desirable, if not mandatory, feature of any software 
system. The authors believe that modularity should be 
present in large systems, as many have already stated. It 
seems likely that in order to minimize psychological 
complexity of very large programs, modularity in design is 
necessary. So, an interesting question arises concerning 
the size that a program must be before modularity contrib
utes to minimizing costs in the design and development 
phases. Where is this "break-even" point in software system 
design? In addition to this question, there are at least 
three other experiments which could further illuminate the 
relationship between modularity and resource consumption:

- The same experiment as the one described herein should 
be replicated, using more substantial programming 
assignments.

- The same experiment could be replicated, using number of 
compile-time and run-time errors as metrics of resource 
consumption.



52

- A similar experiment could be performed using a
factorial layout and treating control-flow and data
flow modularities as individual factors. This would 
allow some insight to be gained regarding the inter
action effects of the two modularities, if any.

These experiments could be easily done in an academic 
environment, but it seems impractical to expect that such 
research could ever be done on "real-world" programs, as 
industry has already been convinced that modular design is 
necessary from a modifiability standpoint. It is unlikely 
that any company would allow the development of a large, 
monolithic software package, especially if modular design 
were being employed in a separate and independent develop
ment group.
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